6,971 Matching Annotations
  1. May 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors provide convincing experimental evidence of extended motivational signals encoded in the mouse anterior cingulate cortex (ACC) that are implemented by the orbitofrontal cortex (OFC)-to-ACC signaling during learning. The results are valuable to the field of motivation and cognition. The experimental methods used were state-of-the-art. The manuscript would further benefit from theory-driven analyses to inform a mechanistic understanding, particularly for the single-cell calcium imaging results. These results will be of interest to those interested in cortical function, learning, and/or motivation.

      We thank the reviewers for their thoughtful reading of our paper and providing constructive feedback. We have made the relevant changes to the manuscript to improve the writing and figures. We provide responses below to each of the reviewer’s comments.

      Reviewer #1 (Public Review):

      (1) An important conclusion (Figure 4) is that when mice are trained to run through no reward (N) cues in order to reach reward (R) cues, the OFC neurons projecting to ACC each respond to different specific events in a manner that ensures that collectively they tile the extended behavioural sequence. What I was less sure of was whether the ACC neurons do the same or not. Figure 3 suggests that on average ACC neurons maintain activity across N cues in order to get to R cues but I was not sure whether this was because all individual neurons did this or whether some had activity patterns like the OFC neurons projecting to ACC.

      We agree that it remains uncertain what individual ACC neurons do during the extended behavioral sequence. We now include a few sentences in the discussion about what we hypothesize, as we did not perform the cellular resolution imaging to determine this:

      “While we did not perform single-cell imaging of ACC in our task, we hypothesize that individual ACC neurons could encode the distribution of actions/opportunities47 (i.e. stop, run, lick, suppress lick) taken during R or N cues. ACC neurons could compute the relative value of the action taken such that more ACC neurons become recruited once mice learn to run out of N cues. The sustained increase in bulk ACC activity across N cue trials (Figure 2) could come from a stable sequence of individual neurons that encode the timescale of the actions taken. In this way, OFC projections would encode current motivation across N cues before learning, which then triggers ACC to compute the valuebased actions. Motivational signals in OFC would thus represent state since past rewards/goals, while in ACC these signals represent actions taken to pursue rewards/goals in the future.”

      (2) Figure 1 versus Figure 2: There does not seem to be a particular motivation for whether chemogenetic inactivation or optogenetic inhibition were used in different experiments. I think that this is not problematic but, if I am wrong and there were specific reasons for performing each experiment in a certain way, then further clarification as to why these decisions were made would be useful. If there is no particular reason, then simply explaining that this is the case might stop readers from seeking explanations.

      Thank you for this comment and we agree that clarification on this is important. We performed chemogenetic inhibition of ACC in Figure 1 to take a broad survey of behavioral effects throughout a 40-min long behavioral session, and performed optogenetic inhibition in Figure 2 because we wanted to restrict our inhibition to the few seconds of cue presentation during a behavioral session and across days. Furthermore, we wanted to combat any potential off-target effects that would come from repeated administration of CNO over the several days of training (Manvich et al 2018). We have included a couple sentences on page 4 to clarify this:

      “We proceeded to test whether these motivation related signals in ACC are required for learning. To restrict our inhibition to cue presentation portions of our task, and combat any potential off-target effects of CNO31 from repeated administration across several days of training, we used optogenetic inhibition.”

      (3) P5, paragraph 2. The authors argue that OFC and anteriomedial (AM) thalamic inputs into ACC are especially important for mediating motivation through N cues in order to reach R cues. Is this based on a statistical comparison between the activity in OFC or AM inputs as opposed to the other inputs?

      We determined that OFC and AM thalamic inputs to ACC are particularly important by comparing the pre-cue activity in a reward-no reward-reward trial sequence (RNR; Figure 3B). Specifically, we performed paired t-tests comparing pre-cue activity between N and R cues, and found a statistically significant increase for R cues but only for the OFC and AM inputs, not for the BLA or LC inputs.

      (4) P3, paragraph 2. Some papers by Khalighinejad and colleagues (eg Neuron 2020, Current Biology, 2022) might be helpful here in as much as they assess ACC roles in determining action frequency, initiation, and speed and mediating the relationship between reward availability and action frequency and speed.

      We thank the reviewer for bringing these relevant papers to our attention. We have included these papers in our citations in this paragraph.

      (5) Paragraph 1 "This learning is of a more deliberate, informed nature than habitual learning, as they are sensitive to the current value of outcomes and can lead to a novel sequence of actions for a desired outcome1-3." Should "they" be "it"?

      This is correct, we have edited this in the manuscript.

      Reviewer #2 (Public Review):

      Impact:

      The findings will be valuable for further research on the impact of motivational states on behaviour and cognition. The authors provided a promising concept of how persistent motivational states could be maintained, as well as established a novel, reproducible task assay. While experimental methods used are currently state-of-the-art, theoretical analysis seems to be incomplete/not extensive. We thank the reviewer for these comments. In our paper, we performed single-cell calcium imaging of OFC projection neurons to ACC to build a mechanistic understanding for the bulk ramp-like response we identified in these neurons with photometry. We identified ensembles of neurons that tile sequences of trials that match the bulk response, in particular a subset of neurons that are active at the time a reward (R) cue is reached after 2 no-reward (N) cues. We included a paragraph in the discussion to address future theory-driven analyses to address how computation is achieved by OFC projection neurons:

      “We linked the ramp-like increase in neural activity in OFC to motivation, but several questions still remain about how motivation is computed and why it would be represented as a ramp. Motivation could be computed as a combination of several variables such as time since last reward, value of reward, and effort to reach future rewards. Future theorydriven analyses could determine how motivation is computed, and whether individual variables of time, value, and effort, are encoded as clusters of similar tuned neurons, or mixed and collectively represented at the population level. In either case, it is likely that a combined map of task space and value-information carried by OFC are being used to inform downstream regions, such as ACC, for adjusting behavior. ”

      Reviewer #2 (Recommendations for the Authors):

      Overall, the layout of the figures seems a little bit chaotic and makes it hard to understand the boundaries between panels.

      We agree that the figure layout could be improved upon to aid the reader in moving from panel to panel. We have edited two of the main figures with layouts that are most irregular (Figures 2 and 4) to help with this.

      Figures/text should include the promoters used for protein expression so that readers understand which cell types would be affected.

      We have made sure to edit the figures to include the promoter of the viruses we used, and edited the text to include both the AAV serotype and promoter.

      Discuss why it is necessary for multiple prefrontal areas to be involved in maintaining motivational signals.

      We thank the reviewer for this comment. We believe that prefrontal areas would be recruited as tasks to study motivational states become more complex and require animals to keep track of task structure and perform value-guided actions. We have included a couple sentences in the final paragraph of the discussion about this:

      “Our work showed the recruitment of multiple frontal cortical areas in this process, which is to be expected as animals are required to build, maintain, and use representations of task structure and value to drive learned, motivated behaviors47. Future work can build upon the task we developed here to determine how the frontal cortex maintains motivational states across many more cue-outcome associations, and how these associations may dynamically change across time48”.

      Additionally, we included a short discussion on how in motivational signals differ between OFC and ACC in our work. We suggest OFC encodes current motivation before and after learning, which then leads ACC to represent learned actions taken and thus have a longer timescale motivational response (see response to Reviewer 1).

      Minor: Page 4, Line 1: "increase" instead of "increases".

      This is correct, we have edited this in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study provides important insights into the role of neurexins as regulators of synaptic strength and timing at the glycinergic synapse between neurons of the medial nucleus of the trapezoid body and the lateral superior olive, key components of the auditory brainstem circuit involved in computing sound source location from differences in the intensity of sounds arriving at the two ears. Through an elegant combination of genetic manipulation, fluorescence in-situ hybridization, ex vivo slice electrophysiology, pharmacology, and optogenetics, the authors provide convincing evidence to support their claims. While further work is needed to reveal the mechanistic basis by which neurexins influence glycinergic neurotransmission, this work will be of interest to both auditory and synaptic neuroscientists.

      We appreciate the recognition of the significance of our study in shedding light on the role of neurexins in regulating synaptic strength and timing at the glycinergic synapse. Indeed, further investigations are warranted to delve deeper into the specific role of each different variant of neurexins in the future. We hope that our work will spark more interest and collaboration in unraveling the complexities of molecular codes of synaptic function.

      Public Reviews:

      Reviewer #1 (Public Review):

      Jiang et al. demonstrated that ablating Neurexins results in alterations to glycinergic transmission and its calcium sensitivity, utilizing a robust experimental system. Specifically, the authors employed rAAV-Cre-EGFP injection around the MNTB in Nrxn1/2/3 triple conditional mice at P0, measuring Glycine receptor-dependent IPSCs from postsynaptic LSO neurons at P13-14. Notably, the authors presented a clear reduction of 60% and 30% in the amplitudes of opto- and electric stimulation-evoked IPSCs, respectively. Additionally, they observed changes in kinetics, alterations in PPR, and sensitivity to lower calcium and the calcium chelator, EGTA, indicating solid evidence for changes in presynaptic properties of glycinergic transmission.

      Furthermore, the authors uncovered an unexpected increase in sIPSC frequency without altering amplitude. Despite the reduction in evoked IPSC, immunostaining revealed an increase in GlyT2 and VGAT in TKO mice, supporting the notion of an increase in synapse number. However, the reviewer expresses caution regarding the authors' conclusion that "glycinergic neurotransmission likely by promoting the synapse formation/maintenance, which is distinct from the phenotypes observed in glutamatergic and GABAergic neurons (Chen et al., 2017; Luo et al., 2021)", as outlined in lines 173-175. The reviewer suggests that this statement may be overstated, pointing out the authors' own discussion in lines 254-265, which acknowledges multiple possibilities, including the potential that the increase in synapses is a consequence rather than a causal effect of Nrxn deletion.

      We appreciate the reviewer’s thoughtful evaluation of our study. We agree that our conclusion regarding the promotion of synapse formation/maintenance may have been overstated and recognize the need for a more nuanced interpretation of our findings. Accordingly, we have revised our interpretation by discussing carefully the various possibilities that may cause the observed increase in synapse number in line 256-266.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Jiang et al., explore the role of neurexins at glycinergic MNTB-LSO synapses. The authors utilize elegant and compelling ex vivo slice electrophysiology to assess how the genetic conditional deletion of Nrxns1-3 impacts inhibitory glycinergic synaptic transmission and found that TKO of neurexins reduced electrically and optically evoked IPSC amplitudes, slowed optically evoked IPSC kinetics and reduced presynaptic release probability. The authors use classic approaches including reduced [Ca2+] in ACSF and EGTA chelation to propose that changes in these evoked properties are likely driven by the loss of calcium channel coupling. Intriguingly, while evoked transmission was impaired, the authors reported that spontaneous IPSC frequency was increased, potentially due to an increased number of synapses in LSO. Overall, this manuscript provides important insight into the role of neurexins at the glycinergic MNTP-LSO synapse and further emphasizes the need for continued study of both the non-redundant and redundant roles of neurexins.

      We thank the reviewer for the strong comments and support of our work.

      Strengths:

      This well-written manuscript seamlessly incorporates mouse genetics and elegant ex vivo electrophysiology to identify a role for neurexins in glycinergic transmission at MNTB-LSO synapses. Triple KO of all neurexins reduced the amplitude and timing of evoked glycinergic synaptic transmission. Further, spontaneous IPSC frequency was increased. The evoked synaptic phenotype is likely a result of reduced presynaptic calcium coupling while the spontaneous synaptic phenotype is likely due to increased synapse numbers. While neuroligin-4 has been identified at glycinergic synapses, this study, to the best of my knowledge, is the first to study Nrxn function at these synapses.<br />

      We again appreciate the positive feedback on the strengths of our study. We agree that the observed reduction in evoked synaptic transmission and the increase in spontaneous IPSC frequency provide intriguing insights into the function of neurexins in regulating glycinergic synaptic activity.

      Weaknesses:

      The data are compelling and report an intriguing functional phenotype. The role of Neurexins redundantly controls calcium channel coupling has been previously reported. Mechanistic insight would significantly strengthen this study.

      We wholeheartedly agree with the reviewer that understanding how neurexins control calcium channel coupling at the presynaptic active zone is crucial for elucidating their role in synaptic transmission. While our current study has provided compelling evidence for the functional phenotypes of pan-neurexin deletion, we recognize the importance of investigating the underlying molecular mechanisms in future research. Exploring these mechanisms would undoubtedly enhance our understanding of neurexin function at various synapses and contribute to advancing the field.

      The claim that triple KO of Nrxns from MNTB increases the number of synapses in LSO is not strongly supported.

      We agree. Echoing the suggestion made by reviewer 1 (as mentioned above), we acknowledge that the claim regarding the increase in synapse numbers in the LSO following the triple knockout of neurexins from the MNTB was overstated. Consequently, we have revised our conclusions more carefully to reflect this adjustment.

      Despite the stated caveats of measuring electrically evoked currents and the more robust synaptic phenotypes observed using optically evoked transmission, the authors rely heavily on electrical stimulation for most measurements.

      We acknowledge that optogenetic stimulation offers crucial advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. Additionally, we have conducted new optogenetic experiments specifically for measuring the paired-pulse ratio in control and Nrxn123 TKO mice. These results have been included as a new supplementary figure (Figure S2).

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      The differential expression of individual neurexins might indicate that specific neurexins may dominantly regulate synaptic transmission, however, this possibility is not discussed in detail.

      We thank the reviewer for bringing up this important point. The differential expression of individual neurexins indeed suggests that specific neurexins may play dominant roles in regulating synaptic transmission. While our study primarily focused on the collective impact of ablating all neurexins, we acknowledge the significance of exploring the specific contributions of individual neurexin isoforms in the future. Understanding the distinct roles of each neurexin isoform could provide valuable insights into the precise mechanisms underlying synaptic function and plasticity. We have added discussion in our revised manuscript Line223-230.

      Reviewer #3 (Public Review):

      Summary:

      The authors investigate the hypothesis that neurexins serve a crucial role as regulators of the synaptic strength and timing at the glycinergic synapse between neurons of the medial nucleus of the trapezoid body (MNTB) and the lateral superior olivary complex (LSO). It is worth mentioning that LSO neurons are an integration station of the auditory brainstem circuit displaying high reliability and temporal precision. These features are necessary for computing interaural cues to derive sound source location from comparing the intensities of sounds arriving at the two ears. In this context, the authors' findings build up according to the hypothesis first by displaying that neurexins were expressed in the MNTB at varying levels. They followed this up with the deletion of all neurexins in the MNTB through the employment of a triple knock-out (TKO). Using electrophysiological recordings in acute brainstem slices of these TKO mice, they gathered solid evidence for the role of neurexins in synaptic transmission at this glycinergic synapse primarily by ensuring tight coupling of Ca2+ channels and vesicular release sites. Additionally, the authors uncovered a connection between the deletion of neurexins and a higher number of glycinergic synapses in TKO mice, for which they provided evidence in the form of immunostainings and related it to electrophysiological data on spontaneous release. Consequently, this investigation expands our knowledge on the molecular regulation of synaptic transmission at glycinergic synapses, as well as on the auditory processing at the level of the brainstem.

      Strengths:

      The authors demonstrate substantial results in support of the hypothesis of a critical role of neurexins for regulating glycinergic transmission in the LSO using various techniques. They provide evidence for the expression of neurexins in the MNTB and consecutively successfully generate and characterize the neurexin TKO. For their study on LSO IPSCs the authors transduced MNTB neurons by co-injection of virus-carrying Cre and ChR2 and subsequently optogenetically evoke release of glycine. As a result, they observed a significant reduction in amplitude and significantly slower rise and decay times of the IPSCs of the TKO in comparison with control mice in which MNTB neurons were only transduced with ChR2. Furthermore, they observed an increased paired pulse ratio (PPR) of LSO IPSCs in the TKO mice, indicating lower release probability. Elaborating on the hypothesis that neurexins are essential for the coupling of synaptic vesicles to Ca2+ channels, the authors show lowered Ca2+ sensitivity in the TKO mice. Additionally, they reveal convincing evidence for the connection between the increased frequency of spontaneous IPSC and the higher number of glycinergic synapses of the LSO in the TKO mice, revealed by immunolabeling against the glycinergic presynaptic markers GlyT2 or VGAT.

      We thank the reviewer for the thoughtful and thorough evaluation of the significance of investigating the role of neurexins in glycinergic transmission at the MNTB-LSO synapse, particularly in the context of auditory processing and sound localization. The positive feedback is greatly appreciated.

      Weaknesses:

      The major concern is novelty as this work on the effects of pan-neurexin deletion in a glycinergic synapse is quite consistent with the authors' prior work on glutamatergic synapses (Luo et al., 2020). The authors might want to further work out novel aspects and strengthen the comparative perspective. Conceptually, the authors might want to be more clear about interpreting the results on the altered dependence of release on voltage-gated Ca2+ influx (Ca2+ sensitivity, coupling).

      Regarding the reviewer’s concern about the novelty of our work, we acknowledge that our previous work has explored the effects of pan-neurexin deletion on glutamatergic synapses (Luo et al., 2020). However, we would like to point out that a novelty of our present study indeed stems from the exploration of how different types of synapses converge to employ the same mechanism of synaptic function, particularly in the context of neurexin-mediated regulation. Our previous study focused on glutamatergic synapses, the current study delves into the realm of glycinergic synapses, which represent a distinct population with unique properties and functions. Despite the differences between these synapse types, our findings reveal a commonality in the underlying mechanisms of synaptic regulation mediated by neurexins. This convergence of mechanisms across different synapse types highlights the fundamental role of neurexins in synaptic function and plasticity. By elucidating how neurexins regulate synaptic transmission at both excitatory and inhibitory synapses, we provide valuable insights into the general principles governing synaptic function. In addition, this comparative perspective may shed light on the complex interplay between excitatory and inhibitory neurotransmission, which is crucial for maintaining the balance of neuronal activity and network dynamics.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      During the developmental period spanning P3-P12, the MNTB-LSO synapses undergo a transition from GABAergic to glycinergic transmission. It is well-established that Neurexin plays a role in modulating GABAergic transmission. In the authors' experimental system, AAV was injected at P0, likely impacting GABAergic transmission, including potentially influencing synapse number, before subsequently affecting glycinergic transmission. A thoughtful discussion of how the experimental interventions might have influenced this developmental process and glycinergic transmission would enhance the clarity and interpretation of their findings.

      We thank the reviewer for raising the interesting topic of the transmitter switch during neurodevelopment. Strong evidence using gerbils and rats as animal models demonstrates that the MNTB-LSO synapses undergo a shift from GABAergic to glycinergic during the early development. However, in a more recent study by Friauf and colleagues (Fisher et al., 2019), patch-clamp recordings in acute mouse brainstem slices at P4-P11 combined with pharmacological blockade of GABAA receptors and/or glycine receptors clearly demonstrated no GABAergic synaptic component on LSO principal neurons, suggesting the transmitter subtype switch may be species different. We add a discussion in our revision to clarify this topic.

      Reviewer #2 (Recommendations For The Authors):

      The data are compelling and report an intriguing functional phenotype. Mechanistic insight into how this phenotype manifests would significantly strengthen this study. For example, which neuroligin is found at these MNTB-LSO synapses?

      We agree that investigating the underlying molecular mechanisms, particularly the specific function of each variant of neurexins and their respective ligands on the postsynaptic neurons, is crucial. Exploring these mechanisms, which extend beyond the scope of our current study, would undoubtedly enhance our understanding of neurexin function at various synapses and foster advancements in the field.

      Does the TKO alter the ability of MNTB inputs to induce AP firing in LSO neurons?

      Activation of the MNTB inputs does not directly induce AP firing in LSO neurons, because the MNTB-LSO synapses are glycinergic and serve to inhibit neuronal activity.

      We think the reviewer was to ask whether pan-neurexin deletion in the MNTB neurons alter their ability to impact the firing of LSO neurons. Indeed, the weakening of glycinergic transmission due to pan-neurexin ablation in MNTB neurons could potentially alter the excitation-inhibition (E/I) balance, thereby impacting the overall excitability of LSO neurons. We have conducted preliminary experiments to investigate this aspect and found that the E/I balance at LSO neurons was notably increased in TKO mice. We are currently preparing a manuscript to comprehensively address the role of neurexins at the auditory circuit and behavior levels.

      Additional calcium measurements using GECIs would provide insight into whether nanodomain calcium or total calcium is altered at these synapses.

      We appreciate the valuable suggestion provided by the reviewer. However, distinguishing between Ca2+ nanodomain and Ca2+ microdomain using Ca2+ imaging techniques requires advanced systems such as two-photon STED microscopy, which are beyond the scope of our current research.

      It is unclear why fluorescence intensity is quantified instead of the number of synaptic clusters in LSO. In addition to changes in synapse numbers, fluorescent intensity can indicate a number of other possible morphological changes.

      We appreciate the valuable suggestion from the reviewer. We have re-analyzed our imaging data to compare synaptic density. The results, as included in Fig.3f and 3h, confirm an increase in the number of glycinergic synapses after pan-neurexin deletion.

      The most robust synaptic phenotypes were produced by measuring light-evoked oIPSCs and the authors acknowledge that electrically-evoked eIPSCs might be contaminated by uninfected fibers or by other sources of glycinergic inputs. I suggest that IPSC PPRs, EGTA, and low Ca2+ experiments be performed using optogenetics.

      As discussed in our response to Public Reviews, we acknowledge that optogenetic stimulation offers crucial advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. Additionally, following the reviewer’s suggestion, we have conducted new optogenetic experiments specifically for measuring the paired-pulse ratio in control and Nrxn123 TKO mice. We included this new dataset in supplementary Figure S2, which is consistent with our result obtained with electrically fiber stimulation.

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to major concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      It is sometimes confusing which type of evoked stimulation is being used (e.g. PPR, EGTA, and low Ca2+ experiments). To aid in the interpretations of these experiments, it would help to clarify.

      We appreciate the reviewer's suggestion regarding the clarity of the evoked stimulation methods used in our experiments. We have revised the manuscript to provide clearer descriptions of the specific types of evoked stimulation employed in each experiment. Thank you for guiding towards this clarification.

      The comparisons to Chen et al 2017 and the senior author's 2020 paper seem disjointed and do not contribute to the findings, which alone, are quite interesting. Given the prevailing notion that neurexins control different synaptic properties depending on the brain region and/or synapse studied, is it surprising that the findings observed here differ from previous studies of different synapses (glutamatergic and GABAergic)?

      By comparing previous studies at different types of neurons/synapses, our findings reveal a commonality in the underlying mechanisms of synaptic regulation mediated by neurexins. This convergence of mechanisms across different synapse types highlights the fundamental role of neurexins in synaptic function and plasticity. In addition, this comparative perspective may shed light on the complex interplay between excitatory and inhibitory neurotransmission, which is crucial for maintaining the balance of neuronal activity and network dynamics.

      Despite Nrxn3 being the most abundant Nrxn mRNA in MNTB neurons, the possible contributions of this highly expressed protein are not discussed.

      We thank the reviewer for bringing up this important point. The differential expression of individual neurexins indeed suggests that specific neurexins may play dominant roles in regulating synaptic transmission. While our study primarily focused on the collective impact of ablating all neurexins, we acknowledge the significance of exploring the specific contributions of individual neurexin isoforms in the future. Understanding the distinct roles of each neurexin isoform could provide valuable insights into the precise mechanisms underlying synaptic function and plasticity. We have added discussion in our revised manuscript Line223-230.

      Reviewer #3 (Recommendations For The Authors):

      • There are several instances of spaces missing and typos, please carefully check the manuscript.

      We greatly appreciate the reviewer's helpful feedback on the text that could be clarified or improved. We have meticulously edited the manuscript to address these concerns.

      • While studying the properties of IPSC, apart from optogenetic stimulation, the authors performed experiments with electrical fiber stimulation. Their findings showed a slightly significant reduction of the IPSC amplitude and no effect on the IPSCs kinetics when comparing the TKO and control. One weakness is the discrepancy between the results from the optogenetic and fiber stimulation experiments, which the authors contribute to inefficient transfection in the fiber stimulation experiments. The authors state that they tried to optimize their protocols for virus injection protocols. However, they do not elaborate on how the transfection rates could be improved in the discussion section. Moreover, it would be good to further address the reasons for the difference in amplitude between the control IPSCs in the optogenetic and fiber stimulation experiments.

      Echoing the suggestion by Reviewer 2 (see above), we acknowledge that optogenetic stimulation offers certain advantages, and we have provided a balanced discussion of the caveats associated with both methods in our manuscript. In addition, we have performed a new set of optogenetic experiment for the paired-pulse ratio measurement in control and Nrxn123 TKO mice and included as a new figure in supplementary figure S2.

      For experiments involving EGTA and low Ca2+ manipulations, we opted for electrical stimulation due to major concerns regarding potential side effects of optogenetics, including the phototoxicity and photobleaching during prolonged light exposure.

      We added the detail of virus injection strategy that optimized the transfection rates in the method section “To enhance virus infection efficiency, we decreased the dosage per injection while increasing the frequency of injections. Additionally, we ensured the pipette remained immobilized for 20-30 seconds to guarantee virus absorption at injection sites. As a result of this strategy, we estimated that the vast majority of MNTB neurons were inoculated by AAVs.” See line288-290.

      • Abstract: "ablation of all neurexins in MNTB neurons reduced not only the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons."

      Changed as suggested.

      • Consider revising to "The synaptic dysfunctions primarily resulted from an altered dependence of release on voltage-gated Ca2+ influx."

      We appreciate the reviewer's suggestion, which helps improve the clarity of our manuscript. We have revise the phrasing as follows: "The synaptic dysfunctions primarily resulted from an impaired calcium sensitivity of release and a loosened coupling between voltage-gated calcium channels and synaptic vesicles."

      • Line 39 should be vertebrates.

      Revised as suggested.

      • Line 49 it would sound better to say "which further points to the diverse actions of neurexins in specific neurons."

      Revised as suggested.

      • Line 60 - this paragraph could include information about GABA signaling from the MNTB to the LSO, because on line 113 you mention LSO neurons receive inhibitory GABAergic/glycinergic inputs, but when you do not mention blocking of GABA currents to isolate the glycinergic ones.

      We thank the reviewer for the thoughtful and detailed suggestion. We revised the text in line 60 to “In the mature mammalian auditory brainstem” and in line 113, we removed GABAergic to emphasize the nature of glycinergic synapse, particularly in the mouse brainstem where no GABAergic components are found (Fisher et al., 2019).

      • Line 72/73 it should be adeno-associated virus; line 73: "combining this with the RNAScope technique" sounds better.

      Changed as suggested.

      • Line 91 using the RNAScope technique; lines 97, 119 as a control; line 108 the functional organization.<br />

      Changed as suggested.

      • Line 113 should be a pharmacological approach; line 122 optogenetically evoked.

      Changed as suggested.

      • Line 132, 160: the control.

      Changed as suggested.

      • Line 147 thus were infected; line 148 likely to be present but were obscured .

      Changed as suggested.

      • Line 154 which has been routinely used.

      Changed as suggested.

      • Line 155 It is not supposed to be Figure 2h but 2i; following that Figure 2i should be 2j; in my opinion, Figure 2i does not display a strong depression for the TKO mice.

      Changed as suggested.

      • Line 171 a better flow is achieved by saying: together these data show.

      Changed as suggested.

      • EC50 rather than IC50 of [Ca2+].

      Changed as suggested.

      • 180 it is better to say "we approached the matter by..."; line 183 while recording;

      Changed as suggested.

      • Line 203 were much stronger than the effect at control synapses; line 206 tightly clustering.

      Changed as suggested.

      • Line 212 sounds like they provide evidence for retina and spinal cord as well, should be made clear.

      Changed as suggested.

      • Line 289 previously.

      Changed as suggested.

      • Line 295 should be 30 min.

      Changed as suggested.

      • Line 336, 337 confocal microscope.

      Changed as suggested.

      • Please provide the number of data points also in figure captions or in the results section.

      Added in the captions as suggested.

      • Line 533, a better phrasing would be: the blocking effect of 0.2 mM Ca on IPSC amplitude.

      Changed as suggested.

      • Explain either in the methods or result section how was the EC50 of Ca2+ calculated.

      Added in the methods as suggested.

    1. Reviewer #3 (Public Review):

      Summary:

      This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are same, or judging if an object is symmetric. In Exp 1, the reaction times on several objects were measured in human subjects. In Exp 2, visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.

      Strengths:

      (1) The writing is very clear. The presentation of the study is informative.<br /> (2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.

      Weaknesses:

      (1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.

      (2) Visual homogeneity (at least given the current from) is an unnecessary term. It is similar to distractor heterogeneity/distractor variability/distractor statics in literature. However, the authors attempt to claim it as a novel concept. The title is "visual homogeneity computations in the brain enable solving generic visual tasks". The last sentence of the abstract is "a NOVEL IMAGE PROPERTY, visual homogeneity, is encoded in a localized brain region, to solve generic visual tasks". In the significance, it is mentioned that "we show that these tasks can be solved using a simple property WE DEFINE as visual homogeneity". If the authors agree that visual homogeneity is not new, I suggest a complete rewrite of the title, abstract, significance, and introduction.

      (3) Also, "solving generic tasks" is another overstatement. The oddball search tasks, same-different tasks, and symmetric tasks are only a small subset of many visual tasks. Can this "quantitative model" solve motion direction judgment tasks, visual working memory tasks? Perhaps so, but at least this manuscript provides no such evidence. On line 291, it says "we have proposed that visual homogeneity can be used to solve any task that requires discriminating between homogeneous and heterogeneous displays". I think this is a good statement. A title that says "XXXX enable solving discrimination tasks with multi-component displays" is more acceptable. The phrase "generic tasks" is certainly an exaggeration.

      (4) If I understand it correctly, one of the key findings of this paper is "the response times for target-present searches were positively correlated with visual homogeneity. By contrast, the response times for target-absent searches were negatively correlated with visual homogeneity" (lines 204-207). I think the authors have already acknowledged that the positive correlation is not surprising at all because it reflects the classic target-distractor similarity effect. But the authors claim that the negative correlations in target-absent searches is the true novel finding.

      (5) I would like to make it clear that this negative correlation is not new either. The seminal paper by Duncan and Humphreys (1989) has clearly stated that "difficulty increases with increased similarity of targets to nontargets and decreased similarity between nontargets" (the sentence in their abstract). Here, "similarity between nontargets" is the same as the visual homogeneity defined here. Similar effects have been shown in Duncan (1989) and Nagy, Neriani, and Young (2005). See also the inconsistent results in Nagy& Thomas, 2003, Vicent, Baddeley, Troscianko&Gilchrist, 2009.<br /> More recently, Wei Ji Ma has systematically investigated the effects of heterogeneous distractors in visual search. I think the introduction part of Wei Ji Ma's paper (2020) provides a nice summary of this line of research.

      I am surprised that these references are not mentioned at all in this manuscript (except Duncan and Humphreys, 1989).

      (6) If the key contribution is the quantitative model, the study should be organized in a different way. Although the findings of positive and negative correlations are not novel, it is still good to propose new models to explain classic phenomena. I would like to mention the three studies by Wei Ji Ma (see below). In these studies, Bayesian observer models were established to account for trial-by-trial behavioral responses. These computational models can also account for the set-size effect, behavior in both localization and detection tasks. I see much more scientific rigor in their studies. Going back to the quantitative model in this paper, I am wondering whether the model can provide any qualitative prediction beyond the positive and negative correlations? Can the model make qualitative predictions that differ from those of Wei Ji's model? If not, can the authors show that the model can quantitatively better account for the data than existing Bayesian models? We should evaluate a model either qualitatively or quantitatively.

      (7) In my opinion, one of the advantages of this study is the fMRI dataset, which is valuable because previous studies did not collect fMRI data. The key contribution may be the novel brain region associated with display heterogeneity. If this is the case, I would suggest using a more parametric way to measure this region. For example, one can use Gabor stimuli and systematically manipulate the variations of multiple Gabor stimuli, the same logic also applies to motion direction. If this study uses static Gabor, random dot motion, object images that span from low-level to high-level visual stimuli, and consistently shows that the stimulus heterogeneity is encoded in one brain region, I would say this finding is valuable. But this sounds like another experiment. In other words, it is insufficient to claim a new brain region given the current form of the manuscript.

      REFERENCES<br /> - Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. doi: 10.1037/0033-295x.96.3.433<br /> - Duncan, J. (1989). Boundary conditions on parallel processing in human vision. Perception, 18(4), 457-469. doi: 10.1068/p180457<br /> - Nagy, A. L., Neriani, K. E., & Young, T. L. (2005). Effects of target and distractor heterogeneity on search for a color target. Vision Research, 45(14), 1885-1899. doi: 10.1016/j.visres.2005.01.007<br /> - Nagy, A. L., & Thomas, G. (2003). Distractor heterogeneity, attention, and color in visual search. Vision Research, 43(14), 1541-1552. doi: 10.1016/s0042-6989(03)00234-7<br /> - Vincent, B., Baddeley, R., Troscianko, T., & Gilchrist, I. (2009). Optimal feature integration in visual search. Journal of Vision, 9(5), 15-15. doi: 10.1167/9.5.15<br /> - Singh, A., Mihali, A., Chou, W. C., & Ma, W. J. (2023). A Computational Approach to Search in Visual Working Memory.<br /> - Mihali, A., & Ma, W. J. (2020). The psychophysics of visual search with heterogeneous distractors. BioRxiv, 2020-08.<br /> - Calder-Travis, J., & Ma, W. J. (2020). Explaining the effects of distractor statistics in visual search. Journal of Vision, 20(13), 11-11.

    1. AbstractMost of available reference genomes are lack of the sequence map of sex-limited chromosomes, that make the assemblies uncompleted. Recent advances on long reads sequencing and population sequencing raise the opportunity to assemble sex-limited chromosomes without the traditional complicated experimental efforts. We introduce a computational method that shows high efficiency on sorting and assembling long reads sequenced from sex-limited chromosomes. It will lead to the complete reference genomes and facilitate downstream research of sex-limited chromosomes.Competing Interest StatementThe authors have declared no competing interest.

      Reviewer 3. Arang Rhie

      Comments to Author: 1. In the introduction, add recent marker based graph phasing algorithms in long-reads, such as hifiasm trio and verkko trio mode after the T2T-Y. They are different from trio-binning, which tries to phase the reads upfront. Graph based phasing is using markers to determine haplotype specific paths to traverse. a. T2T-Y chromosome should be referencing Rhie et al., Nature 2023. Verkko is a successor of the manual efforts taken in T2T-Y, which should be also noted in the introduction. b. Reference for sexPhase program is still missing. Also, some rephrasing of the sentence is needed, as the way it is currently written is easily misleading to be understood as sexPhase was part of the methods used in the assembly of the T2T-Y. 2. There are other approaches for phasing genomes taken in plants, for example the poly ploid potato phasing using many siblings of the child by Mari et al. bioRxiv 2022.3. "But only one male and one female could suffer from sampling error" - this part is unclear. Please clarify. 4. Reference for the mason_simulator, badread software is missing. 5. Provide the accession (HG02982) for the "African human Y" in the main text. 6. I appreciate that the authors compared assemblies to T2T-Y as I requested before. However, fundamentally, mapping to T2T-Y and comparing length of each sequence classes is comparing apples to oranges, particularly in the heterochromatic region and ampliconic region of the Y. It is known to have variable copy numbers and size differences between two individuals. Frequent inversions have been reported in the ampliconic regions across different Y haplogroup. The number, size, and distribution of the repeat arrays composing the heterochromatic region has been shown to vary among different Y haplogroups in Hallast et al., Nature 2023. This can be also seen in Fig. 3c; the overall depth of the flow sorting in the heterochromatic region is below 1 - indicating the Yqh is shorter than T2T-Y, as it is in Fig. 3b. To make the benchmark legit, the authors should compare SRY and the flow sorting method using samples from the same individual. HG02982 and HX1 are presumably having very different sequence compositions given the diverged population history (African vs. Asian). Comparing total length of the assembled region against a 3rd different Y haplogroup (HG002Y) makes things more complicated, especially on regions that are known to vary a lot. If the authors think flow sorting based method needs to be compared, it should be benchmarked on the same individual to make an apple-to-apple comparison. I do agree results from read sorting (i.e. portion of reads sequenced from non-Y chromosomes in SRY vs. flow-sorting) is an important finding. However, I'd still argue comparing assemblies from the two different Y haplogroups is a stretch. The authors could have performed the same assembly length comparison on the T2T-Y using results from their SRY sorted reads with Verkko of HG002 vs. Verkko assembly using trio-binned markers. 7. In the section where assemblies are compared, the authors point to Table 1, which contains results from HG01109. HG01109 has never been mentioned before. I thought the authors were comparing assemblies from SRY sorted reads of HX1? I am not sure why the authors suddenly added a 3rd PUR genome with no context. Was this a mistake? Add results from HX1 to Table 1. 8. Please add divider lines in Table 1 between All / Ampliconic / X-degenerate / X-transposed / PAR / Het / Others. It is hard to see which rows belong to which category. 9. The last result section where authors compare results from Verkko, it is unclear how the verkko assembly was run. The authors say "default option", and later "in trio mode" in the methods. Did the authors collect parental reads from HG002 (HG003 and HG004)? How was "trio mode" performed? Did the authors used trio binning to sort the reads, then run Verkko? Or used the homopolymer compressed parental kmers and used that in the Rukki step of Verkko (and this should be benchmarked)? Was the HG002 trio assembly taken from Rautiainen et al. paper? Please clarify and add the missing parts to the main text and methods. 10. Related to the above section, it is hard to see in Fig. 4a the "two approximately 1 Mb contigs aligning to the same region of the Y chromosome". An enlarged inset of the dotplot may be helpful. Also, add legends and scale to the X and Y axis of the dotplots. 11. Note there is a mis-assembly reported on T2T-Y palindrome P5 (https://github.com/marbl/CHM13-issues/blob/main/v2.0_issues.bed), which the entire P5 should be inverted. I don't see this in the dotplots of Fig. 4. 12. In the discussion, the authors are mentioning results from the 10 trios that have been removed from the previous results. Please add the 10 trio results to the main text if it was a mistake, or remove the irrelevant results from the Discussions and Supp. Tables. 13. The authors discuss the suboptimal performance of SRY in the PAR is contributed by the restricted data types. I thought it was contributed by the lower density of the markers? The PAR parental marker density was very similar to that of autosomes, with stretches of runs of homozygosity, presumably to maintain enough homology for recombination. What was the marker density in the PAR? Was it below their 7 kmer / 1kb? 14. The authors mentioned there are no ZW genomes available to test SRY. There is a Zebra finch trio (ZW, female, bTaeGut2) and a male sample (ZZ, male, bTaeGut1) available with HiFi of the child (bTaeGut2) and Illumina of all the genomes from the Vertebrate Genomes Project (Rhie et al., Nature, 2021). Perhaps the authors could apply SRY on this individual, and compare the W chromosome results to what has been released on https://www.genomeark.org/vgp-all/Taeniopygia_guttata.html.

      Re-review: The authors have addressed most of my concerns. The revised manuscript reads much better than before. Regarding my last comment and response from the authors about the W chromosome, I was hoping to see comparable coverage of the W chromosome to the reference, as a proof of principle that SRY could be applied to non-human, highly diverged genomes. The assembly looks very fragmented though. Was it only the similarity to the Z chromosome that caused the fragmentation? Are there no other factors contributing to the discontinuity of the W chromosome? A few minor comments below to the revised version: 1. Please indicate which genome was compared in the legend of Supp. Table 5. 2.When using et al notations, please use the last name. Mari et al should be Serra Mari et al., Mikko et al should be Rautiainen et al. Also, Serra Mari et al is now published in Genome Biology: https://doi.org/10.1186/s13059-023-03160-z. Please update the reference. 3. There are a few grammar corrections to make.

    1. Dynamic functional connectivity (dFC) has become an important measure for understanding brain function and as a potential biomarker. However, various methodologies have been developed for assessing dFC, and it is unclear how the choice of method affects the results. In this work, we aimed to study the results variability of commonly-used dFC methods. We implemented seven dFC assessment methods in Python and used them to analyze fMRI data of 395 subjects from the Human Connectome Project. We measured the pairwise similarity of dFC results using several similarity metrics in terms of overall, temporal, spatial, and inter-subject similarity. Our results showed a range of weak to strong similarity between the results of different methods, indicating considerable overall variability. Surprisingly, the observed variability in dFC estimates was comparable to the expected natural variation over time, emphasizing the impact of methodological choices on the results. Our findings revealed three distinct groups of methods with significant inter-group variability, each exhibiting distinct assumptions and advantages. These findings highlight the need for multi-analysis approaches to capture the full range of dFC variation. They also emphasize the importance of distinguishing neural-driven dFC variations from physiological confounds, and developing validation frameworks under a known ground truth. To facilitate such investigations, we provide an open-source Python toolbox that enables multi-analysis dFC assessment. This study sheds light on the impact of dFC assessment analytical flexibility, emphasizing the need for careful method selection and validation, and promoting the use of multi-analysis approaches to enhance reliability and interpretability of dFC studies.Competing Interest StatementThe authors have declared no competing interest.

      Reviewer 2. Nicolas Farrugia

      Comments to Author: Summary of review This paper fills a very important gap in the literature investigating time-varying functional connectivity (or dynamic functional connectivity, dFC), by measuring analytical flexibility of seven different dFC methods. An impressive amount of work has been put up to generate a set of convincing results, that essentially show that the main object of interest of dFC, which is the temporal variability of connectivity, cannot be measured with a high consistency, as this variability is of the same order of magnitude or even higher than the changes observed across different methods on the same data. In this very controversial field, it is very remarkable to note that the authors have managed to put together a set of analysis to demonstrate this in a very clear and transparent way. The paper is very well written, the overall approach is based on a few assumptions that make it possible to compare methods (e.g. subsampling of temporal aspects of some methods, spatial subsampling), and the provided analysis is very complete. The most important results are condensed in a few figures in the main manuscript, which is enough to convey the main messages. The supplementary materials provide an exhaustive set of additional results, which are shortly discussed one by one. Most importantly, the authors have provided an open source implementation of 7 main dfc methods. This is very welcome for the community and for reproductibility, and is of course particularly suited for this kind of contribution. A few suggestions follow. Clarification questions and suggestions : 1- How was the uniform downsampling of 286 ROI to 96 done ? Uniform in which sense ? According to the RSN ? Were ROIs regrouped with spatial contiguity ? I understand this was done in order to reduce computational complexity and to harmonize across methods, but the manuscript would benefit from having an added sentence to explain what was done. 2- Table A in figure 1 shows the important hyperparameters (HP) for each method, but the motivations regarding the choice of HP for each method is only explained in the discussion (end of page 11, "we adopted the hyperparameter values recommended by the original paper or consensus among the community for each method"). It would be better to explain it in the methods, and then only discuss why this can be a limitation, in the discussion. 3- The github repository https://github.com/neurodatascience/dFC/tree/main does not reference the paper 4- The github repository https://github.com/neurodatascience/dFC/tree/main is not documented enough. There are two very large added values in this repo : open implementation of methods, and analytical flexibility tools. The demo notebook shows how to use the analytical flexibility tools, but the methods implementation is not documented. I expect that many people will want to perform analysis using the methods as well as comparison analysis, so the documentation of individual methods should not be minimized. 5 - For the reader, it would be better to include early in the manuscript (in the introduction) the presence of the code for reproductibility. Currently, the toolbox is only introduced in the final paragraph of the discussion. It comes as a very nice suprise when reading the manuscript in full, but I think the manuscript would gain a lot of value if this paragraph was included earlier, and if the development of the toolbox was included much earlier (ie. in the abstract). 6 - We have published two papers on dFC that the authors may want to include, although these papers have investigated cerebello-cerebral dFC using whole brain + cerebellum parcellations. The first paper used continuous HMM on healthy subjects, and found correlations with impulsivity scores, while the second papers used network measures on sliding window dFC matrices on a clinical cohort (patients with alcohol use disorder). I am not sure why the authors have not found our papers in their litterature, but maybe it would be good to include them. Authors need to update the final table in supplementary materials as well as the citations in the main paper. Abdallah, M., Farrugia, N., Chirokoff, V., & Chanraud, S. (2020). Static and dynamic aspects of cerebro-cerebellar functional connectivity are associated with self-reported measures of impulsivity: A resting-state fMRI study. Network Neuroscience, 4(3), 891-909. Abdallah, M., Zahr, N. M., Saranathan, M., Honnorat, N., Farrugia, N., Pfefferbaum, A., Sullivan, E. & Chanraud, S. (2021). Altered cerebro-cerebellar dynamic functional connectivity in alcohol use disorder: a resting-state fMRI study. The Cerebellum, 20, 823-835. Note that in Abdallah et al. (2020), while we did not compare HMM results with other dFC methods, we did investigate the influence of HMM hyperparameters, as well as perform internal cross validation on our sample + null models of dFC.

      Minor comments 6 - "[..] what lies behind the of methods. Instead, they reveal three groups of methods, 720 variations in dynamic functional connectivity?. " -> an extra "." was added (end of page 10).

    1. Background Culture-free real-time sequencing of clinical metagenomic samples promises both rapid pathogen detection and antimicrobial resistance profiling. However, this approach introduces the risk of patient DNA leakage. To mitigate this risk, we need near-comprehensive removal of human DNA sequence at the point of sequencing, typically involving use of resource-constrained devices. Existing benchmarks have largely focused on use of standardised databases and largely ignored the computational requirements of depletion pipelines as well as the impact of human genome diversity.Results We benchmarked host removal pipelines on simulated Illumina and Nanopore metagenomic samples. We found that construction of a custom kraken database containing diverse human genomes results in the best balance of accuracy and computational resource usage. In addition, we benchmarked pipelines using kraken and minimap2 for taxonomic classification of Mycobacterium reads using standard and custom databases. With a database representative of the Mycobacterium genus, both tools obtained near-perfect precision and recall for classification of Mycobacterium tuberculosis. Computational efficiency of these custom databases was again superior to most standard approaches, allowing them to be executed on a laptop device.Conclusions Nanopore sequencing and a custom kraken human database with a diversity of genomes leads to superior host read removal from simulated metagenomic samples while being executable on a laptop. In addition, constructing a taxon-specific database provides excellent taxonomic read assignment while keeping runtime and memory low. We make all customised databases and pipelines freely available.Competing Interest StatementThe authors have declared no competing interest.

      Reviewer 2. Darrin Lemmer, M.S.

      Comments to Author: This paper describes a method for improving the accuracy and efficiency of extracting a pathogen of interest (M. tuberculosis in this instance, though the methods should work equally well for other pathogens) from a "clinical" metagenomic sample. The paper is well written and provides links to all source code and datasets used, which were well organized and easy to understand. The premise – that using a pangenome database improves classification -- seems pretty intuitive, but it is nice to see some benchmarking to prove it. For clarity I will arrange my comments by the three major steps of your methods: dataset generation, human read removal, and Mycobacterium read classification. 1. Dataset generation -- I appreciate that you used a real-world study (reference #8) to approximate the proportions of organisms in your sample, however I am disappointed that you generated exactly one dataset for benchmarking. Even if you use the exact same community composition, there is a level of randomness involved in generating sequencing reads, and therefore some variance. I would expect to see multiple generations and an averaging of the results in the tables, however with a sufficiently high read depth, the variance won't likely change your results much, so it would be nice, and more true to real sequencing data, to vary the number of reads generated (I didn't see where you specified to what read depth for each species you generated the reads for), as it is rare in the real world to always get this deep of coverage. Ideally it would also be nice to see datasets varying the proportions of MTBC in the sample to test the limits of detection, but that may be beyond the scope of this particular paper. 2. Human read removal -- The data provided do not really support the conclusion, as all methods benchmarked performed quite well and, particularly when using the long reads from the Nanopore simulated dataset, fairly indistinguishable with the exception of HRRT. The short Illumina reads show a little more separation between the methods, probably due to the shorter sequences being able to align to multiple sequences in the reference databases, however comparing kraken human to kraken HPRC still shows very little difference, thus not supporting the conclusion that the pangenome reference provides "superior" host removal. The run times and memory used do much more to separate the performance of the various methods, and particularly with the goal of being able to run the analysis on a personal computer where peak memory usage is important. The only methods that perform well within the memory constraints of a personal computer for both long reads and short leads are HRRT and the two kraken methods, with kraken being superior at recall, but again, kraken human and kraken HPRC are virtually indistinguishable, making it hard to justify the claim that the pangenome is superior. Also, it appears your run time and peak memory usage is again based on one single data point, these should be performed multiple times and averaged. Finally, as an aside, I did find it interesting and disturbing that HRRT had such a high false negative rate compared to the other methods, given that this is the primary method used by NCBI for publishing in the SRA database, implying there are quite a few human remaining in SRA. 3. Mycobacterium read classification -- Here we do have some pretty good support for using a pangenome reference database, particularly compared to the kraken standard databases, though as mentioned previously, a single datapoint isn't really adequate, and I'd like to see both multiple datasets and multiple runs of each method. Additionally, given the purpose here is to improve the amount of MTB extracted from a metagenomic sample, these data should be taken the one extra step to show the coverage breadth and depth of the MTB genome provided by the reads classified as MTB, as a high number of reads doesn't mean much if they are all stacked at the same region of the genome. Given that these are simulated reads, which tend to have pretty even genome coverage, this may not show much, however it is still an important piece to show the value of your recommended method. One final comment is that it should be fairly easy to take this beyond a theoretical exercise, by running some actual real world datasets through the methods you are recommending to see how well they perform in actuality. For instance, reference #8, which you used as a basis for the composition of your simulated metagenomic sample, published their actual sequenced sputum samples. It would be easy to show if you can improve the amount of Mycobacterium extracted from their samples over the methods they used, thus showing value to those lower income/high TB burden regions where whole metagenome sequencing may be the best option they have.

      Re-review.

      This is a significantly stronger paper than originally submitted. I especially appreciate that multiple runs have now been done with more than one dataset, including a "real" dataset, and the analysis showing the breadth and depth of coverage of the retained Mtb reads, proving that you can still generally get a complete genome of a metagenomic sample with these methods. However kraken's low sensitivity when using the standard database definitely impacts the results, making a stronger argument for using a pangenome database (Kraken-Standard can identify the presence of Mtb, but if you want to do anything more with it, like AMR detection, you would need to use a pangenome database). I really think that this should be emphasized more, and perhaps some or all of the data in tables S9-S12 be brought into the main paper. It is maybe worth noting, that the significant drop in breadth, I would imagine, is a result of dividing the total size of the aligned reads by the size of the genome, implying a shallow coverage, but the reality is still high coverage in the areas that are covered, but lots of complete gaps in coverage. I did also like the switch to the somewhat more standard sensitivity/specificity metrics, though I do lament the actual FN/FP counts being relegated to the supplemental tables, as I thought these numbers valuable (or at least interesting) when comparing the results of the various pipelines, particularly with human read removal, where the various pipelines perform quite similarly.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *The study examined the mechanisms behind the nuclear transport of capsid proteins of various flaviviruses. The study used mass spectrometry to identify the interaction partners of JEV capsid protein and found Importin 7 as the top hit. After validating this interaction with IP-western blotting, using IPO7 knock-out cells they showed that the nuclear accumulation of capsid is dependent on IPO7. Moreover, they also observed nearly 10-folds reduction in titre of virus produced from knock out cells without reduction in virus replication or particle assembly.

      The study needs improvements to bring it to publication standards. Some overaarching problems include, all capsid localization studies being done with GFP-tagged capsid, and not wild type capsid produced during authentic infection, lack of quantitation of most of the localization data and not showing capsid localization from infection experiments in knock out cells, and no in-depth analysis of the potential mechanisms behind the observed reduction in titre in knock out cells etc.

      Thank you for your constructive comments. We have sincerely answered all of them, as shown below. We hope you are satisfied with our additional data and the revised manuscript.

      The major comments are

      Fig 1B: Please add quantitation and statistical analyses of the ratio of nuclear and cytoplasmic capsid protein of all different capsids used. Also include western blot to prove that there is no cleavage between Capsid and GFP and the green signal indeed comes from the fusion protein. Ideally you should use capsid alone instead of a fusion protein for at least selected few constructs to prove that the Capsid-GFP behaves identical to Capsid alone.

      Following the reviewer’s comments, we have added quantification and statistical data in Figure 1D. We have added CBB data and western blot data in Figures 1B and S1. Because recombinant proteins of low molecular weights were artificially translocated into the nucleus through diffusion, less than 20 kDa proteins are typically used as GFP or GST fusion proteins for the IJ and PM experiments. Instead of IJ and PM experiments, we have added data on the translocation of the non-tagged core using IFA and its statistical data in Figure 1A. Although in vitro data on the translocation of capsid protein differ somewhat from IFA data, the data on nuclear translocation of core proteins are consistent across different experiments.

      Fig 1C: It is unclear from the figure legends the WT JEV capsid means GFP-Capsid or Capsid alone. You should clearly state the GFP part if the construct includes GFP. Quantitation and statistics are missing and the information on how many independent experiments were performed is also not included in the figure legend.

      Following the reviewer’s suggestion, we have described that the JEV proteins fused GFP as follows: “AcGFP-JEVCoreWT or AcGFP-JEVCoreGP/AA” (Line. 771). We added quantification and statistical analysis as shown in Figure 1E. IJ and PM experiments were performed three times independently and described in the legend of Figure 1 in the revised manuscript (Lines 773–774).

      Fig 2B: Quantitation and statistics are missing. Ideally, the data need to be reproduced with Capsid alone instead of Capsid-GFP. A positive control is needed for the activity of Bimax to prove that the drug was working in the assay.

      We have added quantitative and statistical data in the revised Figure 2B. As mentioned above, capsid alone is potentially translocated into the nucleus artificially using the IJ and PM assay. Bimax binds to importin alpha but not importin beta, specifically inhibiting the importin alpha/beta pathway. The RanGTP mutant binds to the importin beta family, including importin beta 1, and widely inhibits importin beta-dependent nuclear import. These inhibitors are well-characterized and recognized in the field. We cited the following reference: Tsujii et al., JBC, 2015.

      Fig 2C: How do you reconcile the IP mass spectrometry data that Importin b1 is the second strongest hit with the lack of IP interaction you observed in fig 2C?

      As shown in Figure 2C, importin b1 does not interact with the JEV core. Importin b1 is the most abundant member of the importin beta family. Thus, it might be a non-specific interaction between importin b1 and the JEV core. Therefore, we excluded importin b1 from further analyses. We added a sentence to explain why importin b1 was excluded on Line 145.

      Fig 3C: How many independent confirmations of this experiment was performed?

      All IJ and PM experiments were performed thrice independently. We described this in the legend of Figure 3 in the revised manuscript (Line; 794).

      Fig 4A and B: Add quantitation for the western blot. 4A-D Include data on the number of biological repetitions. 4C-D: Add quantitation and statistical analyses of the ratio of nuclear and cytoplasmic capsid protein.

      We have added quantification data, as shown in Figures 4A and 4B. All experimental results shown in Figures 4A, 4B, 4C, and 4D were performed thrice independently, as described in the legend of Figure 4 of the revised manuscript (Lines; 810-812).

      Fig 5B. This data should be shown in the context of infection with untagged Capsid at least for 1-2 viruses. This is a serious drawback of the present study as there is no clear evidence presented that the native capsid protein in an infection context depend on importin 7 for nuclear accumulation and behave similar to the GFP-Capsid constructs being used.

      Following the reviewer’s concerns, we used an un-tagged JEV and DENV core to examine core translocation in WT or IPO7KO Huh7 cells. As shown in Figures 5C and 5D and their quantitative data, nuclear translocation of JEV and DENV core protein was inhibited in IPO7KO Huh7 cells. We tested the translocation of core protein upon infection with DENV as shown in Figure 5F. Although we could not examine ZIKV infection because we could not find appropriate antibodies against the ZIKV core, these data are consistent in that nuclear translocation of flavivirus core protein largely depends on IPO7.

      Fig 5 A-D: Two repetitions are insufficient; a minimum of three biological repeats and statistical analysis need to be included. 5E-F: You cannot do statistics on two repeats, need minimum of three repeats to perform statistical analysis. 5G-H: I presume three repetitions based on the data points shown, this should be clearly stated in the figure legend.

      We repeated three independent experiments, shown in Figures 5A and 5C-5F, and indicated them on Lines 823. We have added statistical data in Figures 5B-5F. We have corrected the statement of biological repeats in Figures 6A and 6B (Lines; 843-844).

      Fig 5E-G: Taking the data of 5E and 5G together it seems Importin 7 functions as the level of particle release and not particle assembly or maturation. Have you checked for the specific infectivity of the particles released from knock out cells to determine the reason behind the reduction in virus titre? You could look at the prM maturation by furin cleavage to check it this is altered in the IPO7 knock out cells.

      We determined the ratio of infectious titer per 103 copies of viral RNA in Figure 6F. The proportion of infectious viruses targeting extracellular JEV RNA was decreased in IPO7KO cells. Simultaneously, no difference was observed in the proportion of infectious viruses targeting intracellular JEV RNA between WT and IPO7KO cells. Although we could not find appropriate antibodies against the JEV core, we checked prM expression using the DENV virus. The expression of prM was slightly increased in JEV-infected IPO7-KO Huh7 cells (Figure S3D). This result suggests that the efficiency of prM cleavage by furin was partially involved in the impairment of infectious virus release in IPO7KO Huh7 cells.

      Fig 5H: Have you checked if the observation regarding intracellular RNA levels in 5F is applicable to these viruses as well.

      We checked the intracellular RNA levels of DENV and ZIKV-infected cells. In contrast to JEV, intracellular ZIKV or DENV RNA showed no difference in IPO7-KO Huh7 cells (Figure 6H). We discuss it in Discussion section (Lines; 269-271)

      Fig 6: The figure legend "Data are representative of two (A, B) independent experiments and are presented as the mean {plus minus} SD of three independent experiments (C)" is confusing. The sentence should be reworded to state the repetitions separately for independent experiments. Fig 6C should show original titres and not percentages.

      We have corrected Figure legends according to the reviewer’s comments. We have showed the original titers in Figures 6C and 6E.

      Fig 7B: This experiment should be performed in IPO7 knock out cells to confirm that the observed reduction of core mutant is mainly contributed from its lack of interaction with IPO7 and not from any other confounding factors.

      Following the reviewer’s suggestion, we performed SRIP experiments for GP/AA mutation using IPO7KO Huh7 cells. As shown in Figure 7C, the SRIPs harboring WT core were impaired in IPO7KO Huh7 cells; no difference was observed in the SRIPs harboring GP/AA mutations in WT and IPO7KO cells. These results suggest that IPO7-dependent nuclear translocation of core protein is important for the viral release.

      Reviewer #1 (Significance (Required)): While the authors could convincingly demonstrate the interaction between capsid and IPO7, how that interaction results in the observed reduction in viral titre is largely unexplored. As all the localization data used a GFP-tagged capsid outside an infection context, this reviewer is not confident that all the reported observations will hold in an infection setting. This need to be urgently addressed to rise the confidence about the observation. The current data is insufficient to confidently attribute the change in titre to the interaction between capsid and IPO7 and the capsid localization to the nucleus. Knocking out IPO7 could have pleotropic effects independent of capsid nuclear accumulation that could lead to the observed titre reduction. This need to be addressed further before linking both these phenotypes. Certain key experiments needed to address these questions are currently missing. While the interaction of Capsid with IPO7 is certainly intriguing, the implications of this interaction on virus biology needed further investigation before clear conclusions can be drawn regarding this observation.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: In this study Itoh and colleagues investigate the mechanism, role and impact of the nuclear localization of the flavivirus core protein. The import of the core protein has long been observed and investigated and herein the authors use some novel approaches to identify potential cellular binding partners that facilitate nuclear import. Via proteomics and biochemical approaches they determine that importin-7 plays a crucial role in the import of the core protein that appears to be conserved across Flavivirus members. In general the findings and conclusions are sound but there are some significant omissions and caveats that warrant further investigation.

      Major comments: - one of the major caveats of the study is that the flavivirus NS5 protein also translocates to the nucleus in an Importin-alpha/beta dependent manner. Therefore how can the authors discount any impact of preventing NS5 import, in addition to core, on virus and SRIP replication and production. Some discussion, if not additional experiments are required here ie. NS5 localization in the KO cells during virus infection

      We examined the localization of NS5 using IPO7KO Huh7 cells. As shown in Figure S2D and S2E, we confirmed that IPO7 was not involved in the nuclear localization of NS5.

      • the localization is predominantly nucleolus rather that nucleoplasm when compared to the SV40 NLS. What are the sequence differences between the flavivirus proteins that potentially could account for this? A protein known to localize solely to the cytoplasm should also be used eg. NS1 or NS3.

      The JEV core does not contain a consensus nucleolar localization signal. Nuclear localization of NS5 depended on importin-α similar to the SV40 NLS, while flavivirus core proteins were independent of importin-α. Gly42 and Pro43 are critical amino acids for the nuclear localization of the core protein, as shown in Figures 1C and 1D. The Gly42 to Pro43 of core proteins were well-conserved in the core proteins of the Flaviviridae family.

      • controls for Figure 2? Ie. a protein known to be inhibited by Bimax but not the RanGTP mutant and vice versa.

      Bimax binds to importin alpha but not importin beta and specifically inhibits the importin alpha/beta pathway. The RanGTP mutant binds to the importin beta family, including importin beta 1, and widely inhibits importin beta-dependent nuclear import. These inhibitors are well-characterized and recognized in the field. Therefore, we have cited the following references: Tsujii et al., JBC, 2015.

      • Fig 5. Difference with WNV and DENV in nucleoplasm localization but also WNV still appeared to have Core in the nucleus in the KO cells

      We agree with the reviewer’s comment about differences in nuclear localization among the viruses using the IJ assay. We have added new data to examine the localization of the DENV core after DENV infection. Nucleolar localization of the DENV core following DENV infection was observed, as shown in Figure 5F. Therefore, differences in nucleoplasm or nucleolar localization among different viruses shown in Figure 1C and Figure 5B might be artifacts of recombinant proteins. One possibility is that the localization of core proteins using IJ assay was detected by anti-GFP antibodies. Although purified GFP-core proteins, as shown in Figure 1B and S1, were observed as a single band of fusion proteins, core proteins of WNV and DENV might be cleaved during IJ experiments, and GFP alone might be detected at nucleoplasm, as shown in Figure 5B. Because our study focused on the nuclear translocation of flavivirus core proteins, the detailed localization of each core protein in the nucleus will be studied in the future.

      • Fig 5C still has substantial JEV and DENV core but not WNV and ZIKV. Why is the DENV and WNV localization pattern different to Fig 5B?

      We appreciate the reviewer’s suggestion; we re-checked all our data presented in Figure 5B and other data shown in Figure 5B. We quantified the ratio of nuclear localization as shown in the right of Figure 5B. Our quantification data showed that the nuclear transport of all core proteins used in this study was dependent on IPO7. In contrast, Figure 5A shows that nuclear translocation of WNV core protein is partially dependent on IPO7. This discrepancy might be explained that nuclear translocation of WNV core protein might be regulated by several nuclear carriers. We described this in discussion section (Line; 250-254).

      • Fig 5F, does the KO also restrict NS5 from entering the nucleus and could this then results in increase polymerase activity confined to the cytoplasm resulting in more viral RNA?

      Following the reviewer’s suggestion, we examined NS5 localization during viral infection and plasmid transfection, as shown in Figure S2D and S2E. Previous data regarding the nuclear localization of NS5 depended on importin-α. Our data are consistent with previous reports that IPO7 was not involved in the nuclear localization of NS5. In contract to JEV, we also confirm that intracellular ZIKV or DENV RNA showed no difference in WT and IPO7-KO Huh7 cells (Figure 6H). As described in the discussion, other factors, such as antiviral factors, might be involved in IPO7-mediated nuclear transports in JEV infected cells (Line; 269-271).

      • Why was WNV infection not performed in Fig 5H? What where the viral tires compared to for the relative % values?

      Because our institution does not have a BSL3 facility, we could not use WNV. Following the reviewer’s comment, we showed viral titers in Figure 6G.

      • Fig 6B, still a significant amount of core present in the nucleolus. Also WT cells have (almost?) no cytoplasmic staining for core where this could be clearly observed in the WT cells in Fig 5D. Why the difference?

      Plasmid transfection of AcGFP-Core WT showed that almost all core proteins were located in the nucleus. We assumed that AcGFP might influence nuclear exports of core proteins or the efficiency of nuclear transports as shown in other data of in vitro experiments. However, our finding that IPO7 was involved in the nuclear transport of core proteins is consistent.

      • In Fig 7B, D and E, when were the SRIPs collected and what was the time period after subsequent infection?

      Following the reviewer’s comments, we have added more details on SRIP experiments in Materials & Methods (Line; 521-523).

      • In Fig 7C was the luciferase measured from the initial transfection and how did it correlate with RNA production? A 15-fold increase in replicon RNA actually seems quite low over a 48h period

      Because large amounts of in vitro-transcribed replicon RNA were injected into cells in this experiment, we observed that significant amounts of luciferase values were detected after 4 h. However, the 15-fold enhancement in luciferase value was consistent with previous reports (PMID: 30413742, PMID: 17024179). We have added references in the revised manuscript.

      • quantitation is required throughout all of the experimental IFA data provided

      Following reviewer comments, we have quantified all IFA data and showed their results.

      Reviewer #2 (Significance (Required)):

      The nuclear translocation of flavivirus protein has long been studied and it has been observed that the core, NS5 (RNA polymerase) and potentially the NS3 (helicase/protease) proteins all translocate the nucleus. Importin alpha and beta have been shown to facilitate this process. The authors aim to extend this to identify importin-7 as a major cellular factor enabling nuclear translocation. Overall the experiments have been performed well but there is a lack of quantitation for many of the results an suitable controls are required.

      I am a researcher in the field of flavivirus replication

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the presented study the authors identified and mechanistically investigated how Flaviviruses including Japanese encephalitis virus (JEV), Dengue virus (DENV), and Zika virus (ZIKV) commonly use importin-7 (IPO7), an importin-β family protein, as a cellular carrier protein to facilitate nuclear core protein translocation. The authors evaluated how the production of infectious viruses is regulated by IPO7 using cellular infection models including IPO7-deficient knockout cells. In the submitted manuscript, the authors provide evidence that IPO7 facilitates viral core protein import into the nucleus of infected cells, which is essential for effective Flavivirus replication. Taken together, the study is interesting to a broader readership with interest in molecular virology, and its findings are informative for potential future targeting of IPO7 to affect flavivirus replication using small molecule drugs. The manuscript is well-written and easy to follow, the methods are appropriate, the structure is logical, and statistical analysis is adequate.

      Major comments:

      • It is unclear why the authors specifically used Ala substitution at Gly42 anb Pro43 to obtain the abolishment of nuclear core protein localization. It would be helpful to put this into more context and explain the approach.

      Mutations of Gly42 and Pro43 to Ala were previously reported and characterized by the same research group (PMID: 15731239). Following the reviewer’s comment, we have added more details of GP mutations in the text (Lines 66–70).

      • In Figure 4, the authors claim that the binding between IPO7 and RPS7 is disrupted upon the addition of RanGTPQ69L. This is not clearly evident from the pulldown experiment and should be proven experimentally with additional experiments (e.g. by using an imaging approach) to underline the statement that the binding mode of IPO7 to the JEV core protein is similar to that of RPS7. Loading controls for pulldown blots should be added.

      As described in response to the comment by reviewer#2 regarding Figure 2, the RanGTPQ69L mutant inhibits the interaction between the importin beta family, including IPO7 and its substrates, by directly binding to importin beta proteins. For the benefit of readers without knowledge of the typical Ran-dependent nuclear transport mechanism, we have described its effects with several cited references (Dickmanns et al., 1996; Tachibana et al., 2000). We referred to a study that showed that IPO7 transports RPL proteins, including RPS7 (Jäkel and Görlich, 1998). The data in Figures 4A and 4B demonstrate that adding RanGTPQ69L remarkably reduces the binding of IPO7 to the Core proteins and that the effect is more robust than that for RPS7. We believe that these results are experimentally valid, indicating that nuclear transport of Core proteins by IPO7 is achieved through a typical Ran-dependent pathway.

      • Most methods used are presented logically but require some more details so that they can be reproduced. In particular, the difference between Figure 4 E and 4H is confusing. What is the difference? Is 4E showing intracellular viral titers and 4H infectious viral titers in the supernatant of cells? Clarification needed. Put relevance of these experiments in context of the hypothesis.

      We apologize for the confusion regarding the data in Figures 5E and 5H (we assume). These data were derived from the same experiments, except for the time-course data presented in Figure 5E. We have removed Figure 5E to simplify our results.

      • Identical phenotypes induced by IPO7 knockout in a number of HuH7 clones are shown in Figures 6A to 6C. This data does not add to the overall understanding and should be moved to supplementary figures. Why are 293T cells used in experiments shown in Figure 6D and 6E? What is the relevance of kidney cells to Flavirius infections?

      Following the reviewer’s comments, we have moved Figure 6 to supplementary figures. We used 293T cells because of efficient JEV propagation and gene-deficient efficiency. We wanted to demonstrate that our data are not Huh7-dependent through experiments in 293T cells.

      • Prior studies are referenced appropriately, however, in a recent study it was demonstrated that IPO7 is stabilized upon Epstein-Barr Virus infection and that IPO7 presence is required for the survival of host cells (Yang YC, Front Microbiol. 2021 Feb 16;12:643327. doi: 10.3389/fmicb.2021.643327).

      We deeply appreciate the publications in these fields. Following the reviewer’s comment, we have cited these references.

      This important study about the physiological relevance of IPO7 during viral infections has not been cited by Itoh and colleagues in the presented study. However, the results of the uncited study are very relevant to the provided manuscript, since Itoh and colleagues are using IPO7 knockout cells to investigate its function in Flavivirus core protein nuclear import. Hence, the authors should perform cell survival and cellular fitness experiments to demonstrate that observed phenomena of reduced viral replication and virus export in IPO7 knockout cells are independent of compromised cellular fitness due to IPO7 deficiency.

      We evaluated cellular fitness between WT and IPO7KO Huh7 cells using PI (Propidium Iodide) staining through flow cytometry. As shown in Figure S2F, no differences were observed in cell viability between WT and IPO7KO Huh7 cells. It suggests that viral titers reduced in IPO7KO Huh7 cells are not involved in cellular fitness.

      Minor comments:

      • Describing Figure 3B, the authors state that they focused on IPO7 among the core binding proteins belonging to the importin-b family, because IPO7 "was identified the most peptides" in the mass spectrometry approach. This requires a more detailed explanation. Also, an explanation of why HEK293T cells were used for this approach and not HuH7 cells, as used predominately in most parts of the study, would provide more clarity to the reader.

      We focused on IPO7 because it had the highest number of detected peptides, and we found that the second most detected peptide, IPOB1, did not bind to JEV core proteins as shown in Figure 2C. Therefore, we included the lack of interaction between IPO7 and IPOB1 as part of the rationale.

      • In Figures 4E and 4F, colour coding is missing.

      We have indicated color coding in this data. Thank you for your comments.

      Reviewer #3 (Significance (Required)):

      The provided manuscript 'Importin-7-dependent nuclear localization of the Flavivirus core protein is required for infectious virus production' by Itoh and colleagues investigates a topic with important scientific relevance. The presented study builds on previous findings by the authors where they have demonstrated that Flavivirus core protein nuclear localization is actually conserved among Flaviviridae and represents a potential target for broad-range antiviral small molecule drugs (Tokunaga et al., Virology, 2020 Feb;541:41-51). However, our understanding of Flavivirus core protein nuclear localization during viral replication and how the processes could potentially be targeted using novel therapeutic drugs remains elusive. Here, the provided manuscript addresses a mechanistic investigation of how the Flavivirus core protein is actually translocated from the cytoplasm to the nucleus of infected cells. The study is informative particularly for virologists with expertise in Flavivirus replication.

      However, from my point of view as a virologist investigating host-pathogen interactions with a strong interest in clinical translational, the manuscript requires a more careful evaluation and interpretation of some results of key experiments. In addition, some of the results need to be more precisely described for clearer understanding by a broader readership.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary: In the manuscript entitled "Importin-7-dependent nuclear localization of the Flavivirus core protein is required for infectious virus production", by combining proteomics, CRISPR/Cas9 gene KO, CLSM and standard virology techniques, Yumi Itoh report novel data concerning the involvement of IPO7 in the nuclear and nucleolar localization of Flaviviridae core nuclear and nucleolar localization and viral particle release. Surprisingly, IMPa/b1 inhibition via Bimax2 does not affect core nuclear transport, whereas both RanQ69L and WGA did so. The authors try to identify the cellular transporters involved in core nuclear import, and to this end performed a MS spec analysis of JEV core interactors, which yielded IPO7 as the most likely candidate. After confirming the result by Co-IP, the authors go on showing most core proteins require IPO7 for nuclear delivery using Huh7 and HEK7 IPO7-KO cells, with the exception of WNV core which was able to partially enter the nucleus. In such cells, upon infection, extracellular (but not intracellular) viral titers were strongly reduced, a phenotype which was observed with a JEV core mutant bearing the Gly42 and Pro43 to Ala substitutions in a previous study.

      Major comments: - The major conclusions of the study are:

      1.IPO7 is the main driver of core nuclear transport 2.Core nuclear localization is somehow important for viral particle release Both conclusions are well-supported by experimental evidence.

      Methods are clear and precise, the study appears to have been produced with high quality standards, and so is the presentation of the results. A few controls however should be added to increase the reliability of the results presented here (see below)

      Since the authors attempt to link the phenotype observed on virus release upon IPO7 KO to defects on core nuclear import by making a parallelism with core GP/AA mutant, it would be important to know the behavior of such virus in Huh7 wt and Huh IPO7 KO cells. In other words, is GP/AA JEV released efficiently in Huh7 IPO7 KO cells?

      We have added new data examining the propagation of the GP/AA JEV mutant in IPO7KO Huh7 cells (Figure 6F). Our new data showed that there were no differences in the propagation of the GP/AA mutant in WT and IPO7-KO Huh7 cells.

      A similar approach can be applied to data shown in Figure 7 (effect on release on a capsid nuclear deficient mutant). This would help understand if IPO7 KO, viral release defects and core nuclear import are somehow linked.

      We produced SRIPs harboring GP/AA core using WT and IPO7KO Huh7 cells and demonstrated that the number of infectious viruses produced by WT and IPO7KO Huh7 cells was the same (Figure 7C).

      Minor comments:

      INTRODUCTION • “Flaviviruses...are mosquito-borne human pathogens" What about tick borne encephalitis virus?

      We have corrected it (Line; 43-44).

      • " replication.... occur in the endoplasmic reticulum (ER)" This sentence is a bit inaccurate. Flaviviridae RNA replication occurs in so-called viral replication factories, double membrane vesicles which are partly derived from the ER. see "PMID: 26958917".

      We have corrected this sentence according to the reviewer’s comment (Line; 60-62).

      • "it is known that some flavivirus core proteins are translocated from the cytoplasm into the nucleus" o I think the first evidence of core in the nucleus dates back to 1989, and here it might be appropriate to cite the original reference: "PMID: 2471810". o It might be worth mentioning that NS5 has also been reported in the nucleus (See "PMID: 28106839")

      We have corrected the sentence according to the reviewer’s comment (Line; 63-65).

      • "In the cytoplasm, NLS-containing proteins are recognized by importin-α " o This is true only for classical NLSs, not every NLS binds IMPa, as the authors confirm in this study! Indeed, we have also PY-NLS, IPO7 specific NLSs, IPOb1 NLSs, etc. I therefore suggest rephrasing.

      Thank you for pointing out the exact description of NLS. We agree with the reviewer’s comment that “NLS” includes all types of signal sequences, such as PY-NLS. To clearly distinguish between the CLASSICAL nuclear transport pathway by importin α/β1 and the various nuclear transport pathways by the importin β family, such as transportin, we refer to NLS as classical NLS (cNLS) in the document. We have modified the following sentence by adding “such as transportin” and “without importin-α.”

      RESULTS

      • Fig. 1. o it is not clear what is new here, with respect to what has been already published. The authors should clearly differentiate novel findings from confirmatory results

      Thank you for your suggestion. We would like to introduce our new assay using recombinant virus core proteins, as shown in Figures 1C and 1D. The data shown in Figure 1 are crucial for understanding our data in Figure 2, and we believe this figure is required for broad-ranging readers.

      Fig. 2 and 4 o Proteins whose nuclear transport is dependent on IMPa/IMPb1 (such as SV40 NLS) are lacking here

      Bimax binds to importin alpha but not to importin beta and specifically inhibits the importin alpha/beta pathway. The RanGTP mutant binds to the importin beta family, including importin beta 1, and widely inhibits importin beta-dependent nuclear import. These inhibitors are well-characterized and recognized in the field. Therefore, we have cited the following references: Tsujii et al., JBC, 2015.

      • Fig.5 o It would be important to know the effect on total virus infectivity (intracellular + extracellular) and total viral RNA. It would also be important the effect on RNA replication by using a subgenomic viral replicon (with deletion of the env gene for example). The question here is if IPO7 depletion affects to any extent viral genome replication, and this is impossible to assess in a fully assembling system. We determined the ratio of infectious titer per 103 copies of viral RNA in Figure 5D. The proportion of infectious viruses targeting extracellular JEV RNA was decreased in IPO7KO cells, and there was no difference in the proportion of infectious viruses targeting intracellular JEV RNA between WT and IPO7KO cells. We examined the effects of IPO7 on viral RNA replication of subgenomic replicon. We showed that the deficiency of IPO7 enhanced viral RNA replication as shown in Figure 7E. As described in the Discussion section, IPO7 may transport other factors possessing antiviral activity against flaviviruses. These data will be investigated in the future.

      o Panels A-F legend is missing, consider adding it?

      We have added more details to Figure 5A-5F following the reviewer’s suggestion.

      • Fig.7 o I did not completely understand how NLuc is the readout here To quantify RNA replication, we quantified Nluc values using a plate reader. We have added more details on the reporter assay in Materials and Methods (Line; 521-523).

      o Also, I do not understand if the effect of GP/AA substitution of panel B has already been reported or if it is a novel finding

      Previous reports regarding the effect of GP/AA substitution of JEV showed the impairment of infectious virus release. However, the SRIP assay was performed to examine the viral release step. Our detailed data showed that the lack of IPO7-mediated nuclear transport of core proteins impaired infectious viral release, and our new results using SRIPs harboring GP/AA core showed that the lack of nuclear transport of core proteins also impaired the release of infectious viruses. Our data strongly suggest that the lack of nuclear transport of core proteins influences the viral release.

      • All CLSM figures lack quantification (Fn/c; Fno/n)

      We have added quantitative data for IFA experiments in our revised manuscript.

      DISCUSSION

      • "The nuclear entry of viral genomic DNA has been demonstrated to involve IPO7" o It would be nice to know which viruses the authors are freeing to here

      We have added the virus name and corresponding references.

      • "While RNA viruses, including flaviviruses, are considered to replicate in the cytoplasm of mammalian cells, increasing evidence suggests nucleolar localization of the viruses " o I suspect Rawlinson did not propose the viruses localize to the nucleolus, as this sentence seems to imply. Rather, a trafficking of viral proteins to nucleoli, to manipulate cell function, is more realistic. I suggest considering rephrasing. We have corrected this sentence.

      Reviewer #4 (Significance (Required)):

      SECTION B - Significance ========================

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. As alluded to above, this work presents several advances of current knowledge in the field of viral proteins nuclear trafficking, and in Flavivirus biology. The finding of most core proteins depending on IPO-7 is novel and intriguing, and opens the question of what makes WNV core special. Indeed, this protein nuclear targeting is only partially inhibited in IPO7 deficient cells. The fact that the authors extend their findings to several Flaviviruses adds significance. The role of nuclear core for virus release is also intriguing, but appears poorly characterized. In this respect a mechanistic explanation of the phenomenon would be highly desirable to increase the significance of the work presented here.

      In this context I would have a few suggestions:

      A) The authors performed MS spec on JEV core, this most likely resulted in a long list of "hits". However, they only report IMPb superfamily members. This is perfectly fine, since they focus at identifying partners responsible for nuclear import. However, it might be helpful for understanding the role of nuclear core. By comparing MS of wt core and GP/AA core, and or wt core in wt and IPO7KO cells, authors could identify core biding partners in the nucleus (in the nucleolus?) which are important for virus release. This could be subsequently addressed by knocking down these factors and study the effect on virus life cycle.

      We appreciate the reviewer’s valuable comments. We did not perform MS analysis on GP/AA core protein and core protein using WT or IPO7KO Hun7 cells. To report IPO7-mediated core translocation simply, we would like to cite our manuscript focusing on IPO7. To clarify the importance of nuclear transport of core protein on the viral life cycle, we will perform wide-ranging proteomics.

      1. B) Further, the authors should try to address the role of core in the nucleus (and nucleolus). Does it interact with cellular/nucleolar proteins? Does it deliver viral RNA to sites of assembly? Does it interfere with rRNA synthesis? All these findings would be easily obtainable using the GP/AA virus and/or Huh7 KO cells, and tremendously increase the impact of the study, which at the moment is limited at points 1 and 2 in the first section of the current report.

      Thank you for your valuable comments. We agree that we should clarify the roles of the nucleus or nucleolar localization of the core protein. We tested the effects of rRNA synthesis on JEV core expression. Our data showed that core protein expression slightly impaired the maturation of rRNA synthesis, as shown here. However, the core expression did not influence protein translation. We focused on the phase separation capacity of core protein localized in the nucleolar or nucleus. From our accumulating data, we hypothesized that the acquisition of phase separation capacity of core protein might be involved in an efficient virus release step. We hope that these data will be reported in the near future.

      Overall, this work should be interesting for both cell biologists interested in trafficking of viral proteins, and virologists interested in virus-host interactions. The antiviral approach at the moment is a bit less convincing, but the manuscript might be interesting for scientists trying to develop new antiviral strategies. (In this context it might be worth reading and possible discussing the very recent paper from the Bartenschlager group "PMID: 37702492." Also, I think that it would be worth discussing the recent discovery that a closely related virus belonging to the Hepacivirus genus within the Flaviviridae family, mediated re-localization of Nups to viral replication factories, where they are believed to control access to DMVs interior, thereby regulating virus replication and assembly. Could the core IPO7-interaction have any role in core delivery to DMVs? See "PMID: 26150811".

      Thank you for your valuable comments. We have added several sentences in the Discussion section (Line; 297-305). We will investigate the role of nuclear transports in viral life cycles in the future.

      Since I am a molecular virologist studying viral nucleocytoplasmic trafficking, virus-host interactions, and antiviral drug-discovery I think I have sufficient expertise for an informative and helpful revision of this work.

    1. One study participant said, “I will work until everything is done and everything is beautiful and wonderful …  And if I have to not sleep for three days to do that, that's what happens.” For students with autism, this inclination could manifest as putting in extra effort to make eye contact when speaking with another person, even if it makes them uncomfortable. This pressure to take on more and hide parts of themselves can lead to burnout and have negative impacts on mental health.

      I chose this section because it’s extremely relatable to me as a STEM student who’s spent countless nights up staying up completing assignments or studying. Most community college STEM students are like me and want the perfect 4.0 to transfer to a nice University, so we all get our assignments to look “beautiful and wonderful” to get a perfect grade on it. This article is important to me because I’m more aware of neurodivergent students and the challenges they face, with my new knowledge I’ll be able to be more supportive towards my fellow future STEM classmates. I also think this article is important for STEM students because some of them could be neurodivergent students and this article could help them manage challenges they may have like work balancing. Now I’m not personally a neurodivergent student but I’ve noticed tons of the same traits are relatable to me which is interesting, overall I’m glad I chose this article because it’s really informative and helps you gather information about other people's struggles.

    2. Neurodivergent students see their neurotypical peers as the “ideal” students, which can lead to negative self-judgment—telling oneself, for example, “I don’t do things the way I’m expected to, so there’s something wrong with me,” Syharat says. They often have challenges in areas in which they feel they are expected to excel, so they may struggle to feel that they belong.

      i have chosen this quote because not only can i personally relate to it, but i know many of my friends could relate to it too. when talking to a friend that i share a class with, we often wonder why everyone else understands the concepts much easier even though we are doing everything we can to try and understand. its very frustrating and often times makes me think i'm missing something, like everyone automatically knows what to do and im behind somehow, which all in all can lower confidence in classwork. so i could definitely relate to this paragraph. i think this article connects the idea of designing for equity and inclusion by giving a voice to the fact that neurodivergent students have felt this way for a long time and gave examples of ways they have had to adapt to the "ideal students" world.

    1. According to all known laws of aviation,

      there is no way a bee should be able to fly.

      Its wings are too small to get its fat little body off the ground.

      The bee, of course, flies anyway

      because bees don't care what humans think is impossible.

      Yellow, black. Yellow, black. Yellow, black. Yellow, black.

      Ooh, black and yellow! Let's shake it up a little.

      Barry! Breakfast is ready!

      Ooming!

      Hang on a second.

      Hello?

      Barry?

      Adam?

      Oan you believe this is happening?

      I can't. I'll pick you up.

      Looking sharp.

      Use the stairs. Your father paid good money for those.

      Sorry. I'm excited.

      Here's the graduate. We're very proud of you, son.

      A perfect report card, all B's.

      Very proud.

      Ma! I got a thing going here.

      You got lint on your fuzz.

      Ow! That's me!

      Wave to us! We'll be in row 118,000.

      Bye!

      Barry, I told you, stop flying in the house!

      Hey, Adam.

      Hey, Barry.

      Is that fuzz gel?

      A little. Special day, graduation.

      Never thought I'd make it.

      Three days grade school, three days high school.

      Those were awkward.

      Three days college. I'm glad I took a day and hitchhiked around the hive.

      You did come back different.

      Hi, Barry.

      Artie, growing a mustache? Looks good.

      Hear about Frankie?

      Yeah.

      You going to the funeral?

      No, I'm not going.

      Everybody knows, sting someone, you die.

      Don't waste it on a squirrel. Such a hothead.

      I guess he could have just gotten out of the way.

      I love this incorporating an amusement park into our day.

      That's why we don't need vacations.

      Boy, quite a bit of pomp… under the circumstances.

      Well, Adam, today we are men.

      We are!

      Bee-men.

      Amen!

      Hallelujah!

      Students, faculty, distinguished bees,

      please welcome Dean Buzzwell.

      Welcome, New Hive Oity graduating class of…

      …9:15.

      That concludes our ceremonies.

      And begins your career at Honex Industries!

      Will we pick ourjob today?

      I heard it's just orientation.

      Heads up! Here we go.

      Keep your hands and antennas inside the tram at all times.

      Wonder what it'll be like? A little scary. Welcome to Honex, a division of Honesco

      and a part of the Hexagon Group.

      This is it!

      Wow.

      Wow.

      We know that you, as a bee, have worked your whole life

      to get to the point where you can work for your whole life.

      Honey begins when our valiant Pollen Jocks bring the nectar to the hive.

      Our top-secret formula

      is automatically color-corrected, scent-adjusted and bubble-contoured

      into this soothing sweet syrup

      with its distinctive golden glow you know as…

      Honey!

      That girl was hot.

      She's my cousin!

      She is?

      Yes, we're all cousins.

      Right. You're right.

      At Honex, we constantly strive

      to improve every aspect of bee existence.

      These bees are stress-testing a new helmet technology.

      What do you think he makes? Not enough. Here we have our latest advancement, the Krelman.

      What does that do? Oatches that little strand of honey that hangs after you pour it. Saves us millions.

      Oan anyone work on the Krelman?

      Of course. Most bee jobs are small ones. But bees know

      that every small job, if it's done well, means a lot.

      But choose carefully

      because you'll stay in the job you pick for the rest of your life.

      The same job the rest of your life? I didn't know that.

      What's the difference?

      You'll be happy to know that bees, as a species, haven't had one day off

      in 27 million years.

      So you'll just work us to death?

      We'll sure try.

      Wow! That blew my mind!

      "What's the difference?" How can you say that?

      One job forever? That's an insane choice to have to make.

      I'm relieved. Now we only have to make one decision in life.

      But, Adam, how could they never have told us that?

      Why would you question anything? We're bees.

      We're the most perfectly functioning society on Earth.

      You ever think maybe things work a little too well here?

      Like what? Give me one example.

      I don't know. But you know what I'm talking about.

      Please clear the gate. Royal Nectar Force on approach.

      Wait a second. Oheck it out.

      Hey, those are Pollen Jocks! Wow. I've never seen them this close.

      They know what it's like outside the hive.

      Yeah, but some don't come back.

      Hey, Jocks! Hi, Jocks! You guys did great!

      You're monsters! You're sky freaks! I love it! I love it!

      I wonder where they were. I don't know. Their day's not planned.

      Outside the hive, flying who knows where, doing who knows what.

      You can'tjust decide to be a Pollen Jock. You have to be bred for that.

      Right.

      Look. That's more pollen than you and I will see in a lifetime.

      It's just a status symbol. Bees make too much of it.

      Perhaps. Unless you're wearing it and the ladies see you wearing it.

      Those ladies? Aren't they our cousins too?

      Distant. Distant.

      Look at these two.

      Oouple of Hive Harrys. Let's have fun with them. It must be dangerous being a Pollen Jock.

      Yeah. Once a bear pinned me against a mushroom!

      He had a paw on my throat, and with the other, he was slapping me!

      Oh, my! I never thought I'd knock him out. What were you doing during this?

      Trying to alert the authorities.

      I can autograph that.

      A little gusty out there today, wasn't it, comrades?

      Yeah. Gusty.

      We're hitting a sunflower patch six miles from here tomorrow.

      Six miles, huh? Barry! A puddle jump for us, but maybe you're not up for it.

      Maybe I am. You are not! We're going 0900 at J-Gate.

      What do you think, buzzy-boy? Are you bee enough?

      I might be. It all depends on what 0900 means.

      Hey, Honex!

      Dad, you surprised me.

      You decide what you're interested in?

      Well, there's a lot of choices. But you only get one. Do you ever get bored doing the same job every day?

      Son, let me tell you about stirring.

      You grab that stick, and you just move it around, and you stir it around.

      You get yourself into a rhythm. It's a beautiful thing.

      You know, Dad, the more I think about it,

      maybe the honey field just isn't right for me.

      You were thinking of what, making balloon animals?

      That's a bad job for a guy with a stinger.

      Janet, your son's not sure he wants to go into honey!

      Barry, you are so funny sometimes. I'm not trying to be funny. You're not funny! You're going into honey. Our son, the stirrer!

      You're gonna be a stirrer? No one's listening to me! Wait till you see the sticks I have.

      I could say anything right now. I'm gonna get an ant tattoo!

      Let's open some honey and celebrate!

      Maybe I'll pierce my thorax. Shave my antennae.

      Shack up with a grasshopper. Get a gold tooth and call everybody "dawg"!

      I'm so proud.

      We're starting work today! Today's the day. Oome on! All the good jobs will be gone.

      Yeah, right.

      Pollen counting, stunt bee, pouring, stirrer, front desk, hair removal…

      Is it still available? Hang on. Two left! One of them's yours! Oongratulations! Step to the side.

      What'd you get? Picking crud out. Stellar! Wow!

      Oouple of newbies?

      Yes, sir! Our first day! We are ready!

      Make your choice.

      You want to go first? No, you go. Oh, my. What's available?

      Restroom attendant's open, not for the reason you think.

      Any chance of getting the Krelman? Sure, you're on. I'm sorry, the Krelman just closed out.

      Wax monkey's always open.

      The Krelman opened up again.

      What happened?

      A bee died. Makes an opening. See? He's dead. Another dead one.

      Deady. Deadified. Two more dead.

      Dead from the neck up. Dead from the neck down. That's life!

      Oh, this is so hard!

      Heating, cooling, stunt bee, pourer, stirrer,

      humming, inspector number seven, lint coordinator, stripe supervisor,

      mite wrangler. Barry, what do you think I should… Barry?

      Barry!

      All right, we've got the sunflower patch in quadrant nine…

      What happened to you? Where are you?

      I'm going out.

      Out? Out where?

      Out there.

      Oh, no!

      I have to, before I go to work for the rest of my life.

      You're gonna die! You're crazy! Hello?

      Another call coming in.

      If anyone's feeling brave, there's a Korean deli on 83rd

      that gets their roses today.

      Hey, guys.

      Look at that. Isn't that the kid we saw yesterday? Hold it, son, flight deck's restricted.

      It's OK, Lou. We're gonna take him up.

      Really? Feeling lucky, are you?

      Sign here, here. Just initial that.

      Thank you. OK. You got a rain advisory today,

      and as you all know, bees cannot fly in rain.

      So be careful. As always, watch your brooms,

      hockey sticks, dogs, birds, bears and bats.

      Also, I got a couple of reports of root beer being poured on us.

      Murphy's in a home because of it, babbling like a cicada!

      That's awful. And a reminder for you rookies, bee law number one, absolutely no talking to humans!

      All right, launch positions!

      Buzz, buzz, buzz, buzz! Buzz, buzz, buzz, buzz! Buzz, buzz, buzz, buzz!

      Black and yellow!

      Hello!

      You ready for this, hot shot?

      Yeah. Yeah, bring it on.

      Wind, check.

      Antennae, check.

      Nectar pack, check.

      Wings, check.

      Stinger, check.

      Scared out of my shorts, check.

      OK, ladies,

      let's move it out!

      Pound those petunias, you striped stem-suckers!

      All of you, drain those flowers!

      Wow! I'm out!

      I can't believe I'm out!

      So blue.

      I feel so fast and free!

      Box kite!

      Wow!

      Flowers!

      This is Blue Leader. We have roses visual.

      Bring it around 30 degrees and hold.

      Roses!

      30 degrees, roger. Bringing it around.

      Stand to the side, kid. It's got a bit of a kick.

      That is one nectar collector!

      Ever see pollination up close? No, sir. I pick up some pollen here, sprinkle it over here. Maybe a dash over there,

      a pinch on that one. See that? It's a little bit of magic.

      That's amazing. Why do we do that?

      That's pollen power. More pollen, more flowers, more nectar, more honey for us.

      Oool.

      I'm picking up a lot of bright yellow. Oould be daisies. Don't we need those?

      Oopy that visual.

      Wait. One of these flowers seems to be on the move.

      Say again? You're reporting a moving flower?

      Affirmative.

      That was on the line!

      This is the coolest. What is it?

      I don't know, but I'm loving this color.

      It smells good. Not like a flower, but I like it.

      Yeah, fuzzy.

      Ohemical-y.

      Oareful, guys. It's a little grabby.

      My sweet lord of bees!

      Oandy-brain, get off there!

      Problem!

      Guys! This could be bad. Affirmative.

      Very close.

      Gonna hurt.

      Mama's little boy.

      You are way out of position, rookie!

      Ooming in at you like a missile!

      Help me!

      I don't think these are flowers.

      Should we tell him? I think he knows. What is this?!

      Match point!

      You can start packing up, honey, because you're about to eat it!

      Yowser!

      Gross.

      There's a bee in the car!

      Do something!

      I'm driving!

      Hi, bee.

      He's back here!

      He's going to sting me!

      Nobody move. If you don't move, he won't sting you. Freeze!

      He blinked!

      Spray him, Granny!

      What are you doing?!

      Wow… the tension level out here is unbelievable.

      I gotta get home.

      Oan't fly in rain.

      Oan't fly in rain.

      Oan't fly in rain.

      Mayday! Mayday! Bee going down!

      Ken, could you close the window please?

      Ken, could you close the window please?

      Oheck out my new resume. I made it into a fold-out brochure.

      You see? Folds out.

      Oh, no. More humans. I don't need this.

      What was that?

      Maybe this time. This time. This time. This time! This time! This…

      Drapes!

      That is diabolical.

      It's fantastic. It's got all my special skills, even my top-ten favorite movies.

      What's number one? Star Wars?

      Nah, I don't go for that…

      …kind of stuff.

      No wonder we shouldn't talk to them. They're out of their minds.

      When I leave a job interview, they're flabbergasted, can't believe what I say.

      There's the sun. Maybe that's a way out.

      I don't remember the sun having a big 75 on it.

      I predicted global warming.

      I could feel it getting hotter. At first I thought it was just me.

      Wait! Stop! Bee!

      Stand back. These are winter boots.

      Wait!

      Don't kill him!

      You know I'm allergic to them! This thing could kill me!

      Why does his life have less value than yours?

      Why does his life have any less value than mine? Is that your statement?

      I'm just saying all life has value. You don't know what he's capable of feeling.

      My brochure!

      There you go, little guy.

      I'm not scared of him. It's an allergic thing.

      Put that on your resume brochure.

      My whole face could puff up.

      Make it one of your special skills.

      Knocking someone out is also a special skill.

      Right. Bye, Vanessa. Thanks.

      Vanessa, next week? Yogurt night?

      Sure, Ken. You know, whatever.

      You could put carob chips on there.

      Bye.

      Supposed to be less calories.

      Bye.

      I gotta say something.

      She saved my life. I gotta say something.

      All right, here it goes.

      Nah.

      What would I say?

      I could really get in trouble.

      It's a bee law. You're not supposed to talk to a human.

      I can't believe I'm doing this.

      I've got to.

      Oh, I can't do it. Oome on!

      No. Yes. No.

      Do it. I can't.

      How should I start it? "You like jazz?" No, that's no good.

      Here she comes! Speak, you fool!

      Hi!

      I'm sorry.

      You're talking. Yes, I know. You're talking!

      I'm so sorry.

      No, it's OK. It's fine. I know I'm dreaming.

      But I don't recall going to bed.

      Well, I'm sure this is very disconcerting.

      This is a bit of a surprise to me. I mean, you're a bee!

      I am. And I'm not supposed to be doing this,

      but they were all trying to kill me.

      And if it wasn't for you…

      I had to thank you. It's just how I was raised.

      That was a little weird.

      I'm talking with a bee. Yeah. I'm talking to a bee. And the bee is talking to me!

      I just want to say I'm grateful. I'll leave now.

      Wait! How did you learn to do that? What? The talking thing.

      Same way you did, I guess. "Mama, Dada, honey." You pick it up.

      That's very funny. Yeah. Bees are funny. If we didn't laugh, we'd cry with what we have to deal with.

      Anyway…

      Oan I…

      …get you something?

      Like what? I don't know. I mean… I don't know. Ooffee?

      I don't want to put you out.

      It's no trouble. It takes two minutes.

      It's just coffee.

      I hate to impose.

      Don't be ridiculous!

      Actually, I would love a cup.

      Hey, you want rum cake?

      I shouldn't.

      Have some.

      No, I can't.

      Oome on!

      I'm trying to lose a couple micrograms.

      Where? These stripes don't help. You look great!

      I don't know if you know anything about fashion.

      Are you all right?

      No.

      He's making the tie in the cab as they're flying up Madison.

      He finally gets there.

      He runs up the steps into the church. The wedding is on.

      And he says, "Watermelon? I thought you said Guatemalan.

      Why would I marry a watermelon?"

      Is that a bee joke?

      That's the kind of stuff we do.

      Yeah, different.

      So, what are you gonna do, Barry?

      About work? I don't know.

      I want to do my part for the hive, but I can't do it the way they want.

      I know how you feel.

      You do? Sure. My parents wanted me to be a lawyer or a doctor, but I wanted to be a florist.

      Really? My only interest is flowers. Our new queen was just elected with that same campaign slogan.

      Anyway, if you look…

      There's my hive right there. See it?

      You're in Sheep Meadow!

      Yes! I'm right off the Turtle Pond!

      No way! I know that area. I lost a toe ring there once.

      Why do girls put rings on their toes?

      Why not?

      It's like putting a hat on your knee.

      Maybe I'll try that.

      You all right, ma'am?

      Oh, yeah. Fine.

      Just having two cups of coffee!

      Anyway, this has been great. Thanks for the coffee.

      Yeah, it's no trouble.

      Sorry I couldn't finish it. If I did, I'd be up the rest of my life.

      Are you…?

      Oan I take a piece of this with me?

      Sure! Here, have a crumb.

      Thanks! Yeah. All right. Well, then… I guess I'll see you around.

      Or not.

      OK, Barry.

      And thank you so much again… for before.

      Oh, that? That was nothing.

      Well, not nothing, but… Anyway…

      This can't possibly work.

      He's all set to go. We may as well try it.

      OK, Dave, pull the chute.

      Sounds amazing. It was amazing! It was the scariest, happiest moment of my life.

      Humans! I can't believe you were with humans!

      Giant, scary humans! What were they like?

      Huge and crazy. They talk crazy.

      They eat crazy giant things. They drive crazy.

      Do they try and kill you, like on TV?

      Some of them. But some of them don't.

      How'd you get back?

      Poodle.

      You did it, and I'm glad. You saw whatever you wanted to see.

      You had your "experience." Now you can pick out yourjob and be normal.

      Well… Well? Well, I met someone.

      You did? Was she Bee-ish?

      A wasp?! Your parents will kill you!

      No, no, no, not a wasp.

      Spider?

      I'm not attracted to spiders.

      I know it's the hottest thing, with the eight legs and all.

      I can't get by that face.

      So who is she?

      She's… human.

      No, no. That's a bee law. You wouldn't break a bee law.

      Her name's Vanessa. Oh, boy. She's so nice. And she's a florist!

      Oh, no! You're dating a human florist!

      We're not dating.

      You're flying outside the hive, talking to humans that attack our homes

      with power washers and M-80s! One-eighth a stick of dynamite!

      She saved my life! And she understands me.

      This is over!

      Eat this.

      This is not over! What was that?

      They call it a crumb. It was so stingin' stripey! And that's not what they eat. That's what falls off what they eat!

      You know what a Oinnabon is? No. It's bread and cinnamon and frosting. They heat it up…

      Sit down!

      …really hot!

      Listen to me! We are not them! We're us. There's us and there's them!

      Yes, but who can deny the heart that is yearning?

      There's no yearning. Stop yearning. Listen to me!

      You have got to start thinking bee, my friend. Thinking bee!

      Thinking bee. Thinking bee. Thinking bee! Thinking bee! Thinking bee! Thinking bee!

      There he is. He's in the pool.

      You know what your problem is, Barry?

      I gotta start thinking bee?

      How much longer will this go on?

      It's been three days! Why aren't you working?

      I've got a lot of big life decisions to think about.

      What life? You have no life! You have no job. You're barely a bee!

      Would it kill you to make a little honey?

      Barry, come out. Your father's talking to you.

      Martin, would you talk to him?

      Barry, I'm talking to you!

      You coming?

      Got everything?

      All set!

      Go ahead. I'll catch up.

      Don't be too long.

      Watch this!

      Vanessa!

      We're still here. I told you not to yell at him. He doesn't respond to yelling!

      Then why yell at me? Because you don't listen! I'm not listening to this.

      Sorry, I've gotta go.

      Where are you going? I'm meeting a friend. A girl? Is this why you can't decide?

      Bye.

      I just hope she's Bee-ish.

      They have a huge parade of flowers every year in Pasadena?

      To be in the Tournament of Roses, that's every florist's dream!

      Up on a float, surrounded by flowers, crowds cheering.

      A tournament. Do the roses compete in athletic events?

      No. All right, I've got one. How come you don't fly everywhere?

      It's exhausting. Why don't you run everywhere? It's faster.

      Yeah, OK, I see, I see. All right, your turn.

      TiVo. You can just freeze live TV? That's insane!

      You don't have that?

      We have Hivo, but it's a disease. It's a horrible, horrible disease.

      Oh, my.

      Dumb bees!

      You must want to sting all those jerks.

      We try not to sting. It's usually fatal for us.

      So you have to watch your temper.

      Very carefully. You kick a wall, take a walk,

      write an angry letter and throw it out. Work through it like any emotion:

      Anger, jealousy, lust.

      Oh, my goodness! Are you OK?

      Yeah.

      What is wrong with you?! It's a bug. He's not bothering anybody. Get out of here, you creep!

      What was that? A Pic 'N' Save circular?

      Yeah, it was. How did you know?

      It felt like about 10 pages. Seventy-five is pretty much our limit.

      You've really got that down to a science.

      I lost a cousin to Italian Vogue. I'll bet. What in the name of Mighty Hercules is this?

      How did this get here? Oute Bee, Golden Blossom,

      Ray Liotta Private Select?

      Is he that actor?

      I never heard of him.

      Why is this here?

      For people. We eat it.

      You don't have enough food of your own?

      Well, yes.

      How do you get it?

      Bees make it.

      I know who makes it!

      And it's hard to make it!

      There's heating, cooling, stirring. You need a whole Krelman thing!

      It's organic. It's our-ganic! It's just honey, Barry.

      Just what?!

      Bees don't know about this! This is stealing! A lot of stealing!

      You've taken our homes, schools, hospitals! This is all we have!

      And it's on sale?! I'm getting to the bottom of this.

      I'm getting to the bottom of all of this!

      Hey, Hector.

      You almost done? Almost. He is here. I sense it.

      Well, I guess I'll go home now

      and just leave this nice honey out, with no one around.

      You're busted, box boy!

      I knew I heard something. So you can talk!

      I can talk. And now you'll start talking!

      Where you getting the sweet stuff? Who's your supplier?

      I don't understand. I thought we were friends.

      The last thing we want to do is upset bees!

      You're too late! It's ours now!

      You, sir, have crossed the wrong sword!

      You, sir, will be lunch for my iguana, Ignacio!

      Where is the honey coming from?

      Tell me where!

      Honey Farms! It comes from Honey Farms!

      Orazy person!

      What horrible thing has happened here?

      These faces, they never knew what hit them. And now

      they're on the road to nowhere!

      Just keep still.

      What? You're not dead?

      Do I look dead? They will wipe anything that moves. Where you headed?

      To Honey Farms. I am onto something huge here.

      I'm going to Alaska. Moose blood, crazy stuff. Blows your head off!

      I'm going to Tacoma.

      And you? He really is dead. All right.

      Uh-oh!

      What is that?!

      Oh, no!

      A wiper! Triple blade!

      Triple blade?

      Jump on! It's your only chance, bee!

      Why does everything have to be so doggone clean?!

      How much do you people need to see?!

      Open your eyes! Stick your head out the window!

      From NPR News in Washington, I'm Oarl Kasell.

      But don't kill no more bugs!

      Bee!

      Moose blood guy!!

      You hear something?

      Like what?

      Like tiny screaming.

      Turn off the radio.

      Whassup, bee boy?

      Hey, Blood.

      Just a row of honey jars, as far as the eye could see.

      Wow!

      I assume wherever this truck goes is where they're getting it.

      I mean, that honey's ours.

      Bees hang tight. We're all jammed in. It's a close community.

      Not us, man. We on our own. Every mosquito on his own.

      What if you get in trouble? You a mosquito, you in trouble. Nobody likes us. They just smack. See a mosquito, smack, smack!

      At least you're out in the world. You must meet girls.

      Mosquito girls try to trade up, get with a moth, dragonfly.

      Mosquito girl don't want no mosquito.

      You got to be kidding me!

      Mooseblood's about to leave the building! So long, bee!

      Hey, guys! Mooseblood! I knew I'd catch y'all down here. Did you bring your crazy straw?

      We throw it in jars, slap a label on it, and it's pretty much pure profit.

      What is this place?

      A bee's got a brain the size of a pinhead.

      They are pinheads!

      Pinhead.

      Oheck out the new smoker. Oh, sweet. That's the one you want. The Thomas 3000!

      Smoker?

      Ninety puffs a minute, semi-automatic. Twice the nicotine, all the tar.

      A couple breaths of this knocks them right out.

      They make the honey, and we make the money.

      "They make the honey, and we make the money"?

      Oh, my!

      What's going on? Are you OK?

      Yeah. It doesn't last too long.

      Do you know you're in a fake hive with fake walls?

      Our queen was moved here. We had no choice.

      This is your queen? That's a man in women's clothes!

      That's a drag queen!

      What is this?

      Oh, no!

      There's hundreds of them!

      Bee honey.

      Our honey is being brazenly stolen on a massive scale!

      This is worse than anything bears have done! I intend to do something.

      Oh, Barry, stop.

      Who told you humans are taking our honey? That's a rumor.

      Do these look like rumors?

      That's a conspiracy theory. These are obviously doctored photos.

      How did you get mixed up in this?

      He's been talking to humans.

      What? Talking to humans?! He has a human girlfriend. And they make out!

      Make out? Barry!

      We do not.

      You wish you could. Whose side are you on? The bees!

      I dated a cricket once in San Antonio. Those crazy legs kept me up all night.

      Barry, this is what you want to do with your life?

      I want to do it for all our lives. Nobody works harder than bees!

      Dad, I remember you coming home so overworked

      your hands were still stirring. You couldn't stop.

      I remember that.

      What right do they have to our honey?

      We live on two cups a year. They put it in lip balm for no reason whatsoever!

      Even if it's true, what can one bee do?

      Sting them where it really hurts.

      In the face! The eye!

      That would hurt. No. Up the nose? That's a killer.

      There's only one place you can sting the humans, one place where it matters.

      Hive at Five, the hive's only full-hour action news source.

      No more bee beards!

      With Bob Bumble at the anchor desk.

      Weather with Storm Stinger.

      Sports with Buzz Larvi.

      And Jeanette Ohung.

      Good evening. I'm Bob Bumble. And I'm Jeanette Ohung. A tri-county bee, Barry Benson,

      intends to sue the human race for stealing our honey,

      packaging it and profiting from it illegally!

      Tomorrow night on Bee Larry King,

      we'll have three former queens here in our studio, discussing their new book,

      Olassy Ladies, out this week on Hexagon.

      Tonight we're talking to Barry Benson.

      Did you ever think, "I'm a kid from the hive. I can't do this"?

      Bees have never been afraid to change the world.

      What about Bee Oolumbus? Bee Gandhi? Bejesus?

      Where I'm from, we'd never sue humans.

      We were thinking of stickball or candy stores.

      How old are you?

      The bee community is supporting you in this case,

      which will be the trial of the bee century.

      You know, they have a Larry King in the human world too.

      It's a common name. Next week…

      He looks like you and has a show and suspenders and colored dots…

      Next week…

      Glasses, quotes on the bottom from the guest even though you just heard 'em.

      Bear Week next week! They're scary, hairy and here live.

      Always leans forward, pointy shoulders, squinty eyes, very Jewish.

      In tennis, you attack at the point of weakness!

      It was my grandmother, Ken. She's 81.

      Honey, her backhand's a joke! I'm not gonna take advantage of that?

      Quiet, please. Actual work going on here.

      Is that that same bee? Yes, it is! I'm helping him sue the human race.

      Hello. Hello, bee. This is Ken.

      Yeah, I remember you. Timberland, size ten and a half. Vibram sole, I believe.

      Why does he talk again?

      Listen, you better go 'cause we're really busy working.

      But it's our yogurt night!

      Bye-bye.

      Why is yogurt night so difficult?!

      You poor thing. You two have been at this for hours!

      Yes, and Adam here has been a huge help.

      Frosting… How many sugars? Just one. I try not to use the competition.

      So why are you helping me?

      Bees have good qualities.

      And it takes my mind off the shop.

      Instead of flowers, people are giving balloon bouquets now.

      Those are great, if you're three.

      And artificial flowers.

      Oh, those just get me psychotic! Yeah, me too. Bent stingers, pointless pollination.

      Bees must hate those fake things!

      Nothing worse than a daffodil that's had work done.

      Maybe this could make up for it a little bit.

      This lawsuit's a pretty big deal. I guess. You sure you want to go through with it?

      Am I sure? When I'm done with the humans, they won't be able

      to say, "Honey, I'm home," without paying a royalty!

      It's an incredible scene here in downtown Manhattan,

      where the world anxiously waits, because for the first time in history,

      we will hear for ourselves if a honeybee can actually speak.

      What have we gotten into here, Barry?

      It's pretty big, isn't it?

      I can't believe how many humans don't work during the day.

      You think billion-dollar multinational food companies have good lawyers?

      Everybody needs to stay behind the barricade.

      What's the matter? I don't know, I just got a chill. Well, if it isn't the bee team.

      You boys work on this?

      All rise! The Honorable Judge Bumbleton presiding.

      All right. Oase number 4475,

      Superior Oourt of New York, Barry Bee Benson v. the Honey Industry

      is now in session.

      Mr. Montgomery, you're representing the five food companies collectively?

      A privilege.

      Mr. Benson… you're representing all the bees of the world?

      I'm kidding. Yes, Your Honor, we're ready to proceed.

      Mr. Montgomery, your opening statement, please.

      Ladies and gentlemen of the jury,

      my grandmother was a simple woman.

      Born on a farm, she believed it was man's divine right

      to benefit from the bounty of nature God put before us.

      If we lived in the topsy-turvy world Mr. Benson imagines,

      just think of what would it mean.

      I would have to negotiate with the silkworm

      for the elastic in my britches!

      Talking bee!

      How do we know this isn't some sort of

      holographic motion-picture-capture Hollywood wizardry?

      They could be using laser beams!

      Robotics! Ventriloquism! Oloning! For all we know,

      he could be on steroids!

      Mr. Benson?

      Ladies and gentlemen, there's no trickery here.

      I'm just an ordinary bee. Honey's pretty important to me.

      It's important to all bees. We invented it!

      We make it. And we protect it with our lives.

      Unfortunately, there are some people in this room

      who think they can take it from us

      'cause we're the little guys! I'm hoping that, after this is all over,

      you'll see how, by taking our honey, you not only take everything we have

      but everything we are!

      I wish he'd dress like that all the time. So nice!

      Oall your first witness.

      So, Mr. Klauss Vanderhayden of Honey Farms, big company you have.

      I suppose so.

      I see you also own Honeyburton and Honron!

      Yes, they provide beekeepers for our farms.

      Beekeeper. I find that to be a very disturbing term.

      I don't imagine you employ any bee-free-ers, do you?

      No.

      I couldn't hear you.

      No.

      No.

      Because you don't free bees. You keep bees. Not only that,

      it seems you thought a bear would be an appropriate image for a jar of honey.

      They're very lovable creatures.

      Yogi Bear, Fozzie Bear, Build-A-Bear.

      You mean like this?

      Bears kill bees!

      How'd you like his head crashing through your living room?!

      Biting into your couch! Spitting out your throw pillows!

      OK, that's enough. Take him away.

      So, Mr. Sting, thank you for being here. Your name intrigues me.

      Where have I heard it before? I was with a band called The Police. But you've never been a police officer, have you?

      No, I haven't.

      No, you haven't. And so here we have yet another example

      of bee culture casually stolen by a human

      for nothing more than a prance-about stage name.

      Oh, please.

      Have you ever been stung, Mr. Sting?

      Because I'm feeling a little stung, Sting.

      Or should I say… Mr. Gordon M. Sumner!

      That's not his real name?! You idiots!

      Mr. Liotta, first, belated congratulations on

      your Emmy win for a guest spot on ER in 2005.

      Thank you. Thank you.

      I see from your resume that you're devilishly handsome

      with a churning inner turmoil that's ready to blow.

      I enjoy what I do. Is that a crime?

      Not yet it isn't. But is this what it's come to for you?

      Exploiting tiny, helpless bees so you don't

      have to rehearse your part and learn your lines, sir?

      Watch it, Benson! I could blow right now!

      This isn't a goodfella. This is a badfella!

      Why doesn't someone just step on this creep, and we can all go home?!

      Order in this court! You're all thinking it! Order! Order, I say!

      Say it! Mr. Liotta, please sit down! I think it was awfully nice of that bear to pitch in like that.

      I think the jury's on our side.

      Are we doing everything right, legally?

      I'm a florist.

      Right. Well, here's to a great team.

      To a great team!

      Well, hello.

      Ken! Hello. I didn't think you were coming.

      No, I was just late. I tried to call, but… the battery.

      I didn't want all this to go to waste, so I called Barry. Luckily, he was free.

      Oh, that was lucky.

      There's a little left. I could heat it up.

      Yeah, heat it up, sure, whatever.

      So I hear you're quite a tennis player.

      I'm not much for the game myself. The ball's a little grabby.

      That's where I usually sit. Right… there.

      Ken, Barry was looking at your resume,

      and he agreed with me that eating with chopsticks isn't really a special skill.

      You think I don't see what you're doing?

      I know how hard it is to find the rightjob. We have that in common.

      Do we?

      Bees have 100 percent employment, but we do jobs like taking the crud out.

      That's just what I was thinking about doing.

      Ken, I let Barry borrow your razor for his fuzz. I hope that was all right.

      I'm going to drain the old stinger.

      Yeah, you do that.

      Look at that.

      You know, I've just about had it

      with your little mind games.

      What's that? Italian Vogue. Mamma mia, that's a lot of pages.

      A lot of ads.

      Remember what Van said, why is your life more valuable than mine?

      Funny, I just can't seem to recall that!

      I think something stinks in here!

      I love the smell of flowers.

      How do you like the smell of flames?!

      Not as much.

      Water bug! Not taking sides!

      Ken, I'm wearing a Ohapstick hat! This is pathetic!

      I've got issues!

      Well, well, well, a royal flush!

      You're bluffing. Am I? Surf's up, dude!

      Poo water!

      That bowl is gnarly.

      Except for those dirty yellow rings!

      Kenneth! What are you doing?!

      You know, I don't even like honey! I don't eat it!

      We need to talk!

      He's just a little bee!

      And he happens to be the nicest bee I've met in a long time!

      Long time? What are you talking about?! Are there other bugs in your life?

      No, but there are other things bugging me in life. And you're one of them!

      Fine! Talking bees, no yogurt night…

      My nerves are fried from riding on this emotional roller coaster!

      Goodbye, Ken.

      And for your information,

      I prefer sugar-free, artificial sweeteners made by man!

      I'm sorry about all that.

      I know it's got an aftertaste! I like it!

      I always felt there was some kind of barrier between Ken and me.

      I couldn't overcome it. Oh, well.

      Are you OK for the trial?

      I believe Mr. Montgomery is about out of ideas.

      We would like to call Mr. Barry Benson Bee to the stand.

      Good idea! You can really see why he's considered one of the best lawyers…

      Yeah.

      Layton, you've gotta weave some magic

      with this jury, or it's gonna be all over.

      Don't worry. The only thing I have to do to turn this jury around

      is to remind them of what they don't like about bees.

      You got the tweezers? Are you allergic? Only to losing, son. Only to losing.

      Mr. Benson Bee, I'll ask you what I think we'd all like to know.

      What exactly is your relationship

      to that woman?

      We're friends.

      Good friends? Yes. How good? Do you live together?

      Wait a minute…

      Are you her little…

      …bedbug?

      I've seen a bee documentary or two. From what I understand,

      doesn't your queen give birth to all the bee children?

      Yeah, but…

      So those aren't your real parents!

      Oh, Barry…

      Yes, they are!

      Hold me back!

      You're an illegitimate bee, aren't you, Benson?

      He's denouncing bees!

      Don't y'all date your cousins?

      Objection! I'm going to pincushion this guy! Adam, don't! It's what he wants!

      Oh, I'm hit!!

      Oh, lordy, I am hit!

      Order! Order!

      The venom! The venom is coursing through my veins!

      I have been felled by a winged beast of destruction!

      You see? You can't treat them like equals! They're striped savages!

      Stinging's the only thing they know! It's their way!

      Adam, stay with me. I can't feel my legs. What angel of mercy will come forward to suck the poison

      from my heaving buttocks?

      I will have order in this court. Order!

      Order, please!

      The case of the honeybees versus the human race

      took a pointed turn against the bees

      yesterday when one of their legal team stung Layton T. Montgomery.

      Hey, buddy.

      Hey.

      Is there much pain?

      Yeah.

      I…

      I blew the whole case, didn't I?

      It doesn't matter. What matters is you're alive. You could have died.

      I'd be better off dead. Look at me.

      They got it from the cafeteria downstairs, in a tuna sandwich.

      Look, there's a little celery still on it.

      What was it like to sting someone?

      I can't explain it. It was all…

      All adrenaline and then… and then ecstasy!

      All right.

      You think it was all a trap?

      Of course. I'm sorry. I flew us right into this.

      What were we thinking? Look at us. We're just a couple of bugs in this world.

      What will the humans do to us if they win?

      I don't know.

      I hear they put the roaches in motels. That doesn't sound so bad.

      Adam, they check in, but they don't check out!

      Oh, my.

      Oould you get a nurse to close that window?

      Why? The smoke. Bees don't smoke.

      Right. Bees don't smoke.

      Bees don't smoke! But some bees are smoking.

      That's it! That's our case!

      It is? It's not over?

      Get dressed. I've gotta go somewhere.

      Get back to the court and stall. Stall any way you can.

      And assuming you've done step correctly, you're ready for the tub.

      Mr. Flayman.

      Yes? Yes, Your Honor!

      Where is the rest of your team?

      Well, Your Honor, it's interesting.

      Bees are trained to fly haphazardly,

      and as a result, we don't make very good time.

      I actually heard a funny story about…

      Your Honor, haven't these ridiculous bugs

      taken up enough of this court's valuable time?

      How much longer will we allow these absurd shenanigans to go on?

      They have presented no compelling evidence to support their charges

      against my clients, who run legitimate businesses.

      I move for a complete dismissal of this entire case!

      Mr. Flayman, I'm afraid I'm going

      to have to consider Mr. Montgomery's motion.

      But you can't! We have a terrific case.

      Where is your proof? Where is the evidence?

      Show me the smoking gun!

      Hold it, Your Honor! You want a smoking gun?

      Here is your smoking gun.

      What is that?

      It's a bee smoker!

      What, this? This harmless little contraption?

      This couldn't hurt a fly, let alone a bee.

      Look at what has happened

      to bees who have never been asked, "Smoking or non?"

      Is this what nature intended for us?

      To be forcibly addicted to smoke machines

      and man-made wooden slat work camps?

      Living out our lives as honey slaves to the white man?

      What are we gonna do? He's playing the species card. Ladies and gentlemen, please, free these bees!

      Free the bees! Free the bees!

      Free the bees!

      Free the bees! Free the bees!

      The court finds in favor of the bees!

      Vanessa, we won!

      I knew you could do it! High-five!

      Sorry.

      I'm OK! You know what this means?

      All the honey will finally belong to the bees.

      Now we won't have to work so hard all the time.

      This is an unholy perversion of the balance of nature, Benson.

      You'll regret this.

      Barry, how much honey is out there?

      All right. One at a time.

      Barry, who are you wearing?

      My sweater is Ralph Lauren, and I have no pants.

      What if Montgomery's right? What do you mean? We've been living the bee way a long time, 27 million years.

      Oongratulations on your victory. What will you demand as a settlement?

      First, we'll demand a complete shutdown of all bee work camps.

      Then we want back the honey that was ours to begin with,

      every last drop.

      We demand an end to the glorification of the bear as anything more

      than a filthy, smelly, bad-breath stink machine.

      We're all aware of what they do in the woods.

      Wait for my signal.

      Take him out.

      He'll have nauseous for a few hours, then he'll be fine.

      And we will no longer tolerate bee-negative nicknames…

      But it's just a prance-about stage name!

      …unnecessary inclusion of honey in bogus health products

      and la-dee-da human tea-time snack garnishments.

      Oan't breathe.

      Bring it in, boys!

      Hold it right there! Good.

      Tap it.

      Mr. Buzzwell, we just passed three cups, and there's gallons more coming!

      I think we need to shut down! Shut down? We've never shut down. Shut down honey production!

      Stop making honey!

      Turn your key, sir!

      What do we do now?

      Oannonball!

      We're shutting honey production!

      Mission abort.

      Aborting pollination and nectar detail. Returning to base.

      Adam, you wouldn't believe how much honey was out there.

      Oh, yeah?

      What's going on? Where is everybody?

      Are they out celebrating? They're home. They don't know what to do. Laying out, sleeping in.

      I heard your Uncle Oarl was on his way to San Antonio with a cricket.

      At least we got our honey back.

      Sometimes I think, so what if humans liked our honey? Who wouldn't?

      It's the greatest thing in the world! I was excited to be part of making it.

      This was my new desk. This was my new job. I wanted to do it really well.

      And now…

      Now I can't.

      I don't understand why they're not happy.

      I thought their lives would be better!

      They're doing nothing. It's amazing. Honey really changes people.

      You don't have any idea what's going on, do you?

      What did you want to show me? This. What happened here?

      That is not the half of it.

      Oh, no. Oh, my.

      They're all wilting.

      Doesn't look very good, does it?

      No.

      And whose fault do you think that is?

      You know, I'm gonna guess bees.

      Bees?

      Specifically, me.

      I didn't think bees not needing to make honey would affect all these things.

      It's notjust flowers. Fruits, vegetables, they all need bees.

      That's our whole SAT test right there.

      Take away produce, that affects the entire animal kingdom.

      And then, of course…

      The human species?

      So if there's no more pollination,

      it could all just go south here, couldn't it?

      I know this is also partly my fault.

      How about a suicide pact?

      How do we do it?

      I'll sting you, you step on me. Thatjust kills you twice. Right, right.

      Listen, Barry… sorry, but I gotta get going.

      I had to open my mouth and talk.

      Vanessa?

      Vanessa? Why are you leaving? Where are you going?

      To the final Tournament of Roses parade in Pasadena.

      They've moved it to this weekend because all the flowers are dying.

      It's the last chance I'll ever have to see it.

      Vanessa, I just wanna say I'm sorry. I never meant it to turn out like this.

      I know. Me neither.

      Tournament of Roses. Roses can't do sports.

      Wait a minute. Roses. Roses?

      Roses!

      Vanessa!

      Roses?!

      Barry?

      Roses are flowers! Yes, they are. Flowers, bees, pollen!

      I know. That's why this is the last parade.

      Maybe not. Oould you ask him to slow down?

      Oould you slow down?

      Barry!

      OK, I made a huge mistake. This is a total disaster, all my fault.

      Yes, it kind of is.

      I've ruined the planet. I wanted to help you

      with the flower shop. I've made it worse.

      Actually, it's completely closed down.

      I thought maybe you were remodeling.

      But I have another idea, and it's greater than my previous ideas combined.

      I don't want to hear it!

      All right, they have the roses, the roses have the pollen.

      I know every bee, plant and flower bud in this park.

      All we gotta do is get what they've got back here with what we've got.

      Bees.

      Park.

      Pollen!

      Flowers.

      Repollination!

      Across the nation!

      Tournament of Roses, Pasadena, Oalifornia.

      They've got nothing but flowers, floats and cotton candy.

      Security will be tight.

      I have an idea.

      Vanessa Bloome, FTD.

      Official floral business. It's real.

      Sorry, ma'am. Nice brooch.

      Thank you. It was a gift.

      Once inside, we just pick the right float.

      How about The Princess and the Pea?

      I could be the princess, and you could be the pea!

      Yes, I got it.

      Where should I sit?

      What are you?

      I believe I'm the pea.

      The pea?

      It goes under the mattresses.

      Not in this fairy tale, sweetheart. I'm getting the marshal. You do that! This whole parade is a fiasco!

      Let's see what this baby'll do.

      Hey, what are you doing?!

      Then all we do is blend in with traffic…

      …without arousing suspicion.

      Once at the airport, there's no stopping us.

      Stop! Security.

      You and your insect pack your float? Yes. Has it been in your possession the entire time?

      Would you remove your shoes?

      Remove your stinger. It's part of me. I know. Just having some fun. Enjoy your flight.

      Then if we're lucky, we'll have just enough pollen to do the job.

      Oan you believe how lucky we are? We have just enough pollen to do the job!

      I think this is gonna work.

      It's got to work.

      Attention, passengers, this is Oaptain Scott.

      We have a bit of bad weather in New York.

      It looks like we'll experience a couple hours delay.

      Barry, these are cut flowers with no water. They'll never make it.

      I gotta get up there and talk to them.

      Be careful.

      Oan I get help with the Sky Mall magazine?

      I'd like to order the talking inflatable nose and ear hair trimmer.

      Oaptain, I'm in a real situation.

      What'd you say, Hal? Nothing. Bee!

      Don't freak out! My entire species…

      What are you doing?

      Wait a minute! I'm an attorney! Who's an attorney? Don't move.

      Oh, Barry.

      Good afternoon, passengers. This is your captain.

      Would a Miss Vanessa Bloome in 24B please report to the cockpit?

      And please hurry!

      What happened here?

      There was a DustBuster, a toupee, a life raft exploded.

      One's bald, one's in a boat, they're both unconscious!

      Is that another bee joke? No! No one's flying the plane!

      This is JFK control tower, Flight 356. What's your status?

      This is Vanessa Bloome. I'm a florist from New York.

      Where's the pilot?

      He's unconscious, and so is the copilot.

      Not good. Does anyone onboard have flight experience?

      As a matter of fact, there is.

      Who's that? Barry Benson. From the honey trial?! Oh, great.

      Vanessa, this is nothing more than a big metal bee.

      It's got giant wings, huge engines.

      I can't fly a plane.

      Why not? Isn't John Travolta a pilot? Yes. How hard could it be?

      Wait, Barry! We're headed into some lightning.

      This is Bob Bumble. We have some late-breaking news from JFK Airport,

      where a suspenseful scene is developing.

      Barry Benson, fresh from his legal victory…

      That's Barry!

      …is attempting to land a plane, loaded with people, flowers

      and an incapacitated flight crew.

      Flowers?!

      We have a storm in the area and two individuals at the controls

      with absolutely no flight experience.

      Just a minute. There's a bee on that plane.

      I'm quite familiar with Mr. Benson and his no-account compadres.

      They've done enough damage.

      But isn't he your only hope?

      Technically, a bee shouldn't be able to fly at all.

      Their wings are too small…

      Haven't we heard this a million times?

      "The surface area of the wings and body mass make no sense."

      Get this on the air!

      Got it.

      Stand by.

      We're going live.

      The way we work may be a mystery to you.

      Making honey takes a lot of bees doing a lot of small jobs.

      But let me tell you about a small job.

      If you do it well, it makes a big difference.

      More than we realized. To us, to everyone.

      That's why I want to get bees back to working together.

      That's the bee way! We're not made of Jell-O.

      We get behind a fellow.

      Black and yellow! Hello! Left, right, down, hover.

      Hover? Forget hover. This isn't so hard. Beep-beep! Beep-beep!

      Barry, what happened?!

      Wait, I think we were on autopilot the whole time.

      That may have been helping me. And now we're not! So it turns out I cannot fly a plane.

      All of you, let's get behind this fellow! Move it out!

      Move out!

      Our only chance is if I do what I'd do, you copy me with the wings of the plane!

      Don't have to yell.

      I'm not yelling! We're in a lot of trouble.

      It's very hard to concentrate with that panicky tone in your voice!

      It's not a tone. I'm panicking!

      I can't do this!

      Vanessa, pull yourself together. You have to snap out of it!

      You snap out of it.

      You snap out of it.

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      Hold it!

      Why? Oome on, it's my turn.

      How is the plane flying?

      I don't know.

      Hello?

      Benson, got any flowers for a happy occasion in there?

      The Pollen Jocks!

      They do get behind a fellow.

      Black and yellow. Hello. All right, let's drop this tin can on the blacktop.

      Where? I can't see anything. Oan you?

      No, nothing. It's all cloudy.

      Oome on. You got to think bee, Barry.

      Thinking bee. Thinking bee. Thinking bee! Thinking bee! Thinking bee!

      Wait a minute. I think I'm feeling something.

      What? I don't know. It's strong, pulling me. Like a 27-million-year-old instinct.

      Bring the nose down.

      Thinking bee! Thinking bee! Thinking bee!

      What in the world is on the tarmac? Get some lights on that! Thinking bee! Thinking bee! Thinking bee!

      Vanessa, aim for the flower. OK. Out the engines. We're going in on bee power. Ready, boys?

      Affirmative!

      Good. Good. Easy, now. That's it.

      Land on that flower!

      Ready? Full reverse!

      Spin it around!

      Not that flower! The other one!

      Which one?

      That flower.

      I'm aiming at the flower!

      That's a fat guy in a flowered shirt. I mean the giant pulsating flower

      made of millions of bees!

      Pull forward. Nose down. Tail up.

      Rotate around it.

      This is insane, Barry! This's the only way I know how to fly. Am I koo-koo-kachoo, or is this plane flying in an insect-like pattern?

      Get your nose in there. Don't be afraid. Smell it. Full reverse!

      Just drop it. Be a part of it.

      Aim for the center!

      Now drop it in! Drop it in, woman!

      Oome on, already.

      Barry, we did it! You taught me how to fly!

      Yes. No high-five! Right. Barry, it worked! Did you see the giant flower?

      What giant flower? Where? Of course I saw the flower! That was genius!

      Thank you. But we're not done yet. Listen, everyone!

      This runway is covered with the last pollen

      from the last flowers available anywhere on Earth.

      That means this is our last chance.

      We're the only ones who make honey, pollinate flowers and dress like this.

      If we're gonna survive as a species, this is our moment! What do you say?

      Are we going to be bees, orjust Museum of Natural History keychains?

      We're bees!

      Keychain!

      Then follow me! Except Keychain.

      Hold on, Barry. Here.

      You've earned this.

      Yeah!

      I'm a Pollen Jock! And it's a perfect fit. All I gotta do are the sleeves.

      Oh, yeah.

      That's our Barry.

      Mom! The bees are back!

      If anybody needs to make a call, now's the time.

      I got a feeling we'll be working late tonight!

      Here's your change. Have a great afternoon! Oan I help who's next?

      Would you like some honey with that? It is bee-approved. Don't forget these.

      Milk, cream, cheese, it's all me. And I don't see a nickel!

      Sometimes I just feel like a piece of meat!

      I had no idea.

      Barry, I'm sorry. Have you got a moment?

      Would you excuse me? My mosquito associate will help you.

      Sorry I'm late.

      He's a lawyer too?

      I was already a blood-sucking parasite. All I needed was a briefcase.

      Have a great afternoon!

      Barry, I just got this huge tulip order, and I can't get them anywhere.

      No problem, Vannie. Just leave it to me.

      You're a lifesaver, Barry. Oan I help who's next?

      All right, scramble, jocks! It's time to fly.

      Thank you, Barry!

      That bee is living my life!

      Let it go, Kenny.

      When will this nightmare end?!

      Let it all go.

      Beautiful day to fly.

      Sure is.

      Between you and me, I was dying to get out of that office.

      You have got to start thinking bee, my friend.

      Thinking bee! Me? Hold it. Let's just stop for a second. Hold it.

      I'm sorry. I'm sorry, everyone. Oan we stop here?

      I'm not making a major life decision during a production number!

      All right. Take ten, everybody. Wrap it up, guys.

      I had virtually no rehearsal for that.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02438

      Corresponding author(s): Ryusuke, Niwa

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      Below are quotes from the Reviewers' overall evaluations:

      As might be expected based on the authors' skills and expertise, the study is well executed, nicely documented with perfect microscopy images, and well presented. It has been easy to follow. However, suitability for publication depends on where the authors aim to place their paper. Although I like the paper very much, it might seem incomplete for high-end journals.

      This is a very nice paper and solid piece of work.

      Its major strength is the focus on poorly studied the male reproductive organ and identification of Ldh as a novel target of JH activity in the seminal vesicles.

      While the developmental roles of insect Juvenile Hormone (JH) are very well studied, its adult functions are largely unknown. Target genes of JH signaling are poorly described. This study adds significant insight into both of these aspects. The study underscores the usefulness of the JHRE-GFP reporter that identifies JH function, and not just JH presence since the reporter is only expressed after JH binding to Met and Gce, a prerequisite for JHRE reporter activation.

      The authors have identified the epithelial cells of the ____Drosophila____ seminal vesicle as a JH target tissue. The authors nicely extended this finding by mining already existing expression data to identify a specific JH induced gene in these cells.

      This small study reports new but limited results (one tissue of one stage, one hormone) that could be useful for specialists. The work is solid and includes controls and interpretable data.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      1) The study suggests an important role for JH signaling in the SV, likely affecting reproductive capacity of males. The authors depleted the JH receptors through RNAi, achieving a loss in the expression of the WT JHRE-GFP reporter as well as of the authentic target Ldh. Surprisingly, no phenotypic consequences of the double KD of Met and gce are presented. Does that mean that there were none? The authors only discuss a potential impact of Ldh loss for metabolism. Unless I am missing something, the study reports molecular phenotypes that clearly document JH signaling in the SV but no physiological impact of loss of this JH signaling, suggesting that there may be no obvious biological role for JH in this context. I think this is unlikely. Have the authors check fertility of the males, sperm viability and quality, mating competitiveness of the RNAi males? Loss of JH epoxidation (only methyl farnesoate present) made mosquito males less fit and less reproductively competitive relative to epox+ controls (Nouzova et al., 2021, PNAS) -- btw, I think the authors should discuss this paper.

      Our response: We will conduct the following experiments to answer these criticisms.

      1) We will examine the male fertility by counting the number of offspring from wild-type mothers crossed with males of the seminal vesicle-specific ____Met _& _gce____ double RNAi and with males of control RNAi.

      2) We will also examine the mating competitiveness of the RNAi males. In more detail, we will cross ____w1118_ (white eye) wild-type background females with (i) a mixed population of males of _w1118_ wild-type background males and_ w+_ (red eye) control RNAi males, and (ii) a mixed population of males of _w1118_ wild-type background males and_ w+ Met _& _gce____ double RNAi males. We can distinguish between the progenies from RNAi males and those from wild-type males by eye colors.

      By conducting plans 1) and 2), we will also indirectly evaluate sperm viability and quality.

      In addition, we will also discuss the paper of Nouzova et al. PNAS 2021 in the Discussion section.

      2) The authors seem to have made no effort to distinguish between Met and Gce functions. It is always the results from the double knockdown of both paralogs that are presented. Does this mean that single-KD had no effect, thereby indicating entirely redundant functions of both proteins in the studied context? Even if so, it would be of interest to document this redundancy by showing the single-gene KD data. However, I would be surprised if both proteins were equally important in the SV. The authors checked mRNA/protein expression levels. Was any of the two paralogs prevalent in the SV?

      Our response: To address this criticism, we will conduct a single transgenic RNAi experiment to knock down either Met or gce separately and assess JHRE-GFP signals in the seminal vesicles.

      __ Regarding the expression of Met and gce in the seminal vesicles, a previous study (Baumann et al. Scientific Reports 7: 2132, DOI:10.1038/s41598-017-02264-41) has already reported that GFP signals are observed in the seminal vesicles of _Met-T2A-GAL4>UAS_-GFP and gce-T2A-GAL4>UAS-GFP animals. These results strongly indicate that both Met and gce are expressed in the seminal vesicles. We will describe and discuss this point in our revised manuscript. In addition, we plan to check and analyze gene expression of Met, gce, and Ldh in the seminal vesicles using a publicly-available single-cell RNA-seq database, such as _DRscDB (https://www.flyrnai.org/tools/singlecell/web/).

      3) The authors argue for direct regulation of Ldh by Met/Gce (again by which one?). Oddly, the statement in the Results (l.187-188; "suggests ... direct target") is stronger than in the Discussion (l.214, "leaving open the possibility"). The putative JHREs upstream and within the Ldh gene are identified but not tested in a functional study. At least a simple luciferase reporter assay and mutagenesis of the JHREs should be attempted.

      Our response: To address this criticism, we plan to conduct a luciferase-based promoter/enhancer analysis in Drosophila S2 cultured cells. A similar system was used for a JH-responsiveness of the JHRE promoter in a previous study (Jindra et al. PLoS Genetics 11: e1005394, DOI: __10.1371/journal.pgen.1005394). We will generate plasmid constructs carrying the luciferase coding regions. In these plasmids, the luciferase coding regions will be fused with the upstream region and the first intron region of Ldh possessing the intact E-boxes or the mutated E-boxes. Then, we will determine whether the luciferase activity is enhanced by the presence of a JH analog (methoprene) when E-boxes are intact. __

      __ For this revision, a new collaborator, Ryosuke Hayashi (a graduate student in the Niwa lab), will participate in this analysis. Thus, he becomes a co-author in the revised manuscript.__

      l.232-233. It is not surprising that the JHRR-lacZ reporter shows a different expression pattern relative to JHRE-GFP, as these are really different constructs. The problem is that JH-dependent activation of the JHRR-lacZ transgene has not been tested as thoroughly as that of JHRE-GFP. Is it inducible by added JH or methoprene?

      Have the authors examined whether JHRE-lacZ expression increases with Methoprene?

      Our response: We have yet to do this analysis. To address this important point from Reviewers #1 and #2, we will examine whether JHRR-lacZ expression is upregulated in the seminal vesicles of virgin males fed methoprene-supplemented food. The lacZ signals will be visualized by immunostaining with an anti-LacZ antibody.

      Document testis staining of JHRE-GFP. I think the authors missed a chance by not providing a clear/nice picture of the testis staining. Stainings of testes squashed on a slide is easy and would nicely document in which cells the reporter is activated. Similarly, extracting sperm from the seminal vesicle and examining whether the sperm express JHRE-GFP would be informative.

      Our response: As the reviewer suggested, we will assess JHRE-GFP signal in sperm in squashed testis samples.

      Did the authors try to analyze the 66 genes identified in seminal vesicle whether they had JHRE elements? This could yield additional significant information about other JH responsive genes in the seminal vesicle.

      Our response: We have yet to do this analysis. We will follow the reviewer's suggestion and examine whether the 66 genes identified in the seminal vesicle have JHRE elements.

      3a. Doublestaining would further confirm that pd8-Gal4 (crossed to UAS-dsRed) and JHRE-GFP overlap.

      3b. Similarly, Doublestaining would further confirm that pd8-Gal4 (crossed to UAS-dsREd) and JHRE-GFP overlap.

      Our response: To address this question, we will generate males of Pde8-GAL4; UAS-red fluorescent protein (RedStinger, RFP, or DsRed); JHRE-GFP and observe the overlap between the red fluorescent signals and green fluorescent (JHRE-GFP) signals in the seminal vesicle epithelial cells.

      Minor comments:

      Fig.1a could be in a supplement.

      __Our response: At this point, we are unsure whether to follow this reviewer's suggestion. This is because there are no supplemental figures in the current manuscript, so we hesitate to create a supplemental figure just for this one figure. On the other hand, three reviewers now ask us to perform various additional experiments, thus some of the new data may be shown as supplemental figures. In this case, Fig. 1a can be moved to a supplemental figure, but we would like to wait on this decision. __

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      l.25,91,117, and throughout, "JH analog" or "JHA". The authors only use methoprene, so it would be better to specifically talk about methoprene, which is a proven agonist ligand of the JHR proteins (reference 10 and/or Jindra and Bittova, 2020 [Arch Insect Biochem Physiol] for a review). This would land more credibility to using methoprene than just referring to a "JHA".

      Our response: According to the reviewer's suggestion, we have replaced "JHA" with "methoprene" as many as possible. In Figures, we used "MTP" instead of "methoprene" due to space limitations.

      l.42,44, "paralogs". I believe in this case the authors refer to orthologs of Met in other species. Paralogs result from gene duplications within species, such as Met and gce in cyclorrhaphous flies or Met 1 and 2 in the Lepidoptera. I recommend a recent review on all bHLH-PAS proteins featuring reconstruction of the phylogenetic position of Met/Gce (Tumova et al., 2024 in J Mol Biol).

      Our response: As suggested, we have replaced "paralogs" and "paralogous" with "orthologs" and "orthologous," respectively on P3. We have also cited Tumova et al. J. Mol. Biol. 2023 as a new Ref 12.

      l.54, "Met and Gce act redundantly to regulate JH-responsive gene expression". Ref 10 should be cited here as it provides functional cell-based and genetic rescue evidence for each paralog.

      Our response: We have cited Ref 10 as suggested.

      l.66, It would be better to start "In this study" or "Here" to distinguish from the last cited paper.

      Our response:____ We created a new paragraph with the sentence "In this study..." at the beginning. We hope we understand the reviewer's suggestion correctly.

      l.175, levels were

      Our response: We have fixed this error in the transferred manuscript.

      l.209, might be evolutionarily among.... conserved ??

      Our response: We have fixed this error in the transferred manuscript.

      l.226, study has

      Our response: We have fixed this error in the transferred manuscript.

      l.227-229. The authors are missing a paper by Shin et al., 2012 (PNAS) that shows physical interaction of Met with Cycle and their regulation of circadian gene activity and another paper by Bajgar et al., 2013 (PNAS) which describes photoperid-dependent seasonal regulation of circadian genes by Met, Clk and Cyc.

      On the other hand, the cited reference [51] does NOT demonstrate Met:Clk heterodimer since coIP is by no means adequate to address complex stoichiometry. In fact, it is suspicious that Met would heterodimerize and either Cyc or Clk, as they present class II and class I bHLH-PAS proteins.

      Our response: In response to both comments from Reviewer #1, ____we have cited these references and rewritten the discussion on P10-11 as below: "An interesting previous study has reported that the seminal vesicle expresses multiple clock genes such as period, Clock (Clk), and timeless, all of which are necessary for generating proper circadian rhythm [52]. In the case of the mosquito Aedes aegypti female, it is reported that JH controls gene expression via a heterodimer of Met and circadian rhythm factor Cycle (CYC) [53]. It was also suggested that Met binds directly to CLK in D. melanogaster [54]. In addition, in the linden bug, Pyrrhocoris apterus, JH alters gene expression via Met, CLK, and CYC in the gut [55]. Considering these previous reports and our results, circadian rhythm factors and JH may cooperate to regulate gene expression in the seminal vesicles."

      l.245. It is not "whether", but for sure the existing reporters only reflect limited JHR activity, being based on Kr-h1 JHREs. These reporters likely uncover only a small subset of JH activity in vivo.

      Our response: We have rewritten the sentence as follows: "..., more comprehensive JH reporter strains will be needed in D. melanogaster as well as other insects in future studies."

      reference 10/11 is duplicated.

      Our response: We have fixed this error in the transferred manuscript.

      Have the authors done a careful comparison of JHRE-GFP expression and the Met/gce reporter expression described by Baumann et al (Scientific Reports | 7: 2132 | DOI:10.1038/s41598-017-02264-4)? Would be nice to add a few more sentences in the discussion.

      Our response: As suggested, we have added some sentences to explain this point on Page 11 as below: "P____revious studies reported that ____Met-T2A-GAL4_ and _gce-T2A-GAL4_ labeled male accessory glands, ejaculatory duct, and testes as well as seminal vesicles. On the other hand, in our results, JHRE-GFP only labels cells in seminal vesicles and testes [21]. Considering that Met and Gce are expressed in almost all cell types of male reproductive tracts [21], more comprehensive JH reporter strains will be needed in _D. melanogaster____ as well as other insects in future studies."

      • In the discussion:*

      6.1 Would have liked to see a more in depth discussion of the role of the seminal vesicle. How could that be supported by JH / metabolic processes? Does it have secretory functions that might be induced by JH? Important functions relative to sperm storage? How could that relate to the finding that JH response is enhanced by mating?

      Our response: Unfortunately, the function of the seminal vesicles is largely unknown. However, ____in response to the reviewer's suggestion, we have added some sentences to discuss this point and cited some references describing the seminal vesicles in insects other than the fruit fly, as follows on P9-10: "Furthermore, in some insects other than D. melanogaster, morphological and ultrastructural studies revealed that secretory vesicles were observed in the epithelial cells of the seminal vesicles [37,38,40,44]. JH is known to stimulate secretory activity in the male accessory glands of many insects [45]. Based on the JH response in the seminal vesicles, it is possible that JH signaling affects the secretory activity of the seminal vesicles in D. melanogaster."

      The arrow in figure is not defined

      Our response: We believe that the reviewer pointed out the arrow in Figure 1e. We have added a sentence to define the arrow in the Figure legend as "The arrow indicates the cell with a GFP signal."

      Figure 2b graph labels are flipped

      Our response: We have fixed the error.

      Line 624: Change "Allow heads" to "Arrowheads"

      Our response: We have fixed this error in the transferred manuscript.

      Major Comments:

      The work uses standard methods and strains. Although the specific findings are new and believable, the authors interpret them beyond what is appropriate. For example, based on increased amounts of a single RNA, they propose that JH regulates metabolism in seminal vesicles and because circadian rhythm genes were known to be expressed in this tissue they propose that JH and circadian systems work together there.

      Our response: In response to the reviewer's criticisms, we have discussed our arguments more appropriately in the Discussion. For example, we have mentioned circadian rhythm more carefully on Pages 10-11 as follows: "An interesting previous study has reported that the seminal vesicle expresses multiple clock genes such as period, Clock (Clk), and timeless, all of which are necessary for generating proper circadian rhythm [52]. In case of mosquito Aedes aegypti female, it is reported that JH controls gene expression via a heterodimer of Met and circadian rhythm factor Cycle (CYC) [53]. It was also suggested that Met binds directly to CLK in D. melanogaster [54]. In addition, in the linden bug, Pyrrhocoris apterus, JH alter gene expression via Met, CLK and CYC in the gut [55]. Considering these previous reports and our results, it is possible that circadian rhythm factors and JH cooperatively regulate gene expression in the seminal vesicles."

      __ Regarding Ldh, we have added a sentence on Page 10 as "Also, the biological significance of the induction of Ldh expression by JH signaling is not clear."__

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      l.244, tract

      Our response: We have carefully checked out the usage of "tract" and "tracts" not only on Page 11 but also throughout the manuscript. We have decided to use "tracts," but not "tract," throughout the manuscript.

      6.2 What do epithelial cells of spermatheca do?

      Our response: We agree with the reviewer that this is a very interesting question. However, please note that this paper focuses on males, and females are beyond our current scope. We plan to examine JHRE-GFP signals in the spermatheca in a different project. We do appreciate the reviewer's kind understanding.

      6.3 How do the authors envision that JH enters the epithelial cells?

      __Our response:____ We don't have any hypotheses on this point. Transporters may exist to achieve intracellular permeability of JH, but we do not think this point has been discussed in current insect physiology. Furthermore, since this issue is related to all JH-responsive cells, not just seminal vesicle epithelial cells, we do not feel the need to discuss it in this paper. __

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Both reviewers positively received the manuscript, in general. The agreement was that the manuscript presented valuable findings, using solid techniques and approaches, that shed additional light into how the canine distemper virus hemagglutinin might engage cellular receptors and how that engagement impacts host tropism. While both reviewers appreciated the X-ray crystallographic data, they also felt that the AFM experiments could have been performed at a higher standard and that the interpretation of the results ensuing from those AFM experiments could have been explained more thoroughly and in simpler terms. An additional missed opportunity of the current manuscript is the lack of comparison of the crystal structure to that of the already published cryo-EM structure, for context.

      Thank you very much for constructive comments of the editor and reviewers. Following your comments, we have changed the text related to the AFM experiments with simpler terms as follows.

      “When CDV-H was loaded onto a mica substrate and scanned with a cantilever to acquire images of attached molecules, the CDV-H dimer was observed as two globules clustered together in most cases, but sometimes, each domain moved independently (Fig. 7B and Supplementary Movie). Time-course analysis of the dynamics of the representative CDV-H dimer showed that CDV-H could adopt both associated and dissociated forms (Fig. 7C). The distances between the domains were calculated by measuring those between the centers of mass of each domain. Finally, the distribution of distances between each head domain in the CDV-H dimers showed approximately 15 nm as a major peak (Fig. 7D). This is a reasonable length for the linker between the head domain dimers.” in Page 11, Lines 8-17.

      With regards to the structural comparison between cryo-EM structure published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 and our crystal structure, we have compared these structures for Cα on page 6 and added the following text. “A recent cryo-EM structure of the wild-type CDV-H ectodomain revealed that the head dimer is located on one side of the stalk region in solution (Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120)” in Page 14, Lines 22-24.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Fukuhara, Maenaka, and colleagues report a crystal structure of the canine distemper virus (CDV) attachment hemagglutinin protein globular domain. The structure shows a dimeric organization of the viral protein and describes the detailed amino-acid side chain interactions between the two protomers. The authors also use their best judgement to comment on predicted sites for the two cellular receptors - Nectin-4 and SLAM - and thus speculate on the CDV host tropism. A complementary AFM study suggests a breathing movement at the hemagglutinin dimer interface.

      Strengths:

      The study of CDV and related Paramyxoviruses is significant for human/animal health and is very timely. The crystallographic data seem to be of good quality.

      Thank you very much for the constructive comment of the reviewer.

      Weaknesses:

      While the recent CDV hemagglutinin cryo-EM structure is mentioned, it is not compared to the present crystal structure, and thus the context of the present study is poorly justified. Additionally, the results of the AFM experiment are not unexpected. Indeed, other paramyxoviral RBP/G proteins also show movement at the protomer interface.

      Thank you very much for constructive comments of the reviewer. When we submitted our manuscript to e-life, cryo-EM structure just published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 a week ago was not able to be available. Following the comment of the reviewer, we have added the text about the structural comparison between the cryo-EM structure and our crystal structure. We also have changed the text related to the AFM experiments to tone down the movement of the protomer interfaceas follows.

      “This observation raises the possibility that each head domain of CDV-H also dissociates and moves flexibly, as shown in the structure of Nipah virus (NiV)-G protein, previously (Science (2022) 375, 1373–1378).” in Page 11, Lines 4-6.

      Reviewer #2 (Public Review):

      Summary:

      The authors solved the crystal structure of CDV H-protein head domain at 3,2 A resolution to better understand the detailed mechanism of membrane fusion triggering. The structure clearly showed that the orientation of the H monomers in the homodimer was similar to that of measles virus H and different from other paramyxoviruses. The authors used the available co-crystal strictures of the closely related measles virus H structures with the SLAM and Nectin4 receptors to map the receptor binding site on CDV H. The authors also confirmed which N-linked sites were glycosylated in the CDV H protein and showed that both wildtype and vaccine strains of CDV H have the same glycosylation pattern. The authors documented that the glycans cover a vast majority of the H surface while leaving the receptor binding site exposed, which may in part explain the long-term success of measles virus and CDV vaccines. Finally, the authors used HS-AFM to visualize the real-time dynamic characteristics of CDV-H under physiological conditions. This analysis indicated that homodimers may dissociate into monomers, which has implications for the model of fusion triggering.

      The structural data and analysis were thorough and well-presented. However, the HS-AFM data, while very exciting, was not presented in a manner that could be easily grasped by readers of this manuscript. I have some suggestions for improvement.

      (1) The authors claim their structure is very similar to the recently published croy-EM structure of CDV H. Can the authors provide us with a quantitative assessment of this statement?

      Thank you very much for constructive comments of the reviewer. When we submitted our manuscript to e-life, cryo-EM structure just published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 a week ago was not able to be available. Following the comment of the reviewer, we have added the text about the structural comparison between the cryo-EM structure and our crystal structure. We also have changed the text related to the AFM experiments to tone down the movement of the protomer interface as follows.

      “This observation raises the possibility that each head domain of CDV-H also dissociates and moves flexibly, as shown in the structure of Nipah virus (NiV)-G protein, previously (Science (2022) 375, 1373–1378).” in Page 11, Lines 4-6.

      (2) The results for the HS-AFM are difficult to follow and it is not clear how the authors came to their conclusions. Can the authors better explain this data and justify their conclusions based on it?

      Thank you very much for constructive comments of the reviewer. Following your comments, we have changed the text related to the AFM experiments with simpler terms as follows.

      “When CDV-H was loaded onto a mica substrate and scanned with a cantilever to acquire images of attached molecules, the CDV-H dimer was observed as two globules clustered together in most cases, but sometimes, each domain moved independently (Fig. 7B and Supplementary Movie). Time-course analysis of the dynamics of the representative CDV-H dimer showed that CDV-H could adopt both associated and dissociated forms (Fig. 7C). The distances between the domains were calculated by measuring those between the centers of mass of each domain. Finally, the distribution of distances between each head domain in the CDV-H dimers showed approximately 15 nm as a major peak (Fig. 7D). This is a reasonable length for the linker between the head domain dimers.” in Page 11, Lines 8-17.

      (3) The fusion triggering model in Figure 8 is ambiguous as to when H-F interactions are occurring and when they may be disrupted. The authors should clarify this point in their model.

      Thank you very much for constructive comments of the reviewer. Following your comments, we have changed the Figure 8 and its legend.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) AFM experiments with SLAM or Nectin-4 immobilized on the cantilever would be much more informative.

      Thank you very much for the constructive comment of the reviewer. We will try this experiment in the next paper.

      (2) The authors should compare their crystal structure to that of the reported cryo-EM structure.

      With regards to the structural comparison between cryo-EM structure published in Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2208866120 and our crystal structure, we have added the text.

      (3) Figure 1D - why does the beta2 MG negative control have such a high SPR signal?

      Thank you very much for the constructive comment of the reviewer. The immobilization levels for b 2-microglobulin (beta2 MG), CDV-OP-H and CDV-5VD-H were similar, 1204.7 RU, 1235.7 RU, and 1504.5 RU, respectively. We applied relatively high concentrations (5 mM) of dNectin4 and hNectin4 onto the chip to determine low-affinity dissociation constants. Then, the signals for beta2 MG (negative control) were high. In other SPR experiments for cell surface receptors, such high signals for beta2 MG were often observed in our previous paper, Kuroki et al., J. Immunol. 2019 Dec 15;203(12):3386-3394. doi: 10.4049/jimmunol.1900562. Therefore, we think that these SPR signals are not unusual.

      (4) Figure 1C - please indicate the Ve volume for the peak and add in Ve for standard.

      Thank you very much for the constructive comment of the reviewer. We have indicated the Ve volume for the peak and added in Ve for standard in Figure 1C.

      (5) The authors mention that one of the chains in the asymmetric unit was better resolved than the other. Please show regions of the atomic model fit regions of the electron density to convince the reader of the quality of your data.

      Thank you very much for the constructive comment of the reviewer. We have added new Supplementary figure 2 for comparison of electron density maps of chains A and B.

      (6) Table 2 indicates that the difference between Rw and Rf values is larger than 5% which indicates slight overfitting during refinement. Please provide details of your refinement strategy and attempt simulated annealing as a strategy to reduce this delta.

      Thank you very much for the constructive comment of the reviewer. We further introduced TLS and NCS parameters for the refinement. Consequently, the R/Rfree factors became 0.2645/0.3092. Simulated annealing had been already carried out. All the refinement statistics in the table 2 are updated.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors' fusion triggering model was difficult to follow. For example, this sentence was difficult to understand: "The other possible models may include the monomer-dimer-tetramer transition facilitated by receptor binding for the fusion."

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have removed the above sentences and have added the detail mechanism of the proposed model in Discussion. Furthermore, we have changed the Figure 8 and its legend for readers to understand more clearly.

      (2) Figure 5A is not called out in the main text.

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have added the text as follows.

      “the crystal structure of MeV-H in complex with hNectin-4 showed that the H-SLAM interaction consists of three main sites (Fig. 5A) (Nat. Struct. Mol. Biol. (2013) 20, 67–72).” in Page 11, Lines 4-6.

      (3) Page 9, Line 4: interspaces? Perhaps interphases.

      Thank you very much for the constructive comment of the reviewer. We have changed the term “interspaces” to “internal spaces”.

      (4) Page 12, penultimate line: The authors mention "epitopes for anti-MeV-H Abs." Do they mean anti-CDV-H Abs?

      Thank you very much for the constructive comment of the reviewer. Following your comments, we have changed the “anti-MeV-H Abs” to “anti-morbillivirus H neutralizing antibodies”.

      (5) The paper will benefit from an English language editor to help clarify what the authors are trying to convey.

      Thank you very much for the constructive comment of the reviewer.

      We have asked a English proof reading company to check.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their time and effort to improve and clarify our manuscript. We now have addressed the reviewers’ suggestions in full on a point-by-point basis. Revisions in the manuscript file are highlighted in yellow.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Supernumerary centrosomes are observed in the majority of human tumors. In cells they induce abnormal mitosis leading to chromosome missegregation and aneuploidy. In animal models it is demonstrated that extra centrosomes are sufficient to drive tumor formation. Previous work studying the impact of centrosome amplification on tumor formation in vivo used Plk4 overexpression to drive the formation of supernumerary centrosomes. In this manuscript Moussa and co-workers from the Krämer group developed a mouse model in which centrosome amplification is triggered by the overexpression of the structural centrosomal protein STIL rather than the kinase Plk4 in order to a) assess the potential for centrosome amplification induced by STIL overexpression to drive tumor formation and b) to rule out any potential non-centrosomal related effects of the kinase Plk4 on tumor formation.* The authors show that STIL ovexrexpression in cells (MEFs) drives centrosome amplification and aberrant mitosis (Fig. 1), leading to chromosome missegregation and aneuploidy (Fig. 2). They also show that STIL overexpression is linked to reduced cellular proliferation and apoptosis (Fig 3). The authors then present in vivo experiments performed in mice. They observed that STIL expression causes embryonic lethality, microcephaly and a reduced lifespan (Fig 4). Despite increased STIL mRNA levels they do not detect elevated STIL protein levels in adult tissues except for the spleen. They do not detect significant increase of centrosome amplification or aneuploidy in animal tissues (Fig 4) and they conclude of a STIL translational shut down in most adult tissues. The authors then assess the impact of STIL overexpression on tumor formation. They observed a reduced spontaneous tumor formation despite elevated STIL mRNA levels in both healthy and tumor (lymphomas) tissues of mice overexpressing STIL. They don't detect increased centrosome amplification and aneuploidy in lymphomas from STIL overexpressing mice compared to lymphomas naturally occurring in control animals (Fig 5). Finally, they found that STIL overexpression suppresses chemical skin carcinogenesis using a combination of tamoxifen induction of STIL in the skin with DMBA/TPA carcinogenic treatment (Fig 7). They link this effect to an increased number of centriole and a reduction in cycling cells number in the skin of STIL overexpressing mice (Fig 6).

      The manuscript is written in a clear manner. The experimental approaches are properly designed and the experimental methods are described in sufficient details. Most of the experimental data present a good number of replicates. The figures are generally well assembled despite some errors in a few panels/legends (see major and minor points). Most of the conclusions are supported by the experimental data. However, a few specific points or interpretations are not convincingly supported by the experimental data (see major points) and will need to be revised and/or reformulated.

      Major points:

      1. Figures 1D and F show that MEFs hemizygous (CMV-STIL+/-) and homozygous (CMV-STIL+/+) for STIL present similar level of centrosome amplification and aberrant mitosis. Although, despite these similarities the homozygous MEFs display about two time more micronuclei and chromosomes aberrations (Fig. 2). The authors explain this discrepancy by the fact that MEFs homozygous for STIL have reduced proliferation and an increased propension to stay in interphase compared to hemizygous MEFs (Fig. 3). I don't understand why an interphase arrest would lead to a higher chromosomal instability resulting in higher micronuclei formation and abnormal karyotypes since those phenotypes are the consequences of abnormal mitosis occurring in cycling cells. I would rather argue that Homozygous MEFs are more prone to cell cycle arrest because of mitotic errors, but those mitotic errors cannot be explained by the centrosome status or the mitotic figures quantified in homozygous MEFs. Therefore, the authors explanation written as: "Graded inhibition of proliferation and accumulation of cells in interphase explains why CMV-STIL+/- and CMV-STIL+/+ MEFs contain increasing frequencies of micronuclei and aberrant karyotypes (Fig. 2) despite similar levels of supernumerary centrosomes" is not right for me. The authors should reformulate this section of the manuscript so their conclusion fit their data. The differences between hemi and homozygotes MEFs regarding chromosome stability could come from mitotic errors they did not spot using fixed immunofluorescence images of mitotic MEFs. Thus, as an optional additional experiment, analyzing live mitosis of MEFs could potentially help reconciliate results from mitotic figures and from karyotypes.*

      We basically agree with the reviewer and have therefore reanalyzed our data on centriole numbers in a time-dependent manner. As already shown in Figure 3L of the initial manuscript version, the number of both CMV-STIL+/- and CMV-STIL+/+ MEFs with supernumerary centrioles increases with passaging from passage 3 (p3) to p6. Also, in this experiment amplified centrioles were more frequent in CMV-STIL+/+ compared to CMV-STIL+/- MEFs in both passages (p3 and p6) analyzed. We have therefore now pooled the data and substituted the former Figure panel 1D by these combined results. As the results of Figure 1F and especially those for the CMV-STIL+/+ MEFs had to rely on very low mitotic figure counts, because these cells only very rarely divide (as shown in Figure 3A; mitosis frequency of CMV-STIL+/+ MEFs 0.12%), we have now deleted Figure panel 1F from the manuscript. For the same reason - an extremely low proliferation and division rate of especially CMV-STIL+/+ MEFs - live cell imaging to detect different types of mitotic errors, is unfortunately not feasible.

      Figure 5 panel F does not support the claim of the main text and does not match the legend of the figure: In the text the authors wrote: "Ki67 immunostaining revealed that, ..., proliferation rates were elevated independent from lymphoma genotypes". If the authors claim and increased cell proliferation in lymphoma compared to lymph nodes, which is expected, they should show the data for the lymph node in the graph. In addition, in the legend the authors mentioned a "Percentage of Ki67-positive cells in healthy spleens and lymphomas from mice with the indicated genotypes." Since there are three genotypes and two tissue types but the figure presents a graph with only three bars did the Spleen and lymphoma data were combined? Or did some data were not inserted in the graph? Thus, since the data does not support the claim for an increased cell proliferation in lymphoma, the authors explanation for the increased protein level observed in these lymphomas (Fig. 5 panel E) is not supported. Therefore, the authors need to present the correct data in the figure or to change their conclusion. They will also need to correct the figure legend and to add a panel with images illustrating the Ki67 labelling in the different tissues in the figure.

      We apologize for this mistake and have corrected the legend to Figure panel 5F, which now reads: “Percentage of Ki67-positive cells in two B6-STIL, two CMV-STIL+/- and one CMV-STIL+/+ lymphoma. For comparison, frequencies of Ki67-positive cells in healthy lymph nodes from B6-STIL mice are displayed. Data are means ± SEM from at least two independent immunostainings per lymphoma or healthy lymph node. P-values were calculated using the one-way ANOVA with post-hoc Tukey test for multiple comparison. For space reasons, only statistically significant differences are displayed”.

         We agree with the reviewer that for comparison Ki67 immunostainings of healthy lymph node tissue was missing in the graph and have therefore added this information to the figure panel, which shows increased proliferation of lymphoma compared to normal lymph node cells. Also, a panel with images illustrating Ki67 labelling in healthy lymph node and lymphomas from different genotypes has been added to the figure (panel 5G).
      
      • *

      __Minor points:____* * __1. In the introduction, page 4 paragraph 3, the authors wrote: "To assess the impact of centrosome amplification on CIN, senescence, lifespan and tumor formation in vivo without interfering with extracentrosomal traits,..." they need to clarify what they meant by extracentrosomal traits.

      As requested by the reviewer we have modified the respective sentence, which now reads: “To assess the impact of centrosome amplification on CIN, senescence, lifespan and tumor formation in vivo with an orthologous approach without interfering with PLK4, we generated transgenic mouse models overexpressing the structural centrosome protein STIL, …”.

      • *

      In the 1st paragraph of the results, page 4, the authors wrote: "leads to ubiquitous transgene expression at levels similar to the CAG promoter used in most..." but there is no link to a figure presenting the mRNA levels in those mice (potentially Fig. 4F and Fig. S6). Also, in the references cited for comparison, to my knowledge, there was no measurement of Plk4 mRNA levels in tissues in the work from Marthiens and colleagues, in this work the authors assess the expression of the Plk4 transgene by investigating the presence of the protein.

      To show STIL transgene expression levels in our system, we have now linked Figure panels 1A (STIL mRNA expression in MEFs), 1B (STIL protein expression in MEFs) and Supplemental Fig. S2 (Supplemental Fig. S6 of the previous manuscript version showing STIL mRNA levels in healthy mouse tissues) to this statement as suggested. In the references now cited for comparison (Kulukian et al. 2015; Vitre et al. 2015; Sercin et al. 2016) PLK4 transgene mRNA (Kulukian et al. 2015; Sercin et al. 2016) and protein levels (Vitre et al. 2015) are shown.

      • *

      Page 5 second line the authors wrote: "Despite the graded increase in Plk4 expression, CMV-STIL+/- and, CMV-STIL+/+ MEFs exhibited a similar increase in supernumerary centrioles". The authors must meant increase in STIL expression or do they have data not shown about an increase of Plk4 expression? Then they explain this absence of difference in supernumerary centriole by the ability of "excess Plk4" to access the centrosome, again they probably meant STIL. Regarding this point and related to Major Point 1 it might be worth for the authors to quantify actual extra centrosomes in mitosis rather than cells with more than 4 centrioles in interphase (as in Fig. 1C, D). They might find differences in the number of centrosomes in hemizygous versus homozygous MEFs.

      We indeed meant STIL instead of PLK4 and have corrected the mistake. As described in our response to the reviewer’s major point 1 we have now reanalyzed our data on centriole numbers in a time-dependent manner. As already shown in Figure 3L of the initial manuscript version, the frequency of both CMV-STIL+/- and CMV-STIL+/+ MEFs with supernumerary centrioles increases with passaging from passage 3 (p3) to p6. Also, in this experiment amplified centrioles were more frequent in CMV-STIL+/+ compared to CMV-STIL+/- MEFs in both passages (p3 and p6) analyzed. We have therefore now pooled and substituted the former Figure panel 1D by these combined results.

      Page 5, in the first paragraph the authors mention "the rate of respective mitotic aberrations..." without defining the mitotic aberrations. For instance, in panel 1E a metaphase with 4 centrosomes is shown for CMV-STIL+/- while an anaphase with an unknown number of clustered centrosomes is presented for CMV-STIL+/+. Classifying the different types of aberrant mitotic figures (i.e: multipolar anaphases versus bipolar with clustered centrosomes) might help the authors identify differences between hemi and homozygous MEFS that may explain the differences in the proportions of chromosomes aberrations they present in Fig. 2.

      As described in our response to the reviewer’s major point 1 the number of mitotic figures that could be analyzed was extremely low, especially for CMV-STIL+/+ MEFs, which do only rarely divide (mitosis frequency of CMV-STIL+/+ MEFs 0.12%). Therefore, although certainly of value, classification of different types of mitotic aberrations is unfortunately not feasible.

      • *

      In Fig 4A the number of mice analyzed should be mentioned.

      After mating of B6-STIL transgenic animals with CMV-CRE mice and further breeding of successive generations, we obtained a total of 198 pups over four generations, 162 of which were born alive: 116 B6-STIL wildtype animals, 27 CMV-STIL+/- and 19 CMV-STIL-/- mice. We have now added these numbers to the figure legend.

      • *

      In Fig. 5E, the band corresponding to STIL protein is difficult to visualize in the B6-STIL control, it is therefore difficult to compare its level to the level of STIL protein in the CMV-STIL hemizygotes and homozygotes. If possible, it would improve the manuscript to present a blot with clearer results.

      We have tried to improve the quality by repeating the Western blot. Due to the small size of healthy mouse lymph nodes, resulting in low protein yields, only lysates from lymphomas were left, and these were of poor quality with a high lipid content. We therefore tried to delipidate the lymphoma lysates and hope that the result of the new blot is now somewhat clearer. Due to the low lymphoma frequency in CMV-STIL hemizygotes and homozygotes (only 2 in each case) we were unfortunately not able to prepare fresh lysates.

      Related to Figure 6B the authors wrote a "5 to 10 fold-increased expression..." in the text while panel 6B show a maximum of 8 fold increase.

      The respective statement has been rephrased according to the reviewer´s suggestion.

      __Reviewer #1 (Significance (Required)): ______ *Centrosome amplification is a demonstrated cause of genomic instability and tumor development as shown in multiple previous work performed in mice. In this work, Moussa and co-workers developed a mouse model that does not depends on Plk4 to trigger centrosome amplification but which depends on the overexpression of the centrosome structural protein STIL. This effort is welcome as previous works could not formally rule out potential role of Plk4, not related to its centrosome duplication function, on tumor formation. The authors show that their system is functional in MEFs where STIL overexpression drives centrosome amplification and aneuploidy. Unfortunately, in vivo, despite elevated level of STIL mRNA they do not detect centrosome amplification in tissues and consequently, they do not observe an increase rate of aneuploidy and tumor formation. This result is not surprising as previous studies using strong promoters (comparable to the one used to drive STIL expression in this study) to induce Plk4 overexpression led to similar results, i.e. an absence of centrosome amplification in adult tissues and no effects on tumor formation. Therefore, the results and the concepts proposed in this work are not novel but they reinforce previous studies showing the deleterious effect of high level of centrosome amplification on cells. This work also confirms that strong mechanisms, here the authors propose a translational shut-down, are preventing the apparition or the persistence of high level of centrosome amplification in animal tissues. By complementing existing results with the use of an alternate experimental approach this study will be of interest for the scientific community working on the basic biological mechanisms driving aneuploidy and tumor development.*

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)):______ *In this manuscript, Moussa et al. describe the effects of over-expressing the centriole duplication factor STIL in whole mice and with expression restricted to the skin. They find that over expression of STIL, similar to that of PLK4, induces centriole overduplication, abnormal mitoses, and genetic instability leading to cell arrest. Additionally, over-expressing STIL results in microcephaly, perinatal lethality and a shortened lifespan. In addition, they do not find that expression of the p53 R127H mutant alleviates the cell growth defect. Moreover, overexpression of STIL does not lead to increased general tumour formation and suppresses tumour formation in an induced skin tumour model.

      Although this is an interesting manuscript, the authors need address a number of issues before this manuscript can be recommend the manuscript for publication. Importantly, the manuscript lacks statistical analyses to support some of their conclusions, some figures should be quantified, and controls are missing in some cases. *

      __Major Issues____* * __1. Many of the figure panels lack appropriate statistical analyses to support the conclusions (see details below). This needs to be rectified.

      In view of the limited number of mice (due to an increased frequency of pups that died around birth) and the resulting impossibility of performing several (>3) independent experiments in many cases, we have decided to limit the statistics in the main text to a descriptive analysis without mentioning inferences (p-values). Nevertheless, we have now included the missing statistical analyses in the figure panels and/or legends. However, the reported p-values (*p≤0.05, **p≤0.01, ***p≤0.001; ns, not significant) should be interpreted as descriptive rather than confirmatory values.

      • *

      The authors suggest that the interpretation of PLK4 over-expression studies are hampered by the possibility of centriole/centrosome independent PLK4 roles and that STIL overexpression circumvents some of these issues. Although orthologous approaches to problems are always desired, STIL itself has also been implicated in other cellular processes, such as the Sonic hedgehog pathway (Carr AL, 2014) and in cell motility (Liu Y, 2020). In addition, the data presented in the manuscript are suggestive of a STIL function in the mouse that is independent of centriole number. The authors demonstrate that the amount of centriole over-duplication in MEFs containing a single copy of the STIL over-expression locus is equivalent to that of MEFs carrying two copies. However, in most other assays, the homozygous lines display more severe phenotypes, suggesting that STIL might have a function outside centriole duplication. The authors need to discuss this further in a revised manuscript.

      As described in our response to major point 1 and minor point 3 of reviewer 1 we have now reanalyzed our data on centriole numbers in a time-dependent manner. As already shown in Figure 3L of the initial manuscript version, the number of both CMV-STIL+/- and CMV-STIL+/+ MEFs with supernumerary centrioles increases with passaging from passage 3 (p3) to p6. Also, in this experiment amplified centrioles were more frequent in CMV-STIL+/+ compared to CMV-STIL+/- MEFs in both passages (p3 and p6) analyzed. We have therefore now pooled the data and substituted the former Figure panel 1D by these combined results, which show that, similar to other models, also regarding STIL overexpression the homozygous line displays a more severe phenotype, which does therefore per se not argue for a STIL function outside the centrosome. However, as a few recent studies indeed suggest additional roles of STIL, we have amended the respective passages in the revised version of the manuscript accordingly.

      • *

      Why did the authors use the p53 R127H mutant instead of a p53 knockout or null allele system? The R127H mutant has a gain-of-function phenotype and cells expressing this mutant display different phenotypes than a p53 null. The primary conclusion in one of the references cited by the authors (Caulin C, 2007) is that p53R127H is a gain-of-function mutant and behaves distinct from loss-of-function p53 mutations, such as deletions using floxed alleles. Throughout the manuscript, the authors use terms that suggest the R127H allele is equivalent to a loss of function mutant. Given that supernumerary centriole growth arrest is universally suppressed by inactivation of p53 it is somewhat surprising that this pathway is not active in response to STIL over-expression. The authors should confirm this key conclusion by depleting p53 in MEFs using RNAi, or by using mice where complete inactivation of p53 can be achieved.

      We agree with the reviewer that the p53-R172H mutant version of p53 is not equivalent to a p53 knockout. We have therefore and as suggested by reviewer 3 as well (see also our response to point 3 of reviewer 3) corrected the wording and have substituted “absence of p53” by “interference with p53 function” where appropriate. In addition, we now have added data to the manuscript, which show that neither p53 expression nor p53-S18 phosphorylation becomes induced during prolonged cultivation and passaging of CMV-STIL transgenic MEFs (see Figure 3B of the revised manuscript). Importantly, this finding is in line with a recent report showing that PLK4-induced extra centrosomes may not rely on p53 for tumor suppression and cell death induction (Braun et al.: Extra centrosomes delay DNA damage-driven tumorigenesis. Sci. Adv. 10: eadk0564, 2024). Similarly, it has been recently shown that centrosome amplification increases apoptosis independently of p53 in PLK4-overexpressing cells treated with DNA-damaging agents (Edwards et al.: Centrosome amplification primes for apoptosis and favors the response to chemotherapy in ovarian cancer beyond multipolar divisions. bioRxiv 2023.07.28.550973, 2023). Therefore, these findings and references have now been added to results and discussion sections of the revised manuscript.

         A plethora of p53-related findings in mouse models, including the majority of results on PLK4-induced tumor formation in mice, is based on p53 knockouts, a situation that is only rarely found in human cancers. In contrast, the p53-R172H missense mutation in mice corresponds to the p53-R175H mutation in human tumors, which has the highest occurrence in diverse human cancer types among all p53 hotspot mutations, and results in a transcriptionally inactive protein that accumulates in cells, similar to the majority of naturally occurring versions of mutant p53 (Yao et al.: Protein-level mutant p53 reporters identify druggable rare precancerous clones in noncancerous tissues. Nat Cancer 4: 1176-1192, 2023; Chiang et al.: The function of mutant p53-R175H in cancer. Cancers 13: 4088, 2021). We therefore believe that it more faithfully recapitulates the situation in p53-mutant tumors than a p53 knockout.
      
         Although basically an important and valid experiment, depleting p53 in STIL-transgenic MEFs using RNAi is not easily done as (i) transfection of MEFs per se is difficult and (ii) STIL-overexpressing MEFs do only slowly proliferate and are prone to senescence and apoptosis (see Figure 3), all phenotypes which are even further exacerbated after transfection. Generation of STIL-transgenic mice with complete inactivation of p53 on the other hand is an extremely time-consuming endeavor that would lead to a significant delay of publication of our results. Given that currently similar data are published by other groups (Braun et al.: Extra centrosomes delay DNA damage-driven tumorigenesis. Sci. Adv. 10: eadk0564, 2024; Edwards et al.: Centrosome amplification primes for apoptosis and favors the response to chemotherapy in ovarian cancer beyond multipolar divisions. *bioRxiv* 2023.07.28.550973, 2023), we do not think that this would be appropriate.
      

      __Minor Issues and details____* * __Figure 1 1. Panel E. It is unclear what the authors are calling an 'aberrant mitosis'. Typically an aberrant mitosis refers to chromosomal abnormalities such as multipolar spindles, anaphase bridges or micronuclei (which they quantify in Figure 2). The aberrant mitotic figures presented in Figure 1E show a clustered metaphase with 4 centrosomes (2 per pole; 2 centrioles per centrosome) for CMV-STIL+/- MEFs and a clustered telophase with 2 centrosomes (1 per pole; 5 centrioles per centrosome) for CMV-STIL+/+ MEFs. This is now specified in detail in the legend to Figure 1E.

      • *

      Panel E. Please include images representing a normal mitosis from control cells derived from B6-STIL mice.

      As suggested, we have now included a representative image of a normal mitosis from B6-STIL control mice.

      Figure 2____ 1. Panels B, E and F. Statistical significance is not indicated between B6-STIL and CMV-STIL+/- or CMV-STIL+/- and CMV-STIL+/+. The authors indicated a 'graded' phenotype which is qualitatively apparent, but should be backed by statistical analysis.

      We have now included a statistical analysis. However, and as already described in our answer to major issue 1 of this reviewer, the reported p-values should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments.

      • *

      Can the authors indicate how they scored a tetraploid cell? Some of the cells are 100% tetraploid while others contain other aberrations.

      According to the International System for Human Cytogenomic Nomenclature (ISCN) version from 2020, polyploidy is defined by the modal numbers of chromosomes in the karyotype. A number of 81-103 chromosomes is called near-tetraploid, at which a hypotetraploidy (81-91 chromosomes) is distinguished from a hypertetraploidy (93-103 chromosomes) (An International System for Human Cytogenomic Nomenclature, Karger (2020), Eds.: McGowan-Jordan, Hastings, Moore). For mouse karyotypes respective numbers were recalculated on the basis of a diploid chromosome content of 40 instead of 46 chromosomes. To be strictly in accordance with this nomenclature, we have exchanged the term "tetraploid" by "near-tetraploid".

      __ Is the height of the rows in Panel D significant? What are the solid black rows?______ We thank the reviewer for this comment/observation. We have now increased the resolution of this part of the figure. Unfortunately, the resolution had deteriorated so much when the pdf file was created that individual lines were no longer recognizable. The height of the lines should be identical, as single lines correspond to the karyotypes of each metaphase cell analyzed, while chromosomes are plotted as columns. The solid black lines separate independently established MEF lines with the indicated STIL genotypes from each other. At least 20 metaphase cells per MEF line were analyzed. We have now explained these points in the figure legend.

      Figure 3____ 1. Panels C, F, G, and K require statistical analyses.

      We have now included the appropriate statistical analyses in the figure panels and/or legends. However, the reported p-values should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments.

      • *

      Panel D should be quantified.

      We have now included a quantification of the protein bands in panels B, E (former panel D), and K of the revised manuscript and explained the quantification procedure in detail in the methods section.

      Panel E. mRNA expression is quantified in RPKM here, while GeTMM is used in Figures 3I and Supplementary Figures S2 and S6. Is there a reason this panel uses a different method? RPKM can be used for intra-sample comparisons, but is not ideal for comparison among different samples.

      We now uniformly quantify mRNA expression in GeTMM in all figures of the revised manuscript version as requested.

      • *

      Panel G. Can the authors show the original FACS profiles in Supplementary material?

      As requested, we have now included representative examples of original FACS profiles from the cell cycle analyses into Supplemental Figure S5.

      • *

      Panel H. Requires molecular weight markers

      Molecular weight markers for the DNA ladder (L) with the corresponding bp size have now been included into the Figure panel (formerly 3H, 3I in the revised version of the manuscript).

      • *

      __ Panel J. Missing B6-STIL control. Quantify Western blots.______ We have now included an immunoblot showing STIL protein expression levels in passage p1-p5 of B6-STIL control MEFs as well as a quantification of the protein bands into the Figure panel (formerly 3J, 3K in the revised version of the manuscript). The quantification procedure has been explained in detail in the methods section of the revised manuscript version.

      Figure 4____ 1. The authors mention 'Simultaneously, we found an increased frequency of pups that died around birth.' Can the data for this be included?

      After mating B6-STIL transgenic animals with CMV-CRE mice and further breeding of successive generations, we obtained a total of 198 pups over four generations, of which 162 were born alive: 116 B6-STIL wildtype animals, 27 CMV-STIL+/- and 19 CMV-STIL+/+ mice. We have now added these numbers to the figure legend. Stillbirths increased over the generations: while in the first generation after mating B6-STIL animals with CMV-CRE mice all pups (B6-STIL wildtype animals and STIL heterozygotes) were born alive, in the fourth generation (from mating CMV-STIL transgenic mice with each other) 54% of the pups were stillborn. We have now included this observation into the main text to further emphasize the impact of STIL overexpression on perinatal lethality.

      Panels B and D. Please include the data for CMV-STIL+/-.

      We now have included a representative H&E-stained histological section of a CMV-STIL+/- mouse brain into Figure panel 4D as suggested by the reviewer. For space reasons we have not added an extra image of a CMV-STIL+/- total brain into Figure panel 4B, as this does not add novel information.

      Panels C, F and K require statistics.

      As requested, we have now included the appropriate statistical analysis in the figure panels and/or legends. However, the reported p-values should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments.

      • *

      Panel F. Include statistical analysis.

      We have now included the appropriate statistical analysis in the figure panels and/or legends. However, the reported p-values should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments.

      • *

      Panel G/H. The levels of STIL in the CMV-STIL+/+ spleen are higher than the other samples, yet there is no concomitant increase in centriole overduplication. Can the authors comment on this?

      Interestingly, we indeed found a higher STIL protein expression level in spleen tissue from CMV-STIL+/+ as compared to B6-STIL control and CMV-STIL+/- mice. Nevertheless, the amount of splenocytes with supernumerary centrioles was only marginally increased in these animals. A similar finding has recently been described for B lymphocytes with upregulated PLK4 expression after PLK4 transgene induction by exposure to doxycycline in vivo (Braun et al.: Extra centrosomes delay DNA damage-driven tumorigenesis. Sci. Adv. 10: eadk0564, 2024). Here, the lack of B cells with supernumerary centrioles despite increased PLK4 levels was explained by increased apoptosis and thereby selection against and rapid loss of PLK4-overexpressing cells. In line, we show that CMV-STIL+/+ MEFs have increased rates of senescence and apoptosis (Fig. 4).

      • *

      __ Panel J. The font within the plots is difficult to read. ______ We thank the reviewer for this comment/observation. We have now increased the resolution of this figure panel, and the font is now outside of the plots.

      Figure 5____** s should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments. No further statistical analysis can be done for panel D as in some cases (lymph node from B6-STIL mouse, lymphoma from CMV-STIL+/+ mouse) only one measurement exists.

      Panel F. The legend indicates that these data are from spleens and lymphomas. Is this correct? Would the results from non-lymphoma cells in the spleen mask the results from lymphoma cells?

      We apologize for this mistake and have corrected the legend to Figure panel 5F, which now reads: “Percentage of Ki67-positive cells in two B6-STIL, two CMV-STIL+/- and one CMV-STIL+/+ lymphoma. For comparison, frequencies of Ki67-positive cells in healthy lymph nodes from B6-STIL mice are displayed. Data are means ± SEM from at least two independent immunostainings per lymphoma or healthy lymph node. P-values were calculated using the one-way ANOVA with post-hoc Tukey test for multiple comparison. For space reasons, only statistically significant differences are displayed”.

      • *

      Panel F. The authors indicate that 'In line, assessment of lymphomas from B6-STIL control, CMV-STIL+/- and CMV-STIL+/+ mice by Ki67 immunostaining revealed that, corresponding to STIL protein levels, proliferation rates were elevated independent from lymphoma genotypes'. However, Ki67 levels, the marker for proliferation actually decreased in these samples indicating less proliferative cells. This needs to be clarified since the data shown appears to show the opposite of what is stated in the mansucript....

      As noticed by the reviewer further below, differences in the percentages of Ki67-positive, proliferating cells between lymphomas from B6-STIL, CMV-STIL+/- and CMV-STIL+/+ mice were statistically not significant. However, we have now for comparison added the results of Ki67 immunostaining of healthy lymph node tissue to Figure panel 5F, which show increased proliferation of lymphoma compared to normal lymph node cells. Also, a panel with images illustrating Ki67 labelling in healthy lymph node and lymphomas from different genotypes has been added to the figure (panel 5G). These data reveal that, independent from the genotype, proliferation rates of lymphoma cells are increased as compared to healthy lymph nodes, thereby further corroborating our assumption that STIL protein levels in lymphomas are increased as a consequence of their increased proliferation and independent from STIL transgene expression.

      • *

      Corresponding to point 3 above, the authors suggest that 'STIL protein expression is a consequence of increased lymphoma cell proliferation.' This hypothesis cannot explain STIL protein levels if proliferation has actually decreased.

      Please see our response to point 3 above.

      • *

      Corresponding to point 3 and 4 above, the actual data is marked as non-significant indicating there is actually no proliferative difference among the samples.

      This is correct. See also our comments to point 3 and 4 above.

      __ Panel 5I. The authors state that 'On the other hand, overall levels of chromosomal copy number aberrations were higher in lymphomas (mean gains + losses: 225.2 Å} 173.7 Mb) as compared to healthy tissues (mean gains + losses: 87.3 Å} 127.5 Mb; p=0.06), irrespective of their STIL transgene status (Fig. 4J; Fig. 5I), although the difference did not quite reach statistical significance.' The authors need to soften this statement since statistically, the samples are not different. For example, 'On the other hand, overall levels of chromosomal copy number aberrations appeared to trend higher in lymphomas as compared to healthy tissues irrespective of their STIL transgene status, although the difference did not quite reach statistical significance.'______ The statement was rephrased according to the reviewer´s suggestion.

      Figure 6____ 1. Panels A, B, and C require statistical analysis.

      We have now included the appropriate statistical analyses into panels A, B, and C in the figure panels and/or legends. However, the reported p-values should be interpreted as descriptive rather than confirmatory values due to the limited number of independent experiments.

      • *

      The figure legend references to panels C and D appear to be swapped.

      We thank the reviewer for this comment/observation. We have corrected this mistake.

      Panel F. Indicate that the samples are not significantly different.

      We have now included the appropriate statistical analysis including the indication that the samples are not statistically significantly different.

      • *

      __ Corresponding to point 3, the authors indicate that 'the proportion of Ki67-positive cycling cells was lower in tamoxifen-treated... ... although the difference did not quite reach statistical significance.' The authors need to soften this statement to reflect that the samples are not statistically different (i.e. 'appeared lower' or similar).______ The statement was rephrased according to the reviewer´s suggestion.

      __Figure 6 and 7 _ Do you have data for B6-STIL animals treated with and without tamoxifen? The experiments as shown demonstrate the differences between control and tamoxifen-treated animals of the same genotype, but it is unclear if any of these effects are due to the underlying genotypes or from tamoxifen itself. ___ The experiments presented in Figures 6 and 7 have not been performed in B6-STIL control mice with and without tamoxifen treatment.

      Supplemental Figure 1____ 1. Please include molecular weight marker for this and all panels showing PCR products.

      Molecular weight markers for the DNA ladder (L) with the corresponding bp size have now been included into all Figure panels showing PCR products as requested.

      The B6-STIL and CMV-STIL+/- lines should contain a larger MW band corresponding to the STIL-F and STIL-R PCR product. Please show if possible.

      We thank the reviewer for the important remark. We agree that there should be a large PCR product band at around 3000 bp containing the bacterial neomycin phosphotransferase gene (TK-neo-pA) and the STOP cassette in the B6-STIL control mice/MEFs, and two PCR product bands (large: 3000 bp, small: 410 bp) in the heterozygous CMV-STIL+/-mice/MEFs. When we began with genotyping, we did indeed observe both bands depending on the STIL background (see figure below). However, the band intensity of the larger PCR product was relatively weak (arrowheads) compared to the smaller PCR product, and its visibility was dependent on genomic DNA input and PCR efficiency. During the PCR optimization process, the PCR conditions were changed in such a way that the yield of the small band were increased despite small input amounts of genomic DNA, but at the expense of the large PCR product band (arrows). At the end of the optimization process the larger PCR product had almost disappeared, making the discrimination between heterozygous CMV-STIL+/- and homozygous CMV-STIL-/- DNA difficult. Therefore, we decided to additionally check for STOP cassette excision in a second PCR approach in parallel. In the genotyping results shown in Supplemental Figure S1B, which have been produced after PCR optimization, no larger STIL PCR product band was visible anymore.

      __Supplemental Figure 6 _ 1. The 'Spleen' sample is missing the B6-STIL control data. 'Liver' is missing CMV-STIL+/+. Please include or indicate why they are missing. The plot order of the samples differs for 'Liver' (red, black) compared to the others (black, red, blue). Indicate statistical significances. ___ We apologize for this mistake, have corrected the Figure (formerly Supplemental Figure S6, S2 in the revised version of the manuscript), and have included the missing spleen and liver samples.

      • *

      General issues ____ 1. The materials and methods indicate that HPRT and PIPB were used as reference genes, but only HPRT is referred to in the qPCR figure legend.

      We thank the reviewer for this comment/observation. As generally recommended (Vandesomele et al., Genome Biol 3(7): research0034.1-research0034.11, 2002; Kozer and Rapacz, J Appl Genet 54(4): 391-406, 2013) we used both reference genes for accurate normalization of qPCR in all experiments. We have now corrected this mistake in the figure legend.

      • *

      Figure panels 1F and 3C display 95% confidence intervals while others use SEM. Is there a reason for this?

      In the two referenced figures (former Figure 1F has been deleted from the manuscript, see also our comment to point 1 of reviewer #1 for reasons; Figure 3C of the former manuscript is now Figure 3D in the revised manuscript version) the endpoint variable was defined by whether individual cells in a single experiment showed a certain property or not (binary variables). By definition, these kinds of variables show a nonsymmetric error structure, which cannot be expressed properly by a single value such as the standard error (SEM), but can be covered correctly by a confidence interval. For the same reason, Fisher’s exact tests were employed to obtain p-values in these situations. In the other figures, the relevant endpoint variables were roughly normally distributed, either directly, or due to them being an average of many values. In this case, a symmetric SEM was thus considered sufficient, and t-tests were used for p-values. To make this clear in the figures, we used different display options to distinguish between error bars showing SEM or 95% CI.

      __Reviewer #2 (Significance (Required)): ______ *In this manuscript, Moussa et al. describe the effects of over-expressing the centriole duplication factor STIL in whole mice and with expression restricted to the skin. They find that over expression of STIL, similar to that of PLK4, induces centriole overduplication, abnormal mitoses, and genetic instability leading to cell arrest. Additionally, over-expressing STIL results in microcephaly, perinatal lethality and a shortened lifespan. In addition, they do not find that expression of the p53 R127H mutant alleviates the cell growth defect. Moreover, overexpression of STIL does not lead to increased general tumour formation and suppresses tumour formation in an induced skin tumour model. Although this is an interesting manuscript, the authors need address a number of issues before this manuscript can be recommend the manuscript for publication. Importantly, the manuscript lacks statistical analyses to support some of their conclusions, some figures should be quantified, and controls are missing in some cases. *

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): ______ Previously it has been proposed that supernumerary centrioles play important deleterious effects in vivo including increased tumorigenesis. However, the work was inconclusive because the way of inducing centriole amplification via the PLK4 kinase could have induced other effects besides supernumerary centrioles. To resolve this question, the authors generated a mouse model of centrosome amplification, in which the structural centriole protein STIL is overexpressed. Using this mouse model in vivo along with mutant mouse embryonic feeder (MEF) lines in vivo, the authors test out the role of centrosome amplification in vivo in animal development, lifespan, and tumorigenesis. They report both embryonic lethality, defects in brain development, and shortened life span in these mice. They also find that skin tumorigenesis is reduced in the mutant mice, and demonstrates that the STIL overexpression effects are not perturbed in a dominant negative p53 model. The authors demonstrate that STIL overexpression causes centrosome amplification accompanied by aneuploidy, which however is highly deleterious for cell fitness even in the absence of p53. Clearly, tissue corrective mechanisms lead to the elimination of cells with extra centrosomes and/or aneuploidy by impaired proliferation, senescence, and apoptosis. This finding is interesting and significant and seems worthy of dissemination to the broader readership.

      This study is thorough and well executed and there is a significant body of work that leads to solid conclusions. The data is convincing, and the figure are well presented. It was refreshing to read this paper, as it was not so cluttered with data that the message gets murky, yet the data was clearly very substantial. The text is clear and easy to follow.


      There really are only minor aspects of this paper that need correction, in my opinion. The text should be thoroughly checked for typos, few extra redundant words here and there, and a couple of confusing sentences.______ As suggested by the reviewer we have rechecked the manuscript for typos, redundancies, and confusing sentences and corrected where necessary and appropriate. __* *

      For example, the last sentence in abstract is confusing 'These results suggest that supernumerary centrosomes... [result in]... tumor formation' because it should read 'reduced tumor formation' or 'impairs tumorigenesis' or otherwise be written more clearly because it seems to convey the opposite message the way it is right now. ______ We thank the reviewer for this comment and have corrected the sentence, which now reads: “These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation”. The p53 dominant negative mutant is not exactly a KO so it is not fair to say "in the absence of p53"; the verbiage should be corrected and checked throughout the paper - perhaps 'interfering with p53 normal function' is more appropriate.__ As suggested by the reviewer we have corrected the wording and have substituted “absence of p53” by “interference with p53 function” where appropriate. The sentence "Senescence- and apoptosis-driven depletion of the stem cell pool may explain reduced life span and tumor formation in STIL transgenic mice." from discussion is highly speculative and should be edited to clearly convey its speculative nature or removed entirely. ______ We agree with the reviewer and have deleted the sentence from the discussion section of the manuscript.

      __Reviewer #3 (Significance (Required)): ______ Clearly, tissue corrective mechanisms lead to the elimination of cells with extra centrosomes and/or aneuploidy by impaired proliferation, senescence, and apoptosis. This finding is interesting and significant and seems worthy of dissemination to the scientific community. It adds to previous work on another centriole related protein PLK4 kinase that led to very different conclusions.

    1. Many designers also rely on their own experiences to inform the work they do.

      I chose this section because it gives another perspective on certain design choices. As we all are aware, design is relative and many people have a lot of their own personal preferences for a 'good' or a 'bad' design. In relation to designing for equity and inclusion, I chose this text since I find it interesting how different cultures may have different perspectives, opinions, and solutions to their designs. For example, as a freelance graphic designer, I myself often rely on my own experience and exposure of knowledge to digital media. If my client were to ask me to make a design for their packaging according to whatever I'd like it to be, I would make the packaging based on my knowledge, my opinion, and my belief on what I think would be a good design. However, if my client were to have a more specific request on what they would want the packaging to be, I would cater the design to how they want it to be. Sometimes, their preferences can come across as questionable or unflattering in my opinion, but at the end of the day I remind myself that again these people are requesting these designs according to their own experience and knowledge on their culture's exposure which would influence their preferences in design. Hence why, this text is very impactful to me as it encapsulate a designer's entire relationship with a client in one sentence. Having soft skills such as: open-mindedness, flexibility, and compromise to the clients' needs are also important factors in becoming a good designer, not only the technical skills matter. As we do this we are indirectly including people from different backgrounds, experiences, and abilities to be involved in the design process in order to create a more effective and relevant end product.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the Reviewers

      We sincerely thank the Referees for providing important and constructive comments. We have addressed their concerns point-by-point as described below.

      Associated to Reviewer#1's comments

      *- Diploid embryos are used as controls. Gynogenetic diploids seem to be better controls to ensure that the observed phenotypes are not related to loss of heterozygosity. To limit the amount of work, the use of gynogenetic diploids could be restricted to spindle polarity and centrosome number experiments. *

      Response 1-1

      __[Experimental plan] __Following the reviewer's suggestion, we will conduct immunostaining of a-tubulin and centrin (for visualizing the spindles and centrioles, respectively) in gynogenetic diploids that will be generated by applying heat shock to gynogenetic haploid embryos during the 1st - 2nd cleavage stage. We will observe the head area of gynogenetic diploid larvae at 3-dpf when the haploid counterparts suffer particularly drastic centrosome loss and spindle monopolarization.

      • *

      • *

      *- As the authors discuss, it would be necessary to rescue centrosome loss to establish a causal relationship between centrosome loss and haploid viability. I certainly acknowledge that this is difficult (if not impossible), but it currently limits the significance of the results. *

      Response 1-2

      We agree that rescuing centrosome loss would provide an important advancement in understanding the cause of haploid syndrome in the context of our study. However, as the reviewer also pointed out in the above comment, this poses a significant technical challenge. As described in Discussion in the original manuscript, we have attempted to restore normal centrosome number through cell cycle modulations. However, we have not found a condition that rescues centrosome loss without damaging larval viability. As an alternative approach, we have also tried to induce centriole amplification by injecting mRNA encoding plk4, an essential centriole duplication inducer. However, this caused earlier embryonic death, precluding us from observing its effects on larval morphology after 1 dpf. The main challenge is that any treatment to increase centrosome number can cause centrosome overduplication, which is as deleterious to development as centrosome loss. Efforts to identify a key factor enabling the rescue of centrosome loss in haploid larvae are underway in our laboratory, which requires new explorations over several years and is beyond the scope of the present study. Reflecting on the reviewer's comment, we added a new sentence explaining the situation on this issue (line 395, page 19). To further discuss possible contributions of centrosome loss and mitotic defects to haploidy-linked embryonic defects, we also added a citation of a previous study reporting that depletion of centrosomal proteins caused mitotic defects leading to embryonic defects similar to those observed in haploid embryos in zebrafish (Novorol et al., 2013 Open Biology; line 380, page 19).

      __[Experimental plan] __Meanwhile, as a new trial to induce centriole amplification in a scalable and temporally controllable manner, we plan the following experiment, which can be conducted within the time range of the revision schedule: We will investigate the effects of low dose treatment of a plk4 inhibitor centrinone B on tissue growth and viability of haploid larvae. A recent study reported that centrinone B had complicated effects on the centriole duplication process, which is highly dose-sensitive (Tkach et al., 2022 Elife, PMID: 35758262). While it blocks centriole duplication at sufficiently high concentrations for blocking plk4 activities, it paradoxically causes centriole amplification at suboptimal conditions, presumably though over-stabilizing plk4 by blocking its autophosphorylation-dependent degradation (while its centriole duplicating function remains active). Since a previous study showed that centrinone B is also effective in zebrafish embryos (Rathbun et al., 2020 Current Biology, PMID: 32916112), we try to find optimal centrinone B treatment condition that potentially restores tissue growth or viability of haploid embryos. If we find such a rescuing condition, we will address the principle of the rescuing effects by investigating the possession of centrioles in mitotic cells in these haploid larvae.

      *- Some experiments are not, or arguably, quantified/statistically analyzed. *

      o Figure 2, Active caspase level. Larvae are sorted into three categories, and no statistical test is performed on the obtained contingency table. A Fisher'*s exact test here, or much better, the active caspase-3 levels should be quantified, instead of sorting larvae into categories. *

      Response 1-3

      We apologize that we showed only "zoomed-out" images of the immunostained embryos in the original figures (Fig. 2A), which precluded a clear presentation of the haploidy-associated aggravation of apoptosis and mitotic arrest. We could clearly distinguish cleaved caspase-3- and pH3-positive cells from non-specific background staining with an enlarged view of the same immunostaining data. Therefore, to quantitatively evaluate the extent of the haploidy-linked apoptosis and mitotic arrest, we compared the density of these cells within the right midbrain. This new quantification demonstrated a statistically significant increase in cleaved caspase-3- or pH3-positive cells in haploids compared to diploids.

      In the revised manuscript, we added the enlarged views of cleaved-caspase and pH3 immunostaining (Fig. 2B) and new quantifications with statistical analyses (Fig. 2C). Accompanying these revisions, we omitted the categorization of the severeness of the apoptosis, which was pointed out to be subjective in the reviewer#2's comment (see Response 2-3). We rewrote the corresponding section of the manuscript to explain the new quantitative analyses (line 143, page 7).

      o Same comment for 3E-F. Larvae are scored as Scarce, Mild or Severe. Looking at Fig S3A, I see one mild p53MO embryo, but the two others are not that different from 'severe' cases, which would completely change the contingency table. Again, a proper quantification would be better.

      Response 1-4

      We also quantified the frequency of cleaved caspase-3-positive cells in control and p53MO larvae (original Fig. 3E and F) as described in Response 1-3. While conducting the cell counting with enlarged images, we realized that staining quality within the inner larval layers of morphants was relatively poor in these experiments. This problem precluded us from counting cleaved caspase-3-positive cells within the inner larval layers. Therefore, we tentatively quantified only the surface larval layers of these morphants and found that cleaved caspase-3-positive cells were significantly reduced in haploids upon depletion of p53. We currently show this quantification in Fig. 3G of the revised manuscript. While this quantification confirmed the trend of p53MO-dependent decrease in apoptosis, we think it more appropriate to newly conduct the same experiment with better quality of the staining to apply the same standard of quantification for Fig. 3 as Fig. 2.


      __[Experimental plan] __For the reason described above, we propose to re-conduct immunostaining of cleaved caspase-3 in control and p53MO-injected haploid larvae to improve the visibility of the inner layer of the larvae for better quality of the quantitation.

      Meanwhile, we revised Fig. 3 by adding an enlarged view of immunostaining in Fig. 3F and omitting the subjective categorization shown in the original Fig. 3F and S3A. We plan to replace these data with new images and quantification to be obtained during the next revision. We also rewrote the main text to update these changes (line 166, page 8).

      *o Figure 4D-E, no stats. *

      Response 1-5

      We conducted the ANOVA followed by the post-hoc Tukey test for new Fig. 4D and the Fisher exact test with Benjamini-Hochberg multiple testing correction for new Fig. 4E. Please note that statistical analyses were conducted after adding the data from original Fig. 6B-C following the reviewer's suggestion (see also Response 1-6).

      *o Figure 6, Reversine treated haploid should be compared to haploid embryos (on the graphs and statistically). If no specific controls have been quantified for this experiment, data could be reused from previous figures, provided this is stated. *

      Response 1-6

      The live imaging data shown in original Fig. 4C-E and Fig. 6A-C were obtained within the same experimental series conducted in parallel at the same period under the same experimental condition. In the original manuscript, we separated them into two different figures according to the logical flow. However, following the reviewers' comments (see also Response 2-1), we realized it more appropriate to show them as a single figure panel as in the original experimental design. Therefore, we moved the reversine-treated haploid data from the original Fig. 6A-C to Fig. 4C-E to facilitate direct comparison among conditions with statistical analyses (see also Response 1-5).

      *o Rescue by p53MO and Reversine, it would be nice to also include diploid measurements on the graphs, so that the reader can appreciate the extent of the rescue. *

      Response 1-7

      Following the reviewer's comment, we added control MO-injected or DMSO-treated diploid larval data in the corresponding graphs in Fig. 3I and 6G, respectively. Please refer to Response 2-6 for further discussion on the extent of the rescue.

      Minor comments:

      *- Lines 221-223, authors claim that centriole loss and spindle monopolarization commence earlier in the eyes and brain than in skin. I am note sure I see this in Fig. S5. It could as well be that the defect is less pronounced in skin. *

      Response 1-8

      We rewrote the manuscript to include the possible interpretation suggested by the reviewer on the result (line 225, page 11).

      • *

      - Lines 227-229, authors claim that 'The developmental stage when haploid larvae suffered the gradual aggravation of centrosome loss corresponded to the stage when larval cell size gradually decreased through successive cell divisions'. I did not get that. Doesn'*t cell size decrease since the first division? Fig 5D shows that cell size decreases all along development. *

      Response 1-9

      We agree that the original sentence implies, against our intention, that cell size does not decrease before the developmental stage mentioned here. To correct this problem, we rewrote the corresponding part of Discussion as below (line 230, page 11):

      "Since the first division, embryonic cell size continuously reduces through successive cell divisions during early development (Menon et al., 2020). Cell size reduction continued at the developmental stage when we observed the gradual aggravation of the centrosome loss in haploid larvae."

      *- Some correlations are used to draw conclusions: *

      o Line 301-303. "The correlation between centrosome loss and spindle monopolarization indicates that haploid larval cells fail to form bipolar spindle because of the haploidy-linked centrosome loss."*. As stated by the authors, this is a correlation only. I agree it points in this direction. *

      Response 1-10

      We added a note to the corresponding sentence to draw readers' attention to the discussion on the limitation of the study with respect to the lack of centrosome rescue experiment (line 332, page 16).

      O Line 305-308. "*Interestingly, centrosome loss occurred almost exclusively in haploid cells whose size became smaller than a certain border (Fig. 5), indicating that cell size is a key determinant of centrosome number homeostasis in the haploid state." This one is more problematic. There is no causal link established between cell size and centrosome number homeostasis. It could very well be that some unidentified problem induces both a reduction in cell size and the loss of centrioles. *

      Response 1-11

      To avoid an over-speculative description, we deleted the subsentence "indicating that cell size is a key determinant of centrosome number homeostasis in the haploid state." (line 336, page 17). We also added a new sentence, "Alternatively, it is also possible that other primary causes, such as the lack of second active allele producing sufficient protein pools induced cell size reduction and centrosome loss in parallel without causality between them." to discuss the possibility raised by the reviewer (line 348, page 17), in association with another comment from the reviewer #3 (see also Response 3-3).

      • *

      *I have concerns regarding the significance of the reported findings. Haploid zebrafish embryos show numerous developmental defects (some as early as gastrulation, as previously shown by the authors, Menon 2020), and they die by 4 dpf. That they experience massive apoptosis at day 3 does not seem very surprising, and that inhibiting p53 transiently improves the phenotype is not a big surprise. *

      Response 1-12

      Many reports have revealed tissue-level developmental abnormalities in haploid embryos since the discovery of haploid lethality in vertebrates more than 100 years ago. This has stimulated speculation of underlying causes of haploid intolerance for decades. However, there have been surprisingly few descriptions of cellular abnormalities underlying these tissue defects, precluding an evidence-based understanding of the principle that limits developmental ability in haploid embryos. Our findings of the haploidy-linked p53 upregulation and mitotic defects illustrate what happens in the dying haploid embryos at a cellular level. These findings would provide an evidence-based frame of reference for understanding why vertebrates cannot develop in the haploid state and also provide clues to controlling haploidy-linked embryonic defects in future studies. We added a new section in Discussion to discuss the importance of addressing the haploidy-linked defects at a cellular level (line 276, page 14).

      *This reminds me of the non-specific effects of morpholino injection, which can be partially rescued by knocking down p53. *

      Response 1-13

      We believe the reviewer refers to the previous findings that different morpholinos generally have off-target effects activating p53-mediated apoptosis (e.g., Robu et al., 2007 PLoS Genet, PMID:17530925). However, p53 upregulation and apoptosis aggravation were also observed in uninjected haploid embryos free from morpholinos' artificial effects (Fig. 2, Fig. 3A, and B). To further address this issue, we plan to compare the frequency of cleavage caspase-3-positive cells between uninjected and control MO-injected haploids after revising the immunostaining of morphants in the original Fig. 3E-F (see Response 1-4 for details).

      *The observation of mitotic arrest and mitotic defects and the observation that haploid cells often lack a centrosome is interesting. However, I felt that the manuscript suggested that these observations were novel and could explain the haploid syndrome specifically in non-mammalian embryos, when the authors reported the same observations in human haploid cells as well as in mouse haploid embryos (Yaguchi 2018). To me, this manuscript mainly confirms that their previous observation is not mammalian specific, but at least conserved in vertebrates. *

      Response 1-14

      As we originally wrote (line 341, page 17 in the original manuscript), we think these haploidy-linked cellular defects are conserved among mammalian and non-mammalian vertebrates. To improve the clarity of our interpretation, we rewrote a corresponding part of the manuscript (line 50, page 2).

      *While I am no expert at centrosome duplication, I find the observation that haploidy leads to centrosome loss very intriguing, but have the impression that this manuscript falls short of improving our understanding of this phenomenon. *

      Response 1-15

      We express our gratitude to the reviewer for being interested in our findings. We hope the revisions made in the manuscript and the new results provided by the planned experiments will strengthen the contribution of this study to our understanding of haploidy-linked cellular defects.

      • *

      • *

      Associated to Reviewer#2's comments

      - Lack of proper controls in many experiments. For example, in the experiments where the authors treated haploids with reversine to suppress the SAC, there was no no-treatment control (Fig. 6A-C).

      Response 2-1

      We addressed the same point in__ Response 1-6__. In the original manuscript, we separately presented control and experimental conditions in the same experiment series in Fig. 4 and Fig. 6. We rejoined them in Fig. 4 as in the original experimental design. Please refer to __Response 1-6 __for further details.

      • In Fig. 6D, when a DMSO control was included, the control fish were from 3 dpf while the reversine-treated fish were from 0.5-3 dpf. This is a big flaw in experimental design, especially considering the authors were looking at mitotic index, which is hugely impacted by developmental time. *

      Response 2-2

      In this experiment, we treated haploid larvae with either DMSO or reversine from 0.5 to 3 dpf, isolated cells from the larvae at 3 dpf, and subjected them to flow cytometry. Both DMSO- and reversine-treated larval cells were from 3-dpf larvae. Therefore, this experiment does not have the problem noted by the reviewer. To improve the clarity of the description of the experimental design, we rewrote the corresponding part of the figure legend (line 646, page 34).

      - Subjective and inadequate data quantification. In the immunostaining experiments to detect caspase-3 and pH3, the authors either did not quantify at all and only showed single micrographs that might or might not be representative (for pH3), or only did very subjective and unconvincing quantification (for caspase-3). Objective measurements of fluorescence intensity could have been done, but the authors instead chose to categorize the staining into arbitrary categories with unclear standards. In example images they showed in the supplementary data, it is not obvious at all why some of the samples were classified as "mild" and others as "*severe" when their staining did not appear to be very different. *

      Response 2-3

      We apologize that we showed only "zoomed-out" images of the immunostained embryos in the original figures (Fig. 2A, 3E, and 6F), in which the distribution of individual cleaved caspase-3- or pH3-positive cells could not be clearly recognized. We added the enlarged view of identical immunostaining where these cells were clearly visualized in a countable manner (Fig. 2B, 3F, and 6D). Following the reviewer's suggestion, we newly conducted quantification by comparing the density of these cells within the right midbrain in haploids and diploids.

      This new quantification demonstrated the haploidy-linked increase in cleaved caspase-3- or pH3-positive cells and a reversine-dependent decrease in pH3-positive cells. We added these new quantifications with statistical analyses to the revised manuscript (Fig. 2C and 6E). Accompanying these revisions, we omitted the categorization of the severeness of apoptosis, which was pointed out to be subjective. We rewrote the corresponding section of the manuscript to explain the new quantitative analyses (line 143, page 7; line 260, page 12).

      While we also quantified cleaved caspase-3-positive cells in control and p53MO larvae in the original Fig. 3E, we realized that the staining quality of the inner larval layers of these morphants was relatively poor and could not apply the same standard of quantification as Fig. 2. Though we confirmed a statistically significant reduction in cleaved caspase-3-positive cells upon p53 depletion by quantified limited number of confocal sections (shown in Fig. 3G, please see also Response 1-4 for details), we decided to re-conduct this experiment for improving the staining quality to apply the same criteria of quantification for Fig 3 as Fig. 2 (Experimental plan is provided in Response 1-4).

      Please note that we also tried to evaluate the extent of apoptosis and mitotic arrest based on the fluorescence intensity of organ areas. However, background staining outside the dead cell area precluded the precise quantification.

      Additionally, the authors claimed that "*clusters of apoptotic cells" were only present in haploids but not diploids or p53 MO haploids, but they did not show any quantification. From the few example images (Fig.S3A), apoptotic clusters can be seen in p53 MO treated fish. Also, in some cases, the clusters were visible only because those fish were mounted in an incorrect orientation. For example, in Fig. S3A, control #2, that fish was visualized from its side, thus exposing areas around its eye that contained such clusters. These areas are not visible in other images where the fish were visualized from the top. *

      __Response 2-4 __

      We agree that the definition of "apoptotic clusters" was ambiguous in the original manuscript. We also agree that the visuals of the clusters could be affected by sample conditions, making them less reliable criteria for judging the severity of apoptotic upregulation in larvae. Following the reviewer's suggestion, we newly conducted apoptotic cell counting (Response 2-3), which recapitulated more reliably ploidy- or condition-dependent changes in the extent of apoptosis. Therefore, we decided to omit the description of the clusters in the new version of the manuscript.

      *- Subpar data quality. Aside from issues with qualification, the IF data was not convincing as staining appeared to be inconsistent and uneven, with potential artefacts. *

      Response 2-5

      We apologize that the zoomed-out images in the original figures did not appropriately demonstrate the specific visualization of individual apoptotic or mitotic cells. As described in Response 2-3, we added enlarged views of the immunostaining to the revised manuscript, in which these individual cells are clearly distinguished from non-specific background staining (Fig. 2B, 3F, and 6D). Because of the poorer staining of inner layers of control and p53 morphants, we plan to re-conduct immunostaining for Fig. 3 and Fig. S3 (please refer to Response 1-4 for further detail). The current version of immunostaining and quantification in these figures will be replaced in the next revision.

      - Unsupported and overstated claims. There were many overstatements. For one, in line 268, the authors claimed that "*the haploidy-linked mitotic stress with SAC activation is a primary constraint for organ growth in haploid larvae", while what they were actually showed was that reversine treatment, which suppresses the SAC, was partially rescued 2 out of the 3 growth defects they assessed, to such a small extent that the difference between haploid and haploid rescue was only Response 2-6

      Following the reviewer's comment, we added control MO-injected or DMSO-treated diploid larval data in the corresponding graphs in Fig. 3I and 6G, respectively. We newly estimated the relative extent of the recovery in Results (line 174, page 8; line 268, page 13).

      Reflecting the estimation, we rewrote the manuscript to discuss that haploidy-linked cell death or mitotic defects are a partial cause of organ growth retardation but that there could be other unaddressed cellular defects that also contribute to the growth retardation (line 305, page 15). We also discussed the possibility that incomplete resolution of cell death by p53MO or mitotic defects by reversine treatment may have limited their rescue effects on organ growth retardation (line 303, page 15). We also toned down several descriptions in our manuscript (lines 48 and 50, page 2; line 111, page 5; line 271, page 13; line 298, page 15; line 403, page 20) to achieve a more balanced interpretation on the potential contributions of cell death and mitotic defects to the formation of haploid syndrome.

      In association with this issue, we also discussed the difficulty of assuming a priori "fully-rescued" haploid larval size in this context. This is because even normally developing haploid larvae in haplodiplontic species tend to be much smaller than their diploid counterparts. We newly cited a few cases of haplodiplontic species where haploids are smaller than or the same in size as diploids (line 307, page 15).

      *With so many fundamental flaws, the data seem unreliable and the paper does not meet publishable standards. *

      Response 2-7

      We express our gratitude to the reviewer for providing important suggestions to improve the quality of analyses, data presentations, and interpretations in this study. We sincerely hope that one-by-one verifications of the points raised by the reviewer have improved the credibility of the paper and made it suitable for publication.

      *The low quality of the analysis makes the significance low. *

      *Reviewers have expertise in vertebrate embryogenesis and ploidy manipulation. *

      Response 2-8

      We hope that by addressing and solving the concerns pointed out by the reviewer, we could have clarified the significance of the study.

      Associated to Reviewer#3's comments

      *There seem to be a discrepancy between the microscopic images from Figure 2A and the quantification of pH3 positive cells using flow cytometry in Figure 4. According to the flow cytometric results the proportion of pH3 positive cells is about 3 times higher in haploid larvae compared to the control. The increase in mitotic cells in the imaging results however seems much more drastic. It would be helpful if the authors explain here. *

      Response 3-1

      Following comments provided by other reviewers (see also Response 1-2, 1-4, and__ 2-3__), we newly compared the frequency of pH3 positive cells between the immunostained haploid and diploid larvae. In this new analysis, pH3-positive cells were 6.4 times more frequent in haploids than in diploids, which is a more substantial difference than the one estimated based on the flow cytometric analysis.

      The apparent discrepancy between the immunostaining and flow cytometric quantification would arise because pH3-positive mitotic cells tended to be more localized on the surface than in the inner region of larvae. This inevitably results in higher pH3-positive cell density in immunostaining, in which only larval surface is analyzed. To discuss this point, we newly conducted pH3 immunostaining in haploid larvae made transparent using RapiClear reagent and showed a vertical section of 3-d reconstituted larval image of pH3 immunostaining in Fig. S4E. We rewrote the manuscript to add our interpretation of this issue (line 652, page 34).

      *Mitotic slippage that the authors observe to be increased in the haploid larvae to up to 5% of cells should result in an increase in the number of aneuploid cells. I am wondering why this is not recapitulated in the analyses of the DNA content in Figure S1. *

      Response 3-2

      A possible interpretation would be that the limited viability of newly formed aneuploid progenies precluded the detection of these populations in flow cytometric analyses. We discussed the possible generation of aneuploid progenies with our interpretation of their absence in the flow cytometric analyses in Discussion (line 293, page 14).

      *Discussion: *

      *I find the explanation of centrosomal loss due to depletion of centrosomal protein pools in the cytoplasm during drastic cell reduction interesting. I wonder if the reduction in size is not necessarily caused by the reduction in cells, but rather the result of the absence of a second active allele that produces centrosomal proteins? *

      Response 3-3

      We added the possible interpretation provided by the reviewer to the corresponding part of Discussion, in association with another comment from reviewer #1 (line 348, page 17; see also Response 1-11).

      Reviewer #3 (Significance (Required)):

      • *

      *Overall, I find the study interesting even to a broader audience since diploid development is a fundamental feature of most animals. The authors also manage to discuss their findings on the consequences of haploidy in this bigger context of the restricted diploid development in animals. The study is very well-written even to non-experts. *

      Response 3-4

      We express our gratitude to the reviewer for providing positive comments on the significance of our findings. We sincerely hope that one-by-one verifications of the points raised by the reviewer further improve the quality of the paper.

      I am not an expert of the literature describing previous characterizations of the consequences associated with haploid cell development in animals, which is why I cannot comment on the novelty of their study. Based on my expertise on centromeres and genome organisation I can however assess the results regarding the mitotic defects observed in haploid larvae (see comments).

      Response 3-5

      We sincerely thank the reviewer for providing constructive suggestions and critiques based on the expertise.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      RESPONSE TO REVIEWS_RC-2024-02383

      We thank all the reviewers for their comments and suggestions. Our point-by-point response is shown below, in bold.

      —----------------------------------------------------------------------------------------------------------------------------

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: the work presented by the authors detail how pharmacological inhibition of the rate limiting one carbon metabolic enzyme DHFR by the drug methotrexate increases the lifespan of yeast and worms. Furthermore, placing aged mice on dietary folate and choline restriction potentially enhanced metabolic plasticity but did not significantly increase lifespan with sex specific differences observed.

      The findings in this manuscript are very interesting and important to our understanding of the conserved mechanisms that regulate longevity through one carbon metabolism. This is especially significant in light of the current folate intake and supplementation in the adult human population. The manuscript, however, requires major revisions. Please see comments below for details.

      Major comments:

      1. The overall tone in this manuscript is colloquial and conversational in nature. A third person academic style and tone, while avoiding the use of subjective descriptive terms would improve the quality of this text. Using terms such as "appeared less diverse", "results are remarkable ...strikingly more pronounced", "possibly positive outcomes" , "appear younger...for unknown reasons", "little Uracil", "tended to be higher", "roughly proportional", "slightly higher", "as a rough readout", and many other examples from the text should not be used in a scientific manuscript. The language should be academic, scientific, precise, and non-ambiguous. A thorough revision of the manuscript with substantial changes to the language and tone is necessary prior to publication. RESPONSE: Thank you for your feedback on the manuscript's tone. We revised most of the expressions mentioned by the reviewer. We note, however, that these phrases were used along with numbers and statistics. Hence, there was no lack of specifics, and readers could quickly evaluate the conclusions. We strive for a balance between scientific rigor and readability to maintain accessibility for a diverse audience.

      In the results section, we find multiple instances where the results are interpreted and extensively discussed. This should be reserved for the discussion section. The results section should be used to simply report the findings in a detailed manner.

      RESPONSE: We appreciate the suggestion on the integration of interpretation within the Results section. Upon review, we have clarified the presentation of our findings, ensuring a more distinct separation from interpretive commentary. Brief explanations remain to aid the reader's comprehension in light of the complex data, aiming to keep the flow and coherence of the manuscript and prevent overextension of the Discussion section (already ~1,300 words long). We welcome specific suggestions for further refinement.

      The materials and methods section is severely lacking in details in some areas. For example, no details were provided regarding how the worm lifespans were conducted and previous work of collaborators were referenced instead. Important details such as worm numbers, biological and technical replicates, solid agar vs liquid culture, temperature, use of FUdR, antibiotics, transfer frequency, methods of scoring, etc... are lacking. Other details such as the preparation of the plates (Was MTX incorporated into the agar, seeded with the bacterial lawn, or liquid culture was used), storage conditions, age of the plates when lifespan started, how was the UV killing of the lawn verified etc...

      many other methods subsections lack crucial details. Please carefully review the methodology and include sufficient pertinent details.

      RESPONSE: The number of worms assayed in each case were shown in each figure, as described in the legend. We now also added all the information requested by the reviewer in the methods section. The text now reads:

      “Briefly, the assays were done on solid agar nematode growth media (NGM) plates prepared fresh before each experiment. The bacterial lawn was exposed twice to a UV dose of 120mJ/cm2 using a UVC-515 Ultraviolet Multilinker (Ultra-Lum, Inc.). Streaking these UV-exposed bacteria to fresh LB agar plates (1% w/v tryptone, 0.5% w/v yeast extract, 1% w/v sodium chloride) produced no visible colonies. Methotrexate, or the ATIC inhibitor, was first dissolved in dimethyl sulfoxide (DMSO) and then added to the media used to prepare the plates after autoclaving (the media were kept in a 50°C water bath until the plates were poured). Mock-treated control plates contained only DMSO. At the start of each experiment, a sufficient number of eggs were collected from plates without any drugs and then placed on plates containing the indicated doses of each compound tested. After hatching and progression to the adult stage, animals were transferred to new plates (marked as the start of the lifespan assay) containing the drug tested and fluorodeoxyuridine (FUDR; dissolved in water), added at 50μM to block hatching of new animals. The plates were scored at least every other day until all the worms died. If an animal responded to gentle touch, it was scored as alive, otherwise a death was recorded, and the animal was removed from the plate. Worms were transferred to fresh plates as needed (e.g., if there was evidence of microbial contamination, dryness/cracks on the agar surface, consumption of the bacterial lawn, or hatching of new animals that escaped the FUDR block). The reported lifespans were compiled from several independent experiments done over several months (9-10 months for the methotrexate experiments and 4-5 months for the ATIC inhibitor), each scored by multiple individuals (4-5 persons per experiment). No experiments were excluded from the analysis.”

      In the worms, interventions that impact germline proliferation can extend lifespan. Methotrexate is known to impact germline proliferation and can lead to toxic developmental effects and germline arrest. Was fecundity impacted by methotrexate using the dosages found to extend lifespan?

      RESPONSE: We did not score fecundity in our experiments.

      The authors stated that UV killed bacteria was used in the worm experiments but did not provide the reasoning for it. Virk had concluded that reduced bacterial pathogenicity is responsible for the lifespan extension and not the worm's OCM. How does your work agree with or refute these previous findings?

      RESPONSE: The dose of methotrexate used by Virk et al was very high, so it is difficult to directly compare it to our experiment. Nonetheless, we do not think there is any contradiction. We added the following in the text to clarify this point:

      “At higher doses (10-100μΜ), methotrexate did not extend lifespan (not shown), in agreement with (Virk et al., 2016), who treated adult animals with a very high dose of methotrexate (220μM). We also note that the bacteria used to feed the worms in our experiments were killed by ultraviolet radiation to exclude any impacts from bacterial folate metabolism, which is known to affect worm lifespan (Virk et al., 2016, 2012).”

      The authors state that AICAR (100 uM administration to the worms (no experimental details were given) increases their lifespan and concluded that this is proof that manipulation of 1C metabolism promotes longevity. There are 2 concerns here; first, AMPK activation leads to inhibition of TOR and that has been shown to promote longevity in multiple models. While we agree that a significant crosstalk between TOR and OCM exists, this experiment does not necessarily contribute to the argument that the authors are making. Second, it has been established by multiple groups that inhibition (RNAi and pharmacological) of DHFR1, TYMS1, SAMS1 and possibly other OCM enzymes leads to lifespan extension in worms. These findings provide stronger evidence that OCM regulates organismal longevity.

      RESPONSE: We acknowledged prior research on lifespan extension and do not claim our use of the ATIC inhibitor as the first evidence of 1C metabolism's impact on longevity. Rather, our findings complement existing studies from us and several other groups (including the examples mentioned by the reviewer, which we had cited) by introducing novel evidence of lifespan increase through this specific inhibitor in C. elegans. Please also note that we added a detailed description of the experiment in the Methods, as suggested in a previous comment.

      In the mouse study, the authors do not provide a rationale on why a folate and choline deficient diet was adopted as opposed to only a folate deficient diet. Additionally, we assume that the diets did not contain antibiotics (succinyl sulfathiazole) to reduce microbiome folate production since it was not mentioned. Were wire bottom cages used to eliminate coprophagy? Were there any significant differences between male and female serum folate levels that could have contributed to the endpoints. Was only a subset of samples assayed for total folate? (fig 2b shows a possible n of 6 per group?). If no antibiotics and no wire bottom cages were used, mice can maintain adequate folate levels from coprophagy without developing signs of anemia. Please discuss these details as it helps clarify the conditions used.

      RESPONSE: Excellent points, and we have now added this information (see Material and Methods):

      “We note that when designing experiments to assess the consequences of folate limitation, it is common to control both folate and choline intake to ensure that the observed effects are due to the restriction of folate (Beaudin et al., 2011) because the presence of choline can mask the effects of folate deficiency. Choline can be oxidized to betaine, which provides methyl groups for converting homocysteine to methionine, independent of the folate cycle. Choline can also be incorporated into phosphatidylcholine, a major methyl ‘sink’ in the cell, through the Kennedy pathway. Lastly, we did not use any antibiotics to interfere with the microbiome nor wire bottom cages to eliminate coprophagy. Wire bottom cages were used only in the metabolic chamber experiments.”

      Were there any significant differences between male and female serum folate levels that could have contributed to the endpoints. Was only a subset of samples assayed for total folate? (fig 2b shows a possible n of 6 per group?).

      RESPONSE: ____Regarding folate levels, no significant sex differences were observed. We assayed all the animals we had at 120 weeks of age, the euthanasia endpoint, as shown in Figure 2B. There were fewer females than males in both diets.

      There are instances in the results section where statements were made implying that there are differences observed "slightly higher", "negative association" when it is not statistically significant. There can be either statistically significant differences/correlation or not. please be precise in your wording.

      RESPONSE: We have revised the Results section to ensure that qualitative descriptions such as "slightly higher" are only used when supported by appropriate statistical evidence. We have listed____ all the relevant numbers in each case after performing thorough and robust statistical analyses. We note, however, that mentioning qualitative descriptors is not always unwarranted, as long as they are factual.

      Graying was observed less significantly in the F/C- group according to the authors. However, no quantitative assessment was made, and it is merely observational.

      RESPONSE: It is not clear how to quantify graying non-invasively. Hence, we simply took photographs.

      Inference to inhibition of mTOR was made, but mTOR protein and phosphorylation levels were not performed. The authors did perform western blotting on ribosomal S6 protein, however no assessment of the downstream mTOR targets P70S6k1 and 4EBP are shown.

      RESPONSE: This is a good suggestion.____ We added a new experiment, looking at 4EBP1 phosphorylation (see new Figure S2). The results mirror those looking at S6 phosphorylation.

      Can the change in RER in F/C- mice compared to controls be explained by the increased adiposity in these animals?

      RESPONSE: We do not know. The relationship between adiposity and respiratory exchange rate can be quite complex. The increased adiposity of male mice limited for folate may lead to higher RER, reflecting perhaps a greater reliance on carbohydrate metabolism. But this is very speculative, especially since these mice are not obese. It is unclear how the improved metabolic plasticity could be associated with adiposity for the females.

      How was the microbiome normalized between groups prior to the beginning of the experiment? (fecal slurry gavage, bedding exchange, cohabitation, none of the above?). There is no mention of this crucial step in the materials and methods section. Furthermore, additional details regarding the microbiome analysis are required (analysis pipeline, read depth, denoising, software, data processing, PCA analysis, etc...). it is not sufficient to state that Zymo performed the analysis.

      RESPONSE: We now revised the text and added a detailed description of the methods, as follows:

      “There was no microbiome normalization between groups prior to the beginning of the experiment. Mouse fecal pellets were gathered by positioning the mice on a paper towel beneath an overturned glass beaker. A minimum of three fecal pellets from each animal were transferred into cryovials using sterile forceps. The samples were preserved at -80°C and shipped to Zymo Research, where they were processed and analyzed with the ZymoBIOMICS® Shotgun Metagenomic Sequencing Service (Zymo Research, Irvine, CA).For DNA extraction, the ZymoBIOMICS®-96 MagBead DNA Kit (Zymo Research, Irvine, CA) was used according to the manufacturer’s instructions. Genomic DNA samples were profiled with shotgun metagenomic sequencing. Sequencing libraries were prepared with Illumina® DNA Library Prep Kit (Illumina, San Diego, CA) with up to 500 ng DNA input following the manufacturer’s protocol using unique dual-index 10 bp barcodes with Nextera® adapters (Illumina, San Diego, CA). All libraries were pooled in equal abundance. The final pool was quantified using qPCR and TapeStation® (Agilent Technologies, Santa Clara, CA). The final library was sequenced on the NovaSeq® (Illumina, San Diego, CA) platform. The ZymoBIOMICS® Microbial Community DNA Standard (Zymo Research, Irvine, CA) was used as a positive control for each library preparation. Negative controls (i.e. blank extraction control, blank library preparation control) were included to assess the level of bioburden carried by the wet-lab process.

      Raw sequence reads were trimmed to remove low quality fractions and adapters with Trimmomatic-0.33 (Bolger et al., 2014): quality trimming by sliding window with 6 bp window size and a quality cutoff of 20, and reads with size lower than 70 bp were removed. Antimicrobial resistance and virulence factor gene identification was performed with the DIAMOND sequence aligner (Buchfink et al., 2015). Microbial composition was profiled with Centrifuge (Kim et al., 2016) using bacterial, viral, fungal, mouse, and human genome datasets. Strain-level abundance information was extracted from the Centrifuge outputs and further analyzed to perform alpha- and beta-diversity analyses and biomarker discovery with LEfSe (Segata et al., 2011) with default settings (p > 0.05 and LDA effect size > 2).”

      What is an "easily distinguishable gut microbiome" and "appeared less diverse"?

      RESPONSE: To clarify these points, __w__e now edited as follows:

      “The different sex and diet groups had an easily distinguishable gut microbiome, occupying different areas of principal component analysis graphs (Figure 5A), based on Bray-Curtis β-diversity dissimilarity indices (Knight et al., 2018). The intestinal microbiome of male mice on the F/C- diet was not statistically less diverse (p=0.222, based on the Wilcoxon rank sum test; Figure 5 - Supplement 1).”


      a two-dimensional plot using two principal components would be more suitable for image 5A and allow for better visualization of the clustering of the groups.

      RESPONSE: We tried displaying the data on a multipanel (3 panels per group, 12 total) two-dimensional figure, but the result is more confusing. Since the sample number is small (n=6 animals per group), the 3D graphs are visually adequate and more pleasing. They are also the standard way of representing this kind of data.

      Since the authors suggest that the microbiome could be a source of 1C metabolites (including natural folate), it is important to clarify if coprophagy is involved.

      RESPONSE: We agree and have added the information as requested.

      How are inflammatory cytokines and marker levels linked to reduced anabolism and immune function in non-challenged animals?

      RESPONSE: ____We do not make any claims for such links if that is what the reviewer implied. If the intent was more towards speculation, we suspect one could imagine various situations. For instance, nutrients may be more heavily used during inflammation to support immune cell responses instead of central anabolic processes in other tissues, limiting the building blocks available for tissue growth and repair. Since we do not see major changes in inflammatory cytokines, we prefer not to speculate about possible links.

      When discussing the epigenetic analysis, the authors state "no changes in the DNA methylation from liver samples.." and "groups appear younger than expected". Please clarify these statements. Additional details are needed regarding the analysis performed and the choice of methylated loci and methods. Please reference the epigenetic clock or model that was used and if was developed for the same strain and sub-strain of mice. Is it using a modified "Hovarth" mouse DNA age epigenetic clock? If so, provide the necessary details and a possible explanation for the discrepancy other than "unknown reasons"

      __RESPONSE: ____The assay is based on the "Hovarth" mouse DNA age epigenetic clock, for the strain we used (C57BL/6). We have now added a detailed description, which we received from the company, as follows (see Materials and Methods): __

      "Liver samples (~15mg) collected at euthanasia were placed in 0.75mL of 1X DNA/RNA Shield™ solution (Zymo Research, Irvine, CA), shipped to Zymo Research, and processed with DNAge® Service according to their established protocols. Briefly, after DNA extraction, the EZ DNA Methylation-Lightning Kit (Zymo Research, Irvine, CA) following the standard protocol was used for bisulfite conversion. Samples were enriched specifically for the sequencing of >1000 age-associated gene loci using Simplified Whole-panel Amplification Reaction Method (SWARM®), where specific CpGs are sequenced at minimum 1000X coverage. Sequencing was run on an Illumina NovaSeq instrument. Sequences were identified by Illumina base calling software then aligned to the reference genome using Bismark. Methylation levels for each cytosine were calculated by dividing the number of reads reporting a "c" by the number of reads reporting a "C" or "T". The percentage of methylation for these specific sequences were used to assess DNA age according to Zymo Research's proprietary DNAge® predictor which had been established using elastic net regression to determine the DNAge®."

      As for a possible explanation for the discrepancy, since all our "groups appear younger than expected," unfortunately, other than "unknown reasons," we have none to offer. Nonetheless, the critical point for this study is that we saw no diet effects, regardless of where the company's assay draws the baseline.

      Regarding Uracil misincorporation, the liver contains significant stores of folate as it is the main hub for several critical OCM reactions (Phospholipid methylation is a major one). Earlier studies used antibiotics with or without coprophagy prevention measures to induce a state of folate depletion to induce uracil incorporation in various tissues of rodent models. There is some controversy whether dietary folic acid restriction/methyl donor restriction alone will lead to uracil misincorporation when there is no apparent depletion or anemia. Please discuss your specific experimental procedures and how it agrees or disagrees with the published literature.

      __RESPONSE: We have now added the experimental details, as suggested in a previous comment. Since we do not see uracil misincorporation, we prefer not to comment on the published literature for possible links between misincorporation and anemia. __

      The section discussing RPS6 needs to be rewritten and it is difficult to understand.

      RESPONSE: We revised the text, which now reads:

      “____Immunoblot analysis of liver tissue samples gathered at the time of euthanasia revealed variability in the detected values across individual mice. When examining the male mice, we observed that, on average, those fed the F/C- diet had approximately half the amount of phosphorylated RPS6 (P-RPS6) compared to those on the F/C+ diet. However, due to high variability in the measured values, the overall differences in P-RPS6 levels between the two dietary groups did not reach statistical significance (Figure 7 - Supplement 1; p>0.05, based on the Wilcoxon rank sum test).”

      Furthermore, as stated previously, considering phosphorylation of mTOR and its downstream targets 4EBP and S6K1 will give a clear indication of proliferative signaling.

      RESPONSE:____ As we mentioned above, we have now added the suggested 4EBP experiment (see new Figure S2).

      Additionally, these pathways are impacted by feeding status, diurnal cycles, and sex. Were these factors controlled prior to sacrifice? Were the animals sacrificed at the same time? In a fed or unfed state?

      RESPONSE: The animals were sacrificed at the same time, with no feeding limitations.

      The western blots provided in supplementary files show uneven protein loading across lanes (ponceau stain). No loading control is shown such as B-actin. A separate blot is used for total and phosphorylated proteins as opposed to gently stripping the membrane of the phosphorylated bolt and re-incubating with the antibody for total. While normalizing phosphorylated to total protein levels will eliminate some of the variability in the author's method. The uneven loading may introduce errors in the calculated ratios.

      RESPONSE: The uneven loading across mouse samples is inconsequential. We report the ratio of phospho-RPS6 to the total amount of RPS6 ____within____ each mouse sample. These ratios were then compared among the different animals and diet groups. We also note that stripping could introduce other artifacts if it is not uniform across all the blot areas.

      While the authors referenced older studies utilizing low dose methotrexate on rodents and provided a composite lifespan based on these findings, why was dietary folate and choline restriction used instead of a low dose methotrexate in mice in the current study? Please provide a rationale for this approach.

      __RESPONSE: First, in the context of current folate fortification policies, we reasoned that testing dietary folate limitation late in life would be more informative. Second, three of us (M.P., B.K.K., and M.K.) proposed to the Interventions Testing Program at the National Institutes of Health to test whether low-dose methotrexate extends lifespan in mice. The proposal was accepted, and the study is ongoing (the ITP decided to test methotrexate at 0.2ppm, starting at 14 months of age; _https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/supported-interventions_). __

      Minor comments:

      1. While the authors make compelling arguments that lower folate intake later in life may promote healthy aging, an important consideration in the human population that a considerable percentage of older individuals may be consuming an excessive amount of folate due the combination of fortification and voluntary supplementation. An alternate hypothesis that could apply to humans and lab models is that the existing levels of exposure to folate/folic acid may be accelerating the aging process and promoting disease in later life. __RESPONSE: Perhaps, but as we describe in the text (2nd paragraph in the introduction): __

      “...analyses ‘did not identify specific risks from existing mandatory folic acid fortification’ in the general population (Field and Stover, 2018). This conclusion neither refutes nor contradicts the idea that a moderate decrease in folic acid intake among older adults may improve healthspan. Merely because high folic acid intake does not harm the health of older adults does not negate the possibility that a lower folic acid intake might enhance health.”

      The common C57BL/6j is being referred to as the "long lived strain". Is this relative to mice in wild conditions? There are many transgenic C57bl/6 strains that live considerably longer. Please clarify if this is meant to describe the aged mice used in the experimental process.

      RESPONSE: ____This was from a comprehensive comparison of many different inbred strains. We apologize for omitting the citation, which we have now added____ (Yuan et al, 2009).

      While the authors state early in the manuscript that longevity was not a measured outcome in the mouse study, the manuscript contains statements discussing animal survival in the results and survival curves (figure 2). This gives the impression that the study was planned as a survival analysis initially and since no difference was observed between the experimental groups during the earlier stages, the secondary endpoints of health span analysis were adopted. Either approach does not detract from the significance of the study's findings. Further clarity on the approach would be beneficial to the readers.

      RESPONSE: The study was designed, and the Animal Use Protocol was institutionally approved for healthspan, not lifespan. The number of animals we used did not have sufficient power to detect lifespan differences. Note that, at least for males, very few animals had died by 120 weeks, our approved euthanasia endpoint. However, it was important to report that folate limitation did not adversely affect overall survival during the analysis time frame.

      For yeast culture conditions, what are the folate sources and content? Is there added folic acid similar to cell culture conditions where supraphysiological concentrations are used in standard mediums (RPMI and DMEM).

      RESPONSE: The yeast media we used ____were undefined (YPD, see Materials and Methods). The source of folate in this media is “yeast extract,” which is generally considered to contain very high amounts of folate (it was used decades ago to treat anemia and folate deficiency in pregnant women). Note also that, unlike animals, yeast can synthesize folate.

      In the metabolism section, the authors make statements such as "the differences were minimal" , "probably were due..", "minimal effects", "apparent increase", "tended to be", "little uracil" etc.. please refrain from using subjective language and use precise scientific terms.

      RESPONSE: Please see our earlier response to this comment.

      Figure 2-c, there is a typo, Weeks not months

      RESPONSE: Corrected. Thank you!

      ** Referees cross-commenting**

      while we generally agree with the other reviewer's concerns, we find that reviewer 3 rejection of the authors conclusion without considering the evidence presented in the context of what is currently known in the field potentially limiting. Multiple groups have shown that manipulation of OCM enzymes (DHFR, TYMS, SAMS) can extend lifespan in worms. the recent report Antebi's group (Annibal et al. Nature Com, 2021) provides strong evidence that OCM is central to longevity regulation in worms and mice and that folate intake can interact with and modulate organismal longevity. while this manuscript findings are not conclusive, I think it is premature to dismiss it completely. perhaps the alternative is to discuss the limitations of this approach and interpret the results (or the lack of significant differences) in order to help guide future research into this important subject. generalizing rodent results to human is always going to be a limiting factor in this type of work. Mice have significantly higher circulating folate. additionally, DHFR activity (the rate limiting enzyme in folate OCM) in rodents can be up to 100 times higher than its human equivalent. another consideration is that mice, similar to other rodents, engage in coprophagy, thereby recycling and supplementing bacterially produced folate in the absence of antibiotics in the diet. Therefore, mice placed of dietary folate restriction in the absence of antibiotics do not develop signs of anemia or deficiency. Therefore, it could be argued that there is no loss of nutrients in mice in this scenario and that supplementation at the arbitrarily recommended level of synthetic folic acid (2mg/kg day) or higher could impact health and aging. Similarly , in humans excess folate intake has been controversially associated with a number of deleterious health effects. It is important not to dismiss these reports and encourage further research into this subject that impacts a significant percentage of the human population due to the widespread use of supplements.

      RESPONSE: We thank the reviewers for their evaluation of the work we presented. We have also added the following in the discussion, expanding the limitations of the study:

      “Since mice engage in coprophagy, microbiome contributions to folate metabolism are bound to be substantial in this species. There are also significant differences in folate status between mice and people. For example, people have lower levels (~10-15 ng/mL) of serum folate than mice (Bailey et al., 2015), and the activity of DHFR, an enzyme essential for maintaining tetrahydrofolate pools -the folate form used in 1C reactions, maybe only 2% of that in rodents (Bailey and Ayling, 2009). Hence, mice are likely more refractory to a low folate dietary intake.”

      Reviewer #1 (Significance (Required)):

      Significance:

      A major strength of this study is that the authors show that manipulation of OCM either through pharmacological inhibition or dietary restriction can impact organismal longevity in a conserved manner across species from yeast to worms and mammals. These findings provide compelling evidence that folate intake and metabolism in humans should be rigorously researched as potential regulator of aging. These findings complement and agree with a recent report by Antebi's group (Annibal et al. Nature Com, 2021) highlighting that long-lived worm and mice strains exhibit similar metabolic regulation of one carbon metabolism. In the same report low levels of folate supplementation partially or completely abrogated the lifespan extension in some models. This study provides additional evidence that restricting OCM through drugs or dietary restriction can significantly impact healthspan and lifespan. Additionally, it raises the question whether excessive folate intake in aged adults may have potentially deleterious effects on health and longevity. The limitations of this study can be seen in the overall lack of significant impact of the dietary intervention on the health metrics that were measured in mice. The study does not provide strong evidence that restricting folate and choline intake will produce favorable effects on health. Similarly, no significant impact on mice lifespan was observed based on the partial lifespan analysis. Further clarity is needed regarding the experimental procedures and methods used. The study, nonetheless, is an important step towards investigating the role of folate and OCM in regulating mammalian healthspan and lifespan. Future studies can expand on these findings and investigate whether OCM interventions that are started in early life can produce significant and measurable effects on longevity and health in mammals. The findings here provide a conceptual and incremental advance in our understanding of these complex interactions.

      These findings are important to the research communities especially in the areas of longevity, metabolism, and nutrition.

      RESPONSE: We appreciate the recognition of our work's significance in furthering understanding of longevity, metabolism, and nutrition. We would also like to stress that this study is not an incremental advance. We believe our study's focus on dietary folate limitation ____in aged mice____ represents a novel and more radical contribution, considering the lack of prior research in this specific context, underscoring the distinctiveness and importance of our findings.

      —---------------------------------------------------------------------------------------------------------------

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: In this manuscript they investigate whether disruption of the folate cycle can slow ageing/improve health in yeast, worms and mice. There are a few experiments in yeast and C. elegans but the rest is a meta analysis of some old data on folate-deprived mice and their own study of mice on a diet with and without folic acid and choline. The find that various interventions of the folate cycle extend lifespan in yeast and worms, that the old study suggest mice live longer without folic acid supplementation and that there is no change to healthspan with mice without folic acid and choline in the diet late in life and that these mice show some positive benefits. Analysis of the microbiome and the transcriptomics suggest small changes to the microbiota and changes in gene expression. Overall the authors conclude that biosynthetic processes have been inhibited without negative effects on healthspan.

      Major comments

      1. The two worm lifespan experiments in Fig 1 show very different controls despite the methods stating that the conditions were the same. Controls can vary from one experiment to another but the difference is striking. It would be good to have supplementary data about the number of repeats and other data about these experiments. RESPONSE: We also noted the difference. However, we believe our conclusions are valid and robust because we used only experiment-matched controls for each comparison. We now describe in detail how the experiments were done (see revised Materials and Methods). Lastly, the two compounds were tested years apart from different individuals, and the different lifespans of the controls could arise from differences in the media batches, temperature control, etc.

      The diet lack folic acid and choline yet the conclusions are only about folate. The choline aspect of the diet needs to be acknowledged as a potential factor.

      RESPONSE: As we mentioned above, we have now added this information (see Material and Methods):

      “We note that when designing experiments to assess the consequences of folate limitation, it is common to control both folate and choline intake to ensure that the observed effects are due to the restriction of folate (Beaudin et al., 2011) because the presence of choline can mask the effects of folate deficiency. Choline can be oxidized to betaine, which provides methyl groups for converting homocysteine to methionine, independent of the folate cycle. Choline can also be incorporated into phosphatidylcholine, a major methyl ‘sink’ in the cell, through the Kennedy pathway. Lastly, we did not use any antibiotics to interfere with the microbiome nor wire bottom cages to eliminate coprophagy. Wire bottom cages were used only in the metabolic chamber experiments.”

      The authors argue that the effects on the mice are not mediated effects on the diet by the microbiome because there is not a statistical effect on diversity. However they do show a clear difference at the metagenomic level that fits with a metabolic difference. It also ignores work in C. elegans showing that inhibition of bacterial folate synthesis increases lifespan, not by decreasing folate supply but because lowered bacterial folate prevents an age-accelerating activity in the bacteria (Virk et al 2016). It has also been shown that a breakdown product of folic acid can be taken up by bacteria and influence ageing (Maynard et al 2018). I do not think the evidence is strong enough to discounted that the changes seen in the mice are not mediated by microbes.

      RESPONSE: We do not state that “changes seen in the mice are not mediated by microbes”. On the contrary, we agree with the reviewer that the microbiome likely contributes significantly, and we hope this is conveyed in the text. We also agree with the references the reviewer pointed out, which we cite (see also our response to point#5 of reviewer 1).

      Minor comments

      1. It had been shown a long time ago that sams-1 mutants in C. elegans extend lifespan. MTX is likely to influence SAMS levels. This point needs to mentioned. RESPONSE: Thank you. We added the reference.

      Page - 6 "folate accelerates worm aging". This statement is not correct and is not what Virk et al 2016 suggests.

      RESPONSE: We revised it to the following: “____It has been reported that treating worms with high levels of methotrexate (220μΜ) at the adult stage did not extend their lifespan ____(Virk et al., 2016)____”.

      Page 7. "at 100μM, a dose similar to the one used in mice with metabolic syndrome (Asby et al., 2015)." It's not valid to compare the concentration of a drug in the media in a C. elegans experiment to a dose given to mice.

      RESPONSE: We appreciate the reviewer's point on comparing drug dosages across species. The intention was to provide a reference point for the concentration used rather than suggesting a direct equivalence with outcomes. We recognize the complexities of cross-species dosage comparisons and have amended the text to clarify that the mention of dosage is for contextual purposes only.

      ** Referees cross-commenting**

      I would like to add that it is important to consider whether there are in fact negative effects of folic acid given in later life and this is one of the only studies that addresses this question in a mammalian model, and thus needs to be reported, once the issues raised have been addressed.

      __RESPONSE: As we mentioned in a comment from reviewer 1 and describe in the text (2nd paragraph in the introduction): __

      “...analyses ‘did not identify specific risks from existing mandatory folic acid fortification’ in the general population (Field and Stover, 2018). This conclusion neither refutes nor contradicts the idea that a moderate decrease in folic acid intake among older adults may improve healthspan. Merely because high folic acid intake does not harm the health of older adults does not negate the possibility that a lower folic acid intake might enhance health.”

      Reviewer #2 (Significance (Required)):

      The main strength of this manuscript is that it examines the effect of mice given a folate and choline deficient diet late in life and finds mostly positive effects. This finding challenges the dogma that folate

      —--------------------------------------------------------------------------------------------------

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Blank/Polymenis and colleagues explore how reduced folate metabolism impacts aging. While folate supplementation is known to benefit the development and health of young people, little is known about the impact of this substrate at advanced ages. The paper consists of two parts: 1) blocking folate metabolism in yeast and C. elegans while measuring lifespan (reproductive or age of death); 2) measuring a vast array of traits in mice where folate (and choline) is removed from the diet starting at age 1 year. The second approach is most central to the paper's theme, and the authors conclude their 'data raise the exciting possibility that ... reduced folate intake later in life might be beneficial." However, I do accept this conclusion. Instead, the overwhelming fact is that there were no changes in any phenotype due to the absence of F/C in the older animals. Loss of this nutrient is neutral, although perhaps bad for the kidney. In my view, the authors misinterpret their very basic results: loss of dietary folate has no impact on aged mice (one strain, at that). And there is no way to generalize this simple conclusion to humans.

      RESPONSE: ____We respectfully disagree with the reviewer's assessment of our study's conclusions and its significance. With the primary focus on evaluating the effects of reduced folate intake in aged mice, we explored a comprehensive range of healthspan markers and molecular analyses. Contrary to the reviewer's assertion, our data demonstrate significant outcomes such as altered body weight and metabolic parameters in mice subjected to folate restriction, along with insights into molecular changes indicative of lower anabolism.

      The reviewer's interpretation that folate limitation has no observable impact on aged mice overlooks the nuanced findings presented in our study. While acknowledging the neutral effects observed in some phenotypes, we contend that our results collectively contribute to a deeper understanding of the implications of late-life folate restriction. It is unwarranted to dismiss these findings.

      Generalizing findings from model systems to humans is indeed complex, as noted by the reviewer. However, our study, alongside existing literature, provides valuable insights that warrant consideration and further exploration. We stand by the rigor of our methodology, the diversity of data presented, and the significance of our results in enhancing knowledge on the impact of folate metabolism in aging models.

      There are other issues throughout the work that need to be addressed but given weakness on its key argument, I will not elaborate these points.

      __RESPONSE: Since the reviewer offered no specifics on “other issues,” we cannot respond. We hope, however, that we have addressed them in our response to the other reviewers’ comments. __

      Reviewer #3 (Significance (Required)):

      Blank/Polymenis and colleagues explore how reduced folate metabolism impacts aging. While folate supplementation is known to benefit the development and health of young people, little is known about the impact of this substrate at advanced ages.

      RESPONSE: ____We concur with the reviewer's observation regarding the knowledge gap surrounding the impact of reduced folate metabolism on aging, particularly in advanced stages of life, which ____is why our study significantly contributes to the field. As we mentioned above, not only do we report that some healthspan metrics were improved in folate-limited animals (e.g., body weight, improved metabolic plasticity), but our study also offers for the first time a comprehensive biomarker analysis of folate limitation late in life (e.g., metabolite and mRNAs changes associated with lower anabolism, lower IGF1 levels in females). ____This original contribution enhances our understanding of the complex interplay between folate metabolism and aging.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: the work presented by the authors detail how pharmacological inhibition of the rate limiting one carbon metabolic enzyme DHFR by the drug methotrexate increases the lifespan of yeast and worms. Furthermore, placing aged mice on dietary folate and choline restriction potentially enhanced metabolic plasticity but did not significantly increase lifespan with sex specific differences observed. The findings in this manuscript are very interesting and important to our understanding of the conserved mechanisms that regulate longevity through one carbon metabolism. This is especially significant in light of the current folate intake and supplementation in the adult human population. The manuscript, however, requires major revisions. Please see comments below for details.

      Major comments:

      1. The overall tone in this manuscript is colloquial and conversational in nature. A third person academic style and tone, while avoiding the use of subjective descriptive terms would improve the quality of this text. Using terms such as "appeared less diverse", "results are remarkable ...strikingly more pronounced", "possibly positive outcomes" , "appear younger...for unknown reasons", "little Uracil", "tended to be higher", "roughly proportional", "slightly higher", "as a rough readout", and many other examples from the text should not be used in a scientific manuscript. The language should be academic, scientific, precise, and non-ambiguous. A thorough revision of the manuscript with substantial changes to the language and tone is necessary prior to publication.
      2. In the results section, we find multiple instances where the results are interpreted and extensively discussed. This should be reserved for the discussion section. The results section should be used to simply report the findings in a detailed manner.
      3. The materials and methods section is severely lacking in details in some areas. For example, no details were provided regarding how the worm lifespans were conducted and previous work of collaborators were referenced instead. Important details such as worm numbers, biological and technical replicates, solid agar vs liquid culture, temperature, use of FUdR, antibiotics, transfer frequency, methods of scoring, etc... are lacking. Other details such as the preparation of the plates (Was MTX incorporated into the agar, seeded with the bacterial lawn, or liquid culture was used), storage conditions, age of the plates when lifespan started, how was the UV killing of the lawn verified etc... many other methods subsections lack crucial details. Please carefully review the methodology and include sufficient pertinent details.
      4. In the worms, interventions that impact germline proliferation can extend lifespan. Methotrexate is known to impact germline proliferation and can lead to toxic developmental effects and germline arrest. Was fecundity impacted by methotrexate using the dosages found to extend lifespan?
      5. The authors stated that UV killed bacteria was used in the worm experiments but did not provide the reasoning for it. Virk had concluded that reduced bacterial pathogenicity is responsible for the lifespan extension and not the worm's OCM. How does your work agree with or refute these previous findings?
      6. The authors state that AICAR (100 uM administration to the worms (no experimental details were given) increases their lifespan and concluded that this is proof that manipulation of 1C metabolism promotes longevity. There are 2 concerns here; first, AMPK activation leads to inhibition of TOR and that has been shown to promote longevity in multiple models. While we agree that a significant crosstalk between TOR and OCM exists, this experiment does not necessarily contribute to the argument that the authors are making. Second, it has been established by multiple groups that inhibition (RNAi and pharmacological) of DHFR1, TYMS1, SAMS1 and possibly other OCM enzymes leads to lifespan extension in worms. These findings provide stronger evidence that OCM regulates organismal longevity.
      7. In the mouse study, the authors do not provide a rationale on why a folate and choline deficient diet was adopted as opposed to only a folate deficient diet. Additionally, we assume that the diets did not contain antibiotics (succinyl sulfathiazole) to reduce microbiome folate production since it was not mentioned. Where wire bottom cages used to eliminate coprophagy? Were there any significant differences between male and female serum folate levels that could have contributed to the endpoints. Was only a subset of samples assayed for total folate? (fig 2b shows a possible n of 6 per group?). If no antibiotics and no wire bottom cages were used, mice can maintain adequate folate levels from coprophagy without developing signs of anemia. Please discuss these details as it helps clarify the conditions used.
      8. There are instances in the results section where statements were made implying that there are differences observed "slightly higher", "negative association" when it is not statistically significant. There can be either statistically significant differences/correlation or not. please be precise in your wording.
      9. Graying was observed less significantly in the F/C- group according to the authors. However, no quantitative assessment was made, and it is merely observational. Inference to inhibition of mTOR was made, but mTOR protein and phosphorylation levels were not performed. The authors did perform western blotting on ribosomal S6 protein, however no assessment of the downstream mTOR targets P70S6k1 and 4EBP are shown.
      10. Can the change in RER in F/C- mice compared to controls be explained by the increased adiposity in these animals?
      11. How was the microbiome normalized between groups prior to the beginning of the experiment? (fecal slurry gavage, bedding exchange, cohabitation, none of the above?). There is no mention of this crucial step in the materials and methods section. Furthermore, additional details regarding the microbiome analysis are required (analysis pipeline, read depth, denoising, software, data processing, PCA analysis, etc...). it is not sufficient to state that Zymo performed the analysis. What is an "easily distinguishable gut microbiome" and "appeared less diverse"? a two-dimensional plot using two principal components would be more suitable for image 5A and allow for better visualization of the clustering of the groups. Since the authors suggest that the microbiome could be a source of 1C metabolites (including natural folate), it is important to clarify if coprophagy is involved.
      12. How are inflammatory cytokines and marker levels linked to reduced anabolism and immune function in non-challenged animals?
      13. When discussing the epigenetic analysis, the authors state "no changes in the DNA methylation from liver samples.." and "groups appear younger than expected". Please clarify these statements. Additional details are needed regarding the analysis performed and the choice of methylated loci and methods. Please reference the epigenetic clock or model that was used and if was developed for the same strain and sub-strain of mice. Is it using a modified "Hovarth" mouse DNA age epigenetic clock? If so, provide the necessary details and a possible explanation for the discrepancy other than "unknown reasons"
      14. Regarding Uracil misincorporation, the liver contains significant stores of folate as it is the main hub for several critical OCM reactions (Phospholipid methylation is a major one). Earlier studies used antibiotics with or without coprophagy prevention measures to induce a state of folate depletion to induce uracil incorporation in various tissues of rodent models. Theres is some controversy whether dietary folic acid restriction/methyl donor restriction alone will lead to uracil misincorporation when there is no apparent depletion or anemia. Please discuss your specific experimental procedures and how it agrees or disagrees with the published literature.
      15. The section discussing RPS6 needs to be rewritten and it is difficult to understand. Furthermore, as stated previously, considering phosphorylation of mTOR and its downstream targets 4EBP and S6K1 will give a clear indication of proliferative signaling. Additionally, these pathways are impacted by feeding status, diurnal cycles, and sex. Were these factors controlled prior to sacrifice? Where the animals sacrificed at the same time? In a fed or unfed state?
      16. The western blots provided in supplementary files show uneven protein loading across lanes (ponceau stain). No loading control is shown such as B-actin. A separate blot is used for total and phosphorylated proteins as opposed to gently stripping the membrane of the phosphorylated bolt and re-incubating with the antibody for total. While normalizing phosphorylated to total protein levels will eliminate some of the variability in the author's method. The uneven loading may introduce errors in the calculated ratios.
      17. While the authors referenced older studies utilizing low dose methotrexate on rodents and provided a composite lifespan based on these findings, why was dietary folate and choline restriction used instead of a low dose methotrexate in mice in the current study? Please provide a rationale for this approach.

      Minor comments:

      1. While the authors make compelling arguments that lower folate intake later in life may promote healthy aging, an important consideration in the human population that a considerable percentage of older individuals may be consuming an excessive amount of folate due the combination of fortification and voluntary supplementation. An alternate hypothesis that could apply to humans and lab models is that the existing levels of exposure to folate/folic acid may be accelerating the aging process and promoting disease in later life.
      2. The common C57BL/6j is being referred to as the "long lived strain". Is this relative to mice in wild conditions? There are many transgenic C57bl/6 strains that live considerably longer. Please clarify if this is meant to describe the aged mice used in the experimental process.
      3. While the authors state early in the manuscript that longevity was not a measured outcome in the mouse study, the manuscript contains statements discussing animal survival in the results and survival curves (figure 2). This gives the impression that the study was planned as a survival analysis initially and since no difference was observed between the experimental groups during the earlier stages, the secondary endpoints of health span analysis were adopted. Either approach does not detract from the significance of the study's findings. Further clarity on the approach would be beneficial to the readers.
      4. For yeast culture conditions, what are the folate sources and content? Is there added folic acid similar to cell culture conditions where supraphysiological concentrations are used in standard mediums (RPMI and DMEM).
      5. In the metabolism section, the authors make statements such as "the differences were minimal" , "probably were due..", "minimal effects", "apparent increase", "tended to be", "little uracil" etc.. please refrain from using subjective language and use precise scientific terms.
      6. Figure 2-c, there is a typo, Weeks not months

      ** Referees cross-commenting**

      while we generally agree with the other reviewer's concerns, we find that reviewer 3 rejection of the authors conclusion without considering the evidence presented in the context of what is currently known in the field potentially limiting. Multiple groups have shown that manipulation of OCM enzymes (DHFR, TYMS, SAMS) can extend lifespan in worms. the recent report Antebi's group (Annibal et al. Nature Com, 2021) provides strong evidence that OCM is central to longevity regulation in worms and mice and that folate intake can interact with and modulate organismal longevity. while this manuscript findings are not conclusive, I think it is premature to dismiss it completely. perhaps the alternative is to discuss the limitations of this approach and interpret the results (or the lack of significant differences) in order to help guide future research into this important subject. generalizing rodent results to human is always going to be a limiting factor in this type of work. Mice have significantly higher circulating folate. additionally, DHFR activity (the rate limiting enzyme in folate OCM) in rodents can be up to 100 times higher than its human equivalent. another consideration is that mice, similar to other rodents, engage in coprophagy, thereby recycling and supplementing bacterially produced folate in the absence of antibiotics in the diet. Therefore, mice placed of dietary folate restriction in the absence of antibiotics do not develop signs of anemia or deficiency. Therefore, it could be argued that there is no loss of nutrients in mice in this scenario and that supplementation at the arbitrarily recommended level of synthetic folic acid (2mg/kg day) or higher could impact health and aging. Similarly , in humans excess folate intake has been controversially associated with a number of deleterious health effects. It is important not to dismiss these reports and encourage further research into this subject that impacts a significant percentage of the human population due to the widespread use of supplements.

      Significance

      A major strength of this study is that the authors show that manipulation of OCM either through pharmacological inhibition or dietary restriction can impact organismal longevity in a conserved manner across species from yeast to worms and mammals. These findings provide compelling evidence that folate intake and metabolism in humans should be rigorously researched as potential regulator of aging. These findings complement and agree with a recent report by Antebi's group (Annibal et al. Nature Com, 2021) highlighting that long-lived worm and mice strains exhibit similar metabolic regulation of one carbon metabolism. In the same report low levels of folate supplementation partially or completely abrogated the lifespan extension in some models. This study provides additional evidence that restricting OCM through drugs or dietary restriction can significantly impact healthspan and lifespan. Additionally, it raises the question whether excessive folate intake in aged adults may have potentially deleterious effects on health and longevity. The limitations of this study can be seen in the overall lack of significant impact of the dietary intervention on the health metrics that were measured in mice. The study does not provide strong evidence that restricting folate and choline intake will produce favorable effects on health. Similarly, no significant impact on mice lifespan was observed based on the partial lifespan analysis. Further clarity is needed regarding the experimental procedures and methods used. The study, nonetheless, is an important step towards investigating the role of folate and OCM in regulating mammalian healthspan and lifespan. Future studies can expand on these findings and investigate whether OCM interventions that are started in early life can produce significant and measurable effects on longevity and health in mammals. The findings here provide a conceptual and incremental advance in our understanding of these complex interactions.

      These findings are important to the research communities especially in the areas of longevity, metabolism, and nutrition.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Will the nanobody be available to the TB research community?

      Yes, we will make E11rv available upon request. Please see our materials availability statement.

      Reviewer #2 (Recommendations For The Authors):

      (1) It would be interesting to test the potential impact of residual ASB-14 contaminant on the biochemical behavior of ESAT-6-CFP10 heterodimer and ESAT-6 homodimer or tetramer and their hemolytic activity in comparison with the ones without ASB-14.

      We agree that this is an interesting line of questioning. Based on the study by Refai et al. that we cite in the text, ESAT-6 treated with nonionic detergents ASB-14 or LDAO, but not other common detergents, undergoes a conformational change that increases its cytotoxicity in cell assays, hemolytic activity, and ability to dimerize with CFP-10. What is not known at this point, is how similar the ASB-bound conformation is to anything seen physiologically.

      (2) Building on the progress in making anti-ESAT-6 nanobodies and their anti-Mtb effects in the cells, it could have been tested in human or mouse primary macrophages infected with Mtb and a mouse model of Mtb infection for its anti-Mtb efficiency.

      We thank the reviewer for this suggestion, and we agree that these would be very informative next steps for determining the therapeutic potential of anti-ESAT-6 nanobodies.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments:

      Line 133: "It is well established that Mm-induced hemolysis is ESX-1 dependent, but our results suggest that Mtb must lack one or more factors necessary for efficient hemolysis.". I would tone this down a bit, as it is also known that M. tuberculosis escapes much later than M. marinum from the phagosome, which could indicate different kinetics.

      We thank the reviewer for their insightful comments. We agree that the kinetics of Mtb and Mm infection are quite different and that this may impact the hemolysis assay. As described by Augenstreich et al. some hemolysis by Mtb is observed at 48 hours, though the method of normalization makes it impossible to determine absolute amount of hemolysis that occurred in their experiment. Our findings just show that the absolute amount of Mtb hemolysis in 2 hours is negligible, setting it apart from Mm. We have edited the wording of this statement in the manuscript to avoid any confusion.

      Line 155: "Because Mtb often exists in an acidified compartment". First of all, the reference used here does not discuss anything about Mtb, secondly, papers that do measure the acidification of Mtb-loaded phagosomes indicate that this acidification is very mild (typically to pH 6.2).

      We agree that this point should be articulated more precisely. We have added additional clarification that the pH of Mtb-containing compartments in macrophages can fall in a broad range depending on the activation state of the macrophages, and that non-activated macrophages are typically only mildly acidic. We have updated our references to better describe the current state of knowledge on this topic.

      Line 339: "Whereas most of these functions rely only on the secretion of ESAT-6 into the cytoplasm, the ability of E11rv to access Mtb suggests that this communication is likely two-way." No, not necessary, there are many processes in which ESX-1 substrates affect the macrophage. This nanobody could affect EsxA functioning only once the bacteria reach the cytoplasm. I think checking phagosomal escape in these cells is therefore crucial.

      We agree that phagosomal escape and subsequent direct secretion of ESAT-6 into the cytoplasm is a reasonable alternative hypothesis. We have added this point to our discussion, and we agree that looking directly at phagosomal escape is an important next step.

      Figure 7 is not mentioned in the text (mistake for Fig 6).

      This has been corrected.

    1. Author response:

      Public Reviews: 

      Reviewer #1 (Public Review): 

      As a reviewer for this manuscript, I recognize its significant contribution to understanding the immune response to saprophytic Leptospira exposure and its implications for leptospirosis prevention strategies. The study is well-conceived, addressing an innovative hypothesis with potentially high impact. However, to fully realize its contribution to the field, the manuscript would benefit greatly from a more detailed elucidation of immune mechanisms at play, including specific cytokine profiles, antigen specificity of the antibody responses, and long-term immunity. Additionally, expanding on the methodological details, such as immunophenotyping panels, qPCR normalization methods, and the rationale behind animal model choice, would enhance the manuscript's clarity and reproducibility. Implementing functional assays to characterize effector T-cell responses and possibly investigating the microbiota's role could offer novel insights into the protective immunity mechanisms. These revisions would not only bolster the current findings but also provide a more comprehensive understanding of the potential for saprophytic Leptospira exposure in leptospirosis vaccine development. Given these considerations, I believe that after substantial revisions, this manuscript could represent a valuable addition to the literature and potentially inform future research and vaccine strategy development in the field of infectious diseases. 

      We have been interested in understanding how both pathogenic and non-pathogenic Leptospira species affect each other on a mammalian reservoir host. With the current study we continue to elucidate the immune mechanisms engaged by pathogenic Leptospira interrogans versus non-pathogenic L. biflexa, as a follow up to our previous work (Shetty et al, 2021 PMID: 34249775, and Kundu et al 2022 PMID 35392072). We found that both species engaged partially overlapping myeloid immune cells and inflammatory signatures of infection. For example, some chemokines were increased, and macrophage and dendritic cells were engaged at 24h post inoculation with both species of Leptospira (PMID: 34249775). Thus, we questioned whether this robust innate immune response raised to eliminate an immunogenic but rather non-pathogenic bacterium, could also help restrain L. interrogans pathogenesis. In this study we show that L. biflexa pre-exposure to L. interrogans challenge mediates improved kidney homeostasis, mitigates leptospirosis severity and leads to increased shedding of L. interrogans in urine. This suggests an interspecies symbiotic commensalistic process that facilitates survival of the pathogenic species. These findings have high impact on the lives of millions of people in areas endemic for leptospirosis that are naturally exposed to non-pathogenic Leptospira species.

      We will expand on the methodological details and will update the introduction and discussion to include answers to questions raised by the three reviewers to further clarify the importance and impact of our study.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors try to achieve a method of protection against pathogenic strains using saprophytic species. It is undeniable that the saprophytic species, despite not causing the disease, activates an immune response. However, based on these results, using the saprophytic species does not significantly impact the animal's infection by a virulent species. 

      We separate concepts of exposure to a non-virulent bacterium that establishes a brief infection with engagement of an immune response (L. biflexa), from infection established by a virulent species of Leptospira that leads to pathogenesis (L. interrogans). While trying to understand how both pathogenic and non-pathogenic Leptospira species affect each other on a mammalian reservoir host, we previously found that L. biflexa induces immune responses that should affect immunity of populations naturally exposed to this spirochete. Thus, we designed this study to answer that question.

      Strengths: 

      Exposure to the saprophytic strain before the virulent strain reduces animal weight loss, reduces tissue kidney damage, and increases cellular response in mice.

      Weaknesses: 

      Even after the challenge with the saprophyte strain, kidney colonization and the release of bacteria through urine continue. Moreover, the authors need to determine the impact on survival if the experiment ends on the 15th. 

      Another novel and unexpected aspect of our findings in the single exposure experiment was that L. biflexa pre-exposure mediated a homeostatic environment in the kidney (lower ColA1, healthier renal physiology) that restrained pathogenesis of L. interrogans after challenge, which resulted in better health outcomes and increased shedding of L. interrogans in urine; in contrast, if the kidney is compromised (high ColA1) by L. interrogans (without L. biflexa pre-exposure) there was lower shedding L. interrogans in urine. Interestingly, this suggests an interspecies symbiotic commensalistic process that facilitates survival of the pathogenic species. Thus, these data suggest that higher shedding of L. interrogans in urine may not be a hallmark of increased disease, but rather it could be the opposite.

      We will include these concepts in the updated discussion.

      We don’t think that extending this experiment to d21 or d28 would add relevant data to our findings. We provide survival curves for both experiments up to d15 post infection.

      Reviewer #3 (Public Review): 

      Summary: 

      Kundu et al. investigated the effects of pre-exposure to a non-pathogenic Leptospira strain in the prevention of severe disease following subsequent infection by a pathogenic strain. They utilized a single or double exposure method to the non-pathogen prior to challenge with a pathogenic strain. They found that prior exposure to a non-pathogen prevented many of the disease manifestations of the pathogen. Bacteria, however, were able to disseminate, colonize the kidneys, and be shed in the urine. This is an important foundational work to describe a novel method of vaccination against leptospirosis. Numerous studies have attempted to use recombinant proteins to vaccinate against leptospirosis, with limited success. The authors provide a new approach that takes advantage of the homology between a non-pathogen and a pathogen to provide heterologous protection. This will provide a new direction in which we can approach creating vaccines against this re-emerging disease. 

      Strengths: 

      The major strength of this paper is that it is one of the first studies utilizing a live non-pathogenic strain of Leptospira to immunize against severe disease associated with leptospirosis. They utilize two independent experiments (a single and double vaccination) to define this strategy. This represents a very interesting and novel approach to vaccine development. This is of clear importance to the field. 

      The authors use a variety of experiments to show the protection imparted by pre-exposure to the non-pathogen. They look at disease manifestations such as death and weight loss. They define the ability of Leptospira to disseminate and colonize the kidney. They show the effects infection has on kidney architecture and a marker of fibrosis. They also begin to define the immune response in both of these exposure methods. This provides evidence of the numerous advantages this vaccination strategy may have. Thus, this study provides an important foundation for future studies utilizing this method to protect against leptospirosis. 

      Weaknesses: 

      Although they provide some evidence of the utility of pretreatment with a non-pathogen, there are some areas in which the paper needs to be clarified and expanded. 

      The authors draw their conclusions based on the data presented. However, they state the graphs only represent one of two independent experiments. Each experiment utilized 3-4 mice per group. In order to be confident in the conclusions, a power analysis needs to be done to show that there is sufficient power with 3-4 mice per group. In addition, it would be important to show both experiments in one graph which would inherently increase the power by doubling the group size, while also providing evidence that this is a reproducible phenotype between experiments. Overall, this weakens the strength of the conclusions drawn and would require additional statistical analysis or additional replicates to provide confidence in these conclusions. 

      We will take these suggestions into consideration and will address as many of these issues as possible in the revised manuscript.

      A direct comparison between single and double exposure to the non-pathogen is not able to be determined. The ages of mice infected were different between the single (8 weeks) and double (10 weeks) exposure methods, thus the phenotypes associated with LIC infection are different at these two ages. The authors state that this is expected, but do not provide a reasoning for this drastic difference in phenotypes. It is therefore difficult to compare the two exposure methods, and thus determine if one approach provides advantages over the other. An experiment directly comparing the two exposure methods while infecting mice at the same age would be of great relevance to and strengthen this work. 

      Both experiments need to be analyzed as separate but complementary as they provide different hind sights into L. interrogans pathogenesis and potential solutions to the problem. Optimal measurements of disease progression (weight loss, survival curves) require infection of mice at 8 weeks. Based on this, a new L. biflexa double exposure experiment would have to start when mice are 4 weeks old which is just after weaning, and before the mouse immune system is fully developed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is a valuable contribution to the electric fish community, and to studies of active sensing more generally, in that it provides evidence that a well-studied behavior (chirping) may serve in active sensing rather than communication. For the most part, the evidence is solid. In particular, the evidence showing increased chirping in more cluttered environments and the relationship between chirping and movement are convincing. Nevertheless, evidence to support the argument that chirps are mostly used for navigation rather than communication is incomplete.

      Thank you for the comment. In response to what seemed to be a generalized need for more evidence to support our hypothesis, we have extensively reviewed the manuscript, changed the existing figures and added new ones (3 new figures in the main text and 4 in the supplementary information section). Our edits include:

      (1) changes to the written text to remove categorical statements ruling out the possible communication function of chirps. When necessary, we have also added details on why we believe a social communication function of chirps could interfere with a role in electrolocation.

      (2) new experiments (and related figures) adding details on the behavioral correlates of chirping, on the effects of chirps on electric images (which are a way to represent current flow on the fish skin), and behavioral responses to ramp frequency playback EODs (used to test a continuous range of beat frequencies and fill the sampling gaps left by our experiments using real fish).

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors investigate the role of chirping in a species of weakly electric fish. They subject the fish to various scenarios and correlate the production of chirps with many different factors. They find major correlations between the background beat signals (continuously present during any social interactions) or some aspects of social and environmental conditions with the propensity to produce different types of chirps. By analyzing more specifically different aspects of these correlations they conclude that chirping patterns are related to navigation purposes and the need to localize the source of the beat signal (i.e. the location of the conspecific).

      We thank the Reviewer for the extensive feedback received. Hereby we respond to each of the points raised.

      We have better clarified that our intention is not to propose chirps as tools for “conspecific localization” intended as the pinpointing of its particular location. Instead, based on our observation of chirps being employed at very close ranges, we suggest that chirps may serve to assess other parameters related to “conspecific positioning” (which in a wide sense, it is still “electrolocation”), and that could be derived from the beat. These parameters might include size, relative orientation, or subtle changes in position during movement. While the experiments discussed in the manuscript do not provide a conclusive answer in this regard, we prioritize here the presentation of broader evidence for a different use of chirping. We are actively working on another manuscript that explores this aspect more in detail, but, due to space limitations, additional results had to be excluded.

      In the abstract we mention a role of chirps in the enhancement of “electrolocation”, but - as above mentioned - it is here meant only in a broad sense. In the introduction (at the very end) we propose chirps as self-directed signals (homeoactive sensing). In the result paragraph dedicated to the novel environment exploration experiment the following lines were added “Most chirps (90%) in fact are produced within a distance corresponding to 1% of the maximum field intensity (i.e. roughly 30 cm; Figure S12B), indicating that chirping occurs way below the threshold range for beat detection (i.e. roughly in the range of 60-120 cm, depending on the study; see appendix 1: Detecting beats at a distance) and likely does not represent a way to improve it”. We conclude this paragraph mentioning “This further corroborates the hypothesized role of chirps in beat processing.”. The last result paragraph (on chirping in cluttered environments) ends with “This supports the notion of chirps as self-referenced probing cues, potentially employed to optimize short-range aspects of conspecific electrolocation, such as conspecific size, orientation, and swimming direction - a hypothesis that will certainly be explored in future studies.”. In the discussion paragraph entitled “probing with chirps”, we do provide hints to possible mechanisms implied in the role of chirps in beat processing. As mentioned, we have planned to add further details in another manuscript, currently in preparation.

      The study provides a wealth of interesting observation of behavior and much of this data constitute a useful dataset to document the patterns of social interactions in these fish. Some data, in particular the high propensity to chirp in cluttered environments, raises interesting questions. Their main hypothesis is a useful addition to the debate on the function of these chirps and is worth being considered and explored further. However, the data they provide does not support strong conclusion statements arguing that these chirps are used for localization purposes and is even less convincing at rejecting previously established hypotheses on the communication purpose of the chirps.

      We intentionally framed our aims a bit provocatively to underscore that, to date, the role of chirps in social communication has been supported solely by correlative evidence. While the evidence we provide to support the role of chirps as probes is also correlative, it opens at the same time critical questions on the long assumed role of chirps in social communication. In fact, chirping is strongly dependent on fish reciprocal positioning, highly constrained by beat frequency, and patterned in such ways that - in our opinion - makes the existence of links between chirp types and internal states less likely, as suggested instead by the current view. Moreover, the use of different chirp types does not appear specific to any of the social contexts analyzed but is primarily explained by DF (beat frequency). This observation, coupled with the analysis of chirp transitions (more self-referenced than reflecting an actual exchange between subjects), leads us to hypothesize with greater confidence that chirp production may be more related to sensing the environment, rather than transmitting information about a specific behavioral state.

      Nevertheless, the Reviewer's comment is valid. We've tempered the study's conclusions by introducing the possibility of chirps serving both communication and electrolocation functions, as stated in the conclusion paragraph: "While our results do not completely dismiss the possibility of chirps serving a role in electrocommunication—probing cues could, for instance, function as proximity signals to signal presence, deter approaches, or coordinate behaviors like spawning (Henninger et al., 2018).". Nonetheless, we do emphasize that our hypothesis is more likely to apply - based on our data. We refrain from categorically excluding a communicative function for chirps (between subjects), but we hypothesize that this communication - if occurring - may contain the same type of information as the self-directed signaling implied by the “chirps as probes” idea (i.e. spatial information).

      In response to the Reviewer's feedback, we've revised the end of the introduction, removing suggestions of conclusiveness: "Finally, by recording fish in different conditions of electrical 'visibility,' we provide evidence supporting a previously neglected role of chirps: homeoactive sensing." (edit: the word “validating” has been removed to give a less “conclusive” answer to the open functional questions about chirping).

      I would suggest thoroughly revising the manuscript to provide a neutral description of the results and leaving any speculations and interpretations for the discussion where the authors should be careful to separate strongly supported hypotheses from more preliminary speculations. I detail below several instances where the argumentation and/or the analysis are flawed.

      Following to the reviewer’s comment, we have revised the manuscript to emphasize the following points: 1) the need for a revision of the current view on chirping, 2) our proposal of an alternative hypothesis based on correlations between chirping and behavior, which were previously unexplored, and 3) our acknowledgment that while we offer evidence supporting a probing role of chirps (e.g., lack of behavioral correlation, DF-dependency, stereotypy in repeated trials, modulation by clutter and distance), we do not present here conclusive evidence for chirps detecting specific details of conspecific positioning. Neither do we exclude categorically a role of chirps in social communication.

      They analyze chirp patterning and show that, most likely, a chirp by an individual is followed by a chirp in the same individual. They argue that it is rare that a chirp elicits a "response" in the other fish. Even if there are clearly stronger correlations between chirps in the same individual, they provide no statistical analysis that discards the existence of occasional "response" patterns. The fact that these are rare, and that the authors don't do an appropriate analysis of probabilities, leads to this unsupported conclusion.

      We employed cross-correlation indices, calculated and assessed with a 3 standard deviation symmetrical boundary (which is a statistically sound and strict criterion). Median values were utilized to depict trends in each group/pair. To support our findings, we added new experiments and new figures: 1) a correlation analysis between chirps and behaviors, providing more convincing evidence of how chirps are employed during "scanning" swimming activity (backward swimming); 2) a text mining approach to underscore chirp-behavior correlations, employing alternative and statistically more robust methods.

      One of the main pieces of evidence that chirps can be used to enhance conspecific localization is based on their "interference" measure. The measure is based on an analysis of "inter-peak-intervales". This in itself is a questionable choice. The nervous system encodes all parts of the stimulus, not just the peak, and disruption occurring at other phases of the beat might be as relevant. The interference will be mostly affected by the summed duration of intervals between peaks in the chirp AM. They do not explain why this varies with beat frequency. It is likely that the changes they see are simply an artifact of the simplistic measure. A clear demonstration that this measure is not adequate comes from the observation in Fig7E-H. They show that the interference value changes as the signal is weaker. This measure should be independent of the strength of the signal. The method is based on detecting peaks and quantifying the time between peaks. The only reason this measure could be affected by signal strength is if noisy recordings affect how the peak detection occurs. There is no way to argue that this phenomenon would happen the same way in the nervous system. Furthermore, they qualitatively argue that patterns of chirp production follow patterns of interference strength. No statistical demonstration is done. Even the qualitative appraisal is questionable. For example, they argue that there are relatively few chirps being produced for DFs of 60 or -60 Hz. But these are DF where they have only a very small sample size. The single pair of fish that they recorded at some of these frequencies might not have chirped by chance and a rigorous statistical analysis is necessary. Similarly, in Fig 5C they argue that the position of the chirps fall on areas of the graph where the interferences are strongest (darker blue) but this is far from obvious and, again, not proven.

      We would like to clarify that the estimation of the effects of chirps on the beat (referred to as “beat interference”) was not intended to serve as the primary evidence supporting a different use of chirping. In fact, all the experiments conducted prior to that calculation already provide substantial evidence supporting the hypothesis we have proposed. In an attempt to address the Reviewer’s concern and to avoid misleading interpretations, we moved this part now to the Supplementary Information (see now Figures S8 and S9), in agreement with the non crucial relevance of this approach. We also added the following statement to the result paragraph entitled “Chirps significantly interfere with the beat and enhance electric image contrast”: “Obviously, measuring chirp-triggered beat interferences by using an elementary outlier detection algorithm on the distribution of beat cycles does not reflect any physiological process carried out by the electrosensory system and can be therefore used only as an oversimplified estimate.”.

      Regarding the meaning of “beat interference” (as here estimated) from a perspective of brain physiology: chirp interference was calculated using the beat cycles as a reference. Beat peaks were used only to estimate beat cycle duration. Regardless of whether or not a beat peak is represented in the brain, beat cycle duration (estimated using the peaks) is the main determinant of p-unit rhythmic response to a beat. Regarding the effect of signal amplitude, this is also not very relevant. It is obvious that a chirp creates more - or less - interference based on the chirp FM and its duration (but also the sign of the DF and the magnitude of the amplitude modulation). If electroreceptor responses are entrained in waves of beat AMs and if “interference” is a measure of how such waves are scrambled, then “interference” is a measure of how chirps scramble waves of electroreceptor activity by affecting beat AMs.

      The reason why the interference fades with the signal (previous figure 7, now Figure S12) is because it is weighted on the signal strength (the signals used as carrier for chirps are recalculated based on real measurements of signal strength at different distances). Nonetheless, the Reviewer is right: mathematically speaking interference would not change at all because it is just the result of an outlier detection algorithm. This outlier detection is actually set to have a 1% threshold (percent of beat contrast).

      Regarding the comparison “chirps vs interference”, we did not make a statistical analysis because we wanted to just show a qualitative observation. Similar results can be obtained for slightly shorter or longer time windows, within certain limits of course (see added Figure S9, in the Supplementary Information). We hope that moving this analysis to the supplementary information makes it clear that this approach is not central to make our point.

      The Reviewer’s point on the DF sampling is correct, we have reconsidered the low chirping at 60Hz as potentially the result of sampling bias and edited the respective result paragraph.

      They relate the angle at which one fish produces chirps relative to the orientation of the mesh enclosing. They argue that this is related to the orientation of electric field lines by doing a qualitative comparison with a simplified estimate of field lines. To be convincing this analysis should include a quantitative comparison using the exact same body position of the two fish when the chirps are emitted.

      We agree with the Reviewer, this type of experiment would be much better suited to illustrate the correlations between chirping and reciprocal positioning in fish. What we can see is that chirping occurs at certain orientations more often than others. This could have something to do with either field geometry or with locomotion in the particular test environment we have used. As mentioned earlier, we are currently editing a second manuscript which will include the type of analysis/experiment the Reviewer is thinking of. We preferred to focus in this first study on the broader behavioral correlates of chirping. We removed the mention to the field current lines because - we agree - the argument is vague as presented here.

      They show that the very vast majority of chirps in Fig 6 occur when the fish are within a few centimeters (e.g. very large first bin in Fig6E-Type2). This is a situation when the other fish signal will be strongest and localization will be the easiest. It is hard to understand why the fish would need a mechanism to enhance localization in these conditions (this is the opposite of difficult conditions e.g. the "cluttered" environment).

      Agreed, in fact we do not explicitly propose chirps as means to improve “electrolocation” (this word is used only broadly in the abstract) but instead as probes to extract spatial information (e.g. shape, motion, orientation) from a beat source. In a broader sense, all these spatial parameters contribute to any given instance of "localization." Because we were unable to explore all these aspects in greater detail, we chose to maintain a broader perspective. If chirps contribute to a better resolution of fine spatial attributes of conspecific locations, it is reasonable to expect higher chirping rates in proximity to the target fish.

      The argumentation aimed at rejecting the well-established role of chirp in communication is weak at best. First, they ignored some existing data when they argue that there is no correlation between chirping and behavioral interactions. Particularly, Hupe and Lewis (2008) showed a clear temporal correlation between chirps and a decrease in bites during aggressive encounters. It could be argued that this is "causal evidence" (to reuse their wording) that chirps cause a decrease in attacks by the receiver fish (see Fig 8B of the Hupe paper and associated significant statistics). Also, Oboti et al. argue that social interactions involve "higher levels of locomotion" which would explain the use of chirps since they are used to localize. But chirps are frequent in "chirp chamber" paradigms where no movement is involved. They also point out that social context covaries with beat frequency and thus that it is hard to distinguish which one is linked to chirping propensity and then say that it is hard to disentangle this from "biophysical features of EOD fields affecting detection and localization of conspecific fish". But they don't provide any proof that beat frequency affects detection and localization so their argument is not clear. Last, they argue that tests in one species shouldn't be extrapolated to other species. But many of the studies arguing for the role of chirps in communication was done on brown ghost. In conclusion of this point, they do not provide any strong argument that rejects the role of chirps as a communication signal. A perspective that would be better supported by their data and consistent with past research would be to argue that, in addition to a role in communication, chirps could sometimes be used to help localize conspecifics.

      We did not intend to disregard the extensive body of literature supporting a role of chirps in social communication. Rather, the primary goal of this study was to present a valid alternative perspective to this prevailing view. The existence of a well-established hypothesis does not imply that new evidence cannot change it; it simply indicates that changing it may be challenging either because it's genuinely difficult or because the idea has not been thoroughly explored. Whatever the case may be, proposing new hypotheses, whether complementary or alternative to established theories, is a challenging undertaking for a single study. We judged that starting from broad correlations would be the most desirable approach.

      We did not ignore data from Hupé and Lewis 2008. We cited this study repeatedly and compared their findings to those of others, not only for the correlation chirp-behaviors but also for chirping distance considerations. However, following the Reviewer’s comment, we now cite this study in the context of the behavioral analysis recently added (data from the PSTH plots could possibly confirm the observation of lower chirps during attacks). We also cited the study by Triefenbach and Zakon 2008, which reports something along the same lines. See the statement: “Overall, these results provided mutually reinforcing evidence indicating that chirps are produced more often during locomotion or scanning-related motor activity and confirm previous reports of a lower occurrence of chirping during more direct aggressive contact (as shown also by Triefenbach and Zakon, 2008; Hupé and Lewis, 2008).”, in the result paragraph related to the behavioral correlates of chirping.

      In our study we make it clear how we distinguish causal evidence (i.e. providing evidence that A is required for B) from correlation (i.e. evidence for A simply occurring together with B). We also make it clear that we are not going to provide causal evidence but we are going to provide new evidence for correlations that were so far not considered, in order to propose a new unexplored function of chirps.

      The Reviewer's point on chirping during motion and while caged in a chirp chamber is valid. Indeed at first we were also puzzled by this finding. However, under the “chirps as probes” paradigm, chirping in a chirp-chamber can be explained by the need to obtain spatial information from an otherwise unreachable beat source (brown ghosts are typically exploring new environmental objects or conspecifics by actively swimming around them - something caged fish can’t do). So, eventually the observation of chirping under conditions of limited movement (such as in a chirp chamber experiment) is not in contradiction with our hypothesis, rather it can be used to support it. Further experiments are required - as rightfully pointed out - to evaluate the effects of beat frequency on beat detection. We added a note about this in the “probing with chirps” discussion paragraph.

      The Reviewer's comment regarding generalization is unclear. We acknowledge that most studies are conducted in brown ghosts, as stated in the abstract. Our intention was to highlight that insights gained from this species have been applied to broaden the understanding of chirps in other species. Specifically, the "behavioral meaning idea" of chirping has been extended to other gymnotiform species producing EOD frequency modulations .

      Our study's aim is not to dismiss the idea of chirps being used for communication but to present an alternative hypothesis and to provide supporting evidence. While our results may not align well with the communication theory, our intention is not dismissal but rather engaging in a discussion and exploration of alternative perspectives.

      The discussion they provide on the possible mechanism by which chirps could help with localization of the conspecific is problematic. They imply that chirps cause a stronger response in the receptors. For most chirps considered here, this is not true. For a large portion of the beat frequencies shown in this paper, chirps will cause a de-synchronization of the receptors with no increase in firing rate. They cannot argue that this represents an enhanced response. They also discuss a role for having a broader frequency spectrum -during the chirp- in localization by making a parallel with pulse fish. There is no evidence that a similar mechanism could even work in wave-type fish.

      We have already commented on the “localization” idea in our previous responses. The Reviewer is right in saying that we have provided only vague descriptions of the potential mechanisms implied by our hypothesis. The studies by Benda and others (2005, 2006) demonstrate a clear synchronizing effect of chirps on p-unit firing rates, especially at low DFs (at ranges similar to those considered in this study). This synchronization could lead to an enhanced response at the electroreceptor level, as described in these very studies, which in turn would result in a higher probability of firing in downstream neurons (E-cells in the ELL).

      As also reported within the same works, chirps may also exert an opposite effect on p-units (i.e. desynchronization). This is what happens for large chirps at high DFs. Desynchronization may cause temporary lapses of p-unit firing, which in turn may lead to increased activity of I-cells in the ELL (which are indeed specifically tuned to p-unit lack of activity).

      So, in general, if we consider both ON and OFF pyramidal cells (in the ELL) and small and large chirps, we could state that chirps can be potentially used to enhance the activity of peripheral electrosensory circuits through different mechanisms, contingent on the chirp type and beat frequency. Unfortunately, space constraints limited our ability to dig into these details in the present study.

      However, to address the Reviewer’s rightful point, we now mention this in the manuscript: Since the beat AMs generated by the chirps always trigger reliable responses in primary electrosensory circuits (pyramidal cells in the ELL respond to both increases and decreases in beat AM), any chirp-triggered AM causing a sudden change in p-unit firing could potentially amplify the downstream signal (Marsat and Maler, 2010) and thus enhance EI contrast.” (see result paragraph on beat interference and electric images).

      They write the whole paper as if males and females had been identified in their experiments. Although EOD frequency can provide some guess of the sex the method is unreliable. We can expect a non-negligible percentage of error in assigning sex.

      We agree and in fact, in the method section we state:

      “The limitation of this approach is that females cannot be distinguished from immature males with absolute certainty, since no post-mortem gonadal inspection was carried out.”

      to this we added:

      “Although a more accurate way to determine the sex of brown ghosts would be to consider other morphological features such as the shape of the snout, the body size, the occurrence of developing eggs, EOD frequency has been extensively used for this purpose.”

      Moreover, the consistent behavioral differences observed in low frequency fish, measured with those behavioral experiments aimed at assessing responses to playback stimuli and swimming behavior in novel environments, could also be caused by a younger age (as opposed to femaleness). However, the size ranges of our fish (an admittedly unreliable proxy of age) were all comparable, making this possibility perhaps less likely.

      Reviewer #2 (Public Review):

      Studying the weakly electric brown ghost knifefish, the authors provide evidence that 'chirps' (brief modulations in the frequency and amplitude of the ongoing electric signal) function in active sensing (specifically homeoactive sensing) rather than communication. This is a behavior that has been very well studied, including numerous studies on the sensory coding of chirps and the neural mechanisms for chirp generation. Chirps are largely thought to function in communication behavior, so this alternative function is a very exciting possibility that could have a great impact on the field. The authors do provide convincing evidence that chirps may function in homeoactive sensing. However, their evidence arguing against a role for chirps in communication is not as strong, and neglects a large body of research. Ultimately, the manuscript has great potential but suffers from framing these two possibilities as mutually exclusive and dismissing evidence in favor of a communicative function.

      We thank the Reviewer for the comment. Overall, we have edited the manuscript to soften our conclusions and avoid any strong categorical statement excluding the widely accepted role of chirps in social communication. We have added some new experiments with the aim to add more detail to the behavioral correlates of chirping and to the DF dependency of the production of different types of chirps. Nonetheless, based on our results, we are prone to conclude that the communication idea - although widely accepted - is not as well substantiated as it should be.

      Although we do not dismiss the bulk of literature supporting a role of chirps in social communication, we think that our hypothesis (i.e. decoding of spatial parameters from the beat) may be not fully compatible with the social communication hypothesis for the following reasons:

      (1) Chirp type dependency on DF makes chirps likely to be adaptive responses to beat frequency. While this idea is compatible with a role of chirps in the detection of beat parameters, their concurrent role in social communication would imply that chirps interacting at given beat frequencies (DFs) would communicate only (or mainly) by delivering a very limited range of “messages”. For instance, assuming type 2 chirps are related to aggression (as widely suggested), are female-male pairs - with larger DFs - interacting less aggressively than same sex pairs? Our experiments often suggested this is not the case. In addition, large DFs are not always indicative of opposite sex interactions, while they are very often characterized by the emission of large chirps. Not to mention that, despite the fact that opposite sex interactions in absence of breeding-like conditions, cannot be considered truly courtship-related, large chirps are often considered courtship signals, regardless of the reproductive state of the emitting fish.

      (2) Chirping is highly affected by locomotion (consider female/male pairs with or without mesh divider) and distance (as shown in the novel environment exploration experiment). While the involvement of both parameters is compatible with a role of chirps in active sensing, a role of chirps in social communication implies that such signaling would occur only when fish are in very close proximity to each other. In this case, the beat is therefore heavily distorted not only by fish position/locomotion but also by chirps. Which means that when fish are close to each other, the 2 different types of information relayed by the beat (electrolocation and electrocommunication) would certainly interfere (this idea has been better phrased in the Introduction paragraph).

      (3) In our playback experiments we could not see any meaningful matching (e.g. angry-chirp → angry-chirp or sexy-chirp → approach) between playback chirps and evoked chirps, raising doubts on the meaning associated so far with the different types. Considering that playback experiments are typically used to assess signal meaning based on how animals respond to them, this result is suggesting quite strongly that such meaning cannot be assigned to chirps.

      (4) In playback experiments in which the same stimulus is provided multiple times, chirp type transitions (i.e. emission of a different chirp type after a given chirp) become predictable (as shown in the added playback experiments using ramping signals). This confirms that the choice to emit a given chirp type has something to do with beat frequency (or a change in this parameter) and not a communication of internal states. It would be otherwise unclear how a fish could change its internal state so quickly - and so reliably - even in the span of a few seconds.

      Despite this evidence against a semantic content of chirps in the context of social communication, we conclude the manuscript reminding that we are not providing strong evidence dismissing the communication hypothesis, and that both could coexist (see the example of “proximity signals” in the mating context given in the concluding paragraph).

      (1) The specific underlying question of this study is not made clear in the abstract or introduction. It becomes apparent in reading through the manuscript that the authors seek to test the hypothesis that chirps function in active sensing (specifically homeoactive sensing). This should be made explicitly clear in both the abstract and introduction, along with the rationale for this hypothesis.

      In the abstract we state “Despite the success of this model in neuroethology over the past seven decades, the underlying logic of their electric communication remains unclear. This study re-evaluates this view, aiming to offer an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps.”. This statement is meant as a summary of our aims. However, in order to convey a clearer message, we have revised the whole manuscript to more explicitly articulate our objectives. In particular we stress that with our experiments we intend to provide correlative evidence for a different role of chirps (previously unexplored) with the idea to stimulate a discussion and possibly a revision of the current theory about the functional role of chirps.

      In the introduction we have added a paragraph explaining our aim and also why we think that communicating through chirps could potentially interfere with efficient electrolocation: “Since both chirps and positional parameters (such as size, orientation or motion) can only be detected as perturbations of the beat (Petzold et al., 2016; Yu et al., 2012; Fotowat et al., 2013), and via the same electroreceptors, the inputs relaying both types of information are inevitably interfering. Moreover, as the majority of chirps are produced within a short range (< 50 cm; Zupanc et al., 2006; Hupé and Lewis 2008; Henninger et al., 2018; see appendix 1) this interference is likely to occur consistently during social interactions.

      Under the communication-hypothesis, the assumption that chirps and beats are conveying different types of information (i.e. semantic value as opposed to position and related geometrical parameters) is therefore leaving this issue unresolved.”.

      (2) My biggest issue with this manuscript is that it is much too strong in dismissing evidence that chirping correlates with context. This is captured in this sentence in the introduction, "We first show that the choice of different chirp types does not significantly correlate with any particular behavioral or social context." This very strong conclusion comes up repeatedly, and I disagree with it, for the following reasons:

      In your behavioral observations, you found sex differences in chirping as well as differences between freely interacting and physically separated fish. Your model of chirp variability found that environmental experience, social experience, and beat frequency (DF) are the most important factors explaining chirp variability. Are these not all considered "behavioral or social context"? Beat frequency (DF) in particular is heavily downplayed as being a part of "context" but it is a crucial part of the context, as it provides information about the identity of the fish you're interacting with.

      In your playback experiments, fish responded differently to small vs. large DFs, males chirped more than females, type 2 chirps became more frequent throughout a playback, and rises tended to occur at the end of a playback. These are all examples of context-dependent behavior.

      We agree with the Reviewer’s comment and we think that probably we have been unclear in what the meaning of that statement was. We also agree with the Reviewer about what is defined as “context”, and that a given beat frequency (DF) can in the end represent a “behavioral context” as well. In order to make it clearer, we have rephrased this statement and changed it to: “We first show that the relative number of different chirp types in a given recording does not significantly correlate with any particular behavioral or social context.”. This new form refers specifically to the observation that - in all different social conditions examined - the relative amounts of different types of chirps is unchanged (see Figure S2). We thought the Reviewer maybe interpreted our statement as if we suggested that chirp type choice is random or unaffected by any social variable. We agree with the Reviewer that this is not the case. We also reported that sex differences in chirping are present, but we have emphasized they may have something to do with the propensity of the brown ghosts of either sex to swim/explore as opposed to seek refuge and wait (as suggested by our experiments in which FM pairs were either divided or freely interacting and our novel environment exploration experiments).

      We agree DF is important, in fact it is the 3rd most important factor explaining chirp variance in our model. In our fish pair recordings, we see a strong correlation of chirp total variance with tank experience (one naïve, one experienced, both fish equally experienced) and social context (novel to each other/familiar to each other, subordinate/dominant, breeding/non breeding, accessible/not accessible) although data clustering seems to better distinguish “divided” vs “freely moving” conditions (and sex may also play a role as well because of the reversal of sexual dimorphism in chirp rates in precisely this case) more than other variables. However, we do not see a specific effect of these variables on the proportion of different types of chirps in any recording (see Figure S2).

      We also edited the beginning of the first result paragraph and changed it to “Thus, if behavioral meaning can be attributed to different types of chirps, as posed by the prevailing view (e.g., Hagedorn and Heiligenberg, 1985; Larimer and MacDonald, 1968; Rose, 2004), one should be able to identify clear correlations between behavioral contexts characterizing different internal states and the relative amounts of different types of chirp”, to emphasize we are here assessing the meaning of different types of chirps (not of the total amount of chirping in general).

      Further, you only considered the identity of interacting fish or stimulated fish, not their behavior during the interaction or during playback. Such an analysis is likely beyond the scope of this study, but several other studies have shown correlations between social behavior and chirping. In the absence of such data here, it is too strong to claim that chirping is unrelated to context.

      We agree with the Reviewer, in fact this analysis was previously carried out but purposely left out in an attempt to limit the manuscript length. We have now made space for this experimental work which is now added (see the new Figure 6).

      In summary, it is simply too strong to say that chirping does not correlate with context. Importantly, however, this does not detract from your hypothesis that chirping functions in homeoactive sensing. A given EOD behavior could serve both communication and homeoactive sensing. I actually suspect that this is quite common in electric fish. The two are not mutually exclusive, and there is no reason for you to present them as such. I recommend focusing more on the positive evidence for a homeoactive function and less on the negative evidence against a communication function.

      We aimed to clarify that our reference was to the lack of correlation between "chirp type relative numbers" and the analyzed context. Regarding the communication function, we tempered negative statements. However, as this study stems from evidence within the established paradigm of "chirps as communication signals", and aims at proposing an alternative hypothesis, eliminating all references to it could undermine the study's purpose.

      (3) The results were generally challenging to follow. In the first 4 sections, it is not made clear what the specific question is, what the approach to addressing that question is, and what specific experiment was carried out (the last two sections of the results were much clearer). The independent variables (contexts) are not clearly established before presenting the results. Instead they are often mentioned in passing when describing the results. They come across as an unbalanced hodgepodge of multiple factors, and it is not made clear why they were chosen. This makes it challenging to understand why you did what you did, the results, and their implications. For each set of major results, I recommend: First, pose a clear question. Then, describe the general approach to answering that question. Next, describe the specifics of the experimental design, with a rationale that appeals to the general approach described. Finally, describe the specific results.

      The introductory sentences of the first result paragraphs have been edited, rendering the aim of the experiments more explicit.

      (4) Results: "We thus predicted that, if behavioral meaning can be attributed to different types of chirps, as posed by the prevailing view (e.g., Hagedorn and Heiligenberg, 1985; Larimer and MacDonald, 1968; Rose, 2004)..." It should be made clear why this is the prevailing view, and this description should likely be moved to the introduction. There is a large body of evidence supporting this view and it is important to be complete in describing it, especially since the authors seem to seek to refute it.

      We understand the Reviewer’s question and we tried to express in the introduction the main reasons for why this is the current view. We state “Different types of chirps are thought to carry different semantic content based on their occurrence during either affiliative or agonistic encounters (Larimer and MacDonald 1968; Bullock 1969; Hopkins 1974; Hagedorn and Heiligenberg 1985; Zupanc and Maler 1993; Engler et al. 2000; Engler and Zupanc 2001; Bastian et al., 2001).”. To this we added: “Although supported mainly by correlative evidence, this idea gained popularity because it is intuitive and because it matches well enough with the numerous behavioral observations of interacting brown ghosts.”.

      We believe the prevailing view is based on intuition and a series of basic observed correlations repeated throughout the years. The crystallization of this idea is not due to negligence but mainly to technical limitations existing at the time of the first recordings. In order to assess the role of chirps in behaving fish a tight and precise temporal control over synched video-EOD recordings is most likely necessary, and this is a technical feature probably available only much later than the 50-60ies, when electric communication was first described.

      (5) I am not convinced of the conclusion drawn by the analysis of chirp transitions. The transition matrices show plenty of 1-2 and 2-1 transitions occurring. Further, the cross-correlation analysis only shows that chirp timing between individuals is not phase-locked at these small timescales. It is entirely possible that chirp rates are correlated between interacting individuals, even if their precise timing is not.

      We agree with the Reviewer: chirp repertoires recorded in different social contexts are not devoid of reciprocal chirp transitions (i.e. fish 1 chirp - to - fish 2 chirp, or vice versa). Yet our point is to emphasize that their abundance is way more limited when compared to the self-referenced ones (i.e. 1-1 and 2-2). This is a fair concern and in order to further address this point, we have added a whole new set of analyses and new experiments (see chirp-behavior correlations, PSTHs and more analysis based on more solid statistical methods; see Figure 6).

      Reviewer #3 (Public Review):

      Summary:

      This important paper provides the best-to-date characterization of chirping in weakly electric fish using a large number of variables. These include environment (free vs divided fish, with or without clutter), breeding state, gender, intruder vs resident, social status, locomotion state and social and environmental experience, as well as with playback experiments. It applies state-of-the-art methods for reducing dimensionality and finding patterns of correlation between different kinds of variables (factor analysis, K-means). The exceptional strength of the evidence, collated from a large number of trials with many controls, leads to the conclusion that a number of commonly accepted truths about which variable affects chirping must be carefully rewritten or nuanced. Based on their extensive analyses, the authors suggest that chirps are mainly used as probes that help detect beats and objects.

      Strengths:

      The work is based on completely novel recordings using interaction chambers. The amount of new data and associated analyses is simply staggering, and yet, well organized in presentation. The study further evaluates the electric field strength around a fish (via modelling with the boundary element method) and how its decay parallels the chirp rate, thereby relating the above variables to electric field geometry.

      The main conclusions are that the lack of any significant behavioural correlates for chirping, and the lack of temporal patterning in chirp time series, cast doubt on a communication goal for most chirps. Rather, the key determinants of chirping are the difference frequency between two interacting conspecifics as well as individual subjects' environmental and social experience. These conclusions by themselves will be hugely useful to the field. They will also allow scientists working on other "communication" systems to at least reconsider, and perhaps expand the precise goal of the probes used in those senses. There are a lot of data summarized in this paper, and thorough referencing to past work. For example, the paper concludes that there is a lack of evidence for stereotyped temporal patterning of chirp time series, as well as of sender-received chirp transitions beyond the known increase in chirp frequency during an interaction.

      The alternative hypotheses that arise from the work are that chirps are mainly used as environmental probes for better beat detection and processing and object localization.

      The authors also advance the interesting idea that the sinusoidal frequency modulations caused by chirps are the electric fish's solution to the minute (and undetectable by neural wetware) echo-delays available to it, due to the propagation of electric fields at the speed of light in water.

      Weaknesses:

      My main criticism is that the alternative putative role for chirps as probe signals that optimize beat detection could be better developed. The paper could be clearer as to what that means precisely.

      We appreciate the Reviewer's kind comments. While we acknowledge that our exploration of chirp function in this study may be limited and not entirely satisfying, we made this decision due to space constraints, opting for a broader and diversified approach. We hope that future studies will build on these data and start filling the gaps. We are also working on another manuscript which is addressing this point more in detail.

      Nonetheless, we considered the Reviewer’s criticism and added not only a new figure (to show more explicitly what chirps can do to the perceived electric fields, as simulated by electric images) but also more descriptive parts explaining how we think chirps may act to improve the spatial resolution of beat processing (see the discussion paragraph “probing with chirps”). In this paragraph we rendered more clearly how chirps could improve beat processing by phase shifting EODs and recovering eventual blind-spots on the fish skin caused by disruptive EOD interferences (resulting in lower beat contrast). We also mention that enhancement of electrosensory input triggered by chirps, could be localized not only at the level of electroreceptors (consider the synchronizing effects small chirps have on p-units at low frequency beats) but also at the level of ON and OFF pyramidal cells in the ELL. Looked at from the perspective of these neurons, any chirp would enhance the activity of these input lines, yet in opposite ways.

      And there is an egg-and-chicken type issue as well, namely, that one needs a beat in order to "chirp" the beating pattern, but then how does chirping optimize the detection of the said beat? Perhaps the authors mean (as they wrote elsewhere in the paper) that the chirps could enhance electrosensory responses to the beat.

      According to the Reviewer’s comment, we have now revised several instances of the misleading phrasing identified.

      In the results on novel environment exploration: “If chirps enhance beat processing, for instance, chirping should occur within beat detection range but at a certain distance.”.

      “This, in turn, could be used to validate our beat-interference estimates as meaningfully related to beat processing.” and “In all this, rises may represent an exception as their locations are spread over larger distances and even in presence of obstacles potentially occluding the beat source (such as shelters, plants, or walls), all of which are conditions in which beat detection or beat processing could be more difficult (this, could be coherent with the production of rises right at the end of EOD playbacks; Figure S5).”

      Last result paragraph (clutter experiment): “Overall, these results indicate that chirping is significantly affected by the presence of environmental clutter partially disrupting - or simply obstructing - the processing of beat related information during locomotion”.

      In the probing with chirps discussion paragraph “In theory, chirps could also be used to improve electrolocation of objects as well (as opposed to the processing of the beat).”.

      In the conclusions: “optimizing the otherwise passive responses to the beat”.

      A second criticism is that the study links the beat detection to underwater object localization. I did not see a sufficiently developed argument in this direction, nor how the data provided support for this argument. It is certainly possible that the image on the fish's body of an object in the environment will be slightly modified by introducing a chirp on the waveform, as this may enhance certain heterogeneities of the object in relation to its environment. The thrust of this argument seems to derive more from the notion of Fourier analysis with pulse type fish (and radar theory more generally) that the higher temporal frequencies in the beat waveform induced by the chirp will enable a better spatial resolution of objects. It remains to be seen whether this is significant.

      The Reviewer is correct in noting that this point is not addressed in the manuscript. We introduced it as a speculative discussion point to mention alternative possibilities. These could be subject to further testing in future studies.

      I would also have liked to see a proposal for new experiments that could test these possible new roles.

      We have added clearer suggestions for future experiments throughout the discussion: these may be aimed at 1) improving playback experiments using more realistic copies of the brown ghost’s EODs (including harmonics), 2) assess fish reciprocal positioning during chirping in better detail and 3) test the use of chirping during target-reaching tasks in order to better assess the probing function of chirps.

      The authors should recall for the readers the gist of Bastian's 2001 argument that the chirp "can adjust the beat frequency to levels that are better detectable" in the light of their current. Further, at the beginning of the "Probing with chirps" section, the 3rd way in which chirps could improve conspecific localization mentions the phase-shifting of the EOD. The authors should clarify whether they mean that the tuberous receptors and associated ELL/toral circuitry could deal with that cue, or that the T_unit pathway would be needed?

      We thank the Reviewer for identifying this unclear point. We added reference to the p-units “Yet, this does not exclude the possibility that chirps could be used to briefly shift the EOD phase in order to avoid disruptive interferences caused by phase opposition (at the level of p-units)” in the above mentioned paragraph. We would prefer to omit a more detailed reference to t-units in order to avoid lengthy descriptions required to discuss the different electroreceptor types.

      On p.17 I don't understand what is meant by most chirps being produced, possibly aligned with the field lines, since field lines are everywhere. And what is one to conclude from the comparison of Fig.6D and 7A? Likewise it was not clear what is meant by chirps having a detectable effect on randomly generated beats.

      We agree on the valid point raised by the Reviewer and we have removed reference to current lines from the text.

      In the section on Inconsistencies between behaviour and hypothesized signal meaning, the authors could perhaps nuance the interpretation of the results further in the context of the unrealistic copy of natural stimuli using EOD mimics. In particular, Kelly et al. 2008 argued that electrode placement mattered in terms of representation of a mimic fish onto the body of a real fish, and thus, if I properly understand the set up here, the movement would cause the mimic to vary in quality. This may nevertheless be a small confounding issue.

      We agree with the Reviewer and added a comment at the beginning of the paragraph mentioned. “Nonetheless, it's plausible that playback stimuli, as employed in our study and others, may not faithfully replicate natural signals, thus potentially influencing the reliability of the observed behaviors. Future studies might consider replicating these findings using either natural signals or improved mimics, which could include harmonic components (excluded in this study).”

      Recommendations for the authors:

      8Reviewer #2 (Recommendations For The Authors):*

      (1) Abstract: "...is probably the most intensely studied species..." is a weak, unsupported, and unnecessary statement. Just state that it has been heavily studied, or is one of the most well-studied,...

      rephrased

      (2) Abstract: "...are thus used as references to specific internal states during recordings - of either the brain or the electric organ..." This was not clear to me.

      rephrased

      (3) Abstract: "...the logic underlying this electric communication..." It is not clear to me what the authors mean here by "logic".

      rephrased

      (4) I strongly recommend clearly defining homeoactive sensing and distinguishing it from allocative sensing when this term is first introduced in the introduction. This is not a commonly used term. Most readers likely think they understand what is meant by the term active sensing, however I recommend first defining it, and then distinguishing amongst these two different types of active sensing.

      rephrased

      (5) Introduction: "Together with a few other species (Rose, 2004),..." More than a few. There are hundreds of species with electric organs. It is certainly not a "unique" capability.

      rephrased

      (6) Introduction: "But the real advantage of active electrolocation can be appreciated in the context of social interaction." This is unclear. Why is this the "real advantage" of active electrolocation when an electrically silent fish could detect an electrically communicating fish just fine without interference? Active electrolocation is needed to detect objects that are not actively emitting an electric field. It is not needed to detect signaling individuals.

      rephrased

      (7) Introduction: why is active sensing using EODs limited to distances of 6-12 cm? Why does it not work at closer range?

      Here we meant to give a range based on published data. We rephrased it to “up to 12”.

      (8) Introduction: electric fields decay with the cubed of distance, as you show in appendix 1.

      rephrased

      (9) Introduction: it is not clear what is meant by "blurred EOD amplitude".

      rephrased (“noisy”)

      (10) Figure 2C is very challenging to interpret. I recommend spending more time in the manuscript walking the reader through this analysis and its presentation.

      We are grateful for the comment as we probably overlooked this point. We now added a small paragraph to explain these data in better detail.

      (11) Results: "This was done by calculating the ratio between the duration of the beat cycles affected by the chirp (beat interpeak intervals) and the total duration of the beat cycles detected within a fixed time window (roughly double the size of the maximum chirp duration, 700 ms)." This was not clear to me.

      We now rephrased to “Estimates of beat interference were made by calculating the ratio between the cumulative duration of the beat cycles affected by a given chirp (1 beat cycle corresponding to the beat comprised by two consecutive beat peaks, or - more simply - the beat inter-peak interval) over the cumulative duration of all the beat cycles within the time window used as a reference (700 ms; other analysis windows were tested Figure S9)” to clarify this method.

      (12) Results: "For each chirp, the interference values obtained for 4 different phases (90{degree sign} steps) were averaged." Why was this done?

      To consider an average effect across phases. Although it is true that chirp parameters may have a different impact on the beat, depending on EOD phase, including this parameter in our figure/s would have considerably increased the volume of data reported giving too much emphasis to an analysis we judged not crucially important. In addition, since we did not consider EOD phase in our recordings, we opted for an average estimate encompassing different phase values.

      (13) Discussion: "Third, observations in a few species are generalized to all other gymnotiforms without testing for species differences (Turner et al., 2007; Smith et al., 2013; Petzold et al., 2016)." I strongly disagree with this statement. First, the studies referenced here do explicitly compare chirps across species. Second, you only studied one species here, so it is not clear to me how this is a relevant concern in interpreting your findings.

      Here we have probably been unclear in the writing: the point we wanted to make is that the idea of chirps having semantic content has been generalized to other species without investigating the nature of their chirping with as much detail as done for brown ghosts.

      We have now rephrased the statement and changed it to: “Second, observations in a few species are generalized to all other gymnotiforms without testing whether chirping may have similar functions in other species (Turner et al., 2007; Smith et al., 2013; Petzold et al., 2016)”

      (14) Discussion: "The two beats could be indistinguishable (assuming that the mechanism underlying the discrimination of the sign of DF at low DFs, and thought to be the basis of the so called jamming avoidance response (JAR; Metzner, 1999), is not functional at higher DFs)." Why would you assume this?

      What we meant here is that it is unlikely that the two DFs are not discriminated by the same mechanisms implied in the JAR, even if the DF is higher than the levels at which usually JARs are detected (i.e. DF = 1-10 Hz?). To improve clarity, we rephrased this statement. “The two beats could be indistinguishable (assuming - perhaps not realistically - that the same mechanism involved in DF discrimination at lower DF values would not work in this case; Metzner, 1999)”.

      (15) Discussion: "...an idea which seems congruent with published electrophysiological studies..." How so?

      Rephrased to “Based on our beat interference estimates, we propose that the occurrence of the different types of chirps at more positive DFs (such as in male-to-female chirping) may be explained by their different effect on the beat (Figure 5D; Benda et al., 2006; Walz et al., 2013).”

      Reviewer #3 (Recommendations For The Authors):

      On p.2 there is a discrepancy between the quoted ranges for active sensing of objects, first 10-12 cm, and then 6-12 cm further down. And in the following paragraph right below this passage, electric fields are said to decay with the squared distance (appendix 1). That expression has a cos(theta) which is inversely proportional to the distance, and so one is really dealing, as expected for dipolar fields, with a drop-off that decays with the distance cubed.

      We thank the Reviewer for the comment, we have now corrected the mistake and added “cubed”. We also removed the imprecise reference to the range 6-12 cm, rephrased to “up to 12 cm”.

      At the end of the section on Inconsistencies..., it is not clear what "activity levels" refers to. It should also be made clearer at the outset, and reminded in this section too, that for the authors, behavioural context does not include social experience, which is somewhat counter-intuitive.

      We now specified we meant “locomotor activity levels”. Regarding the social experience we included it as “behavioral context”, we now made it clearer in the first result paragraph. We hope we resolved the confusion.

      The caption of Fig.8 could use more clarity in terms of what is being compared in (C) (and is "1*2p" a typo?)

      We corrected the typo and edited the figure to make the references more clear.

      The concept of "high self-correlation of chirp time series" is presented only in the Conclusion using those words. The word self-correlation is not used beforehand. This needs to be fixed so the reader knows clearly what is being referred to.

      Thank you for noting this. We have now changed the wording using the term “auto-correlation” and changed a statement at the beginning of the “interference” result paragraph accordingly, removing references to self-correlation.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We thank the reviewers for their thorough re-evaluation of our revised manuscript. Addressing final issues they raised has improved the manuscript further. We sincerely appreciate the detailed explanations that the reviewers provided in the "recommendations for authors" section. This comprehensive feedback helped us identify the sources of ambiguity within the analysis descriptions and in the discussion where we interpreted the results. Below, you will find our responses to the specific comments and recommendations.

      Reviewer #1 (Recommendations):

      (1) I find that the manuscript has improved significantly from the last version, especially in terms of making explicit the assumptions of this work and competing models. I think the response letter makes a good case that the existence of other research makes it more likely that oscillators are at play in the study at hand (though the authors might consider incorporating this argumentation a bit more into the paper too). Furthermore, the authors' response that the harmonic analysis is valid even when including x=y because standard correlation analysis were not significant is a helpful response. The key issue that remains for me is that I have confusions about the additional analyses prompted by my review to a point where I find it hard to evaluate how and whether they demonstrate entrainment or not. 

      First, I don't fully understand Figure 2B and how it confirms the Arnold tongue slice prediction. In the response letter the authors write: "...indicating that accuracy increased towards the preferred rate at fast rates and decreased as the stimulus rate diverged from the preferred rate at slow rates". The figure shows that, but also more. The green line (IOI < preferred rate) indeed increases toward the preferred rate (which is IOI = 0 on the x-axis; as I get it), but then it continues to go up in accuracy even after the preferred rate. And for the blue line, performance also continues to go up beyond preferred rate. Wouldn't the Arnold tongue and thus entrainment prediction be that accuracy goes down again after the preferred rate has passed? That is to say, shouldn't the pattern look like this (https://i.imgur.com/GPlt38F.png) which with linear regression should turn to a line with a slope of 0?

      This was my confusion at first, but then I thought longer about how e.g. the blue line is predicted only using trials with IOI larger than the preferred rate. If that is so, then shouldn't the plot look like this? (https://i.imgur.com/SmU6X73.png). But if those are the only data and the rest of the regression line is extrapolation, why does the regression error vary in the extrapolated region? It would be helpful if the authors could clarify this plot a bit better. Ideally, they might want to include the average datapoints so it becomes easier to understand what is being fitted. As a side note, colours blue/green have a different meaning in 2B than 2D and E, which might be confusing. 

      We thank the reviewer for their recommendation to clarify the additional analyses we ran in the previous revision to assess whether accuracy systematically increased toward the preferred rate estimate. We realized that the description of the regression analysis led to misunderstandings. In particular, we think that the reviewer interpreted (1) our analysis as linear regression (based on the request to plot raw data rather than fits), whereas, in fact, we used logistic regression, and (2) the regression lines in Figure 2B as raw IOI values, while, in fact, they were the z-scored IOI values (from trials where stimulus IOI were faster than an individual’s preferred rate, IOI < preferred rate, in green; and from trials stimulus IOI were slower than an individual’s preferred rate, IOI > preferred rate, in blue), as the x axis label depicted. We are happy to have the opportunity to clarify these points in the manuscript. We have also revised Figure 2B, which was admittedly maybe a bit opaque, to more clearly show the “Arnold tongue slice”.  

      The logic for using (1) logistic regression with (2) Z-scored IOI values as the predictor is as follows. Since the response variable in this analysis, accuracy, was binary (correct response = 1, incorrect response = 0), we used a logistic regression. The goal was to quantify an acrosssubjects effect (increase in accuracy toward preferred rate), so we aggregated datasets across all participants into the model. The crucial point here is that each participant had a different preferred rate estimate. Let’s say participant A had the estimate at IOI = 400 ms, and participant B had an estimate at IOI = 600 ms. The trials where IOI was faster than participant A’s estimate would then be those ranging from 200 ms to 398 ms, and those that were slower would range from 402 ms to 998 ms. For Participant B, the situation would be different:  trials where IOI was faster than their estimate would range from 200 ms to 598 ms, and slower trials would range between 602 ms to 998 ms. For a fair analysis that assesses the accuracy increase, regardless of a participant’s actual preferred rate, we normalized these IOI values (faster or slower than the preferred rate). Zscore normalization is a common method of normalizing predictors in regression models, and was especially important here since we were aggregating predictors across participants, and the predictors ranges varied across participants. Z-scoring ensured that the scale of the sample (that differs between participant A and B, in this example) was comparable across the datasets. This is also important for the interpretation of Figure 2B. Since Z-scoring involves mean subtraction, the zero point on the Z-scaled IOI axis corresponds to the mean of the sample prior to normalization (for Participant A: 299 ms, for Participant B: 399 ms) and not the preferred rate estimate. We have now revised Figure 2B in a way that we think makes this much clearer.  

      The manuscript text includes clarification that the analyses included logistic regression and stimulus IOI was z-scored: 

      “In addition to estimating the preferred rate as stimulus rates with peak performance, we investigated whether accuracy increased as a function of detuning, namely, the difference between stimulus rate and preferred rate, as predicted by the entrainment models (Large, 1994; McAuley, 1995; Jones, 2018). We tested this prediction by assessing the slopes of mixed-effects logistic regression models, where accuracy was regressed on the IOI condition, separately for stimulus rates that were faster or slower than an individual’s preferred rate estimate. To do so, we first z-scored IOIs that were faster and slower than the participant’s preferred rate estimates, separately to render IOI scales comparable across participants.” (p. 7)

      While thinking through the reviewer’s comment, we realized we could improve this analysis by fitting mixed effects models separately to sessions’ data. In these models, fixed effects were z-scored IOI and ‘detuning direction’ (i.e., whether IOI was faster or slower than the participant’s preferred rate estimate). To control for variability across participants in the predicted interaction between z-scored IOI and direction, this interaction was added as a random effect. 

      “Ideally, they might want to include the average datapoints so it becomes easier to understand what is being fitted.”

      Although we agree with the reviewer that including average datapoints in a figure in addition to model predictions usually better illustrates what is being fitted than the fits alone, this doesn’t work super well for logistic regression, since the dependent variable is binary. To try to do a better job illustrating single-participant data though, we instead  fitted logistic models to each participant’s single session datasets, separately to conditions where z-scored IOI from fasterthan-preferred rate trials, and those from slower-than-preferred rate trials, predicted accuracy. From these single-participant models, we obtained slope values, we referred to as ‘relative detuning slope’, for each condition and session type. This analysis allowed us to illustrate the effect of relative detuning on accuracy for each participant. Figure 2B now shows each participant’s best-fit lines from each detuning direction condition and session.

      Since we now had relative detuning slopes for each individual (which we did not before), we took advantage of this to assess the relationship between oscillator flexibility and the oscillator’s behavior in different detuning situations (how strongly leaving the preferred rate hurt accuracy, as a proxy for the width of the Arnold tongue slice). Theoretically, flexible oscillators should be able to synchronize to wide range of rates, not suffering in conditions where detuning is large (Pikovsky et al., 2003). Conversely, synchronization of inflexible oscillators should depend strongly on detuning. To test whether our flexibility measure predicted this dependence on detuning, which is a different angle on oscillator flexibility, we first averaged each participant’s detuning slopes across detuning directions (after sign-flipping one of them). Then, we assessed the correlation between the average detuning slopes and flexibility estimates, separately from conditions where |-𝚫IOI| or |+𝚫IOI| predicted accuracy. The results revealed significant negative correlations (Fig. 2F), suggesting that performance of individuals with less flexible oscillators suffered more as detuning increased. Note that flexibility estimates quantified how much accuracy decreased as a function of trial-to-trial changes in stimulus rate (±𝚫IOI). Thus, these results show that oscillators that were robust to changes in stimulus rate were also less dependent on detuning to be able to synchronize across a wide range of stimulus rates. We are excited to be able to provide this extra validation of predictions made by entrainment models. 

      To revise the manuscript with the updated analysis on detuning:

      • We added the descriptions of the analyses to the Experiment 1 Methods section.

      Calculation of detuning slopes and their averaging procedure are in Preferred rate estimates:

      “In addition to estimating the preferred rate as stimulus rates with peak performance, we investigated whether accuracy increased as a function of detuning, namely, the difference between stimulus rate and preferred rate, as predicted by the entrainment models (Large, 1994; McAuley, 1995; Jones, 2018). We tested this prediction by assessing the slopes of mixed-effects logistic regression models, where accuracy was regressed on the IOI condition, separately for stimulus rates that were faster or slower than an individual’s preferred rate estimate. To do so, we first z-scored IOIs that were faster and slower than the participant’s preferred rate estimates, separately to render IOI scales comparable across participants. The detuning direction (i.e., whether stimulus IOI was faster or slower than the preferred rate estimate) was coded categorically. Accuracy (binary) was predicted by these variables (zscored IOI, detuning direction), and their interaction. The model was fitted separately to datasets from random-order and linear-order sessions, using the fitglme function in MATLAB. Fixed effects were z-scored IOI and detuning direction and random effect was their interaction. We expected a systematic increase in performance toward the preferred rate, which would result in a significant interaction between stimulus rate and detuning direction. To decompose the significant interaction and to visualize the effects of detuning, we fitted separate models to each participant’s single-session datasets, and obtained slopes from each direction condition, hereafter denoted as the ‘relative-detuning slope’. We treated relative-detuning slope as an index of the magnitude of relative detuning effects on accuracy. We then evaluated these models, using the glmval function in MATLAB to obtain predicted accuracy values for each participant and session. To visualize the relative-detuning curves, we averaged the predicted accuracies across participants within each session, separately for each direction condition (faster or slower than the preferred rate). To obtain a single value of relative-detuning magnitude for each participant, we averaged relative detuning slopes across direction conditions. However, since slopes from IOI > preferred rate conditions quantified an accuracy decrease as a function of detuning, we sign-flipped these slopes before averaging. The resulting average relative detuning slopes, obtained from each participant’s single-session datasets, quantified how much the accuracy increase towards preferred rate was dependent on, in other words, sensitive to, relative detuning.” (p. 7-8)

      • We added the information on the correlation analyses between average detuning slopes in Flexibility estimates.

      “We further tested the relationship between the flexibility estimates (𝛽 from models where |𝚫IOI| or |+𝚫IOI| predicted accuracy) and average detuning slopes (see Preferred rate estimates) from random-order sessions. We predicted that flexible oscillators (larger 𝛽) would be less severely affected by detuning, and thus have smaller detuning slopes. Conversely, inflexible oscillators (smaller 𝛽) should have more difficulty in adapting to a large range of stimulus rates, and their adaptive abilities should be constrained around the preferred rate, as indexed by steeper relative detuning slopes.” (p. 8)

      • We provided the results in Experiment 1 Results section.

      “Logistic models assessing a systematic increase in accuracy toward the preferred rate estimate in each session type revealed significant main effects of IOI (linear-order session: 𝛽 = 0.264, p < .001; random-order session: 𝛽 = 0.175, p < .001), and significant interactions between IOI and direction (linear-order session: 𝛽 = -0.444, p < .001; random-order session: 𝛽 = -0.364, p < .001), indicating that accuracy increased as fast rates slowed toward the preferred rate (positive slopes) and decreased again as slow rates slowed further past the preferred rate (negative slopes), regardless of the session type. Fig. 2B illustrates the preferred rate estimation method for an example participant’s dataset and shows the predicted accuracy values from models fitted to each participant’s single-session datasets. Note that the main effect and interaction were obtained from mixed effects models that included aggregated datasets from all participants, whereas the slopes quantifying the accuracy increase as a function of detuning (i.e., relative detuning slopes) were from models fitted to single-participant datasets.” (p. 9-10)

      “We tested the relationship between the flexibility estimates and single-participant relative detuning slopes from random-order sessions (Fig. 2B). The results revealed negative correlations between the relative detuning slopes and flexibility estimates, both with 𝛽 (r(23) =0.529, p = 0.007) from models where |-𝚫IOI| predicted accuracy (adapting to speeding-up trials), and 𝛽 (r(23) =-0.580, p = 0.002) from models where |+𝚫IOI| predicted accuracy (adapting to slowing-down trials). That is, the performance of individuals with less flexible oscillators suffered more as detuning increased. These results are shown in Fig. 2F.” (p. 10)

      • We modified Figure 2. In Figure 2B, there are now separate subfigures with the z-scored IOI faster (left) or slower (right) than the preferred rate predicting accuracy. We illustrated the correlations between average relative detuning slopes and flexibility estimates in Figure 2F. 

      Author response image 1.

      Main findings of Experiment 1. A Left: Each circle represents a single participant’s preferred rate estimate from the random-order session (x axis) and linear-order session (y axis). The histograms along the top and right of the plot show the distributions of estimates for each session type. The dotted and dashed lines respectively represent 1:2 and 2:1 ratio between the axes, and the solid line represents one-to-one correspondence. Right: permutation test results. The distribution of summed residuals (distance of data points to the closest y=x, y=2*x and y=x/2 lines) of shuffled data over 1000 iterations, and the summed residual from original data (dashed line) that fell below .008 of the permutation distribution. B Top: Illustration of the preferred rate estimation method from an example participant’s linear-order session dataset. Estimates were the stimulus rates (IOI) where smoothed accuracy (orange line) was maximum (arrow). The dotted lines originating from the IOI axis delineate the stimulus rates that were faster (left, IOI < preferred rate) and slower (right, IOI > preferred rate) than the preferred rate estimate and expand those separate axes, the values of which were Z-scored for the relative-detuning analysis. Bottom: Predicted accuracy, calculated from single-participant models where accuracy in random-order (purple) and linear-order (orange) sessions was predicted by z-scored IOIs that were faster than a participant’s preferred rate estimate (left), and by those that were slower (right). Thin lines show predicted accuracy from single-participant models, solid lines show the averages across participants and the shaded areas represent standard error of the mean. Predicted accuracy is maximal at the preferred rate and decreases as a function of detuning. C Average accuracy from random-order (left, purple) and linear-order (right, orange) sessions. Each circle represents a participant’s average accuracy. D Flexibility estimates. Each circle represents an individuals’ slope (𝛽) obtained from logistic models, fitted separately to conditions where |𝚫IOI| (left, green) or |+𝚫IOI| (right blue) predicted accuracy, with greater values (arrow’s direction) indicating better oscillator flexibility. The means of the distributions of 𝛽 from both conditions were smaller than zero (dashed line), indicating a negative effect of between-trial absolute rate change on accuracy. E Participants’ average bias from |𝚫IOI| (green), and |+𝚫IOI| (blue) conditions in random-order (left) and linear-order (right) sessions. Negative bias indicates underestimation of the comparison intervals, positive bias indicates the opposite. Box plots in C-E show median (black vertical line), 25th and 75th percentiles (box edges) and extreme datapoints (whiskers). In C and E, empty circles show outlier values that remained after data cleaning procedures. F Correlations between participants’ average relative detuning slopes, indexing the steepness of the increase in accuracy towards the preferred rate estimate (from panel B), and flexibility estimates from |-𝚫IOI| (top, green), and |+𝚫IOI| (bottom, blue) conditions (from panel C). Solid black lines represent the best-fit line, dashed lines represent 95% confidence intervals.

      • We discussed the results in General Discussion and emphasized that only entrainment models, compared to timekeeper models, predict a relationship between detuning and accuracy that is amplified by oscillator’s inflexibility: “we observed systematic increases in task accuracy (Experiment 1) toward the best-performance rates (i.e., preferred rate estimates), with the steepness of this increase being closely related to the effects of rate change (i.e., oscillator flexibility). Two interdependent properties of an underlying system together modulating an individual’s timing responses show strong support for the entrainment approach” (p. 24)

      “As a side note, colours blue/green have a different meaning in 2B than 2D and E, which might be confusing.” 

      Upon the reviewer’s recommendation, we changed the color scale across Figure 2, such that colors refer to the same set of conditions across all panels. 

      (2) Second, I don't understand the additional harmonic relationship analyses in the appendix, and I suspect other readers will not either. As with the previous point, it is not my view that the analyses are faulty or inadequate, it is rather that the lack of clarity makes it challenging to evaluate whether they support an entrainment model or not. 

      We decided to remove the analysis that was based on a circular approach, and we have clarified the analysis that was based on a modular approach by giving example cases: 

      “We first calculated how much the slower estimate (larger IOI value) diverts, proportionally from the faster estimate (smaller IOI value) or its multiples (i.e., harmonics) by normalizing the estimates from both sessions by the faster estimate. The outcome measure was the modulus of the slower, with respect to the faster estimate, divided by the faster estimate, described as mod(max(X), min(X))/min(X) where X = [session1_estimate session2_estimate]. An example case would be a preferred rate estimate of IOI = 603 ms from the linear-order session and an estimate of IOI = 295 ms from the random-order session. In this case, the slower estimate (603 ms) diverts from the multiple of the faster estimate (295*2 = 590 ms) by 13 ms, a proportional deviation of 4% of the faster estimate (295 ms). The outcome measure in this example is calculated as mod(603,295)/295 = 0.04.” (Supplementary Information, p. 2)

      Crucially, the ability of oscillators to respond to harmonically-related stimulus rates is a main distinction between entrainment and interval (timekeeper) models. In the current study, we found that each participant’s best-performance rates, the preferred rate estimates, had harmonic relationships. The additional analyses further showed that these harmonic relationships were not due to chance. This finding speaks against the interval (timekeeper) approaches and is maximally compatible with the entrainment framework. 

      Here are a number of questions I would like to list to sketch my confusion: 

      • The authors write: "We first normalized each participant's estimates by rescaling the slower estimate with respect to the faster one and converting the values to radians". Does slower estimate mean: "task accuracy in those trials in which IOI was slower than a participant's preferred frequency"? 

      Preferred rate estimates were stimulus rates (IOI) with best performance, as described in Experiment 1 Methods section. 

      “We conceptualized individuals' preferred rates as the stimulus rates where durationdiscrimination accuracy was highest. To estimate preferred rate on an individual basis, we smoothed response accuracy across the stimulus-rate (IOI) dimension for each session type, using the smoothdata function in Matlab. Estimates of preferred rate were taken as the smoothed IOI that yielded maximum accuracy” (p. 7). 

      The estimation method and the resulting estimate for an example participant was provided in Figure 2B. The updated figure in the current revision has this illustration only for linear-order session. 

      “Estimates were the stimulus rates (IOI) where smoothed accuracy (orange line) was maximum (arrow)” (Figure caption, p. 9).

      • "We reasoned that values with integer-ratio relationships should correspond to the same phase on a unit circle". What is values here; IOI, or accuracy values for certain IOIs? And why should this correspond to the same phase? 

      We removed the analysis on integer-ratio relationships that was based on a circular approach that the reviewer is referring to here. We clarified the analysis that was based on a modular approach and avoided using the term ‘values’ without specifying what values corresponded to.

      • Des "integer-ratio relationships" have to do with the y=x, y=x*2 and y=x/2 relationships of the other analyses?  

      Integer-ratio relationships indeed refer to y=x, y=x*2 and y=x/2 relationships. For example, if a number y is double of another number x (y = x*2), these values have an integer-ratio relationship, since 2 is an integer. This holds true also for the case where y = x/2 since x = y*2. 

      • Supplementary Figure S2c shows a distribution of median divergences resulting from the modular approach. The p-value is 0.004 but the dashed line appears to be at a much higher percentile of the distribution. I find this hard to understand. 

      We thank the reviewer for a detailed inspection of all figures and information in the manuscript. The reviewer’s comment led us to realize that this figure had an error. We updated the figure in Supplementary Information (Supplementary Figure S2). 

      Reviewer #2 (Public Review):

      To get a better understanding of the mechanisms underlying the behavioral observations, it would have been useful to compare the observed pattern of results with simulations done with existing biophysical models. However, this point is addressed if the current study is read along with this other publication of the same research group: Kaya, E., & Henry, M. J. (2024, February 5). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator.       https://doi.org/10.31234/osf.io/q9uvr 

      We agree with the reviewer that the mechanisms underlying behavioral responses can be better understood by modeling approaches. We thank the reviewer for acknowledging our computational modeling study that addressed this concern. 

      Reviewer #2 (Recommendations):

      I very much appreciate the thorough work done by the authors in assessing all reviewers' concerns. In this new version they clearly state the assumptions to be tested by their experiments, added extra analyses further strengthening the conclusions and point the reader to a neurocomputational model compatible with the current observations. 

      I only regret that the authors misunderstood the take home message of our Essay (Doelling & Assaneo 2021). Despite this being obviously out of the scope of the current work, I would like to take this opportunity to clarify this point. In that paper, we adopted a Stuart-Landau model not to determine how an oscillator should behave, but as an example to show that some behaviors usually used to prove or refute an underlying "oscillator like" mechanism can be falsified. We obviously acknowledge that some of the examples presented in that work are attainable by specific biophysical models, as explicitly stated in the essay: "There may well be certain conditions, equations, or parameters under which some of these commonly held beliefs are true. In that case, the authors who put forth these claims must clearly state what these conditions are to clarify exactly what hypotheses are being tested." 

      This work did not mean to delineate what oscillator is (or in not), but to stress the importance of explicitly introducing biophysical models to be tested instead of relying on vague definitions sometimes reflecting the researchers' own beliefs. The take home message that we wanted to deliver to the reader appears explicitly in the last paragraph of that essay: "We believe that rather than concerning ourselves with supporting or refuting neural oscillators, a more useful framework would be to focus our attention on the specific neural dynamics we hope to explain and to develop candidate quantitative models that are constrained by these dynamics. Furthermore, such models should be able to predict future recordings or be falsified by them. That is to say that it should no longer be sufficient to claim that a particular mechanism is or is not an oscillator but instead to choose specific dynamical systems to test. In so doing, we expect to overcome our looping debate and to ultimately develop-by means of testing many model types in many different experimental conditions-a fundamental understanding of cognitive processes and the general organization of neural behavior." 

      We appreciate the reviewer’s clarification of the take-home message from Doelling and Assaneo (2021). We concur with the assertions made in this essay, particularly regarding the benefits of employing computational modeling approaches. Such methodologies provide a nuanced and wellstructured foundation for theoretical predictions, thereby minimizing the potential for reductionist interpretations of behavioral or neural data.

      In addition, we would like to underscore the significance of delineating the level of analysis when investigating the mechanisms underlying behavioral or neural observations. The current study or Kaya & Henry (2024) involved no electrophysiological measures. Thus, we would argue that the appropriate level of analysis across our studies concerns the theoretical mechanisms rather than how these mechanisms are implemented on the neural (physical) level. In both studies, we aimed to explore or approximate the theoretical oscillator that guides dynamic attention rather than the neural dynamics underlying these theoretical processes. That is, theoretical (attentional) entrainment may not necessarily correspond to neural entrainment, and differentiating these levels could be informative about the parallels and differences between these levels. 

      References

      Doelling, K. B., & Assaneo, M. F. (2021). Neural oscillations are a start toward understanding brain activity rather than the end. PLoS Biol, 19(5), e3001234. https://doi.org/10.1371/journal.pbio.3001234  Jones, M. R. (2018). Time will tell: A theory of dynamic attending. Oxford University Press. 

      Kaya, E., & Henry, M. J. (2024). Modeling rhythm perception and temporal adaptation: top-down influences on a gradually decaying oscillator. PsyArxiv. https://doi.org/https://doi.org/10.31234/osf.io/q9uvr 

      Large, E. W. (1994). Dynamic representation of musical structure. The Ohio State University. 

      McAuley, J. D. (1995). Perception of time as phase: Toward an adaptive-oscillator model of rhythmic pattern processing Indiana University Bloomington]. 

      Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.

    1. Author response:

      eLife assessment

      The authors present an algorithm and workflow for the inference of developmental trajectories from single-cell data, including a mathematical approach to increase computational efficiency. While such efforts are in principle useful, the absence of benchmarking against synthetic data and a wide range of different single-cell data sets make this study incomplete. Based on what is presented, one can neither ultimately judge if this will be an advance over previous work nor whether the approach will be of general applicability.

      We thank the eLife editor for the valuable feedback. We wish to emphasize that both, benchmarking against other methods and validation on a synthetic dataset (“dyntoy”) are indeed presented in Supplementary Note, although we failed to sufficiently emphasize it in the main text. 

      We will extend the benchmarking to more TI methods and we will improve the results and discussion sections to present those facts more clearly to the reader.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors present tviblindi, a computational workflow for trajectory inference from molecular data at single-cell resolution. The method is based on (i) pseudo-time inference via expecting hitting time, (ii) sampling of random walks in a directed acyclic k-NN where edges are oriented away from a cell of origin w.r.t. the involved nodes' expected hitting times, and (iii) clustering of the random walks via persistent homology. An extended use case on mass cytometry data shows that tviblindi can be used elucidate the biology of T cell development.

      Strengths:

      - Overall, the paper is very well written and most (but not all, see below) steps of the tviblindi algorithm are explained well.

      - The T cell biology use case is convincing (at least to me: I'm not an immunologist, only a bioinformatician with a strong interest in immunology).

      We thank the reviewer for feedback and suggestions that we will accommodate, we respond point-by-point below

      Weaknesses:

      - The main weakness of the paper is that a systematic comparison of tviblindi against other tools for trajectory inference (there are many) is entirely missing. Even though I really like the algorithmic approach underlying tviblindi, I would therefore not recommend to our wet-lab collaborators that they should use tviblindi to analyze their data. The only validation in the manuscript is the T cell development use case. Although this use case is convincing, it does not suffice for showing that the algorithms's results are systematically trustworthy and more meaningful (at least in some dimension) than trajectories inferred with one of the many existing methods.

      We have compared tviblindi to several trajectory inference methods (Supplementary note section 8.2: Comparison to state-of-the-art methods, namely Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019).) We will add thorough and systematic comparisons to the other algorithms mentioned by reviewers. We will include extended evaluation on publically available datasets.

      Also, we have successfully used tviblindi to investigate human B-cell development in primary immunodeficiency (manuscript in revisions), double negative T-cells development in ALPS (Autoimmune Lymphoproliferative Syndrome) by mass cytometry (project in progress).

      - The authors' explanation of the random walk clustering via persistent homology in the Results (subsection "Real-time topological interactive clustering") is not detailed enough, essentially only concept dropping. What does "sparse regions" mean here and what does it mean that "persistent homology" is used? The authors should try to better describe this step such that the reader has a chance to get an intuition how the random walk clustering actually works. This is especially important because the selection of sparse regions is done interactively. Therefore, it's crucial that the users understand how this selection affects the results. For this, the authors must manage to provide a better intuition of the maths behind clustering of random walks via persistent homology.

      In order to satisfy both reader types: the biologist and the mathematician, we explain the mathematics in detail in the Supplementary Note, section 4. We will improve the Results text to better point the reader to the mathematical foundations in the Supplementary Note.

      - To motivate their work, the authors write in the introduction that "TI methods often use multiple steps of dimensionality reduction and/or clustering, inadvertently introducing bias. The choice of hyperparameters also fixes the a priori resolution in a way that is difficult to predict." They claim that tviblindi is better than the original methods because "analysis is performed in the original high-dimensional space, avoiding artifacts of dimensionality reduction." However, in the manuscript, tviblindi is tested only on mass cytometry data which has a much lower dimensionality than scRNA-seq data for which most existing trajectory inference methods are designed. Since tviblindi works on a k-NN graph representation of the input data, it is unclear if it could be run on scRNA-seq data without prior dimensionality reduction. For this, cell-cell distances would have to be computed in the original high-dimensional space, which is problematic due to the very high dimensionality of scRNA-seq data. Of course, the authors could explicitly reduce the scope of tviblindi to data of lower dimensionality, but this would have to be stated explicitly.

      In the manuscript we tested the framework on the scRNA-seq data from Park et al 2020 (DOI: 10.1126/science.aay3224). To illustrate that tviblindi can work directly in the high-dimensional space, we applied the framework successfully on imputed 2000 dimensional data.

      The idea behind tviblindi is to be able to work without the necessity to use non-linear dimensionality reduction techniques, which reduce the dimensionality to a very low number of dimensions and whose effects on the data distribution are difficult to predict. On the other hand the use of (linear) dimensionality reduction techniques which effectively suppress noise in the data such as PCA is a good practice (see also response to reviewer 2). We will emphasize this in the revised version and add the results of the corresponding analysis.

      - Also tviblindi has at least one hyper-parameter, the number k used to construct the k-NN graphs (there are probably more hidden in the algorithm's subroutines). I did not find a systematic evaluation of the effect of this hyper-parameter.

      Detailed discussion of the topic is presented in the Supplementary Note, section 8.1, where Spearman correlation coefficient between pseudotime estimated using k=10 and k=50 nearest neighbors was 0.997.   The number k however does affect the number of candidate endpoints. But even when larger k causes spurious connection between unrelated cell fates, the topological clustering of random walks allows for the separation of different trajectories. We will expand the “sensitivity to hyperparameters section” also in response to reviewer 2.

      Reviewer #2 (Public Review):

      Summary:

      In Deconstructing Complexity: A Computational Topology Approach to Trajectory Inference in the Human Thymus with tviblindi, Stuchly et al. propose a new trajectory inference algorithm called tviblindi and a visualization algorithm called vaevictis for single-cell data. The paper utilizes novel and exciting ideas from computational topology coupled with random walk simulations to align single cells onto a continuum. The authors validate the utility of their approach largely using simulated data and establish known protein expression dynamics along CD4/CD8 T cell development in thymus using mass cytometry data. The authors also apply their method to track Treg development in single-cell RNA-sequencing data of human thymus.

      The technical crux of the method is as follows: The authors provide an interactive tool to align single cells along a continuum axis. The method uses expected hitting time (given a user input start cell) to obtain a pseudotime alignment of cells. The pseudotime gives an orientation/direction for each cell, which is then used to simulate random walks. The random walks are then arranged/clustered based on the sparse region in the data they navigate using persistent homology.

      We thank the reviewer for feedback and suggestions that we will accommodate, we respond point-by-point below.

      Strengths:

      The notion of using persistent homology to group random walks to identify trajectories in the data is novel.

      The strength of the method lies in the implementation details that make computationally demanding ideas such as persistent homology more tractable for large scale single-cell data.

      This enables the authors to make the method more user friendly and interactive allowing real-time user query with the data.

      Weaknesses:

      The interactive nature of the tool is also a weakness, by allowing for user bias leading to possible overfitting for a specific data.

      tviblindi is not designed as a fully automated TI tool (although it implements a fully automated module), but as a data driven framework for exploratory analysis of unknown data. There is always a risk of possible bias in this type of analysis - starting with experimental design, choice of hyperparameters in the downstream analysis, and an expert interpretation of the results. The successful analysis of new biological data involves a great deal of expert knowledge which is difficult to a priori include in the computational models.

      tvilblindi tries to solve this challenge by intentionally overfitting the data and keeping the level of resolution on a single random walk. In this way we aim to capture all putative local relationships in the data. The on-demand aggregation of the walks using the global topology of the data allows researchers to use their expert knowledge to choose the right level of detail (as demonstrated in the Figure 4 of the manuscript) while relying on the topological structure of the high dimensional point cloud. At all times tviblindi allows to inspect the composition of the trajectory to assess the variance in the development, possible hubs on the KNN-graph etc.

      The main weakness of the method is lack of benchmarking the method on real data and comparison to other methods. Trajectory inference is a very crowded field with many highly successful and widely used algorithms, the two most relevant ones (closest to this manuscript) are not only not benchmarked against, but also not sited. Including those that specifically use persistent homology to discover trajectories (Rizvi et.al. published Nat Biotech 2017). Including those that specifically implement the idea of simulating random walks to identify stable states in single-cell data (e.g. CellRank published in Lange et.al Nat Meth 2022), as well as many trajectory algorithms that take alternative approaches. The paper has much less benchmarking, demonstration on real data and comparison to the very many other previous trajectory algorithms published before it. Generally speaking, in a crowded field of previously published trajectory methods, I do not think this one approach will compete well against prior work (especially due to its inability to handle the noise typical in real world data (as was even demonstrated in the little bit of application to real world data provided).

      We provide comparisons of tviblindi and vaevictis in the Supplementary Note, section 8.2, where we compare it to Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019). We use two datasets: artificial Dyntoy and real mass cytometry thymus+peripheral blood dataset. We thank the reviewer for suggesting specific methods.  CellRank was excluded from the benchmarking as it was originally designed for RNA-velocity data (not available in mass cytometry data), but will include recent upgrade CellRank2 (preprint at doi.org/10.1101/2023.07.19.549685) which offers more flexibility.

      We will add further benchmarking as suggested by the reviewer in the course of revisions.

      Beyond general lack of benchmarking there are two issues that give me particular concern. As previously mentioned, the algorithm is highly susceptible to user bias and overfitting. The paper gives the example (Figure 4) of a trajectory which mistakenly shows that cells may pass from an apoptotic phase to a different developmental stage. To circumvent this mistake, the authors propose the interactive version of tviblindi that allows users to zoom in (increase resolution) and identify that there are in fact two trajectories in one. In this case, the authors show how the author can fix a mistake when the answer is known. However, the point of trajectory inference is to discover the unknown. With so much interactive options for the user to guide the result, the method is more user/bias driven than data-driven. So a rigorous and quantitative discussion of robustness of the method, as well as how to ensure data-driven inference and avoid over-fitting would be useful.

      Local directionality in expression data is a challenge which is not, to our knowledge, solved. And we are not sure it can be solved entirely, even theoretically. The random walks passing “through” the apoptotic phase are biologically infeasible, but it is an (unbiased) representation of what the data look like based on the diffusion model. It is a property of the data (or of the panel design), which has to be interpreted properly rather than a mistake. Of note, except for Monocle3 (which does not provide the directionality) other tested methods did not discover this trajectory at all.

      The “zoom in” has in fact nothing to do with “passing through the apoptosis”. We show how the researcher can investigate the suggested trajectory to see if there is an additional structure of interest and/or relevance. This investigation is still data driven (although not fully automated). Anecdotally in this particular case this branching was discovered by an bioinformatician, who knew nothing about the presence of beta-selection in the data. 

      We show that the trajectory of apoptosis of cortical thymocytes consists of 2 trajectories corresponding to 2 different checkpoints (beta-selection and positive/negative selection). This type of structure, where 2 (or more) trajectories share the same path for most of the time, then diverge only to be connected at a later moment (immediately from the point of view of the beta-selection failure trajectory) is a challenge for TI algorithms and none of tested methods gave a correct result. More importantly there seems to be no clear way to focus on these kinds of structures (common origin and common fate) in TI methods.

      Of note, the “zoom in” is a recommended and convenient method to look for an inner structure, but it does not necessarily mean addition of further homological classes. Indeed, in this case the reason that the structure is not visible directly is the limitation of the dendrogram complexity (only branches containing at least 10% of simulated random walks are shown by default).

      In summary, tviblindi effectively handled all noise in the data that obscured biologically valid trajectories for other methods. We will improve the discussion of the robustness in the reviewed version. 

      Second, the paper discusses the benefit of tviblindi operating in the original high dimensions of the data. This is perhaps adequate for mass cytometry data where there is less of an issue of dropouts and the proteins may be chosen to be large independent. But in the context of single-cell RNA-sequencing data, the massive undersampling of mRNA, as well as high degree of noise (e.g. ambient RNA), introduces very large degree of noise so that modeling data in the original high dimensions leads to methods being fit to the noise. Therefore ALL other methods for trajectory inference work in a lower dimension, for very good reason, otherwise one is learning noise rather than signal. It would be great to have a discussion on the feasibility of the method as is for such noisy data and provide users with guidance. We note that the example scRNA-seq data included in the paper is denoised using imputation, which will likely result in the trajectory inference being oversmoothed as well.

      We agree with the reviewer. In our manuscript we wanted to showcase that tviblindi can directly operate in high-dimensional space (thousands of dimensions) and we used MAGIC imputation for this purpose. This was not ideal. More standard approach, which uses 30-50 PCs as input to the algorithm resulted in equivalent trajectories. We will add this analysis to the study.

      In summary, the fact that tviblindi scales well with dimensionality of the data and is able to work in the original space does not mean that it is always the best option. We will emphasize in the revised paper that we aim to avoid the non-linear dimensional reduction techniques as a data preprocessing tool, as the effect of the reduction is difficult to predict. We will also discuss the preprocessing of scRNA-seq data in greater detail.

      Reviewer #3 (Public Review):

      Summary:

      Stuchly et al. proposed a single-cell trajectory inference tool, tviblindi, which was built on a sequential implementation of the k-nearest neighbor graph, random walk, persistent homology and clustering, and interactive visualization. The paper was organized around the detailed illustration of the usage and interpretation of results through the human thymus system.

      Strengths:

      Overall, I found the paper and method to be practical and needed in the field. Especially the in-depth, step-by-step demonstration of the application of tviblindi in numerous T cell development trajectories and how to interpret and validate the findings can be a template for many basic science and disease-related studies. The videos are also very helpful in showcasing how the tool works.

      Weaknesses:

      I only have a few minor suggestions that hopefully can make the paper easier to follow and the advantage of the method to be more convincing.

      (1) The "Computational method for the TI and interrogation - tviblindi" subsection under the Results is a little hard to follow without having a thorough understanding of the tviblindi algorithm procedures. I would suggest that the authors discuss the uniqueness and advantages of the tool after the detailed introduction of the method (moving it after the "Connectome - a fully automated pipeline".

      We thank the reviewer for the suggestion and we will accommodate it to improve readability of the text.

      Also, considering it is a computational tool paper, inevitably, readers are curious about how it functions compared to other popular trajectory inference approaches. I did not find any formal discussion until almost the end of the supplementary note (even that is not cited anywhere in the main text). Authors may consider improving the summary of the advantages of tviblindi by incorporating concrete quantitative comparisons with other trajectory tools.

      We provide comparisons of tviblindi and vaevictis in the Supplementary Note, section 8.2, where we compare it to Monocle3 (v1.3.1) Cao et al. (2019), Stream (v1.1) Chen et al. (2019), Palantir (v1.0.0) Setty et al. (2019), VIA (v0.1.89) Stassen et al. (2021) and PAGA (scanpy==1.9.3) Wolf et al. (2019). We use two datasets: artificial Dyntoy and real mass cytometry thymus+peripheral blood dataset. We will also add CellRank2 into comparisons and we will strengthen the message of the benchmarking results in the Discussion section.

      (2) Regarding the discussion in Figure 4 the trajectory goes through the apoptotic stage and reconnects back to the canonical trajectory with counterintuitive directionality, it can be a checkpoint as authors interpret using their expert knowledge, or maybe a false discovery of the tool. Maybe authors can consider running other algorithms on those cells and see which tracks they identify and if the directionality matches with the tviblindi.

      We have indeed used the thymus dataset for comparison of all TI algorithms listed above. Except for Monocle 3 they failed to discover the negative selection branch (Monocle 3 does not offer directionality information). Therefore, a valid topological trajectory with incorrect (expert-corrected) directionality was partly or entirely missed by other algorithms.

      (3) The paper mainly focused on mass cytometry data and had a brief discussion on scRNA-seq. Can the tool be applied to multimodality data such as CITE-seq data that have both protein markers and gene expression? Any suggestions if users want to adapt to scATAC-seq or other epigenomic data?

      The analysis of multimodal data is the logical next step and is the topic of our current research. At this moment tviblindi cannot be applied directly to multimodal data. It is possible to use the KNN-graph based on multimodal data (such as weighted nearest neighbor graph implemented in Seurat) for pseudotime calculation and random walk simulation. However, we do not have a fully developed triangulation for the multimodal case yet.

    2. Reviewer #2 (Public Review):

      Summary: In Deconstructing Complexity: A Computational Topology Approach to Trajectory Inference in the Human Thymus with tviblindi, Stuchly et al. propose a new trajectory inference algorithm called tviblindi and a visualization algorithm called vaevictis for single-cell data. The paper utilizes novel and exciting ideas from computational topology coupled with random walk simulations to align single cells onto a continuum. The authors validate the utility of their approach largely using simulated data and establish known protein expression dynamics along CD4/CD8 T cell development in thymus using mass cytometry data. The authors also apply their method to track Treg development in single-cell RNA-sequencing data of human thymus.

      The technical crux of the method is as follows: The authors provide an interactive tool to align single cells along a continuum axis. The method uses expected hitting time (given a user input start cell) to obtain a pseudotime alignment of cells. The pseudotime gives an orientation/direction for each cell, which is then used to simulate random walks. The random walks are then arranged/clustered based on the sparse region in the data they navigate using persistent homology.

      Strengths:<br /> The notion of using persistent homology to group random walks to identify trajectories in the data is novel.<br /> The strength of the method lies in the implementation details that make computationally demanding ideas such as persistent homology more tractable for large scale single-cell data. This enables the authors to make the method more user friendly and interactive allowing real-time user query with the data.

      Weaknesses:<br /> The interactive nature of the tool is also a weakness, by allowing for user bias leading to possible overfitting for a specific data.

      The main weakness of the method is lack of benchmarking the method on real data and comparison to other methods. Trajectory inference is a very crowded field with many highly successful and widely used algorithms, the two most relevant ones (closest to this manuscript) are not only not benchmarked against, but also not sited. Including those that specifically use persistent homology to discover trajectories (Rizvi et.al. published Nat Biotech 2017). Including those that specifically implement the idea of simulating random walks to identify stable states in single-cell data (e.g. CellRank published in Lange et.al Nat Meth 2022), as well as many trajectory algorithms that take alternative approaches. The paper has much less benchmarking, demonstration on real data and comparison to the very many other previous trajectory algorithms published before it. Generally speaking, in a crowded field of previously published trajectory methods, I do not think this one approach will compete well against prior work (especially due to its inability to handle the noise typical in real world data (as was even demonstrated in the little bit of application to real world data provided).

      Beyond general lack of benchmarking there are two issues that give me particular concern. As previously mentioned, the algorithm is highly susceptible to user bias and overfitting. The paper gives the example (Figure 4) of a trajectory which mistakenly shows that cells may pass from an apoptotic phase to a different developmental stage. To circumvent this mistake, the authors propose the interactive version of tviblindi that allows users to zoom in (increase resolution) and identify that there are in fact two trajectories in one. In this case, the authors show how the author can fix a mistake when the answer is known. However, the point of trajectory inference is to discover the unknown. With so much interactive options for the user to guide the result, the method is more user/bias driven than data-driven. So a rigorous and quantitative discussion of robustness of the method, as well as how to ensure data-driven inference and avoid over-fitting would be useful.

      Second, the paper discusses the benefit of tviblindi operating in the original high dimensions of the data. This is perhaps adequate for mass cytometry data where there is less of an issue of dropouts and the proteins may be chosen to be large independent. But in the context of single-cell RNA-sequencing data, the massive undersampling of mRNA, as well as high degree of noise (e.g. ambient RNA), introduces very large degree of noise so that modeling data in the original high dimensions leads to methods being fit to the noise. Therefore ALL other methods for trajectory inference work in a lower dimension, for very good reason, otherwise one is learning noise rather than signal. It would be great to have a discussion on the feasibility of the method as is for such noisy data and provide users with guidance. We note that the example scRNA-seq data included in the paper is denoised using imputation, which will likely result in the trajectory inference being oversmoothed as well.

    1. Skip to main content <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-WRSZQF8&gtm_auth=74eL4wQLYRNQ18AwQITlNA&gtm_preview=&gtm_cookies_win=x&noscript=true" height="0" width="0" style="display:none;visibility:hidden"></iframe> $(function(){ var bloxServiceIDs = []; var bloxUserServiceIds = []; var dataLayer = window.dataLayer || []; bloxServiceIDs.push(); if (__tnt.user.services){ var bloxUserServiceIDs = __tnt.user.services.replace('%2C',',').split(','); } // GTM tncms.subscription.paid_access_service_ids if(bloxServiceIDs){ dataLayer.push({'tncms':{'subscription':{'access_service_ids':bloxServiceIDs.toString()}}}); } // GTM tncms.subscrption.user_service_ids if(bloxUserServiceIDs){ dataLayer.push({'tncms':{'subscription':{'user_service_ids':bloxUserServiceIDs.toString()}}}); } }); Toronto.com Home News Business Council Crime Municipal Election Provincial Election Federal Election Bloor West - Parkdale Beach - East York Etobicoke North York Scarborough York - City Centre Topics Events Arts Attractions Community Festivals and Fairs Music Seasonal Shows and Expos Sports Things to Do Books And Authors Contests Food And Drink Opinion Advice Columns Community Voices Editorial Letters Life Fashion And Beauty Obituaries Personal Finance Real Estate Travel Wellness Wheels Special Features Marketplace Readers' Choice Awards Sponsored and Partners Classifieds Site search googletag.cmd.push(function() { googletag.display('ad-1356160'); }); 19°C Wednesday, May 8, 2024 Facebook Twitter Instagram { "@context" : "https://schema.org", "@type" : "Organization", "url" : "http://www.toronto.com", "sameAs" : ["https://www.facebook.com/torontodotcom","https://twitter.com/torontodotcom","https://www.instagram.com/torontodotcom/?hl=en"] } Menu Toronto.com Home News Business Council Crime Municipal Election Provincial Election Federal Election Bloor West - Parkdale Beach - East York Etobicoke North York Scarborough York - City Centre Topics Events Arts Attractions Community Festivals and Fairs Music Seasonal Shows and Expos Sports Things to Do Books And Authors Contests Food And Drink Opinion Advice Columns Community Voices Editorial Letters Life Fashion And Beauty Obituaries Personal Finance Real Estate Travel Wellness Wheels Special Features Marketplace Readers' Choice Awards Sponsored and Partners Classifieds googletag.cmd.push(function() { googletag.display('ad-1360687'); }); googletag.cmd.push(function() { googletag.display('ad-1168968'); }); News Bank of Canada continuing work on updating ‘workhorse’ $20 bill — will feature King Charles III The new $20 note will be vertical, like the current $10 note, and will feature enhanced secu… News Canadian mint commemorates anniversary of King Charles III's coronation with silver dollar collector coin News Toronto's May 8 forecast: Chance of showers By Torstar Open Data Team News Things To Do 16 must-visit holiday events to check out across Ontario before the festive season officially ends From sparkling light festivals to immersive walk-through experiences, check out these festive happenings before the holiday season officially ends News ‘Shines a light’: Canada Post reveals 2024 stamp lineup By Hunter Crowther Canada Post says these stamps will ‘shine a light on truth and reconciliation, the natural world, accomplished Canadians, a rare space sighting and much more’ News Toronto's May 8 forecast: Chance of showers By Torstar Open Data Team News What is the May 2-4 long weekend and why isn't it on the 24th? By Heidi Riedner News Ontario preparing for extreme heat emergencies — are you? Things to Do Things To Do Colm Tóibín never planned a sequel to 'Brooklyn.' Then the opening scene of 'Long Island' came out of the blue By Steven W. Beattie Special to the Star "Long Island" is another brick in the wall of a writer quietly building an edifice that marks him as a master of contemporary literature. Just don’t compare him to James Joyce. Things To Do A relentlessly honest depiction of motherhood: In her debut novel, theatre artist Erin Brubacher explores the hope and heartbreak of creating a child By Aisling Murphy Brubacher’s novel, “These Songs I Know By Heart,” shows off the same flair for dramatic intimacy that makes her such a sought-after collaborator in the theatre world. Things To Do More than 40 music festivals await you in Ontario for 2024 this spring, summer, fall Things To Do A Negroni journey: I travelled to Italy to sip my favourite cocktail in Venice, Florence and Rome By Tim Johnson Special to the Star Contributed Children’s books on nature, dancing, self-confidence and signing! By Glenn Perrett Trending My husband quit his job to pursue his passion. Turns out his 'passion' is his stunning trainer. You won't believe how I caught them. Ask Lisi My friend is so cute and sweet, but he's never had a girlfriend. I think I know why — but telling him might break his heart. Should I do it anyway? Ask Lisi I moved after my husband died and met a man and his young son. One day, we all watched a snail in my garden for 10 minutes. I think the man's wife died. Should I ask him? Ask Lisi My boyfriend is rich — like, rich rich. His mother has never worked and she assumes that I'll give up my dental hygienist career when we get married. Do I have to? Ask Lisi My daughter is getting married. My ex isn't ponying up a dime and refuses to walk our child down the aisle. But now his sister is insisting that his name should be on the invite. No, right? Ask Lisi googletag.cmd.push(function() { googletag.display('ad-1168977'); }); Events Calendar Life Life My friend group is in crisis. Some of them make a ton of money. Most of us don't. Is our friendship doomed? Ask Lisi By Lisi Tesher And Lisi shares thoughtful reader feedback. Life My boyfriend is rich — like, rich rich. His mother has never worked and she assumes that I'll give up my dental hygienist career when we get married. Do I have to? Ask Lisi By Lisi Tesher And Lisi advises a letter writer who is struggling to understand her professor. Life Zendaya, Demi Moore and Lana Del Rey were the 2024 Met Gala best dressed By Liz Guber Life My friend is so cute and sweet, but he's never had a girlfriend. I think I know why — but telling him might break his heart. Should I do it anyway? Ask Lisi By Lisi Tesher Things To Do A Negroni journey: I travelled to Italy to sip my favourite cocktail in Venice, Florence and Rome By Tim Johnson Special to the Star Food & Drink News Starbucks unveiling several new menu items across Canada May 7 and people already have strong reactions online By Louie Rosella Available now. Food And Drink Dairy Queen unveils new Blizzard menu items at restaurants across Canada and people are reacting online By Louie Rosella Available for a limited time. Food And Drink It's time to weigh in on the KitKat break debate with #MyBreak social media posts By Bruce Froude Updated Apr 18, 2024 Food And Drink Tim Hortons to start selling pizza April 17 at restaurants and coffee shops across Canada and the online response has been huge By Louie Rosella Updated Apr 29, 2024 Food And Drink Starbucks and A&W unveil new menu items at restaurants and coffee shops across Canada and here's what people are saying online By Louie Rosella Updated Apr 15, 2024 Opinion Contributed Children’s books on nature, dancing, self-confidence and signing! By Glenn Perrett Glenn Perrett's latest list of recommended books for young readers includes “The Art of Rewilding: The Return of Yellowstone’s Wolves,” “Why We Dance: A Story of Hope and Healing” and “Butterfly On the Wind.” Contributed Tool gift ideas for Mother's Day and Father's Day By Glenn Perrett If you're looking for a gift for mom or dad this spring, Glenn Perrett recommends considering these tools from DeWalt, Irwin and Craftsman. Contributed Education workers frustrated for students as province promises change, delivers more of the same cuts and distraction: union Editorials Monday's highway carnage is yet more proof that police chases are never worth the risk By Star Editorial Board Money Matters ASK THE MONEY LADY: Should I skip the pre-nup to save on legal fees? By Christine Ibbotson googletag.cmd.push(function() { googletag.display('ad-1168974'); }); @media (min-width:768px) { .newsletterSignup {display: flex;justify-content: center;align-items: center;} } .newsletterSignup {background-color: #c4e4c2;text-align:center;padding:15px} .newsletterText {color:black;font-size:20px;/*font-weight:700*/} .newsletterText small {font-family: 'Source Sans Pro', sans-serif; letter-spacing: .10ch;} .newsletterText p { margin: 5px 0;line-height:1;} .newsletterSignupButton{color:white;background-color:#006633;display:inline-block;text-transform: uppercase;font-family: 'Source Sans Pro', sans-serif; letter-spacing: .10ch;-webkit-transition: background .3s ease-in-out; -moz-transition: background .3s ease-in-out; -ms-transition: background .3s ease-in-out; -o-transition: background .3s ease-in-out; transition: background .3s ease-in-out;} .newsletterSignupButton:hover {background-color:#00ac56;color:white} @media (max-width:767px) { .newsletterText {font-size:18px;margin-bottom:15px;} } @media (min-width:992px) { .main-sidebar .newsletterSignup {display: block; max-width: 300px; margin: auto;} } .main-sidebar .newsletterSignup .col-md-8, .main-sidebar .newsletterSignup .col-md-4 {width:100%;} .main-sidebar .newsletterText {font-size:18px;margin-bottom:15px;} HEADLINES NEWSLETTER TOP STORIES, delivered to your inbox. Sign Up Follow us on Facebook (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.5&appId=1550124928647000"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); TOP STORIES, delivered to your inbox.Headlines Newsletter Sign Up googletag.cmd.push(function() { googletag.display('ad-1202244'); }); More News News 'A meaningful difference': Annual McHappy Day returns to McDonald's restaurants for 30th year on May 8 to raise money for charity News 'Critical service': What's happening May 15 on phones in Ontario and what you need to know about it By Louie Rosella News Toronto's May 6 forecast: Mainly sunny By Torstar Open Data Team News Toronto's May 5 forecast: Showers By Torstar Open Data Team Crime TIMELINE OF A TRAGEDY: It started as a liquor store robbery in Bowmanville and ended with four dead on Highway 401 in Whitby By Bruce Froude News Grade 11, 12 students to have more access to skilled trades through co-op programming News Skilled trades in Ontario: What are the industries and jobs in most need? News No GO Train or bus service available May 3 to 5 from Pickering GO to Toronto Union News Toronto's May 3 forecast: Chance of showers By Torstar Open Data Team googletag.cmd.push(function() { googletag.display('ad-1168986'); }); Follow us on Twitter (function(w, d) { var twitterWidget = { init: function () { var twitHolder = d.getElementById("tncms-block-1366069").parentNode, widget = d.getElementById("twitter-widget-1366069"); function handleIntersection(entries) { entries.map((entry) => { if (entry.isIntersecting) { twttr.widgets.createTimeline( { sourceType: "profile", screenName: "torontodotcom" }, d.getElementById("twitter-widget-1366069"), { height: '350' } ).then(function (el) {} ); observer.unobserve(entry.target); } }); } const options = { threshold: 0.1 } const observer = new IntersectionObserver(handleIntersection, options); observer.observe(widget); } } if (d.readyState == "loading") { d.onreadystatechange = function () { if (d.readyState == "complete") { twitterWidget.init(); } } } else { twitterWidget.init(); } })(window, document); googletag.cmd.push(function() { googletag.display('ad-1168962'); }); Helpful Links Classifieds Digital Editions Marketplace Obituaries Sitemap Toronto.com Readers Choice Metroland Gives Back Walk-In Clinics Connect with us About Us Advertising Standards Become a Carrier Contact Us Delivery Concerns Newsletter Signup Feedback Submit a Letter Submit Multimedia Contact Information Phone: 1-833-440-7474 Email: newsroom@toronto.com Follow Us Facebook Twitter Instagram { "@context" : "https://schema.org", "@type" : "Organization", "url" : "http://www.toronto.com", "sameAs" : ["https://www.facebook.com/torontodotcom","https://twitter.com/torontodotcom","https://www.instagram.com/torontodotcom/?hl=en"] } × Browser Compatibility Your browser is out of date and potentially vulnerable to security risks.We recommend switching to one of the following browsers: Microsoft Edge Google Chrome Firefox Copyright 2023 Toronto Star Newspapers Limited. All Rights Reserved. 8 Spadina Avenue, Suite 10A, Toronto, ON M5V 0S8 Corporate Privacy Policy | Terms of Use | Advertising Terms | Accessibility googletag.cmd.push(function() { googletag.display('ad-1168980'); }); window.__tnt = window.__tnt || {}; __tnt.compatibility = __tnt.compatibility || {}; __tnt.compatibility.status = ''; __tnt.compatibility.check = function() { if (typeof __tnt.advertisements == 'undefined') { __tnt.compatibility.status = 'FAIL: object 0 undefined'; return false; } return true; }; __tnt.compatibility.notification = function() { }; (function() { function compatibilityCheck() { if (!__tnt.compatibility.check()) { __tnt.trackEvent({ 'category':'subscription', 'action':'adblock', 'label':'adblock detected', 'value':'1' }); __tnt.compatibility.notification(); } } if (document.readyState != 'loading') { compatibilityCheck(); } else { document.addEventListener('DOMContentLoaded', compatibilityCheck); } })(); jQuery(function() { if(typeof TNCMS.Tracking != 'undefined'){ jQuery(TNCMS.Tracking.trackDeclarativeEvents); }}); __tnt.trackEvent = function(obj) { if (typeof obj === 'object') { if (obj.category && obj.action) { __tnt.googleEvent(obj); } else if (obj.network && obj.socialAction) { __tnt.googleSocial(obj); } else if (obj.url) { __tnt.googlePageView(obj); } if (typeof TNCMS.Tracking != 'undefined' && obj.metric) { TNCMS.Tracking.addEvent({ app: obj.app, metric: obj.metric, id: obj.uuid }); } } }; if (__tnt.trackEventLater.length > 0) { __tnt.trackEventLater.forEach(function(obj) { __tnt.trackEvent(obj); }); } Array.from(document.querySelectorAll('body [data-track]')).forEach(function(el) { el.addEventListener(__tnt.client.clickEvent, function() { __tnt.trackEvent(JSON.parse(el.dataset.track)); }); }); Array.from(document.querySelectorAll('body [data-tncms-track-event]')).forEach(function(el) { el.addEventListener(__tnt.client.clickEvent, function() { __tnt.trackEvent(JSON.parse(el.dataset.tncmsTrackEvent)); }); }); Array.from(document.querySelectorAll('body [data-tncms-track-dmp]')).forEach(function(el) { el.addEventListener(__tnt.client.clickEvent, function() { var dmpData = el.dataset.tncmsTrackDmp; }); }); /*<![CDATA[*/ __tnt.googleEvent = function(obj) { dataLayer.push({ 'event': 'tncms.event.trigger', 'tncms.event.trigger.category': obj.category, 'tncms.event.trigger.action': obj.action, 'tncms.event.trigger.label': obj.label, 'tncms.event.trigger.value': obj.value }); } /* Virtual page view */ __tnt.googlePageView = function(obj) { var sURL = obj.url.replace(/^.*\/\/[^\/]+/, ''); dataLayer.push({ 'event': 'tncms.event.virtual_pageview', 'tncms.event.virtual_pageview.url': sURL, 'tncms.event.virtual_pageview.title': obj.title, 'tncms.event.virtual_pageview.metric': obj.metric }); } /* Social event */ __tnt.googleSocial = function(obj) { dataLayer.push({ 'event': 'tncms.event.social', 'tncms.event.social.network': obj.network, 'tncms.event.social.action': obj.socialAction, 'tncms.event.social.target': obj.url }); } /*]]>*/ /*<![CDATA[*/ { "@context": "https://schema.org", "@type": "WebSite", "url": "https://www.toronto.com", "potentialAction": { "@type": "SearchAction", "target": "https://www.toronto.com/search?q={search_term_string}", "query-input": "required name=search_term_string" } } /*]]>*/ /*<![CDATA[*/ (function(d) { var form = d.getElementById('site-search-1168614'), query_input = d.getElementById('site-search-1168614-term'), search_dropdown = d.getElementById('site-search-1168614-dropdown'); /** Input focus */ try { search_dropdown.onmouseenter = function(){ setTimeout(function(){ query_input.focus(); }, 700); }; } catch (error) { // No dropdown behavior } /** Submit handler */ form.onsubmit = function(){ // Filter query var elem = document.querySelector("#site-search-1168614 input[name=q]"), sQueryFiltered = elem.value.replace(/\?/g, ''); elem.value = sQueryFiltered; // No submit if empty input if( query_input.val() ){ return true; } else{ return false; } };})(document); /*]]>*/ /*<![CDATA[*/ !function(t,i,n){var e,a,s,o,c,d={init:function(){a=i.getElementById("site-navbar-container"),n.client.platform.ios?a.classList.add("affix-sticky"):(e=i.getElementById("main-body-container"),s=a.offsetHeight||a.clientHeight,o=!1,c=0,t.addEventListener("scroll",d.navPosition,!1),t.addEventListener("mousewheel",d.navPosition,!1))},navPosition:function(){o||(o=!0,setTimeout(function(){var n=a.getBoundingClientRect(),d=t.pageYOffset||i.documentElement.scrollTop,f=n.top+d;d>=f&&d>c?a.classList.contains("affix")||(c=f,a.classList.add("affix"),a.classList.remove("affix-top"),e.style.marginTop=s+"px"):a.classList.contains("affix-top")||(a.classList.remove("affix"),a.classList.add("affix-top"),e.style.marginTop="0px"),o=!1},25))}};"loading"==i.readyState?i.addEventListener("DOMContentLoaded",d.init,!1):d.init()}(window,document,__tnt); document.addEventListener('DOMContentLoaded', function() { var isIOS = /iPad|iPhone|iPod/.test(navigator.userAgent) && !window.MSStream; if (isIOS) { Array.from(document.querySelectorAll('[data-toggle="offcanvas"]')).forEach(function(drawer) { drawer.addEventListener("mouseover", function(e) { var drawerCls = drawer.dataset.target === 'left' ? 'active-left' : 'active-right'; document.documentElement.classList.add('drawer-open', drawerCls); }) }) } }); /*]]>*/ /*<![CDATA[*/ (function() { window.addEventListener('load', function() { __tnt.regions.stickySide.init(document.getElementById('sticky-side-primary'), document.getElementById('sticky-side-primary-spacer'), 'siderail', '.row'); }); })(); /*]]>*/ /*<![CDATA[*/ (function() { window.addEventListener('load', function() { __tnt.regions.stickySide.init(document.getElementById('sticky-side-secondary'), document.getElementById('sticky-side-secondary-spacer'), 'siderail', '.row'); }); })(); /*]]>*/ /*<![CDATA[*/ (function() { window.addEventListener('load', function() { __tnt.regions.stickySide.init(document.getElementById('sticky-side-tertiary'), document.getElementById('sticky-side-tertiary-spacer'), 'siderail', '.row'); }); })(); /*]]>*/ /*<![CDATA[*/ document.addEventListener("DOMContentLoaded", __tnt.deprecatedCheck, false); /*]]>*/ /*<![CDATA[*/ __tnt.regions.stickyAnchor.init(); /*]]>*/ _satellite["_runScript1"](function(event, target, Promise) { var existingEcid = _satellite.getVar('cookie:s_ecid'); if (!existingEcid){ var ecid = _satellite.getVisitorId().getMarketingCloudVisitorID(); if (ecid){ var now = new Date(); var time = now.getTime(); var expireTime = time + 1000 * 60 * 60 * 24 * 730; now.setTime(expireTime); var cookieName = "s_ecid"; var cookieValue = "MCMID|" + _satellite.getVisitorId().getMarketingCloudVisitorID(); cookieValue = encodeURIComponent(cookieValue); var cookieString = ""; cookieString = cookieName +'=' + cookieValue + ';expires=' + now.toGMTString() + ';path=/;domain=' + _satellite.getVar('processed:MainDomain'); document.cookie = cookieString; } } });_satellite["_runScript2"](function(event, target, Promise) { "no"===_satellite.getVar("processed:UserLoggedInState")?sessionStorage.setItem("cls","false"):sessionStorage.setItem("cls2","false"); });!function(){var a=window.analytics=window.analytics||[];if(!a.initialize)if(a.invoked)window.console&&console.error&&console.error("Segment snippet included twice.");else{a.invoked=!0;a.methods="trackSubmit trackClick trackLink trackForm pageview identify reset group track ready alias debug page once off on addSourceMiddleware addIntegrationMiddleware setAnonymousId addDestinationMiddleware".split(" ");a.factory=function(b){return function(){var c=Array.prototype.slice.call(arguments);c.unshift(b); a.push(c);return a}};for(var e=0;e<a.methods.length;e++){var f=a.methods[e];a[f]=a.factory(f)}a.load=function(b,c){var d=document.createElement("script");d.type="text/javascript";d.async=!0;d.src="https://cdn.segment.com/analytics.js/v1/"+b+"/analytics.min.js";b=document.getElementsByTagName("script")[0];b.parentNode.insertBefore(d,b);a._loadOptions=c};a._writeKey="YNwPRuYDOjrAr7O9PCSVIw1QoK0Oimn6";a.SNIPPET_VERSION="4.15.3";a.debug(google_tag_manager["rm"]["61227858"](44));a.load("YNwPRuYDOjrAr7O9PCSVIw1QoK0Oimn6");a.ready(function(){var b= window.analytics.user();sUserId=null;b&&(sUserId=b.id()||b.anonymousId());b=new CustomEvent("TownnewsSegmentLoaded",{detail:{analytics:window.analytics,user_id:sUserId}});window.document.dispatchEvent(b)})}}();_satellite["_runScript3"](function(event, target, Promise) { var adWordsPixelId=_satellite.getVar("processed:AdWordsPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{if(adWordsPixelId&&"x"!==adWordsPixelId.accountId){var googleConversionScript=document.createElement("script");function gtag(){dataLayer.push(arguments)}googleConversionScript.type="text/javascript",googleConversionScript.src="https://www.googletagmanager.com/gtag/js?id="+adWordsPixelId.accountId,googleConversionScript.async=!0,document.getElementsByTagName("head")[0].appendChild(googleConversionScript),window.dataLayer=window.dataLayer||[],gtag("config",adWordsPixelId.accountId),setTimeout((function(){!window.newsletterSignupG&&!0===window.atLeastOneSubscribe&&adWordsPixelId.use.newsletterSuccess&&(gtag("event","conversion",{send_to:adWordsPixelId.accountId+"/"+adWordsPixelId.use.newsletterSuccess}),window.newsletterSignupG=!0)}),400)}}catch(e){} });_satellite["_runScript4"](function(event, target, Promise) { var doubleClickPixelId=_satellite.getVar("processed:DoubleClickPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{if(doubleClickPixelId&&"x"!==doubleClickPixelId.accountId){var doubleclickScript=document.createElement("script");function gtag(){dataLayer.push(arguments)}doubleclickScript.type="text/javascript",doubleclickScript.src="https://www.googletagmanager.com/gtag/js?id="+doubleClickPixelId.accountId,doubleclickScript.async=!0,document.getElementsByTagName("head")[0].appendChild(doubleclickScript),window.dataLayer=window.dataLayer||[],gtag("config",doubleClickPixelId.accountId),doubleClickPixelId.use.allPages&&gtag("event","conversion",{allow_custom_scripts:!0,send_to:doubleClickPixelId.accountId+"/"+doubleClickPixelId.use.allPages})}}catch(e){} });_satellite["_runScript5"](function(event, target, Promise) { function waitForTwq(t){counter++,"undefined"!=typeof twq?t():counter>500||setTimeout((function(){waitForTwq(t)}),100)}var twitterPixelId=_satellite.getVar("processed:TwitterPixelJSON"),template=_satellite.getVar("processed:Template"),counter=0;try{twitterPixelId&&"x"!=twitterPixelId.accountId&&"undefined"==typeof twq&&function(t,e,i,n,o,r){t.twq||(n=t.twq=function(){n.exe?n.exe.apply(n,arguments):n.queue.push(arguments)},n.version="1.1",n.queue=[],(o=e.createElement(i)).async=!0,o.src="//static.ads-twitter.com/uwt.js",(r=e.getElementsByTagName(i)[0]).parentNode.insertBefore(o,r))}(window,document,"script")}catch(t){}waitForTwq((function(){twq("config",twitterPixelId.accountId)})); });_satellite["_runScript6"](function(event, target, Promise) { var redditPixelId=_satellite.getVar("processed:RedditPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{redditPixelId&&"x"!==redditPixelId.accountId&&(!function(e,t){if(!e.rdt){var a=e.rdt=function(){a.sendEvent?a.sendEvent.apply(a,arguments):a.callQueue.push(arguments)};a.callQueue=[];var d=t.createElement("script");d.src="https://www.redditstatic.com/ads/pixel.js",d.async=!0;var r=t.getElementsByTagName("script")[0];r.parentNode.insertBefore(d,r)}}(window,document),rdt("init",redditPixelId.accountId,{optOut:!1,useDecimalCurrencyValues:!0}),rdt("track","PageVisit"))}catch(e){} });_satellite["_runScript7"](function(event, target, Promise) { var linkedInPixelId=_satellite.getVar("processed:LinkedInPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{linkedInPixelId&&"x"!==linkedInPixelId.accountId&&(_linkedin_partner_id=linkedInPixelId.accountId,window._linkedin_data_partner_ids=window._linkedin_data_partner_ids||[],window._linkedin_data_partner_ids.push(_linkedin_partner_id),function(){window.lintrk||(window.lintrk=function(e,n){window.lintrk.q.push([e,n])},window.lintrk.q=[]);var e=document.getElementsByTagName("script")[0],n=document.createElement("script");n.type="text/javascript",n.async=!0,n.src="https://snap.licdn.com/li.lms-analytics/insight.min.js",e.parentNode.insertBefore(n,e)}())}catch(e){} });_satellite["_runScript8"](function(event, target, Promise) { var bingPixelId=_satellite.getVar("processed:BingPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{bingPixelId&&"x"!==bingPixelId.accountId&&function(e,t,a,n,i){var o,c,l;e[i]=e[i]||[],o=function(){var t={ti:bingPixelId.accountId};t.q=e[i],e[i]=new UET(t),e[i].push("pageLoad")},(c=t.createElement(a)).src=n,c.async=1,c.onload=c.onreadystatechange=function(){var e=this.readyState;e&&"loaded"!==e&&"complete"!==e||(o(),c.onload=c.onreadystatechange=null)},(l=t.getElementsByTagName(a)[0]).parentNode.insertBefore(c,l)}(window,document,"script","//bat.bing.com/bat.js","uetq")}catch(e){} });_satellite["_runScript9"](function(event, target, Promise) { var pinterestPixelId=_satellite.getVar("processed:PinterestPixelJSON"),pageType=_satellite.getVar("processed:PageType"),template=_satellite.getVar("processed:Template");try{pinterestPixelId&&"x"!==pinterestPixelId.accountId&&(!function(e){if(!window.pintrk){window.pintrk=function(){window.pintrk.queue.push(Array.prototype.slice.call(arguments))};var t=window.pintrk;t.queue=[],t.version="3.0";var r=document.createElement("script");r.async=!0,r.src=e;var i=document.getElementsByTagName("script")[0];i.parentNode.insertBefore(r,i)}}("https://s.pinimg.com/ct/core.js"),pintrk("load",pinterestPixelId.accountId),pintrk("page"))}catch(e){} }); var janrainUUID=_satellite.getVar("processed:UserScreenNameJanrainUUID"),loggedIn=_satellite.getVar("processed:UserLoggedInState"),entitled=_satellite.getVar("processed:Entitlement"),siteLevelUserId=_satellite.getVar("processed:SiteLevelUserId"),hubLevelUserId=_satellite.getVar("processed:HubLevelUserId"),scrollIncrement=0,AMCID=_satellite.getVar("processed:VisitorID"),wordCount=_satellite.getVar("var:WordCount"),plan="";"yes"===loggedIn&&(plan="no"===entitled?"registered":"subscribed"),function(e,t,o){var r=o.location.protocol,i=t+"-"+e,d=o.getElementById(i),c=o.getElementById(t+"-root"),l="https:"===r?"d1z2jf7jlzjs58.cloudfront.net":"static."+t+".com";d||((d=o.createElement(e)).id=i,d.async=!0,d.src=r+"//"+l+"/p.js",c.appendChild(d))}("script","parsely",document);try{function trackScroll(e,t){PARSELY.beacon&&PARSELY.beacon.trackPageView({action:"_scroll",data:{_scrollIncrement:e,_scrollMethod:t,_y:Math.round(window.scrollY),_bodyHeight:window.document.body.clientHeight,_articleTop:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().top+window.scrollY):void 0,_articleBottom:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().bottom+window.scrollY):void 0,_articleMidway:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().top+window.scrollY+window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').clientHeight/2):void 0}})}window.PARSELY=window.PARSELY||{autotrack:!1,video:{autotrack:!1},onload:function(){PARSELY.updateDefaults({data:{plan:plan,janrain_uuid:janrainUUID,site_level_uuid:siteLevelUserId,hub_level_uuid:hubLevelUserId,adobe_mcid:AMCID,word_count:wordCount}}),PARSELY.beacon.trackPageView({url:window.location.href,urlref:document.referrer,data:{_scrollIncrement:0,_scrollMethod:"pageview",_y:Math.round(window.scrollY),_bodyHeight:window.document.body.clientHeight,_articleTop:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().top+window.scrollY):void 0,_articleBottom:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().bottom+window.scrollY):void 0,_articleMidway:window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking')?Math.round(window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').getBoundingClientRect().top+window.scrollY+window.document.querySelector('div[class*="asset-body"],div#SA_article_tracking').clientHeight/2):void 0},js:1})},onHeartbeat:function(){scrollIncrement++,scrollMethod="heartbeat",trackScroll(scrollIncrement,scrollMethod)}},window.setInterval((function(){scrollIncrement++,scrollMethod="setinterval",trackScroll(scrollIncrement,scrollMethod)}),1e4)}catch(e){} _satellite["_runScript10"](function(event, target, Promise) { setTimeout((function(){if("true"===sessionStorage.getItem("createAccountSubmittedP")&&("thestar|page|create-account-traditional"!==_satellite.getVar("processed:PageName")||!window.document.querySelector("#system_errors"))){function e(t){window.PARSELY&&window.PARSELY.beacon?(PARSELY.conversions.trackLeadCapture("registration-success"),sessionStorage.removeItem("createAccountSubmittedP")):t<20&&setTimeout((function(){e(++t)}),300)}e(1)}}),500); });_satellite["_runScript11"](function(event, target, Promise) { var ele,elelist,pageType=_satellite.getVar("processed:PageType"),subPageType=_satellite.getVar("processed:SubPageType"),channel=_satellite.getVar("processed:Channel");if(window.document.querySelector("#site-top-nav-container")&&(ele=window.document.querySelector("#site-top-nav-container")).setAttribute("data-lpos","header"),window.document.querySelector("#site-header-container")&&(ele=window.document.querySelector("#site-header-container")).setAttribute("data-lpos","header"),window.document.querySelector("#main-navigation .navbar-brand")&&(ele=window.document.querySelector("#main-navigation .navbar-brand")).setAttribute("data-lpos","header"),window.document.querySelector("#main-navigation .navbar-brand #torstar-user-mobile")&&(ele=window.document.querySelector("#main-navigation .navbar-brand #torstar-user-mobile")).setAttribute("data-lpos","header|user-dropdown"),window.document.querySelector("#main-navigation")&&(ele=window.document.querySelector("#main-navigation")).setAttribute("data-lpos","main-menu"),window.document.querySelector(".offcanvas-drawer")&&(ele=window.document.querySelector(".offcanvas-drawer")).setAttribute("data-lpos","left-drawer"),window.document.querySelector("#tncms-region-nav-mobile-nav-left")&&(ele=window.document.querySelector("#tncms-region-nav-mobile-nav-left")).setAttribute("data-lpos","left-drawer|menu"),window.document.querySelectorAll(".tsAlertCarousel div.item"))for(elelist=window.document.querySelectorAll(".tsAlertCarousel div.item"),x=0;x<elelist.length;x++){if(titleEle=elelist[x].querySelector(".alertType")){var title=titleEle.innerText.trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase();elelist[x].setAttribute("data-lpos","alert|"+title)}}if(window.document.querySelector('div[class~="weather-alert"]')){var eleParent=(ele=window.document.querySelector('div[class~="weather-alert"]')).closest("div.tncms-block");eleParent.setAttribute("data-lpos","alert|weather-alert")}if(window.document.querySelector("#main-content")&&(ele=window.document.querySelector("#main-content")).setAttribute("data-lpos","main-content"),window.document.querySelector("#main-body-container")&&(ele=window.document.querySelector("#main-body-container")).setAttribute("data-lpos","main-content"),window.document.querySelector(".asset-masthead")&&"asset"===subPageType&&(ele=window.document.querySelector(".asset-masthead")).setAttribute("data-lpos","asset|header"),window.document.querySelector(".main-content-wrap")&&"asset"===subPageType&&(ele=window.document.querySelector(".main-content-wrap")).setAttribute("data-lpos","asset|body"),window.document.querySelector(".tsArticleContainer")&&"asset"===subPageType&&(ele=window.document.querySelector(".tsArticleContainer")).setAttribute("data-lpos","asset|body"),window.document.querySelector(".asset-photo")&&"asset"===subPageType&&(ele=window.document.querySelector(".asset-photo")).setAttribute("data-lpos","asset|main-multimedia"),window.document.querySelector(".articleMainArt")&&"asset"===subPageType&&(ele=window.document.querySelector(".articleMainArt")).setAttribute("data-lpos","asset|main-multimedia"),window.document.querySelectorAll("#main-body-container .social-share-links"))if(elelist=window.document.querySelectorAll("#main-body-container .social-share-links"),"asset"===subPageType)for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","asset|share-toolbar");else for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","share-toolbar");if(window.document.querySelectorAll("#main-body-container div.photo-share .social-share-links"))if(elelist=window.document.querySelectorAll("#main-body-container div.photo-share .social-share-links"),"asset"===subPageType)for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","asset|multimedia|share-toolbar");else for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","multimedia|share-toolbar");if(window.document.querySelector("#asset-below")&&"asset"===subPageType&&(ele=window.document.querySelector("#asset-below")).setAttribute("data-lpos","asset|footer"),window.document.querySelector(".related-sidebar")&&"asset"===subPageType&&(ele=window.document.querySelector(".related-sidebar")).setAttribute("data-lpos","asset|related-links"),window.document.querySelector(".articleRelatedSiblings")&&"asset"===subPageType&&(ele=window.document.querySelector(".articleRelatedSiblings")).setAttribute("data-lpos","asset|related-links"),window.document.querySelector(".asset-comments")&&"asset"===subPageType&&(ele=window.document.querySelector(".asset-comments")).setAttribute("data-lpos","asset|conversation"),window.document.querySelector(".asset-paging .prev")&&(ele=window.document.querySelector(".asset-paging .prev")).setAttribute("data-lpos","asset|previous"),window.document.querySelector(".asset-paging .next")&&(ele=window.document.querySelector(".asset-paging .next")).setAttribute("data-lpos","asset|next"),window.document.querySelector(".access-offers-in-page")&&"asset"===subPageType&&(ele=window.document.querySelector(".access-offers-in-page")).setAttribute("data-lpos","asset|wall"),window.document.querySelector(".breadcrumb")&&(ele=window.document.querySelector(".breadcrumb")).setAttribute("data-lpos","breadcrumbs"),window.document.querySelectorAll(".newsletterSignup"))for(elelist=window.document.querySelectorAll(".newsletterSignup"),x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","newsletter-signup");if(window.document.querySelector(".newsletterAnonymousSignup")&&(ele=window.document.querySelector(".newsletterAnonymousSignup")).setAttribute("data-lpos","newsletter|signup-form"),window.document.querySelectorAll("#main-body-container .tncms-block")){elelist=window.document.querySelectorAll("#main-body-container .tncms-block");var category=_satellite.getVar("processed:PrimaryCategory");for(category=category.trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase(),x=0;x<elelist.length;x++){if(titleEle=elelist[x].querySelector(".block-title-inner"))(title=titleEle.innerText.trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase()).indexOf("recommended-for-")>-1?elelist[x].setAttribute("data-lpos","recommended-content"):elelist[x].setAttribute("data-lpos",title);else elelist[x].className.indexOf("news-promo")>-1?elelist[x].innerText.toLowerCase().indexOf("newsletter")>-1||elelist[x].innerText.toLowerCase().indexOf("inbox")>-1?elelist[x].setAttribute("data-lpos","newsletter-promo"):elelist[x].setAttribute("data-lpos","promo-container-"+x):"home"===pageType?elelist[x].setAttribute("data-lpos","untitled-container-"+x):"section"===pageType&&(channel.indexOf("events")>-1?elelist[x].querySelector(".citySparkNavCategories")&&elelist[x].setAttribute("data-lpos","events|categories-filter"):elelist[x].setAttribute("data-lpos",category+"-"+x),elelist[x].className.indexOf("page-heading-breadcrumbs")>-1&&elelist[x].setAttribute("data-lpos","breadcrumbs"))}}(window.document.querySelector("#CitySpark")&&(ele=window.document.querySelector("#CitySpark")).setAttribute("data-lpos","events"),window.document.querySelector(".csTwoWrap"))&&(ele=window.document.querySelector(".csTwoWrap"),channel=(channel=_satellite.getVar("processed:Channel")).trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase(),ele.setAttribute("data-lpos",channel));if(window.document.querySelector("#CitySpark .csRoutingDetails")&&(ele=window.document.querySelector("#CitySpark .csRoutingDetails")).setAttribute("data-lpos","events|body"),"topic"===pageType&&window.document.querySelector("#main-page-container")){ele=window.document.querySelector("#main-page-container");var topicName=_satellite.getVar("processed:Channel");topicName=topicName.trim().substr(topicName.lastIndexOf("|")+1).replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase(),ele.setAttribute("data-lpos",topicName)}if(window.document.querySelector(".poll-panel")&&(ele=window.document.querySelector(".poll-panel")).setAttribute("data-lpos","poll"),window.document.querySelector("#weatherLocationSelector")&&(ele=window.document.querySelector("#weatherLocationSelector")).setAttribute("data-lpos","weather|change-location"),window.document.querySelector(".weather-container")&&(ele=window.document.querySelector(".weather-container")).setAttribute("data-lpos","weather"),window.document.querySelector("#site-footer-container")&&(ele=window.document.querySelector("#site-footer-container")).setAttribute("data-lpos","footer"),window.document.querySelector('#site-footer-container div[class*="footer-right-icons"]')&&(ele=window.document.querySelector('#site-footer-container div[class*="footer-right-icons"]')).setAttribute("data-lpos","footer|apps"),window.document.querySelector('#site-footer-container div[class*="follow-links"]')&&(ele=window.document.querySelector('#site-footer-container div[class*="follow-links"]')).setAttribute("data-lpos","footer|social-links"),window.document.querySelector("#site-copyright-container")&&(ele=window.document.querySelector("#site-copyright-container")).setAttribute("data-lpos","footer|corporate-links"),window.document.querySelector(".results-container")&&(ele=window.document.querySelector(".results-container")).setAttribute("data-lpos","search|results"),window.document.querySelector("#tnt-search-url-results")&&(ele=window.document.querySelector("#tnt-search-url-results")).setAttribute("data-lpos","search|url-results"),window.document.querySelector(".pagination-container")&&(ele=window.document.querySelector(".pagination-container")).setAttribute("data-lpos","search|pagination"),window.document.querySelector(".search-page-container")&&(ele=window.document.querySelector(".search-page-container")).setAttribute("data-lpos","search|refine-search"),window.document.querySelector("#search-form-collapse")&&(ele=window.document.querySelector("#search-form-collapse")).setAttribute("data-lpos","search|refine-search"),window.document.querySelectorAll(".promotion-service.subscription-service"))if(elelist=window.document.querySelectorAll(".promotion-service.subscription-service"),"asset"===subPageType)for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","asset|wall|subscription|card");else for(x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","subscription|card");if(window.document.querySelector("#user-main-menu-wrapper")&&(ele=window.document.querySelector("#user-main-menu-wrapper")).setAttribute("data-lpos","users|account-info"),window.document.querySelector(".users-sidebar")&&(ele=window.document.querySelector(".users-sidebar")).setAttribute("data-lpos","users|sidebar"),window.document.querySelector("#promo-designer-modal-custom-pop")){var subscriptionOverlay=!1;if((ele=window.document.querySelector("#promo-designer-modal-custom-pop")).querySelector(".promo-design-button")){var overlayAction=ele.querySelector(".promo-design-button").innerHTML;overlayAction.indexOf("subscribe")>-1&&(subscriptionOverlay=!0)}!0===subscriptionOverlay?ele.setAttribute("data-lpos","subscription|overlay"):ele.setAttribute("data-lpos","promo|overlay")}if(window.document.querySelector("#onboardingModal")&&(ele=window.document.querySelector("#onboardingModal")).setAttribute("data-lpos","onboarding|modal"),window.document.querySelector("#onboardingNewsletters")&&(ele=window.document.querySelector("#onboardingNewsletters")).setAttribute("data-lpos","onboarding|newsletters"),window.document.querySelector('#onboardingModal #onboardingSlides a[href*="apps.apple.com"]')){ele=window.document.querySelector('#onboardingModal #onboardingSlides a[href*="apps.apple.com"]');try{var parentEle=ele.parentNode.parentNode;parentEle.setAttribute("data-lpos","onboarding|apps")}catch(e){}}if(window.document.querySelectorAll(".ad-placeholder-container"))for(elelist=window.document.querySelectorAll(".ad-placeholder-container"),x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","gamp");if(window.document.querySelectorAll(".tnt-ads"))for(elelist=window.document.querySelectorAll(".tnt-ads"),x=0;x<elelist.length;x++)(ele=elelist[x]).setAttribute("data-lpos","gamp");if(window.document.querySelectorAll(".card-panel.volunteerOpportunity"))for(elelist=window.document.querySelectorAll(".card-panel.volunteerOpportunity"),x=0;x<elelist.length;x++){var titleEle=elelist[x].querySelector("div.orgHeadline"),cardOrg=elelist[x].querySelector("div.organization"),org=(title="unknown","unknown|");titleEle&&(title=titleEle.innerText.trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase()),cardOrg&&(0===(org=cardOrg.innerText.trim().replace(/[^a-zA-Z0-9]/g,"-").replace(/(-)\1+/g,"$1").toLowerCase()).indexOf("with-")&&(org=org.replace("with-","")),org+="|"),elelist[x].setAttribute("data-lpos","volunteer-card|"+org+title)} }); var _comscore=_comscore||[];_comscore.push({c1:"2",c2:"3005674"}),function(){var c=document.createElement("script"),e=document.getElementsByTagName("script")[0];c.async=!0,c.src=("https:"==document.location.protocol?"https://sb":"http://b")+".scorecardresearch.com/beacon.js",e.parentNode.insertBefore(c,e)}();

      When resizing the website, there is no change in layout (unresponsive) which means it is not robust.

  2. classroom.google.com classroom.google.com
    1. According to all known laws of aviation,

      there is no way a bee should be able to fly.

      Its wings are too small to get its fat little body off the ground.

      The bee, of course, flies anyway

      because bees don't care what humans think is impossible.

      Yellow, black. Yellow, black. Yellow, black. Yellow, black.

      Ooh, black and yellow! Let's shake it up a little.

      Barry! Breakfast is ready!

      Ooming!

      Hang on a second.

      Hello?

      Barry?

      Adam?

      Oan you believe this is happening?

      I can't. I'll pick you up.

      Looking sharp.

      Use the stairs. Your father paid good money for those.

      Sorry. I'm excited.

      Here's the graduate. We're very proud of you, son.

      A perfect report card, all B's.

      Very proud.

      Ma! I got a thing going here.

      You got lint on your fuzz.

      Ow! That's me!

      Wave to us! We'll be in row 118,000.

      Bye!

      Barry, I told you, stop flying in the house!

      Hey, Adam.

      Hey, Barry.

      Is that fuzz gel?

      A little. Special day, graduation.

      Never thought I'd make it.

      Three days grade school, three days high school.

      Those were awkward.

      Three days college. I'm glad I took a day and hitchhiked around the hive.

      You did come back different.

      Hi, Barry.

      Artie, growing a mustache? Looks good.

      Hear about Frankie?

      Yeah.

      You going to the funeral?

      No, I'm not going.

      Everybody knows, sting someone, you die.

      Don't waste it on a squirrel. Such a hothead.

      I guess he could have just gotten out of the way.

      I love this incorporating an amusement park into our day.

      That's why we don't need vacations.

      Boy, quite a bit of pomp… under the circumstances.

      Well, Adam, today we are men.

      We are!

      Bee-men.

      Amen!

      Hallelujah!

      Students, faculty, distinguished bees,

      please welcome Dean Buzzwell.

      Welcome, New Hive Oity graduating class of…

      …9:15.

      That concludes our ceremonies.

      And begins your career at Honex Industries!

      Will we pick ourjob today?

      I heard it's just orientation.

      Heads up! Here we go.

      Keep your hands and antennas inside the tram at all times.

      Wonder what it'll be like? A little scary. Welcome to Honex, a division of Honesco

      and a part of the Hexagon Group.

      This is it!

      Wow.

      Wow.

      We know that you, as a bee, have worked your whole life

      to get to the point where you can work for your whole life.

      Honey begins when our valiant Pollen Jocks bring the nectar to the hive.

      Our top-secret formula

      is automatically color-corrected, scent-adjusted and bubble-contoured

      into this soothing sweet syrup

      with its distinctive golden glow you know as…

      Honey!

      That girl was hot.

      She's my cousin!

      She is?

      Yes, we're all cousins.

      Right. You're right.

      At Honex, we constantly strive

      to improve every aspect of bee existence.

      These bees are stress-testing a new helmet technology.

      What do you think he makes? Not enough. Here we have our latest advancement, the Krelman.

      What does that do? Oatches that little strand of honey that hangs after you pour it. Saves us millions.

      Oan anyone work on the Krelman?

      Of course. Most bee jobs are small ones. But bees know

      that every small job, if it's done well, means a lot.

      But choose carefully

      because you'll stay in the job you pick for the rest of your life.

      The same job the rest of your life? I didn't know that.

      What's the difference?

      You'll be happy to know that bees, as a species, haven't had one day off

      in 27 million years.

      So you'll just work us to death?

      We'll sure try.

      Wow! That blew my mind!

      "What's the difference?" How can you say that?

      One job forever? That's an insane choice to have to make.

      I'm relieved. Now we only have to make one decision in life.

      But, Adam, how could they never have told us that?

      Why would you question anything? We're bees.

      We're the most perfectly functioning society on Earth.

      You ever think maybe things work a little too well here?

      Like what? Give me one example.

      I don't know. But you know what I'm talking about.

      Please clear the gate. Royal Nectar Force on approach.

      Wait a second. Oheck it out.

      Hey, those are Pollen Jocks! Wow. I've never seen them this close.

      They know what it's like outside the hive.

      Yeah, but some don't come back.

      Hey, Jocks! Hi, Jocks! You guys did great!

      You're monsters! You're sky freaks! I love it! I love it!

      I wonder where they were. I don't know. Their day's not planned.

      Outside the hive, flying who knows where, doing who knows what.

      You can'tjust decide to be a Pollen Jock. You have to be bred for that.

      Right.

      Look. That's more pollen than you and I will see in a lifetime.

      It's just a status symbol. Bees make too much of it.

      Perhaps. Unless you're wearing it and the ladies see you wearing it.

      Those ladies? Aren't they our cousins too?

      Distant. Distant.

      Look at these two.

      Oouple of Hive Harrys. Let's have fun with them. It must be dangerous being a Pollen Jock.

      Yeah. Once a bear pinned me against a mushroom!

      He had a paw on my throat, and with the other, he was slapping me!

      Oh, my! I never thought I'd knock him out. What were you doing during this?

      Trying to alert the authorities.

      I can autograph that.

      A little gusty out there today, wasn't it, comrades?

      Yeah. Gusty.

      We're hitting a sunflower patch six miles from here tomorrow.

      Six miles, huh? Barry! A puddle jump for us, but maybe you're not up for it.

      Maybe I am. You are not! We're going 0900 at J-Gate.

      What do you think, buzzy-boy? Are you bee enough?

      I might be. It all depends on what 0900 means.

      Hey, Honex!

      Dad, you surprised me.

      You decide what you're interested in?

      Well, there's a lot of choices. But you only get one. Do you ever get bored doing the same job every day?

      Son, let me tell you about stirring.

      You grab that stick, and you just move it around, and you stir it around.

      You get yourself into a rhythm. It's a beautiful thing.

      You know, Dad, the more I think about it,

      maybe the honey field just isn't right for me.

      You were thinking of what, making balloon animals?

      That's a bad job for a guy with a stinger.

      Janet, your son's not sure he wants to go into honey!

      Barry, you are so funny sometimes. I'm not trying to be funny. You're not funny! You're going into honey. Our son, the stirrer!

      You're gonna be a stirrer? No one's listening to me! Wait till you see the sticks I have.

      I could say anything right now. I'm gonna get an ant tattoo!

      Let's open some honey and celebrate!

      Maybe I'll pierce my thorax. Shave my antennae.

      Shack up with a grasshopper. Get a gold tooth and call everybody "dawg"!

      I'm so proud.

      We're starting work today! Today's the day. Oome on! All the good jobs will be gone.

      Yeah, right.

      Pollen counting, stunt bee, pouring, stirrer, front desk, hair removal…

      Is it still available? Hang on. Two left! One of them's yours! Oongratulations! Step to the side.

      What'd you get? Picking crud out. Stellar! Wow!

      Oouple of newbies?

      Yes, sir! Our first day! We are ready!

      Make your choice.

      You want to go first? No, you go. Oh, my. What's available?

      Restroom attendant's open, not for the reason you think.

      Any chance of getting the Krelman? Sure, you're on. I'm sorry, the Krelman just closed out.

      Wax monkey's always open.

      The Krelman opened up again.

      What happened?

      A bee died. Makes an opening. See? He's dead. Another dead one.

      Deady. Deadified. Two more dead.

      Dead from the neck up. Dead from the neck down. That's life!

      Oh, this is so hard!

      Heating, cooling, stunt bee, pourer, stirrer,

      humming, inspector number seven, lint coordinator, stripe supervisor,

      mite wrangler. Barry, what do you think I should… Barry?

      Barry!

      All right, we've got the sunflower patch in quadrant nine…

      What happened to you? Where are you?

      I'm going out.

      Out? Out where?

      Out there.

      Oh, no!

      I have to, before I go to work for the rest of my life.

      You're gonna die! You're crazy! Hello?

      Another call coming in.

      If anyone's feeling brave, there's a Korean deli on 83rd

      that gets their roses today.

      Hey, guys.

      Look at that. Isn't that the kid we saw yesterday? Hold it, son, flight deck's restricted.

      It's OK, Lou. We're gonna take him up.

      Really? Feeling lucky, are you?

      Sign here, here. Just initial that.

      Thank you. OK. You got a rain advisory today,

      and as you all know, bees cannot fly in rain.

      So be careful. As always, watch your brooms,

      hockey sticks, dogs, birds, bears and bats.

      Also, I got a couple of reports of root beer being poured on us.

      Murphy's in a home because of it, babbling like a cicada!

      That's awful. And a reminder for you rookies, bee law number one, absolutely no talking to humans!

      All right, launch positions!

      Buzz, buzz, buzz, buzz! Buzz, buzz, buzz, buzz! Buzz, buzz, buzz, buzz!

      Black and yellow!

      Hello!

      You ready for this, hot shot?

      Yeah. Yeah, bring it on.

      Wind, check.

      Antennae, check.

      Nectar pack, check.

      Wings, check.

      Stinger, check.

      Scared out of my shorts, check.

      OK, ladies,

      let's move it out!

      Pound those petunias, you striped stem-suckers!

      All of you, drain those flowers!

      Wow! I'm out!

      I can't believe I'm out!

      So blue.

      I feel so fast and free!

      Box kite!

      Wow!

      Flowers!

      This is Blue Leader. We have roses visual.

      Bring it around 30 degrees and hold.

      Roses!

      30 degrees, roger. Bringing it around.

      Stand to the side, kid. It's got a bit of a kick.

      That is one nectar collector!

      Ever see pollination up close? No, sir. I pick up some pollen here, sprinkle it over here. Maybe a dash over there,

      a pinch on that one. See that? It's a little bit of magic.

      That's amazing. Why do we do that?

      That's pollen power. More pollen, more flowers, more nectar, more honey for us.

      Oool.

      I'm picking up a lot of bright yellow. Oould be daisies. Don't we need those?

      Oopy that visual.

      Wait. One of these flowers seems to be on the move.

      Say again? You're reporting a moving flower?

      Affirmative.

      That was on the line!

      This is the coolest. What is it?

      I don't know, but I'm loving this color.

      It smells good. Not like a flower, but I like it.

      Yeah, fuzzy.

      Ohemical-y.

      Oareful, guys. It's a little grabby.

      My sweet lord of bees!

      Oandy-brain, get off there!

      Problem!

      Guys! This could be bad. Affirmative.

      Very close.

      Gonna hurt.

      Mama's little boy.

      You are way out of position, rookie!

      Ooming in at you like a missile!

      Help me!

      I don't think these are flowers.

      Should we tell him? I think he knows. What is this?!

      Match point!

      You can start packing up, honey, because you're about to eat it!

      Yowser!

      Gross.

      There's a bee in the car!

      Do something!

      I'm driving!

      Hi, bee.

      He's back here!

      He's going to sting me!

      Nobody move. If you don't move, he won't sting you. Freeze!

      He blinked!

      Spray him, Granny!

      What are you doing?!

      Wow… the tension level out here is unbelievable.

      I gotta get home.

      Oan't fly in rain.

      Oan't fly in rain.

      Oan't fly in rain.

      Mayday! Mayday! Bee going down!

      Ken, could you close the window please?

      Ken, could you close the window please?

      Oheck out my new resume. I made it into a fold-out brochure.

      You see? Folds out.

      Oh, no. More humans. I don't need this.

      What was that?

      Maybe this time. This time. This time. This time! This time! This…

      Drapes!

      That is diabolical.

      It's fantastic. It's got all my special skills, even my top-ten favorite movies.

      What's number one? Star Wars?

      Nah, I don't go for that…

      …kind of stuff.

      No wonder we shouldn't talk to them. They're out of their minds.

      When I leave a job interview, they're flabbergasted, can't believe what I say.

      There's the sun. Maybe that's a way out.

      I don't remember the sun having a big 75 on it.

      I predicted global warming.

      I could feel it getting hotter. At first I thought it was just me.

      Wait! Stop! Bee!

      Stand back. These are winter boots.

      Wait!

      Don't kill him!

      You know I'm allergic to them! This thing could kill me!

      Why does his life have less value than yours?

      Why does his life have any less value than mine? Is that your statement?

      I'm just saying all life has value. You don't know what he's capable of feeling.

      My brochure!

      There you go, little guy.

      I'm not scared of him. It's an allergic thing.

      Put that on your resume brochure.

      My whole face could puff up.

      Make it one of your special skills.

      Knocking someone out is also a special skill.

      Right. Bye, Vanessa. Thanks.

      Vanessa, next week? Yogurt night?

      Sure, Ken. You know, whatever.

      You could put carob chips on there.

      Bye.

      Supposed to be less calories.

      Bye.

      I gotta say something.

      She saved my life. I gotta say something.

      All right, here it goes.

      Nah.

      What would I say?

      I could really get in trouble.

      It's a bee law. You're not supposed to talk to a human.

      I can't believe I'm doing this.

      I've got to.

      Oh, I can't do it. Oome on!

      No. Yes. No.

      Do it. I can't.

      How should I start it? "You like jazz?" No, that's no good.

      Here she comes! Speak, you fool!

      Hi!

      I'm sorry.

      You're talking. Yes, I know. You're talking!

      I'm so sorry.

      No, it's OK. It's fine. I know I'm dreaming.

      But I don't recall going to bed.

      Well, I'm sure this is very disconcerting.

      This is a bit of a surprise to me. I mean, you're a bee!

      I am. And I'm not supposed to be doing this,

      but they were all trying to kill me.

      And if it wasn't for you…

      I had to thank you. It's just how I was raised.

      That was a little weird.

      I'm talking with a bee. Yeah. I'm talking to a bee. And the bee is talking to me!

      I just want to say I'm grateful. I'll leave now.

      Wait! How did you learn to do that? What? The talking thing.

      Same way you did, I guess. "Mama, Dada, honey." You pick it up.

      That's very funny. Yeah. Bees are funny. If we didn't laugh, we'd cry with what we have to deal with.

      Anyway…

      Oan I…

      …get you something?

      Like what? I don't know. I mean… I don't know. Ooffee?

      I don't want to put you out.

      It's no trouble. It takes two minutes.

      It's just coffee.

      I hate to impose.

      Don't be ridiculous!

      Actually, I would love a cup.

      Hey, you want rum cake?

      I shouldn't.

      Have some.

      No, I can't.

      Oome on!

      I'm trying to lose a couple micrograms.

      Where? These stripes don't help. You look great!

      I don't know if you know anything about fashion.

      Are you all right?

      No.

      He's making the tie in the cab as they're flying up Madison.

      He finally gets there.

      He runs up the steps into the church. The wedding is on.

      And he says, "Watermelon? I thought you said Guatemalan.

      Why would I marry a watermelon?"

      Is that a bee joke?

      That's the kind of stuff we do.

      Yeah, different.

      So, what are you gonna do, Barry?

      About work? I don't know.

      I want to do my part for the hive, but I can't do it the way they want.

      I know how you feel.

      You do? Sure. My parents wanted me to be a lawyer or a doctor, but I wanted to be a florist.

      Really? My only interest is flowers. Our new queen was just elected with that same campaign slogan.

      Anyway, if you look…

      There's my hive right there. See it?

      You're in Sheep Meadow!

      Yes! I'm right off the Turtle Pond!

      No way! I know that area. I lost a toe ring there once.

      Why do girls put rings on their toes?

      Why not?

      It's like putting a hat on your knee.

      Maybe I'll try that.

      You all right, ma'am?

      Oh, yeah. Fine.

      Just having two cups of coffee!

      Anyway, this has been great. Thanks for the coffee.

      Yeah, it's no trouble.

      Sorry I couldn't finish it. If I did, I'd be up the rest of my life.

      Are you…?

      Oan I take a piece of this with me?

      Sure! Here, have a crumb.

      Thanks! Yeah. All right. Well, then… I guess I'll see you around.

      Or not.

      OK, Barry.

      And thank you so much again… for before.

      Oh, that? That was nothing.

      Well, not nothing, but… Anyway…

      This can't possibly work.

      He's all set to go. We may as well try it.

      OK, Dave, pull the chute.

      Sounds amazing. It was amazing! It was the scariest, happiest moment of my life.

      Humans! I can't believe you were with humans!

      Giant, scary humans! What were they like?

      Huge and crazy. They talk crazy.

      They eat crazy giant things. They drive crazy.

      Do they try and kill you, like on TV?

      Some of them. But some of them don't.

      How'd you get back?

      Poodle.

      You did it, and I'm glad. You saw whatever you wanted to see.

      You had your "experience." Now you can pick out yourjob and be normal.

      Well… Well? Well, I met someone.

      You did? Was she Bee-ish?

      A wasp?! Your parents will kill you!

      No, no, no, not a wasp.

      Spider?

      I'm not attracted to spiders.

      I know it's the hottest thing, with the eight legs and all.

      I can't get by that face.

      So who is she?

      She's… human.

      No, no. That's a bee law. You wouldn't break a bee law.

      Her name's Vanessa. Oh, boy. She's so nice. And she's a florist!

      Oh, no! You're dating a human florist!

      We're not dating.

      You're flying outside the hive, talking to humans that attack our homes

      with power washers and M-80s! One-eighth a stick of dynamite!

      She saved my life! And she understands me.

      This is over!

      Eat this.

      This is not over! What was that?

      They call it a crumb. It was so stingin' stripey! And that's not what they eat. That's what falls off what they eat!

      You know what a Oinnabon is? No. It's bread and cinnamon and frosting. They heat it up…

      Sit down!

      …really hot!

      Listen to me! We are not them! We're us. There's us and there's them!

      Yes, but who can deny the heart that is yearning?

      There's no yearning. Stop yearning. Listen to me!

      You have got to start thinking bee, my friend. Thinking bee!

      Thinking bee. Thinking bee. Thinking bee! Thinking bee! Thinking bee! Thinking bee!

      There he is. He's in the pool.

      You know what your problem is, Barry?

      I gotta start thinking bee?

      How much longer will this go on?

      It's been three days! Why aren't you working?

      I've got a lot of big life decisions to think about.

      What life? You have no life! You have no job. You're barely a bee!

      Would it kill you to make a little honey?

      Barry, come out. Your father's talking to you.

      Martin, would you talk to him?

      Barry, I'm talking to you!

      You coming?

      Got everything?

      All set!

      Go ahead. I'll catch up.

      Don't be too long.

      Watch this!

      Vanessa!

      We're still here. I told you not to yell at him. He doesn't respond to yelling!

      Then why yell at me? Because you don't listen! I'm not listening to this.

      Sorry, I've gotta go.

      Where are you going? I'm meeting a friend. A girl? Is this why you can't decide?

      Bye.

      I just hope she's Bee-ish.

      They have a huge parade of flowers every year in Pasadena?

      To be in the Tournament of Roses, that's every florist's dream!

      Up on a float, surrounded by flowers, crowds cheering.

      A tournament. Do the roses compete in athletic events?

      No. All right, I've got one. How come you don't fly everywhere?

      It's exhausting. Why don't you run everywhere? It's faster.

      Yeah, OK, I see, I see. All right, your turn.

      TiVo. You can just freeze live TV? That's insane!

      You don't have that?

      We have Hivo, but it's a disease. It's a horrible, horrible disease.

      Oh, my.

      Dumb bees!

      You must want to sting all those jerks.

      We try not to sting. It's usually fatal for us.

      So you have to watch your temper.

      Very carefully. You kick a wall, take a walk,

      write an angry letter and throw it out. Work through it like any emotion:

      Anger, jealousy, lust.

      Oh, my goodness! Are you OK?

      Yeah.

      What is wrong with you?! It's a bug. He's not bothering anybody. Get out of here, you creep!

      What was that? A Pic 'N' Save circular?

      Yeah, it was. How did you know?

      It felt like about 10 pages. Seventy-five is pretty much our limit.

      You've really got that down to a science.

      I lost a cousin to Italian Vogue. I'll bet. What in the name of Mighty Hercules is this?

      How did this get here? Oute Bee, Golden Blossom,

      Ray Liotta Private Select?

      Is he that actor?

      I never heard of him.

      Why is this here?

      For people. We eat it.

      You don't have enough food of your own?

      Well, yes.

      How do you get it?

      Bees make it.

      I know who makes it!

      And it's hard to make it!

      There's heating, cooling, stirring. You need a whole Krelman thing!

      It's organic. It's our-ganic! It's just honey, Barry.

      Just what?!

      Bees don't know about this! This is stealing! A lot of stealing!

      You've taken our homes, schools, hospitals! This is all we have!

      And it's on sale?! I'm getting to the bottom of this.

      I'm getting to the bottom of all of this!

      Hey, Hector.

      You almost done? Almost. He is here. I sense it.

      Well, I guess I'll go home now

      and just leave this nice honey out, with no one around.

      You're busted, box boy!

      I knew I heard something. So you can talk!

      I can talk. And now you'll start talking!

      Where you getting the sweet stuff? Who's your supplier?

      I don't understand. I thought we were friends.

      The last thing we want to do is upset bees!

      You're too late! It's ours now!

      You, sir, have crossed the wrong sword!

      You, sir, will be lunch for my iguana, Ignacio!

      Where is the honey coming from?

      Tell me where!

      Honey Farms! It comes from Honey Farms!

      Orazy person!

      What horrible thing has happened here?

      These faces, they never knew what hit them. And now

      they're on the road to nowhere!

      Just keep still.

      What? You're not dead?

      Do I look dead? They will wipe anything that moves. Where you headed?

      To Honey Farms. I am onto something huge here.

      I'm going to Alaska. Moose blood, crazy stuff. Blows your head off!

      I'm going to Tacoma.

      And you? He really is dead. All right.

      Uh-oh!

      What is that?!

      Oh, no!

      A wiper! Triple blade!

      Triple blade?

      Jump on! It's your only chance, bee!

      Why does everything have to be so doggone clean?!

      How much do you people need to see?!

      Open your eyes! Stick your head out the window!

      From NPR News in Washington, I'm Oarl Kasell.

      But don't kill no more bugs!

      Bee!

      Moose blood guy!!

      You hear something?

      Like what?

      Like tiny screaming.

      Turn off the radio.

      Whassup, bee boy?

      Hey, Blood.

      Just a row of honey jars, as far as the eye could see.

      Wow!

      I assume wherever this truck goes is where they're getting it.

      I mean, that honey's ours.

      Bees hang tight. We're all jammed in. It's a close community.

      Not us, man. We on our own. Every mosquito on his own.

      What if you get in trouble? You a mosquito, you in trouble. Nobody likes us. They just smack. See a mosquito, smack, smack!

      At least you're out in the world. You must meet girls.

      Mosquito girls try to trade up, get with a moth, dragonfly.

      Mosquito girl don't want no mosquito.

      You got to be kidding me!

      Mooseblood's about to leave the building! So long, bee!

      Hey, guys! Mooseblood! I knew I'd catch y'all down here. Did you bring your crazy straw?

      We throw it in jars, slap a label on it, and it's pretty much pure profit.

      What is this place?

      A bee's got a brain the size of a pinhead.

      They are pinheads!

      Pinhead.

      Oheck out the new smoker. Oh, sweet. That's the one you want. The Thomas 3000!

      Smoker?

      Ninety puffs a minute, semi-automatic. Twice the nicotine, all the tar.

      A couple breaths of this knocks them right out.

      They make the honey, and we make the money.

      "They make the honey, and we make the money"?

      Oh, my!

      What's going on? Are you OK?

      Yeah. It doesn't last too long.

      Do you know you're in a fake hive with fake walls?

      Our queen was moved here. We had no choice.

      This is your queen? That's a man in women's clothes!

      That's a drag queen!

      What is this?

      Oh, no!

      There's hundreds of them!

      Bee honey.

      Our honey is being brazenly stolen on a massive scale!

      This is worse than anything bears have done! I intend to do something.

      Oh, Barry, stop.

      Who told you humans are taking our honey? That's a rumor.

      Do these look like rumors?

      That's a conspiracy theory. These are obviously doctored photos.

      How did you get mixed up in this?

      He's been talking to humans.

      What? Talking to humans?! He has a human girlfriend. And they make out!

      Make out? Barry!

      We do not.

      You wish you could. Whose side are you on? The bees!

      I dated a cricket once in San Antonio. Those crazy legs kept me up all night.

      Barry, this is what you want to do with your life?

      I want to do it for all our lives. Nobody works harder than bees!

      Dad, I remember you coming home so overworked

      your hands were still stirring. You couldn't stop.

      I remember that.

      What right do they have to our honey?

      We live on two cups a year. They put it in lip balm for no reason whatsoever!

      Even if it's true, what can one bee do?

      Sting them where it really hurts.

      In the face! The eye!

      That would hurt. No. Up the nose? That's a killer.

      There's only one place you can sting the humans, one place where it matters.

      Hive at Five, the hive's only full-hour action news source.

      No more bee beards!

      With Bob Bumble at the anchor desk.

      Weather with Storm Stinger.

      Sports with Buzz Larvi.

      And Jeanette Ohung.

      Good evening. I'm Bob Bumble. And I'm Jeanette Ohung. A tri-county bee, Barry Benson,

      intends to sue the human race for stealing our honey,

      packaging it and profiting from it illegally!

      Tomorrow night on Bee Larry King,

      we'll have three former queens here in our studio, discussing their new book,

      Olassy Ladies, out this week on Hexagon.

      Tonight we're talking to Barry Benson.

      Did you ever think, "I'm a kid from the hive. I can't do this"?

      Bees have never been afraid to change the world.

      What about Bee Oolumbus? Bee Gandhi? Bejesus?

      Where I'm from, we'd never sue humans.

      We were thinking of stickball or candy stores.

      How old are you?

      The bee community is supporting you in this case,

      which will be the trial of the bee century.

      You know, they have a Larry King in the human world too.

      It's a common name. Next week…

      He looks like you and has a show and suspenders and colored dots…

      Next week…

      Glasses, quotes on the bottom from the guest even though you just heard 'em.

      Bear Week next week! They're scary, hairy and here live.

      Always leans forward, pointy shoulders, squinty eyes, very Jewish.

      In tennis, you attack at the point of weakness!

      It was my grandmother, Ken. She's 81.

      Honey, her backhand's a joke! I'm not gonna take advantage of that?

      Quiet, please. Actual work going on here.

      Is that that same bee? Yes, it is! I'm helping him sue the human race.

      Hello. Hello, bee. This is Ken.

      Yeah, I remember you. Timberland, size ten and a half. Vibram sole, I believe.

      Why does he talk again?

      Listen, you better go 'cause we're really busy working.

      But it's our yogurt night!

      Bye-bye.

      Why is yogurt night so difficult?!

      You poor thing. You two have been at this for hours!

      Yes, and Adam here has been a huge help.

      Frosting… How many sugars? Just one. I try not to use the competition.

      So why are you helping me?

      Bees have good qualities.

      And it takes my mind off the shop.

      Instead of flowers, people are giving balloon bouquets now.

      Those are great, if you're three.

      And artificial flowers.

      Oh, those just get me psychotic! Yeah, me too. Bent stingers, pointless pollination.

      Bees must hate those fake things!

      Nothing worse than a daffodil that's had work done.

      Maybe this could make up for it a little bit.

      This lawsuit's a pretty big deal. I guess. You sure you want to go through with it?

      Am I sure? When I'm done with the humans, they won't be able

      to say, "Honey, I'm home," without paying a royalty!

      It's an incredible scene here in downtown Manhattan,

      where the world anxiously waits, because for the first time in history,

      we will hear for ourselves if a honeybee can actually speak.

      What have we gotten into here, Barry?

      It's pretty big, isn't it?

      I can't believe how many humans don't work during the day.

      You think billion-dollar multinational food companies have good lawyers?

      Everybody needs to stay behind the barricade.

      What's the matter? I don't know, I just got a chill. Well, if it isn't the bee team.

      You boys work on this?

      All rise! The Honorable Judge Bumbleton presiding.

      All right. Oase number 4475,

      Superior Oourt of New York, Barry Bee Benson v. the Honey Industry

      is now in session.

      Mr. Montgomery, you're representing the five food companies collectively?

      A privilege.

      Mr. Benson… you're representing all the bees of the world?

      I'm kidding. Yes, Your Honor, we're ready to proceed.

      Mr. Montgomery, your opening statement, please.

      Ladies and gentlemen of the jury,

      my grandmother was a simple woman.

      Born on a farm, she believed it was man's divine right

      to benefit from the bounty of nature God put before us.

      If we lived in the topsy-turvy world Mr. Benson imagines,

      just think of what would it mean.

      I would have to negotiate with the silkworm

      for the elastic in my britches!

      Talking bee!

      How do we know this isn't some sort of

      holographic motion-picture-capture Hollywood wizardry?

      They could be using laser beams!

      Robotics! Ventriloquism! Oloning! For all we know,

      he could be on steroids!

      Mr. Benson?

      Ladies and gentlemen, there's no trickery here.

      I'm just an ordinary bee. Honey's pretty important to me.

      It's important to all bees. We invented it!

      We make it. And we protect it with our lives.

      Unfortunately, there are some people in this room

      who think they can take it from us

      'cause we're the little guys! I'm hoping that, after this is all over,

      you'll see how, by taking our honey, you not only take everything we have

      but everything we are!

      I wish he'd dress like that all the time. So nice!

      Oall your first witness.

      So, Mr. Klauss Vanderhayden of Honey Farms, big company you have.

      I suppose so.

      I see you also own Honeyburton and Honron!

      Yes, they provide beekeepers for our farms.

      Beekeeper. I find that to be a very disturbing term.

      I don't imagine you employ any bee-free-ers, do you?

      No.

      I couldn't hear you.

      No.

      No.

      Because you don't free bees. You keep bees. Not only that,

      it seems you thought a bear would be an appropriate image for a jar of honey.

      They're very lovable creatures.

      Yogi Bear, Fozzie Bear, Build-A-Bear.

      You mean like this?

      Bears kill bees!

      How'd you like his head crashing through your living room?!

      Biting into your couch! Spitting out your throw pillows!

      OK, that's enough. Take him away.

      So, Mr. Sting, thank you for being here. Your name intrigues me.

      Where have I heard it before? I was with a band called The Police. But you've never been a police officer, have you?

      No, I haven't.

      No, you haven't. And so here we have yet another example

      of bee culture casually stolen by a human

      for nothing more than a prance-about stage name.

      Oh, please.

      Have you ever been stung, Mr. Sting?

      Because I'm feeling a little stung, Sting.

      Or should I say… Mr. Gordon M. Sumner!

      That's not his real name?! You idiots!

      Mr. Liotta, first, belated congratulations on

      your Emmy win for a guest spot on ER in 2005.

      Thank you. Thank you.

      I see from your resume that you're devilishly handsome

      with a churning inner turmoil that's ready to blow.

      I enjoy what I do. Is that a crime?

      Not yet it isn't. But is this what it's come to for you?

      Exploiting tiny, helpless bees so you don't

      have to rehearse your part and learn your lines, sir?

      Watch it, Benson! I could blow right now!

      This isn't a goodfella. This is a badfella!

      Why doesn't someone just step on this creep, and we can all go home?!

      Order in this court! You're all thinking it! Order! Order, I say!

      Say it! Mr. Liotta, please sit down! I think it was awfully nice of that bear to pitch in like that.

      I think the jury's on our side.

      Are we doing everything right, legally?

      I'm a florist.

      Right. Well, here's to a great team.

      To a great team!

      Well, hello.

      Ken! Hello. I didn't think you were coming.

      No, I was just late. I tried to call, but… the battery.

      I didn't want all this to go to waste, so I called Barry. Luckily, he was free.

      Oh, that was lucky.

      There's a little left. I could heat it up.

      Yeah, heat it up, sure, whatever.

      So I hear you're quite a tennis player.

      I'm not much for the game myself. The ball's a little grabby.

      That's where I usually sit. Right… there.

      Ken, Barry was looking at your resume,

      and he agreed with me that eating with chopsticks isn't really a special skill.

      You think I don't see what you're doing?

      I know how hard it is to find the rightjob. We have that in common.

      Do we?

      Bees have 100 percent employment, but we do jobs like taking the crud out.

      That's just what I was thinking about doing.

      Ken, I let Barry borrow your razor for his fuzz. I hope that was all right.

      I'm going to drain the old stinger.

      Yeah, you do that.

      Look at that.

      You know, I've just about had it

      with your little mind games.

      What's that? Italian Vogue. Mamma mia, that's a lot of pages.

      A lot of ads.

      Remember what Van said, why is your life more valuable than mine?

      Funny, I just can't seem to recall that!

      I think something stinks in here!

      I love the smell of flowers.

      How do you like the smell of flames?!

      Not as much.

      Water bug! Not taking sides!

      Ken, I'm wearing a Ohapstick hat! This is pathetic!

      I've got issues!

      Well, well, well, a royal flush!

      You're bluffing. Am I? Surf's up, dude!

      Poo water!

      That bowl is gnarly.

      Except for those dirty yellow rings!

      Kenneth! What are you doing?!

      You know, I don't even like honey! I don't eat it!

      We need to talk!

      He's just a little bee!

      And he happens to be the nicest bee I've met in a long time!

      Long time? What are you talking about?! Are there other bugs in your life?

      No, but there are other things bugging me in life. And you're one of them!

      Fine! Talking bees, no yogurt night…

      My nerves are fried from riding on this emotional roller coaster!

      Goodbye, Ken.

      And for your information,

      I prefer sugar-free, artificial sweeteners made by man!

      I'm sorry about all that.

      I know it's got an aftertaste! I like it!

      I always felt there was some kind of barrier between Ken and me.

      I couldn't overcome it. Oh, well.

      Are you OK for the trial?

      I believe Mr. Montgomery is about out of ideas.

      We would like to call Mr. Barry Benson Bee to the stand.

      Good idea! You can really see why he's considered one of the best lawyers…

      Yeah.

      Layton, you've gotta weave some magic

      with this jury, or it's gonna be all over.

      Don't worry. The only thing I have to do to turn this jury around

      is to remind them of what they don't like about bees.

      You got the tweezers? Are you allergic? Only to losing, son. Only to losing.

      Mr. Benson Bee, I'll ask you what I think we'd all like to know.

      What exactly is your relationship

      to that woman?

      We're friends.

      Good friends? Yes. How good? Do you live together?

      Wait a minute…

      Are you her little…

      …bedbug?

      I've seen a bee documentary or two. From what I understand,

      doesn't your queen give birth to all the bee children?

      Yeah, but…

      So those aren't your real parents!

      Oh, Barry…

      Yes, they are!

      Hold me back!

      You're an illegitimate bee, aren't you, Benson?

      He's denouncing bees!

      Don't y'all date your cousins?

      Objection! I'm going to pincushion this guy! Adam, don't! It's what he wants!

      Oh, I'm hit!!

      Oh, lordy, I am hit!

      Order! Order!

      The venom! The venom is coursing through my veins!

      I have been felled by a winged beast of destruction!

      You see? You can't treat them like equals! They're striped savages!

      Stinging's the only thing they know! It's their way!

      Adam, stay with me. I can't feel my legs. What angel of mercy will come forward to suck the poison

      from my heaving buttocks?

      I will have order in this court. Order!

      Order, please!

      The case of the honeybees versus the human race

      took a pointed turn against the bees

      yesterday when one of their legal team stung Layton T. Montgomery.

      Hey, buddy.

      Hey.

      Is there much pain?

      Yeah.

      I…

      I blew the whole case, didn't I?

      It doesn't matter. What matters is you're alive. You could have died.

      I'd be better off dead. Look at me.

      They got it from the cafeteria downstairs, in a tuna sandwich.

      Look, there's a little celery still on it.

      What was it like to sting someone?

      I can't explain it. It was all…

      All adrenaline and then… and then ecstasy!

      All right.

      You think it was all a trap?

      Of course. I'm sorry. I flew us right into this.

      What were we thinking? Look at us. We're just a couple of bugs in this world.

      What will the humans do to us if they win?

      I don't know.

      I hear they put the roaches in motels. That doesn't sound so bad.

      Adam, they check in, but they don't check out!

      Oh, my.

      Oould you get a nurse to close that window?

      Why? The smoke. Bees don't smoke.

      Right. Bees don't smoke.

      Bees don't smoke! But some bees are smoking.

      That's it! That's our case!

      It is? It's not over?

      Get dressed. I've gotta go somewhere.

      Get back to the court and stall. Stall any way you can.

      And assuming you've done step correctly, you're ready for the tub.

      Mr. Flayman.

      Yes? Yes, Your Honor!

      Where is the rest of your team?

      Well, Your Honor, it's interesting.

      Bees are trained to fly haphazardly,

      and as a result, we don't make very good time.

      I actually heard a funny story about…

      Your Honor, haven't these ridiculous bugs

      taken up enough of this court's valuable time?

      How much longer will we allow these absurd shenanigans to go on?

      They have presented no compelling evidence to support their charges

      against my clients, who run legitimate businesses.

      I move for a complete dismissal of this entire case!

      Mr. Flayman, I'm afraid I'm going

      to have to consider Mr. Montgomery's motion.

      But you can't! We have a terrific case.

      Where is your proof? Where is the evidence?

      Show me the smoking gun!

      Hold it, Your Honor! You want a smoking gun?

      Here is your smoking gun.

      What is that?

      It's a bee smoker!

      What, this? This harmless little contraption?

      This couldn't hurt a fly, let alone a bee.

      Look at what has happened

      to bees who have never been asked, "Smoking or non?"

      Is this what nature intended for us?

      To be forcibly addicted to smoke machines

      and man-made wooden slat work camps?

      Living out our lives as honey slaves to the white man?

      What are we gonna do? He's playing the species card. Ladies and gentlemen, please, free these bees!

      Free the bees! Free the bees!

      Free the bees!

      Free the bees! Free the bees!

      The court finds in favor of the bees!

      Vanessa, we won!

      I knew you could do it! High-five!

      Sorry.

      I'm OK! You know what this means?

      All the honey will finally belong to the bees.

      Now we won't have to work so hard all the time.

      This is an unholy perversion of the balance of nature, Benson.

      You'll regret this.

      Barry, how much honey is out there?

      All right. One at a time.

      Barry, who are you wearing?

      My sweater is Ralph Lauren, and I have no pants.

      What if Montgomery's right? What do you mean? We've been living the bee way a long time, 27 million years.

      Oongratulations on your victory. What will you demand as a settlement?

      First, we'll demand a complete shutdown of all bee work camps.

      Then we want back the honey that was ours to begin with,

      every last drop.

      We demand an end to the glorification of the bear as anything more

      than a filthy, smelly, bad-breath stink machine.

      We're all aware of what they do in the woods.

      Wait for my signal.

      Take him out.

      He'll have nauseous for a few hours, then he'll be fine.

      And we will no longer tolerate bee-negative nicknames…

      But it's just a prance-about stage name!

      …unnecessary inclusion of honey in bogus health products

      and la-dee-da human tea-time snack garnishments.

      Oan't breathe.

      Bring it in, boys!

      Hold it right there! Good.

      Tap it.

      Mr. Buzzwell, we just passed three cups, and there's gallons more coming!

      I think we need to shut down! Shut down? We've never shut down. Shut down honey production!

      Stop making honey!

      Turn your key, sir!

      What do we do now?

      Oannonball!

      We're shutting honey production!

      Mission abort.

      Aborting pollination and nectar detail. Returning to base.

      Adam, you wouldn't believe how much honey was out there.

      Oh, yeah?

      What's going on? Where is everybody?

      Are they out celebrating? They're home. They don't know what to do. Laying out, sleeping in.

      I heard your Uncle Oarl was on his way to San Antonio with a cricket.

      At least we got our honey back.

      Sometimes I think, so what if humans liked our honey? Who wouldn't?

      It's the greatest thing in the world! I was excited to be part of making it.

      This was my new desk. This was my new job. I wanted to do it really well.

      And now…

      Now I can't.

      I don't understand why they're not happy.

      I thought their lives would be better!

      They're doing nothing. It's amazing. Honey really changes people.

      You don't have any idea what's going on, do you?

      What did you want to show me? This. What happened here?

      That is not the half of it.

      Oh, no. Oh, my.

      They're all wilting.

      Doesn't look very good, does it?

      No.

      And whose fault do you think that is?

      You know, I'm gonna guess bees.

      Bees?

      Specifically, me.

      I didn't think bees not needing to make honey would affect all these things.

      It's notjust flowers. Fruits, vegetables, they all need bees.

      That's our whole SAT test right there.

      Take away produce, that affects the entire animal kingdom.

      And then, of course…

      The human species?

      So if there's no more pollination,

      it could all just go south here, couldn't it?

      I know this is also partly my fault.

      How about a suicide pact?

      How do we do it?

      I'll sting you, you step on me. Thatjust kills you twice. Right, right.

      Listen, Barry… sorry, but I gotta get going.

      I had to open my mouth and talk.

      Vanessa?

      Vanessa? Why are you leaving? Where are you going?

      To the final Tournament of Roses parade in Pasadena.

      They've moved it to this weekend because all the flowers are dying.

      It's the last chance I'll ever have to see it.

      Vanessa, I just wanna say I'm sorry. I never meant it to turn out like this.

      I know. Me neither.

      Tournament of Roses. Roses can't do sports.

      Wait a minute. Roses. Roses?

      Roses!

      Vanessa!

      Roses?!

      Barry?

      Roses are flowers! Yes, they are. Flowers, bees, pollen!

      I know. That's why this is the last parade.

      Maybe not. Oould you ask him to slow down?

      Oould you slow down?

      Barry!

      OK, I made a huge mistake. This is a total disaster, all my fault.

      Yes, it kind of is.

      I've ruined the planet. I wanted to help you

      with the flower shop. I've made it worse.

      Actually, it's completely closed down.

      I thought maybe you were remodeling.

      But I have another idea, and it's greater than my previous ideas combined.

      I don't want to hear it!

      All right, they have the roses, the roses have the pollen.

      I know every bee, plant and flower bud in this park.

      All we gotta do is get what they've got back here with what we've got.

      Bees.

      Park.

      Pollen!

      Flowers.

      Repollination!

      Across the nation!

      Tournament of Roses, Pasadena, Oalifornia.

      They've got nothing but flowers, floats and cotton candy.

      Security will be tight.

      I have an idea.

      Vanessa Bloome, FTD.

      Official floral business. It's real.

      Sorry, ma'am. Nice brooch.

      Thank you. It was a gift.

      Once inside, we just pick the right float.

      How about The Princess and the Pea?

      I could be the princess, and you could be the pea!

      Yes, I got it.

      Where should I sit?

      What are you?

      I believe I'm the pea.

      The pea?

      It goes under the mattresses.

      Not in this fairy tale, sweetheart. I'm getting the marshal. You do that! This whole parade is a fiasco!

      Let's see what this baby'll do.

      Hey, what are you doing?!

      Then all we do is blend in with traffic…

      …without arousing suspicion.

      Once at the airport, there's no stopping us.

      Stop! Security.

      You and your insect pack your float? Yes. Has it been in your possession the entire time?

      Would you remove your shoes?

      Remove your stinger. It's part of me. I know. Just having some fun. Enjoy your flight.

      Then if we're lucky, we'll have just enough pollen to do the job.

      Oan you believe how lucky we are? We have just enough pollen to do the job!

      I think this is gonna work.

      It's got to work.

      Attention, passengers, this is Oaptain Scott.

      We have a bit of bad weather in New York.

      It looks like we'll experience a couple hours delay.

      Barry, these are cut flowers with no water. They'll never make it.

      I gotta get up there and talk to them.

      Be careful.

      Oan I get help with the Sky Mall magazine?

      I'd like to order the talking inflatable nose and ear hair trimmer.

      Oaptain, I'm in a real situation.

      What'd you say, Hal? Nothing. Bee!

      Don't freak out! My entire species…

      What are you doing?

      Wait a minute! I'm an attorney! Who's an attorney? Don't move.

      Oh, Barry.

      Good afternoon, passengers. This is your captain.

      Would a Miss Vanessa Bloome in 24B please report to the cockpit?

      And please hurry!

      What happened here?

      There was a DustBuster, a toupee, a life raft exploded.

      One's bald, one's in a boat, they're both unconscious!

      Is that another bee joke? No! No one's flying the plane!

      This is JFK control tower, Flight 356. What's your status?

      This is Vanessa Bloome. I'm a florist from New York.

      Where's the pilot?

      He's unconscious, and so is the copilot.

      Not good. Does anyone onboard have flight experience?

      As a matter of fact, there is.

      Who's that? Barry Benson. From the honey trial?! Oh, great.

      Vanessa, this is nothing more than a big metal bee.

      It's got giant wings, huge engines.

      I can't fly a plane.

      Why not? Isn't John Travolta a pilot? Yes. How hard could it be?

      Wait, Barry! We're headed into some lightning.

      This is Bob Bumble. We have some late-breaking news from JFK Airport,

      where a suspenseful scene is developing.

      Barry Benson, fresh from his legal victory…

      That's Barry!

      …is attempting to land a plane, loaded with people, flowers

      and an incapacitated flight crew.

      Flowers?!

      We have a storm in the area and two individuals at the controls

      with absolutely no flight experience.

      Just a minute. There's a bee on that plane.

      I'm quite familiar with Mr. Benson and his no-account compadres.

      They've done enough damage.

      But isn't he your only hope?

      Technically, a bee shouldn't be able to fly at all.

      Their wings are too small…

      Haven't we heard this a million times?

      "The surface area of the wings and body mass make no sense."

      Get this on the air!

      Got it.

      Stand by.

      We're going live.

      The way we work may be a mystery to you.

      Making honey takes a lot of bees doing a lot of small jobs.

      But let me tell you about a small job.

      If you do it well, it makes a big difference.

      More than we realized. To us, to everyone.

      That's why I want to get bees back to working together.

      That's the bee way! We're not made of Jell-O.

      We get behind a fellow.

      Black and yellow! Hello! Left, right, down, hover.

      Hover? Forget hover. This isn't so hard. Beep-beep! Beep-beep!

      Barry, what happened?!

      Wait, I think we were on autopilot the whole time.

      That may have been helping me. And now we're not! So it turns out I cannot fly a plane.

      All of you, let's get behind this fellow! Move it out!

      Move out!

      Our only chance is if I do what I'd do, you copy me with the wings of the plane!

      Don't have to yell.

      I'm not yelling! We're in a lot of trouble.

      It's very hard to concentrate with that panicky tone in your voice!

      It's not a tone. I'm panicking!

      I can't do this!

      Vanessa, pull yourself together. You have to snap out of it!

      You snap out of it.

      You snap out of it.

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      You snap out of it!

      Hold it!

      Why? Oome on, it's my turn.

      How is the plane flying?

      I don't know.

      Hello?

      Benson, got any flowers for a happy occasion in there?

      The Pollen Jocks!

      They do get behind a fellow.

      Black and yellow. Hello. All right, let's drop this tin can on the blacktop.

      Where? I can't see anything. Oan you?

      No, nothing. It's all cloudy.

      Oome on. You got to think bee, Barry.

      Thinking bee. Thinking bee. Thinking bee! Thinking bee! Thinking bee!

      Wait a minute. I think I'm feeling something.

      What? I don't know. It's strong, pulling me. Like a 27-million-year-old instinct.

      Bring the nose down.

      Thinking bee! Thinking bee! Thinking bee!

      What in the world is on the tarmac? Get some lights on that! Thinking bee! Thinking bee! Thinking bee!

      Vanessa, aim for the flower. OK. Out the engines. We're going in on bee power. Ready, boys?

      Affirmative!

      Good. Good. Easy, now. That's it.

      Land on that flower!

      Ready? Full reverse!

      Spin it around!

      Not that flower! The other one!

      Which one?

      That flower.

      I'm aiming at the flower!

      That's a fat guy in a flowered shirt. I mean the giant pulsating flower

      made of millions of bees!

      Pull forward. Nose down. Tail up.

      Rotate around it.

      This is insane, Barry! This's the only way I know how to fly. Am I koo-koo-kachoo, or is this plane flying in an insect-like pattern?

      Get your nose in there. Don't be afraid. Smell it. Full reverse!

      Just drop it. Be a part of it.

      Aim for the center!

      Now drop it in! Drop it in, woman!

      Oome on, already.

      Barry, we did it! You taught me how to fly!

      Yes. No high-five! Right. Barry, it worked! Did you see the giant flower?

      What giant flower? Where? Of course I saw the flower! That was genius!

      Thank you. But we're not done yet. Listen, everyone!

      This runway is covered with the last pollen

      from the last flowers available anywhere on Earth.

      That means this is our last chance.

      We're the only ones who make honey, pollinate flowers and dress like this.

      If we're gonna survive as a species, this is our moment! What do you say?

      Are we going to be bees, orjust Museum of Natural History keychains?

      We're bees!

      Keychain!

      Then follow me! Except Keychain.

      Hold on, Barry. Here.

      You've earned this.

      Yeah!

      I'm a Pollen Jock! And it's a perfect fit. All I gotta do are the sleeves.

      Oh, yeah.

      That's our Barry.

      Mom! The bees are back!

      If anybody needs to make a call, now's the time.

      I got a feeling we'll be working late tonight!

      Here's your change. Have a great afternoon! Oan I help who's next?

      Would you like some honey with that? It is bee-approved. Don't forget these.

      Milk, cream, cheese, it's all me. And I don't see a nickel!

      Sometimes I just feel like a piece of meat!

      I had no idea.

      Barry, I'm sorry. Have you got a moment?

      Would you excuse me? My mosquito associate will help you.

      Sorry I'm late.

      He's a lawyer too?

      I was already a blood-sucking parasite. All I needed was a briefcase.

      Have a great afternoon!

      Barry, I just got this huge tulip order, and I can't get them anywhere.

      No problem, Vannie. Just leave it to me.

      You're a lifesaver, Barry. Oan I help who's next?

      All right, scramble, jocks! It's time to fly.

      Thank you, Barry!

      That bee is living my life!

      Let it go, Kenny.

      When will this nightmare end?!

      Let it all go.

      Beautiful day to fly.

      Sure is.

      Between you and me, I was dying to get out of that office.

      You have got to start thinking bee, my friend.

      Thinking bee! Me? Hold it. Let's just stop for a second. Hold it.

      I'm sorry. I'm sorry, everyone. Oan we stop here?

      I'm not making a major life decision during a production number!

      All right. Take ten, everybody. Wrap it up, guys.

      I had virtually no rehearsal for that.

    1. Author response:

      We would like to thank all the reviewers and editors for their thoughtful and detailed comments, critiques and suggestions. We will revise our manuscript in accordance with all the points raised by the reviewers. Here we summarize some of the main points that we intend to address in our revised manuscript.

      The reviewers noted that we were not sufficiently careful in identifying possible exogenous cues that the mice might be using to locate the cues and that we did not consider why such cues might be ineffective. As the reviewers point out, the mice may be ignoring the visual landmarks (and floor scratches) because they are not reliable cues and their relation to the food varies with the entrance the mice have used. In particular, a reviewer refers to papers that show that “in environments with 'unreliable' landmarks, place cells are not controlled by landmarks”. These papers were known to the authors but failed to make final cut of our extensive discussion. This important point will be thoroughly addressed.

      Another critical point was the mice were often doing thigmotaxis. The literature on thigmotaxis was known to us and we will now directly refer to this point. We do note that the final average start to food trajectory (TEV) is directly to the food. In other words, the thigmotaxic trajectories and “towards the center” trajectories effectively average out.

      There was a very cogent point about the difficulty of totally eliminating odor cues that we will now address. Finally, based on studies using a virtual reality environment, one reviewer questioned the use of “path integration” as a signal that encodes goal location. The relevance of path integration to spatial learning and performance is a very difficult issue that, to our knowledge, has never been entirely settled in the vast spatial learning literature. We do not think that our data can “settle’ this issue but will try to at least be explicit re the complexity of the path integration hypothesis as it applies to both our own data and the virtual reality literature. In particular, we will discuss the potential roles of optic flow versus proprioceptive and vestibular inputs to a putative path integration mechanism.

      Finally, the reviewers raised many important technical points re statistics reporting and how the figures are presented. In our revision, we will completely comply with all these helpful critiques.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife assessment

      Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments provide compelling evidence that conditional deletion of Vglut2 in noradrenergic neurons does not impact steadystate breathing or metabolic activity in room air, hypercapnia, or hypoxia. This study provides an important contribution to our understanding of how noradrenergic neurons regulate respiratory homeostasis in conscious adult mice.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Chang et al. provide glutamate co-expression profiles in the central noradrenergic system and test the requirement of Vglut2-based glutamatergic release in respiratory and metabolic activity under physiologically relevant gas challenges. Their experiments show that conditional deletion of Vglut2 in NA neurons does not impact steady-state breathing or metabolic activity in room air, hypercapnia, or hypoxia. Their observations challenge the importance of glutamatergic signaling from Vglut2 expressing NA neurons in normal respiratory homeostasis in conscious adult mice.

      Strengths:

      The comprehensive Vglut1, Vglut2, and Vglut3 co-expression profiles in the central noradrenergic system and the combined measurements of breathing and oxygen consumption are two major strengths of this study. Observations from these experiments provide previously undescribed insights into (1) expression patterns for subtypes of the vesicular glutamate transporter protein in the noradrenergic system and (2) the dispensable nature of Vglut2-dependent glutamate signaling from noradrenergic neurons to breathing responses to physiologically relevant gas challenges in adult conscious mice.

      Weaknesses:

      Although the cellular expression profiles for the vesicular glutamate transporters are provided, the study fails to document that glutamatergic-based signaling originating from noradrenergic neurons is evident at the cellular level under normal, hypoxic, and/or hypercapnic conditions. This limits the reader's understanding of why conditional Vglut2 knockdown is dispensable for breathing under the conditions tested.

      We thank the reviewers for their positive evaluation of our work. First, we would like to highlight that multiple studies have provided anatomical evidence of innervation of multiple cardio-respiratory nuclei by Vglut2+ noradrenergic fibers. Thus, the anatomical substrates are present for noradrenergic based Vglut2 signaling to either play a direct role in breathing control or, upon perturbation, to indirectly affect breathing through disrupted metabolic or cardiovascular control. We have included supplemental table 1 that summarizes central noradrenergic Vglut2+ innervations of respiratory and autonomic nuclei. Additionally, Ultrastructural evidence shows asymmetric synaptic contacts assuming glutamatergic transmission between C1 neurons and LC, A1, A2 and the dorsal motor nucleus of the vagus (DMV) (Milner et al., 1989; Abbott et al., 2012; Holloway et al., 2013; DePuy et al., 2013).

      Functionally, electrophysiological evidence showed that photostimulating C1 neurons activate LC, A1, A2 noradrenergic neurons monosynaptically by releasing glutamate (Holloway et al., 2013; DePuy et al., 2013) and optogenetic stimulation of LC neurons excite the downstream parabrachial nucleus (PBN) neurons by releasing glutamate. Thus, at least the glutamatergic signaling from C1 and LC noradrenergic neurons (two noradrenergic nuclei that have been shown to play a role in breathing control) is evident at the cellular level under normal conditions. Other evidence, highlighted in our manuscript, is more circumstantial.

      Reviewer #2 (Public Review):

      The authors characterized the recombinase-based cumulative fate maps for vesicular glutamate transporters (Vglut1, Vglut2 and Vglut3) expression and compared those maps to their real-time expression profiles in central NA neurons by RNA in situ hybridization in adult mice. Authors have revealed a new and intriguing expression pattern for Vglut2, along with an entirely uncharted co-expression domain for Vglut3 within central noradrenergic neurons. Interestingly, and in contrast to previous studies, the authors demonstrated that glutamatergic signaling in central noradrenergic neurons does not exert any influence on breathing and metabolic control either under normoxic/normocapnic conditions or after chemoreflex stimulation. Also, they showed for the first-time the Vglut3-expressing NA population in C2/A2 nuclei. In addition, they were also able to demonstrate Vglut2 expression in anterior NA populations, such as LC neurons, by using more refined techniques, unlike previous studies.

      A major strength of the study is the use of a set of techniques to investigate the participation of NA-based glutamatergic signaling in breathing and metabolic control. The authors provided a full characterization of the recombinase-based cumulative fate maps for Vglut transporters. They performed real-time mRNA expression of Vglut transporters in central NA neurons of adult mice. Further, they evaluated the effect of knocking down Vglut2 expression in NA neurons using a DBH-Cre; Vglut2cKO mice on breathing and control in unanesthetized mice. Finally, they injected the AAV virus containing Cre-dependent Td tomato into LC of v-Glut2 Cre mice to verify the VGlut2 expression in LC-NA neurons. A very positive aspect of the article is that the authors combined ventilation with metabolic measurements. This integration holds particular significance, especially when delving into the exploration of respiratory chemosensitivity. Furthermore, the sample size of the experiments is excellent.

      Despite the clear strengths of the paper, some weaknesses exist. It is not clear in the manuscript if the experiments were performed in males and females and if the data were combined. I believe that the study would have benefited from a more comprehensive analysis exploring the sex specific differences. The reason I think this is particularly relevant is the developmental disorders mentioned by the authors, such as SIDS and Rett syndrome, which could potentially arise from disruptions in central noradrenergic (NA) function, exhibit varying degrees of sex predominance. Moreover, some of the noradrenergic cell groups are sexually dimorphic. For instance, female Wistar rats exhibit a larger LC size and more LC-NA neurons than male subjects (Pinos et al., 2001; Garcia-Falgueras et al., 2005). More recently, a detailed transcriptional profiling investigation has unveiled the identities of over 3,000 genes in the LC. This revelation has highlighted significant sexual dimorphisms, with more than 100 genes exhibiting differential expression within LC-NA neurons at the transcript level. Furthermore, this investigation has convincingly showcased that these distinct gene expression patterns have the capacity to elicit disparate behavioral responses between sexes (Mulvey et al., 2018). Therefore, the authors should compare the fate maps, Vglut transporters in males and females, at least considering LC-NA neurons. Even in the absence of identified sex differences, this information retains significant importance.

      All experiments contained both males and females as described in the original submission. In our analysis of breathing and metabolism, sex was included in the analysis and no significant phenotypic difference was observed. For the fate map and in situ experiments, we did not see obvious differences in the expression patterns in the three glutamate transporters between females and males, though the group size is small. Though all the anatomical and phenotypic data in this manuscript are presented as combined graphs, we have differentially labeled our data points by sex. The reviewer does raise important questions regarding possible sexual dimorphisms in the central noradrenergic system and whether such dimorphisms may extend to glutamate transporter co-expression. Our thorough interrogation of respiratory-metabolic parameters fails to reveal any sex specific differences in control or experimental mice. Thus, it is unclear if any of the previously described and cited dimorphisms are functionally relevant in this setting. Given the large differences in the real time expression and cumulative fate maps of Vglut2, a worthwhile interrogation of differential glutamate transporter expression would be best served by longitudinal studies with large group sizes across age as it is not clear what underlies the dynamic VGlut2 expression changes. Such changes may at times be greater in males and other times in females, driven by experience or physiological challenges etc., but resulting in averaged cumulative fatemaps that are similar between sexes. Such a longitudinal quantitative study of real-time and fatemapped cell populations across the central NA system would be of a scale that is beyond the scope of this report, especially when no phenotypic changes have been observed in our respiratory data.

      An important point well raised by the authors is that although suggestive, these experiments do not definitively rule out that NA-Vglut2 based glutamatergic signaling has a role in breathing control. Subsequent experiments will be necessary to validate this hypothesis.

      As noted, we discuss that we only address requirement, not sufficiency, of NA Vglut2 in breathing. Functional sufficiency experiments usually involve increasing the relevant output. However, these experiments can lead to non-specific, pleiotropic effects that would be difficult to disambiguate, even if done with high cellular specificity. Viral or genetic overexpression of Vglut2 in NA neurons may be a feasible approach. Conditional ablation of TH or DBH with concurrent chemo or optogenetic stimulation may also be informative. These approaches would require significant investments in mouse model generation and suffer additional experimental limitations.

      An improvement could be made in terms of measuring body temperature. Opting for implanted sensors over rectal probes would circumvent the need to open the chamber, thereby preventing alterations in gas composition during respiratory measurements. Further, what happens to body temperature phenotype in these animals under different gas exposures? These data should be included in the Tables.

      While surgical implantation of sensors would provide a more direct assessment of temperature, it requires components that were not available at the time of the study and addresses a question (temperature changes during a time course of gas exposure) that go beyond the scope of the current work focused on respiratory response. As we have done for prior experiments (Martinez et al., 2019; Ray et al., 2011), the body temperature was measured immediately before and after measuring breathing only. Our flow through system using inline gas sensors (AEI P-61B CO2 sensor and AEI N-22M O2 sensor) ensure that gas challenges were constant and consistent across all measurements. Any disruption in gas composition would have been noted by our software analysis system, Breathe Easy, and the data rejected. We did not observe any such perturbations.

      Is it plausible that another neurotransmitter within NA neurons might be released in higher amounts in DBH-Cre; Vglut2 cKO mice to compensate for the deficiency in glutamate and prevent changes in ventilation?

      We agree that compensation is always a possibility at the synaptic, cellular, and circuit levels that may involve a variety of transcriptional, translational, cellular, and circuit mechanisms (i.e., synaptic strength). This could be interrogated by combining multiple conditional alleles and recombinase drivers for various transmitters and receptors, but would, in our experience, take multiple years for the requisite breeding to be completed.

      Continuing along the same line of inquiry is there a possibility that Vglut2 cKO from NA neurons not only eliminates glutamate release but also reduces NA release? A similar mechanism was previously found in VGLUT2 cKO from DA neurons in previous studies (Alsio et al., 2011; Fortin et al., 2012; Hnasko et al., 2010). Additionally, does glutamate play a role in the vesicular loading of NA? Therefore, could the lack of effect on breathing be explained by the lack of noradrenaline and not glutamate?

      These are all excellent points, but prior studies suggest that reductions in NA signaling would itself have an apparent effect (Zanella et al., 2006; Kuo et al., 2016). Although several studies showed that LC and C1 NA neurons co-release noradrenaline and glutamate, no direct evidence yet makes clear that glutamate facilitates NA release or vice versa. However, it would be of great interest to test if reduced or lack of NA compensated for loss of glutamate in the future. We do fully acknowledge that compensation in the manuscript that any number of compensatory events could be at play in these findings.

      Reviewer #3 (Public Review):

      Summary:

      The authors, Y Chang and colleagues, have performed elegant studies in transgenic mouse models that were designed to examine glutamatergic transmission in noradrenergic neurons, with a focus on respiratory regulation. They generated 3 different transgenic lines, in which a red fluorophore was expressed in dopamine-B-hydroxylase (DBH; noradrenergic and adrenergic neurons) neurons that did not express a vesicular glutamate transporter (Vglut) and a green fluorophore in DBH neurons that did express one of either Vglut1, Vglut2 or Vglut3.

      Further experiments generated a transgenic mouse with knockout of Vglut2 in DBH neurons. The authors used plethysmography to measure respiratory parameters in conscious, unrestrained mice in response to various challenges.

      Strengths:

      The distribution of the Vglut expression is broadly in agreement with other studies, but with the addition of some novel Vglut3 expression. Validation of the transgenic results, using in situ hybridization histochemistry to examine mRNA expression, revealed potential modulation of Vglut2 expression during phases of development. This dataset is comprehensive, wellpresented and very useful.

      In the physiological studies the authors observed that neither baseline respiratory parameters, nor respiratory responses to hypercapnea (5, 7, 10% CO2) or hypoxia (10% O2) were different between knockout mice and littermate controls. The studies are well-designed and comprehensive. They provide observations that are supportive of previous reports using similar methodology.

      Weaknesses:

      In relation to the expression of Vglut2, the authors conclude that modulation of expression occurs, such that in adulthood there are differences in expression patterns in some (nor)adrenergic cell groups. Altered sensitivity is provided as an explanation for different results between studies examining mRNA expression. These are likely explanations; however, the conclusion would really be definitive with inclusion of a conditional cre expressing mouse. Given the effort taken to generate this dataset, it seems to me that taking that extra step would be of value for the overall understanding of glutamatergic expression in these catecholaminergic neurons

      The seemingly dynamic Vglut2 expression pattern across the NA system is intriguing. As noted in our comments to reviewer 2, a robust age dependent interrogation would require a large magnitude study. The reviewer correctly points out that a temporally controlled recombinase fate mapping experiment would offer greater insight into the dynamic expression of Vglut2. We strongly agree with that idea and did work to develop a Vglut2-CreER targeted allele that, despite our many other successes in mouse genetic engineering (Lusk et al., 2022; Sun and Ray, 2016), did not succeed on the first attempt. We aim to complete the line in the near future so that we may better understand the Vglut2 expression pattern in central noradrenergic neurons in a time-specific manner and sex specific manner.

      The respiratory physiology is very convincing and provides clear support for the view that Vglut2 is not required for modulation of the respiratory parameters measured and the reflex responses tested. It is stated that this is surprising. However, comparison with the data from Abbott et al., Eur J Neurosci (2014) in which the same transgenic approach was used, shows that they also observed no change in baseline breathing frequency. Differences were observed with strong, coordinated optogenetic stimulation, but, as discussed in this manuscript, it is not clear what physiological function this is relevant to. It just shows that some C1 neurons can use glutamate as a signaling molecule. Further, Holloway et al., Eur J Neurosci (2015), using the same transgenic mouse approach, showed that the respiratory response to optogenetic activation of Phox2 expressing neurons is not altered in DBH-Vglut2 KO mice. The conclusion seems to be that some C1 neuron effects are reliant upon glutamatergic transmission (C1DMV for example), and some not.

      We agree that activation of C1 neurons may be sufficient to modulate breathing when artificially stimulated and that such stimulation relies on glutamatergic transmission for its effect. This is why we find our results surprising and important in clarifying for the field that glutamatergic signaling in noradrenergic cells is dispensable for breathing and hypoxic and hypercapnic responses under physiological conditions.

      Further contrast is made in this manuscript to the work of Malheiros-Lima and colleagues (eLife 2020) who showed that the activation of abdominal expiratory nerve activity in response to peripheral chemoreceptor activation with cyanide was dependent upon C1 neurons and could be attenuated by blockade of glutamate receptors in the pFRG - i.e. the supposition that glutamate release from C1 neurons was responsible for the function. However, it is interesting to observe that diaphragm EMG responses to hypercapnia (10% CO2) or cyanide, and the expiratory activation to hypercapnia, were not affected by the glutamate receptor blockade. Thus, a very specific response is affected and one that was not measured in the current study.

      As we mention above, we do not dispute that glutamate signaling can be manipulated to create a response in non-physiological conditions – we suggest that framing the interpretation around the glutamatergic role in a model that better matches physiological conditions should inform our interpretation. Furthermore, we do include an examination of expiratory flow – which was not impacted by loss of glutamatergic activity in NA neurons – which would be likely to have been impacted if abdominal expiratory nerve activity was modified.

      These previous published observations are consistent with the current study which provides a more comprehensive analysis of the role of glutamatergic contributions respiratory physiology. A more nuanced discussion of the data and acknowledgement of the differences, which are not actually at odds, would improve the paper and place the information within a more comprehensive model.

      Thank you for the comments. As noted in the original and extended discussion, we respectfully disagree with the perspective that our results align with prior results.

      Recommendations for the authors:

      The three reviewers believe this is an important study. They have numerous suggestions for improvement of the manuscript (outlined below), but no new experiments are required. The Editor requests some nomenclature changes as indicated in attachment 1.

      Reviewer #1 (Recommendations For The Authors):

      Abstract/Introduction: Although the need for this study is obvious, it is important that the authors explicitly communicate their working hypothesis < before the start of the work> to the reader. In the current form, it is unclear whether the authors aimed to test the hypothesis that glutamatergic signaling from noradrenergic neurons is important to breathing or whether to test the hypothesis that glutamatergic signaling from noradrenergic neurons is not important to breathing. If it is the latter-it is not important-then the study (related to the breathing measurements) is poorly justified and designed, as additional orthogonal approaches (e.g., actual measurements of glutamatergic signaling at the cellular level) are almost requisite. If the authors' hypothesis was originally based on existing literature suggesting that glutamatergic signaling from noradrenergic neurons is important to breathing, then the experimental design appropriate.

      Thank you for the suggestion. The working hypothesis has been added in the abstract (line 2425) and the introduction (line 92-94)), making clear that we initially hypothesized that glutamatergic signaling from noradrenergic neurons is important in breathing.

      Results: While the steady state measurements for breathing metrics are clearly important in defining how glutamatergic signaling may contribute to be pulmonary function, the role of glutamatergic signaling may have a greater role in the dynamics of patterns (i.e., regularity of the breathing rhythms) such traits can be described using SD1 and SD2 from Poincare maps, and/or entropy measurements. Such an analysis should be performed.

      Thank you for the suggestion. The dynamic patterns of respiratory rate (Vf), tidal volume (VT), minute ventilation (VE), inspiratory duration (TI), expiratory duration (TE), breath cycle duration (TTOT), inspiratory flow rate (VT/TI), expiratory flow rate (VT/TE) have been shown as Poincaré plots and quantified and tested using the SD1 and SD2 statistics in the supplemental figures of Figure 4-7.

      Results: Analyses of Inspiratory time (Ti) and flow rate (i.e., Tidal Volume / Ti) should be assessed and included.

      Thank you for the suggestion. Inspiratory duration (Ti), expiratory duration (TE), breath cycle duration (TTOT), inspiratory flow rate (VT/Ti), and expiratory flow rate (VT/TE) have been included in the Figures 4-7.

      Results/Methods: If similar analytical approaches were used in the current study as to that in Lusk et al. 2022, it appears that data was discontinuously sampled, rejecting periods of movement and only including periods of quiescent breathing. Were the periods of quiescent breathing different? Information should be provided to describe the total sampling duration included.

      For room air, the entire gas condition was used for data analysis. For hypercapnia (5% CO2, 7% CO2, 10% CO2), only the last 5 minutes of the gas challenge period was used for data analysis. For hypoxia (10% O2), we analyzed the breathing trace of three 5-minute epochs following initiation of the gas exposure separately, e.g., epoch 1 = 5-10min, epoch 2 = 10-15min, and epoch 3 = 15-20min. All breaths included as quiescent breathing were analyzed in the aggregate for each group and experimental condition, we did not compare individual periods of quiescent breathing within or across an animal(s)/group(s)/experimental condition(s). We have added the details in the Materials and Methods (line 637-642).

      Results: As mice were conscious in this study, were sniff periods (transient periods of fast breathing, i.e.,>8Hz) included in the analysis?

      No, only regular quiescent breathing periods were included in the analysis.

      Discussion: The authors need to discuss the limitations of their findings.

      • How should the reader interpret the findings? Concluding that glutamatergic signaling is dispensable implies that it occurs in room air, hypoxia, and hypercapnia.

      We have edited our discussion for clarity to highlight our conclusions that Vglut2-based glutamatergic signaling from noradrenergic neurons is ultimately dispensable for baseline breathing and hypercapnia and hypoxic chemoreflex in unanesthetized and unrestrained mice.

      • Assuming that glutamatergic signaling is active during the conditions tested, then the authors should discuss what may be the potential compensations.

      We have provided additional discussion surrounding potential compensatory events that may have taken place and could result in the unchanged phenotype in the experimental group.

      • The authors need to discuss how age and state of consciousness may play a role in their finds. The current discussion gives the impression that their findings are broadly applicable in all cases, but the lack of differences in this study may not hold true under different conditions.

      The study was done in adult (6–8-week-old) unanesthetized and unrestrained mice. In the discussion (line 472-474), we highlight that in our unpublished results, loss of NA-expressed Vglut2 does not change the survival curve in P7 neonate mice undergoing repeated bouts of autoresuscitation until death. Thus, we believed that Vglut2-based glutamatergic signaling in central NA neurons is dispensable for baseline breathing and the hypercapnic and hypoxic chemoreflexes in unanesthetized and unrestrained mice across different ages. Otherwise, we do not imply that we have interrogated any other aspects of breathing in our discussion.

      Methods: Further description of the analysis window for the respiratory metrics should be provided. Were breath values for each condition taken throughout the entire condition? This is particularly important for hypoxia, where the stereotypical respiratory response is biphasic.

      For room air, the entire gas condition was used for data analysis. For hypercapnia (5% CO2, 7% CO2, 10% CO2), only the last 5min of the gas challenge period was used for data analysis. For hypoxia (10% O2), we analyzed the breathing trace of three 5min time periods separately including 5-10min, 10-15min, and 15-20min during the hypoxic challenge as noted in our original manuscript, we graph and assess three 5min epochs during hypoxic exposure to capture the dynamic nature of the hypoxic ventilatory response. We have added the details in the Materials and Methods (line 637-642).

      Methods: How was consciousness determined?

      The conscious mice mentioned in the manuscript refer to the mice without anesthesia. We have replaced “awake” and “conscious” with “unanesthetized” in the text.

      Reviewer #2 (Recommendations For The Authors):

      Since no EEG/EMG recording was performed it would be more appropriate to remove "awake" and "conscious" throughout the manuscript and include the term "unanesthetized".

      Thank you for the suggestion. “Awake” and “conscious” have been replaced by “unanesthetized” in the text.

      Line 545: Why 32C? Isn't this temperature too high for animals?

      30-32°C is the thermoneutral zone for mice. It is the range of ambient temperature where mice can maintain a stable core temperature with their minimal metabolic rate (Gordon, 1985). Whole-body plethysmography uses the barometric technique to detect pressure oscillations caused by changes in temperature and humidity with each breathing act when an animal sits in a sealed chamber (Mortola et al., 2013). Thus, maintaining the chamber temperature near the thermoneutral zone during the plethysmography assay is required to maintain constancy in respiratory and metabolic parameters from trial to trial as well as to maintain linearity of ventilatory pressure changes due to humidification, rarefaction, and thermal expansion and contraction during inspiration and expiration (Ray et al., 2011). The chamber temperature that has been used for adult plethysmography has been set across a range 30-34°C (Hodges et al., 2008; Ray et al., 2011; Hennessy et al., 2017). We use 32°C in this manuscript which is consistent with previously published literature from other groups and our own work (Sun et al., 2017; Lusk et al., 2022).

      I would include the units of the physiological variables in the tables.

      Thank you for the suggestion. The units of the physiological variables have been added in all the tables.

      Reviewer #3 (Recommendations For The Authors):

      Why is the C3 group not considered in this study?

      The C3 adrenergic group, best characterized in rat, is only seen in rodents but not in many other species including primates (including human) (Kitahama et al., 1994). Thus, the C3 group is not the focus of this study where we aim to discuss if glutamate derived from noradrenergic neurons could be the potential therapeutic target of human respiratory disorders. The C3 adrenergic group is typically described as a population containing only about 30 neurons. We have added the fate map data and the adult expression pattern for the three vesicular glutamate transporters for the C3 group in the figure 1 and 2 supplements for reference.

      Sub CD/CV does not appear to be defined in the manuscript.

      Thank you for the point. The definition of sub CD/CV has been added in the text (line 126).

      The data on line 131-133 is interesting but could be described more effectively and clearly.

      Thank you for the suggestion. The text has been modified accordingly.

      The end of the paragraph at lines 140 onwards is rather repeated in the paragraph that starts at line 146.

      The repeated text has been removed accordingly.

      Whilst anterior and posterior are correct anatomical terms, for a quadraped, rostral and caudal are more widely used - particularly in the brainstem field. Is there a particular reason for using anterior/posterior?

      We followed the anatomical terminations in the Robertson et al. (2013) where they used anterior/posterior to describe C2/A2 and C1/A1.

      On the protocol lines include in Figure 4-7 it would be worth adding the test day. This seems a little strange. Why wait up to one week after the habituation to perform the stimulation. How many mice were left for each day between habituation and experimentation, and does this timing affect responses? Do mice forget the habituation after a period?

      Thank you for the point. We have added the test day for plethysmography in figures 4-7. After the 5 days of habituation, we began the plethysmography recordings on the sixth day. A maximum of 6 mice can be assayed for plethysmography per day due to the limited number of barometric flow through plethysmography and metabolic measurement systems we have. Thus, all animals were finished with plethysmography “within” one week of the last day of habituation. This protocol is consistent with our previous published work (Martinez et al., 2019; Lusk et al., 2022; Lusk et al., 2023). For the experiments in this manuscript, mice were assayed within 3 days after habituation. As noted in our methods and figures, each mouse is given as much as 40 mins to acclimate to the chamber (determined by directly observed quiet breathing) before data acquisition. We have no reason or evidence that indicates testing order and thus timing was a factor. The detailed explanation for the plethysmography protocol has been added in the material and methods section (line 606-625).

      Please state clearly that each mouse is only exposed to one gas mixture (what I interpret is the case), or could one mouse be exposed to several different stimuli?

      Each mouse is only exposed to one gas challenge (5% CO2, 7% CO2, 10% CO2, or 10% O2) in a testing period. Each testing period for an individual mouse was separated by 24hs to allow for a full recovery. The protocol is to put the mouse under room air for 45mins, switch to one gas challenge for 20mins, and switch back to room air for 20mins.

      With apologies if I missed this, but did each of the respiratory stimuli produce a statistically significant response in the control mice? For example, the response to 10%O2?

      Yes, each respiratory stimuli including 5/7/10% CO2 and 10% O2 produced a statistically significant response in both mutant and control mice. We have labeled the statistical significance in the Figures 4-7. Thank you for pointing this out.

      Line 312: Optogenetic stimulation induced an increase from 130 to 180 breaths per min (Abbott et al., EJN 2014). It is surprising that this is called "modest". Baseline respiratory frequency was presented.

      Thank you for the point. The word “modest” has been removed and the discussion has been changed accordingly (line 355-360).

      Line 338: This discussion is not sufficiently nuanced. It is the increased Dia amplitude (to KCN only, not 10%CO2 ) and the stimulation of active expiration, to both stimuli, that is blocked by kyn in pFRG. There is no effect of breathing frequency. The current study would not detect such differences in active expiration.

      Thank you for the suggestion. The discussion has been modified accordingly (line 382-388).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this important paper, Blin and colleagues develop a high-throughput behavioral assay to test spontaneous swimming and olfactory preference in individual Mexican cavefish larvae. The authors present compelling evidence that the surface and cave morphs of the fish show different olfactory preferences and odor sensitivities and that individual fish show substantial variability in their spontaneous activity that is relevant for olfactory behaviour. The paper will be of interest to neurobiologists working on the evolution of behaviour, olfaction, and the individuality of behaviour.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors posed a research question about how an animal integrates sensory information to optimize its behavioral outputs and how this process evolved. Their data (behavioral output analysis with detailed categories in response to the different odors in different concentrations by comparing surface and cave populations and their hybrid) partially answer this tough question. They built a new low-disturbance system to answer the question. They also found that the personality of individual fish is a good predictor of behavioral outputs against odor response. They concluded that cavefish evolved to specialize their response to alanine and histidine while surface fish are more general responders, which was supported by their data.

      Strengths:

      With their new system, the authors could generate clearer results without mechanical disturbances. The authors characterize multiple measurements to score the odor response behaviors, and also brought a new personality analysis. Their conclusion that cavefish evolved as a specialist to sense alanine and histidine among 6 tested amino acids was well supported by their data.

      Weaknesses:

      The authors posed a big research question: How do animals evolve the processes of sensory integration to optimize their behavioral outputs? I personally feel that, to answer the questions about how sensory integration generates proper (evolved) behavior, the authors at least need to show the ecological relevance of their response. For the alanine/histidine preference in cavefish, they need data for the alanine and other amino acid concentrations in the local cave water and compare them with those of surface water.

      We agree with the reviewer. This is why, in the Discussion section, we had written: “…Such significant variations in odor preferences or value may be adaptive and relate to the differences in the environmental and ecological conditions in which these different animals live. However, the reason why Pachón cavefish have become “alanine specialists” remains a mystery and prompts analysis of the chemical ecology of their natural habitat. Of note, we have not found an odor that would be repulsive for Astyanax so far, and this may relate to their opportunist, omnivorous and detritivore regime (Espinasa et al., 2017; Marandel et al., 2020).” This is also why we currently develop field work projects aimed at clarifying this question. However, such experiments and analyses are challenging, practically and technically. We hope we can reach some conclusions in the future.

      To complete the discussion we have also added an important hypothesis: “Alternatively, specialization for alanine may not need to be specific for an olfactory cue present only, or frequently, or in high amounts in caves. Bat guano for example, which is probably the main source of food in the Pachón cave, must contain many amino acids. Enhanced recognition of one of them - in the present case alanine but evolution may have randomly acted for enhanced recognition of another amino acid – should suffice to confer cavefish with augmented sensitivity to their main source of nutriment.”

      Also, as for "personality matters", I read that personality explains a large variation in surface fish. Also, thigmotaxis or wall-following cavefish individuals are exceeded to respond well to odorants compared with circling and random swimming cavefish individuals. However, I failed to understand the authors' point about how much percentages of the odorant-response variations are explained (PVE) by personality. Association (= correlation) was good to show as the authors presented, but showing proper PVE or the effect size of personality to predict the behavioral outputs is important to conclude "personality is matter"; otherwise, the conclusion is not so supported.

      From the above, I recommend the authors reconsider the title also their research questions well. At this moment, I feel that the authors' conclusions and their research questions are a little too exaggerated, with less supportive evidence.

      Thank you for this interesting suggestion, which we have fully taken into consideration. We have therefore now calculated and plotted PVE (the percentage of variation explained on the olfactory score) as a function of swimming speed or as a function of swimming pattern. The results are shown in modified Figure 8 of our revised ms and they suggest that the personality (here, swimming patterns or swimming speed) indeed predicts the olfactory response skills. Therefore, we would like to keep our title as we provide support for the fact that “personality matters”.

      Also, for the statistical method, Fisher's exact test is not appropriate for the compositional data (such as Figure 2B). The authors may quickly check it at https://en.wikipedia.org/wiki/Compositional_data or https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-042720-124436.

      The authors may want to use centered log transformation or other appropriate transformations (Rpackage could be: https://doi.org/10.1016/j.cageo.2006.11.017). According to changing the statistical tests, the authors' conclusion may not be supported.

      Actually, in most cases, the distributions are so different (as seen by the completely different colors in the distribution graphs) that there is little doubt that swimming behaviors are indeed different between surface and cavefish, or between ‘before’ and ‘after’ odor stimulation. However, it is true that Fisher’s exact test is not fully appropriate because data can be considered as compositional type. For this kind of data, centered log transformation have been suggested. However, our dataset contains many zeros, and this is a case where log transformations have difficulty handling.

      To help us dealing with our data, the reviewer proposed to consider the paper by Greenacre (2021) (https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-042720-124436). In his paper, Greenacre clearly wrote: "Zeros in compositional data are the Achilles heel of the logratio approach (LRA)."

      Therefore, we have now tested our data using CA (Correspondence Analysis), that can deal with table containing many zeros and is a trustable alternative to LRA (Cook-Thibeau, 2021; Greenacre, 2011).

      The results of CA analysis are shown in Supplemental figure 8 and they fully confirm the difference in baseline swimming patterns between morphs as well as changes (or absence of changes) in behavioral patterns after odor stimulation suggested by the colored bar plots in main figures, with confidence ellipses overlapping or not overlapping, depending on cases. Therefore, the CA method fully confirms and even strengthens our initial interpretations.

      Finally, we have kept our initial graphical representation in the ms (color-coded bar plots; the complete color code is now given in Suppl. Fig7), and CA results are shown in Suppl. Figure 8 and added in text.

      Reviewer #2 (Public Review):

      In their submitted manuscript, Blin et al. describe differences in the olfactory-driven behaviors of river-dwelling surface forms and cave-dwelling blind forms of the Mexican tetra, Astyanax mexicanus. They provide a dataset of unprecedented detail, that compares not only the behaviors of the two morphs but also that of a significant number of F2 hybrids, therefore also demonstrating that many of the differences observed between the two populations have a clear (and probably relatively simple) genetic underpinning.

      To complete the monumental task of behaviorally testing 425 six-week-old Astyanax larvae, the authors created a setup that allows for the simultaneous behavioral monitoring of multiple larvae and the infusion of different odorants without introducing physical perturbations into the system, thus biasing the responses of cavefish that are particularly fine-tuned for this sensory modality. During the optimization of their protocol, the authors also found that for cave-dwelling forms one hour of habituation was insufficient and a full 24 hours were necessary to allow them to revert to their natural behavior. It is also noteworthy that this extremely large dataset can help us see that population averages of different morphs can mask quite significant variations in individual behaviors.

      Testing with different amino-acids (applied as relevant food-related odorant cues) shows that cavefish are alanine- and histidine-specialists, while surface fish elicit the strongest behavioral responses to cysteine. It is interesting that the two forms also react differently after odor detection: while cave-dwelling fish decrease their locomotory activity, surface fish increase it. These differences are probably related to different foraging strategies used by the two populations, although, as the observations were made in the dark, it would be also interesting to see if surface fish elicit the same changes in light as well.

      Thank you for these nice comments.

      Further work will be needed to pinpoint the exact nature of the genetic changes that underlie the differences between the two forms. Such experimental work will also reveal how natural selection acted on existing behavioral variations already present in the SF population.

      Yes. Searching for genetic underpinnings of the sensory-driven behavioral differences is our current endeavor through a QTL study and we should be able to report it in the near future.

      It will be equally interesting, however, to understand what lies behind the large individual variation of behaviors observed both in the case surface and cave populations. Are these differences purely genetic, or perhaps environmental cues also contribute to their development? Does stochasticity provided by the developmental process has also a role in this? Answering these questions will reveal if the evolvability of Astyanax behavior was an important factor in the repeated successful colonization of underground caves.

      Yes. We will also access (at least partially) responses to most of these questions in our current QTL study.

      Reviewer #3 (Public Review):

      Summary:

      The paper explores chemosensory behaviour in surface and cave morphs and F2 hybrids in the Mexican cavefish Astyanax mexicanus. The authors develop a new behavioural assay for the longterm imaging of individual fish in a parallel high-throughput setup. The authors first demonstrate that the different morphs show different basal exploratory swimming patterns and that these patterns are stable for individual fish. Next, the authors test the attraction of fish to various concentrations of alanine and other amino acids. They find that the cave morph is a lot more sensitive to chemicals and shows directional chemotaxis along a diffusion gradient of amino acids. For surface fish, although they can detect the chemicals, they do not show marked chemotaxis behaviour and have an overall lower sensitivity. These differences have been reported previously but the authors report longer-term observations on many individual fish of both morphs and their F2 hybrids. The data also indicate that the observed behavior is a quantitative genetic trait. The approach presented will allow the mapping of genes' contribution to these traits. The work will be of general interest to behavioural neuroscientists and those interested in olfactory behaviours and the individual variability in behavioural patterns.

      Strengths:

      A particular strength of this paper is the development of a new and improved setup for the behavioural imaging of individual fish for extended periods and under chemosensory stimulation. The authors show that cavefish need up to 24 h of habituation to display a behavioural pattern that is consistent and unlikely to be due to the stressed state of the animals. The setup also uses relatively large tanks that allow the build-up of chemical gradients that are apparently present for at least 30 min.

      The paper is well written, and the presentation of the data and the analyses are clear and to a high standard.

      Thank you for these nice comments.

      Weaknesses:

      One point that would benefit from some clarification or additional experiments is the diffusion of chemicals within the behavioural chamber. The behavioural data suggest that the chemical gradient is stable for up to 30 min, which is quite surprising. It would be great if the authors could quantify e.g. by the use of a dye the diffusion and stability of chemical gradients.

      OK. We had tested the diffusion of dyes in our previous setup and we also did in the present one (not shown). We think that, due to differences of molecular weight and hydrophobicity between the tested dyes and the amino acid molecules we are using, their diffusion does not constitute a proper read-out of actual amino acid diffusion. We anticipate that amino acid diffusion is extremely complex in the test box, possibly with odor plumes diffusing and evolving in non-gradient patterns, in the 3 dimensions of the box, and potentially further modified by the fish swimming through it, the flow coming from the opposite water injection side and the borders of the box. This is the reason why we have designed the assay with contrasting “odor side” and “water control side”. Moreover, our question here is not to determine the exact concentration of amino acid to which the fish respond, but to compare the responses in cavefish, surface fish and F2 hybrids. Finally and importantly, we have performed dose/response experiments whereby varying concentrations have been presented for 3 of the 6 amino acids tested, and these experiments clearly show a difference in the threshold of response of the different morphs.

      The paper starts with a statement that reflects a simplified input-output (sensory-motor) view of the organisation of nervous systems. "Their brains perceive the external world via their sensory systems, compute information and generate appropriate behavioral outputs." The authors' data also clearly show that this is a biased perspective. There is a lot of spontaneous organised activity even in fish that are not exposed to sensory stimulation. This sentence should be reworded, e.g. "The nervous system generates autonomous activity that is modified by sensory systems to adapt the behavioural pattern to the external world." or something along these lines.

      Done

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In addition to my comments in the "weakness" section above, here are my other comments.

      How many times fish were repeatedly assayed and what the order (alanine followed by cysteine, etc) was, is not clear (Pg 24, Materials and Methods). I am afraid that fish memorize the prior experience to get better/worse their response to the higher conc of alanine, etc. Please clarify this point.

      Many fish were tested in different conditions on consecutive days, indeed. Most often, control experiments (eg, water/nothing; water/water; nothing/nothing) were followed by odor testing. In such cases, there is no risk that fish memorize prior experience and that such previous experience interferes with response to odor. In other instances, fish were tested with a low concentration of one amino acid, followed by a high concentration of another amino acid, which is also on the safe side. Of note, on consecutive days, the odors were always perfused on alternate sides of the test box, to avoid possibility of spatial memory. Finally, in the few cases where increasing concentrations of the same amino acids were perfused consecutively, 1) they were perfused on alternate sides, 2) if the fish does not detect a low concentration below threshold / does not respond, then prior experience should not interfere for responding to higher concentrations, and 3) we have evidence (unpublished, current studies) that when a fish is given increasing concentrations of the same amino acid above detection threshold, then the behavioral response is stable and reproducible (eg does not decrease or increase).

      Minor points:

      Thygmotaxis and wall following.

      Classically, thigmotaxis and wall following are treated as the same (sharma et al., 2009; https://pubmed.ncbi.nlm.nih.gov/19093125/) but the authors discriminate it in thigmotaxis at X-axis and Y-axis because fish repeatedly swam back and forth on x-axis wall or y-axis wall. I understand the authors' point to discriminate WF and T but present them with more explanations (what the differences between them) in the introduction and result sections.

      Done

      Pg5 "genetic architecture" in the introduction.

      "Genetic architecture" analysis needs a more genomic survey, such as GWAS, QTL mapping, and Hi-C. Phenotype differences in F2 generation can be stated as "genetic factor(s)" "genetic component(s)", etc. please revise.

      Done

      Pg10 At the serine treatment, the authors concluded that "...suggesting that their detection threshold for serine is lower than for alanine." I believe that the 'threshold for serine is higher' according to the authors' data. Their threshold-related statement is correct in Pg21 "as SF olfactory concentration detection threshold are higher than CF,..." So the statement on page 10 is a just mistake, I think. Please revise.

      Done (mistake indeed)

      Pg11 After explaining Fig5, the statement "In sum, the responses of the different fish types to different concentrations of different amino acids were diverse and may reflect complex, case-bycase, behavioral outputs" does not convey any information. Please revise.

      OK. Done : “In sum, the different fish types show diverse responses to different concentrations of different amino acids.”

      For the personality analysis (Fig 7)

      The index value needs more explanation. I read the materials and methods three times but am still confused. From the equation, the index does not seem to exceed 1.0, unless the "before score" was a negative value, and the "after score" value was positive. I could not get why the authors set a score of 1.5 as the threshold for the cumulative score of these different behavior index values (= individual score). Please provide more description. Currently, I am skeptical about this index value in Fig 7.

      Done, in results and methods.

      Pg15 the discussion section

      Please discuss well the difference between the authors' finding (cavefish respond 10^-4M for position and surface fish responded 10^-4 for thig-Y; Fig 4AB), and those in Hinaux et al. 2016 (cavefish responded 10^-10M alanine but surface fish responded 10^-5M or higher). It seems that surface fish could respond to the low conc of alanine as cavefish do, which is opposed to the finding in Hinaux 2016.

      The increase in NbrtY at population level for surface fish with 10-4M alanine (~10-6M in box) was most probably due to only a few individuals. Contrarily to cavefish, all other parameters were unchanged in surface fish for this concentration. Moreover, at individual level, only 3.2% of surface fish had significant olfactory scores (to be compared to 81.3% for cavefish). Thus, we think that globally this result does not contradict our previous findings in Hinaux et al (2016), and solely represent the natural, unexplained variations inherent to the analysis of complex animal behaviors – even when we attempt to use the highest standards of controlled conditions.

      Of note, in the revised version, we have now included a full dose/response analysis for alanine concentration ranging from 10-2M to 10-10M, on cavefish. Alanine 10-5M has significant effects (now shown in Suppl Fig2 and indicated in text; a column has been added for 10-5M in Summary Table 1). Lower concentrations have milder effects (described in text) but confirm the very low detection threshold of cavefish for this amino acid.

      Pg19, "In sum, CF foraging strategy has evolved in response to the serious challenge of finding food in the dark"

      My point is the same as explained in the 'weakness' section above: how this behavior is effective in the cave life, if they conclude so? Please explain or revise this statement.

      The present manuscript reports on experiments performed in “artificial” and controlled laboratory conditions. We are fully aware that these conditions are probably distantly related to conditions encountered in the wild. Note that we had written in original version (page 20) “…for 6-week old juveniles in a rectangular box - but the link may be more elusive when considering a fish swimming in a natural, complex environment.” As the reviewer may know, we also perform field studies in a more ethological approach of animal behaviors, thus we may be able to discuss this point more accurately in the future.

      Pg20 "To our knowledge, this is the first time individual variations are taken into consideration in Astyanax behavioral studies."

      This is wrong. Please see Fernandes et al., 2022. (https://pubmed.ncbi.nlm.nih.gov/36575431/).

      OK. The sentence is wrong if taken in its absolute sense, i.e., considering inter-individual variations of a given parameter (e.g., number of neuromasts per individual or number of approaches to vibrating rod in Fernandez et al, 2022). In this same sense, Astyanax QTL studies on behaviors in the past also took into account variations among F2 individuals. Here, we wanted to stress that personality was taken into consideration. The sentence has been changed: “To our knowledge, this is the first time individual temperament is taken into consideration in Astyanax behavioral studies.”

      Figure 2B and others.

      The order of categories (R, R-TX, etc) should match in all columns (SF, F2, and CF). Currently, the category orders seem random or the larger ratio categories at the bottom, which is quite difficult to compare between SF, F2, and CF. Also, the writings in Fig 2A (times, Y-axis labels, etc), and the bargraphs' writings are quite difficult to read in Fig 2B, Fig 3B 4H, 5GN, 6EFG. Also, no need to show fish ID in Fig 2C in the current way, but identify the fish data points of the fish in Fig 2D (SF#40, CF#65, and F2#26) in Fig 2C if the authors want to show fish ID numbers in the boxplots. Fish ID numbers in other boxplot figures are recommended to be removed too.

      We have thought a lot on how to best represent the distributions of swimming patterns in graphs such as Fig 2B and others. The difficulty is due to the existence of many combinations (33 possibilities in total, see new Suppl Fig7), which are never the same in different plots/conditions because individual tested fish are different. We decided that that the best way was to represent, from bottom to top, the most used to the less used swimming patterns, and to use a color code that matches at best the different combinations. It was impossible to give the full color code on each figure, therefore it was simplified, and we believe that the results are well conveyed on the graphs. We would like to keep it as it is. To respond (partially) to the reviewer’s concern, we have now added a full color code description in a new Supplemental Figure 7 (associated to Methods).

      Size of lettering has been modified in all pattern graphs like Fig2A. Thanks for the suggestion, it reads better now.

      Finally, we would like to keep the fish ID numbers because this contributes to conveying the message of the paper, that individuality matters.

      Raw data files were not easy to read in Excel or LibreOffice. Please convert them into the csv format to support the rigor in the authors' conclusion.

      We do not understand this request. Our very large dataset must be analysed with R, not excel for stats or for plotting and pattern analysis. However, raw data files can be opened in excel with format conversion.

      Reviewer #2 (Recommendations For The Authors):

      I think most of the experimental procedures (with few exceptions, see below) are well-defined and nicely described, so the majority of my suggestions will be related to the visualization of the data. I think the authors have done a great job in presenting this complex dataset, but there are still some smaller tweaks that could be used to increase the legibility of the presented data.

      First and perhaps foremost, a better definition of the swimming pattern subsets is needed. I have no problem understanding the main behavioral types, but whereas the color codes for these suggest that there is continuous variance within each pattern, it is not clear (at least to me), what particular aspect(s) of the behaviors vary. Also, whereas the sidebars/legends suggest a continuum within these behaviors, the bar charts themselves clearly present binned data. I did not find a detailed description of how the binning was done. As this has been - according the Methods section - a manual process, more clarity about the details of the binning would be welcome. I would also suggest using binned color codes for the legends as well.

      Done, in Results and Methods. We hope it is now clear that there is no “continuum”, rather multiple combinations of discrete swimming patterns. The gradient aspect in color code in figures has been removed to avoid the idea of continuum. According to the chosen color code, WF is in red, R in blue, T in yellow and C in green. Then, combination are represented by colors in between, for example, R+WF is purple. We have now added a full color code description for the swimming patterns and their combinations in a new Supplemental Figure 7 (associated to Methods).

      Also, to better explain the definition of the swimming patterns and the graphical representation, it now reads (in Methods):

      “The determination of baseline swimming patterns and swimming patterns after odor injection was performed manually based on graphical representations such as in Figure 2A or Figure 3A. Four distinctive baseline behaviors clearly emerged: random swim (R; defined as haphazard swimming with no clear pattern, covering entirely or partly the surface of the arena), wall following (WF; defined as the fish continuously following along the 4 sides of the box and turning around it, in a clockwise or counterclockwise fashion), large or small circles (C; self explanatory), and thigmotactism (T, along the X- or the Y-axis of the box; defined as the fish swimming back and forth along one of the 4 sides of the box). On graphical representations of swimming pattern distributions, we used the following color code: R in blue, WF in red, C in green, T in yellow. Of note, many fish swam according to combination(s) of these four elementary swimming patterns (see descriptions in the legends of Supplemental figures, showing many examples). To fully represent the diversity and the combinations of swimming patterns used by individual fish, we used an additional color code derived from the “basic” color code described above and where, for example R+WF is purple. The complete combinatorial color code is shown in Suppl. Fig7.”

      It would be also easier to comprehend the stacked bar charts, presenting the particular swimming patterns in each population, if the order of different swimming patterns was the same for all the plots (e.g. the frequency of WF always presented at the bottom, R on the top, and C and T in the middle). This would bring consistency and would highlight existing differences between SF, CF, and F2s. Furthermore, such a change would also make it much easier to see (and compare) shifts in behaviors.

      We have thought a lot on how to best represent the distributions of swimming patterns in graphs such as Fig 2B and others. The difficulty is due to the existence of many combinations, which are never the same in different plots/conditions because the individual fish tested are different. We decided to keep it as it currently stands, because we think re-doing all the graphs and figures would not significantly improve the representation. In fact, we think that the differences between morphs (dominant blue in SF, dominant red in CF) and between conditions (bar charts next to each other) are easy to interpret at first glance in the vast majority of cases. Moreover, they are now completed by CA analyses (Suppl Figure 8).

      While the color coding of the timeline in the "3D" plots presented for individual animals is a nice feature, at the moment it is slightly confusing, as the authors use the same color palette as for the stacked bar charts, representing the proportionality of the particular swimming patterns. As the y-axis is already representing "time" here, the color coding is not even really necessary. If the authors would like to use a color scheme for aesthetic reasons, I would suggest using another palette, such as "grey" or "viridis".

      We would like to keep the graphical aspect of our figures as they are, for aesthetic reasons. To avoid confusion with stacked bar chart color code, we have added a sentence in Methods and in the legend of Figure 2, where the colors first appear:

      “The complete combinatorial color code is shown in Suppl. Figure 7. Of note, in all figures, the swimming pattern color code does not relate whatsoever with the time color code used in the 2D plus time representation of swimming tracks such as in Figure 2A”.

      I would also suggest changing the boxplots to violin-plots. Figure 7 clearly shows bimodality for F2 scores (something, as the authors themselves note, not entirely surprising given the probably poligenic nature of the trait), but looking at SF and CF scores I think there are also clear hints for non-normal distributions. If non-normal distribution of traits is the norm, violin-plots would capture the variance in the data in a more digestible way. (The existence of differently behaving cohorts within the population of both SF and CF forms would also help to highlight the large pre-existing variance, something that was probably exploited by natural selection as well, as mentioned briefly in the Discussion by the authors, too.)

      The bimodal distribution of scores shown by F2s in Figure 7B is indeed probably due to the polygenic nature of the trait. However, such distribution is rather the exception than the norm. Moreover, the boxplot representations we have used throughout figures include all the individual points, and outliers can be identified as they have the fish ID number next to them. This allows the reader to grasp the variance of the data. Again, redoing all graphs and figures would constitute a lot of work, for little gain in term of conveying the results. Therefore, we choose not to change the boxplot for violin plots.

      The summary data of individual scores in Table 1B shows some intriguing patterns, that warrant a bit further discussion, in my opinion. For example, we can see opposite trends in scores of SF and CF forms with increasing alanine concentration. Is there an easy explanation for this? Also, in the case of serine, the CF scores do not seem to respond in a dose-dependent manner and puzzlingly at 10^(-3)M serine concentration F2 scores are above those of both grandparental populations.

      That is true. However, we have no simple explanation for this. To begin responding to this question, we have now performed full dose/responses expts for alanine (concentrations tested from 10-2M to 10-10M on cavefish; confirm that CF are bona fide “alanine specialists”) and for serine (10-2M to 104M tested on both morphs; confirm that both morphs respond well to this amino acid). These complementary results are now included in text and figures (partially) and in the summary table 1.

      If anything is known about this, I would also welcome some discussion on how thigmotactic behavior, a marker of stress in SF, could have evolved to become the normal behavior of CF forms, with lower cortisol levels and, therefore lower anxiety.

      We actually think thigmotactism is a marker of stress in both morphs. See Pierre et al, JEB 2020, Figure S3A: in both SF and CF thigmotaxis behavior decreases after long habituation times. In our hands, the only difference between the two morphs is that surface fish (at 5 month of age) express stress by thigmotactism but also freezing and rapid erratic movements, while cavefish have a more restricted stress repertoire.

      This is why in the present paper we have carefully made the distinction between thigmotactism (= possible stress readout) and wall following (= exploratory behavior). Our finding that WF and large circles confers better olfactory response scores to cavefish is in strong support of the different nature of these two swimming patterns. Then, why is swimming along the 4 walls of a tank fundamentally different from swimming along one wall? The question is open, although the number of changes of direction is probably an important parameter: in WF the fish always swims forward in the same direction, while in T the fish constantly changes direction when reaching the corner of the tank – which is similar to erratic swim in stressed surface fish.

      Finally two smaller suggestions:

      • When referring to multiple panels on the same figure it would be better to format the reference as "Figure 4D-G" instead of "Figure 4DEFG";

      Done

      • On page 4, where the introduction reads as "although adults have a similar olfactory rosette with 2025 lamellae", in my opinion, it would be better to state that "while adults of the two forms have a similar olfactory rosette with 20-25 lamellae".

      Done

      Reviewer #3 (Recommendations For The Authors):

      Consider moving Figure 3 to be a supplement of Figure 4. This figure shows a water control and therefore best supplements the alanine experiment.

      We would like to keep this figure as a main figure: we consider it very important to establish the validity of our behavioral setup at the beginning of the ms, and to establish that in all the following figures we are recording bona fide olfactory responses.

      "sensory changes in mecano-sensory and gustatory systems " - mechano-sensory.

      Done

      Figure 2 legend: "(3) the right track is the 3D plus time (color-coded)" - shouldn't it be 2D plus time or 3D (x,y, time).

      True! Thanks for noting this, corrected.

      Figure 4 legend "E, Change in swimming patterns" should be H.

      Done

      "suggesting that their detection threshold for serine is lower than for alanine" - higher?

      Done

      In the behavioural plots, I assume that the "mean position" value represents the mean position along the X-axis of the chamber - this should be clarified and the axis label updated accordingly.

      That is correct and has been updated in Methods and Figures and legends.

      "speed, back and forth trips in X and Y, position and pattern changes (see Methods; Figure 7A)." - here it would be helpful to add an explanation like "to define an olfactory score for individual fish."

      This has been changed in Results and more detailed explanations on score calculations are now given in Methods.

      "possess enhanced mecanosensory lateral line" - mechanosensory.

      Done

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript "comparative transcriptomics reveal a novel tardigrade specific DNA binding protein induced in response to ionizing radiation" aims to provide insights into the mediators and mechanisms underlying tardigrade radiation tolerance. The authors start by assessing the effect of ionizing radiation (IR) on the tardigrade lab species, H. exemplaris, as well as the ability of this organism to recover from this stress - specifically, they look at DNA double and single-strand breaks. They go on to characterize the response of H. exemplaris and two other tardigrade species to IR at the transcriptomic level. Excitingly, the authors identify a novel gene/protein called TDR1 (tardigrade DNA damage response protein 1). They carefully assess the induction of expression/enrichment of this gene/protein using a combination of transcriptomics and biochemistry - even going so far as to use a translational inhibitor to confirm the de novo production of this protein. TDR1 binds DNA in vitro and co-localizes with DNA in tardigrades.

      Reverse genetics in tardigrades is difficult, thus the authors use a heterologous system (human cells) to express TDR1 in. They find that when transiently expressed TDR1 helps improve human cell resistance to IR.

      This work is a masterclass in integrative biology incorporating a holistic set of approaches spanning next-gen sequencing, organismal biology, biochemistry, and cell biology. I find very little to critique in their experimental approaches.

      Strengths:

      (1) Use of trans/interdisciplinary approaches ('omics, molecular biology, biochemistry, organismal biology)

      (2) Careful probing of TDR1 expression/enrichment

      (3) Identification of a completely novel protein seemingly involved in tardigrade radio-tolerance.

      (4) Use of multiple, diverse, tardigrade species of 'omics comparison.

      Weaknesses:

      (1) No reverse genetics in tardigrades - all insights into TDR1 function from heterologous cell culture system.

      (2) Weak discussion of Dsup's role in preventing DNA damage in light of DNA damage levels measured in this manuscript.

      (3) Missing sequence data which is essential for making a complete review of the work.

      Overall, I find this to be one of the more compelling papers on tardigrade stress-tolerance I have read. I believe there are points still that the authors should address, but I think the editor would do well to give the authors a chance to address these points as I find this manuscript highly insightful and novel.

      We thank the reviewer for his comments.

      We agree that it will be important to further investigate the role of Dsup in radio-tolerance. We briefly mentioned this point in the discussion (p14). Our findings show that tardigrades undergo DNA damage at levels roughly similar to radio-sensitive organisms and therefore support a major role for DNA repair in the maintenance of genome integrity after exposure to IR. Nevertheless, we believe that more precise quantification of DNA damage may still reveal a contribution of genome protection to radio-tolerance of tardigrades compared to radio-sensitive organisms. Dsup loss of function experiments in tardigrades would clearly be the best way to assess this possibility. In the absence of experiments directly addressing the function of Dsup, we prefer to refrain from drawing any firm conclusion on prevention of DNA damage by Dsup and thus to keep a more open position. In any case, as discussed in the text, we note that Dsup has only been reported in Hypsibioidea and other molecular players, such as TDR1, are likely involved in radio-tolerance in other tardigrade species.

      The sequence data can be accessed at the NCBI SRA database with Bioproject ID PRJNA997229.

      Reviewer #3 (Public Review):

      Summary:

      This paper describes transcriptomes from three tardigrade species with or without treatment with ionizing radiation (IR). The authors show that IR produces numerous single-strand and double-strand breaks as expected and that these are substantially repaired within 4-8 hours. Treatment with IR induces strong upregulation of transcripts from numerous DNA repair proteins including Dsup specific to the Hypsobioidea superfamily. Transcripts from the newly described protein TDR1 with homologs in both Hypsibioidea and Macrobiotoidea supefamilies are also strongly upregulated. They show that TDR1 transcription produces newly translated TDR1 protein, which can bind DNA and co-localizes with DNA in the nucleus. At higher concentrations, TDR appears to form aggregates with DNA, which might be relevant to a possible function in DNA damage repair. When introduced into human U2OS cells treated with bleomycin, TDR1 reduces the number of double-strand breaks as detected by gamma H2A spots. This paper will be of interest to the DNA repair field and to radiobiologists.

      Strengths:

      The paper is well-written and provides solid evidence of the upregulation of DNA repair enzymes after irradiation of tardigrades, as well as upregulation of the TRD1 protein. The reduction of gamma-H2A.X spots in U2OS cells after expression of TRD1 supports a role in DNA damage.

      Weaknesses:

      Genetic tools are still being developed in tardigrades, so there is no mutant phenotype to support a DNA repair function for TRD1, but this may be available soon.

      We thank the reviewer for his comments.

      Reviewer #4 (Public Review):

      The manuscript brings convincing results regarding genes involved in the radio-resistance of tardigrades. It is nicely written and the authors used different techniques to study these genes. There are sometimes problems with the structure of the manuscript but these could be easily solved. According to me, there are also some points which should be clarified in the result sections. The discussion section is clear but could be more detailed, although some results were actually discussed in the results section. I wish that the authors would go deeper in the comparison with other IR-resistant eucaryotes. Overall, this is a very nice study and of interest to researchers studying molecular mechanisms of ionizing radiation resistance.

      I have two small suggestions regarding the content of the study itself.

      (1) I think the study would benefit from the analyses of a gene tree (if feasible) in order to verify if TDR1 is indeed tardigrade-specific.

      (2) It would be appreciated to indicate the expression level of the different genes discussed in the study, using, for example, transcript per millions (TPMs).Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors

      We thank the reviewer for his comments.

      (1) To identify TDR1 homologous sequences in non-tardigrade species, we conducted extensive homology searches using multiple homology-based approaches (Blastp and Diamond against the NCBI non-redundant protein sequences (nr) database and hmmsearch against the EBI reference proteomes), which failed to identify TDR1 homologs in non-tardigrade ecdysozoans, thus strongly supporting that TDR1 is indeed tardigrade-specific.

      To be clearer in the manuscript, we now state the absence of hits for TDR1 in non-tardigrade ecdysozoans. Given the absence of homologs in non-tardigrade species, it is not possible to make a gene tree with non-tardigrade species.

      (2) To further document expression levels (which were already available from the Tables in the initial submission), we added MAplots (representing log2foldchange and logNormalized read counts) in the supplementary materials (Supp Figure 3 and Supp Figure 8). These additional figures clearly document that the DNA repair genes discussed in the main text and TDR1 are highly expressed genes after IR and after Bleomycin treatment.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      (1) It has always seemed strange to me that tardigrades accumulate just as much DNA damage as any other organism when irradiated and yet their Dsup protein is supposed to shield and protect their DNA from damage. Perhaps this is an appropriate time for this idea to be reconsidered given the Dsup was NOT induced by IR in this study and the authors found that their animals incurred just as much damage as other biological systems. While Dsup is clearly not the focus of this manuscript, it is the protein most associated with tardigrade radio-tolerance and I would argue this new paper would call into question previous conclusions made about Dsup.

      We agree that it will be important to further investigate the role of Dsup in radio-tolerance. We briefly mentioned this point in the discussion (p14). Our findings show that tardigrades undergo DNA damage at levels roughly similar to radio-sensitive organisms and therefore support a major role for DNA repair in the maintenance of genome integrity after exposure to IR. Nevertheless, we believe that more precise quantification of DNA damage may still reveal a contribution of genome protection to radio-tolerance of tardigrades compared to radio-sensitive organisms. Dsup loss of function experiments in tardigrades would clearly be the best way to assess this possibility. In the absence of experiments directly addressing the function of Dsup, we prefer to refrain from drawing any firm conclusion on prevention of DNA damage by Dsup and thus to keep a more open position. In any case, as discussed in the text, we note that Dsup has only been reported in Hypsibioidea and other molecular players, such as TDR1, are likely involved in radio-tolerance in other tardigrade species.

      (2) While reverse genetics are difficult in tardigrades, they are not impossible, and RNAi can be used to good effect in these animals. In fact several authors on this manuscript have used RNAi to examine the necessity of genes in tardigrade stress tolerance in the past. Was an attempt made to RNAi TDR1? If not, why? With the large amount of work that the authors put into showing the sufficiency of TDR1 for increasing radiotolerance in cell culture, one would think looking at necessity in tardigrades would be of great interest. If RNAi was performed, what were the results? Even a negative result here is informative since a protein can be sufficient but not necessary for a function - if this were the case it would mean tardigrades have some redundant mechanism(s) for surviving radiation exposure beyond TDR1.

      We have attempted RNAi experiments targeting TDR1 or a mix of DNA repair genes (including XRCC5) and examined response to a bleomycin treatment of 2 weeks. Unfortunately, we could not distinguish any difference between uninjected animals and animals injected with TDR1 dsRNAs , or the mix of DNA repair genes dsRNAs. We concluded that, bleomycin treatment, that we used because it is much easier to perform than irradiation, was perhaps not the best way to assay a potential impact of RNAi on survival since it required long term treatment for several days during which the effect of RNAi may have waned. Another attempt was therefore made injecting with TDR1 or control GFP dsRNAs and exposing animals to a 2000Gy IR treatment. We noticed that the viability was lower after injection with GFP dsRNAs than with TDR1 dsRNAs (likely due to problems we had with the injection needle during injections). The next day, animals were irradiated and we observed after 24h that animals injected with GFP dsRNAs exhibited higher lethality rates than animals injected with TDR1 dsRNAs or uninjected animals. We found that this set of experiments were not conclusive. Our current experimental set up will make it difficult to distinguish lethality due to injections from lethality due to potentially decreased resistance to IR. In particular, many key controls are difficult to make (in particular, we could not confirm the efficiency of target gene knockdown, as it is very challenging given the low amount of biological material available and the poor expression of these genes without irradiation). From a practical point of view, performing these experiments is thus very challenging. We nevertheless agree that, in future work, further experimentation is needed to examine the impact of knock-down by RNAi of TDR1 or of other genes such as DNA repair genes or Dsup, in tardigrade DNA repair and survival after IR. Gene knock-out with CRISPR-Cas9 is a very promising alternative to RNAi given that studies in mutant lines will eliminate the confounding effect of lethality due to injections.

      (3) Regarding the U2OS experiments. I have several questions/points of clarification:

      a. Were survival/proliferation levels tested or only H2AX foci? I think that showing decreased H2AX foci (fewer double-stranded breaks) correlates with higher survival rates would be important.

      In the experiments reported in Figure 6, cells were transiently transfected with expression vectors and we did not examine the impact on survival rates. U2OS cells are resistant to high doses of Bleomycin and testing survival would require longer exposure at much higher concentrations (Buscemi et al, 2014, PMID: 25486478). In order to try and better address an impact on cell survival, we therefore generated populations of cells stably expressing the candidate tardigrade proteins fused to GFP. Despite trying different experiment conditions for treatment with Bleomycin, we could not detect a reproducibly significant benefit on cell survival for any of the tardigrade proteins tested, including RvDsup which was used as a positive control (since it was previously reported to improve cell survival in response to X-rays). One possibility is that the analysis should be performed in clones and not in populations of cells with heterogeneous expression levels of the tardigrade protein tested. For example, expression levels of the tardigrade protein needed to reduce the number of phospho-H2AX foci in response to DNA damage may interfere with cell division. We note that in the original Dsup paper, the benefit of RvDsup on cell survival was reported in specific transgenic clones. Experiments in different biological systems have also started to document toxic effects of RvDsup expression, illustrating the challenge, when performing experiments in heterologous systems, to achieve suitable expression levels of the tested protein. Trying to perform such a finer analysis, in our opinion, would go beyond the scope of our manuscript and will be best addressed in future studies. We are therefore careful in the text not to make any claim on the benefit of TDR1 expression on cell survival in response to Bleomycin in human cultured cells.

      (b) From the methods I am a bit confused as to how the images were treated/foci quantified. With the automatic segmentation and foci identification, is this done through the entire Z-series or a single layer? If the latter then I am not sure the results are meaningful, since we do not know how many foci might be present in other layers of the nuclei analyzed. If the former, please clarify this in the method since it is a very important consideration.

      We have acquired images throughout the entire Z-series and edited the text to make it more clear ; We now write: “ Z-stacks were maximum projected and analyzed with Zen Blue software (v2.3)...”. To limit the time needed for image analysis, we have generated an artificial image by projecting the entire Z-series into a single image and counted foci in that single maximum projection image. Although there are potential drawbacks, such as potentially only counting one focus when two foci are superposed along the Z axis, this approach overcomes the limitations of quantification from a single layer. We further ensured statistical robustness of the analysis by performing quantification from several independent fields of the labelled cells and several independent biological replicates (n>=3 as now specified in the legend of figure 6a).

      (c) RvDsup reduced levels of HXA1 foci in these experiments, however, HeDsup was not found to be enriched in the transcriptomic analysis performed here. Was there a reason HeDsup was not used in the cell-based experiments? One could argue that RvDsup is from a different species of tardigrade, but it is a bit concerning that an ortholog of a protein found NOT to be induced by radiation exposure seems to perform as well (if not better) than some versions of TDR1.

      RvDsup is the protein initially shown to increase survival of human HEK293 cells treated with X-rays and reduce the number of phospho-H2AX foci induced: it was therefore used as a positive control in our experiments. The sequence of HeDsup is only poorly similar to RvDsup (with 26% identity) and activity of HeDsup in cultured cells has not been reported before. We therefore believe that HeDsup is not well suited to provide a positive control for the experiments performed in our manuscript.

      (d) From the methods, it seems that cells were treated with Bleomycin and then immediately fixed without any sort of recovery time. In this short timeframe, the presence of TDR1 appears to be enough to deal with a substantial amount of double-stranded breaks (as evidenced by the reduced number of HXA1 foci). Does this make sense? How quickly could one expect DNA repair machinery to make significant progress in resolving damaged DNA? This response seems much faster than what was observed in tardigrades. Perhaps the authors to comment on this.

      Kinetic studies in human cells show extremely rapid repair of DNA double-strand breaks. Sensing of DNA double strand breaks by PARP proteins takes place within seconds after irradiation by IR (Pandey and Black, 2021, PMID: 33674152). NHEJ is then observed to take place by formation of 53BP1 foci within 15 minutes (Schultz et al, 2000, PMID: 11134068). The number of phospho-H2AX and 53BP1 foci peaks at 30 minutes and starts declining thereafter, showing that at a significant number of sites, DNA repair is proceeding very rapidly (by NHEJ). Although we are not aware of any studies of DNA repair kinetics in U2OS cells after addition of Bleomycin, DNA damage must be instantaneous and further take place during exposure to the drug in parallel to DNA repair, which would be expected to have similar kinetics than after irradiation with IR.

      In our experiments, several mechanisms may be involved in reducing the number of phospho-H2AX foci induced by Bleomycin, such as DNA protection (for Dsup expression) or stimulation of DNA repair (for RNF146 expression). For TDR1, the molecular mechanism involved remains to be determined. Given our finding that TDR1 can form aggregates with DNA, an additional possibility is that clustering of phospho-H2AX foci is induced.

      (4) I could not find the sequences of the TDR1 proteins studied here. I did find the cDNA sequence of HeTDR1 in the final supplementary file, but not the other TDR1 orthologs. In the place where it appeared the TDR1 sequences from other tardigrades should be there were very short segments of the HETDR1 sequence. All sequences of proteins used in this study should be easily accessible to the reader and reviewers as it is not possible to review this work without accessing the sequences.

      Our apologies for the inappropriate documentation of TDR1 sequences in the original manuscript. As requested, we have now included the TDR1 sequences in the Supplementary Table 4.

      (5) Likewise, the RNA sequence data is said to be deposited in NCBI under PRJNA997229, but I do not find this available on NCBI.

      The RNA sequence data was deposited in NCBI under the indicated reference before submission of the manuscript. The data has now been released and is fully available on NCBI.

      (6) A few typographical errors: e.g., Page 10 - sentence 4 has two periods ". ." or page 14 which has an open parenthesis that is not closed.

      These typos have been corrected in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      In Figure 4C, what fraction of the 50 genes upregulated in all species and treatments are DNA repair genes? Is there any other notable commonality between these 50 genes? The bulk of upregulated genes are specific to a species and to treatment with IR or bleomycin. What fraction of DNA repair genes are specific to a species or treatment?

      The results in Figure 4C on the 50 putative orthologous genes upregulated in all species and treatments are further detailed in supp Figure 10. The legend to supp Figure 10 now provides the requested information: 14/50 genes are DNA repair genes and the other notable commonality is that 21/50 are “stress response genes”. We did not further breakdown the analysis to evaluate the fraction of DNA repair genes specific to a species or treatment. It will be interesting to gather data in more species to hed light on the evolutionary history of DNA repair gene regulation in response to IR.

      How does the suite of upregulated tardigrade DNA repair proteins after IR or bleomycin compare with DNA or repair proteins upregulated under similar treatments in human cells? Are they quantitatively or qualitatively different, or both?

      There is a great wealth of studies documenting genes differentially expressed in human cells in response to IR (e.g. Borras-Fresneda et al, 2016, PMID: 27245205; Rieger and Chu, 2004, PMID: 15356296; Budwoeth et al, 2012, PMID: 23144912 ; Rashi-Elkeles et al, 2011, PMID: 21795128; Jen and Cheung, 2003, PMID: 12915489...). Upregulation of DNA repair and cell cycle genes is commonly found. However, the number of DNA repair genes induced is always very limited and fold stimulation very modest compared to the massive upregulation observed in tardigrades.

      On page 14, please explain the acronym BER. Do the authors mean Base Excision Repair? Or something else?

      As assumed by the reviewer, the acronym BER stands for Base Excision Repair. The acronym has been removed from the main text and replaced by the full name.

      Reviewer #4 (Recommendations For The Authors):

      We thank the reviewer for his comments.

      Abstract:

      The abstract is fine. What was hard to grasp at the beginning is why TDR1 gene was named that way. It should be clearer that this study decided to further focus on that gene, one of the most overexpressed gene after IR, with an unknown function. Then maybe introduce that it was found to be unique to tardigrade and to interact with DNA. Therefore, it was named TDR1.

      Introduction:

      The introduction has been modified according to the suggestions of Reviewer#4 below. One of the suggested references, Nicolas et al 2023 from the Van Doninck lab, was published while our manuscript was under review and cannot be considered as background information for our study.

      1st paragraph:

      The study is on tardigrades, I found it strange that the first paragraph is on D. radiodurans. I think it is fine to mention what is known in bacteria and eucaryotes but we should already know what will be the main topic in the first paragraph of the introduction. Some details about D. radiodurans seem less important and distracting from the main topic (3D conformation).

      2nd paragraph:

      When mentioning radio-resistant eurcaryotes the authors do not mention the larvae of the anhydrobiotic insect Polypedilum vanderplanki. Stating that the mechanisms of resistance are poorly characterized should perhaps be nuanced. There are some recent studies on D. radiodurans (Ujaoney et al., 2017) the insect P. vanderplanki (Ryabova et al., 2017), tardigrades (Kamilari et al., 2019), and rotifers (Nicolas et al., 2023, Moris et al., 2023). Perhaps these papers are worth indicating that if mechanisms are not elucidated yet, recent studies suggest some actors involved in their resistance. Regarding the sentence stating that DNA repair rather than DNA protection plays a predominant role in the radio-resistance of bdelloid rotifers should also be nuanced. Indeed, many chaperones, antioxidants were mentioned to play a role in the radio-resistance of bdelloid rotifers (Moris et al., 2023). The authors mentioned the reference Hespeels et al., 2023 which is not found in their list of references, I am not sure which paper they refer to. The last sentence of the second paragraph does not mean much. I am not sure what the authors want to state with this. Perhaps they should specify if they mean that the function of many other genes overexpressed after IR remains unknown.

      Still, in the second paragraph, the authors focus on rotifers. They also do not mention what is known in the insect P. vanderplanki, which should be added. They still do not mention tardigrades. I think it is nice to first start with eucaryotes and then focus on tardigrades but as I mentioned before it would help to understand the aim of the paper if the first paragraph mentioned briefly the tardigrades and then could go into detail in the third paragraph.

      3rd paragraph:

      The sentence starting "with over 1400 species" best to remove from it "but they can differ in their resistance" and start the next sentence with that.

      4th paragraph:

      Very clear, we finally understand what is the focus of the manuscript.

      5th paragraph:

      Very clear. The authors should mention the names of the three studied species. Here, A. antarcticus is missing. The sentence "Further analyses in H. exemplaris... showed that TDR1 protein is present and upregulated". The authors should mention in which conditions the protein is upregulated. In that paragraph the authors mention phospho-H2AX: it might be good to introduce its functions before in the introduction (it is mentioned in the second sentence of the results: best to move it to the introduction).

      Results:

      There are a few sentences in this section which rather discuss the results than describe them. I think the manuscript might gain in quality if these interpretations of the results are moved into the discussion section. That would make the result section more concise and the discussion enriched.

      For instance, I suggest to move these sentences into the discussion:

      • "the finding of persistent DSBs in gonads at 72h.... likely explains...".

      • "suggesting that (i) DNA synthesis..."

      • " Phospho-H2AX....also suggested"

      • "Moreover, expression of TDR1-GFP..., supporting the potential role of TDR1 proteins..."

      • "our results suggest that RNF146 upreguation could contribute..."

      • "AMNP gene g12777 was shown to increase...Based on our results, it is possible that..."

      Interpretations mentioned here above were always introduced cautiously (-"suggesting that (i) DNA synthesis..." ; -" Phospho-H2AX....also suggested" ; -"Moreover, expression of TDR1-GFP..., supporting the potential role of TDR1 proteins..." ; -"our results suggest that RNF146 upreguation could contribute..." ). These cautious interpretations were usually important in deciding next steps of the work. We therefore believe it is important to mention these interpretations in the results section to clearly expose the milestones marking the progression of the study.

      For some results, they were directly discussed in the results section for the sake of concision (for example -"the finding of persistent DSBs in gonads at 72h.... likely explains..."; -"AMNP gene g12777 was shown to increase...Based on our results, it is possible that..." ) since, in our opinion, there was no need to mention them again in the main discussion.

      Some other parts could be good to be moved into the introduction:

      • "Previous studies have indicated that irradiation with IR increases expression of Rad51,..." none of the actors involved in DNA repair are mentioned in the introduction. Also, change resistant into resistance

      • "A. antarcticus ..., known for its resistant to high doses of UV....

      We have moved these parts to the introduction as recommended.

      It was in O. areolatus.... that the first demonstration..."

      This piece of information is somewhat anecdotical. We choose to keep it it here in the results section. This information on the radio-resistance of the species P. areolatus is only relevant at this specific step of the study because it encouraged us to consider that P. fairbanksi, which we isolated fortuitously, would be a good model species for studying radio-resistance of tardigrades.

      Here are some additional comments/suggestions on the result section:

      1st section

      • Remove the Gross et al., 2018 from the sentence "using confocal microscopy", it looks otherwise that these results are from their study, not yours.

      We have changed the text to make it clear that this is indeed a finding of Gross et al which was previously made in non-irradiated tardigrades. We replicated this finding, which showed that the protocol was working appropriately, and that we could use this control result for comparison with irradiated animals. We apologize for this confusion.

      The text now states: “Using confocal microscopy, we could detect DNA synthesis in replicating intestinal cells of control animals, as previously shown by (Gross et al. 2018).”

      2nd section

      • It is confusing what has been found induced by IR and/or by Bleomycin.

      • I think it might help if the authors first present what is induced after IR, then write if it is similar after Bleomycin. Especially since they start to do it in the first paragraph of that section. However, they only mention TDR1 in the second paragraph dedicated to Bleomycin treatment which is confusing as it is also overexpressed after IR. It is also not clear if RNF146 is also induced by Bleomycin.

      As recommended, the text presents first what is induced after IR and then what is induced by Bleomycin in the following paragraph. When reporting results with Bleomycin, we have provided a global assessment of what is common to both treatments in Supp Figure 3 and in Supp Table 3. In this figure, we also specifically highlighted several key genes of DNA repair induced by both treatments. These are also mentioned in the text (p8) to illustrate the point that many key DNA repair genes are common to both treatments. We have now added RNF146 to that list as recommended.

      • Regarding TDR1, it is not clear when introduced in the text as "promising candidate" why it is the case. It is clear in the figures but perhaps the authors should explain why they chose these genes for further analyses: high log2foldchange and expression level for instance. Regarding that last comment, it would be interesting to have an idea about the expression level of the genes with high log2foldchange. In Figures 2, 3, and 4 the pvalue and log2foldchange are represented but not the expression level (ideally Transcript per Millions). These values would give an additional idea on the importance of that gene. While looking at the figures, it is unclear why you did not further characterize other genes with high log2foldchange (some with even hints of their function): the mentioned RNF146, macroH2A1 (not even mentioned in the results), some genes unannotated in the figures with likely unknown functions,

      When selecting genes of interest, we did indeed take into account high expression levels. To more clearly document expression levels (which were already available from the Tables), we added MAplots (representing log2foldchange and logNormalized read counts) in the supplementary materials (Supp Figure 3 and Supp Figure 8).

      • It is also unclear at that stage why you named it "Tardigrade DNA damage response protein", as it is characterized as DNA repair/damage proteins by specific GO id or is it based on your downstream analyses, I think it might be worth to quickly mention the reason of that name.

      The name illustrates two points which were already characteristic at this point in time of the study i.e. 1) it is a tardigrade specific protein and 2) it is induced in response to DNA damage.

      • Regarding the BLAST analyses the protein was searched in C. elegans, D. melanogaster and H. sapiens. Why only these three species? What were the threshold evalues used for these analyses. As mentioned in the main comment, it would be worth searching species phylogenetically close to tardigrades to verify if it is well-tardigrade specific. Did you try to make a gene tree, after looking for a conserved domain (using hmmersearch)?

      As indicated in the methods section, the “Tardigrade-specific" annotation was determined by absence of hits after high-throughput alignment (with diamond using –ultrasensitive-option) on the NCBI nr database and absence of hits after blast search on C. elegans, D. melanogaster and H. sapiens proteomes as a complementary criterion (the latter blast search was primarily performed to enrich for functional annotations). Based on these criteria, TDR1 was annotated as “Tardigrade-specific”. As stated in the text, we also searched for TDR1 related sequences with 1) blastp (which is more sensitive than diamond) on the NCBI nr database and 2) HMMER on Reference Proteomes, and no hits were found among non-tardigrade ecdysozoans organisms, confirming TDR1 is specific to tardigrades. For Blast search for example, there were five hits in non-ecdysozoans organisms (two cephalochordates, one mollusc and two echinoderma). The blastp and HMMER results are now included in the revised supplementary material (Supp Table 5). These very few hits in species phylogenetically distant from tardigrades cannot be taken to support the existence of TDR1 genes outside tardigrades.

      To be clearer in the manuscript, we now state the absence of hits for TDR1 in non-tardigrade ecdysozoans. Given the absence of homologs in non-tardigrade species, it is not possible to make a gene tree with non-tardigrade species.

      • Page 9: "Proteins extracts from H. exemplaris... at 4h and 24h..." I think this sentence can be removed as this is mentioned again 2 paragraphs after: "...we conducted an unbiased proteome analysis... at 4h..." The log2foldchange threshold mentioned for the proteomic analyses is 0.3: why this threshold, was it chosen randomly?

      This is threshold is commonly used when considering log2foldchange with the technology used in our study, an isobaric multiplexed quantitative proteomic strategy which is known to compress ratios (Hogrebe et al. 2018).

      • Page 10:

      It would be good for more clarity to indicate at the beginning of the new section which species were investigated after IR or Bleomycin treatment.

      TDR1 homologs in the other tardigrade species were identified based on what? Best reciprocal hit?

      As indicated in the methods section of the manuscript, we searched for homologs in other tardigrade species by BLAST. A best reciprocal hit approach was not performed to try to determine which homologs might be orthologs. In particular, most TDR1 homologs identified are known from transcriptome assemblies and high-contiguity genome assemblies are needed to more confidently identify orthology (using synteny). The results of the BLASTP search are now provided as supplementary material (Supp Table 5).

      Preliminary experiments indicated that A. antarcticus and P. fairbanski survived exposure to 1000 Gy: is there a supplementary graph showing this?

      We have corrected the text to avoid any confusion. We have not rigorously examined the dose-dependent survival of P. fairbanksi in response to irradiation. Text was changed to: “We found by visual inspection of animals after IR that A. antarcticus and P. fairbanksi readily survived exposure to 1000 Gy.”

      • Page 11:

      "A set of 50 genes was upregulated in the three species": please be precise if only after IR.

      Done

      These genes cannot be the same as they are from different species. Did the author mean that they are coding for similar proteins? It might be good to give some more details even if the supplementary figure is mentioned.

      Obviously, these genes are putative orthologs. We have changed the text to:

      ” a set of 50 putative orthologous genes was upregulated in response to IR in all three species”

      Discussion:

      • General comment: the discussion is focused mainly on TDR1, it would be nice to also discuss the other results: DNA repair genes, RNF146.

      A whole paragraph is devoted to discussion of results on DNA repair genes and RNF146. We have extended that discussion following on the suggestion of the reviewer. In particular, we have explicitly mentioned the apparent paradox that XRCC5 and XRCC6, which are among the most highly stimulated genes at the mRNA level, only display modest upregulation at the protein level. Although further studies would be needed to examine the mechanisms involved, we propose that upregulation of RNF146, whose human homolog has been shown to drive degradation of PARylated XRCC5 and XRCC6 proteins in response to IR (Kang et al. 2011), may be responsible for higher degradation rates and may thus counterbalance increased levels of protein synthesis.

      • Pulse field electrophoresis would be nice to be performed. It has been used to assess DSBs in bdelloid rotifers, is it possible in tardigrades?

      As stated in the discussion, we believe that it would be challenging to perform pulse field electrophoresis in tardigrades. However, if possible, these experiments would certainly bring invaluable information to complement our analysis of DNA damage induced by IR.

      • "By comparative transcriptomics": please rephrase that sentence.

      • Proteins acting early in DNA repair: I am not sure I understand this sentence. Actors as ligases act not at the beginning of the repair pathways.

      Well noted. We have removed ligases from the list.

      • It is confusing that the authors mention NHEJ and double-strand break repair pathways as different pathways. There are 2 main pathways to repair DBSs: NHEJ and HR. It would be nice to add a reference to the sentence "PARP proteins act as sensors of DNA damage etc."

      A typo in the sentence gave rise to the misleading suggestion that NHEJ is not a double strand repair pathway. It has been corrected.

      A reference has been added for PARP proteins.

      • It would be nice if the authors can explain deeper their suggestion that degradation of DNA repair actors is essential for tardigrade IR resistance.

      We have expanded this part of the discussion and hope that it is clearer.

      “For XRCC5 and XRCC6, our studyestablished, by two independent methods, proteomics and Western blot analysies, that the stimulation at the protein level could be much more modest (6 and 20-fold at most (Supp Figure 6) than at the RNA level (420 and 90 fold respectively). This finding suggests that the abundance of DNA repair proteins does not simply increase massively to quantitatively match high numbers of DNA damages. Interestingly, in response to IR, the RNF146 ubiquitin ligase was also found to be strongly upregulated. RNF146 was previously shown to interact with PARylated XRCC5 and XRCC6 and to target them for degradation by the ubiquitin-proteasome system (Kang et al. 2011). To explain the lower fold stimulation of XRCC5 and XRCC6 at the protein levels, it is therefore tempting to speculate that, XRCC5 and XRCC6 protein levels (and perhaps that of other scaffolding complexes of DNA repair as well) are regulated by a dynamic balance of synthesis, promoted by gene overexpression, and degradation, made possible by RNF146 upregulation. Consistent with this hypothesis, we found that, similar to human RNF146 (Kang et al. 2011), He-RNF146 expression in human cells reduced the number of phospho-H2AX foci detected in response to Bleomycin (Figure 6).”

      • Page 15: Please add a reference for the sentence "Functional analysis of promotor sequences in transgenic tardigrades etc."

      The reference has been added to fix this omission.

      Material and Methods:

      Small comments:

      • 40 μm mesh: space missing

      • 100 μm mesh: space missing

      • (for Bleomycin)): parenthesis missing

      • remove "as indicated in the text"

      • The investigated time points after radiation need to be clearly stated in the method section. It is also unclear in the IR and Bleomycin section which tardigrades were treated with what. Not all were treated with Bleomycin.

      The small comments above have been fixed in the revised version of the manuscript.

      • Page 21: please precise the coverage of the RNA sequencing

      Statistics on mapping of RNAseq reads are now provided in Supp Table 10.

      • Page 22: Was any read trimming performed? Anything about the quality check of the reads?

      Trimming was conducted using trimmomatic (v0.39) and quality check using FastQC (v. ?) This information has been added to the Methods section.

      • Were the analyses confirmed by a second approach: for instance, EdgeR? Deseq2 and EdgeR do not always have the same results. For more robust analyses it is advised to use both.

      Differential transcriptome analyses were conducted with DESeq2 only. The robustness of our identification of differentially expressed genes in response to IR stems from performing comparative analyses in three different species, rather than from using two bioinformatics pipelines in a single species. We also note that benchmarking reported in the initial DEseq2 paper showed that identification of differentially expressed genes with large log fold changes (which, as reported in our manuscript, is characteristic of many DNA repair genes in response to IR) is very consistent between DEseq2 and EdgeR.

      Figures:

      • Figure 2: Legend vertical dotted line does not indicate log2foldchange value of 4 in all panels: it would be good to indicate for panels a and c as well.

      Figure 2has been improved following on the suggestions of the reviewer. Dotted lines now show log2foldchange value of 2 in all panels (ie Fold Change of 4 as mentioned in the main text).

      • Figure 2C: There are a few points with high log2foldchange which are not annotated: was it because nothing was found in the blast research? If yes, it would be good to indicate their functions. If not, it would be good to mention in the discussion that there are some genes with still unknown functions which might play an important role in the resistance of tardigrades to IR.

      The few points which are not annotated in figure 2c can now be found in Supp Table 3 Some of them have no hit in Blast search, some others such as BV898_09662 or BV898_07145 have hits on DNA repair genes as RBBP8/CtIP or XRCC6 respectively but are not annnotated as such by eggnog in KEGG pathway.

      • Figure 4C: Why not have included the response of P. fairbanski to bleomycin? I guess it was not done, but it is unclear in the results and methods sections.

      P.fairbanksi response to bleomycin wasn’t assessed as we didn’t get enough animals to run the study. The method section has been modified to precise this point.

    1. Author response:

      Reviewer #1 (Public Review):

      “… it remains unclear how ninein reduction causes bone defects …”

      We have added several control experiments that permit us to conclude that osteoblast numbers remain unaltered in the ninein-knockout embryos, and that bone abnormalities in vivo are caused by fusion defects of osteoclast precursor cells, whereas the proliferation, viability, or the adhesion of these precursor cells remain unaffected. For details, please see our comments below.

      “Discussion includes several unfounded potential mechanisms that really need to be thoroughly analyzed to gain a mechanistic understanding of the bone defects…”

      The new data back up our claim of fusion defects as a cause for limited osteoclast function. We have re-written parts of the discussion, to take into account our new findings.

      “Data showing normal osteoblasts in ninein-null mice was qualitative and requires further in-depth analysis and quantification of osteoblast …”

      To address this point, quantification of osteoblast numbers in tibiae at E16.5 and E18.5 was performed in control and ninein-deleted mouse embryos. The data are presented in the new Figures 3G and J.

      “In ninein knock-out mice, reduced TRAP+ve multinuclear cells were observed (Figure 6A and 6B). However, the magnitude of difference (about 5% decrease in multinucleated cells) is not consistent with the skeletal deformities reported in Figures 2-4, potentially suggesting the contribution of additional mechanisms.”

      We agree that the difference appears to be small at first glance, but nevertheless it remains statistically significant (a more than three-fold difference). We would like to recall that these observations (Fig. 6A) were performed at E14.5, i.e. at a stage when no ossification has occurred yet. We are looking at the first fusion events of myeloid precursors, likely derived from the fetal liver, that colonize the area of the first bone to form, and small differences in the number of functional osteoclasts may account for different timing of ossification. We think that differences in osteoclast fusion also account for the premature appearance of ossification centers for other skeletal elements, at later time points during development.

      “The fusion assay in Figure 6C needs further clarification. How was the syncytia perimeter defined to measure cell surface? The x-axis suggests that there are syncytia that contain up to 160 nuclei at day 3. How were the nuclei differentially stained and quantified?”

      We provide now additional information on the experimental approach in the revised manuscript, on pages 16-17 (Materials and Methods). For information: high numbers of syncytial nuclei in cultures were also observed by other groups in the past (Tiedemann et al., 2017, Front Cell Dev Biol. 5:54). In addition, we performed new experiments and quantified the fusion of osteoclast precursors by staining for actin and nuclei (new Figure 7C). This allowed us to quantify several additional parameters related to cell fusion (as initially performed in Raynaud-Messina et al., 2018, PNAS, 115:E2556-E2565).

      “Some text needs clarification. … What is the definition of "large syncytia"? Is the fusion index increase by day 5 diminished in later days? A graph of the syncytia size/ nuclei number or fusion index in the above-mentioned days will be helpful.”

      Information on the definition of “large syncytia” is now provided on page 10 (1st paragraph). We added further experimental details on osteoclast size for days 3, 4, and 5 in the supplemental Figures 7A and B. Most importantly, we performed additional assays of the fusion index by quantifying syncytial versus non-syncytial nuclei in a semi-automated manner. The new data are presented in Figure 7C, and the methods are explained on page 17. Together with our new analysis of cell proliferation, cell viability, and cell adhesion (Figure 7C, D, suppl. Fig. 7C-G), we provide now solid evidence for a fusion defect at the origin of impaired formation of ninein del/del osteoclasts.

      “Assessment of resorption was qualitative in Figure 6E and since the fusion deficiencies are transient, quantification of a corresponding resorption activity is needed. This should be described in the Materials and Methods section.”

      Quantifications of the bone resorption activities are now provided in the new Figure 7E, and a reference for the methods is provided on page 16.

      “Further experiments are needed to show connections between reduced centrosome clustering and reduced osteoclast formation as there is no evidence to date that suggest centrosome clustering is required for cell fusion. Multi-color live imaging and dynamic analysis can be used to determine if the ninein deficient cells show defective movement/migration/ fusion dynamics.”

      We agree that it is an important question, and studying potential links between centrosomal microtubule organization and osteoclast fusion is an ongoing project of the team. However, we estimate that in order to obtain conclusive results this will require 1-2 additional years of research activity, and we intend to present this as a separate project in the future. At the current point of our investigation, we think that providing a solid link between ninein, osteoclast fusion, and controlled timing of ossification, as shown in this manuscript, represents valuable progress to understand previously published bone abnormalities in patients with ninein mutations.

      “Quantification of the % of multinucleated osteoclasts that contain clustered and dispersed centrosomes is needed.”

      New quantification experiments on centrosome clustering are now provided in Figure 8H. These quantifications demonstrate that the potential of centrosome clustering is almost completely lost in osteoclasts without ninein.

      Reviewer #2 (Public Review):

      “Based on the decrease in the number of osteoclasts (Fig 5E, G, and also per coverslip after 2 days in culture), the authors suggest that the loss of ninein impacts osteoclast proliferation. First, proliferation can be directly quantified using Ki67 staining or EdU incorporation. Second, other interpretations are also plausible and can also be experimentally tested. These include less adhesion and attachment of the mutants to the coverslips, but perhaps more relevant in vivo is cell death of the ninein mutant osteoclasts. It has been established that the loss of centrosome function activates p53- dependent cell death and osteoclasts might be a vulnerable cell population. Quantifying p53 immunoreactivity and/or cell death in osteoclasts might help clarify the phenotype of osteoclast reduction.”

      In response to the reviewers, we have performed a series of new experiments that include

      1) A careful analysis of the fusion index, using a semi-automated approach, indicating significant differences in the fusion of precursor cells into osteoclasts (Fig. 7C).

      2) We have repeated the quantification of cell numbers prior to fusion and find variations between samples from different mice (also among mice of the same genotype), but we see on average comparable cell adhesion between samples from control mice and ninein-del/del mice. The data are provided in the supplemental Figure 7F. Moreover, we have quantified the expression of three main beta-integrins at the surface of control and ninein del/del osteoclast precursors (suppl. Fig. 7G), without detecting significant differences. Altogether, these data suggest the cell adhesion is comparable for the two genotypes.

      3) We have addressed the question of altered cell proliferation, by performing flow cytometry experiments and by quantifying the different cell cycle stages (Fig. 7D), and by quantifying Ki67 expression (suppl. Fig. 7C). We see no significant differences between samples from control and ninein-del/del mice.

      4) We have addressed the question of cell death, by performing Annexin V staining and flow cytometry (suppl. Fig. 7D), and by immunoblotting for cleaved caspase 3 and PARP (suppl. Fig. 7E). These experiments reveal no significant differences between the control and ninein del/del samples. Our data permit us to exclude cell death as a likely cause for the reduction of fused osteoclasts in the absence of ninein.

      Overall, the new experiments show that the defects in osteoclast formation from ninein-deleted samples are due to defects in cell fusion, but not in cell proliferation, cell adhesion or viability.

      Reviewer #3 (Public Review):

      “The authors put much emphasis on the centrosome in the Introduction session. However, it was not until Figure 7 did they show abnormal centriole clustering in osteoclasts. The introduction should include more background on osteoclast and osteoblast balance during skeletal development.”

      To address this, we included more background on the role of osteoclasts and osteoblasts in the revised introduction (page 4).

    1. Reviewer #3 (Public Review):

      Summary:

      The authors consider several known aspects of PV and SOM interneurons and tie them together into a coherent single-cell model that demonstrates how the aspects interact. These aspects are:<br /> (1) While SOM interneurons target distal parts of pyramidal cell dendrites, PV interneurons target perisomatic regions.<br /> (2) SOM interneurons are associated with beta rhythms, PV interneurons with gamma rhythms.<br /> (3) Clustered excitation on dendrites can trigger various forms of dendritic spikes independent of somatic spikes. The main finding is that SOM and PV interneurons are not simply associated with beta and gamma frequencies respectively, but that their ability to modulate the activity of a pyramidal cell "works best" at their assigned frequencies. For example, distally targeting SOM interneurons are ideally placed to precisely modulate dendritic Ca-spikes when their firing is modulated at beta frequencies or timed relative to excitatory inputs. Outside those activity regimes, not only is modulation weakened, but overall firing reduced.

      Strengths:

      I think the greatest strength is the model itself. While the various individual findings were largely known or strongly expected, the model provides a coherent and quantitative picture of how they come together and interact.

      The paper also powerfully demonstrates that an established view of "subtractive" vs. "divisive" inhibition may be too soma-focused and provide an incomplete picture in cells with dendritic nonlinearities giving rise to a separate, non-somatic all-or-nothing mechanism (Ca-spike).

      Weaknesses:

      While the authors overall did an admirable job of simulating the neuron in an in-vivo-like activity regime, I think it still provides an idealized picture that it optimized for the generation of the types of events the authors were interested in. That is not a problem per se - studying a mechanism under idealized conditions is a great advantage of simulation techniques - but this should be more clearly characterized. Specifics on this are very detailed and will follow in the comments to authors.

      What disappointed me a bit was the lack of a concise summary of what we learned beyond the fact that beta and gamma act differently on dendritic integration. The individual paragraphs of the discussion often are 80% summary of existing theories and only a single vague statement about how the results in this study relate. I think a summarizing schematic or similar would help immensely.

      Orthogonal to that, there were some points where the authors could have offered more depth on specific features. For example, the authors summarized that their "results suggest that the timescales of these rhythms align with the specialized impacts of SOM and PV interneurons on neuronal integration". Here they could go deeper and try to explain why SOM impact is specialized at slower time scales. (I think their results provide enough for a speculative outlook.)

      Beyond that, the authors invite the community to reappraise the role of gamma and beta in coding. This idea seems to be hindered by the fact that I cannot find a mention of a release of the model used in this work. The base pyramidal cell model is of course available from the original study, but it would be helpful for follow-up work to release the complete setup including excitatory and inhibitory synapses and their activation in the different simulation paradigms used. As well as code related to that.

      Impact:

      Individually, most results were at least qualitatively known or at least expected. However, demonstrating that beta-modulation of dendritic events and gamma-modulation of soma spiking can work together, at the same time and in the same model can lead to highly valuable follow-up work. For example, by studying how top-down excitation onto apical compartments and bottom-up excitation on basal compartments interacts with the various rhythms; or what the impact of silencing of SOM neurons by VIP interneuron activation entails. But this requires - again - public release of the model and the code controlling the simulation setups.

      Beyond that, the authors clearly demonstrated that a single compartment, i.e., only a soma-focused view is too simple, at least when beta is considered. Conversely, the authors were able to describe the impact of most things related to the apical dendrite on somatic spiking as "going through" the Ca-spike mechanism. Therefore, the setup may serve as the basis of constraining simplified two-compartment models in the future.

    1. Reviewer #1 (Public Review):

      This manuscript describes the pattern of relaxed selection observed at spermatogenesis genes in gorillas, presumably due to the low sperm competition associated with single-male polygyny. The analyses to detect patterns of selection are very thorough, as are the follow up analyses to characterize the function of these genes. Furthermore, the authors take the extra steps of in vivo determination of function with a Drosophila model.

      This is an excellent paper. It addresses the interesting phenomenon of relaxation of selection as a genomic signal of reproductive strategies using multiple computational approaches and follow-up analyses by pulling in data from GO, mouse knockouts, human infertility database, and even Drosophila RNAi experiments. I really appreciate the comprehensive and creative approach to analyze and explore the data. As far as I can tell, the analyses were performed soundly and statistics are appropriate. The Introduction and Discussion sections are thoughtful and well-written. I have no major criticisms of the manuscript.

      The main area that I would suggest for improvement is in the "Caveats and Limitations" section of the Discussion. Currently, the first paragraph of this section states the obvious that genetic manipulation of gorillas is not feasible. Beyond a reminder to the reader that this was a rationale for the Drosophila work, it isn't really adding much insight. The second paragraph is a brief discussion of the directionality of change. I think it comes across as overly simplistic, with a sort of "well, we can never know" feel. Obviously, there are plenty of researchers who do model change to infer direction and causation, and there are plenty of published papers attempting to do so with respect to mating systems in primates.

      I do not think the authors need to remove these paragraphs, but I do encourage them to turn the "Caveats and Limitations" section into something more meaningful by addressing limitations of the work that was actually done rather than limitations of hypothetical things that were not done. A few areas come to mind. First, the authors should discuss the effect of gene-tree vs species-tree inconsistencies in the analyses, which could affect the identification of gorilla-specific amino acid changes and/or the dN/dS estimates. Incomplete lineage sorting is very common in primates including the gorilla-chimp-human splits (Rivas-González et al. 2023). It would be nice to hear the authors' thoughts on how that might affect their analyses. Second, the dN/dS-based analyses assume the neutrality of synonymous substitutions. Of course, that assumption is not completely true; it might be true enough, and the authors should at least note it as a caveat. Third, and potentially related, is the consideration that these protein-coding genes may be functioning in other ways such as via antisense transcription. The genes under relaxed selection may be on their way to becoming pseudogenes and evolving as such at the sequence level, but many pseudogenes continue to be transcribed sense or anti-sense in a regulatory purpose. I don't think there is a way to incorporate this into the authors' analyses but it would be nice to see it acknowledged as a caveat or limitation.

    1. As we look at the above examples we can see examples of intersectionality [q13], which means that not only are people treated differently based on their identities (e.g., race, gender, class, disability, weight, height, etc.), but combinations of those identities can compound unfair treatment in complicated ways. For example, you can test a resume filter and find that it isn’t biased against Black people, and it isn’t biased against women. But it might turn out that it is still biased against Black women. This could happen because the filter “fixed” the gender and race bias by over-selecting white women and Black men while under-selecting Black women.

      I think intersectionality is essential because it helps us understand how different identity traits can intersect to affect an individual's experience. For example, an Asian pansexual male may face discrimination based on both race and sexual orientation, and the impact of such compounded discrimination may be much more complex than discrimination based on a single identity. This situation shows that we cannot consider only one factor when addressing discrimination and inequality; we must consider how multiple identity factors interact and may lead to more complex injustices. Such insights are critical to developing more effective equality policies and interventions.

    1. In what ways have you found social media bad for your mental health and good for your mental health?

      When it comes to mental health issues in our generation, I can say with almost 100% confidence, that social media is the main culprit. With technology integrated in every aspect of our lives nowadays, we can blame social media for being so easily accessible and influential on our generation and generations to come. From my experiences, many social media sites encourage people to really only showcase the good aspects of our lives, which leaves a very one-sided angle of everyone. This is very harmful as many younger people (and probably older people too) tend to compare themselves to the influencers and accounts, leading to accelerating conditions like depression, anxiety, and jealousy. Additionally, with all these way to edit photos, these posts may not even be real but they sure seem real, leading to negative self body image thoughts and unhealthy diet and workout plans. I think in some ways social media can be good for your mental health, whether that is watching funny videos to lighten the mood, or looking into what other people with similar hobbies do to mimic and get inspiration. However, it is hard to filter out the harmful content with the content with want and enjoy.

    1. C. L. Lynch. “Autism is a Spectrum” Doesn’t Mean What You Think. NeuroClastic, May 2019. URL: https://neuroclastic.com/its-a-spectrum-doesnt-mean-what-you-think/ (visited on 2023-12-08).

      The article addresses misconceptions about autism being a gradient rather than a true spectrum. This article also use vivid analogies like the visible light spectrum to illustrate its point. It highlights the diversity within autism by explaining how different individuals can have unique combinations of traits, emphasizing that autism is not just one condition but a complex collection of related neurological conditions. The author thinks we shouldn't compare different types of autism as "more" or "less" severe, and emphasizes the importance of understanding individual strengths and challenges rather than making assumptions based on outward behaviors.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to reviewer comments

      • *

      We extend our gratitude to the reviewers for their time and valuable feedback on our manuscript. We especially appreciate the insightful suggestions that have significantly contributed to refining our work and elucidating our findings. With the revisions made to the text and the inclusion of new experimental data, we believe our manuscript now effectively addresses all reviewer comments. We eagerly await your evaluation of our revised submission.

      Small ARF-like GTPases play fundamental roles in dynamic signaling processes linked with vesicular trafficking in eukaryotes. Despite of their evolutionary conservation, there is little known about the ARF-like GTPase functions in plants. Our manuscript reports the biochemical and cell biological characterization of the small ARF-like GTPase TTN5 from the model plant Arabidopsis thaliana*. Fundamental investigations like ours are mostly lacking for ARF and ARL GTPases in Arabidopsis. *

      We employed fluorescence-based enzymatic assays suited to uncover different types of the very rapid GTPase activities for TTN5. The experimental findings are now illustrated in a more comprehensive modified Figure 2 and in the form of a summary of the GTPase activities for TTN5 and its mutant variants in the NEW Figure 7A in the Discussion part. Taken together, we found that TTN5 is a non-classical GTPase based on its enzymatic kinetics. The reviewers appreciated these findings and highlighted them as being „impressive in vitro biochemical characterization" and "major conceptual advance". Since such experiments are "uncommon" for being conducted with plant GTPases, reviewers regarded this analysis as "useful addition to the plant community in general". The significance of these findings is given by the circumstance that „the ARF-like proteins are poorly addressed in Arabidopsis while they could reveal completely different function than the canonical known ARF proteins". Reviewers saw here clearly a "strength" of the manuscript.

      With regard to the cell biological investigation and initial assessment of cell physiological roles of TTN5, we now provide requested additional evidence. First of all, we provide NEW data on the localization of TTN5 by immunolocalization using a complementing HA3-TTN5 construct, supporting our initial suggestions that TTN5 may be associated with vesicles and processes of the endomembrane system. The previous preprint version had left the reviewers „less convinced" of cell biological data due to the lack of complementation of our YFP-TTN5 construct, lack of Western blot data and the low resolution of microscopic images. We fully agree that these points were of concern and needed to be addressed. We have therefore intensively worked on these „weaknesses" and present now a more detailed whole-mount immunostaining series with the complementing HA3-TTN5 transgenic line (NEW Figure 4, NEW Figure 3P), Western blot data (NEW Supplementary Figures S7C and D), and we will provide all original images upon publication of our manuscript at BioImage Archives which will provide the high quality for re-analysis. BioImage Archives is an online storage for biological image data associated with a peer-reviewed publication. This way, readers will be able to inspect each image in detail. The immunolocalization data are of particular importance as they indicate that HA3-TTN5 can be associated with punctate vesicle structures and BFA bodies as seen with YFP studies of YFP-TTN5 seedlings. We have re-phrased very carefully and emphasized those localization patterns which are backed up by immunostaining and YFP fluorescence detection of YFP-TTN5 signals. To improve the comprehension, the findings are summarized in a schematic overview in NEW Figure 7B of the Discussion. We have also addressed all other comments related to the cell biological experiments to "provide the substantial improvement" that had been requested. We emphasize that we found two cell physiological phenotypes for the TTN5T30N mutant. YFP-TTN5T30N confers phenotypes, which are differing mobility of the fluorescent vesicles in the epidermis of hypocotyls (see Video material and NEW Supplementary Video Material S1M-O), and a root growth phenotype of transgenic HA3-TTN5T30N seedlings (NEW Figure 3O). We explain the cell physiological phenotypes in relation to enzymatic GTPase data. These findings convince us of the validity of the YFP-TTN5 analysis indicative of TTN5 localization.

      *We are deeply thankful to the reviewers for judging our manuscript as "generally well written", "important" and "of interest to a wide range of plant scientists" and "for scientists working in the trafficking field" as it "holds significance" and will form the basis for future functional studies of TTN5. *

      We prepared very carefully our revised manuscript in which we address all reviewer comments one by one. Please find our revision and our detailed rebuttal to all reviewer comments below. Changes in the revised version are highlighted by yellow and green color. In the "revised version with highlighted changes".

      With these adjustments, we hope that our peer-reviewed study will receive a positive response.

      We are looking forward to your evaluation of our revised manuscript and thank you in advance,

      Sincerely

      Petra Bauer and Inga Mohr on behalf of all authors

      *

      • *

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      The manuscript from Mohr and collaborators reports the characterization of an ARF-like GTPase of Arabidopsis. Small GTPases of the ARF family play crucial role in intracellular trafficking and plant physiology. The ARF-like proteins are poorly addressed in Arabidopsis while they could reveal completely different function than the canonical known ARF proteins. Thus, the aim of the study is important and could be of interest to a wide range of plant scientists. I am impressed by the biochemical characterization of the TTN5 protein and its mutated versions, this is clearly a very nice point of the paper and allows for proper interpretations of the other results. However, I was much less convinced on the cell biology part of this manuscript and aside from the subcellular localization of the TTN5 I think the paper would benefit from a more functional angle. Below are my comments to improve the manuscript:

      1- In the different pictures and movies, TTN5 is quite clearly appearing as a typical ER-like pattern. The pattern of localization further extends to dotty-like structures and structures labeled only at the periphery of the structure, with a depletion of fluorescence inside the structure. These observations raise several points. First, the ER pattern is never mentioned in the manuscript while I think it can be clearly observed. Given that the YFP-TTN5 construct is not functional (the mutant phenotype is not rescued) the ER-localization could be due to the retention at the ER due to quality control. The HA-TTN5 construct is functional but to me its localization shows a quite different pattern from the YFP version, I do not see the ER for example or the periphery-labeled structures. In this case, it will be a crucial point to perform co-localization experiments between HA-TTN5 and organelles markers to confirm that the functional TTN5 construct is labeling the Golgi and MVBs, as does the non-functional one. I am also quite sure that a co-localization between YFP-TTN5 and HA-TTN5 will not completely match... The ER is contacting so many organelles that the localization of YFP-TTN5 might not reflects the real location of the protein.

      __Our response: __

      At first, we like to state that specific detection of intracellular localization of plant proteins in plant cells is generally technically very difficult, when the protein abundance is not overly high. In this revised version, we extended immunostaining analysis to different membrane compartments, including now immunostaining of complementing HA3-TTN5 in the absence and presence of BFA, along with immunodetection of ARF1 and FM4-64 labeling in roots (NEW Figure 3P, NEW Figure 4A, B). In the revised version, we focus the analysis and conclusions on the fluorescence patterns that overlap between YFP-TTN5 detection and HA3-TTN5 immunodetection. With this, we can be most confident about subcellular TTN5 localization. Please find this NEW text in the Result section (starting Line 323):

      „For a more detailed investigation of HA3-TTN5 subcellular localization, we then performed co-immunofluorescence staining with an Alexa 488-labeled antibody recognizing the Golgi and TGN marker ARF1, while detecting HA3-TTN5 with an Alexa 555-labeled antibody (Robinson et al. 2011, Singh et al. 2018) (Figure 4A). ARF1-Alexa 488 staining was clearly visible in punctate structures representing presumably Golgi stacks (Figure 4A, Alexa 488), as previously reported (Singh et al. 2018). Similar structures were obtained for HA3-TTN5-Alexa 555 staining (Figure 4A, Alexa 555). But surprisingly, colocalization analysis demonstrated that the HA3-TTN5-labeled structures were mostly not colocalizing and thus distinct from the ARF1-labeled ones (Figure 4A). Yet the HA3-TTN5- and ARF1-labeled structures were in close proximity to each other (Figure 4A). We hypothesized that the HA3-TTN5 structures can be connected to intracellular trafficking steps. To test this, we performed brefeldin A (BFA) treatment, a commonly used tool in cell biology for preventing dynamic membrane trafficking events and vesicle transport involving the Golgi. BFA is a fungal macrocyclic lactone that leads to a loss of cis-cisternae and accumulation of Golgi stacks, known as BFA-induced compartments, up to the fusion of the Golgi with the ER (Ritzenthaler et al. 2002, Wang et al. 2016). For a better identification of BFA bodies, we additionally used the dye FM4-64, which can emit fluorescence in a lipophilic membrane environment. FM4-64 marks the plasma membrane in the first minutes following application to the cell, then may be endocytosed and in the presence of BFA become accumulated in BFA bodies (Bolte et al. 2004). We observed BFA bodies positive for both, HA3-TTN5-Alexa 488 and FM4-64 signals (Figure 4B). Similar patterns were observed for YFP-TTN5-derived signals in YFP-TTN5-expressing roots (Figure 4C). Hence, HA3-TTN5 and YFP-TTN5 can be present in similar subcellular membrane compartments."

      We did not find evidence that HA3-TTN5 can localize at the ER using whole-mount immunostaining (NEW Figure 3P; NEW Figure 4A, B). Hence, we are careful with describing that fluorescence at the ER, as seen in the YFP-TTN5 line (Figure 3M, N) reflects TTN5 localization. We therefore do not focus the text on the ER pattern in the Result section (starting Line 295):

      „Additionally, YFP signals were also detected in a net-like pattern typical for ER localization (Figure 3M, N). (...) We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      *And we discuss in the Discussion section (starting Line 552): *

      „We based the TTN5 localization data on tagging approaches with two different detection methods to enhance reliability of specific protein detection. Even though YFP-TTN5 did not complement the embryo-lethality of a ttn5 loss of function mutant, we made several observations that suggest YFP-TTN5 signals to be meaningful at various membrane sites. We do not know why YFP-TTN5 does not complement. There could be differences in TTN5 levels and interactions in some cell types, which were hindering specifically YFP-TTN5 but not HA3-TTN5. (...) Though constitutively driven, the YFP-TTN5 expression may be delayed or insufficient at the early embryonic stages resulting in the lack of embryo-lethal complementation. On the other hand, the very fast nucleotide exchange activity may be hindered by the presence of a large YFP-tag in comparison with the small HA3-tag which is able to rescue the embryo-lethality. The lack of complementation represents a challenge for the localization of small GTPases with rapid nucleotide exchange in plants. Despite of these limitations, we made relevant observations in our data that made us believe that YFP signals in YFP-TTN5-expressing cells at membrane sites can be meaningful."

      2- What are the structures with TTN5 fluorescence depleted at the center that appear in control conditions? They look different from the Golgi labeled by Man1 but similar to MVBs upon wortmannin treatment, except that in control conditions MVBs never appear like this. Are they related to any kind of vacuolar structures that would be involved in quality control-induced degradation of non-functional proteins?

      Our response:

      The reviewer certainly refers to fluorescence images from N. benthamiana leaf epidermal cells where different circularly shaped structures are visible. In these respective structures, the fluorescent circles are depleted from fluorescence in the center, e.g. in Figure 5C, YFP- fluorescent signals in TTN5T30N transformed leaf discs. We suspect that these structures can be of vacuolar origin as described for similar fluorescent rings in Tichá et al., 2020 for ANNI-GFP (reference in manuscript). The reviewer certainly does not refer to swollen MVBs that are seen following wortmannin treatment, as in Figure 5N-P, which look similar in their shape but are larger in size. Please note that we always included the control conditions, namely the images recorded before the wortmannin treatment, so that we were able to investigate the changes induced by wortmannin. Hence, we can clearly say that the structures with depleted fluorescence in the center as in Figure 5C are not wortmannin-induced swollen MVBs.To make these points clear to the reader, we added an explanation into the text (Line 385-388):

      „We also observed YFP fluorescence signals in the form of circularly shaped ring structures with a fluorescence-depleted center. These structures can be of vacuolar origin as described for similar fluorescent rings in Tichá et al. (2020) for ANNI-GFP."

      3- The fluorescence at nucleus could be due to a proportion of YFP-TTN5 that is degraded and released free-GFP, a western-blot of the membrane fraction vs the cytosolic fraction could help solving this issue.

      Our response:

      In an α-GFP Western blot using YFP-TTN5 Arabidopsis seedlings, we detected besides the expected and strong 48 kDa YFP-TTN5 band, three additional weak bands ranging between 26 to 35 kDa (NEW Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins expressed from aberrant transcripts. α-HA Western blot controls performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size (Supplementary Figure S7D). We must therefore be cautious about nuclear TTN5 localization and we rephrased the text carefully (starting Line 300):

      „We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      4- It is not so easy to conclude from the co-localization experiments. The confocal pictures are not always of high quality, some of them appear blurry. The Golgi localization looks convincing, but the BFA experiments are not that clear. The MVB localization is pretty convincing but the images are blurry. An issue is the quantification of the co-localizations. Several methods were employed but they do not provide consistent results. As for the object-based co-localization method, the authors employ in the text co-localization result either base on the % of YFP-labeled structures or the % of mCherry/mRFP-labeled structures, but the results are not going always in the same direction. For example, the proportion of YFP-TTN5 that co-localize with MVBs is not so different between WT and mutated version but the proportion of MVBs that co-localize with TTN5 is largely increased in the Q70L mutant. Thus it is quite difficult to interpret homogenously and in an unbiased way these results. Moreover, the results coming from the centroid-based method were presented in a table rather than a graph, I think here the authors wanted to hide the huge standard deviation of these results, what is the statistical meaning of these results?

      Our response:

      First of all, we like to point out that, as explained above, the BFA experiments are now more clear. We performed additional BFA treatment coupled with immunostaining using HA3-TTN5-expressing Arabidopsis seedlings and coupled with fluorescence analysis using YFP-TTN5-expressing Arabidopsis plants. In both experiments, we observed the typical BFA bodies very clearly (NEW Figure 4B, C).

      Second, we like to insist that we performed colocalization very carefully and quantified the data in three different manners. We like to state that there is no general standardized procedure that best suits the idea of a colocalization pattern. Results of colocalization are represented in stem diagrams and table format, including statistical analysis. Colocalization was carried out with the ImageJ plugin JACoP for Pearson's and Overlap coefficients and based on the centroid method. The plotted Pearson's and Overlap coefficients are presented in bar diagrams in Supplementary Figure S8A and C, including statistics. The obtained values by the centroid method are represented in table format in Supplementary Figure S8B and D, which *can be considered a standard method (see Ivanov et al., 2014). *

      Colocalization of two different fluorescence signals was performed for the two channels in a specific chosen region of interest (indicating in % the overlapping signal versus the sum of signal for each channel). The differences between the YFP/mRFP and mRFP/YFP ratios indicate that a higher percentage of ARA7-RFP signal is colocalizing with YFP-TTN5Q70L signal than with the TTN5WT or the TTN5T30N mutant form signals, while the YFP signals have a similar overlap with ARA7-positive structures. This is not a contradiction. Presumably this answers well the questions on colocalization.

      Please note that upon acceptance for publication, we will upload all original colocalization data to BioImage Archive. Hence, the high-quality data can be reanalyzed by readers.

      5- The use of FM4-64 to address the vacuolar trafficking is a hazardous, FM4-64 allows the tracking of endocytosis but does not say anything on vacuolar degradation targeting and even less on the potential function of TTN5 in endosomal vacuolar targeting. Similarly, TTN5, even if localized at the Golgi, is not necessarily function in Golgi-trafficking. __Our response: __

      *Perhaps our previous description was misleading. Thank you for pointing this out. We reformulated the text and modified the schematic representation of FM4-64 in NEW Figure 6A: *

      "(A), Schematic representation of progressive stages of FM4-64 localization and internalization in a cell. FM4-64 is a lipophilic substance. After infiltration, it first localizes in the plasma membrane, at later stages it localizes to intracellular vesicles and membrane compartments. This localization pattern reflects the endocytosis process (Bolte et al. 2004)."

      6- The manuscript lacks in its present shape of functional evidences for a role of TTN5 in any trafficking steps. I understand that the KO mutant is lethal but what are the phenotypes of the Q70L and T30N mutant plants? What is the seedling phenotype, how are the Golgi and MVBs looking like in these mutants? Do the Q70L or T30N mutants perturbed the trafficking of any cargos?

      __Our response: __

      *We agree fully that functional evidences are interesting to assign roles for TTN5 in trafficking steps. A phenotype associated with TTN5T30N and TTN5Q70L is clearly meaningful. *

      First of all, we like to emphasize that it is incorrect that the manuscript lacks functional evidences for a role of TTN5 and the two mutants. In fact, the manuscript even highlights several functional activities that are meaningful in a cellular context. These include different types of kinetic GTPase enzyme activities, subcellular localization in planta and association with different endomembrane compartments and subcellular processes such as endocytosis. We surely agree that future research can focus even more on cell physiological aspects and the physiological functions in plants to examine the proposed roles of TTN5 in intracellular trafficking steps. For such studies, our findings are the fundamental basis.

      Concerning the aspect of colocalization of the mutants with the markers we show in Figure 5C, D and G, H that YFP-TTN5T30N- and YFP-TTN5Q70L-related signals colocalize with the Golgi marker GmMan1-mCherry. Figure 5K, L and O, P show that YFP-TTN5T30N and YFP-TTN5Q70L-related signals can colocalize with the MVB marker, and this may affect relevant vesicle trafficking processes and plasma membrane protein regulation involved in root cell elongation.

      *At present, we have not yet investigated perturbed cargo trafficking. These aspects are certainly interesting but require extensive work and testing of appropriate physiological conditions and appropriate cargo targets. We discuss future perspectives in the Discussion. We agree that such functional information is of great importance, but needs to be clarified in future studies. *

      __Reviewer #1 (Significance (Required)): __

      In conclusion, I think this manuscript is a good biochemical description of an ARF-like protein but it would need to be strengthen on the cell biology and functional sides. Nonetheless, provided these limitations fixed, this manuscript would advance our knowledge of small GTPases in plants. The major conceptual advance of that study is to provide a non-canonical behavior of the active/inactive cycle dynamics for a small-GTPase. Of course this dynamic probably has an impact on TTN5 function and involvement in trafficking, although this remains to be fully demonstrated. Provided a substantial amount of additional experiments to support the claims of that study, this study could be of general interest for scientist working in the trafficking field.

      __Our response: __

      We thank reviewer 1 for the very fruitful comments. We hope that with the additional experiments, NEW Figures and NEW Supplementary Figures as well as our changes in the text, all comments by the reviewer have been addressed.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      The manuscript by Mohr and colleagues characterizes the Arabidopsis predicted small GTPase TITAN5 in both biochemical and cell biology contexts using in vitro and in planta techniques. In the first half of the manuscript, the authors use in vitro nucleotide exchange assays to characterise the GTPase activity and nucleotide binding properties of TITAN5 and two mutant variants of it. The in vitro data they produce indicates that TITAN5 does indeed have general GTPase and nucleotide binding capability that would be expected for a protein predicted to be a small GTPase. Interestingly, the authors show that TITAN5 favors a GTP-bound form, which is different to many other characterized GTPases that favor GDP-binding. The authors follow their biochemical characterisation of TITAN with in planta experiments characterizing TITAN5 and its mutant variants association with the plant endomembrane system, both by stable expression in Arabidopsis and transient expression in N.benthamiana.

      The strength of this manuscript is in its in vitro biochemical characterisation of TITAN5 and variants. I am not an expert on in vitro GTPase characterisation and so cannot comment specifically on the assays they have used, but generally speaking this appears to have been well done, and the authors are to be commended for it. In vitro characterisation of plant small GTPases is uncommon, and much of our knowledge is inferred for work on animal or yeast GTPases, so this will be a useful addition to the plant community in general, especially as TITAN5 is an essential gene. The in planta data that follows is sadly not as compelling as the biochemical data, and suffers from several weaknesses. I would encourage the authors to consider trying to improve the quality of the in planta data in general. If improved and then combined with the biochemical aspects of the paper, this has the potential to make a nice addition to plant small GTPase and endomembrane literature.

      The manuscript is generally well written and includes the relevant literature.

      Major issues:

      1. The authors make use of a p35s: YFP-TTN5 construct (and its mutant variants) both stably in Arabidopsis and transiently in N.benthamiana. I know from personal experience that expressing small GTPases from non-endogenous promoters and in transient expression systems can give very different results to when working from endogenous promoters/using immunolocalization in stable expression systems. Strong over-expression could for example explain why the authors see high 'cytosolic' levels of YFP-TTN5. It is therefore questionable how much of the in planta localisation data presented using p35S and expression in tobacco is of true relevance to the biological function of TITAN5. The authors do present some immunolocalization data of HA3-TTN5 in Arabidopsis, but this is fairly limited and it is very difficult in its current form to use this to identify whether the data from YFP-TTN5 in Arabidopsis and tobacco can be corroborated. I would encourage the authors to consider expanding the immunolocalization data they present to validate their findings in tobacco. __Our response: __

      We are aware that endogenous promoters may be preferred over 35S promoter. However, the two types of lines we generated with endogenous promoter did both not show fluorescent signals so that we could unfortunately not use them (not shown). Besides 35S promoter-mediated expression we were also investigating inducible expression vectors for fluorescence imaging in N. benthamiana (not shown). Both inducible and constitutive expression showed very similar expression patterns so that we chose characterizing in detail the 35S::YFP-TTN5 fluorescence in both N. bethamiana*and Arabidopsis. *

      We have expanded immunolocalization using the HA3-TTN5 line and compare it now along with YFP fluorescence signal in YFP-TTN5 seedlings (NEW Figure 3P; NEW Figure 4).

      „For a more detailed investigation of HA3-TTN5 subcellular localization, we then performed co-immunofluorescence staining with an Alexa 488-labeled antibody recognizing the Golgi and TGN marker ARF1, while detecting HA3-TTN5 with an Alexa 555-labeled antibody (Robinson et al. 2011, Singh et al. 2018) (Figure 4A). ARF1-Alexa 488 staining was clearly visible in punctate structures representing presumably Golgi stacks (Figure 4A, Alexa 488), as previously reported (Singh et al. 2018). Similar structures were obtained for HA3-TTN5-Alexa 555 staining (Figure 4A, Alexa 555). But surprisingly, colocalization analysis demonstrated that the HA3-TTN5-labeled structures were mostly not colocalizing and thus distinct from the ARF1-labeled ones (Figure 4A). Yet the HA3-TTN5- and ARF1-labeled structures were in close proximity to each other (Figure 4A). We hypothesized that the HA3-TTN5 structures can be connected to intracellular trafficking steps. To test this, we performed brefeldin A (BFA) treatment, a commonly used tool in cell biology for preventing dynamic membrane trafficking events and vesicle transport involving the Golgi. BFA is a fungal macrocyclic lactone that leads to a loss of cis-cisternae and accumulation of Golgi stacks, known as BFA-induced compartments, up to the fusion of the Golgi with the ER (Ritzenthaler et al. 2002, Wang et al. 2016). For a better identification of BFA bodies, we additionally used the dye FM4-64, which can emit fluorescence in a lipophilic membrane environment. FM4-64 marks the plasma membrane in the first minutes following application to the cell, then may be endocytosed and in the presence of BFA become accumulated in BFA bodies (Bolte et al. 2004). We observed BFA bodies positive for both, HA3-TTN5-Alexa 488 and FM4-64 signals (Figure 4B). Similar patterns were observed for YFP-TTN5-derived signals in YFP-TTN5-expressing roots (Figure 4C). Hence, HA3-TTN5 and YFP-TTN5 can be present in similar subcellular membrane compartments."

      • *

      Many of the confocal images presented are of poor quality, particularly those from N.benthamiana.

      Our response:

      All confocal images are of high quality in their original format. To make them accessible, we will upload all raw data to BioImage Archive upon acceptance of the manuscript.

      The authors in some places see YFP-TTN5 in cell nuclei. This could be a result of YFP-cleavage rather than genuine nuclear localisation of YFP-TTN5, but the authors do not present western blots to check for this.

      __Our response: __

      As described in our response to reviewer 1, comment 3, Fluorescence signals were detected within the nuclei of root cells of YFP-TTN5 plants, while immunostaining signals of HA3-TTN5 were not detected in the nucleus. In an α-GFP Western blot using YFP-TTN5 Arabidopsis seedlings, we detected besides the expected and strong 48 kDa YFP-TTN5 band, three additional weak bands ranging between 26 to 35 kDa (NEW Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins expressed from aberrant transcripts. α-HA Western blot controls performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size (Supplementary Figure S7D). We must therefore be cautious about nuclear TTN5 localization and we rephrased the text carefully (starting Line 300):

      • *

      „We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      That YFP-TTN5 fails to rescue the ttn5 mutant indicates that YFP-tagged TTN5 may not be functional. If the authors cannot corroborate the YFP-TTN5 localisation pattern with that of HA3-TTN5 via immunolocalization, then the fact that YFP-TTN5 may not be functional calls into question the biological relevance of YFP-TTN5's localisation pattern.

      __Our response: __

      This refers to your comment 1, please check this comment for a detailed response. Please also see our answer to reviewer 1, comment 1.

      At first, we like to state that specific detection of intracellular localization of plant proteins in plant cells is generally technically very difficult, when the protein abundance is not overly high. In this revised version, we extended immunostaining analysis to different membrane compartments, including now immunostaining of complementing HA3-TTN5 in the absence and presence of BFA, along with immunodetection of ARF1 and FM4-64 labeling in roots (NEW Figure 3P, NEW Figure 4A, B). In the revised version, we focus the analysis and conclusions on the fluorescence patterns that overlap between YFP-TTN5 detection and HA3-TTN5 immunodetection. With this, we can be most confident about subcellular TTN5 localization. Please find this NEW text in the Result section (starting Line 323):

      „For a more detailed investigation of HA3-TTN5 subcellular localization, we then performed co-immunofluorescence staining with an Alexa 488-labeled antibody recognizing the Golgi and TGN marker ARF1, while detecting HA3-TTN5 with an Alexa 555-labeled antibody (Robinson et al. 2011, Singh et al. 2018) (Figure 4A). ARF1-Alexa 488 staining was clearly visible in punctate structures representing presumably Golgi stacks (Figure 4A, Alexa 488), as previously reported (Singh et al. 2018). Similar structures were obtained for HA3-TTN5-Alexa 555 staining (Figure 4A, Alexa 555). But surprisingly, colocalization analysis demonstrated that the HA3-TTN5-labeled structures were mostly not colocalizing and thus distinct from the ARF1-labeled ones (Figure 4A). Yet the HA3-TTN5- and ARF1-labeled structures were in close proximity to each other (Figure 4A). We hypothesized that the HA3-TTN5 structures can be connected to intracellular trafficking steps. To test this, we performed brefeldin A (BFA) treatment, a commonly used tool in cell biology for preventing dynamic membrane trafficking events and vesicle transport involving the Golgi. BFA is a fungal macrocyclic lactone that leads to a loss of cis-cisternae and accumulation of Golgi stacks, known as BFA-induced compartments, up to the fusion of the Golgi with the ER (Ritzenthaler et al. 2002, Wang et al. 2016). For a better identification of BFA bodies, we additionally used the dye FM4-64, which can emit fluorescence in a lipophilic membrane environment. FM4-64 marks the plasma membrane in the first minutes following application to the cell, then may be endocytosed and in the presence of BFA become accumulated in BFA bodies (Bolte et al. 2004). We observed BFA bodies positive for both, HA3-TTN5-Alexa 488 and FM4-64 signals (Figure 4B). Similar patterns were observed for YFP-TTN5-derived signals in YFP-TTN5-expressing roots (Figure 4C). Hence, HA3-TTN5 and YFP-TTN5 can be present in similar subcellular membrane compartments."

      We did not find evidence that HA3-TTN5 can localize at the ER using whole-mount immunostaining (NEW Figure 3P; NEW Figure 4A, B). Hence, we are careful with describing that fluorescence at the ER, as seen in the YFP-TTN5 line (Figure 3M, N) reflects TTN5 localization. We therefore do not focus the text on the ER pattern in the Result section (starting Line 295):

      „Additionally, YFP signals were also detected in a net-like pattern typical for ER localization (Figure 3M, N). (...) We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      *And we discuss in the Discussion section (starting Line 552): *

      „We based the TTN5 localization data on tagging approaches with two different detection methods to enhance reliability of specific protein detection. Even though YFP-TTN5 did not complement the embryo-lethality of a ttn5 loss of function mutant, we made several observations that suggest YFP-TTN5 signals to be meaningful at various membrane sites. We do not know why YFP-TTN5 does not complement. There could be differences in TTN5 levels and interactions in some cell types, which were hindering specifically YFP-TTN5 but not HA3-TTN5. (...) Though constitutively driven, the YFP-TTN5 expression may be delayed or insufficient at the early embryonic stages resulting in the lack of embryo-lethal complementation. On the other hand, the very fast nucleotide exchange activity may be hindered by the presence of a large YFP-tag in comparison with the small HA3-tag which is able to rescue the embryo-lethality. The lack of complementation represents a challenge for the localization of small GTPases with rapid nucleotide exchange in plants. Despite of these limitations, we made relevant observations in our data that made us believe that YFP signals in YFP-TTN5-expressing cells at membrane sites can be meaningful."

      • *

      Without a cell wall label/dye, the plasmolysis data presented in Figure 5 is hard to visualize.

      __Our response: __

      Figure 6E-G (previously Fig. 5) show the results of plasmolysis experiments with YFP-TTN5 and the two mutant variant constructs. It is clearly possible to observe plasmolysis when focusing on the Hechtian strands. Hechtian strands are formed due to the retraction of the protoplast as a result of the osmotic pressure by the added mannitol solution. Hechtian strands consist of PM which remained in contact with the cell wall, visible as thin filamental structures. We stained the PM and the Hechtian strands by the PM dye FM4-64. This is similary done in Yoneda et al., 2020. We could detect in the YFP-TTN5-transformed cells, colocalization with the YFP channels and the PM dye in filamental structures between two neighbouring FM4-64-labelled PMs. Although an additional labeling of the cell wall may further indicate plasmolysis, it is not needed here.

      Please consider that we will upload all original image data to BioImage Archive so that a detailed re-investigation of the images can be done.

      • *

      __Minor issues: __

      In some of the presented N.benthamiana images, it looks like YFP-TTN5 may be partially ER-localised. However, co-localisation with an ER marker is not presented.

      Our response:

      *Referring to our response to comments 1 and 3 of reviewer 2 and to comment 1 of reviewer 1: *

      We did not find evidence that HA3-TTN5 can localize at the ER using whole-mount immunostaining (NEW Figure 3P; NEW Figure 4A, B). Hence, we are careful with describing that fluorescence at the ER, as seen in the YFP-TTN5 line (Figure 3M, N) reflects TTN5 localization. We therefore do not focus the text on the ER pattern in the Result section (starting Line 295):

      „Additionally, YFP signals were also detected in a net-like pattern typical for ER localization (Figure 3M, N). (...) We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      *And we discuss in the Discussion section (starting Line 552): *

      „We based the TTN5 localization data on tagging approaches with two different detection methods to enhance reliability of specific protein detection. Even though YFP-TTN5 did not complement the embryo-lethality of a ttn5 loss of function mutant, we made several observations that suggest YFP-TTN5 signals to be meaningful at various membrane sites. We do not know why YFP-TTN5 does not complement. There could be differences in TTN5 levels and interactions in some cell types, which were hindering specifically YFP-TTN5 but not HA3-TTN5. (...) Though constitutively driven, the YFP-TTN5 expression may be delayed or insufficient at the early embryonic stages resulting in the lack of embryo-lethal complementation. On the other hand, the very fast nucleotide exchange activity may be hindered by the presence of a large YFP-tag in comparison with the small HA3-tag which is able to rescue the embryo-lethality. The lack of complementation represents a challenge for the localization of small GTPases with rapid nucleotide exchange in plants. Despite of these limitations, we made relevant observations in our data that made us believe that YFP signals in YFP-TTN5-expressing cells at membrane sites can be meaningful."

      • *

      There is some inconsistency within the N.benthamiana images. For example, compare Figure 4C of YFP-TTN5T30N to Figure 4O of YFP-TTN5T30N. Figure 4O is presented as being significant because wortmannin-induced swollen ARA7 compartments are labelled by YFP-TTN5T30N. However, structures very similar to these can already been seen in Figure 4C, which is apparently an unrelated experiment. This, to my mind, is likely a result of the very different expression levels between different cells that can be produced by transient expression in N.benthamiana.

      __Our response: __

      Former Figure 4 is now Figure 5. As detailed in our response to comment 2 of reviewer 1:

      The reviewer certainly refers to fluorescence images from N. benthamiana leaf epidermal cells where different circularly shaped structures are visible. In these respective structures, the fluorescent circles are depleted from fluorescence in the center, e.g. in Figure 5C, YFP- fluorescent signals in TTN5T30N transformed leaf discs. We suspect that these structures can be of vacuolar origin as described for similar fluorescent rings in Tichá et al., 2020 for ANNI-GFP (reference in manuscript). The reviewer certainly does not refer to swollen MVBs that are seen following wortmannin treatment, as in Figure 5N-P, which look similar in their shape but are larger in size. Please note that we always included the control conditions, namely the images recorded before the wortmannin treatment, so that we were able to investigate the changes induced by wortmannin. Hence, we can clearly say that the structures with depleted fluorescence in the center as in Figure 5C are not wortmannin-induced swollen MVBs.To make these points clear to the reader, we added an explanation into the text (Line 385-388):

      „We also observed YFP fluorescence signals in the form of circularly shaped ring structures with a fluorescence-depleted center. These structures can be of vacuolar origin as described for similar fluorescent rings in Tichá et al. (2020) for ANNI-GFP."

      **Referees cross-commenting**

      It sems that all of the reviewers have converged on the conclusion that the in planta characterisation of TTN5 is insufficient to be of substantial interest to the field, highlighting the fact that major improvements are required to strengthen this part of the manuscript and increase its relevance.

      __Reviewer #2 (Significance (Required)): __

      General assessment: the strengths of this work are in its in vitro characterisation of TITAN5, however, the in planta characterisation lacks depth.

      Significance: the in vitro characterisation of TITAN5 is commendable as such work is lacking for plant GTPases. However, the significance of the work would be boosted substantially by better in planta characterisation, which is where most the most broad interest will lie.

      My expertise: my expertise is in in planta characterisation of small GTPases and their interactors.

      __Our response: __

      We thank the reviewer for the kind evaluation of our manuscript. We are confident that the changes in the text and NEW Figures and NEW Supplementary Figures will be convincing to consider our work.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      Summary: Cellular traffic is an important and well-studied biological process in animal and plant systems. While components involved in transport are known the mechanism by which these components control activity or destination remains to be studied. A critical step in regulating traffic is proper budding and tethering of vesicles. A critical component in determining this step is a family proteins with GTPase activity, which act as switches facilitating vesicle interaction between proteins, or cytoskeleton. The current manuscript by Mohr and colleagues have characterized a small GTPase TITAN5 (TTN5) and identified two residues Gln70 and Thr30 in the protein which they propose to have functional roles. The authors catalogue the localization, GTP hydrolytic activity, and discuss putative functions of TTN5 and the mutants.

      __Major comments: __

      The core of the manuscript, which is descriptive characterization of TTN5, lies in reliably demonstrating putative roles. While the GTP hydrolysis rates are well-quantified (though the claims need to be toned down), the microscopy data especially the association of TTN5 with different endomembrane compartments is not convincing due to the quality (low resolution) of the figures submitted. The manuscript text is difficult to navigate due to repetition and inconsistency in the order that the mutants are referred. I am requesting additional experiments which should be feasible considering the authors have all the materials required to perform the experiments and obtain high-quality images which support their claims.

      In general the figure quality needs to be improved for all microscopy images. I would suggest that the authors highlight 1-2 individual cells to make their point and use the current images as supplementary to establish a broader spread. __Our response: __

      *We have worked substantially on the text and figures to make the content well comprehensive. The mutants are referred to in a consistent manner in the text and figures. We have addressed requested experiments. *

      As we pointed out in the cover letter and our responses to reviewers 1 and 2, we will upload all raw image data to BioImage Archive upon acceptance of the manuscript so that they can be re-examined without any reduction of resolution. Furthermore, we have conducted new experiments on immunolocalization of HA3-TTN5 (NEW Figure 3P, NEW Figure 4A, B). The text has been improved in several places (see highlighted changes in the manuscript and as detailed in the responses to reviewer 1. We think, this addresses well the reviewers' concerns.

      Fig. S1 lacks clarity. __Our response: __

      Supplementary Figure S1 shows TTN5 gene expression in different organs and growing stages as revealed by transcriptomic data, made available through the AtGenExpress eFB tool of the Bio-Analytic Resource for Plant Biology (BAR). The figure visualizes that TTN5 is ubiquitously expressed in different plant organs and tissues, e.g. the epidermis layers that we investigated here, and throughout development including embryo development. In accordance with the embryo-lethal phenotype, this highlights well that TTN5* is needed throughout for plant growth and it emphasizes that our investigation of TTN5 localization in epidermis cells is valid. *

      We have added a better description to the figure legend. We now also mention the respective publications from which the transcriptome data-sets are derived. The modified figure legend is:

      "Supplementary Figure S1. Visualization of TTN5 gene expression levels during plant development based on transcriptome data. Expression levels in (A), different types of aerial organs at different developmental stages; from left to right and bottom to top are represented different seed and plant growth stages, flower development stages, different leaves, vegetative to inflorescence shoot apex, embryo and silique development stages; (B), seedling root tissues based on single cell analysis represented in form of a uniform manifold approximation and projection plot; (C), successive stages of embryo development. As shown in (A) to (C), TTN5 is ubiquitously expressed in these different plant organs and tissues. In particular, it should be noted that TTN5 transcripts were detectable in the epidermis cell layer of roots that we used for localization of tagged TTN5 protein in this study. In accordance with the embryo-lethal phenotype, the ubiquitous expression of TTN5 highlights its importance for plant growth. Original data were derived from (Nakabayashi et al. 2005, Schmid et al. 2005) (A); (Ryu et al. 2019) (B); (Waese et al. 2017) (C). Gene expression levels are indicated by local maximum color code, ranging from the minimum (no expression) in yellow to the maximum (highest expression) in red."

      For the supplementary videos, it is difficult to determine if punctate structures are moving or is it cytoplasmic streaming? Could this be done with a co-localized marker? Considering that such markers have been used later in Fig. 4? __Our response: __

      We had detected movement of YFP fluorescent structures in all analyzed YFP-TTN5 plant parts except the root tip. Movement of fluorescence signals in YFP-TTN5T30N seedlings was slowed in hypocotyl epidermis cells. To answer the reviewer comment, we added three NEW supplemental videos (NEW Supplementary Video Material S1M-O) generated with all the three YFP-TTN5 constructs imaged over time in N. benthamiana leaf epidermal cells upon colocalization with the cis-Golgi marker GmMan1-mCherry as requested by the reviewer. In these NEW videos, some of *the YFP fluorescent spots seem to move together with the Golgi stacks. GmMan1 is described with a stop-and-go directed movement mediated by the actino-myosin system (Nebenführ 1999) and similarly it might be the case for YFP-TTN5 signals based on the colocalization. *

      • *

      It would be good if the speed of movement is quantified, if the authors want to retain the current claims in results and the discussion. __Our response: __

      *We describe a difference in the movement of YFP fluorescent signal for the YFP-TTN5T30N variant in the hypocotyl compared to YFP-TTN5 and YFP-TTN5Q70L. In hypocotyl cells, we could observe a slowed down or arrested movement specifically of YFP-TTN5T30N fluorescent structures, and we describe this in the Results section (Line 278-291). *

      "Interestingly, the mobility of these punctate structures differed within the cells when the mutant YFP-TTN5T30N was observed in hypocotyl epidermis cells, but not in the leaf epidermis cells (Supplementary Video Material S1E, compare with S1B) nor was it the case for the YFP-TTN5Q70L mutant (Supplementary Video Material S1F, compare with S1E)."

      *The slowed movement in the YFP-TTN5T30N mutant is well visible even without quantification. We checked that the manuscript text does not contain overstatements in this regard. *

      • *

      Fig.2 I am not sure what the unit / scale is in Fig. 2D/E if each parameter (Kon, Koff, and Kd) are individually plotted? Could the authors please clarify/simplify this panel?

      __Our response: __

      We presented kinetics for nucleotide association (kon) and dissociation (koff) and the dissociation constant (Kd) in a bar diagram for each nucleotide, mdGDP (Figure 2D) and mGppNHp (Figure 2E). We modified and relabeled the bar diagram representation. It should be now very clear which are the parameters and units. Please see also the other modified figures (NEW modified Figure 2A-H). We also modified the legend of Figure 2D and E:

      "(D-E), Kinetics of association and dissociation of fluorescent nucleotides mdGDP (D) or mGppNHp (E) with TTN5 proteins (WT, TTN5T30N, TTN5Q70L) are illustrated as bar charts. The association of mdGDP (0.1 µM) or mGppNHp (0.1 µM) with increasing concentration of TTN5WT, TTN5T30N and TTN5Q70L was measured using a stopped-flow device (see A, B; data see Supplementary Figure S3A-F, S4A-E). Association rate constants (kon in µM-1s-1) were determined from the plot of increasing observed rate constants (kobs in s-1) against the corresponding concentrations of the TTN5 proteins. Intrinsic dissociation rates (koff in s-1) were determined by rapidly mixing 0.1 µM mdGDP-bound or mGppNHp-bound TTN5 proteins with the excess amount of unlabeled GDP (see A, C, data see Supplementary Figure S3G-I, S4F-H). The nucleotide affinity (dissociation constant or Kd in µM) of the corresponding TTN5 proteins was calculated by dividing koff by kon. When mixing mGppNHp with nucleotide-free TTN5T30N, no binding was observed (n.b.o.) under these experimental conditions."

      • *

      Are panels D and E representing values for mdGDP and GppNHP? This is not very clear from the figure legend.

      __Our response: __

      Yes, Figure 2D and E represent the kon, koff and Kd values for mdGDP (Figure 2D) and mGppNHP (Figure 2E). As detailed in our previous response to comment 2a, we modified figure and figure legend to make the representation more clear.

      • *

      Fig. 3 Same comments as in para above - improve resolution fo images, concentrate on a few selected cells, if required use an inset figure to zoom-in to specific compartments. Our response:

      As detailed in our responses to reviewers 1 and 2, we will upload all original image data to BioImage Archive upon acceptance of the manuscript, so that a detailed investigation of all our images is possible without any reduction of resolution.

      Please provide the non-fluorescent channel images to understand cell topography __Our response: __

      *We presented our microscopic images with the respective fluorescent channel and for colocalization with an additional merge. We did not present brightfield images as the cell topography was already well visible by fluorescent signal close to the PM. Therefore, brightfield images would not provide any benefit. Since we will upload all original data to BioImage Archive for a detailed investigation of all our images, the data can be obtained if needed. *

      Is the nuclear localization seen in transient expression (panel L-N) an artefact? If so, this needs to be mentioned in the text. Our response:

      As explained in our responses to reviewers 1 and 2, fluorescence signals were detected within the nuclei of root cells of YFP-TTN5 plants, while immunostaining signals of HA3-TTN5 were not detected in the nucleus.

      In an α-GFP Western blot using YFP-TTN5 Arabidopsis seedlings, we detected besides the expected and strong 48 kDa YFP-TTN5 band, three additional weak bands ranging between 26 to 35 kDa (NEW Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins expressed from aberrant transcripts. α-HA Western blot controls performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size (Supplementary Figure S7D). We must therefore be cautious about nuclear TTN5 localization and we rephrased the text carefully (starting Line 300):

      „We also found multiple YFP bands in α-GFP Western blot analysis using YFP-TTN5 Arabidopsis seedlings. Besides the expected and strong 48 kDa YFP-TTN5 band, we observed three weak bands ranging between 26 to 35 kDa (Supplementary Figure S7C). We cannot explain the presence of these small protein bands. They might correspond to free YFP, to proteolytic products or potentially to proteins produced from aberrant transcripts with perhaps alternative translation start or stop sites. On the other side, a triple hemagglutinin-tagged HA3-TTN5 driven by the 35S promoter did complement the embryo-lethal phenotype of ttn5-1 (Supplementary Figure S7D, E). α-HA Western blot control performed with plant material from HA3-TTN5 seedlings showed a single band at the correct size, but no band that was 13 to 18 kDa smaller (Supplementary Figure S7D). (...) We did not observe any staining in nuclei or ER when performing HA3-TTN5 immunostaining (Figure 3P; Figure 4A, B), as was the case for fluorescence signals in YFP-TTN5-expressing cells. Presumably, this can indicate that either the nuclear and ER signals seen with YFP-TTN5 correspond to the smaller proteins detected, as described above, or that immunostaining was not suited to detect them. Hence, we focused interpretation on patterns of localization overlapping between the fluorescence staining with YFP-labeled TTN5 and with HA3-TTN5 immunostaining, such as the particular signal patterns in the specific punctate membrane structures."

      Fig. 4 - In addition to the points made for Fig. 3 The authors should consider reducing gain/exposure to improve image clarity. Especially for the punctate structures, which are difficult to observe in TTN5, likely because of the cytoplasmic localization as well.

      __Our response: __

      Thank you for this comment. We record image z-stacks and represent in single z-planes. Reducing the gain to decrease the cytoplasmic signal does not increase the clarity of the punctate structures as the signal strength will become weak.. As mentioned above, we will upload all original image data to BioImage Archive for a detailed investigation of all our images without any reduction of resolution.

      • *

      Reducing Agrobacterial load could be considered. OD of 0.4 is a bit much, 0.1 or even 0.05 could be tried. If available try expression in N. tabaccum, which is more amenable to microscopy. However, this is OPTIONAL, benthamiana should suffice. __Our response: __

      Thank you for the suggestion. We are routinely using N. benthamiana leaf infiltration. When setting up this method at first, we did not observe different localization results by using different ODs of bacterial cultures. Hence, an OD600 of 0.4 is routinely used in our institute. This value is comparable with the literature although some literature reports even higher OD values for infiltration (Norkunas et al., 2018; Drapal et al., 2021; Zhang et al., 2020, Davis et al., 2020; Stephenson et al., 2018).

      A standard norm now is to establish the level of colocalization is by quantifying a pearson's or Mander's correlation. Which I believe has been done in the text, I didn't find a plot representing the same? Could the data (which the authors already have) be plotted alongwith "n" as a table or graph? __Our response: __

      *Please check our response to reviewer 1, comment 4. *

      We like to insist that we performed colocalization very carefully and quantified the data in three different manners. We like to state that there is no general standardized procedure that best suits the idea of a colocalization pattern. Results of colocalization are represented in stem diagrams and table format, including statistical analysis. Colocalization was carried out with the ImageJ plugin JACoP for Pearson's and Overlap coefficients and based on the centroid method. The plotted Pearson's and Overlap coefficients are presented in bar diagrams in Supplementary Figure S8A and C, including statistics. The obtained values by the centroid method are represented in table format in Supplementary Figure S8B and D, which *can be considered a standard method (see Ivanov et al., 2014). *

      Colocalization of two different fluorescence signals was performed for the two channels in a specific chosen region of interest (indicating in % the overlapping signal versus the sum of signal for each channel). The differences between the YFP/mRFP and mRFP/YFP ratios indicate that a higher percentage of ARA7-RFP signal is colocalizing with YFP-TTN5Q70L signal than with the TTN5WT or the TTN5T30N mutant form signals, while the YFP signals have a similar overlap with ARA7-positive structures. This is not a contradiction. Presumably this answers well the questions on colocalization.

      Please note that upon acceptance for publication, we will upload all original colocalization data to BioImage Archive. Hence, the high-quality data can be reanalyzed by readers.

      The cartoons for the action of chemicals are useful, but need a bit more clarity. Our response:

      The schematic explanations of pharmacological treatments and expected outcomes are useful to readers. For a better understanding, we added additional explaining sentences to the figure legends (Figure 5E, M; Figure 6A). We also modified Figure 6A and the corresponding legend.

      "(E), Schematic representation of GmMan1 localization at the ER upon brefeldin A (BFA) treatment. BFA blocks ARF-GEF proteins which leads to a loss of Golgi cis-cisternae and the formation of BFA-induced compartments due to an accumulation of Golgi stacks up to a redistribution of the Golgi to the ER by fusion of the Golgi with the ER (Renna and Brandizzi 2020)."

      "(M), Schematic representation of ARA7 localization in swollen MVBs upon wortmannin treatment. Wortmannin inhibits phosphatidylinositol-3-kinase (PI3K) function leading to the fusion of TGN/EE to swollen MVBs (Renna and Brandizzi 2020)."

      "(A), Schematic representation of progressive stages of FM4-64 localization and internalization in a cell. FM4-64 is a lipophilic substance. After infiltration, it first localizes in the plasma membrane, at later stages it localizes to intracellular vesicles and membrane compartments. This localization pattern reflects the endocytosis process (Bolte et al. 2004)."

      • *

      Fig. 5 does the Q70L mutant show reduced endocytosis ?

      __Our response: __

      We have not investigated this question. As detailed in our response to reviewer 1, *we like to emphasize that we agree fully that functional evidences are interesting to assign role for TTN5 in trafficking steps. A phenotype associated with TTN5T30N and TTN5Q70L would be clearly meaningful. *

      Concerning the aspect of colocalization of the mutants with the markers we show in Figure 5C, D and G, H that YFP-TTN5T30N- and YFP-TTN5Q70L-related signals colocalize with the Golgi marker GmMan1-mCherry. Figure 5K, L and O, P show that YFP-TTN5T30N and YFP-TTN5Q70L-related signals can colocalize with the MVB marker, and this may affect relevant vesicle trafficking processes and plasma membrane protein regulation involved in root cell elongation.

      *At present, we have not yet investigated perturbed cargo trafficking. These aspects are certainly interesting but require extensive work and testing of appropriate physiological conditions and appropriate cargo targets. We discuss future perspectives in the Discussion. We agree that such functional information is of great importance, but needs to be clarified in future studies. *

      • *

      The main text needs to be organized in a way that a reader can separate what is the hypothesis/assumption from actual results and conclusions (see lines #143-149).

      Our response:

      *Thank you for this comment. We reformulated text throughout the manuscript. *

      The text is repeated in multiple places, while I understand that this is not plagiarism, the repetitiveness makes it difficult to read and understand the text. I highlight a couple of examples here, but please check the whole text thoroughly and edit/delete as necessary. a. Lines #124-125 with Lines #149-151 Lines #140-143

      __Our response: __

      *We checked the text and removed unnecessary repetitions. *

      • *

      • Could the authors elaborate on whether there are plan homologs of TTN5? Also, have other ARF/ARLs been compared to TTN5 beyond HsARF1? *

      Our response:

      Phylogenetic trees of the ARF family in Arabidopsis in comparison to human ARF family were already published by Vernoud et al. (2003). In this phylogenetic tree ARF, ARL and SAR proteins of Arabidopsis are compared with the members in humans and S. cervisiae. It is difficult to deduce whether the proteins are homologs or orthologs. In this setting, an ortholog of TTN5 may be HsARL2 followed by HsARL3. In Figure 1A we represented some human GTPases as closely related in sequence to TTN5, these are HsARL2, HsARF1 and AtARF1 since they are the best studied ARF GTPases. HRAS is a well-known member of the RAS superfamily which we used for kinetic comparison in Figure 2. We additionally compared published kinetics of RAC1, HsARF3, *CDC42, RHOA, ARF6, RAD, GEM, and RAS GTPases. *

      • *

      On a related note, a major problem I have with these kinetic values is the assumption of significance or not. For eg. Line#180 the values represent and 2 and 6-fold increase, if these numbers do not matter can a significance threshold be applied so as to understand how much fold-change is appreciable?

      Our response:

      The kinetics of TTN5 and its two mutant variants can be compared with those of other studied GTPases. To provide a basis for the statements about differences in GTPase activities, we modified the text and added respective references in the text for comparisons of fold changes.

      The new text is now as follows Line 175-231):

      „ We next measured the dissociation (koff) of mdGDP and mGppNHp from the TTN5 proteins in the presence of excess amounts of GDP and GppNHp, respectively (Figure 2C) and found interesting differences (Figure 2D, E; Supplementary Figures S3G-I, S4F-H). First, TTN5WT showed a koff value (0.012 s-1 for mGDP) (Figure 2D; Supplementary Figure S3G), which was 100-fold faster than those obtained for classical small GTPases, including RAC1 (Haeusler et al. 2006)and HRAS (Gremer et al. 2011), but very similar to the koff value of HsARF3 (Fasano et al. 2022). Second, the koffvalues for mGDP and mGppNHp, respectively, were in a similar range between TTN5WT (0.012 s-1 mGDP and 0.001 s-1mGppNHp) and TTN5Q70L (0.025 s-1 mGDP and 0.006 s-1 mGppNHp), respectively, but the koff values differed 10-fold between the two nucleotides mGDP and mGppNHp in TTN5WT (koff = 0.012 s-1 versus koff = 0.001 s-1; Figure 2D, E; Supplementary Figure S3G, I, S4F, H). Thus, mGDP dissociated from proteins 10-fold faster than mGppNHp. Third, the mGDP dissociation from TTN5T30N (koff = 0.149 s-1) was 12.5-fold faster than that of TTN5WT and 37-fold faster than the mGppNHp dissociation of TTN5T30N (koff = 0.004 s-1) (Figure 2D, E; Supplementary Figure S3H, S4G). Mutants of CDC42, RAC1, RHOA, ARF6, RAD, GEM and RAS GTPases, equivalent to TTN5T30N, display decreased nucleotide binding affinity and therefore tend to remain in a nucleotide-free state in a complex with their cognate GEFs (Erickson et al. 1997, Ghosh et al. 1999, Radhakrishna et al. 1999, Jung and Rösner 2002, Kuemmerle and Zhou 2002, Wittmann et al. 2003, Nassar et al. 2010, Huang et al. 2013, Chang and Colecraft 2015, Fisher et al. 2020, Shirazi et al. 2020). Since TTN5T30N exhibits fast guanine nucleotide dissociation, these results suggest that TTN5T30N may also act in either a dominant-negative or fast-cycling manner as reported for other GTPase mutants (Fiegen et al. 2004, Wang et al. 2005, Fidyk et al. 2006, Klein et al. 2006, Soh and Low 2008, Sugawara et al. 2019, Aspenström 2020).

      The dissociation constant (Kd) is calculated from the ratio koff/kon, which inversely indicates the affinity of the interaction between proteins and nucleotides (the higher Kd, the lower affinity). Interestingly, TTN5WT binds mGppNHp (Kd = 0.029 µM) 10-fold tighter than mGDP (Kd = 0.267 µM), a difference, which was not observed for TTN5Q70L (Kd for mGppNHp = 0.026 µM, Kd for mGDP = 0.061 µM) (Figure 2D, E). The lower affinity of TTN5WT for mdGDP compared to mGppNHp brings us one step closer to the hypothesis that classifies TTN5 as a non-classical GTPase with a tendency to accumulate in the active (GTP-bound) state (Jaiswal et al. 2013). The Kd value for the mGDP interaction with TTN5T30N was 11.5-fold higher (3.091 µM) than for TTN5WT, suggesting that this mutant exhibited faster nucleotide exchange and lower affinity for nucleotides than TTN5WT. Similar as other GTPases with a T30N exchange, TTN5T30Nmay behave in a dominant-negative manner in signal transduction (Vanoni et al. 1999).

      To get hints on the functionalities of TTN5 during the complete GTPase cycle, it was crucial to determine its ability to hydrolyze GTP. Accordingly, the catalytic rate of the intrinsic GTP hydrolysis reaction, defined as kcat, was determined by incubating 100 µM GTP-bound TTN5 proteins at 25{degree sign}C and analyzing the samples at various time points using a reversed-phase HPLC column (Figure 2F; Supplementary Figure S5). The determined kcat values were quite remarkable in two respects (Figure 2G). First, all three TTN5 proteins, TTN5WT, TTN5T30N and TTN5Q70L, showed quite similar kcatvalues (0.0015 s-1, 0.0012 s-1, 0.0007 s-1; Figure 2G; Supplementary Figure S5). The GTP hydrolysis activity of TTN5Q70L was quite high (0.0007 s-1). This was unexpected because, as with most other GTPases, the glutamine mutations at the corresponding position drastic impair hydrolysis, resulting in a constitutively active GTPase in cells (Hodge et al. 2020, Matsumoto et al. 2021). Second, the kcat value of TTN5WT (0.0015 s-1) although quite low as compared to other GTPases (Jian et al. 2012, Esposito et al. 2019), was 8-fold lower than the determined koff value for mGDP dissociation (0.012 s-1) (Figure 2E). This means that a fast intrinsic GDP/GTP exchange versus a slow GTP hydrolysis can have drastic effects on TTN5 activity in resting cells, since TTN5 can accumulate in its GTP-bound form, unlike the classical GTPase (Jaiswal et al. 2013). To investigate this scenario, we pulled down GST-TTN5 protein from bacterial lysates in the presence of an excess amount of GppNHp in the buffer using glutathione beads and measured the nucleotide-bound form of GST-TTN5 using HPLC. As shown in Figure 2H, isolated GST-TTN5 increasingly bonds GppNHp, indicating that the bound nucleotide is rapidly exchanged for free nucleotide (in this case GppNHp). This is not the case for classical GTPases, which remain in their inactive GDP-bound forms under the same experimental conditions (Walsh et al. 2019, Hodge et al. 2020)."

      Another issue with the kinetic measurements is the significance levels. Line #198-201. The three proteins are claimed to have similar values and in the nnext line, the Q70L mutant is claimed to be high.

      Our response:

      Please see our response and changes in the text according in our response to the previous comment 9. We have provided extra explanations and references to clarify why the kinetic behavior of TTN5 is unusual in several respects (Line 215-220).

      „First, all three TTN5 proteins, TTN5WT, TTN5T30N and TTN5Q70L, showed quite similar kcat values (0.0015 s-1, 0.0012 s-1, 0.0007 s-1; Figure 2G; Supplementary Figure S5). The GTP hydrolysis activity of TTN5Q70L was quite high (0.0007 s-1). This was unexpected because, as with most other GTPases, the glutamine mutations at the corresponding position drastic impair hydrolysis, resulting in a constitutively active GTPase in cells (Hodge et al. 2020, Matsumoto et al. 2021)."

      Provide data for conclusion in line#214-215

      Our response:

      We agree that a reference should be added after this sentence to make this sentence clearer (Line 228-231).

      "As shown in Figure 2H, isolated GST-TTN5 increasingly bonds GppNHp, indicating that the bound nucleotide is rapidly exchanged for free nucleotide (in this case GppNHp). This is not the case for classical GTPases, which remain in their inactive GDP-bound forms under the same experimental conditions (Walsh et al. 2019, Hodge et al. 2020)."

      • *

      How were the mutants studied here identified? random mutation or was it directed based on qualified assumptions?

      __Our response: __

      We used the T30N and the Q70L point mutations as such types of mutants had been reported to confer specific phenotypes in these well-conserved amino acid positions in multiple other small GTPases (Erickson et al. 1997, Ghosh et al. 1999, Radhakrishna et al. 1999, Jung and Rösner 2002, Kuemmerle and Zhou 2002, Wittmann et al. 2003, Nassar et al. 2010, Huang et al. 2013, Chang and Colecraft 2015, Fisher et al. 2020, Shirazi et al. 2020). In particular, these positions affect the interaction between small GTPases and their respective guanine nucleotide exchange factor (GEF; T30N) or on GTP hydrolysis (Q70L). We introduced the mutants and described their potential effect on the GTPase cycle in the introduction and cited exemplary literature. Please see also our response to comment 6 and the proposed text changes (Line 142-151).

      Could more simplification be provided for deifitinition of Kon/Koff values. And can these values be compared between mutants directly?

      __Our response: __

      *We introduce kon and koff in the modified Figure 2D, E, and they are described in the figure legends. Moreover, we present the data for calculations in Supplementary Figures S3, 4, where again we define the values in the respective figure legends. *

      • *

      Data provided are not convincing to claim that both the mutant forms have lower association with the Golgi.

      __Our response: __

      *Our conclusion is that both YFP-TTN5 and YFP-TTN5Q70L fluorescence signals tend to colocalize more with the Golgi-marker signals compared to YFP-TTN5T30N signals as deduced from the centroid-based colocalization method (Line 404-405). *

      "Hence, the GTPase-active TTN5 forms are likely more present at cis-Golgi stacks compared to TTN5T30N."

      The Pearson coefficients of all three YFP-TTN5 constructs were nearly identical, but we could identify differences in overlapping centers between the YFP and mCherry channel. 48 % of the GmMan1-mCherry fluorescent cis-Golgi stacks were overlapping with signal of YFP-TTN5Q70L, while for YFP-TTN5T30N an overlap of only 31 % was detected. This means that less cis*-Golgi stacks colocalized with signals in the YFP-TTN5T30N mutant than in YFP-TTN5Q70L, which is the statement in our manuscript. *

      • *

      IN general the Authors should strongly consider the claims made in the manuscript. For eg. "This study lays the foundation for studying the functional relationships of this small GTPase" (line 125) is unqualified as this is true for every protein ever studied and published. Considering that TTN was not isolated/identified in this study for the first time this claim doesn't stand.

      __Our response: __

      *We reformulated the sentence (Line 123-124). *

      "This study paves the way towards future investigation of the cellular and physiological contexts in which this small GTPase is functional."

      • *

      Line #185 - "characterestics of a dominant-negative...." What is this based on? From the text it is not clear what are the paremeters. Considering that no complementation phenotypes have been presented, this is a far-fetched claim Our response:

      Small GTPases in general are a well studied protein family and the here used mutations T30N and Q70L are conserved amino acids and commonly used for the characterization of the Ras superfamily members. We added explaining sentences with references to the text. The characteristics referred to in the above paragraph is based on the kinetic study.

      We modified the text as follows (Line 186-197 ):

      „Third, the mGDP dissociation from TTN5T30N (koff = 0.149 s-1) was 12.5-fold faster than that of TTN5WT and 37-fold faster than the mGppNHp dissociation of TTN5T30N (koff = 0.004 s-1) (Figure 2D, E; Supplementary Figure S3H, S4G). Mutants of CDC42, RAC1, RHOA, ARF6, RAD, GEM and RAS GTPases, equivalent to TTN5T30N, display decreased nucleotide binding affinity and therefore tend to remain in a nucleotide-free state in a complex with their cognate GEFs (Erickson et al. 1997, Ghosh et al. 1999, Radhakrishna et al. 1999, Jung and Rösner 2002, Kuemmerle and Zhou 2002, Wittmann et al. 2003, Nassar et al. 2010, Huang et al. 2013, Chang and Colecraft 2015, Fisher et al. 2020, Shirazi et al. 2020). Since TTN5T30N exhibits fast guanine nucleotide dissociation, these results suggest that TTN5T30N may also act in either a dominant-negative or fast-cycling manner as reported for other GTPase mutants (Fiegen et al. 2004, Wang et al. 2005, Fidyk et al. 2006, Klein et al. 2006, Soh and Low 2008, Sugawara et al. 2019, Aspenström 2020)."

      The claims in Line #224-227 are exaggerated. Please tone down or delete __Our response: __

      *We rephrased the sentence (Line 240-243). *

      "Therefore, we propose that TTN5 exhibits the typical functions of a small GTPase based on in vitro biochemical activity studies, including guanine nucleotide association and dissociation, but emphasizes its divergence among the ARF GTPases by its kinetics."

      Line#488-489 - This conclusion is not really supported. At best Authors can claim that TTN5 is associated with trafficking components, but the functional relevance of this association is not determined. Our response:

      *We toned down our statement (Line 604-608). *

      „The colocalization of FM4-64-labeled endocytosed vesicles with fluorescence in YFP-TTN5-expressing cells may indicate that TTN5 is involved in endocytosis and the possible degradation pathway into the vacuole. Our data on colocalization with the different markers support the hypothesis that TTN5 may have functions in vesicle trafficking."

      __Minor comments: __

      Line #95 - " This rolein vesicle....." - please clarify which role? Our response:

      We rephrased the sentence (Line 96-99).

      „These roles of ARF1 and SAR1 in COPI and II vesicle formation within the endomembrane system are well conserved in eukaryotes which raises the question of whether other plant ARF members are also involved in functioning of the endomembrane system."

      Line #168 - "we did not observed" please change to "not able to measure/quantify" __Our response: __

      *We changed the text accordingly (Line 169-171). *

      „A remarkable observation was that we were not able to monitor the kinetics of mGppNHp association with TTN5T30N but observed its dissociation (koff = 0.026 s-1; Figure 2E)."

      Line#179 - ARF# is human for Arabidopsis?

      Our response:

      *The study of Fasano et al., 2022 is based on human ARF3 and we added the information to the text (Line 180-181) *

      "(...) very similar to the koff value of HsARF3 (Fasano et al. 2022)."

      • *

      Line #181 - compared to what is the 10-fold difference?

      __Our response: __

      The 10-fold difference is between the nucleotides mGDP and mGppNHp, for both TTN5WT and TTN5Q70L. We added the information on specific nucleotides to this sentence for a better understanding (Line 181-185).

      „Second, the koff values for mGDP and mGppNHp, respectively, were in a similar range between TTN5WT (0.012 s-1mGDP and 0.001 s-1 mGppNHp) and TTN5Q70L (0.025 s-1 mGDP and 0.006 s-1 mGppNHp), respectively, but the koffvalues differed 10-fold between the two nucleotides mGDP and mGppNHp in TTN5WT (koff = 0.012 s-1 versus koff = 0.001 s-1; Figure 2D, E; Supplementary Figure S3G, I, S4F, H)."

      Lines #314-323 - are diffciult to understand, consider reframing. Same goes for the conclusion following these lines.

      __Our response: __

      We added an explanation to these sentences for a better understanding (Line 392-405).

      „We performed an additional object-based analysis to compare overlapping YFP fluorescence signals in YFP-TTN5-expressing leaves with GmMan1-mCherry signals (YFP/mCherry ratio) and vice versa (mCherry/YFP ratio). We detected 24 % overlapping YFP- fluorescence signals for TTN5 with Golgi stacks, while in YFP-TTN5T30N and YFP-TTN5Q70L-expressing leaves, signals only shared 16 and 15 % overlap with GmMan1-mCherry-positive Golgi stacks (Supplementary Figure S8B). Some YFP-signals did not colocalize with the GmMan1 marker. This effect appeared more prominent in leaves expressing YFP-TTN5T30N and less for YFP-TTN5Q70L, compared to YFP-TTN5 (Figure 5B-D). Indeed, we identified 48 % GmMan1-mCherry signal overlapping with YFP-positive structures in YFP-TTN5Q70L leaves, whereas 43 and only 31 % were present with YFP fluorescence signals in YFP-TTN5 and YFP-TTN5T30N-expressing leaves, respectively (Supplementary Figure S8B), indicating a smaller amount of GmMan1-positive Golgi stacks colocalizing with YFP signals for YFP-TTN5T30N. Hence, the GTPase-active TTN5 forms are likely more present at cis-Golgi stacks compared to TTN5T30N."

      Authors might consider a longer BFA treatment (3-4h) to see more clearer ER-Golgi fusion (BFA bodies)

      __Our response: __

      We perforned addtional BFA treatments for HA3-TTN5-expressing Arabidopsis seedlings followed by whole-mount immunostaining and for YFP-TTN5-expressing Arabidopsis lines. In both experiments we could obtain the typical BFA bodies. We included the NEW data in NEW Figure 4B, C

      **Referees cross-commenting**

      I agree with both my co-reviewers that the manuscript needs substantial improvement in its cell biology based experiments and conclusions thereof. I think the concensus of all reviewers points to weakness in the in-planta experiments which needs to be addressed to understand and characterize TTN5, which is the main goal of the manuscript.

      Reviewer #3 (Significance (Required)):

      Significance: The manuscript has general significance in understanding the role of small GTPases which are understudied. Although the manuscript does not advance the field of either intracellular trafficking or organization it holds significance in attempting to characterize proteins involved, which is a prerequisite for further functional studies.

      __Our response: __

      Thank you for your detailed analysis of our manuscript and positive assessment. Our study is an advance in the plant vesicle trafficking field.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Compared to our initial submission to Review Commons, we have addressed all the reviewers' comments. We have extensively re-written the manuscript to make it clearer to a larger audience. In particular, we have transferred Figure EV1 to Figure 1 with more complete panels and included a scheme (Figure EV3) on the steps of D2R internalization which we measure with live cell imaging. We have added a new paragraph to the start of the Discussion to summarize our main conclusions and reordered the discussion on the possible mechanisms of membrane PUFA enrichment on D2R endocytosis. All the changes in the text are in red for easier comparison with the previous version.

      As suggested by reviewer 1, we have performed additional experiments to test the specificity of the effects of PUFA treatments on D2R endocytosis, reinforcing the results shown in Figure 4 using feeding assays. We show with live cell TIRF imaging and the ppH assay that TfR-SEP endocytosis is not affected (Figure EV5) and that SEP-β2AR endocytosis and βarr2-mCherry recruitment to the plasma membrane are not affected (Figure EV6).

      Reviewer #1

      Evidence, reproducibility and clarity

      *The manuscript, using different live and fixed cell trafficking assays, demonstrates that incorporation of poly-unsaturated, but not saturated, free fatty acids in the membrane phospholipids reduce agonist induced internalization of the D2 dopamine receptor but not the adrenergic beta2 receptors or the transferrin receptor. Pulsed pH (ppH) live microscopy further demonstrated that the reduced internalization by incorporation of free fatty acid was accompanied by a blunted recruitment of Beta-arrestin for the D2R.

      I believe said claims put forward in the manuscript are overall well supported by the data and as such I do not believe that further experiments are necessarily needed to uphold these key claims. Also, the methodology is satisfactorily reported, and statistics are robust, although two-way Anova like used in Fig 1 seems appropriate for Fig 2 and 3*

      We thank the reviewer for his/her positive assessment of our work. We have checked the statistical tests used for all our measures. For Figure 2 and 3 (now 3 and 4) we test for only one factor (PUFA treatment or not) so we ran ordinary one-way ANOVA using Graphpad Prism.

      That said, I suggest that the fixed cell internalization experiments (Fig 2 and 3), which relate the effect on the D2R to B2AR and transferrin are revised. This is important since this is relevant to judge whether the effect is a general or a selective molecular mechanism since this is the one of the three assay which this comparison relies on. Alternatively, I suggest omitting this data and include the B2AR in the Live DERET assay and both B2AR and TfR in the ppH assay. Specifically, my concerns with the fixed cell internalization are: • The analysis is based on counting the number of endosomes, which is not necessarily equivalent to the number of receptors internalized

      The number of puncta, as well as their fluorescence, is reported by the analysis program (written in Matlab2021 and available upon request). We chose to show number of puncta because they reflect more directly the number of labelled endosomes (in Figures 3 and 4). As shown in the figure below, we found slight but significant differences between groups for FLAG-D2R (88.6 % and 87.6 % of average fluorescence in DHA and DPA treated cells compared to control cells), (panel A), and no differences for FLAG-β2AR (panel B). We find a significant decrease in puncta fluorescence for transferrin uptake in cells incubated with DHA (but not DPA) relative to control cells (panel C). However, because we did not detect differences in the number of puncta or in the frequency and amplitude of endocytic vesicle creation events (see below), we still conclude that enrichment with exogenous PUFAs does not affect clathrin mediated endocytosis.

      In conclusion, the most robust measure of endocytosis for this assay is the number of detected puncta per cell rather than their fluorescence.

      • The analysis relies on fully effective stripping of the surface pool of receptors - i.e clustered surface receptors not stripped by the protocol will be assessed as internalized. It is often very difficult to obtain full efficiency of the Flag-tag stripping and this is somewhat expression dependent. • The protocol for the constitutive and agonist induced internalization is different and yet shown on the same absolute graph. Although I take it the microscope gain setting are unaltered between the constitutive and agonist induced internalization I don't believe the quantification can be directly related. This is confusing at the very least. More critically however, the membrane signal from the non-stripped condition of constitutive internalization will likely fully shield internalized receptors in the Rab4 membrane proximal recycling pathway leading to under-estimation of the in the constitutive endocytosis. I believe this methodological limitation underlies the massive relative difference in the constitutive endocytosis between panel 2A,B and 2C,D. For comparison, by a quantitative dual color FACS endocytosis assay, we have previously demonstrated the ligand endocytosis a ~4 fold increased over constitutive (in concert with Fig 2A,B here) (Schmidt et al 20XX). Importantly, high relative variability by this methodology could well shield an actual effect of incorporation of FFAs on the constitutive endocytosis. We thank the reviewer for pointing this difference in the protocol. As a matter of fact, we have not used acid stripping in all the conditions used for the uptake assays (Figures 3 and 4). We apologize for the confusion and we have clarified this point in the Methods section. In early experiments we compared conditions with or without stripping but we concluded from these experiments that indeed, the stripping was not complete. Moreover, we noticed early on that many cells treated with DHA or DPA did not have any detectable cluster (13 cells out of 58 quantified cells treated with DHA after addition of QPL, 12/56 cells treated with DPA, 0/68 for cells treated with vehicle). Stripping the antibody would have made these cells undetectable, biasing the analysis. Therefore, to make our results more consistent we decided to use non-stripping conditions. To detect endosomes specifically, we used a segmentation tool developed earlier (see Rosendale et al.* 2019). This tool is based on wavelet transforms which recognizes dot-like structures. In addition, we excluded from the cell mask the labelled plasma membrane by a mask erosion.

      We agree the design of experiments was not aimed at comparing the effect of PUFA treatment on low levels of constitutive D2R endocytosis. This would require more sensitive assays and be addressed in subsequent studies.

      'Optional' Also, it would be informative to see the ppH Beta-arrestin experiments with the B2AR to assess, whether the putative discrepancy between D2R and B2AR is upstream or downstream of the blunted Beta-arrestin recruitment. To the same point, it would be very informative to assess how the incorporation of the free fatty acids affect receptor signalling, which would also help relate the effect of incorporation of the FFA's in the phospholipids to previous experiment using short term incubation with FFA's

      We have now performed live imaging experiments in HEK293 cells expressing SEP-β2AR, GRK2 and βarr2-mCherry and stimulated with isoproterenol (Figure EV6). We show that the clustering of SEP-β2AR, of βarr2-mCherry, as well as endocytosis, are not affected by treatments with DHA or DPA. In this study, we focused on the early trafficking steps of D2R internalization. It will be interesting in a future study to address its consequences on G protein dependent and independent signaling. Moreover, and for good measure, we performed experiments to assess TfR-SEP endocytosis with the ppH assay. Again, we found no difference between cells treated or not with PUFAs (Figure EV5)

      *References overall seem appropriate although Schmidt et al would be relevant for reference of the constitutive vs agonist induced endocytosis of D2R and B2AR. *

      We have now cited Schmidt et al. 2020 doi 10.1111/bcpt.13274 in the discussion with the following sentences: "D2R also shows constitutive endocytosis (Schmidt et al, 2020) which may be modulated by PUFAs although we did not detect any significant difference in our measures (see Figure 3) which were aimed at detecting high levels of internalization induced by agonists. Further work will be required to specifically examine the effect of PUFAs on constitutive GPCR internalization."

      Overall, the figures are well composed and convey the messages fairly well. Specific point that would strengthen the rigor include: • Chosing actual representative pictures of the quantitative data in Fig 2 and 3 (e.g. hard to see 25 endocytic events in Fig 2A constitutive endo, EtOH)

      We apologize for the confusion. We employ a normalization procedure to account for cell size. In addition, all numbers have been normalized to the condition stimulated with agonist with no PUFA treatment). In fact, we detect in unstimulated cells very few puncta (on average 0.6, range 0-5) compared to 27.3 clusters (range 2-87) in cells stimulated with QPL.

      • Showing actual p values for the statistical comparisons* For easier reading, we have kept the stars convention for the figures but added two tables with all statistical tests and the p values for both main figures and EV figures.

      Moreover, for ease of reading the figures (without consulting the legend repeatedly) it would be very helpful to headline individual panel with what the experiments assesses. Figure 1a and 1b for example can't be distinguished at all before reading the figure legend. Also, y-axis could be more informative on what I measured rather than just giving the unit.

      We have added titles to panels (in particular for Figure 2A,B which correspond to former Figure 1A,B) and we have given new titles to Y axes to make them clearer. We hope that the reading of our figures will now be easier.

      Finally, the figure presentation and description of S1 is very hard to follow. I cannot really make out what is assessed in the different panels.

      We have changed substantially Figure EV1 (now Figure 1) with new presentation of data: all 4 conditions (control, treated with DHA, DPA or BA) systematically presented in the same graph, and clearer titles for the parameter displayed on the Y axes. We hope that this figure is now easier to follow.

      Significance

      *The strength of the manuscript is the use and validation of incorporation of FFA's in the plasma membrane, which more closely mimics the physiological situation than brief application of FFAs as often done. Is addition, the blunted recruitment of beta-arrestin as assessed by the ppH protocol is quite intriguing mechanistically. The limitation are the relative narrow focus on the D2 receptor (and not multiple GPCRs) that does not really speak to as or assess the physiological, pathophysiological or therapeutic role of the observations (except from referring the relation between FFAs and disease). Also, despite the putative role of Beta-arrestin recruitment in the process, the actual causation in the process is not clear. This shortcoming is underscored by the putative effect on the constitutive internalization described above.

      My specific expertise for assessing the paper is within general trafficking processes (including the trafficking methodology applied), trafficking of GPCRs and function of the dopamine system including the role of D2 receptors.*

      • *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      • *

      The only conclusion that I was able to understand from the study was that enrichment of cell membranes with polyunsaturated fatty acids specifically inhibited agonist-induced internalization of D2 receptors. However, I think that the experiments used to conclude that PUFAs do not alter D2R clustering but reduce the recruitment of β-arrestin2 and D2R endocytosis need some clarification (i.e. data depicted in Fig. 2-5). This lack of clarity might be due to the fact I am not familiar enough with the employed technologies or to the unclear writing style of the paper. There was an overuse of acronyms, initialisms and abbreviations, which are difficult to understand for researchers outside of the specific lipid field. I think that the manuscript should be written in a way to be legible also for researchers not working in the immediate filed.

      The paper was not written in a manner that a general audience of cell biologists or those interested in GPCR biology could understand and judge. It is indeed interesting that polyunsaturated fatty acids specifically inhibit D2R internalization in HEK293 cells, and it could be significant. But, it is difficult to judge the significance of the observation without more in vivo data.

      I would suggest the following. Remove all acronyms and abbreviations. Significantly, expand the Materials and Methods section, either in the manuscript or in the Supplemental section. I suggest clearly explaining each construct used, and the function of each module in the construct, with diagrams. In addition, provide a comprehensive step by step description of each experimental protocol, providing the reader with the rationale for each step in the protocol with explanatory diagrams. The authors should also more clearly explain the rationale and logic that was utilized to make the conclusions that they did from the depicted observations. Only then can a broader audience determine if the authors' conclusions are justified.

      We thank the reviewer for his/her comments. Indeed, our main message was that two types of PUFAs (DHA and DPA) specifically alter D2R endocytosis by reducing the recruitment of β-arrestin2 without changing D2R clustering at the plasma membrane. We are sorry that our writing was not clear enough. We also found out that in the last steps of the submission to Review Commons, the first paragraph of the Discussion was inadvertently erased. This made our main conclusions, summarized in this first paragraph, less clear. We have now put back this important paragraph. Moreover, we have extensively rewritten the manuscript thriving to make it as clear as possible to a large audience. We have reduced the use of acronyms to keep only the most used ones [e.g. PUFA (used 99 times), DHA (37 times), GPCR (34 times), D2R (126 times), GRK (17 times)] and made them consistent throughout the manuscript. Following the reviewer's suggestion, we have also added a scheme of the steps following D2R activation by agonist leading to its internalization (Figure EV3).

      We understand that the reviewer implies by "in vivo data" results obtained in the brain of animals. As written in the Introduction and in the Discussion, the current work follows up on a recently published manuscripts by a subset of the authors, namely (i) Ducrocq et al. 2020 (doi 10.1016/j.cmet.2020.02.012) in which we show that deficits in motivation in animals deprived in ω3-PUFAs can be restored specifically by conditional expression of a fatty acid desaturase from c. elegans (FAT1) that allows restoring PUFA levels specifically in D2R-expressing striatal projection neurons (which mediate the so-called indirect pathway), and (ii) Jobin et al. 2023 (doi: 10.1038/s41380-022-01928-6) which combines in cellulo (HEK 293 cells) and in vivo data to show that PUFAs affects the ligand binding of the dopamine D2 receptor and its signaling in a lipid context that reflects patient lipid profiles regarding poly-unsaturation levels.

      Reviewer #2 (Significance (Required)):

      • *

      In summary, I will reiterate that the reported experiments need to be much better explained to make the study understandable to a broader audience and for that audience to determine whether the conclusions are justified.

      • *

      • *

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      • *

      Summary:

      The authors investigate the role of lipid polyunsaturation in endocytic uptake of the dopamine D2 receptor (D2R). To modulate the degree of unsaturation in live cell plasma membranes, the authors incubate cell lines with pure fatty acid that is metabolized and incorporated into the cellular membranes. To quantify the internalization of D2R in these live cells, the authors utilized quantitative fluorescence assays such as DERET and endosome analysis to determine the degree and rate of D2R internalization in the presence of two model agonists - dopamine and quinpirole. The authors conclude that when the PUFA content of the plasma membrane is increased (i.e., via ω3 or ω6 fatty acids), both the quantity and rate of D2R internalization decrease substantially. The authors confirmed that these phenomena are specific to D2R as caveolar endocytosis and clathrin-mediated endocytosis were unaffected when these same experimental techniques were utilized for β2 adrenergic receptor and transferrin. Additionally, the authors conclude that the clustering ability of D2R is unaffected by lipid unsaturation but that the ability of D2R clusters to interact with β-arrestin2 is inhibited in the presence of excess PUFA. Based on these findings, the authors propose several hypothetical mechanisms for lipid-D2R interactions on the plasma membrane, which will likely be the scope of future work.

      Overall, this is a highly thorough and rigorous body of work that convincingly illustrates the connection between PUFA levels and D2R activity. However, I do not agree with the authors' conclusions pertaining to how their results should be interpreted in the context of fatty acid-related disorders. Additionally, this manuscript could benefit from some reorganization which would present the work more clearly. Please see the comments below.

      We thank the reviewer for the positive appreciation of our work, qualified as a "thorough and rigorous body of work that convincingly illustrates the connection between PUFA levels and D2R activity". We will address the specific points raised by the reviewer with our answers below.

      Comments:

        • A recurring motivation for this study that is brought up by the authors is that dietary deficiency of ω3 fatty acids is tied to D2R dysfunction. This would indicate that PUFA reduction in the plasma membrane results in D2R dysfunction. However, the experiments emphasized in this manuscript investigate the condition where PUFA content is INCREASED in the plasma membrane and D2R function is compromised. It seems inappropriate for the authors to cite dietary deficiency of ω3 as a motivation when they experimentally test a condition that is tied to ω3 surplus.* Regarding the general comment of the reviewer, we agree that direct conclusion cannot be drawn on the etiology of psychiatric disorders by looking at the effect of membrane fatty acid levels on D2R in HEK 293 cells. Nevertheless, we mention in the Introduction the intriguing occurrence of low PUFA levels in psychiatric disorders as starting point to look at D2R as an important target for psychoactive drugs prescribed for these disorders. In the Discussion, we propose that manipulating fatty acid levels might potentiate the efficacy of D2R ligands used as treatments. We felt raising these aspects was not putting too much emphasis on psychiatric disorders. However, in accordance with the reviewer's comment, we toned down these descriptions in the revised manuscript.

      The goal of increasing the levels of fatty acids at the membrane in HEK 293, the most widely used cellular system to study GPCR trafficking, was to try to emulate the levels of lipids in brain cells. Indeed, the levels of PUFAs in our culture conditions are much lower (~8 %, Figure 1B) than in brain extracts (~30 %). Therefore, the "control" condition in HEK 293 cells would correspond to PUFA deficiency while after our enrichment protocol these levels are closer to those found in brain cells. Our results could therefore be interpreted as endocytosis of D2R being augmented under membrane PUFA decrease. Importantly, increased receptor internalization often correlates with decreased signaling. Therefore, membrane PUFA enrichment in our conditions would rather potentiate D2R signaling.

      • Following up on the first comment, the authors' results seem to indicate that excess ω3's are detrimental to D2R function. This result would be at odds with the conventional view that ω3's are essential and that excessive ω3 may not be harmful. The authors should rationalize their findings in the context of what is known about excess dietary ω3.*

      The Reviewer is right that the conventional view is that excessive ω3 PUFA may not be harmful. However, this rather applies to dietary consumption, which might have limited effect to brain fatty acid contents since their accretion is highly regulated. Moreover, the majority of studies looking at ω3 supplementation have been performed in young adults and the effects on the developing brain - as it might be happening in pathological conditions in which D2R is involved - remain poorly understood. Furthermore, as mentioned above, blunted internalization of D2R under membrane PUFA enrichment is not an indication of "detrimental" to D2R function. Nor do we argue that membrane enrichment corresponds to excess PUFAs.

      • I would argue that the control experiments with saturated fatty acids (i.e., Behenic Acid in figure 1), represent a scenario mimicking ω3 deficiency as the enrichment of Behenic Acid causes an overall reduction in PUFAs (Figure EV1C - an increase in SFA must correspond to a decrease in PUFA). These Behenic acid results are the only experiments presented by the authors that mimic a scenario resembling ω3 deficiency and the results show that the D2R internalization is unaffected (Figure 1G-H). Therefore, I would further argue that if anything, the authors results suggest that ω3 deficiency is NOT correlated to D2R internalization. Again, the authors must rationalize these findings in the context of what is known about dietary intake of ω3's.*

      The Reviewer must refer to the fact that nutrients rich in SFAs are usually poor in PUFAs and vice-versa. Based on our lipidomic analysis, we now present in Figure 1B the effect of treatments (DHA, DPA, BA) on the levels of PUFAs (Figure 1B) and saturated fatty acids (Figure 1C). In cells treated with behenic acid (BA), PUFA levels are not significantly changed relative to control, untreated cells, while saturated fatty acid levels are increased. BA was used here to determine whether the effects observed with PUFAs was related to the enrichment in unsaturations or due to carbon chain length (C22). It is not the case because BA treatment, unlike DHA or DPA treatment, does not affect D2R endocytosis (Figure 2G,H).

      • It's not clear why the authors decided to include an ω6 fatty acid in this study. The authors built up a detailed rationale for investigating ω3's as they are dietarily essential and tied to disease when deficient. To my knowledge, ω6's are considered much less beneficial than ω3's in a dietary sense. The inclusion of an ω6 almost seems coerced as the ω6-related results don't provide any interesting additional insights. It would benefit the manuscript if the authors provided some additional discussion explaining why ω6's are being investigated in addition to ω3's. *

      We agree that we could have made the rationale clearer. The goal in comparing ω3-DHA and ω6-DPA was to assess whether the position of the first unsaturation (n-3 vs n-6), with the same carbon chain length (C22) might differentially impact D2R endocytosis.

      • In Figure EV1D, the AHA and DPA percentages each increase by ~6%. The corresponding Figure EV1B indicates that the overall PUFA% in the plasma membrane also increases by 6%. This makes sense as the total change in PUFA content is consistent with the amount of AHA or DPA being internalized to cells. However, this consistency was not observed with BA and SFAs. In Figure EV1E, the BA percentage increases only ~1% while the total SFA percentage in Figure EV1C increases by ~6%. How can something undergoing a 1% change (relative to total lipid content) result in a 6% overall change in SFA content?*

      The reviewer is correct: the level of SFAs is increased by 5.2% (34.5 % of total FAs in control cells to 39.7 % in BA treated cells), more than the increase in BA alone (1.18% from 0.35 % to 1.53 %). A close look at our lipidomics data showed that many of the 10 saturated fatty acids quantified are enhanced. In particular, the two most abundant ones, palmitic acid (16:0) and stearic acid (18:0) are increased, from 21.37 % to 22.28 % and 8.47 % to 11.17%, respectively. The reasons for these apparent discrepancies may involve lipid metabolic pathways which convert the rare and long BA into more common and shorter SFAs to preserve lipid contents and thus membrane properties.

      • In Figure 4, the discussion of kinetics does not make sense. How exactly are kinetics being monitored in this figure? (Recruitment kinetics are discussed in panels D and G)*

      We wanted to convey the impression that the time to reach the peak βarr2-mCherry recruitment was shorter in PUFA-treated cells than in control cells. However, after analyzing the kinetics in individual cells, we did not find a statistically significant difference in the time to maximum fluorescence. Therefore, we removed this reference to the kinetics of recruitment.

      We now write: " However, treatment with DHA or DPA significantly decreased peak βarr2-mCherry fluorescence (Figure 5F-G).."

      • In Figure 5, What is the purpose of panel D? Would it be more helpful to include additional, overlaid "cumulative N" plots for scenarios in which PUFAs were enriched? This would work well in conjunction with panel F.*

      The purpose of this panel is to show the kinetics of increase in the frequency of endocytic vesicle formation upon agonist addition, and the decrease in frequency when the agonist is removed. We have now added examples of cells treated with DHA and DPA of similar surface for direct comparison with control (EtOH) cells.

      • For the readers who are new to this area or unfamiliar with the assays used, Figure 1 is not intuitive and initially difficult to interpret. It would greatly benefit the flow of the manuscript if Figures EV1A-C and EV2A were included in the main text and "Normalized R" was clearly defined in the main text, prior to discussion of Figure 1.*

      We have now transferred Figure EV1 as Figure 1. We have adapted the scheme of the DERET assay and its legend (now in Figure EV1A) to make it clearer. We did not put in Figure 2 because this figure is already very big. We have changed "Normalized R" to "Ratio 620/520) (% max)" to be clearer and more consistent with the scheme.

      Reviewer #3 (Significance (Required)):

      • *

      General assessment: The work, for the most part, is rigorous and scientifically sound. The authors utilize impressive, quantitative assays to expand our understanding of protein-lipid interactions. However, the authors need to improve their discussion of the actual physiological conditions that correspond to their experimental results.

      • *

      Advance: This work may fill a gap in our understanding of disorders related to the dopamine D2 receptor. However, some of the results may be at odds with what is currently known/understood about dietary ω3 fatty acids.

      • *

      Audience: This work will be of broad interest to researchers in the biophysics field, with particular emphasis on researchers who study protein and membrane biophysics. This work will also be of interest to researchers who study membrane molecular biology.

      • *

      Reviewer Expertise: quantitative fluorescence spectroscopy and microscopy; membrane biophysics; protein-lipid interactions

      • *
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: In this paper, Dresselhaus et al (2023) investigate the possibility that known cargoes of extracellular vesicles (EVs) released at the Drosophila neuromuscular junction have cell-autonomous functions rather than functions specifically conferred as a condition of their release in EVs, in vivo. To do so, authors focus their studies on use of Tsg101-KD, a mutant of the ESCRT-I machinery, of the ESCRT EV biogenesis pathway, and are able to show that for some endogenously-expressed, fluorescently-tagged cargoes, fluorescence intensity in the pre-synaptic compartment is significantly elevated (Syt4 and Evi) and the postsynaptic intensity in the muscle is significantly decreased (Syt4, Evi, APP, and Nrg).

      We note that throughout our study, we detected endogenous Nrg with a well-characterized monoclonal antibody, not a fluorescent tag. We and others previously demonstrated that endogenous Nrg detected by this antibody is trafficked from neurons into EVs, using the same pathways as other EV cargoes such as Syt4, APP and Evi (Blanchette et al., 2022; Enneking et al., 2013; Walsh et al., 2021). Thus, the EV trafficking phenotypes in our study are consistent across fluorescently tagged cargo (endogenous knockin for Syt4 and GAL4/UAS-driven for APP and Evi), as well as for untagged, endogenous Nrg, thus controlling for effects of either overexpression or tagging.

      These findings suggest that these cargoes become trapped in the endosomal system (colocalizing with early, late, and recycling endosomal compartments), rather than undergoing secretion in EVs targeting post-synaptic muscle and glia as usual. This phenotype is recapitulated for select cargoes using mutants of both early and late components of ESCRT pathway machinery. They further characterize the Tsg101 mutant, demonstrating co-occurrence of an autophagic flux defect, but as the cargo phenotype is present without induction of the autophagic flux defect for their Hrs mutants, authors suggest the overlapping role of Tsg101 in autophagy is independent of its role in the ESCRT pathway/ EV secretion. Subsequently, they use previously defined functional phenotypes of the Evi (number of active zones, number of boutons, number of developmentally-arrested ghost boutons) and Syt-4 (number of transient ghost boutons and mEJPs) cargoes to show a minimal dependence on cargo delivery via ESCRT-derived EVs for these cargoes to carry out their synaptic growth and plasticity functions in vivo. However, it should be notes that for Evi/ Wg cargo, there is a slight increase in developmentally-arrested ghost boutons suggesting the cargo may not be entirely independent of EV-mediated cargo delivery. Finally, authors express an anti-GFP proteasome-directed nanobody using motor neuron or muscle-specific drivers and find that Syt4-GFP cargo doesn't enter muscle cytoplasm as fluorescence is maintained and cargo is not degraded by the muscle proteasome. While authors suggest this as evidence of EV-mediated transfer for cargo proteostasis, it is not explicitly shown that Syt4 cargo is, in fact, trafficked and degraded by the lysosome or hypothesized how Syt4 function or post-synaptic localization may be carried out independently of EVs.

      We have added new data showing that Syt4 is taken up by glial and muscle phagocytosis (Fig. 7), and included in the discussion several possible interpretations for how Syt4 activity is carried out independently of its traffic into EVs. Indeed we believe it is more likely to function in the presynaptic neuron rather than the postsynaptic muscle.

      Major comments:

      R1.1 It is difficult to evaluate the findings of this study without knowing the extent of ESCRT pathway impairment. Please provide data quantifying the degree of knockdown/ mutant expression for each ESCRT component (i.e., western blot)

      To address the reviewer’s request to specifically measure the degree of knockdown in the RNAi lines, we tested all available reagents. Unfortunately no Drosophila Tsg101 antibody exists and we did not receive a reply to our requests for a Shrub antibody. An Hrs antibody exists, but we found that none of three available Hrs RNAi lines depleted Hrs signal, or caused a phenotype similar to the HrsD28 point mutant, suggesting that they are not effective at knocking down the protein. Therefore, we were unable to specifically measure the level of depletion in motor neurons for RNAi of Tsg101, Shrub, or Hrs.

      However, we can make a strong argument that our knockdowns were sufficiently effective to answer the questions in our study. We used RNAi as only one of several complementary tools to manipulate ESCRT function (i.e. we also used loss-of-function mutants (HrsD28/Deficiency) and dominant negative mutants (Vps4DN)). These mutants caused a comparable and severe loss of EVs to RNAi (Fig 2): therefore the extent of depletion in the RNAi experiments was sufficient to cause a similarly severe phenotype as genomic or DN mutations, meeting the definition of a bona fide loss-of-function. We also know, since we used these complementary strategies, that the phenotypes we observe are very unlikely to be due to off-target effects of the RNAi.

      More importantly, what is directly relevant for our subsequent functional experiments is to know the extent of EV depletion, which we have explicitly measured throughout the paper. It is unclear what additional insights would be gained by knowing whether the strong Tsg101 and Shrub RNAi phenotypes are due to incomplete versus complete knockdown, given that we do measure the extent of EV depletion under these conditions. Further, we note that tsg101 null mutants die as first instar larvae (Moberg et al., 2005), raising the possibility that a more complete knockdown in neurons would be lethal early in development and make our study impossible. Indeed HrsD28 is an early stop that preserves the VHS and FYVE domains but truncates the C-terminal ⅔ of the protein. Its (occasional) survival to third instar indicates that it may be a severe hypomorph rather than a null.

      We have added a sentence in the text (p12 line 21-25) to clarify that we do not know the exact extent of knockdown for our RNAi experiments, but that by genetic definitions, they meet the criteria of a loss-of-function manipulation.

      R1.2 Loss of ESCRT machinery likely disrupts the release of small EVs to a significant extent; however, the authors do not show that EV release is entirely lost, only that 1) cargoes are backed up in the endosomal system due to endosomal dysfunction and 2) fluorescence of cargoes in the postsynaptic compartment is diminished. To claim that ESCRT-derived EVs with the relevant cargoes are lost, the authors should perform immunogold labelling with TEM. This would provide direct evidence that the cargoes examined here are packaged in ILVs, and that the ILVs are of a size (~50-150nm) consistent with exosomes (which should really be referred to as small extracellular vesicles (sEVs) per the minimal information for studies of extracellular vesicles (MISEV 2018 [https://doi.org/10.1080/20013078.2018.1535750]) Additionally, EM would show the loss of cargo packaging and provide information about where these cargoes localize in the presence of ESCRT mutants/loss-of-function.

      EM (including some limited immunoEM) studies requested by Reviewer 1 have previously been performed in this system by us and by the Budnik and Verstreken labs (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Lauwers et al., 2018; Walsh et al., 2021). MVBs at the NMJ contain ~50-100 nm ILVs, and can often be seen proximal to or fusing with the plasma membrane. Mutants such as Hsp90 that block this fusion also block EV release, arguing that these MVBs are the source of EV (Lauwers et al., 2018). By immunoEM, the EV cargo Evi localizes to MVBs (Koles et al., 2012). ~50-200 nm structures containing immunogold against Evi were also observed in the subsynaptic reticulum between the neuron and the muscle, as well as in membrane compartments in the muscle cytoplasm (Koles et al., 2012; Korkut et al., 2009). Thus, the criteria requested by the reviewer have previously been established in this system.

      In response to the reviewer’s request to show that these structures are altered in ESCRT mutants, we attempted immunoEM experiments in the Tsg101KD condition. However, similar to the previously published results (Koles et al., 2012; Korkut et al., 2009), immunoEM in thick tissue such as Drosophila larval fillets is quite challenging, and we found it very difficult to retain immunogenicity together with excellent fixation and preservation of membrane structures, such that we could rigorously measure compartment morphology and size. Even if we did achieve good structural preservation, exosomes are ambiguous in complex membrane-rich tissues, since cross-sections through the extensively infolded muscle membrane (e.g. see Fig 3B) are very similar in size to EVs.

      As an alternative and more robust approach, we used STED microscopy, with a resolution of ~50nm, where we could conduct a rigorous and properly powered study of directly labeled EV cargoes (New data in Fig. S1). We show that postsynaptic Nrg and APP-GFP are found in structures with a mean diameter of ~125 nm, consistent with small EVs or exosomes, and these are strongly depleted in the Tsg101KD animals (to similar levels as antibody background far from the site of EV accumulation), as expected. Note that we are able to detect particles significantly smaller than 125 nm in the distribution, suggesting that the resolution of our system is sufficient to measure EV width.

      We also note that several of these cargoes are detected via an intracellular tag (Syt4, APP, Evi) or antibody against an intracellular domain (Nrg), so by topology they must be membrane-bound in the EVs rather than cleaved from the cell surface. We and others have previously shown that this postsynaptic signal is entirely derived from the presynaptic neuron, by using neuronal UAS-expression of a tagged protein, by neuronal RNAi of the endogenous gene, or by the tissue-specific tagging approach in the current manuscript (Fig. S4). We have also previously shown that these puncta contain the tetraspanin Sunglasses (CG12143/Tsp42Ej), which is an EV marker (Walsh et al., 2021). We have added new data to our manuscript (Fig. S1A) to show that neuronally-derived tetraspanin EVs are depleted in upon Tsg101KD. Therefore, the reviewer’s point “2) fluorescence of cargoes in the postsynaptic compartment is diminished.” is the most direct and sensitive test of trans-synaptic cargo transfer, and is the precise parameter that we are trying to manipulate to test the functions of this transfer.

      We believe that light microscopy showing loss of presynaptically-derived cargoes in the postsynaptic region is the best and most direct argument for loss of EV secretion, compared to the ambiguity of EM. It is also exactly the method that led to the proposal for the signaling function of EVs in previous work, which our current manuscript is revisiting. We are now using improved tests of that original hypothesis by examining it in light of additional membrane trafficking mutants (and finding that it no longer holds up). Overall, given the preponderance of evidence from the preceding literature and our studies indicating that (1) these cargoes are indeed in EVs and (2) we see a strong enough depletion of transsynaptic transfer to challenge the hypothesis that EVs serve signaling functions (see R1.3 response below), we are reluctant to spend more time attempting immunoEM which is not likely to resolve membrane structures.

      To address the point of EV terminology used in our manuscript, we think it is very unlikely that the postsynaptic structures are not exosomes. The criteria defined by MISEV for exosomes is that they are endosomally-derived from MVBs, ideally with the EV “caught in the act of release” upon fusion with the plasma membrane. As noted above, cargoes such as Syt4 and Evi are observed by immunoEM in MVBs, and these can be found in the process of fusing with the plasma membrane (i.e. caught in the act of release) (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Lauwers et al., 2018). Mutants that block MVB fusion also block EV release at the NMJ (Lauwers et al., 2018). These EVs require ESCRT for their formation and are trapped in endosomes rather than the plasma membrane upon ESCRT depletion (this study). They depend on multiple components of the endosomal system (Rab GTPases, retromer) for their formation (Koles et al., 2012; Walsh et al., 2021). Taken together, it seems to us that there is sufficient data to argue that these are exosomes. However, as the reviewers requested, we have called them EVs in the revised paper (and only suggest they are exosomes in the discussion).

      R1.3 Other biogenesis pathways utilize multivesicular bodies to generate EVs, most prominently the nSMase2/ceramide synthesis pathway (which operates in an ESCRT-independent manner). It is possible that this pathway compensates when there are defects in the canonical ESCRT pathway. Thus, it is imperative for the authors to show that the cargo secretion no longer occurs in the presence of ESCRT mutations/loss-of-function. The authors should also use nSMase2 pathway mutants to see if the phenotypes in cargo trafficking (i.e., pre/ post-synaptic protein levels) are recapitulated.

      The reviewer asked us to show that cargo secretion does not occur in the ESCRT mutants. We reiterate that at the limits of detection of our assay, we see a very strong depletion of secretion__, and that EV cargo levels are not distinguishable from background (__Figure S1). Perhaps Reviewer 1’s concern is that since it would never be possible to show that we have depleted EVs completely (i.e. below the level of detection of our assays), that it is not possible to challenge the hypothesis that EV traffic is required for the proposed signaling functions of EVs. Indeed, they mention in their overall assessment “as it is unknown if minor sources of cargo+ EVs are sufficient in maintaining functional phenotype”. We do have some information on this, as described in the manuscript (p3 lines 41-43; p7 lines 25-31; p11 lines 27-30) and as follows: The critical argument against this concern is that other trafficking mutants with residual levels of EVs (rab11 or nwk) do show loss of signaling function (Blanchette et al., 2022; Korkut et al., 2013). Therefore residual EVs, even at the lower level of detection of our assay, are not enough to support signaling. The main difference is that in nwk and rab11 mutants the levels of the cargo in the donor presynaptic neuron are also strongly depleted, unlike in the ESCRT mutants. This strongly suggests that the cargoes are signaling from the presynaptic compartment, rather than in EVs. We have added the nwk mutant to show this baseline in Figure 2A,D. Similarly, our new results showing that hrs mutants retain Wg signaling while Tsg101 mutants do not, despite a similar degree of EV depletion (new data with more cargoes in Figure 2A-F), argues that residual EVs do not account for the lack of disruption of signaling. Finally, we have been transparent in our discussion that trace amounts of EVs could still exist, including by alternative pathways, but are unlikely to provide function (p11 lines 25-33).

      We agree that it might be an interesting future mechanistic direction to ask if the SMase pathway works with or in parallel to the ESCRT pathway (both have been suggested in the literature). However, we do not believe that this is essential for the current work: The SMase pathway is unlikely to be “compensating”, since EVs are already very strongly depleted with ESCRT disruption alone. We also note that SMase depletion may also affect other trafficking pathways (Back et al., 2018; Choezom and Gross, 2022; Niekamp et al., 2022), and therefore might not provide any clarifying information if it did disrupt signaling. In summary, we believe the depletion we see in single ESCRT mutants is sufficient to (1) establish the role of ESCRT in EV traffic in this system, and (2) test the role of transsynaptic transfer in signaling functions of cargoes.

      R1.4 The authors' findings support that cargo trafficking is affected by widespread endosomal dysfunction but doesn't cleanly prove that 1) synaptic sEV release is lost and 2) that cargo-specific sEVs are lost. As previously mentioned, loss of cargo+ ILVs in MVEs by TEM could demonstrate this, but another useful approach would be to include in vitro Drosophila primary neuronal culture/ EV isolation and mass spec/proteomic characterization studies as proof of concept. According to widely agreed upon guidelines in the EV field, the authors should directly characterize their EV population to show 1) the appropriate size distribution associated with exosomes/sEVs, 2) the presence of traditional EV markers (i.e., tetraspanins), 3) changes in overall EV count by ESCRT mutants, and 4) decreased levels of cargo(es) of interest in the presence of ESCRT mutants/loss-of-function. In vitro experiments would be particularly helpful for quantifying the degree of loss of cargo-specific EVs with each ESCRT mutant. These experiments could also investigate the possibility that cargoes are secreted in nSMase2/ Ceramide-derived EVs, by showing that EV cargo levels are unaffected in nSMase mutants.

      Our data already show loss of cargo-specific EVs, defined by puncta of several independent specific cargoes in the extraneuronal space and postsynaptic muscle. To further substantiate this, we have directly characterized our EV population and shown a distribution of ~125 nm extraneuronal structures containing the transmembrane cargoes Nrg and APP (by STED) as well as Evi, Syt4 and the EV marker tetraspanin (by confocal microscopy). This addresses the (1) size distribution, (2) EV marker and (3) count criteria. All these markers (cargoes and tetraspanins) are severely depleted from the postsynaptic area in the ESCRT mutants, satisfying the (4) decreased levels criteria. As noted above, we and others have repeatedly demonstrated that these postsynaptic puncta are derived from neurons, and since we are detecting the intracellular domain in all cases, must be membrane-bound. Others have previously shown by EM that several of these markers are surrounded by membrane and derived from neuronal MVBs (see R1.2). Note that we do not believe that ESCRT mutants must necessarily cleanly show enlarged endosomes without ILVs or a class E vps compartment - instead stalled endosomes appear to be targeted for autophagy in heterogeneous intermediates (Fig 3).

      We do not believe that turning to a heterologous system (e.g. cultured primary Drosophila neurons, which do not even form functional synapses) is usefully translatable to results in neurons in vivo. Data from our lab and many other systems has shown that EV biogenesis and release pathways are highly cell-type specific (p9 lines 8-12), and also differ in different regions of neurons (eg synapses vs soma) (Blanchette and Rodal, 2020). Further, keeping the experimental setup of the original for EV signaling hypothesis is a prerequisite for our improved tests of this hypothesis. We do note that APP, Evi and Syt4 have been demonstrated by us and others to be released from Drosophila S2 cells in EVs defined by differential centrifugation, sucrose gradient buoyancy, electron microscopy and mass spectrometry (Koles et al., 2012; Korkut et al., 2009; Korkut et al., 2013; Walsh et al., 2021). However even if we did measure the precise change in EV number and cargoes upon ESCRT manipulation in these heterologous cells, it would not allow us to conclude that the same quantitative change was happening in the motor neurons of interest in vivo, which is the information we need to conduct our tests of cargo signaling function. All we would learn is whether ESCRT was required in that cell type, which would not be informative for our study.

      We appreciate that EV researchers working in cell culture systems often use a set of approaches including bulk isolation, EM, and mass spectrometry. Our system does not allow for these approaches, but provides complementary strengths of single EV characterization, in vivo relevance with functional assays, and a wealth of genetic tools. MISEV itself states that it does not provide a set of agreed-upon rules that can be applied generically to any experiment. We agree with the MISEV statement that we should use the best available assays for the system under investigation.

      R1.5 During functional tests of Evi+ motor neurons lacking generation of Evi+ EVs, there is a slight defect observed, namely the increased formation of developmentally arrested ghost boutons when Evi secretion in sEVs is lost. As mentioned, Evi is a transporter of Wg and it is possible for Wg to be transmitted between cells via normal diffusion. Thus, some basal levels of Wg may be reaching the muscle when its transfer via sEVs is abolished, and these basal levels may be sufficient to phenocopy the WT in the number of active zones and boutons. Is it possible that this element of Evi/ Wg function is dose-dependent and thus reliant on the extra Evi/ Wg transferred via sEVs? If possible, the authors should use a Wnt-signaling pathway reporter (i.e., fluorescently tagged Beta-Catenin) to measure the levels of Wnt signaling activity in the muscle when Evi/Wg+ EVs are present vs. abolished. If the degree of Wnt signaling (readout would be intensity of fluorescent reporter) is decreased without Evi+ sEVs, there may be a dose-dependent response. Otherwise, please more clearly disclose the partial loss of Evi function without Evi+ sEVs or state the intact function of Evi without sEVs as speculative.

      We agree that Wg is likely to be reaching the muscle in the absence of Evi exosomes via conventional secretory mechanisms, and have conducted new experiments to test this hypothesis (Fig. 5). In Drosophila muscles, Wg does not signal via a conventional b-catenin pathway. Instead, neuronally-derived Wg activates cleavage of its receptor Fz2, resulting in translocation of a Fz2 C-terminal fragment into the nucleus (Mathew et al., 2005; Mosca and Schwarz, 2010). We did attempt to directly measure Wg (using antibodies or knockins) and though we were able to detect a specific presynaptic signal, the background noise throughout the postsynaptic muscle was too high for a sensible quantification. In response to the reviewer’s question and also R2.6), we collaborated with the laboratory of Timothy Mosca to test Fz2 nuclear import in Tsg101 and Hrs mutants (new Figure 5F-G). Strikingly, we found that Hrs mutants, despite being extremely sickly, have normal nuclear import of Frizzled. We also confirmed that Hrs mutants have dramatically depleted levels of all EV cargoes examined, including Evi (Figure 2A-F). On the other hand we found that Tsg101 knockdowns have dramatically reduced Wg signaling (and a concomitant defect in postsynaptic development). We do not rule out (but think it is unlikely) that very small amounts of EVs could be present in hrs but not tsg101 mutants. A more parsimonious interpretation is that additional membrane trafficking defects in the Tsg101 mutants (which are beyond the scope of this study to explore in detail) block an alternative mode of Wg release, perhaps conventional secretion. The fact that Hrs mutants, despite showing similar depletion of Evi EVs, do not have a signaling defect strongly argues that EV release per se is not required for Wg signaling.

      R1.6 To support the authors' hypothesis that Syt4 transmission via EVs is a proteostatic mechanism, the authors should determine whether Syt4 cargo localizes to lysosomal compartments in muscle, glia, or both. Otherwise, the proteostatic degradation of Syt4 via EVs is speculative.

      Our data suggest that EVs serve as one of several parallel proteostatic mechanisms for presynaptic cargoes. We have added new data to the manuscript to emphasize the advance our work makes in our understanding of these mechanisms, and have emphasized this in the discussion on p 11-12, lines 46-5).


      1. Degradation of neuronally derived EVs in glia and muscles. Previous work has shown that EV cargoes such as Evi can be found in compartments in the muscle cytoplasm, and that a-HRP-positive puncta are taken up and degraded by glial and muscle phagocytosis (Fuentes-Medel et al., 2009). These a-HRP-positive structures, despite colocalizing with EV cargoes Syt4, Nrg and APP (Walsh et al., 2021), were not previously connected to EVs. We have added new data showing that muscle or glial-specific RNAi of the phagocytic receptor Draper leads to the accumulation of EVs containing Syt4 (new Figure 7G-H)). Together with our finding (Figure 7A-F) that Syt4 is not significantly detected in the muscle cytoplasm, these results indicate that the main destination for transynaptic transfer is phagocytosis by the recipient cell. We have not been able to convincingly detect EV cargoes in the endolysosomal system of muscles, even in mutants disrupting lysosomal traffic, likely because the small number of EVs released by neurons (even over days of development) are drastically diluted in the much larger muscle cell.
      2. Compensatory endosomophagy in the neuron. __When EV release is blocked in Hrs or Tsg101 mutants, we observe an induction of autophagy in the neuron (__Figure 3B, E-G). However, in the absence of ESCRT manipulation, autophagy mutants do not accumulate EVs (Figure 3C,D. S2H-I). This suggests that autophagy is a compensatory mechanism that is induced in the absence of EV release.
      3. Retrograde transport to cell bodies: We previously found that disruption of neuronal dynactin leads to accumulation EV cargoes in presynaptic terminals (Blanchette et al., 2022), suggesting that retrograde transport is a mechanism for removal of these cargoes from synapses. Interestingly, EV release is not increased in these conditions, indicating that the retrogradely transported compartment represents a late endosome without ILVs, or an MVB that cannot fuse with the plasma membrane.

        R1.7 Please discuss alternate modes of cargo transfer from the presynaptic compartment to the postsynaptic compartment that may be utilized when EV-mediated transfer is abolished (i.e., cytonemes or tunneling nanotubules).

      We have added these possibilities to the discussion (p11 line 31), though we note that we do not observe any such structures, or indeed any Syt4 in the muscle cytoplasm, and there is no current evidence for such transsynaptic structures in this system. Conventional secretion of Wg into the extracellular space and signaling through its transmembrane receptor Frizzled2 can account for Wg signaling in the absence of exosomes.

      R1.8 OPTIONAL: Investigate the mechanism of Syt4+ sEV fusion with the postsynaptic compartment (direct fusion with the plasma membrane, receptor-mediated fusion, endocytosis and unpacking, or endocytosis and degradation).

      We note that the Budnik lab has already shown that HRP-positive EVs released by NMJs are taken up by glia and muscles (Fuentes-Medel et al., 2009), and we have added data showing that this also applies for Syt4 (Fig. 7). Our data are not consistent with Syt4 fusing with recipient cell membranes or entering the muscle cytoplasm. Further investigation of this mechanism is beyond the scope of this project.

      Given that several fundamental questions have yet to be answered regarding the biogenesis pathways and machinery utilized for EV-mediated cargo secretion, and the necessity for further TEM studies and/or work with primary cultures to characterize ILVs and EVs, >6 months is estimated to perform the necessary experiments that may require learning/ optimizing new systems.

      Minor comments:

      R1.9 Please clarify the choice of using Tsg101 KD in place of mutants of other ESCRT machinery (i.e., Hrs). Especially as when the Tsg101 mutant was characterized, you found major defects in autophagic flux that were not present for HrsD28/Df.

      Tsg101 RNAi was selected since it provides a neuron-autonomous knockdown, eliminating the complications of mutant effects in other tissues. These animals are also relatively healthy as third instar larvae compared to genomic mutants tsg1012 (L1 lethal) and HrsD28 or motor-neuron driven Vps4DN (where L3 larvae are rare). This made it easier to recover enough larvae to properly power experiments, and alleviated concerns that general sickness is contributing to the phenotype (though note that neuronal Tsg101KD does result in pupal lethality). Finally, we were unable to effectively knock down Hrs by RNAi (see R1.1). To extend our studies beyond Tsg101, we have included additional experiments in the revised manuscript showing that HrsD28 animals, despite being quite unhealthy, still retain Syt4-dependent functional plasticity (See R2.5 and R3.4) and Wg signaling.

      R1.10 Please clarify why the specific method in experiment in Fig. 4E-J was chosen. As Syt4 is a transmembrane protein, is likely undergoes degradation via the lysosome, like other membrane-bound proteins. Is it known whether the proteasome-directed nanobody is sufficient to pull Syt4 from membrane-bound compartments to undergo degradation in the proteasome? Would it make more sense to use a lysosome-directed nanobody?

      The GFP tag on Syt4 is cytosolic rather than lumenal. Our data show that when we express the proteosome-directed nanobody presynaptically, it efficiently degrades membrane-associated Syt4-GFP (Fig. 7B). Therefore we expect that this tool should be similarly effective on membrane-associated Syt4-GFP if it were exposed to the muscle cytoplasm. We have confirmed that it is effective in the muscle against DLG-GFP (Fig. S5A)

      R1.11 Please provide further methodological information regarding the sample preparation for live imaging of axons to generate kymographs found in Fig. S3.

      Additional details have been provided on p14 lines 10-24 and p15 lines 31-37.

      R1.12 In Figure 1I and 1J, include representative image and quantification of Syt4-GFP pre- and post-synaptic intensity for HrsD28/Df for consistency with ShrubKD and Vps4DN in Figure 1K-P.

      We generated and tested HrsD28; Syt4-GFP (Fig 2A,D), and HrsD28; Evi-GFP strains (Fig 2B-E). All EV cargoes exhibited a dramatic post-synaptic depletion in Hrs mutants, similar to the other ESCRT manipulations.

      R1.13 In Figure 2H, please provide a cell type marker or HRP mask with a merged image for image clarity.

      This image shows neuronal cell bodies in the ventral ganglion, which are densely packed relative to each other. The cell type specificity is provided by the motor neuron driver. We did not use a cell type marker or individually mask cells for analysis, but instead quantified intensity over the whole field of view. We can manually trace cell bodies in this image if requested, but it would not represent our ROI for analysis.

      R1.14 In Figure 4B, please provide quantification for the differences between 1) WT Mock and Tsg101 MOCK and 2) WT Stim and Tsg101KD Stim to show that upon stimulation, WT and Tsg101 undergo the same increase in the number of ghost boutons/ NMJ in Muscle 4.

      We have added these statistical comparisons to the graph (Fig. 6B)

      R1.15 In Figure 3 G and H, use consistent scale bars to compare between temperatures.

      We have removed the Shrub data at 20º as it did not provide additional insight to the manuscript.

      Reviewer #1 (Significance (Required)):

      General assessment (Strengths):

      -Use of Drosophila NMJ model system consistent with others in the field and exceptional harnessing of genetic tools for mutations across the ESCRT pathway (-0, -I, -III, etc.) -Identification of ESCRT pathway mutants that do not deplete pre-synaptic cargo levels but generate endosomal dysfunction, indicative of a possible decrease in secretion of cargoes via EVs -Implementing functional characterization of Evi/ Wg and Syt4 cargoes, consistent with previous work in the field; highly reproducible

      -Sufficiently thorough investigation of the cross-regulation of autophagy and EV biogenesis by Tsg101

      General assessment (Weaknesses):

      -Lack of investigation of known ESCRT-independent pathways/ genes involved in the generation of sEVs (i.e., nSMase2/ Ceramide) especially as it is unknown if minor sources of cargo+ EVs are sufficient in maintaining functional phenotype

      See R1.3 for comments on this point

      -Lack of sEV characterization and validation of EVs derived from mutant

      We have added STED data to measure EV size, and described the challenges in EV membrane measurements by EM in the in vivo system.

      -Does not show the loss of cargoes of interest on EVs from mutants other than through back-up of cargoes in the presynaptic endocytic pathway (Rab7, Rab5, Rab11)

      We strongly disagree with this comment. We have explicitly measured the loss of numerous cargoes in postsynaptic structures that have been rigorously established to be EVs in this and previous publications. Our findings are not limited to back-up of presynaptic structures.

      -Lack of rigorous investigation of the claim that Evi and Syt4 are released via EVs for proteostatic means is missing. Authors should demonstrate the degradation of EV cargoes by recipient cells (either muscle OR glia)

      We have added new data and discussion on multiple and compensatory proteostatic pathways.

      -If EV-mediated cargo transfer is not required, authors should investigate alternate modes of cargo transfer more rigorously (i.e., diffusion of Wg, suggest/ test hypotheses for mechanism of Syt4 function or transfer).

      We have included discussion of alternate modes of transfer for Wg (i.e. conventional secretion). By contrast, for Syt4 we believe it is acting in the donor cell without transfer, and have included alternate interpretations of the previous literature that had suggested its function in muscles.

      Advance: -Compared with other recent in vivo studies of EVs where donor EVs are loaded with a cargo, such as Cre, which uniquely identifies recipient cells through Cre recombination-mediated expression of a fluorescent reporter (Zomer et al 2015, Cell), this study relies on the readout of fluorescently tagged cargo in the recipient cells to represent transfer via EVs. While numerous studies in the Drosophila field focus on the same small set of known EV cargoes at the NMJ (Koles et al., 2012; Gross et al., 2012; Korkut et al., 2013; Korkut et al., 2009; Walsh et al., 2021), there is a noticeable lack of EV characterization based on MISEV (i.e. TEM of EVs, size distribution, enrichment of well-known EV markers [https://doi.org/10.1080/20013078.2018.1535750]) that would significantly strengthen the work and make it more widely accepted in the EV field.

      As mentioned above, many of these criteria (including EV size and enrichment of known EV markers) are already established in the previous literature for this system. As requested, we have also added similar data to our revised manuscript.

      -In this study, the use of ESCRT machinery mutants is proven as a new technical method in delineating the role of EV cargoes in cell-autonomous versus EV-dependent functions. This is the first study, to my knowledge, that has leveraged mutants from both early and late ESCRT complexes for the study of EVs in Drosophila. Additionally, the finding that some cargoes may be able to carry out their signaling functions, independent of transfer via EVs, provides key mechanistic insight into one possible role of EVs as proteostatic shuttles for cargo. This work also begins to address a fundamental question in the field, which is to delineate roles that EVs actually carry out in physiological conditions, compared to the many roles that have been shown possible in vitro.

      We appreciate the reviewer’s insight into the impact of our work.

      Audience: -Basic research (endosomal biology, ESCRT pathway, cell signaling, neurodevelopment)

      -Specialized (Drosophila, Neurobiology; Extracellular Vesicles)

      -This article will be of interest to basic scientists in the field of endosomal trafficking and extracellular vesicle biology as well as though studying the nervous system in Drosophila melanogaster. As the field of extracellular vesicle biology has broad implications in the spread of pathogenic cargoes in cancer and neurodegenerative disease, the basic biology associated with EVs has some translational relevance.

      Expertise (Keywords):

      -ESCRT and nSMase2 EV biogenesis pathways

      -EV characterization in vitro/ live imaging studies

      -EV release and uptake

      -Neuronal and glial cell biology

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This manuscript addresses the role of exosome secretion in neuromuscular junction development in Drosophila, a system that has been proposed to depend on exosomes. In particular, delivery of Wingless via exosomes has been proposed to promote structural organization of the synapse. Previously, however, the studies that proposed this model targeted the cargoes themselves, rather than targeting exosome biogenesis or secretion. In this new study, exosome biogenesis is targeted via knockdown of the ESCRT components Hrs, TSG101, and Chmp4. The authors find that some previously ascribed functions are not inhibited by these knockdowns. In particular, formation of active zones, as defined by BRP-positive puncta (total and per micrometer), and total bouton numbers. It does look like there is a partial defect in BRP-positive puncta per micrometer, but it is not significant. For ghost bouton formation, there is a similar increase in evi-mutant and ESCRT-KD NMJs (with some subtle differences depending on abdominal segment and temperature). They also examine the role of Syt4, which has been proposed to be transferred from nerve to muscle cells at the junction and to regulate mEJP frequency after stimulation. They found no difference in mEJP frequency after stimulation between WT and TSG101-KD animals, although they did not have a positive control with inhibition of Syt4. They did do an elegant experiment to demonstrate that most of extracellularly transferred Syt4 does not reach the muscle cytoplasm. Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD. There are also a couple of experiments that would enhance the manuscript. Some specific suggestions are below:

      R2.1 Title: "ESCRT disruption provides evidence against signaling functions for synaptic exosomes" seems a bit broad -- only evi/Wg and Syt4 functions were examined at NMJ synapses, not all signaling functions of all exosomes at all synapses. Something like, "ESCRT disruption provides evidence against signaling functions for exosome-carried evi/Wg and Syt4 at the neuromuscular junction" seems a bit more reasonable.

      We are open to changing the title to: “ESCRT disruption provides evidence against transsynaptic signaling functions for some extracellular vesicle cargoes” though we prefer to leave it as is since “provides evidence against” is already fairly understated.

      __ __R2.2 Abstract: the description of the actual data is very little, just one sentence saying that "many" of the signaling functions are retained with ESCRT depletion. I think a bit more focus on the actual data is warranted.

      We have edited the abstract to include more detail on the signaling phenotypes.

      __

      __R2.3 Results section:

      Fig 3: What does A2 and A3 mean for the graphs in c,d,e, g, h? Please specify in figure legend.

      We have described in the figure legends that A2 and A3 refer to specific abdominal segments in the larvae.

      R2.4 The sentence "Further, active zones in Tsg101KD appeared morphologically normal by TEM (Fig.2B)." is confusing to me. What do you mean by that? Are you referring to the following two sentences about feathery DLG and SSR? But the feathery DLG I presume is in Fig 3, where that staining is. And I also don't know what feathery DLG means -- it should be pointed out in the appropriate image.

      Presynaptic active zones are defined by an electron-dense T-shaped pedestal at sites of synaptic vesicle release, and can be seen in the TEM in what is now Figure 3B, marked as AZ. We have also labeled AZ by immunofluorescence (Fig. 5A) and they appear normal.

      By contrast, Dlg primarily labels the postsynaptic apparatus associated with the infoldings of the muscle membrane. In control animals, Dlg immunostaining is relatively tightly and smoothly clustered within ~1µm of the presynaptic neuron. By contrast, in Evi mutants, there are wisps of Dlg-positive structures extending from the bouton periphery. We have added arrows in what is now Fig. 5C to indicate the feathery structures.

      R2.5 Fig 4 addresses Syt4 function. However, there is no positive control inhibiting Syt4 to see if there is a change. Just comparison of WT and TSG101. It seems like this positive control is in order.

      We have added the positive control (Fig. 6E-F) reproducing the previously reported result that Syt4 mutants lack the high-frequency stimulation-induced increase in mEPSP frequency (HFMR). We have also added new data on HrsD28 genomic mutants. Despite the fact that few of these larvae survive and they are quite unhealthy, they still exhibit robust HFMR, similar to the Tsg101KD larvae, strongly supporting our hypothesis.

      R2.6 Discussion: I think some discussion of what ghost boutons are and what the possible significance is of the evi and ESCRT mutant phenotype of enhanced ghost bouton formation

      We have added more discussion on the ghost bouton phenotype (p11 lines 5-14), especially in light of our new findings that Hrs and Tsg101 mutants may distinguish alternative modes of Wg secretion (see R1.5)

      R2.7 Also, in the Discussion, it is mentioned that Wg probably gets secreted in the ESCRT mutants -- presumably this accounts for the discrepancy between evi mutants and the ESCRT mutants. An experiment to actually test this would greatly enhance the manuscript.

      We have added this experiment as addressed in R1.5

      Reviewer #2 (Significance (Required)):

      Overall, it is an interesting paper, mostly well controlled and rigorous, and well-written. It is an important contribution to the EV and NMJ fields. The data should provoke reconsideration of some of the functions that were previously ascribed to exosome transfer at the NMJ. However, I do think that there are some overly strong statements and the functions of the exosomes at the synapse were quite narrowly examined. For example, the title of the paper is pretty strong and the abstract does not say which functions were or were not affected by TSG101 KD.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Dresselhaus et al. investigates signaling functions for synaptic exosomes at the Drosophila NMJ. Exosomes are widely seen in vivo and in vitro. They are clearly sufficient to induce signaling responses in vitro, but whether they normally fulfill signaling functions in vivo has not been rigorously addressed. The authors make use of several mutants that block exosome release to test whether exosome release is important for two distinct signaling pathways: the Evi/Wg pathway and the Syt4 signaling pathway. Both pathways have been implicated in neuron to muscle signaling. Surprisingly, the authors find scant evidence that exosome release is required for either pathway. They convincingly show that knockdown of Tsg101 (an ESCRT-I component) does not phenocopy many synaptic phenotypes of either wg or syt4. Instead, they propose that in vivo, exosomes may serve as a proteostatic mechanism, as a mechanism for the neuron to dispose of unwanted/damaged proteins.

      Specific comments are below:

      R3.1 Loss of Tsg101 has been linked to upregulated MAPK stress signaling pathways and autophagy. Thus, it's possible that activating such compensatory mechanisms in Tsg101 knockdown animals could mask phenotypes associated with specific loss of EV cargoes such as Wg or Syt4. Indeed, the authors demonstrate that loss of Tsg101 and Hrs have very different effects on synaptic autophagy. To provide additional evidence that Wg or Syt4 signaling is independent of EV release, it would be good to check for wg/syt4 phenocopy in additional ESCRT complex mutants. I understand they did a bit with Shrub knockdown at low temperature in Figure 3, but the temperature-dependence of the ghost bouton phenotype clouds the interpretation. Could the authors try a motorneuron driver with a more restricted phenotype to overcome the lethality issues, or alternatively use one of their other ESCRT component mutants? This is obviously the central claim of the manuscript, and it would be strengthened by carrying out phenotypic analysis in mutants other than the Tsg101 RNAi line.

      As noted for R2.5, we have added HFMR experiments for the HrsD28 genomic mutant, and found that despite being very unhealthy, they exhibit robust HFMR similar to Tsg101KD. We also confirmed dramatic depletion of Syt4 EVs in the HrsD28 mutant. Thus, the preserved Syt4 signaling function in ESCRT mutants with depleted EV Syt4 is not restricted to Tsg101, and does not depend on the co-occurring autophagy phenotype.

      R3.2 In Figure 1, the authors show that neuronal Tsg101 RNAi dramatically reduces "postsynaptic" levels of exosome cargoes at the L3 stage to argue that exosome release is blocked in this mutant. While this seems very likely at the L3 stage, it is unclear when Tsg101 levels are reduced and thus when exosome release is impaired in this background. This is important because we don't know when these signaling pathways act. For example, it is possible that the critical period for Wg and Syt4 signaling is during the L1 stage, and that Tsg101 knockdown is incomplete at that stage. It is important to assay exosome release at earlier larval stage, particularly when RNAi is the method used to reduce gene function.

      We have conducted this experiment. We noted accumulation of cargoes in Tsg101KD L1 larvae, indicating that the RNAi is effective early in development. However, we do not find many EVs in either wild-type or Tsg101KD first instar larvae (red is a-HRP, green is Syt4-GFP). This argues that it is unlikely that EV-mediated signaling has a critical period earlier in development. It is likely that the accumulation of EVs that we observe trapped in the muscle membrane reticulum in third instar larvae were laid down over days or hours of development. We do not propose to include these data in the manuscript unless the editors and reviewers prefer that we do so.

      R3.3 If the Syt4 and Evi exosomes do not serve major signaling roles and are in fact neuronal waste, it seems likely they are phagocytosed by glia. Are levels of non-neuronal Syt4/Evi levels increased when glial phagocytosis in blocked (eg in draper mutants)?

      As mentioned above, the Budnik lab previously showed that uptake and degradation of postsynaptic a-HRP-positive structures depends on glial and muscle phagocytosis.a-HRP recognizes a number of neuronally-derived glycoproteins (Snow et al., 1987). Though the Budnik lab had not previously linked these structures to EVs, we do know that they very strongly colocalize with known EV cargoes and depend on the exact same membrane traffic machinery for release, arguing that some a-HRP antigen proteins are also EV cargoes (Blanchette et al., 2022). To close this loop. we have added data showing that Syt4-positive EVs also depend on Draper for their clearance (Fig 7).

      R3.4 For the HFMR experiment, it would be good to see the syt4-dependent phenotype as a positive control.__ __

      As mentioned for R2.5, we have added the Syt4 positive control (Figure 6E,F), which fails to show HFMR as expected.

      .__ __R3.5 In the abstract, the authors state that, "the cargoes are likely to function cell autonomously in the motorneuron". Isn't it alternatively possible that these proteins (wg in particular) could signal to the muscle in a non-exosome dependent pathway?

      Yes, we believe that Wg is likely released by another mechanism (perhaps conventional secretion). As noted for R1.5 and R2.6, we have added new data in Fig. 5 showing that Frizzled nuclear import IS NOT disrupted in Hrs mutants, despite dramatic loss of Evi EVs. Interestingly Frizzled nuclear import (and postsynaptic development) IS altered in neuronal Tsg101KD larvae, which disrupt additional membrane trafficking pathways beyond EV release (see Fig. 3). This is particularly interesting in light of the normal Syt4 signaling in Tsg101KD larvae, and supports the hypothesis that Syt4 can function without leaving the neuron, while Wg must be released, albeit not via Hrs-dependent EV formation. Another (less parsimonious) interpretation is that very small amounts of Wg release in the Hrs mutant are sufficient to promote Frizzled nuclear import.

      Reviewer #3 (Significance (Required)):

      This is an important paper that is well-organized and logically presented. It makes a clear and largely compelling case against major signaling roles for exosomes at this synapse. The authors should be commended for publishing this work, which demands a re-evaluation of proposed key roles for exosomes at the fly NMJ. Given the intense interest in exosomes in neurobiology, this paper will be of great interest to neuronal cell biologists working across systems.

      We thank the reviewer for their appreciation of the impact of our work on the field.

      Back, M.J., H.C. Ha, Z. Fu, J.M. Choi, Y. Piao, J.H. Won, J.M. Jang, I.C. Shin, and D.K. Kim. 2018. Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis. 9:670.

      Blanchette, C.R., and A.A. Rodal. 2020. Mechanisms for biogenesis and release of neuronal extracellular vesicles. Curr Opin Neurobiol. 63:104-110.

      Blanchette, C.R., A.L. Scalera, K.P. Harris, Z. Zhao, E.C. Dresselhaus, K. Koles, A. Yeh, J.K. Apiki, B.A. Stewart, and A.A. Rodal. 2022. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J. Cell Biol. 10.1083/jcb.202112094.

      Choezom, D., and J.C. Gross. 2022. Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. J Cell Sci. 135.

      Enneking, E.M., S.R. Kudumala, E. Moreno, R. Stephan, J. Boerner, T.A. Godenschwege, and J. Pielage. 2013. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian. PLoS Biol. 11:e1001537.

      Fuentes-Medel, Y., M.A. Logan, J. Ashley, B. Ataman, V. Budnik, and M.R. Freeman. 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7:e1000184.

      Koles, K., J. Nunnari, C. Korkut, R. Barria, C. Brewer, Y. Li, J. Leszyk, B. Zhang, and V. Budnik. 2012. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem. 287:16820-16834.

      Korkut, C., B. Ataman, P. Ramachandran, J. Ashley, R. Barria, N. Gherbesi, and V. Budnik. 2009. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell. 139:393-404.

      Korkut, C., Y. Li, K. Koles, C. Brewer, J. Ashley, M. Yoshihara, and V. Budnik. 2013. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron. 77:1039-1046.

      Lauwers, E., Y.C. Wang, R. Gallardo, R. Van der Kant, E. Michiels, J. Swerts, P. Baatsen, S.S. Zaiter, S.R. McAlpine, N.V. Gounko, F. Rousseau, J. Schymkowitz, and P. Verstreken. 2018. Hsp90 Mediates Membrane Deformation and Exosome Release. Mol Cell. 71:689-702 e689.

      Mathew, D., B. Ataman, J. Chen, Y. Zhang, S. Cumberledge, and V. Budnik. 2005. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science. 310:1344-1347.

      Moberg, K.H., S. Schelble, S.K. Burdick, and I.K. Hariharan. 2005. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell. 9:699-710.

      Mosca, T.J., and T.L. Schwarz. 2010. The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nat Neurosci. 13:935-943.

      Niekamp, P., F. Scharte, T. Sokoya, L. Vittadello, Y. Kim, Y. Deng, E. Sudhoff, A. Hilderink, M. Imlau, C.J. Clarke, M. Hensel, C.G. Burd, and J.C.M. Holthuis. 2022. Ca(2+)-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun. 13:1875.

      Snow, P.M., N.H. Patel, A.L. Harrelson, and C.S. Goodman. 1987. Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci. 7:4137-4144.

      Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger, and M. Simons. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244-1247.

      Walsh, R.B., E.C. Dresselhaus, A.N. Becalska, M.J. Zunitch, C.R. Blanchette, A.L. Scalera, T. Lemos, S.M. Lee, J. Apiki, S. Wang, B. Isaac, A. Yeh, K. Koles, and A.A. Rodal. 2021. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol. 220:e202012034.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Recommendations For The Authors):

      In this revision the authors address some of the key concerns, including clarification of the balanced nature of the RL driven pitch changes and conducting analyses to control for the possible effects of singing quantity on their results. The paper is much improved but still has some sources of confusion, especially around Fig. 4, that should be fixed. The authors also start the paper with a statistically underpowered minor claim that seems unnecessary in the context of the major finding. I recommend the authors may want to restructure their results section to focus on the major points backed by sufficient n and stats.

      Major issues.

      (1) The results section begins very weak - a negative result based on n=2 birds and then a technical mistake of tube clogging re-spun as an opportunity to peak at intermittent song in the otherwise muted birds. The logic may be sound but these issues detract from the main experiment, result, analysis, and interpretation. I recommend re-writing this section to home in on, from the outset, the well-powered results. How much is really gained from the n=2 birds that were muted before ANY experience? These negative results may not provide enough data to make a claim. Nor is this claim necessary to motivate what was done in the next 6 birds. I recommend dropping the claim?

      We thank the reviewer for the recommendation. We moved the information to the Methods.

      (2) Fig. 4 is very important yet remains very confusing, as detailed below.

      Fig. 4a. Can the authors clarify if the cohort of WNd birds that give rise to the positive result in Fig 4 ever experienced the mismatch in the absence of ongoing DAF reinforcement pre-deafening? Fig4a does nor the next clearly specifies this. This is important because we know that there are day timescale delays in LMAN-dependent bias away from DAF and consolidation into the HVC-RA pathway (Andalman and Fee, 2009). Thus, if birds experienced mismatch pre-deafening in the absence of DAF, then an earnly learning phase in Area X could be set in place. Then deafening occurs, but these weight changes in X could result in LMAN bias that expresses only days later -independent of auditory feedback. Such a process would not require an internal model as the authors are arguing for here. It would simply arise from delays in implementing reinforcement-driven feedback. If the birds in Fig 4 always had DAF on before deafening, then this is not an issue. But if the birds had hours of singing with DAF off before deafening, and therefore had the opportunity to associate DA error signals with the targeted time in the song (e.g. pauses on the far-from-target renditions (Duffy et al, 2022), then the return-to-baseline would be expected to be set in place independent of auditory feedback. Please clarify exactly if the pitch-contingent DAF was on or off in the WNd cohort in the hours before deafening. In Fig. 3b it looks like the answer is yes but I cannot find this clearly stated in the text.

      We did not provide DAF-free singing experience to the birds in Fig. 4 before deafening. Thus, according to the reviewer, the concern does not apply.

      Note that we disagree with the reviewer’s premise that there is ‘day timescale delay in LMAN-dependent bias away from DAF and consolidation into the HVC-RA pathway’. More recent data reveals immediate consolidation of the anterior forebrain bias without a night-time effect (Kollmorgen, Hahnloser, Mante 2020; Tachibana, Lee, Kai, Kojima 2022). Thus, the single bird in (Andalman and Fee 2009) seems to be somewhat of an outlier.

      Hearing birds can experience the mismatch regardless of whether they experience DAF-free singing (provided their song was sufficiently shifted): even the renditions followed by white noise can be assessed with regards to their pitch mismatch, so that DAF imposes no limitation on mismatch assessment.

      We disagree with their claim that no internal model would be needed in case consolidation was delayed in Area X. If indeed, Area X stores the needed change and it takes time to implement this change in LMAN, then we would interpret the change in Area X as the plan that birds would be able to implement without auditory feedback. Because pitch can either revert (after DAF stops) or shift further away (when DAF is still present), there is no rigid delay that is involved in recovering the target, but a flexible decision making of implementing the plan, which in our view amounts to using a model.

      Fig 4b. Early and Late colored dots in legend are both red; late should be yellow? Perhaps use colors that are more distinct - this may be an issue of my screen but the two colors are difficult to discern.

      We used colors yellow to red to distinguish different birds and not early and late. We modified the markers to improve visual clarity: Early is indicated with round markers and late with crosses.

      Fig 4b. R, E, and L phases are only plotted for 4c; not in 4b. But the figure legend says that R, E and L are on both panels.

      In Fig. 4b E and L are marked with markers because they are different for different birds. In Fig. 4c the phases are the same for all birds and thus we labeled them on top. We additionally marked R in Fig. 4b as in Fig. 4c.

      Fig 4e. Did the color code switch? In the rest of Fig 4, DLO is red and WND is blue. Then in 4e it swaps. Is this a typo in the caption? Or are the colors switch? Please fix this it's very confusing.

      Thank you for pointing out the typo in the caption. We corrected it.

      The y axes in Fig 4d-e are both in std of pitch change - yet they have different ylim which make it visually difficult to compare by eye. Is there a reason for this? Can the authors make the ylim the same for fig 4d-e?.

      We added dashed lines to clarify the difference in ylim.

      Fig 4d-3 is really the main positive finding of the paper. Can the others show an example bird that showcases this positive result, plotted as in Fig 3b? This will help the audience clearly visualize the raw data that go into the d' analyses and get a more intuitive sense of the magnitude of the positive result.

      We added example birds to figure 4, one for WNd and one for dLO.

      Please define 'late' in Fig.4 legend.

      Done

      Minor

      Define NRP In the text with an example. Is an NRP of 100 where the birds was before the withdrawal of reinforcement?

      We added the sentence to the results:

      "We quantified recovery in terms of 𝑵𝑹𝑷 to discount for differences in the amount of initial pitch shift where 𝑵𝑹𝑷 = 𝟎% corresponds to complete recovery and 𝑵𝑹𝑷 = 𝟏𝟎𝟎% corresponds pitch values before withdrawal of reinforcement (R) and thus no recovery."

      Reviewer #3 (Recommendations For The Authors):

      The use of "hierarchically lower" to refer to the flexible process is confusing to me, and possibly to many readers. Some people think of flexible, top-down processes as being _higher_ in a hierarchy. Regardless, it doesn't seem important, in this paper, to label the processes in a hierarchy, so perhaps avoid using that terminology.

      We reformulated the paragraph using ‘nested processes’ instead of hierarchical processes.

      In the statement "a seeming analogous task to re-pitching of zebra finch song, in humans, is to modify developmentally learned speech patterns", a few suggestions: it is not clear whether "re-pitching" refers to planning or feedback-dependent learning (I didn't see it introduced anywhere else). And if this means planning, then it is not clear why this would be analogous to "humans modifying developmentally learned speech patterns". As you mentioned, humans are more flexible at planning, so it seems re-pitching would _not_ be analogous (or is this referring to the less flexible modification of accents?).

      We changed the sentence to:

      "Thus, a seeming analogous task to feedback-dependent learning of zebra finch song, in humans, is to modify developmentally learned speech patterns."

    1. Reviewer #2 (Public Review):

      Summary:

      The physiology and behaviour of animals are regulated by a huge variety of neuropeptide signalling systems. In this paper, the authors focus on the neuropeptide ion transport peptide (ITP), which was first identified and named on account of its effects on the locust hindgut (Audsley et al. 1992). Using Drosophila as an experimental model, the authors have mapped the expression of three different isoforms of ITP (Figures 1, S1, and S2), all of which are encoded by the same gene.

      The authors then investigated candidate receptors for isoforms of ITP. Firstly, Drosophila orthologs of G-protein coupled receptors (GPCRs) that have been reported to act as receptors for ITPa or ITPL in the insect Bombyx mori were investigated. Importantly, the authors report that ITPa does not act as a ligand for the GPCRs TkR99D and PK2-R1 (Figure S3). Therefore, the authors investigated other putative receptors for ITPs. Informed by a previously reported finding that ITP-type peptides cause an increase in cGMP levels in cells/tissues (Dircksen, 2009, Nagai et al., 2014), the authors investigated guanylyl cyclases as candidate receptors for ITPs. In particular, the authors suggest that Gyc76C may act as an ITP receptor in Drosophila.

      Evidence that Gyc76C may be involved in mediating effects of ITP in Bombyx was first reported by Nagai et al. (2014) and here the authors present further evidence, based on a proposed concordance in the phylogenetic distribution ITP-type neuropeptides and Gyc76C (Figure 2). Having performed detailed mapping of the expression of Gyc76C in Drosophila (Figures 3, S4, S5, S6), the authors then investigated if Gyc76C knockdown affects the bioactivity of ITPa in Drosophila. The inhibitory effect of ITPa on leucokinin- and diuretic hormone-31-stimulated fluid secretion from Malpighian tubules was found to be abolished when expression of Gyc76C was knocked down in stellate cells and principal cells, respectively (Figure 4). However, as discussed below, this does not provide proof that Gyc76C directly mediates the effect of ITPa by acting as its receptor. The effect of Gyc76C knockdown on the action of ITPa could be an indirect consequence of an alteration in cGMP signalling.

      Having investigated the proposed mechanism of ITPa in Drosophila, the authors then investigated its physiological roles at a systemic level. In Figure 5 the authors present evidence that ITPa is released during desiccation and accordingly, overexpression of ITPa increases survival when animals are subjected to desiccation. Furthermore, knockdown of Gyc76C in stellate or principal cells of Malphigian tubules decreases survival when animals are subject to desiccation. However, whilst this is correlative, it does not prove that Gyc76C mediates the effects of ITPa. The authors investigated the effects of knockdown of Gyc76C in stellate or principal cells of Malphigian tubules on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. It is not clear, however, why animals over-expressing ITPa were also not tested for its effect on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. In Figures 6 and S8, the authors show the effects of Gyc76C knockdown in the female fat body on metabolism, feeding-associated behaviours and locomotor activity, which are interesting. Furthermore, the relevance of the phenotypes observed to potential in vivo actions of ITPa is explored in Figure 7. The authors conclude that "increased ITPa signaling results in phenotypes that largely mirror those seen following Gyc76C knockdown in the fat body, providing further support that ITPa mediates its effects via Gyc76C." Use of the term "largely mirror" seems inappropriate here because there are opposing effects- e.g. decreased starvation resistance in Figure 6A versus increased starvation resistance in Figure 7A. Furthermore, as discussed above, the results of these experiments do not prove that the effects of ITPa are mediated by Gyc76C because the effects reported here could be correlative, rather than causative.

      Lastly, in Figures 8, S9, and S10 the authors analyse publicly available connectomic data and single-cell transcriptomic data to identify putative inputs and outputs of ITPa-expressing neurons. These data are a valuable addition to our knowledge ITPa expressing neurons; but they do not address the core hypothesis of this paper - namely that Gyc76C acts as an ITPa receptor.

      Strengths:

      (1) The main strengths of this paper are i) the detailed analysis of the expression and actions of ITP and the phenotypic consequences of over-expression of ITPa in Drosophila. ii). the detailed analysis of the expression of Gyc76C and the phenotypic consequences of knockdown of Gyc76C expression in Drosophila.

      (2) Furthermore, the paper is generally well-written and the figures are of good quality.

      Weaknesses:

      (1) The main weakness of this paper is that the data obtained do not prove that Gyc76C acts as a receptor for ITPa. Therefore, the following statement in the abstract is premature: "Using a phylogenetic-driven approach and the ex vivo secretion assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as an elusive Drosophila ITPa receptor." Further experimental studies are needed to determine if Gyc76C acts as a receptor for ITPa. In the section of the paper headed "Limitations of the study", the authors recognise this weakness. They state "While our phylogenetic analysis, anatomical mapping, and ex vivo and in vivo functional studies all indicate that Gyc76C functions as an ITPa receptor in Drosophila, we were unable to verify that ITPa directly binds to Gyc76C. This was largely due to the lack of a robust and sensitive reporter system to monitor mGC activation." It is not clear what the authors mean by "the lack of a robust and sensitive reporter system to monitor mGC activation". The discovery of mGCs as receptors for ANP in mammals was dependent on the use of assays that measure GC activity in cells (e.g. by measuring cGMP levels in cells). Furthermore, more recently cGMP reporters have been developed. The use of such assays is needed here to investigate directly whether Gyc76C acts as a receptor for ITPa. In summary, insufficient evidence has been obtained to conclude that Gyc76C acts as a receptor for ITPa. Therefore, I think there are two ways forward, either:<br /> (a) The authors obtain additional biochemical evidence that ITPa is a ligand for Gyc76C.<br /> or<br /> (b) The authors substantially revise the conclusions of the paper (in the title, abstract, and throughout the paper) to state that Gyc76C MAY act as a receptor for ITPa, but that additional experiments are needed to prove this.

      (2) The authors state in the abstract that a phylogenetic-driven approach led to their identification of Gyc76C as a candidate receptor for ITPa. However, there are weaknesses in this claim. Firstly, because the hypothesis that Gyc76C may be involved in mediating effects of ITPa was first proposed ten years ago by Nagai et al. 2014, so this surely was the primary basis for investigating this protein. Nevertheless, investigating if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins is a valuable approach to addressing this issue. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. Thus, are there protostome species in which both ITP-type and Gyc76C-type genes/proteins have been lost? Furthermore, are there any protostome species in which an ITP-type gene is present but an Gyc76C-type gene is absent, or vice versa? If there are protostome species in which an ITP-type gene is present but a Gyc76C-type gene is absent or vice versa, this would argue against Gyc76C being a receptor for ITPa. In this regard, it is noteworthy that in Figure 2A there are two ITP-type precursors in C. elegans, but there are no Gyc76C-type proteins shown in the tree in Figure 2B. Thus, what is needed is a more detailed analysis of protostomes to investigate if there really is correspondence in the phylogenetic distribution of Gyc76C-type and ITP-type genes at the species level.

      (3) The manuscript would benefit from a more comprehensive overview and discussion of published literature on Gyc76C in Drosophila, both as a basis for this study and for interpretation of the findings of this study.

    1. Author response:

      We thank eLife and the reviewers for the thoughtful summary and valuable review of our manuscript. We largely agree with the summary and review and have provided our responses to the comments below. We believe BADGER is a significant new tool for identifying associated risk factors for complex diseases, and the associations we observed in the analysis provide insights into the genetic basis of Alzheimer's disease.

      Reviewer #1 (Public Review):

      The major aim of the paper was a method for determining genetic associations between two traits using common variants tested in genome-wide association studies. The work includes a software implementation and application of their approach. The results of the application of their method generally agree with what others have seen using similar AD and UKB data.

      The paper has several distinct portions. The first is a method for testing genetic associations between two or more traits using genome-wide association tests statistics. The second is a python implementation of the method. The last portion is the results of their method using GWAS from AD and UK Biobank.

      We thank the reviewer for the conclusion and positive comments.

      Regarding the method, it seems like it has similarities to LDSC, and it is not clear how it differs from LDSC or other similar methods. The implementation of the method used python 2.7 (or at least was reportedly tested using that version) that was retired in 2020. The implementation was committed between Wed Oct 3 15:21:49 2018 to Mon Jan 28 09:18:09 2019 using data that existed at the time so it was a bit surprising it used python 2.7 since it was initially going to be set for end-of-life in 2015. Anyway, trying to run the package resulted in unmet dependency errors, which I think are related to an internal package not getting installed. I would expect that published software could be installed using standard tooling for the language, and, ideally, software should have automated testing of key portions.

      We thank the reviewer for their comments. To clarify, the primary difference between our proposed method, BADGERS, and LDSC lies in their respective objectives and applications. LDSC is designed to estimate heritability and genetic correlations between traits by utilizing GWAS summary statistics, thereby aiding in the elucidation of the genetic architecture of complex traits and diseases. Conversely, BADGERS is specifically developed to explore causal relationships between risk factors, such as biomarkers, and diseases of interest. It employs genetic variants as variables to deduce causality, thereby addressing the challenges of confounding and reverse causation that are common in observational studies. Although BADGERS utilizes the LD reference panel derived from LDSC, the LD reference panel is used to obtain the predicted trait expression. The ultimate goal is to focus on linking biobank traits with Alzheimer’s disease and building causal relationships instead of identifying genetic architecture.

      Regarding the technical aspects mentioned, we acknowledge the concerns about the use of Python 2.7 and the issues encountered during the package installation. We are in the process of updating the software to ensure compatibility with current versions of Python and to enhance the installation process with standard tooling and automated testing for a more user-friendly experience. We have provided tests for each portion of the software so the user can test if the software is working properly.

      Regarding the main results, they find what has largely been shown by others using the same data or similar data, which add prima facie validity to the work The portions of the work dealing with AD subgroups, pathology, biomarkers, and cognitive traits of interest. I was puzzled why the authors suggested surprise regarding parental history and high cholesterol not associated with MCI or cognitive composite scores since the this would seem like the likely fallout of selection of the WRAP cohort. The discussion paragraph that started "What's more, environmental factors may play a big role in the identified associations." confused me. I think what the authors are referring to are how selection, especially in a biobank dataset, can induce correlations, which is not what I think of as an environmental effect.

      We thank the reviewer very much for their comment. We're glad that our findings align with existing research using similar data, increasing the validity of our work and the proposed BADGER algorithm. Your point about the lack of association between parental history, high cholesterol, and mild cognitive impairment (MCI) or cognitive composite scores in the WRAP cohort is well-taken. We agree that the selection criteria of the WRAP cohort may influence these findings, as it consists of individuals with a specific risk profile for Alzheimer's disease. This selection could indeed mitigate the observed association between these factors and cognitive outcomes, which we initially found surprising.

      Regarding the environmental factors, we appreciate your clarification and understand the confusion. Our intention was to discuss the potential for selection bias and confounding factors in biobank datasets for the identified associations, which might not necessarily be direct environmental effects.

      Overall, the work has merit, but I am left without a clear impression of the improvement in the approach over similar methods. Likewise, the results are interesting, but similar findings are described with the data that was used in the study, which are over 5 years old at the time of this review.

      We thank the reviewer a lot for their endorsement of the BADGER framework. We believe that our method, BADGER, improves on existing approaches by effectively linking genetic data with the detailed phenotypic information in biobanks and large disease GWAS. This enhances our ability to detect associations without needing individual-level data, offering clearer insights while reducing issues like reverse causality and confounding factors.

      Even though the IGAP dataset is over five years old, it remains one of the largest publicly available datasets for Alzheimer’s Disease. Likewise, the UK biobank is one of the largest publicly available human traits datasets, which researchers continue to use. These datasets' continued utility demonstrates their value in the research community. Additionally, the versatility of the BADGER framework makes it suitable for future research investigating the relationship between human traits and various diseases using different datasets.

      Reviewer #2 (Public Review):

      Summary:

      Yan, Hu, and colleagues introduce BADGERS, a new method for biobank-wide scanning to find associations between a phenotype of interest, and the genetic component of a battery of candidate phenotypes. Briefly, BADGERS capitalizes on publicly available weights of genetic variants for a myriad of traits to estimate polygenic risk scores for each trait, and then identify associations with the trait of interest. Of note, the method works using summary statistics for the trait of interest, which is especially beneficial for running in population-based cohorts that are not enriched for any particular phenotype (ie. with few actual cases of the phenotype of interest).

      Here, they apply BADGERS on Alzheimer's disease (AD) as the trait of interest, and a battery of circa 2,000 phenotypes with publicly available precalculated genome-wide summary statistics from the UK Biobank. They run it on two AD cohorts, to discover at least 14 significant associations between AD and traits. These include expected associations with dementia, cognition (educational attainment), and socioeconomic status-related phenotypes. Through multivariate modelling, they distinguish between (1) clearly independent components associated with AD, from (2) by-product associations that are inflated in the original bivariate analysis. Analyses stratified according to APOE inclusion show that this region does not seem to play a role in the association of some of the identified phenotypes. Of note, they observe overlap but significant differences in the associations identified with BADGERS and other Mendelian randomization (MR), hinting at BADGERS being more powerful than classical top variant-based MR approaches. They then extend BADGERS to other AD-related phenotypes, which serves to refine the hypotheses about the underlying mechanisms accounting for the genetic correlation patterns originally identified for AD. Finally, they run BADGERS on a pre-clinical cohort with mild cognitive impairment. They observe important differences in the association patterns, suggesting that this preclinical phenotype (at least in this cohort) has a different genetic architecture than general AD.

      We thank the reviewer a lot for the conclusion and positive comments.

      Strengths:

      BADGERS is an interesting new addition to a stream of attempts to "squeeze" biobank data beyond pure association studies for diagnosis. Increasingly available biobank cohorts do not usually focus on specific diseases. However, they tend to be data-rich, opening for deep explorations that can be useful to refine our knowledge of the latent factors that lead to diagnosis. Indeed, the possibility of running genetic correlation studies in specific sub-settings of interest (e.g. preclinical cohorts) is arguably the most interesting aspect of BADGERS. Classical methods like LDSC or two-sample MR capitalize on publicly available summary statistics from large cohorts, or having access to individual genotype data of large cohorts to ensure statistical power. Seemingly, BADGERS provides a balanced opportunity to dissect the correlation between traits of interest in settings with small sample size in which other methods do not work well.

      We thank the reviewer a lot for the conclusion and positive comments.

      Weaknesses:

      However, the increased statistical power is just hinted, and for instance, they do not explore if LDSC would have identified these associations. Although I suspect that is the case, this evidence is important to ensure that the abovementioned balance is right. Finally, as discussed by the authors, the reliance on polygenic risk scoring necessarily undermines the causality evidence gained through BADGERS. In this sense, BADGERS provides an alternative to strict instrumental-variable based analysis, which can be particularly useful to generate new mechanistic hypotheses.

      We thank the reviewer a lot for the comments. We understand the importance of comparing BADGER to other methods. The comparison with LDSC, while not directly relevant to BADGER’s causal inference aims, is indeed an interesting aspect to consider for future studies. In this paper, we focused on comparing BADGER with Mendelian Randomization (MR), which shares its causal inference objective.

      As a result, BADGERS identified a total of 48 traits that reached Bonferroni-corrected statistical significance. In contrast, MR-IVW only identified nine traits with Bonferroni-corrected statistical significance. Among these nine traits, seven were also identified by BADGERS. This demonstrates that BADGER holds higher power in detecting causal relationships.

      Regarding the use of polygenic risk scoring, we agree that it holds challenges in directly inferring causality. While BADGERS offers an innovative way to explore genetic correlations and can help generate new hypotheses about disease mechanisms, it does not replace the causal inferences that can be drawn from instrumental-variable-based analyses. Instead, it should be viewed as a complementary tool that can illuminate potential genetic relationships and guide further causal investigations.

      In summary, after 15 years of focus on diagnosis that would require having individual access to large patient cohorts, BADGERS can become an excellent tool to dig into trait heterogeneity, especially if it turns out to be more powerful than other available methodologies.

      We thank the reviewer a lot for the conclusion and positive comments.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable contribution to cardiac arrhythmia research by demonstrating long noncoding RNA Dachshund homolog 1 (lncDACH1) tunes sodium channel functional expression and affects cardiac action potential conduction and rhythms. Whereas the evidence for functional impact of lncDACH1 expression on cardiac sodium currents and rhythms is convincing, biochemical experiments addressing the mechanism of changes in sodium channel expression and subcellular localization are incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors show that a long-non coding RNA lncDACH1 inhibits sodium currents in cardiomyocytes by binding to and altering the localization of dystrophin. The authors use a number of methodologies to demonstrate that lncDACH1 binds to dystrophin and disrupts its localization to the membrane, which in turn downregulates NaV1.5 currents. Knockdown of lncDACH1 upregulates NaV1.5 currents. Furthermore, in heart failure, lncDACH1 is shown to be upregulated which suggests that this mechanism may have pathophysiolgoical relevance.

      Strengths:

      (1) This study presents a novel mechanism of Na channel regulation which may be pathophysiologically important.

      (2) The experiments are comprehensive and systematically evaluate the physiological importance of lncDACH1.

      Weaknesses:

      (1). What is indicated by the cytoplasmic level of NaV1.5, a transmembrane protein? The methods do not provide details regarding how this was determined. Do you authors means NaV1.5 retained in various intracellular organelles?

      Thank you for the good suggestion. Our study showed that Nav1.5 was transferred to the cell membrane by the scaffold protein Dystropin in response to the regulation of LncDACH1, but not all Nav1.5 in the cytoplasm was transferred to the cell membrane. Therefore, the cytoplasmic level of Nav1.5 represents the Nav1.5 protein that is not transferred to the cell membrane but stays in the cytoplasm and various organelles within the cytoplasm when Nav1.5 is regulated by LncDACH1

      (2) What is the negative control in Fig. 2b, Fig. 4b, Fig. 6e, Fig. 7c? The maximum current amplitude in these seem quite different. -40 pA/pF in some, -30 pA/pF in others and this value seems to be different than in CMs from WT mice (<-20 pA/pF). Is there an explanation for what causes this variability between experiments and/or increase with transfection of the negative control? This is important since the effect of lncDACH1 is less than 50% reduction and these could fall in the range depending on the amplitude of the negative control.

      Thank you for the insightful comment. The negative control in Fig. 2b, Fig. 4b, Fig. 6e are primary cardiomyocytes transfected with empty plasmids. The negative control in Fig.7c are cardiomyocytes of wild-type mice injected with control virus. When we prepare cells before the patch-clamp experiments, the transfection efficiency of the transfection reagent used in different batches of cells, as well as the different cell sizes, ultimately lead to differences in CMS.

      (3) NaV1.5 staining in Fig. 1E is difficult to visualize and to separate from lncDACH1. Is it possible to pseudocolor differently so that all three channels can be visualized/distinguished more robustly?

      Thank you for the good suggestion. We have re-added color to the original image to distinguish between the three channels.

      Author response image 1.

      (4) The authors use shRNA to knockdown lncDACH1 levels. It would be helpful to have a scrambled ShRNA control.

      Thank you for the insightful comment. The control group we used was actually the scrambled shRNA, but we labeled the control group as NC in the article, maybe this has caused you to misunderstand.

      (5) Is there any measurement on the baseline levels of LncDACH1 in wild-type mice? It seems quite low and yet is a substantial increase in NaV1.5 currents upon knocking down LncDACH1. By comparison, the level of LncDACH1 seems to be massively upregulated in TAC models. Have the authors measured NaV1.5 currents in these cells? Furthermore, does LncDACH1 knockdown evoke a larger increase in NaV1.5 currents?

      Thank you for the insightful comment.

      (1).The baseline protein levels of LncDACH1 in wild-type mice and LncDACH1-CKO mice has been verified in a previously published article(Figure 3).(Hypertension. 2019;74:00-00. DOI: 10.1161/HYPERTENSIONAHA.119.12998.)

      Author response image 2.

      (2). We did not measure the Nav1.5 currents in cardiomyocytes of the TAC model mice in this artical, but in another published paper, we found that the Nav1.5 current in the TAC model mice was remarkably reduced than that in wild-type mice(Figure 4).(Gene Ther. 2023 Feb;30(1-2):142-149. DOI: 10.1038/s41434-022-00348-z)

      Author response image 3.

      This is consistent with our results in this artical, and our results show that LncDACH1 levels are significantly upregulated in the TAC model, then in the LncDACH1-TG group, the Nav1.5 current is significantly reduced after the LncDACH1 upregulation(Figure 3).

      Author response image 4.

      (6) What do error bars denote in all bar graphs, and also in the current voltage relationships?

      Thank you for the good comment. All the error bars represent the mean ± SEM. They represent the fluctuation of all individuals of a set of data based on the average value of this set of data, that is, the dispersion of a set of data.

      Reviewer #2 (Public Review):

      This manuscript by Xue et al. describes the effects of a long noncoding RNA, lncDACH1, on the localization of Nav channel expression, the magnitude of INa, and arrhythmia susceptibility in the mouse heart. Because lncDACH1 was previously reported to bind and disrupt membrane expression of dystrophin, which in turn is required for proper Nav1.5 localization, much of the findings are inferred through the lens of dystrophin alterations.

      The results report that cardiomyocyte-specific transgenic overexpression of lncDACH1 reduces INa in isolated cardiomyocytes; measurements in whole heart show a corresponding reduction in conduction velocity and enhanced susceptibility to arrhythmia. The effect on INa was confirmed in isolated WT mouse cardiomyocytes infected with a lncDACH1 adenoviral construct. Importantly, reducing lncDACH1 expression via either a cardiomyocyte-specific knockout or using shRNA had the opposite effect: INa was increased in isolated cells, as was conduction velocity in heart. Experiments were also conducted with a fragment of lnDACH1 identified by its conservation with other mammalian species. Overexpression of this fragment resulted in reduced INa and greater proarrhythmic behavior. Alteration of expression was confirmed by qPCR.

      The mechanism by which lnDACH1 exerts its effects on INa was explored by measuring protein levels from cell fractions and immunofluorescence localization in cells. In general, overexpression was reported to reduce Nav1.5 and dystrophin levels and knockout or knockdown increased them.

      Thank you for summarizing our work and thank you very much for your appreciation on our work.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report the first evidence of Nav1.5 regulation by a long noncoding RNA, LncRNA-DACH1, and suggest its implication in the reduction in sodium current observed in heart failure. Since no direct interaction is observed between Nav1.5 and the LncRNA, they propose that the regulation is via dystrophin and targeting of Nav1.5 to the plasma membrane.

      Strengths:

      (1) First evidence of Nav1.5 regulation by a long noncoding RNA.

      (2) Implication of LncRNA-DACH1 in heart failure and mechanisms of arrhythmias.

      (3) Demonstration of LncRNA-DACH1 binding to dystrophin.

      (4) Potential rescuing of dystrophin and Nav1.5 strategy.

      Thank you very much for your appreciation on our work.

      Weaknesses:

      (1) Main concern is that the authors do not provide evidence of how LncRNA-DACH1 regulates Nav1.5 protein level. The decrease in total Nav1.5 protein by about 50% seems to be the main consequence of the LncRNA on Nav1.5, but no mechanistic information is provided as to how this occurs.

      Thank you for the insightful comment.

      (1) The mechanism of the whole article is as mentioned in the discussion at the end of the article: LncDACH1 binds to dystrophin and thus inhibits membrane trafficking of Nav1.5, Dystrophin is a well-characterized Nav1.5 partner protein. It indirectly interacts with Nav1.5 via syntrophin, which binds with the C-terminus of dystrophin and with the SIV motif on the C-terminus of Nav1.5(Circ Res. 2006;99:407-414. doi: 10.1161/01.RES.0000237466.13252.5e)(Circulation.2014;130:147-160.doi:10.1161/CIRCULATIONAHA.113.007852).

      And we performed pulldown and RNA immunoprecipitation experiments to verify it (Figure 1).

      Author response image 5.

      2) Then we found that overexpression of lncDACH1 increased the ubiquitination of Nav1.5, which explains the downregulation of total Nav1.5 protein (Online Supplementary Figure 12).

      Author response image 6.

      3). Lastly,we found that lncDACH1 failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1( Supplementary Fig. 1).

      Author response image 7.

      These data indicated that lncDACH does not interact with Nav1.5 directly. It participates in the regulation of Nav1.5 by binding to dystrophin.Cytoplasmic Nav1.5 that failed to target on plasma membrane may be quickly distinguished and then degraded by these ubiquitination enzymes.

      (2) The fact that the total Nav1.5 protein is reduced by 50% which is similar to the reduction in the membrane reduction questions the main conclusion of the authors implicating dystrophin in the reduced Nav1.5 targeting. The reduction in membrane Nav1.5 could simply be due to the reduction in total protein.

      Thank you for the insightful comment. We do not rule out the possibility that the reduction in membrane Nav1.5 maybe be due to the reduction in total protein, but we don't think this is the main mechanism. Our data indicates that the membrane and total protein levels of Nav1.5 were reduced by 50%. However, the cytoplasmic Nav1.5 increased in the hearts of lncDACH1-TG mice than WT controls rather than reduced like membrane and total protein(Figure 1).

      Author response image 8.

      Therefore, we think the mian mechanism of the whole article is as mentioned in the discussion at the end of the article: LncDACH1 binds to dystrophin and thus inhibits membrane trafficking of Nav1.5.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) In Fig. 6E the error bars are only in one direction for cF-lncDACH1. It seems that this error overlaps for NC and cF-lncDACH1 at several voltages, yet it is marked as statistically significant. Also in Fig. 7C, what statistical test was used? Do the authors account for multiple comparisons?

      Thank you for the insightful comment.

      (1) We have recalculated the two sets of data and confirmed that there are indeed statistically significant between the two sets of data for NC and cF-lncDACH1 at In Fig. 6E, The overlaps in the picture may only be visually apparent.

      (2) The data in Fig. 7C are expressed as mean ± SEM. Statistical analysis was performed using unpaired Student’s t test or One-Way Analysis of Variance (ANOVA) followed by Tukey’s post-hoc analysis.

      (2) line 57, "The Western blot" remove "The"

      Sorry for the mistake. We have corrected it.

      (3) line 61, "The opposite data were collected" It is unclear what is meant by opposite.

      Sorry for the mistake. We have corrected it.

      (4) Lines 137-140. This sentence is complex, I would simplify as two sentences.

      Sorry for the mistake. We have corrected it.

      (5) Line 150, "We firstly validated" should be "we first validated"

      Sorry for the mistake. We have corrected it.

      (6) Line 181, "Consistently, the membrane" Is this statement meant to indicate that the experiments yielded a consistent results or that this statement is consistent with the previous one? In either case, this sentence should be reworded for clarification.

      Sorry for the mistake. We have corrected it.

      (7) Line 223, "In consistent, the ex vivo" I am not sure what In consistent means here.

      Thank you for the good suggestion. We mean that the results of ex vivo is consistent with the results of in vivo. We have corrected it to make it clearer.

      (8) Line 285. "a bunch of studies" could be rephrased as "multiple studies"

      Sorry for the mistake. We have corrected it.

      (9) Line 299 "produced no influence" Do you mean produced no change?

      Thank you for the good suggestion.As you put it,we mean it produced no change.

      (10) Line 325 "is to interact with the molecules" no need for "the molecules

      Sorry for the mistake. We have corrected it.

      (11) lines 332-335. This sentence is very confusing.

      Thank you for the insightful comment. We have corrected it.

      (12) Lines 341-342. It is unnecessary to claim primacy here.

      Thank you for the good suggestion. We have removed this sentence.

      (13) Line 373. "Sodium channel remodeling is commonly occured in" perhaps rephrase as occurs commonly

      Thank you for the insightful comment. We have corrected it.

      Reviewer #2 (Recommendations For The Authors):

      Critique

      (1) Aside from some issues with presentation noted below, these data provide convincing evidence of a link between lncDACH1 and Na channel function. The identification of a lncDACH1 segment conserved among mammalian species is compelling. The observation that lncDACH1 is increased in a heart failure model and provides a plausible hypothesis for disease mechanism.

      Thank you very much for your appreciation on our work.

      (2) Has a causal link between dystrophin and Na channel surface expression has been made, or is it an argument based on correlation? Is it possible to rule out a direct effect of lncDACH1 on Na channel expression? A bit more discussion of the limitations of the study would help here.

      Thank you for the insightful comment.

      (1). Dystrophin is a well-characterized Nav1.5 partner protein. It indirectly interacts with Nav1.5 via syntrophin, which binds with the C-terminus of dystrophin and with the SIV motif on the C-terminus of Nav1.5(Circ Res. 2006;99:407-414. doi: 10.1161/01.RES.0000237466.13252.5e)(Circulation.2014;130:147-160.doi:10.1161/CIRCULATIONAHA.113.007852).

      Author response image 9.

      (2).we performed pulldown and RNA immunoprecipitation experiments. The data showed that lncDACH1 failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1 (Online Supplementary Figure 11). These data indicated that lncDACH does not interact with Nav1.5 directly. ( Supplementary Fig. 1)

      Author response image 10.

      (3) What normalization procedures were used for qPCR quantification? I could not find these.

      Thank you for the good suggestion.The expression levels of mRNA were calculated using the comparative cycle threshold (Ct) method (2−ΔΔCt). Each data point was then normalized to ACTIN as an internal control in each sample. The final results are expressed as fold changes by normalizing the data to the values from control subjects. We have added the normalization procedures in the methods section of the article.

      (4) In general, I found the IF to be unconvincing - first, because the reported effects were not very apparent to me, but more importantly, because only exemplars were shown without quantification of a larger sample size.

      Thank you for the good suggestion. Accordingly, we quantified the immunostaining data. The data have been included in Supplementary Figure 2- 16.The sample size is labeled in the caption.

      Author response image 11.

      Fluorescence intensity of lncDACH1, dystrophin and Nav1.5 in isolated cardiomyocytes of lncDACH1-TG mice. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=9 for dys. N=8 for Nav1.5. P<0.05 versus WT group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=9. P<0.05 versus WT group. e, Fluorescence in situ hybridization (FISH) images of LncDACH1. N=10. *P<0.05 versus WT group. P-values were determined by unpaired t test.

      Author response image 12.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocyte overexpressing lncDACH1. a,b, Membrane levels of dystrophin and Nav1.5. N=9. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=9 for dys. N=12 for Nav1.5. P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 13.

      Fluorescence intensity of lncDACH1, dystrophin and Nav1.5 in isolated cardiomyocytes of lncDACH1-cKO mice. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=12 for dys. N=8 for Nav1.5. P<0.05 versus WT group. c,d, Distribution of cytoplasm levels of dystrophin and Nav1.5. N=12. P<0.05 versus WT group. e, Fluorescence in situ hybridization (FISH) images of LncDACH1 expression. N=8. *P<0.05 versus WT group. P-values were determined by unpaired t test.

      Author response image 14.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocytes after knocking down of lncDACH1. a,b, Distribution of membrane levels of dystrophin and Nav1.5. N=11 for dys. N=8 for Nav1.5.P<0.05 versus NC group. c,d, Distribution of cytoplasm levels of dystrophin and Nav1.5. N=12 for dys. N=9 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 15.

      Fluorescence intensity of dystrophin and Nav1.5 in isolated cardiomyocytes overexpressing cF-lncDACH1. a,b, Membrane levels of dystrophin (dys) and Nav1.5. N=9 for dys. N=7 for Nav1.5. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=6 for dys. N=7 for Nav1.5. P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 16.

      Fluorescence intensity of dystrophin and Nav1.5 in cultured neonatal cardiomyocytes overexpressing cF-lncDACH1. a,b, Membrane levels of dystrophin and Nav1.5. N=10 for dys. N=11 for Nav1.5. P<0.05 versus NC group. c,d, Cytoplasm levels of dystrophin and Nav1.5. N=7 for dys. N=6 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      Author response image 17.

      Fluorescence intensity of Nav1.5 in human iPS differentiated cardiomyocytes overexpressing cF-lncDACH1. a, Membrane levels of Nav1.5. N=8 for Nav1.5. P<0.05 versus NC group. b, Cytoplasm levels of Nav1.5. N=10 for Nav1.5.P<0.05 versus NC group. P-values were determined by unpaired t test.

      (5) More information on how the fractionation kit works would be helpful. How are membrane v. cytoplasm fractions identified?

      a. I presume the ER is part of the membrane fraction? When Nav1.5 is found in the cytoplasmic fraction, what subcompartment is it in - the proteasome?

      b. In the middle panel of A - is the dystrophin signal visible on the WB for WT? I assume the selected exemplar is the best of the blots and so this raises concerns. Much is riding on the confidence with which the fractions report "membrane" v "cytoplasm."

      Thank you for the insightful comment.

      (1). How the fractionation kit works:

      The kit utilizes centrifuge column technology to obtain plasma membrane structures with native activity and minimal cross-contamination with organelles without the need for an ultracentrifuge and can be used for a variety of downstream assays. Separation principle: cells/tissues are sensitized by Buffer A, the cells pass through the centrifuge column under the action of 16000Xg centrifugation, the cell membrane is cut to make the cell rupture, and then the four components of nucleus, cytoplasm, organelle and plasma membrane will be obtained sequentially through differential centrifugation and density centrifugation, which can be used for downstream detection.

      Author response image 18.

      (2). How are membrane v. cytoplasm fractions identified:

      The membrane proteins and cytosolic proteins isolated by the kit, and then the internal controls we chose when performing the western blot experiment were :membrane protein---N-cadherin cytosolic protein---β-Actin

      Most importantly, when we incubate either the primary antibody of N-cadherin with the PVDF membrane of the cytosolic protein, or the primary antibody of the cytosolic control β-Actin with the PVDF membrane of the membrane protein, the protein bands cannot be obtained in the scan results

      Author response image 19.

      (6) More detail in Results, figures, and figure legends will assist the reader.

      a. In Fig. 5, it would be helpful to label sinus rhythm vs. arrhythmia segments.

      Thank you for the good suggestion. We've marked Sinus Rhythm and Arrhythmia segments with arrows

      Author response image 20.

      b. Please explain in the figure legend what the red bars in 5A are

      Thank you for the insightful comment. We've added the explanation to the figure legend .The red lines in the ECG traces indicate VT duration.

      c. In 5C, what the durations pertain to.

      Thank you for the good suggestion. 720ms-760ms refers to the duration of one action potential, with 720ms being the peak of one action potential and 760ms being the peak of another action potential.The interval duration is not fixed, in this artical, we use 10ms as an interval to count the phase singularities from the Consecutive phase maps. Because the shorter the interval duration, the larger the sample size and the more convincing the data.

      d. In the text, please define "breaking points" and explain what the physiological underpinning is. Define "phase singularity."

      Thank you for the insightful comment. Cardiac excitation can be viewed as an electrical wave, with a wavefront corresponding to the action potential upstroke (phase 0) and a waveback corresponding to rapid repolarization (phase 3). Normally, Under normal circumstances, cardiac conduction is composed of a sequence of well-ordered action potentials, and in the results of optical mapping experiments, different colors represent different phases.when a wave propagates through cardiac tissue, wavefront and waveback never touch.when arrhythmias occur in the heart, due to factors such as reenfrant phenomenon, the activation contour will meet the refractory contour and waves will break up, initiating a newly spiral reentry. Corresponding to the optical mapping result graph, different colors representing different time phases (including depolarization and repolarization) come together to form a vortex, and the center of the vortex is defined as the phase singularity.

      (7) In reflecting on why enhanced INa is not proarrhythmic, it is noted that the kinetics are not altered. I agree that is key, but perhaps the consequence could be better articulated. Because lncDACH1 does not alter Nav1.5 gating, the late Na current may not be enhanced to the same effect as observed with LQT gain-of-function Nav1.5 mutations, in which APD prolongation is attributed to gating defects that increase late Na current.

      Thank you for the good suggestion. Your explanation is very brilliant and important for this article. We have revised the discussion section of the article and added these explanations to it.

      Reviewer #3 (Recommendations For The Authors):

      (1) Experiments to specifically address the reduction in total Nav1.5 protein should be included.

      Thank you for the insightful comment. We examined the ubiquitination of Nav1.5. We found that overexpression of lncDACH1 increased the ubiquitination of Nav1.5, which explains the downregulation of total Nav1.5 protein (Online Supplementary Figure 12).

      Author response image 21.

      (2) Experiments to convincingly demonstrate that LncRNA-DACH1 regulates Nav1.5 targeting via dystrophin are missing. As it is, total reduction in Nav1.5 seems to be the explanation as to why there is a decrease in membrane Nav1.5.

      Thank you for the insightful comment. we performed pulldown and RNA immunoprecipitation experiments. The data showed that lncDACH1 can pulldown dystrophin(Figure 1),but failed to pulldown Nav1.5 and anti-Nav1.5 did not precipitate lncDACH1( Supplementary Fig. 1). These data indicated that lncDACH does not interact with Nav1.5 directly. It participates in the regulation of Nav1.5 by binding to dystrophin.

      Author response image 22.

    1. Since the main goal of this study was to capture the experiences of Asian American girls, I did not include most of the other Basement Group students in my research. There may be gender, ethnic, and/or racial differences that are not reflected in this study. As an exception, I talked with Savannah and Meli, two Salvadoran immigrant girls who were close friends with the Asian American girls and part of the core members of the Basement Community. Their perspectives helped deepen my understanding of the experiences of the main participants

      I think step-by-step studies that control variables are important. It is precisely because of the various details of the research objects that we pay attention to that determine the rigor and objectivity of our research. We can also count them on a large scale in the future. thereby completing the objectivity of the entire study

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The authors' findings are primarily rooted in a series of well-conducted in vitro experiments using two CML cell lines, K562 and MEG-01. While the findings are interesting and novel, further work to corroborate these findings in primary CML samples would have greatly strengthened the potential real-world relevance of these discoveries. The authors appear to have some PBMCs from primary CML patients and a BM sample from a Ph+ ALL in which they performed western blot analyses (Fig 1). Couldn't these samples have been used to at least confirm some of the key discoveries? For example, the neddylation of BCR-ABL, or; sensitivity of primary leukemic cells to RAPSYN knockdown, and/or; phosphorylation of RAPSYN by SRC?

      We agree with your points and really appreciate your comments. To demonstrate the clinical relevance, we have conducted a series of experiments to address your concerns.

      (1) after a thorough optimization on the transduction process, we have managed to show that shRNA-mediated gene silencing of RAPSYN impaired the growth of primary CML samples. These additional data are presented as Figure 1D in the revised manuscript with its corresponding figure legend and description, lines 136-141.

      (2) we have invested tremendous time and effort to deal with “key discoveries” regardless of the almost impossible task with a great technical difficulty. With 5 mL (ethical approval) of PBMCs on hands, we have finally managed to confirm BCR-ABL neddylation by IP from two newly acquired CML patients. The results are as presented in Figure 2F in the revised manuscript with its corresponding figure legend and description, lines 186-187.

      (2) The authors initially interrogated a fairly dated (circa 2009) microarray-based primary dataset to show that the increase in RAPSYN is primarily a post-transcriptional event, as mRNA levels are not different between healthy and CML samples. It would be interesting to see whether differences might be more readily seen in more recent RNA-seq datasets from CML patients, given the well-known differences in sensitivity between the two platforms. Additionally, I wonder if there would be transcriptional signatures of increased NEDDylation (or RAPSYN-induced NEDDylation) that could be interrogated in primary samples? Furthermore, there are proteomics datasets of CML cells made resistant to TKIs (through in vitro selection experiments) that could be interrogated for independent validation of the authors' discoveries. For example: from K562 cells, PMID: 30730747 or PMID: 34922009).

      Thank you very much for your constructive comments. Based on your suggestion, we have 1) analyzed mRNA level of RAPSYN in RNA-seq datasets GSE13159 (2009), GSE138883 (2020) and GSE140385 (2020), indicating no difference between CML patients and healthy donors. We have included the results in Figure1-figure supplementary 1A and in the revised manuscript (lines 123-127); 2) examined the RNA levels of RAPSYN-related neddylation enzymes, including E1 (NAE1), E2 (UBE2M), NEDD8 and NEDP1 in these databases, and no significant differences of these neddylation-related genes were found between CML patients and healthy donors as well (Supplementary Figure 2C, lines 168-172).

      We have also analyzed the proteomics datasets from PMID: 30730747 and PMID: 34922009 according to your suggestion. Unfortunately, no information on RAPSYN expression is available in these datasets. To avoid potential negligence, we have examined all CML-related proteomics datasets from 2002 to 2024, still resulting in no information about protein expression of RAPSYN. Consequently, our finding on the higher expression of RAPSYN in the PBMCs of Ph+ patients in this study appears to be an observation for the first time. And we believe that our results should be more clinically relevant than those, if any, from the cells by in vitro selection.

      Reviewer #2 (Public Review):

      Most of the conclusions drawn in this paper are well supported by data, but some aspects of the data need to be clarified and extended:

      (1) The authors propose that targeting RAPSYN in Ph+ leukemia could have a high therapeutic index, suggesting that inhibition of RAPSYN may lead to cytotoxicity in Ph+ leukemia with high specificity and minimal side effects. To substantiate this assertion, the authors should investigate the impact on cell viability upon RAPSYN knockdown in non-Ph leukemic cell lines or HS-5 cells (similar to Figure 1C), despite their lower RAPSYN protein levels.

      We appreciate your valuable comments. When we used shRNA to knockdown the expression of RAPSYN in HS-5 cells, it did not affect the cell growth of HS-5 cells. We have included the data in Figure 1C, modified its figure legend, and added corresponding description, lines 136-141.

      (2) The authors intriguingly show that the protein levels of RAPSYN are significantly enriched in Ph+ patient samples and cell lines (Figure 1A, B), even though the mRNA levels remain unchanged (Supplementary Figure 1 A-C). This observation merits a clear explanation in the context of the presented results. The data in the manuscript does imply a feedforward loop mechanism (Figure 7), where BCR-ABL activates SRC, which subsequently stabilizes RAPSYN, which in turn helps protect BCR-ABL from c-CBL-mediated degradation. If this is the working hypothesis, it would be beneficial for the reader to see supporting evidence.

      Thank you very much for pointing out the issue. We have realized the inappropriateness of Figure 7, which was originally placed as a summarizing figure. To avoid potential confusion and misleading, this figure has been deleted, which does not affect the results and conclusions of this study. In addition, the differences on mRNA levels and protein expressions have been responded to Reviewer #1.

      (3) The authors present compelling evidence to suggest that RAPSYN may possess direct NEDD8-ligase activity on BCR-ABL. To strengthen this claim, it may be valuable to conduct further assays involving a ligase-deficient mutant, such as C366A, beyond its use in Figure 2J. Incorporating this mutant into the in vitro assay illustrated in Figure 2K, for instance, could offer substantial validation for the claim. In addition, showing whether the ligase-deficient mutant is capable of phenocopying the phosphorylation-mutant Y336F, as showcased in Figures 5E, F, and 6D, F, would be beneficial.

      We are grateful to your comments. In the manuscript, we have provided sufficient data to support the direct neddylation of BCR-ABL by RAPSYN, as you commented “The authors present compelling evidence to suggest that RAPSYN may possess direct NEDD8-ligase activity on BCR-ABL.”. Cys366 was previously demonstrated as the catalytic residue essential for E3 activity of RAPSYN (Li et al. 2016, PMID: 27839998), and the phosphorylation at Phe336 was thoroughly verified by site-directed mutagenesis and the treatments of SRC-specific inhibitor saracatinib in present cellular experiments. Therefore, while we fully respect your opinions, we do not think it would be necessary to perform tedious in vitro reactions for expected negative results, which was the reason for us not to conduct enzymatic reactions with known inactive mutants, such as C366A and Y336F, in the first place.

      (4) The observations presented in Figures 6 C-G require additional clarification. Notably, there are discrepancies in relative cell viability effects in K562 cells, and to some extent in MEG-01 cells, under conditions that are indicated as being either identical or highly similar. For instance, this inconsistency is observable when comparing the left panels of Figure 6C and 6D in the case of NC overexpression + shSRC#2, and the left panels of Figure 6E and 6G with NC overexpression or shNC, respectively. Listing potential causes of these discrepancies would strengthen the overall validity of the findings and their subsequent interpretation.

      Thank you for your comments and apologize for the confusion. To make a meaningful comparison, we have revised the method part “Preparation of stable RAPSYNWT, RAPSYNY336F or SRC expression cell lines” (lines 625-627) and reorganized Figure 6 to reflect the differences on the negative controls. In fact, we first used LV6 (EF-1a/Puro; OE-NC1) vector for the overexpression of RAPSYNWT and SRC. Due to low expression level with LV6 and long period of time for subsequent selection, we switched to LV18 (CMV/Puro; OE-NC2) for the overexpression of RAPSYNY336F. Since the sensitivities of K562/MEG01-OE-NC cells to shSRC transduction in Figure 6C (now revised to K562/MEG01-OE-NC1) and 6D (now revised to K562/MEG01-OE-NC2) were noticeably different, we have separated RAPSYNWT and RAPSYNY336F cells as 6C and 6D with their own corresponding empty vector as negative control, instead of merging the results into a single figure with one negative control of OE-NC. In addition, given the fact that K562/MEG01 cells reacted differently upon saracatinib treatments after transduction with the empty vector, we have also distinguished the negative controls as OE-NC1 in Figure 6E, OE-NC2 in Figure 6F and shNC in Figure 6G. Afterall, the transduction of K562/MEG01 cells with different expression vectors and viral particles caused the discrepancies in the experiments of cell viability, which has been clarified by reorganizing Figure 6 in the revision.

      (5) Throughout the manuscript, immunoblots which showcase immunoprecipitations of BCR-ABL or His-BCR-ABL depict poly-neddylation (e.g. Figures 2E-M, 3D-G, and 5A-E) and poly-ubiquitination (e.g. Figures 3D-G) patterns/smears where these patterns seem to extend below the molecular weight of BCR-ABL. To enhance clarity, it would be valuable for the authors to provide an explanation in the text or the figure legend for this observation. Is it reflective of potential degradation of BCR-ABL or is there another explanation behind it?

      Thank you for your valuable comments. After carefully checking original immunoblots, we have ascertained that the protein band of BCR-ABL was at 250 KDa and the smear bands appeared to be higher than 250 KDa were likely caused by the conjugation of NEDD8 (neddylation) or Ubiquitin (ubiquitination) onto BCR-ABL. Regarding the molecular weight of modified BCR-ABL lower than expected, whether it is a common feature as previously reported (Mao, J., et al, 2010, PMID: 21118980) or possible degradation during the modification process or sample preparation requires further investigation. We have corrected the labeling of figures in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      (1) It would really nail the real-world relevance of these nice findings if the authors are able to confirm some aspects of their cell line-based discoveries in publicly available 'omics datasets generated from primary CML samples. I have suggested some of these in the public review as well.

      Alternatively, if they are able to investigate samples from murine CML models (eg. BALB/c CML models), it would represent a step towards real-world relevance.

      Thank you very much for your constructive comments. According to your suggestion, we have examined and analyzed RAPSYN mRNA and protein in updated and publicly available datasets as replied in the public response.

      (2) The Discussion repeats some of the information already presented in the Introduction (for example, lines 311-327 of the merged document, or lines 349-358). I would urge the authors to instead expand more about how RAPSYN might be upregulated at the post-transcriptional level, or its potential post-translational regulation by SRC-mediated phosphorylation.

      Thanks for your constructive suggestion. We have re-written this part according to your suggestion and marked in red color in the revised manuscript, lines 319-325 and lines 351-378.

      (3) There are instances of clunky phrases/grammatical mistakes in the manuscript which detract from its readability (eg: lines 142-143: "...empty body transduced shRAPSN#3 or K562 cells into...."; lines 163-164: "Despite AChR subunits α7, M2, M3, and M4 were expressed in all tested cells, no change..."; line 178: "Preeminent BCR-ABL neddylation was detected in..."). A closer proof-reading of the final manuscript is advisable.

      We appreciate the valuable comments. We have made changes for improvement, which is marked in red color in the revised manuscript, lines 145-147, lines 166-168 and line 185.

      (4) The western blot in Fig 5C (particularly the control "OE-NC" of K562) looks drastically different from the corresponding control lanes in Figs 5A and 5B. Similarly, the cell viability curves presented in Fig 6D and 6F (for both K562 and MEG-01, control conditions) look very different from the corresponding curves in Figs 6A and 6B.

      We appreciate for your valuable comments. Because we accidently used the imagines with different exposure time, the western blots in Fig 5C (particularly the control "OE-NC" of K562) look very different from corresponding control lanes in Figs 5A and 5B. We have replaced images with the same exposure time in the revised manuscript.

      For readers to clearly understand, we have revised the method part “Preparation of stable RAPSYNWT, RAPSYNY336F or SRC expression cell lines” (lines 625-627) and related figure legends to reflect the differences.

      We have publicly responded the discrepancy on cell viability.

      Reviewer #2 (Recommendations For The Authors):

      In reviewing your study, I must insist that the completeness and robustness of your work would significantly benefit from a more exhaustive listing of the antibodies used for immunoblotting and immunoprecipitation within the Materials and Methods section. A number of antibodies have been accounted for, however, crucial ones targeting BCR-ABL, c-CBL, Ubiquitin, NEDD8, HA, Myc, and others appear to be omitted. To maintain rigorous scientific standards, I strongly encourage you to include these.

      We appreciate your comments. We have carefully checked the section of Methods and added detailed information of antibodies for Immunoblotting and Immunoprecipitation in the revised manuscript, lines 502-516.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We are very grateful to the reviewers for their positive appraisal of the manuscript and for their useful comments and suggestions. Below are our answers and corresponding modifications of the manuscript.


      Reviewer #1

      1 - Figures 1&4 focus on JU1264 as the primary double-sensitive strain. However, the authors built their RILs with HK104 by crossing with JU1498 in Figures 7&8. In the results section and/or methods, the authors should provide some justification for this strain switch. Alternatively, the equivalent analysis of Figure 1 focusing on JU1498 would be valuable to demonstrate that the effects of both viruses on fitness are similar to JU1264. I am not recommending that the JU1264xHK104 crosses be performed or that Figures 7&8 be repeated with JU1264xHK104 lines, but that more explanation for strain selection for RIL generation should be provided.

      JU1264 and JU1498 are the strains where SANTV and LEBV were found, respectively. The experiments were performed over the years by different authors and were designed to answer different questions. JU1264 was the strain where the first virus was found and was used as a doubly sensitive strain in Figure 1 and the small RNA experiment. The main reason we chose JU1498 for genetic crosses to discover the genetic basis of LEBV sensitivity is that LEBV was detected and isolated from JU1498. Note that the JU1264 and JU1498 strains come from France and are in the same isotype group at CaeNDR (see also Figure 3) so the two strains may be interchangeable (although we cannot be sure).

      We added in the text concerning the RIL construction: "We chose to use JU1498 as the LEBV-sensitive strain as it was the original strain in which LEBV was discovered."

      2-The authors reasonably claim that the resistance of tropical strains like AF16 could be due to blocking viral entry or early inhibition of replication before the small RNA response is activated. Could the authors test this by directly microinjecting virus (in combination with a dye as a control for successful injection) into the intestine? I understand this could not be done on a scale that would allow for small RNA sequencing, but one could perform small-scale FISH to determine if LEBV or SANTV are replication-competent if the entry barrier is artificially overcome. Such an experiment may require considerable technical development. It may be beyond the scope/timing of this specific study, but it is worth considering to gain some insight into the possible resistance mechanisms observed.

      Although the suggested experiment is in principle a great approach, it is difficult to perform without losing animals during the FISH staining. In addition, in this manuscript we are not particularly searching for the resistance mechanisms of AF16 but trying to present a wider perspective concerning viral infections of C. briggsae and their specificity. We performed small RNA analysis for AF16 together with the sensitive strains and therefore we commented on the lack of small RNA response in AF16 comparing to the sensitive strains. We thus consider that setting up intestinal injections at this point is arduous and beyond the scope of this manuscript.

      Minor Comments: Line 78 - provide the full genus name for Caenorhabditis elegans at first appearance, as done for Caenorhabditis briggsae

      This was modified. Line 117 - The description of cul-6 could also reference Bakowski et al. 2014. This study is referenced more generally as a player in proteostasis a few lines below but could be more explicitly tied to cul-6-mediated resistance to ORV (Bakowski et al. 2014 - see Fig. 7A) This section focus on the use of natural polymorphisms but we added this reference, which is indeed key for the effect of cul-6 knockdown on viral infection in C. elegans. Line 197-198 - The authors could consider adding sequences for FISH probes as part of Table S2. This information could add value to the present study even if previously listed in Frézal et al. We actually removed them from an earlier version since these sequences are already published: here and in further work, it seems preferable to refer to the primary study where these probes were designed, Line 263 - Were embryos obtained by bleaching of gravid adults, or was an egg lay performed, and the embryos were collected from plates? This is potentially an important distinction and should be clarified briefly in the methods. In the section “Preparation of small RNA libraries”, we obtained embryos by bleaching gravid adults.

      We changed the first sentence to “Gravid hermaphrodites from uninfected cultures (AF16, HK104 and JU1264) were harvested using M9 solution, then bleached and washed twice using nuclease-free water. Embryo concentrations were estimated by counting embryos under the dissecting microscope and diluted to 2 embryos per mL of nuclease-free water. 200 embryos of each strain (AF16, HK104 and JU1264) were then plated onto 55 mm NGM plates seeded with E. coli OP50.” We also added “The embryos were obtained by bleaching gravid hermaphrodites.” to the Figure S5 legend. Line 330 - Provide justification for using JU1498 to make these RILs (see comment above). We added this sentence in the Results section. "We chose to use JU1498 as the LEBV-sensitive strain as it was the original strain in which LEBV was discovered." Line 446-Refer to the methods section for full clarity on the role of FISH in this set of experiments or reword for improved clarity. At first read-through, this phrasing made me expect some FISH experiments associated with Fig. 1, which does not appear to be the case.

      We did perform FISH experiments as control that the cultures were infected, as explained in the Methods. We removed this mention from the Results section. Line 478 - The supplementary figure callouts are misaligned with the provided documents. S2A in the text appears to refer to S3A RT-qPCR results. Changed. Line 483 - Similar to above, the text suggests serial dilutions should refer to S4, not S3. Changed. Line 498 - Modify the text to 'Figure 2C and Figure 3' for clarity. Changed. Line 531,535 - viRNAs are defined in line 535 but this should be moved to 531 above at first appearance in the text. Changed. Line 593 - Typo in 'Logarithm of Odds?' Corrected. Line 621-624 - I recommend the authors include the data for the LEBV control experiments with NIL strains, either as a supplementary table, an additional panel for Fig. 6, or represented as done in Figure 8. We removed this sentence. Line 625-632 - How many total genes are represented in the QTL on IV? The reasoning behind testing rde-11 and rsd-2 is sound, but readers might want to know other potential candidates within this region (perhaps something the authors could also speculate on in the discussion). A similar comment applies for # genes in the QTLs on II and III.

      We added in Table S7 the list of detected SNPs and short indels in the chromosome IV region and now indicate in the text "among them over 2700 SNPs and short indels (Table S7)." We added Table S11 with the polymorphisms in the chromosome II QTL region. We note that these tables do not include possible structural variants. The chromosome III QTL being weak, we abstained for this one but the data can now be found using CaeNDR.

      Line 991-992 - Figure 1B - LEBV, SANTV, and co-infection effects on body size are mentioned but not quantified. Has this phenotype been quantified elsewhere? If so, the authors should reference it in the results section or Fig. 1 legend. Alternatively, body size could be quantified as part of this study and added to Fig. 1.

      Because we do not have a large amount of data on body size, we removed "Body size quantification” from Figure 1B legend. Line 1001 - There is a typo in the first sentence; the period after LEBV should be removed. Small suggestion: Figure 2A - While described in the methods, I recommend that the authors briefly reiterate in the figure legend that the white/yellow boxes are intended to indicate serial chunking for clarity.

      We removed the typo and explained the agar chunk representation in the figure legend: "The transfer by chunking a piece of agar is indicated by beige rectangles cut out from one plate and transferred to the next plate." Line 1034 - Small formatting note for Figure 4B - percentages of reads mapping to RNA1 and RNA2 appear underneath gridlines for the graph which obscures visibility and is inconsistent with the other graphs presented.

      This was modified and is indeed clearer. Line 1094 - Figure S1 - this analysis could be strengthened by RT-qPCR represented as fold change in viral load instead of, or in addition to, the agarose gel image (like Fig. S3). Doing so would also allow for the normalization of eft-2 control across individual samples (e.g.: particularly low eft-2 amplification in ED3073). However, these results are sufficiently convincing that LEBV does not replicate in C. elegans, but a more quantitative approach is recommended if feasible for the authors. Alternatively, an additional figure panel and/or repeat of this analysis with C. elegans infected with ORV would also be beneficial as an additional control.

      We do not understand how we can estimate a viral load by a ratio when we do not seem to see any significant amplification. Of course, a RT-qPCR would provide a finite Ct value and a ratio but they are likely to be meaningless. The ED3073 sample did not amplify for eft-2 either and calculating a ratio of high Ct values in a RT-qPCR would be misleading. We could remove the two ED3073 lanes but prefer to leave them.

      Line 1112 - "Experiments using RNA2 primers gave similar results" - if this data isn't included in the study, this text should be removed.

      Removed. Line 1141 - Figure S6 - For full transparency, the authors could consider including HK104 infected with LEBV to show minimal (zero) reads align to the RNA1/RNA2 segments using scales consistent with JU1264 infected with LEBV (S6C) The proportion of reads mapping (0%) are provided in Figure 4A and supplementary tables. We do not show the distribution of antisense 22G and sense 23nt along the LEBV genome for the HK104 (co)infections for the following reasons. 0% of these reads map to LEBV in HK104 monoinfection, and only 0.02% antisense 22G in coinfection. Moreover, the 23nt reads mapping to LEBV-RNA2 in the HK104 coinfection (16.54%;1931 reads) correspond to a 41 bp region with 85% nucleotide similarity between SANTV-RNA2 and LEBV-RNA2. Overall, the few 23nt (+) reads mapping to LEBV in HK104 coinfection are most likely a spillover of the HK104 antiviral response to JUv1264 entry into the intestinal cells.

      Reviewer #2

      Main points: 1. In figure 1C and D, is more than 1 biological replicate performed? Ideally multiple independent infections would be performed which would increase confidence in these experiments, but minimally the authors should make clear that this data was from an experiment only performed once. The conclusion from the life span assays is unlikely to change, but given the variance of the brood size assays within replicates, the conclusions that LEBV infection reduces the brood size is weakly supported.

      We added “Panels C-D correspond to a single experiment (see Methods).” to the legend of Figure 1. We changed the wording to "LEBV and especially the co-infection appeared to lower brood size." We do not have data for independent experiments.

      If the authors want to claim that there is a defect in viral entry in the resistant strains, they should perform infections experiments at an earlier time point that could capture viral invasion. In C. elegans with Orsay virus these experiments have been done as early as 18 hours by FISH. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1011120 The way the assays are currently set up, if the infection was cleared it wouldn't be observed.

      The strongest point that indicates that the virus does not replicate is the small RNA experiment, in which the animals were collected on the initial plate inoculated with the virus. We think that our wording was careful:

      We further amended it:

      • in Results " The animals were collected for sRNA sequencing on the plates onto which the viral inoculate was added and where they were constantly exposed to the virus".

      • in Discussion " Indeed, as we did not assay viral entry by sensitive FISH or RT-PCR at early timepoints, it is possible that the viruses are cleared without production of small RNAs."

      The evidence that the region on chromosome III contributes to susceptibility is weak. The analysis in figure 5B does not identify this region and it is not clear to me how to read the scale in figure 5C to determine that a region on chromosome III is significant.

      We added in the Figure legend: "with a LOD score of 10.5, above the threshold calculated by simulations (see Methods)." and detailed the method in the Methods section (see reply to Reviewer 3 below).

      In figure 6 using a more appropriate statistical test such as one way ANOVA with multiple hypothesis testing is necessary to determine if there is a difference between JU2832 and JU2916. It would be helpful if the authors could add more discussion of the evidence that they feel that supports this region being involved in susceptibility.

      We do not think that an ANOVA is appropriate to analyze these proportions which cannot have normal distributions of residuals, therefore we used a generalized linear model, taking genotype and block (day of experiment) into account. This was only explained in the legend and is now explained in the Methods section as well. Maybe the reviewer suggests us to us a global analysis with strain as a factor. We could do this but we do not think that it applies well to this situation: here we test for a specific hypothesis for each one-QTL strain. We have corrected for multiple testing as explained next. The legend now reads: " The significance p values were obtained in a generalized linear model (glm) taking independent experimental blocks and infection replicates into account, testing NILs against their relevant background parent. The p values using the two strains testing for the QTL on chromosome IV and those using the two-QTL strain JU2832 are corrected for multiple testing." In addition, we now provide p values rather than three stars, which reinforce the point (they are very low).

      Minor points 1. In figure 1B it would be helpful to provide more information on the animals chosen to display. Are these representative examples or extreme examples?

      These are representative examples. This detail was added in the legend.

      In figure 2B, adding a legend for the colored dots would be helpful.

      We had indicated: "Dots are replicates within a block, with 100 animals scored per replicate (see Table S4 for the detailed results and Figure S2 and Methods for the experimental design). Experimental blocks are represented by colors and the bar indicates the grand mean of the blocks." 3. In figure 2C, the definitions for a strain to be labeled as belonging to each category should be provided.

      The categorization method is now explained in the Methods section. In addition, Figure 2C legend now refers to Table S4 for the category of each strain. 4. Could the data in figure 2 be used for genome-wide association mapping and compared to the RIL QTL experiments? Adding comment on this would be helpful to understanding the usefulness of this data.

      There are too few strains here to test genome-wide for association. If we had the causative SNP, it would be interesting to assess its frequency but this is beyond the focus and scope of this work, which focused on the outlier phenotype of the HK104 strain. 5. In figure 4b, in HK104 LRBV the numbers in top right corner are not defined.

      We added to the legend of Figure 4B: “For the HK104 infection with LEBV, the number of read counts is provided in the top right corner to signal their rarity compared to ca. 107 in the other conditions. See Table S5 for all read counts. ” 6. Line 1001 remove period from "LEBV.of" and add period after isolates. Removed.

      Reviewer #3 Major comments • The authors provide most data in both a processed and raw format, which is helpful. In two cases (data from 3 DPI, line 492 and LEBV infections in the AF16xHK104 NILs, line 621), the authors state their results, but the data seems not to be provided in the document (at least no direct reference is provided). These are supporting results and do not affect the main conclusions, nevertheless providing the data in form of a table or supplementary figure would be required. Generally, it may help to include a data availability statement to have a combined overview of where data can be found.

      As noted by the reviewer, we tried to provide the data in raw format, but did not judge it necessary when the experiment had two datapoints that are provided in the text. We added the number of animals in the instance where it was missing.

      Minor comments • Line 97-126: Here the manuscript fully focuses on the work in C. elegans. It would be interesting to make clear links to the work in C. briggsae (e.g. mention if homologs are present). The paragraph in line 127 clarifies advantages of studying viral infection in C. briggsae compared to C. elegans. It may be logical to place this information early in the text.

      We added a sentence to link the C. elegans work and C. briggsae. • Line 166 and results from this experiment: Is the LEBV-SANTV mixture consisting of 50uL of both viruses or a total of 50uL (so 25uL of both)? This is also important for the interpretation of results.

      To clarify, we changed to: “50 l ... of an equivolume mix of SANTV and LEBV”. • Line 167: The text says the culture is maintain for 4 days, but then also mentions day 5. Figure 2 clarifies the experimental setup later, but the text could be clearer here.

      Thank you for noticing this. We changed the 4 to 7. • Line 172: What are the nine starter cultures?

      The nine starting cultures were those obtained as described in the paragraph preceding this line in the manuscript. From a plate of infected animals (five L4 larvae), we propagated the infected population by chunking over 3 plates (day 3) and 3*3 plates (day 5). To make this point clear, we have added above: "to generate for the following experiments nine starter cultures for each of the four conditions " • Line 185: 'Infection of the set of C. briggsae natural isolates'. From the text it is not clear what set the authors refer to.

      We changed to "a set" and refer to Figure 2B and Table S4 in the sentence below for the list of natural isolates. • Line 223: 'The proportion of infected animals were overall higher in Batch3 but the qualitative results are similar'. It is unclear why this statement is here instead of in the result section and it is also not clear what the authors mean by the second part of the sentence.

      We moved the sentence to Results and changed it to: " The proportion of infected animals were overall higher in Batch 3 but the relative results of the different strains were similar for the three batches." • Line 326: Is 'the same method as above' using FISH or RT-qPCR?

      Changed to "using FISH as above". • Line 382: What do the authors mean by 'two cross directions'?

      We removed this mention as the method is better explained in the next sentence.

      • Line 454-458: The data presented here does not appear well integrated in the storyline. It does not fit under the subheading. Perhaps it would be a better fit under the subheading of line 462? We moved it below the subheading. • Line 478: Reference to Fig S2 should be reference to Fig S3

      Changed. • Line 483: Reference to Fig S3 should be reference to Fig S4

      Changed. • Line 540-544: The sentence reads as a contradiction (C. elegans defends itself using RNAi, C. briggsae blocks viral infection during entry). As a result, the sentence reads as if RNAi is not of much antiviral importance in C. briggsae, but that cannot be concluded from this data. I am not sure if this is what the authors aim to suggest, but another word choice (e.g. changing 'whereas' and 'this does not seem the case for C. briggsae') may be considered.

      We changed the wording to " whereas the C. elegans N2 reference strain allows for viral entry and defends itself against ORV via its small RNA response (Félix et al. 2011; Ashe et al. 2013; Shirayama et al. 2014; Coffman et al. 2017), in the tested resistant C. briggsae strains, the viruses appeared to be blocked at entry or at early steps of the viral cycle." • Line 585 and 592: There are two QTL approaches being applied and referred to as 'the one- and two-QTL analyses'. The description in this part is rather technical and the terminology is not clear. As a result, for readers not familiar with QTL mapping, the biological interpretation may become obscured.

      We now explain in Methods: " ...scanning each pair of positions for several models, including single-QTL, full, additive and epistatic. The significance threshold LOD score of each model was estimated via 1,000 permutation tests with a coefficient of risk a=0.05. The threshold was 4.91 for the additive model and 6.09 for the full model. The LOD score of each pair of position is represented by a color scale in Figure 5C). The combination of the chromosomes III and IV QTLs had a LOD score of 10.5 in the full and additive models. No epistatic interaction was detected. The LOD score of the single-QTL model comparison was below the threshold."

      • Line 659: The authors end the section about natural genetic variation in the response to SANTV with candidate genes and a CRISPR experiment. As the authors identify a small genetic region associated with LEBV susceptibility, it would be interesting to hear about any candidate genes in this region. There are still many genes and more importantly, many polymorphisms in this region (ca. 700 single-nucleotide polymorphisms and short indels). Because structural variants are difficult to call (long-read sequencing has not been performed on the parents), we had preferred to abstain to provide a list of polymorphisms that would be incomplete and preferentially point towards SNPs. However, because of the reviewer's query, we now provide it in Table S11.

      • Line 674: The authors make use of HK104 strain in this study as it is the exception in their dataset that provides resistance against LEBV, but not SANTV. Possibly, the genetic variation linked to viral susceptibility uncovered using HK104 may therefore be relatively uncommon in C. briggsae. The implications of this choice and option for other studies using different genotypes could be interesting to discuss in this short paragraph. The aim in here is to discover why HK104 is specifically resistant to one virus and not the other. There is a possibility of uncovering a specific mechanism that is present in only two or three strains of our 40-strain dataset but we find this specificity particularly

      interesting, regardless of its prevalence. We explore in the Discussion which of the two crosses may reveal the specificity.

      • Line 774: The IPR is already described on abbreviated in line 742. As a reader, we prefer having the abbreviation explained twice than not understanding it. • Overall, to reach a broader audience, the manuscript can expand explanations in the discussion. E.g. statements in line 695 and 773, refer to previous observations, but do not explain them in enough detail to understand parallels between this and previous studies without prior knowledge.

      We added some explanations, specifically for lines 695 and 773 (of previous version). • Figure 2: Only HK104 is labelled in the figure, it would be useful to also see HK105 as this strain is also explicitly mentioned in the text.

      We now included HK105 and strains that are used in further experiments.

      • Figure 2: It is not clear from the results or methods how strains as designated into a certain class. The figure legend says variability in the data is taken into account and that is why some strains are close to each other, yet distinct in class, but how this works is not described. We now explain our criteria. See above in the response to Reviewer 2. • Figure S3: The strain JU1264 and JU1498 are mentioned thrice (as '2', 'rep' and 'ref'). These annotations should be clarified.

      These explanations were indeed missing. We now explain them in the figure legend. • Figure S4: The figure would benefit from a division in panels per strain to facilitate comparisons across strains.

      Indeed. We now added a division in panels per strain. • Figure S4: Have the authors correlated viral loads with the number of infected animals? This could result in addition information if not all individuals are infected equally.

      We have not done so in this precise experiment but preferred to use the number of infected animals in most other experiments, in particular because it is less subject to outlier effects. • Figure S4: Could the authors clarify the meaning of JU1264 Rep?

      It is explained in the legend: "The undiluted viral preparations on JU1264 are used to normalize and are indicated as "JU1264 1/1". A separate replicate was performed and indicated as "JU1264 Rep"."

      • Figure 8: The meaning of the stars in this figure is a bit confusing and the description of these stars in the legend is not clear. Indeed. We changed the legend to: " ***: p<0.001 comparing JU4034 with its parent strain HK104 using a generalized linear model."
    1. Author response:

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, Qiu and colleagues examined the effects of preovulatory (i.e., proestrous or late follicular phase) levels of circulating estradiol on multiple calcium and potassium channel conductances in arcuate nucleus kisspeptin neurons. Although these cells are strongly linked to a role as the "GnRH pulse generator," the goal here was to examine the physiological properties of these cells in a hormonal milieu mimicking late proestrus, the time of the preovulatory GnRH-LH surge. Computational modeling is used to manipulate multiple conductances simultaneously and support a role for certain calcium channels in facilitating a switch in firing mode from tonic to bursting. CRISPR knockdown of the TRPC5 channel reduced overall excitability, but this was only examined in cells from ovariectomized mice without estradiol treatment. The patch clamp experiments are comprehensive and overall solid but a direct demonstration of the role of these conductances in being necessary for surge generation (or at least having a direct physiological consequence on surge properties) is lacking, substantially reducing the impact of the findings.

      Strengths:

      (1) Examination of multiple types of calcium and potassium currents, both through electrophysiology and molecular biology.

      (2) Focus on arcuate kisspeptin neurons during the surge is relatively conceptually novel as the anteroventral periventricular nucleus (AVPV) kisspeptin neurons have received much more attention as the "surge generator" population.

      (3) The modeling studies allow for direct examination of manipulation of single and multiple conductances, whereas the electrophysiology studies necessarily require examination of each current in isolation. The construction of an arcuate kisspeptin neuron model promises to be of value to the reproductive neuroendocrinology field.

      We thank the reviewer for recognizing our comprehensive examination of Kiss-ARH neurons through electrophysiological, molecular and computational modeling of their activity during the preovulatory surge, which as the reviewer pointed out is “conceptually novel.” We will bolster our argument that Kiss1-ARH neurons transition from synchronized firing to burst firing with the E2-mediated regulation of channel expression with the addition of new experiments. We will address the weaknesses as follows:

      Weaknesses:

      (1) The novelty of some of the experiments needs to be clarified. This reviewer's understanding is that prior experiments largely used a different OVX+E2 treatment paradigm mimicking periods of low estradiol levels, whereas the present work used a "high E2" treatment model. However, Figures 10C and D are repeated from a previous publication by the same group, according to the figure legend. Findings from "high" vs. "low" E2 treatment regimens should be labeled and clearly separated in the text. It would also help to have direct comparisons between results from low E2 and high E2 treatment conditions.

      We will revise Figures 10C and 10D to include new findings on Tac2 and Vglut2 expression in OVX and E2-treated Kiss1ARH. We did show the previously published data (Qiu, eLife 2018) to contrast with Figures 10E, F showing the downregulation of TRPC5 and GIRK2 channels following E2 treatment. Most importantly, our E2 treatment regime is clearly stated in the Methods and is exactly the same that was used previously (Qiu, eLife 2016 and Qiu, eLife 2018) for the induction of the LH surge in OVX mice (Bosch, Molecular and Cellular Endocrinology 2013) .

      (2) In multiple places, links are made between the changes in conductances and the transition from peptidergic to glutamatergic neurotransmission. However, this relationship is never directly assessed. The data that come closest are the qPCR results showing reduced Tac2 and increased Vglut2 mRNA, but in the figure legend, it appears that these results are from a prior publication using a different E2 treatment regimen.

      In the revised Figure 1, we will now include a clear depiction of the transition from synchronized firing driven by NKB signaling in OVX females to burst firing driven by glutamate in E2-treated females. We have used the same E2 treatment paradigm as previously published (Qiu, eLife 2018).

      (3) Similarly, no recordings of arcuate-AVPV glutamatergic transmission are made so the statements that Kiss1ARH neurons facilitate the GnRH surge via this connection are still only conjecture and not supported by the present experiments.

      Using a horizontal hypothalamic slice preparation, we have shown that Kiss1-ARH neurons excite GnRH neurons via Kiss1ARH glutaminergic input to Kiss1AvPV neurons (summarized in Fig. 12, Qiu, eLife 2016). We do not think that it is necessary to repeat these experiments in the current manuscript.

      (4) Figure 1 is not described in the Results section and is only tenuously connected to the statement in the introduction in which it is cited. The relevance of panels C and D is not clear. In this regard, much is made of the burst firing pattern that arises after E2 treatment in the model, but this burst firing pattern is not demonstrated directly in the slice electrophysiology examples.

      We will revised Figure 1 to include new whole-cell, current clamp recordings documenting the burst firing in response to glutamate in E2-treated, OVX females.

      (5) In Figure 3, it would be preferable to see the raw values for R1 and R2 in each cell, to confirm that all cells were starting from a similar baseline. In addition, it is unclear why the data for TTA-P2 is not shown, or how many cells were recorded to provide this finding.

      Before initiating photo-stimulation for each Kiss1-ARH neuron, we adjust the resting membrane potential to -70 mV, as noted in each panel in Figure 3, through current injections. We will include new findings on the effects of the T-channel blocker TTA-P2 on slow EPSP in the revised Figure 3. The number of cells tested with each calcium channel blocker is depicted in each of the bar graphs summarizing the effects of the blockers.

      (6) In Figure 5, panel C lists 11 cells in the E2 condition but panel E lists data from 37 cells. The reason for this discrepancy is not clear.

      In Figure 5E, we measured the L-, N-, P/Q and R channel currents after pretreatment with TTA-P2 to block the T-type current, whereas in Figure 5C, we measured the current without TTA-P2.

      (7) In all histogram figures, it would be preferable to have the data for individual cells superimposed on the mean and SEM.

      In all revised Figures we will include the individual data points for the individual neurons.

      (8) The CRISPR experiments were only performed in OVX mice, substantially limiting interpretation with respect to potential roles for TRPC5 in shaping arcuate kisspeptin neuron function during the preovulatory surge.

      The TRPC5 channels are most important for generating slow EPSPs when expression of NKB is high in the OVX state. Conversely, the glutamatergic response becomes more significant when the expression of NKB and TRPC5 channel are muted. Therefore, the CRISPR experiments were specifically conducted in OVX mice to maximize the effects.

      (9) Furthermore, there are no demonstrations that the CRISPR manipulations impair or alter the LH surge.

      In this manuscript, our focus is on the cellular electrophysiological activity of the Kiss1ARH neurons in ovx and E2-treated females. Exploration of CRISPR manipulations related to the LH surge is certainly slated for future experiments, but these in vivo experiments are beyond the scope of these comprehensive cellular electrophysiological and molecular studies.

      (10) The time of day of slice preparation and recording needs to be specified in the Methods.

      We will provide the times of slice preparation and recordings in the revised Methods and Materials.

      Reviewer #2 (Public Review):

      Summary:

      Kisspeptin neurons of the arcuate nucleus (ARC) are thought to be responsible for the pulsatile GnRH secretory pattern and to mediate feedback regulation of GnRH secretion by estradiol (E2). Evidence in the literature, including the work of the authors, indicates that ARC kisspeptin coordinate their activity through reciprocal synaptic interactions and the release of glutamate and of neuropeptide neurokinin B (NKB), which they co-express. The authors show here that E2 regulates the expression of genes encoding different voltage-dependent calcium channels, calcium-dependent potassium channels, and canonical transient receptor potential (TRPC5) channels and of the corresponding ionic currents in ARC kisspeptin neurons. Using computer simulations of the electrical activity of ARC kisspeptin neurons, the authors also provide evidence of what these changes translate into in terms of these cells' firing patterns. The experiments reveal that E2 upregulates various voltage-gated calcium currents as well as 2 subtypes of calcium-dependent potassium currents while decreasing TRPC5 expression (an ion channel downstream of NKB receptor activation), the slow excitatory synaptic potentials (slow EPSP) elicited in ARC kisspeptin neurons by NKB release and expression of the G protein-associated inward-rectifying potassium channel (GIRK). Based on these results, and on those of computer simulations, the authors propose that E2 promotes a functional transition of ARC kisspeptin neurons from neuropeptide-mediated sustained firing that supports coordinated activity for pulsatile GnRH secretion to a less intense firing in glutamatergic burst-like firing pattern that could favor glutamate release from ARC kisspeptin. The authors suggest that the latter might be important for the generation of the preovulatory surge in females.

      Strengths:

      The authors combined multiple approaches in vitro and in silico to gain insights into the impact of E2 on the electrical activity of ARC kisspeptin neurons. These include patch-clamp electrophysiology combined with selective optogenetic stimulation of ARC kisspeptin neurons, reverse transcriptase quantitative PCR, pharmacology, and CRIPR-Cas9-mediated knockdown of the Trpc5 gene. The addition of computer simulations for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength.

      The authors add interesting information on the complement of ionic currents in ARC kisspeptin neurons and on their regulation by E2 to what was already known in the literature. Pharmacological and electrophysiological experiments appear of the highest standards. Robust statistical analyses are provided throughout, although some experiments (illustrated in Figures 7 and 8) do have rather low sample numbers.

      The impact of E2 on calcium and potassium currents is compelling. Likewise, the results of Trpc5 gene knockdown do provide good evidence that the TRPC5 channel plays a key role in mediating the NKB-mediated slow EPSP. Surprisingly, this also revealed an unsuspected role for this channel in regulating the membrane potential and excitability of ARC kisspeptin neurons.

      We thank the reviewer for recognizing that the “pharmacological and electrophysiological experiments appear of the highest standards” and “the addition of the computer modeling for understanding the impact of E2 on the electrical activity of ARC kisspeptin cells is also a strength. However, we agree with the reviewer that we need to provide a direct demonstration of “burst-like” firing of Kiss1-ARH neurons. We will address the weaknesses as follows:

      Weaknesses:

      The manuscript also has weaknesses that obscure some of the conclusions drawn by the authors.

      One has to do with the fact that "burst-like" firing that the authors postulate ARC kisspeptin neurons transition to after E2 replacement is only seen in computer simulations, and not in slice patch-clamp recordings. A more direct demonstration of the existence of this firing pattern, and of its prominence over neuropeptide-dependent sustained firing under conditions of high E2 would make a more convincing case for the authors' hypothesis.

      We will provide a more direct demonstration of the existence of this firing pattern in the whole-cell current clamp experiments in the revised Figure 1.

      In addition, and quite importantly, the authors compare here two conditions, OVX versus OVX replaced with high E2, that may not reflect the physiological conditions (the diestrous [low E2] and proestrous [high E2] stages of the estrous cycle) under which the proposed transition between neuropeptide-dependent sustained firing and less intense burst firing might take place. This is an important caveat to keep in mind when interpreting the authors' findings. Indeed, that E2 alters certain ionic currents when added back to OVX females, does not mean that the magnitude of these ionic currents will vary during the estrous cycle.

      We have published that the magnitude of the slow EPSP, which is TRPC5 channel mediated, varies throughout the estrous cycle and the similarity to that found in OVX compared to E2-treated, OVX females (Figure 2, Qiu, eLife 2016). Moreover, TRPC5 channel mRNA expression, similar to the peptides, is downregulated by an E2 treatment (Figure 10 this manuscript) that mimics proestrus levels of the steroid (Bosch, Mol Cell Endocrinology 2013). Furthermore, the magnitude of ionic currents is directly proportional to the number of ion channels expressed in the plasma membrane, which we have found correlates with mRNA expression. Therefore, it is likely that the magnitude of these ionic currents will vary during the estrous cycle.

      Lastly, the results of some of the pharmacological and genetic experiments may be difficult to interpret as presented. For example, in Figure 3, although it is possible that blockade of individual calcium channel subtypes suppresses the slow EPSP through decreased calcium entry at the somato-dendritic compartment to sustain TRPC5 activation and the slow depolarization (as the authors imply), a reasonable alternative interpretation would be that at least some of the effects on the amplitude of the slow EPSP result from suppression of presynaptic calcium influx and, thus, decreased neurotransmitter and neuropeptide secretion. Along the same lines, in Figure 12, one possible interpretation of the observed smaller slow EPSPs seen in mice with mutant TRPC5 could be that at least some of the effect is due to decreased neurotransmitter and neuropeptide release due to the decreased excitability associated with TRPC5 knockdown.

      The reviewer raises a good point, but our previous findings clearly demonstrate that chelating intracellular calcium with BAPTA in whole-cell current clamp recordings abolishes the slow EPSP and persistent firing (Qiu, J. Neurosci 2021), which we have noted is the rationale for dissecting out the contribution of T, R, N, L and P/Q calcium channels to the slow EPSP in our current studies (revised Figure 3 will include the effects of T-channel blocker).

      However, to further bolster the argument for the post-synaptic contribution of the calcium channels to the slow EPSP and eliminate the potential presynaptic effects of calcium channel blockers on the postsynaptic slow EPSP amplitude, which may result from reduced presynaptic calcium influx and subsequently decreased neurotransmitter release, we will utilized an additional strategy. Specifically, we will measure the response to the externally administered TACR3 agonist senktide under conditions in which the extracellular calcium influx, as well as neurotransmitter and neuropeptide release, are blocked (new Figure 3).

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Following small molecule screens, this study provides convincing evidence that 7,8 dihydroxyflavone (DHF) is a competitive inhibitor of pyridoxal phosphatase. These results are important since they offer an alternative mechanism for the effects of 7,8 dihdroxyflavone in cognitive improvement in several mouse models. This paper is also significant due to the interest in the protein phosphatases and neurodegeneration fields.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Zink et al set out to identify selective inhibitors of the pyridoxal phosphatase (PDXP). Previous studies had demonstrated improvements in cognition upon removal of PDXP, and here the authors reveal that this correlates with an increase in pyridoxal phosphate (PLP; PDXP substrate and an active coenzyme form of vitamin B6) with age. Since several pathologies are associated with decreased vitamin B6, the authors propose that PDXP is an attractive therapeutic target in the prevention/treatment of cognitive decline. Following high throughput and secondary small molecule screens, they identify two selective inhibitors. They follow up on 7, 8 dihydroxyflavone (DHF). Following structure-activity relationship and selectivity studies, the authors then solve a co-crystal structure of 7,8 DHF bound to the active site of PDXP, supporting a competitive mode of PDXP inhibition. Finally, they find that treating hippocampal neurons with 7,8 DHF increases PLP levels in a WT but not PDXP KO context. The authors note that 7,8 DHF has been used in numerous rodent neuropathology models to improve outcomes. 7, 8 DHF activity was previously attributed to activation of the receptor tyrosine kinase TrkB, although this appears to be controversial. The present study raises the possibility that it instead/also acts through modulation of PLP levels via PDXP, and is an important area for future work.

      Strengths:

      The strengths of the work are in the comprehensive, thorough, and unbiased nature of the analyses revealing the potential for therapeutic intervention in a number of pathologies.

      Weaknesses:

      Potential weaknesses include the poor solubility of 7,8 DHF that might limit its bioavailability given its relatively low potency (IC50= 0.8 uM), which was not improved by SAR. However, the compound has an extended residence me and the co-crystal structure could aid the design of more potent molecules and would be of interest to those in the pharmaceutical industry. The images related to crystal structure could be improved.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors performed a screening for PDXP inhibitors to identify compounds that could increase levels of pyridoxal 5'- phosphate (PLP), the co-enzymatically active form of vitamin B6. For the screening of inhibitors, they first evaluated a library of about 42,000 compounds for activators and inhibitors of PDXP and secondly, they validated the inhibitor compounds with a counter-screening against PGP, a close PDXP relative. The final narrowing down to 7,8-DHF was done using PLP as a substrate and confirmed the efficacy of this flavonoid as an inhibitor of PDXP function. Physiologically, the authors show that, by acutely treating isolated wild-type hippocampal neurons with 7,8-DHF they could detect an increase in the ratio of PLP/PL compared to control cultures. This effect was not seen in PDXP KO neurons.

      Strengths:

      The screening and validation of the PDXP inhibitors have been done very well because the authors have performed crystallographic analysis, a counter screening, and mutation analysis. This is very important because such rigor has not been applied to the original report of 7,8 DHF as an agonist for TrkB. Which is why there is so much controversy on this finding.

      Weaknesses:

      As mentioned in the summary report the study may benefit from some in vivo analysis of PLP levels following 7,8-DHF treatment, although I acknowledge that it may be challenging because of the working out of the dosage and timing of the procedure.

      Reviewer #3 (Public Review):

      This is interesting biology. Vitamin B6 deficiency has been linked to cognitive impairment. It is not clear whether supplements are effective in restoring functional B6 levels. Vitamin B6 is composed of pyridoxal compounds and their phosphorylated forms, with pyridoxal 5-phosphate (PLP) being of particular importance. The levels of PLP are determined by the balance between pyridoxal kinase and phosphatase activities. The authors are testing the hypothesis that inhibition of pyridoxal phosphatase (PDXP) would arrest the age-dependent decline in PLP, offering an alternative therapeutic strategy to supplements. Published data illustrating that ablation of the Pdxp gene in mice led to increases in PLP levels and improvement in learning and memory trials are consistent with this hypothesis.

      In this report, the authors conduct a screen of a library of ~40k small molecules and identify 7,8dihydroxyflavone (DHF) as a candidate PDXP inhibitor. They present an initial characterization of this micromolar inhibitor, including a co-crystal structure of PDXP and 7,8-DHF. In addition, they demonstrate that treatment of cells with 7,8 DHP increases PLP levels. Overall, this study provides further validation of PDXP as a therapeutic target for the treatment of disorders associated with vitamin B6 deficiency and provides proof-of-concept for inhibition of the target with small-molecule drug candidates.

      Strengths include the biological context, the focus on an interesting and under-studied class of protein phosphatases that includes several potential therapeutic targets, and the identification of a small molecule inhibitor that provides proof-of-concept for a new therapeutic strategy. Overall, the study has the potential to be an important development for the phosphatase field in general.

      Weaknesses include the fact that the compound is very much an early-stage screening hit. It is an inhibitor with micromolar potency for which mechanisms of action other than inhibition of PDXP have been reported. Extensive further development will be required to demonstrate convincingly the extent to which its effects in cells are due to on-target inhibition of PDXP.

      Recommendations for the authors:

      There is general agreement that the study represents an advance regarding the mechanisms of pyridoxal phosphatase and 7,8 DHF. From the reviewers' comments, several major questions and considerations are raised, followed by their detailed remarks:

      (1) More analysis of the solubility and dose of 7,8 DHF with regard to the 50% inhibition and the salt bridge of the B protomer, as raised by the reviewers.

      (2) Is there a possible involvement of another phosphatase?

      (3) Does 7,8 DHF cause an effect upon TrkB tyrosine phosphorylation?

      We thank the Reviewers and Editors for their fair and constructive comments and suggestions. We have performed additional experiments to address these questions and considerations. In addition, we have generated two new high-resoling (1.5 Å) crystal structures of human PDXP in complex with 7,8-DHF that substantially expand our understanding of 7,8-DHF-mediated PDXP inhibition. The scientist who performed this work for the revision of our manuscript has been added as an author (shared first authorship).

      We believe that the insights gained from these new data have further strengthened and improved the quality of our manuscript. Together, our data provide compelling evidence that 7,8-dihydroxyflavone is a direct and competitive inhibitor of pyridoxal phosphatase.

      Please find our point-by-point responses to the Public Reviews that are not addressed in the Recommendations for the Authors, and the Recommendations for the Authors below.

      Reviewer #2:

      As mentioned in the summary report the study may benefit from some in vivo analysis of PLP levels following 7,8-DHF treatment, although I acknowledge that it may be challenging because of the working out of the dosage and timing of the procedure.

      We agree that an in vivo analysis of PLP levels following 7,8-DHF treatment could be informative for the further evaluation of a possible mechanistic link between the reported effects of this compound and PDXP/vitamin B6. However, we currently do not have a corresponding animal experimentation permission in place and are unlikely to obtain such a permit within a reasonable me frame for this revision.

      Recommendations For The Authors:

      Reviewer #1:

      The work is already well-written, comprehensive, and convincing.

      Suggestions that could improve the manuscript.

      (1) Include a protein tyrosine phosphatase (PTP) in the selectivity analysis. One possibility is that 7,8 DHF acts on a PTP (such as PTP1B), leading to TrkB activation by preventing dephosphorylation. I note that a previous study has looked at SAR for flavones with PTP1B (PMID: 29175190), which is worth discussion.

      We thank the reviewer for bringing this interesting possibility to our attention. We were not aware of the SAR study for flavonoids with PTP1B by Proenca et al. but have now tested the effect of 7,8-DHF on PTP1B, referring to this paper. As shown in Figure 2d, PTP1B was not inhibited by 7,8-DHF at a concentration of 5 or 10 µM. At the highest tested concentration of 40 µM, 7,8-DHF inhibited PTP1B merely by ~20%. For comparison, compound C13 (3-hydroxy-7,8-dihydroxybenzylflavone-3’,4’dihydroxymethyl-phenyl), which emerged as the most active flavonoid in the SAR study by Proenca et al. inhibited PTP1B with an IC50 of 10 µM. Consistent with the results of these authors, our finding confirms that less polar substituents, such as O-benzyl groups at positions 7 and 8, and O-methyl groups at positions 3’ and 4’ of the flavone scaffold, are important for the ability of flavonoids to effectively inhibit PTP1B. We conclude that PTP1B inhibition by 7,8-DHF is unlikely to be a primary contributor to the reported cellular and in vivo effects of this flavone.

      In addition to PTP1B, we have now additionally tested the effect of 7,8-DHF on the serine/threonine protein phosphatase calcineurin/PP2B, the DNA/RNA-directed alkaline phosphatase CIP, and three other metabolite-directed HAD phosphatases, namely NANP, NT5C1A and PNKP. PP2B, CIP and NANP were not inhibited by 7,8-DHF. Similar to PTP1B, PNKP activity was attenuated (~30%) only at 40 µM 7,8-DHF. In contrast, 7,8-DHF effectively inhibited NT5C1A (IC50 ~10 µM). NT5C1A is an AMP hydrolase expressed in skeletal muscle and heart. To our knowledge, a role of NT5C1A in the brain has not been reported. Based on currently available information, the inhibition of NT5C1A therefore appears unlikely to contribute to 7,8-DHF effects in the brain.

      The results of these experiments are shown in the revised Figure 2d. Taken together, the extended selectivity analysis of 7,8-DHF on a total of 12 structurally and functionally diverse protein- and nonprotein-directed phosphatases supports our initial conclusion that 7,8-DHF preferentially inhibits PDXP.

      (2) Line 144: It is unclear how fig 2c supports the statement here. Remove call out for clarity.

      Our intention was to highlight the fact that 7,8-DHF concentrations >12.5 µM could not be tested in the BLI assay (shown in Figure 2c) due to 7,8-DHF solubility issues under these experimental conditions. However, since this is discussed in the text, but not directly visible in Figure 2c, we agree with the Reviewer and have removed this call out.

      (3) Figure 3a. It is difficult to see the pink 7,8 DHF on top of the pink ribbon backbone. A better combination of colours could be used. Likewise in Figure 3b it is pink on pink again.

      We have improved the combination of colors to enhance the visibility of 7,8-DHF and have consistently color-coded murine and the new human PDXP structures throughout the manuscript.

      (4) Figure 3c and d. These are the two protomers I believe, but the colour coding is not present in 3c where the ribbon is now gray. Please choose colours that can be used to encode protomers throughout the figure.

      Please see response to point 3 above.

      (5) Figure 3f. I think this is the same protomer as 3c but a 180-degree rotation. Could this be indicated, or somehow lined up between the two figures for clarity? It would also be useful to have 3e in the same orientation as 3f, to better visualise the overlap with PLP binding. PLP and 7,8 DHF could be labelled similarly to the amino acids in 3f (the colour coding here is helpful).

      Please see response to point 3 above. We have substantially revised the structural figures and have used consistent color coding and the same perspective of 7,8-DHF in the PDXP active sites.

      (6) Figure 3g. The colours of the bars relating to specific mutations do not quite match the colours in Figure 3f, which I think was the aim and is very helpful.

      We have adapted the colours of the residues in Figure 3f (now Fig. 3b and additionally Fig. 3 – figure supplement 1e) so that they exactly match the colours of the bars in Figure 3g (now Fig. 3d).

      Reviewer #2:

      No further comments.

      Reviewer #3:

      Page 4: The authors describe 7,8DHF as a "selective" inhibitor of PDXP - in my opinion, they do not have sufficient data to support such a strong assertion. Reports that 7,8DHF may act as a TRK-B-agonist already highlight a potential problem of off-target effects. Does 7,8DHF promote tyrosine phosphorylation of TRK-B in their hands? The selectivity panel presented in Figure 2, focusing on 5 other HAD phosphatases, is much too limited to support assertions of selectivity.

      We agree with the Reviewer that our previous selectivity analysis with six HAD phosphatases was limited. To further explore the phosphatase target spectrum of 7,8-DHF, we have now analyzed six other enzymes: three other non-HAD phosphatases (the tyrosine phosphatase PTP1B, the serine/threonine protein phosphatase PP2B/calcineurin, and the DNA/RNA-directed alkaline phosphatase/CIP) and three other non-protein-directed C1/C0-type HAD phosphatases (NT5C1A, NANP, and PNKP). The C1-capped enzymes NT5C1A and NANP were chosen because we previously found them to be sensitive to small molecule inhibitors of the PDXP-related phosphoglycolate phosphatase PGP (PMID: 36369173). PNKP was chosen to increase the coverage of C0-capped HAD phosphatases (previously, only the C0-capped MDP1 was tested).

      We found that calcineurin, CIP and NANP were not inhibited by up to 40 µM 7,8-DHF. The activities of PTP1B or PNKP activity were attenuated (by ~20 or 30%, respectively) only at 40 µM 7,8-DHF. In contrast, 7,8-DHF effectively inhibited NT5C1A (IC50 ~10 µM). We have previously found that NT5C1A was sensitive to small-molecule inhibitors of the PDXP paralog PGP, although these molecules are structurally unrelated to 7,8-DHF (PMID: 36369173). NT5C1A is an AMP hydrolase expressed in skeletal muscle and heart (PMID: 12947102). To our knowledge, a role of NT5C1A in the brain has not been reported. Based on currently available information, the inhibition of NT5C1A therefore appears unlikely to contribute to 7,8-DHF effects in the brain. The results of these experiments are shown in the revised Figure 2d. Taken together, the extended selectivity analysis of 7,8-DHF on a total of 12 structurally and functionally diverse protein- and non-protein-directed phosphatases supports our initial conclusion that 7,8-DHF preferentially inhibits PDXP. To nevertheless avoid any overstatement, we have now also replaced “selective” by “preferential” in this context throughout the manuscript.

      We have not tested if 7,8-DHF promotes tyrosine phosphorylation of TRK-B. Being able to detect 7,8- DHF-induced TRK-B phosphorylation in our hands would not exclude an additional role for PDXP/vitamin B6-dependent processes. Not being able to detect TRK-B phosphorylation may indicate absence of evidence or evidence of absence. This would neither conclusively rule out a biological role for 7,8-DHF-induced TRK-B phosphorylation in vivo, nor contribute further insights into a possible involvement of vitamin B6-dependent processes in 7,8-DHF induced effects.

      Page 6: The authors report that they obtained only two PDXP-selective inhibitor hits from their screen; 7,8DHF and something they describe as FMP-1. For the later, they state that it "was obtained from an academic donor, and its structure is undisclosed for intellectual property reasons". In my opinion, this is totally unacceptable. This is an academic research publication. If the authors wish to present data, they must do so in a manner that allows a reader to assess their significance; in the case of work with small molecules that includes the chemical structure. In my opinion, the authors should either describe the compound fully or remove mention of it altogether.

      We are unable to describe “FMP-1” because its identity has not been disclosed to us. The academic donor of this molecule informed us that they were not able to permit release of any details of its structure or general structural class due to an emerging commercial interest.

      We mentioned FMP-1 simply to highlight the fact that the screening campaign yielded more than one inhibitor. FMP-1 was also of interest due its complete inhibition of PDXP phosphatase activity.

      Because the structure of this molecule is unknown to us, we have now removed any mention of this compound in the manuscript. For the same reason, we have removed the mention of the inhibitor hits “FMP-2” and “FMP-3” in Figure 2 – figure supplement 1 and Figure 2 – figure supplement 2. The number of PDXP inhibitor hits in the manuscript has been adapted accordingly.

      Page 7: The observed plateau at 50% inhibition requires further explanation. It is not clear how poor solubility of the compound explains this observation. For example, the authors state that "due to the aforementioned poor solubility of 7,8DHF, concentrations higher than 12.5µM could not be evaluated". Yet on page 8, they describe assays against the specificity panel at concentrations of compound up to 40µM. Do the analogues of 7,8DHF (Fig 2b) result in >50% inhibition at higher concentrations? Further explanation and data on the solubility of the compounds would be of benefit.

      We currently do not have a satisfactory explanation for the apparent plateau of ~50% PDXP inhibition by 7,8-DHF. Resolving this question will likely require other approaches, including computational chemistry such as molecular dynamics simulations, and we feel that this is beyond the scope of the present manuscript.

      We previously speculated that the limited solubility of 7,8-DHF may counteract a complete enzyme inhibition if higher concentrations of this molecule are required. Specifically, we referred to Todd et al. who have performed HPLC-UV-based solubility assays of 7,8-DHF (ref. 35). These authors found that immediately after 7,8-DHF solubilization, nominal 7,8-DHF concentrations of 5, 20 or 50 µM resulted in 0.5, 3.0 or 13 µM of 7,8-DHF in solution of (i.e., 10, 15 or 26% of the respective nominal concentration). Seven hours later, 46, 26 or 26% of the respective nominal 7,8-DHF concentrations were found in solution. Hence, above a nominal concentration of 5 µM, 7,8-DHF solubility does not increase linearly with the input concentration, but plateaus at ~20% of the nominal concentration. This phenomenon could potentially contribute to the apparent plateau of human or murine PDXP inhibition by 7,8-DHF in vitro.

      However, experiments performed during the revision of our manuscript show that they HAD phosphatase NT5C1A can be effectively inhibited by 7,8-DHF with an IC50-value of 10 µM (see revised Fig. 2). Together with the fact that the activity of the PDXP-Asn61Ser variant can be completely inhibited by 7,8-DHF (see Fig. 3d), we conclude that the reason for the observed plateau of PDXP inhibition is likely to be primarily structural, with Asn61 impeding 7,8-DHF binding. We have therefore removed the mention of the limited solubility of 7,8-DHF here. On p.14, we now say: “These data also suggest that Asn61 contributes to the limited efficacy of 7,8-mediated PDXP inhibition in vitro.”

      The solubility of 7,8-DHF is dependent on the specific assay and buffer conditions. In BLI experiments, interference patterns caused by binding of 7,8-DHF in solution to biotinylated PDXP immobilized on the biosensor surface are measured. In phosphatase selectivity assays, phosphatases are in solution, and the effect of 7,8-DHF on the phosphatase activity is measured via the quantification of free inorganic phosphate.

      In BLI experiments, we observed that the sensorgrams obtained with the highest tested 7,8-DHF concentration (25 µM) showed the same curve shapes as the sensorgrams obtained with 12.5 µM 7,8-DHF. This contrasts with the expected steeper slope of the curves at 25 µM vs. 12.5 µM 7,8-DHF. The same behavior was observed for the reference sensors (i.e., the SSA sensors that were not loaded with PDXP, but incubated with 7,8-DHF at all employed concentrations for referencing against nonspecific binding of 7,8-DHF to the sensors). The sensorgrams at 25 µM 7,8-DHF were therefore not included in the analysis (this is now specified in the Materials and Methods BLI section on p.27). To clarify this point, we now state that “As a result of the poor solubility of the molecule, a saturation of the binding site was not experimentally accessible” (p.7).

      In contrast, the phosphatase selectivity assays described on p.8 could be performed with nominal 7,8-DHF concentrations of up to 40 µM. Although the effective 7,8-DHF concentration in solution is expected to be lower (see ref. 35 and discussed above), the limited solubility of 7,8-DHF in phosphatase assays does not prevent the quantification of free inorganic phosphate. Nevertheless, we cannot exclude some interference with this absorbance-based assay (e.g., due to turbidity caused by insoluble compound). Indeed, 5,6-dihydroxyflavone and 5,6,7-trihydroxyflavone caused an apparent increase in PDXP activity at concentrations above 10 µM (see Figure 2b), which may be related to compound solubility issues. Alternatively, these flavones may activate PDXP at higher concentrations.

      We have tested the 7,8-DHF analogue 3,7,8,4’-tetrahydroxyflavone at concentrations of 70 and 100 µM. At concentrations >100 µM, the DMSO concentration required for solubilizing the flavone interferes with PDXP activity. PDXP inhibition by 3,7,8,4’-tetrahydroxyflavone was slightly increased at 70 µM compared to 40 µM (by ~18%) but plateaued between 70 and 100 µM. These results are now mentioned in the text (p.7): “The efficacy of PDXP inhibition by 3,7,8,4’-tetrahydroxyflavone was not substantially increased at concentrations >40 µM (relative PDXP activity at 40 µM: 0.46 ± 0.05; at 70 µM: 0.38 ± 0.15; at 100 µM: 0.37 ± 0.09; data are mean values ± S.D. of n=6 experiments).”

      Page 9: The authors report that PDXP crystallizes as a homodimer in which 7,8DHF is bound only to one protomer. Is the second protomer active? Does that contribute to the 50% inhibition plateau? If Arg62 is mutated to break the salt bridge, does inhibition go beyond 50%?

      We have no way to measure the activity of the second, inhibitor-free protomer in murine PDXP. We know that PDXP functions as a constitutive homodimer, and based on our current understanding, both protomers are active. We have previously shown that the experimental monomerization of PDXP (upon introduction of two-point mutants in the dimerization interface) strongly reduces its phosphatase activity. Specifically, PDXP homodimerization is required for an inter-protomer interaction that mediates the proper positioning of the substrate specificity loop. Thus, homodimerization is necessary for effective substrate coordination and -dephosphorylation (PMID: 24338687).

      In the murine structure, we observed that 7,8-DHF binding to the second subunit (the B-protomer) is prevented by a salt bridge between Arg62 and Asp14 of a symmetry-related A-protomer in the crystal lace (i.e., this is not a salt bridge between Arg62 in the B-protomer and Asp14 in the A-protomer of a PDXP homodimer). As suggested, we have nevertheless tested the potential role of this salt bridge for the sensitivity of the PDXP homodimer to 7,8-DHF.

      The mutation of Arg62 is not suitable to answer this question, because this residue is involved in the coordination of 7,8-DHF (see Figure 3b), and the PDXP-Arg62Ala mutant is inhibitor resistant (see Figure 3d). We have therefore mutated Asp14, which is not involved in 7,8-DHF coordination. As shown in the new Figure 3 – figure supplement 1d, the 7,8-DHF-mediated inhibition of PDXPAsp14Ala again reached a plateau at ~50%. This result suggests that while an Arg62-Asp14 salt bridge is stabilized in the murine crystal, it is not a determinant of the active site accessibility of protomer B in solution.

      To address this important question further, we have now also generated co-crystals of human PDXP bound to 7,8-DHF, and refined two structures to 1.5 Å. We found that in human PDXP, both protomers bind 7,8-DHF. These new, higher resolution data are now shown in the revised Figure 3 and its figure supplements, and we have moved the panels referring to the previously reported murine PDXP structure to the Figure 3 – figure supplement 1. Thus, both protomers of human PDXP, but only one protomer of murine PDXP bind 7,8-DHF in the crystal structure, yet the 7,8-DHFmediated inhibition of human and murine PDXP plateaus at ~50% under the phosphatase assay conditions (see Figure 2a). We conclude that 7,8-DHF binding efficiency in the PDXP crystal does not necessarily reflect its inhibitory efficiency in solution.

      Taken together, these data indicate that the apparent partial inhibition of murine and human PDXP phosphatase activity by 7,8-DHF in our in vitro assays is not explained by an exclusive binding of 7,8DHF to just one protomer of the homodimer.

      Page 10-12; Is it possible to generate a mutant form of PDXP in which activity is maintained but inhibition is attenuated - an inhibitor-resistant mutant form of PDXP? Can such a mutant be used to assess on-target vs off-target effects of 7,8DHF in cells?

      This is an excellent point, and we agree with the Reviewer that such an approach would provide further evidence for cellular on-target activity of 7,8-DHF. Indeed, the verification of the PDXP-7,8DHF interaction sites has led to the generation of catalytically active, inhibitor-resistant PDXP mutants, such as Tyr146Ala and Glu148Ala (Fig. 3d). However, the biochemical analysis of such mutants in primary hippocampal neurons is a very difficult task.

      Primary hippocampal neurons are derived from pooled, isolated hippocampi of mouse embryos and are subsequently differentiated for 21 days in vitro. The resulting cellular yield is typically low and variable, and the viability (and contamination of the respective cultures with e.g. glial cells) varies from batch to batch. Although such cell preparations are suitable for electrophysiological or immunocytochemical experiments, they are far from ideal for biochemical studies. A meaningful experiment would require the efficient expression of a catalytically active, but inhibitor-resistant PDXP-mutant in PDXP-KO neurons. In parallel, PDXP-KO cells reconstituted with PDXP-WT (at phosphatase activity levels comparable with the PDXP mutant cells) would be needed for comparison. Unfortunately, the generation of (a) sufficient numbers of (b) viable cells that (c) efficiently express (d) functionally comparable levels of PDXP-WT or -mutant for downstream analysis (PLP/PL-levels upon inhibitor treatment) is currently not possible for us.

      Human iPSC-derived (hippocampal) spheroids are at present no alternative, due to the necessity of generating PDXP-KO lines first, and the difficulties with transfecting/transducing them. Such a system would require extensive validation. We have attempted to use SH-SY5Y cells (a metastatic neuroblastoma cell line), but PDXK expression in these cells is modest and they produce too little PLP. We therefore feel that this question is beyond the scope of our current study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      The evolution of non-shivering thermogenesis is of fundamental importance to understand. Here, in small mammals, the contractile apparatus of the muscle is shown to increase energy expenditure upon a drop in ambient temperature. Additionally, in the state of torpor, small hibernators did not show an increase in energy expenditure under the same challenge.

      Strengths:

      The authors have conducted a very well-planned study that has sampled the muscles of large and small hibernators from two continents. Multiple approaches were then used to identify the state of the contractile apparatus, and its energy expenditure under torpor or otherwise.

      Weaknesses:

      There was only one site of biopsy from the animals used (leg). It would be interesting to know if non-shivering thermogenesis is something that is regionally different in the animal, given the core body and distal limbs have different temperatures.

      We thank the reviewer for their time and effort in reviewing our manuscript. Furthermore, we agree that it would be of interest to perform similar experiments upon different muscle sites in these animals. This is of particular interest as in some mammals, such as mice, distal limbs do not shiver and therefore non-shivering thermogenesis may play a more prominent role in heat regulation. A paper from Aydin et al., demonstrated that when shivering muscles (soleus) were prevented undergoing non-shivering thermogenesis via knock-out of UCP1 and were then exposed to cold temperatures, the force production of these muscles was significantly reduced due to prolonged shivering [1]. These results do suggest that even in shivering muscle, non-shivering thermogenesis plays a key role in the generation of heat for survival and for the maintenance of muscle performance. Furthermore, there is evidence from garden dormice that muscle temperature during torpor is slightly warmer than abdominal temperature and slighter cooler that heart temperature which is 7-8°C than abdominal suggesting the existence of non-shivering thermogenesis in skeletal and cardiac muscles (Giroud et al. in prep) [2]. We have added this information and reference into our discussion to reflect this important point (Discussion, paragraph 6, “As the biopsies which were used…”).

      Reviewer #2:

      Summary:

      The authors utilized (permeabilized) fibers from muscle samples obtained from brown and black bears, squirrels, and Garden dormice, to provide interesting and valuable data regarding changes in myosin conformational states and energetics during hibernation and different types of activity in summer and winter. Assuming that myosin structure is similar between species then its role as a regulator of metabolism would be similar and not different, yet the data reveal some interesting and perplexing differences between the selected hibernating species.

      Strengths:

      The experiments on the permeabilized fibers are complementary, sophisticated, and well-performed, providing new information regarding the characteristics of skeletal muscle fibers between selected hibernating mammalian species under different conditions (summer, interarousal, and winter).

      The studies involve complementary assessments of muscle fiber biochemistry, sarcomeric structure using X-ray diffraction, and proteomic analyses of posttranslational modifications.

      Weaknesses:

      It would be helpful to put these findings on permeabilized fibers into context with the other anatomical/metabolic differences between the species to determine the relative contribution of myosin energetics (with these other contributors) to overall metabolism in these different species, including factors such as fat volume/distribution.

      We thank the reviewer for the time and effort they have put into reviewing our paper and are grateful for the helpful suggestions which we believe, enhances our work (please see below for detailed answers to critics).

      Reviewer #3:

      Summary and strengths:

      The manuscript, "Remodelling of skeletal muscle myosin metabolic states in hibernating mammals", by Lewis et al, investigates whether myosin ATP activity may differ between states of hibernation and activity in both large and small mammals. The study interrogates (primarily) permeabilized muscle strips or myofibrils using several state-of-the-art assays, including the mant-ATP assay to investigate ATP utilization of myosin, X-ray diffraction of muscles, proteomics studies, metabolic tests, and computational simulations. The overall data suggests that ATP utilization of myosin during hibernation is different than in active conditions.

      A clear strength of this study is the use of multiple animals that utilize two different states of hibernation or torpor. Two large animal hibernators (Eurasian Brown Bear, American Black Bear) represent large animal hibernators that typically undergo prolonged hibernation. Two small animal hibernators (Garden Dormouse, 13 Lined Ground Squirrel) undergo torpor with more substantial reductions in heart rate and body temperature, but whose torpor bouts are interrupted by short arousals that bring the animals back to near-summer-like metabolic conditions.

      Especially interesting, the investigators analyze the impact that body temperature may have on myosin ATP utilization by performing assays at two different temperatures (8 and 20 degrees C, in 13 Lined Ground Squirrels).

      The multiple assays utilized provide a more comprehensive set of methods with which to test their hypothesis that muscle myosins change their metabolic efficiency during hibernation.

      We thank this reviewer for the effort and time they have put into carefully reviewing our manuscript and have taken on board their valuable suggestions to improve our manuscript (please see below for detailed answers to critics).

      Suggestions and potential weaknesses:

      While the samples and assays provide a robust and comprehensive coverage of metabolic needs and testing, the data is less categorical. Some of these may be dependent on sample size or statistical analysis while others may be dependent on interpretation.

      (1) Statistical Analysis

      (1a) The results of this study often cannot be assessed properly due to a lack of clarity in the statistical tests.

      For example, the results related to the large animal hibernators (Figure 1) do not describe the statistical test (in the text of the results, methods, or figure legends). (Similarly for figure 6 and Supplemental Figure 1). Further, it is not clear whether or when the analysis was performed with paired samples. As the methods described, it appears that the Eurasian Brown Bear data should be paired per animal.

      We thank the reviewer for these important points and have added information upon the statistical tests used where previously missing in each figure legend. Details on the statistical testing used for figure 6 are listed in the methods section, paragraph 18, “All statistical analysis of TMT derived protein expression data…”

      (1b) The statistical methods state that non-parametric testing was utilized "where data was unevenly distributed". Please clarify when this was used.

      We have now clariid all statistical tests used in the figure legends.

      (1c) While there are two different myosin isoforms, the isoform may be considered a factor. It is unclear why a one-way ANOVA is generally used for most of the mant-ATP chase data.

      The reviewer is right, in our analysis, we haven’t considered ‘myosin isoforms’ as a factor. One of the main reasons for that is because we have decided to treat fibres expressing different myosin heavy chain isoforms as totally separated entities (not interconnected).

      (1d) While the technical replicates on studies such as the mant-ATP chase assay are well done, the total biological replicates are small. A consideration of the sample power should be included.

      Unfortunately, obtaining additional biological samples from these unique species is challenging. Hence, we have added a statement in the Discussion section. This statement focuses on the potential benefits of increasing sample size to increase statistical power (Discussion, paragraph 2, “In contrast to our study hypothesis…”

      (1e) An analysis of the biological vs statistical significance should be considered, especially for the mant-ATP chase data from the American Black Bear, where there appear to be shifts between the summer and winter data.

      We agree that it is important to be careful when drawing conclusions from data only based on p-values. We agree that the modest differences observed in these data on American Black bear, whilst not significant, are worth noting and we have added these considerations into the manuscript (Discussion, paragraph 2, “In contrast to our study hypothesis…).

      (2) Consistency of DRX/SRX data.

      (2a) The investigators performed both mant-ATP chase and x-ray diffraction studies to investigate whether myosin heads are in an "on" or "off" state. The results of these two studies do not appear to be fully consistent with each other, which should not be a surprise. The recent work of Mohran et al (PMID 38103642) suggests that the mant-ATP-predicted SRX:DRX proportions are inconsistent with the position of the myosin heads. The discussion appears to lack a detailed assessment of this prior work and lack a substantive assessment contrasting the differing results of the two assays in the current study. i.e. why the current study's mant-ATP chase and x-ray diffraction results differ.

      Prior works on skeletal muscle (observing discrepancies between Mant-ATP chase assay and X-ray diffraction) are rather scarce. Adding a comprehensive discussion about this may be beyond the scope of current study and would distract the reader from the main topic. For this reason, we have not added any section. Note that, we have other manuscripts in preparation that are specifically dedicated to the discrepancy.

      (2b) The discussion of the current study's x-ray diffraction data relating to the I_1,1/I_1,0 ratio and how substantially different this is to the M6 results merits discussion. i.e. how can myosin both be more primed to contract during IBA versus torpor (according to intensity ratio), but also have less mass near the thick filament (M6).

      The I1,1/I1,0 ratio indicates a subtle mass shift towards the myosin thick filament whilst the M6 spacing shows a more compliant thick filament. These results are not incompatible and rely on interpretation of the X-ray diffraction patterns. To avoid any confusion and avoid distracting the reader from the main topic, we have decided not to speculate there.

      (3) Possible interactions with Heat Shock Proteins

      Heat Shock Proteins (HSPs), such as HSP70, have been shown to be differential during torpor vs active states. A brief search of HSP and myosin reveals HPSs related to thick filament assembly and Heat Shock Cognate 70 interacting with myosin binding protein C. Especially given the author's discussion of protein stability and the potential interaction with myosin binding protein C and the SRX state, the limitation of not assessing HSPs should be discussed. (While HSP's relation to thick filament assembly might conceivably modify the interpretation of the M3 x-ray diffraction results, this reviewer acknowledges that possibility as a leap.)

      The reviewer raises an interesting and potentially important of the potential impact of HSP and their interaction with the thick filament during hibernation. We have added a section into the discussion of this manuscript regarding this, with particular impact upon the HSP70 acting as a chaperone for myosin binding protein, however we feel that it is important to point out that HSPs have only been shown to interact with MYBPC3, a cardiac isoform of this protein which is not present in skeletal muscle [3]. (Discussion, paragraph 5, “Of potential further interest to the regulation of myosin…”).

      Despite the above substantial concerns/weaknesses, this reviewer believes that this manuscript represents a valuable data set.

      Other comments related to interpretation:

      (4) The authors briefly mention the study by Toepfer et al [Ref 25] and that it utilizes cardiac muscles. There would benefit from increased discussion regarding the possible differences in energetics between cardiac and skeletal muscle in these states.

      As this manuscript focuses solely on skeletal muscle. We believe that introducing comparisons between cardiac and skeletal muscles would confuse the reader. These types of muscles have very different regulations of SRX/DRX as an example. Note that we are preparing a manuscript focusing on cardiac muscle and hibernation.

      (5) The author's analysis of temperature is somewhat limited.

      (5a) First, the authors use 20 degrees C (room temperature), not 37 degrees C, a more physiologic body temperature for large mammals. While it is true that limbs are likely at a lower temperature, 20 degrees C seems substantially outside of a normal range. Thus, temperature differences may have been minimized by the author's protocol.

      The authors agree that the experimental set up to perform these single fiber studies at slightly higher temperatures may have been more beneficial to replicate the physiological conditions of these hind leg muscle in the analyzed animals. However, previous work has shown that the resting myosin dynamics are in fact stable at temperatures between 20-30 degrees Celsius in type I, type II and cardiac mammalian muscle fibers [4].

      (5b) Second, the authors discuss the possibility of myosin contributing to non-shivering thermogenesis. The magnitude of this impact should be discussed. The suggestion of myosin ATP utilization also implies that there is some basal muscle tone (contraction), as the myosin ATPase utilizes ATP to release from actin, before binding and hydrolyzing again. Evidence of this tone should be discussed.

      The reviewer is raising an interesting point and it would indeed be interesting to assess the magnitude of the impact and whether a basal muscle tone exists. Assessing the magnitude of the impact, is not an easy task and would require very advanced simulations which we are not experts in unfortunately. As for basal muscle tone, this is difficult to say as myosin is not actually binding to actin but hydrolyzing ATP at a faster pace during hibernation. We then think that the relation between our data and basal muscle tone is unclear. Hence, we have decided not to discuss these points in the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting paper. I have some minor suggestions to help improve it.

      Is there any way to estimate the contribution of contractile apparatus to energy expenditure in reference to what is being generated at SERCA in the resting muscle under the various states examined?

      This is an interesting idea however, as far as we know, this would be challenging experimentally (in the hibernating mammals) and difficult to achieve in a reliable manner.

      It is important to emphasize that while BAT has been traditionally seen to be the site of NST, the skeletal muscle is very important, especially in large mammals, where BAT is going to be a very small % of the body and unlikely to be able to adequately provide heat. The addition of the contractile apparatus to SERCA as a heat generator at rest is very important -- also, the activation of ryanodine receptor Ca2+ to increase the local [Ca2+] at SERCA to generate heat has also recently been shown and should be mentioned (Meizoso-Huesca et al 2022, PNAS; Singh et al 2023, PNAS) alongside the work of Bal et al 2012 etc...

      We have included these mechanisms and references into the manuscript discussion [5, 6]. Discussion, paragraph 4, “A critical difference between the large hibernators…”

      Are you able to report the likely proportion of type II fibers in the muscles you have sampled?

      The fiber type breakdown for all animals used in this study is reported in supplementary table 1.

      The sampling of muscle from the legs of live animals is sensible and convenient. Is it possible different muscles in the body have different levels of NST, changes in energy expenditure in torpor, and other states?

      As discussed in the public review we have added to the discussion of this manuscript to reflect upon this important point of potentially different results from different muscle sites in these animals.

      Reviewer #2 (Recommendations For The Authors):

      Is it likely that the proportion of fast and slow myosin-heavy chains within the selected sample of myofibers from the different mammals contributes to the overall differences in the energetics of different conformational states? In living animals, how does the relative contribution of the energetics from different muscle fiber types compare with the contribution from other organs to the overall regulation of metabolism during activities in summer, winter, or periods of intermittent arousal?

      Fiber types in mammals can be vastly different between species as well as having a considerable amount of plasticity to change within each species upon specific stimuli. Furthermore, some mammals also have specific myosin heavy chain isoforms which have considerable expression, for example, myosin heavy chain 2B which is expressed in rodents such as mice but not larger mammals such as humans.

      In the manuscript, we demonstrate that there is no significant change in the ATP usage by myosin in resting muscle in any of the species which we examined (Fig 1 F, L; Fig 2 E, J). The relatively high mitochondrial density of type I fibers when compared to type II fibers may contribute to a higher overall requirement of energy storage primarily via lipid oxidation. However, mitochondrial respiration is heavily suppressed during hibernation, so questions remain over the overall energy demand in hibernating muscle beyond myosin [7]. The fact that myosin ATP demand is relatively preserved in hibernating muscle suggests that skeletal muscle may be a relatively energy-demanding organ even during hibernation, we speculate in the manuscript this may be due to the requirement of maintaining muscular tone and function during this period of prolonged immobilization. This may be of relevance when one considers the almost complete shutdown of organs involved with food intake and breakdown such as the stomach and liver during hibernation. Furthermore, heart rate and breathing rates are vastly suppressed. Altogether, whilst is it difficult at this point to make an accurate estimate of energy demands between the different organs of hibernators, our data points to skeletal muscle to be a relatively high energy demand organ during these periods. When considering the difference between fiber type, again our data suggests that both type I and type II fibers have relatively similar energy demands during hibernation.

      The supplementary data are quite revealing as to how the myosin isoform composition is stable in some species but highly plastic in others in response to the same environmental/metabolic challenges. Why is the myosin heavy chain isoform (I and II) composition stable for brown bears but not for black bears between summer and winter? This is very interesting. For the Ground squirrel, there is remarkable plasticity between myosin heavy chain isoforms ( I and II) between summer, interbout arousal, and torpor. Yet in the Garden Dormouse, the myosin heavy chain isoform (I and II) composition is stable between these three activity states. The inconsistencies between and within species are perplexing and worthy of closer interrogation.

      The measurements and role of myosin energetics in different conformational states are interesting but need to be explained in context with other metabolic regulators for these hibernating mammals, especially because some species show remarkable plasticity whereas others show remarkable stability. For example, compare brown and black bears which show differences in the response of myosin composition the activity, interbout arousal, and torpor. Ground squirrels show remarkable plasticity in myosin isoform composition between activity states (and likely metabolic differences), but the Garden Dormouse has a remarkably stable myosin isoform composition during the three metabolic/environmental challenges. What mechanisms facilitate these modifications in some but not other mammals, even those of similar size? The differences are very interesting, worthy of follow-up, and may well contribute to further understanding the significance of the energetics of different myosin conformational states.

      We agree that the changes seen between these species are very interesting and worthy of further investigation. What would be of further interest would be to look at methods which would allow for even deeper phenotyping, such as single fiber proteomics, to allow for the assessment of the percentage of hybrid fibers and fibers undergoing any fiber type switch during hibernating periods. Our results do observe a modest, albeit not significant, increase in the number of type I muscle fibers in 13-lined ground squirrels and Garden dormice during torpor which is consistent with previous studies[8]. Previous studies have demonstrated that lower temperatures may promote a shift towards more oxidative type I muscle fibers in mammals[9]. This could be an explanation for why we see this specifically in the smaller hibernators, however as we demonstrate and discuss, these lower temperatures are vital for the survival of these smaller mammals during hibernation so it would be inconsistent to hypothesize that these shifts are for heat-production purposes. Further studies are warranted to understand the relevance of these shifts further, particularly those with a higher sample size. It would also be on interest to examine fiber type percentages during the progression these long hibernating periods to observe if these changes are progressive.

      As for the triggers and mechanisms which facilitate these changes to myosin dynamics, this is of current investigation by the field. One which may be of particular relevance to the changes seen during hibernation would that of steroid hormones previous research has demonstrated that steroid hormone levels in make and female bears change differentially[10]. This may be of relevance as the steroid hormone estradiol has been shown to slow the resting myosin ATP turnover via the binding of myosin RLC[11]. Considering these studies, future work which looks at hibernating animals of each sex as different groups may be fruitful.

      Reviewer #3 (Recommendations For The Authors):

      i. PDF Pg 8- Results- 'Myosin temperature sensitivity is lost in relaxed skeletal muscles fibers of hibernating Ictidomys tridecemlineatus.': An extra comma appears to be placed between "temperature, decrease".

      ii. PDF Pg 9- Results- 'Hyper-phosphorylation of Myh2 predictably stabilizes myosin backbone in hibernating Ictidomys tridecemlineatus.' (last paragraph): A parenthesis needs to be closed upon the first reference to "supplemental figures 2 and 3".

      iii. PDF Pg 15- Methods- 'Samples collection and cryo-preservation'- The authors use the term "individuals" in the 2nd line. Consider using "subjects".

      iv. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (2nd paragraph)- define "subadult" in approximate months or years.

      v. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (2nd paragraph)- The authors state that brown bears were located in "February and again ... in late June". Was this order of operations always held? If so, a comment about how the potential ageing from the hibernation (especially if sub-adult transitions to adulthood in this period) should be included.

      All samples were collected during the subadult period of the lifespan of each bear and therefore we do not think that there would be a potential aging affect observed considering the lifespan of this species to be 20-30 years.

      vi. PDF Pg 15- Methods- 'Samples collection and cryo-preservation' (3rd paragraph)- The justification for deprivation of feeding of black bears 24 hours prior to euthanasia should be included. A comment on how this might impact post-translational modifications or gene expression should be included.

      Animals are starved prior to prevent aspiration during euthanasia. Considering these samples are to be compared to animals which have not consumed food or water for five months the impact relative impact on PTMs and gene expression would be considered negligible.

      vii. PDF Pg 17- Methods- 'Mant-ATP chase experiments' (just after normalized fluorescence equation): The "Where" may be lowercase.

      viii. PDF Pg 17- Methods- 'Mant-ATP chase experiments' (last paragraph): The protocol for myosin staining, along with the antibody identification (source, catalog number) should be included.

      ix. PDF Pg 18- Methods- 'Post-translational Modification Peptide mapping': Define the makeup of the acrylamide gel and/or the source and catalog number.

      x. PDF Pg 18- Methods- 'Post-translational Modification Peptide mapping': The authors state that "Gel bands were washed..." Please specify which protein bands and if multiple bands (i.e. multiple isoforms) were isolated.

      We thank this reviewer for their careful reading of our manuscript, we have made the changes above as relevant.

      Reference list

      (1) Aydin, J., et al., Nonshivering thermogenesis protects against defective calcium handling in muscle. Faseb j, 2008. 22(11): p. 3919-24.

      (2) Stickler, S., Regional body temperatures and fatty acid compositions in hibernating garden dormice: a focus on cardiac adaptions. 2022, Vienna: Vienna. p. v, 49 Seiten, Illustrationen.

      (3) Glazier, A.A., et al., HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight, 2018. 3(11).

      (4) Walklate, J., et al., Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. Journal of Biological Chemistry, 2022. 298(3).

      (5) Meizoso-Huesca, A., et al., Ca<sup>2+</sup> leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. Proceedings of the National Academy of Sciences, 2022. 119(4): p. e2119203119.

      (6) Singh, D.P., et al., Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals. Proceedings of the National Academy of Sciences, 2023. 120(4): p. e2117503120.

      (7) Staples, J.F., K.E. Mathers, and B.M. Duffy, Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology, 2022. 37(5): p. 260-271.

      (8) Xu, R., et al., Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol, 2013. 247: p. 392-401.

      (9) Yu, J., et al., Effects of Cold Exposure on Performance and Skeletal Muscle Fiber in Weaned Piglets. Animals (Basel), 2021. 11(7).

      (10) Frøbert, A.M., et al., Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats. Physiol Biochem Zool, 2022. 95(5): p. 365-378.

      (11) Colson, B.A., et al., The myosin super-relaxed state is disrupted by estradiol deficiency. Biochemical and biophysical research communications, 2015. 456(1): p. 151-155.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review): Weaknesses:

      However, the molecular mechanisms leading to NPC dysfunction and the cellular consequences of resulting compartmentalization defects are not as thoroughly explored. Results from complementary key experiments using western blot analysis are less impressive than microscopy data and do not show the same level of reduction. The antibodies recognizing multiple nucleoporins (RL1 and Mab414) could have been used to identify specific nucleoporins that are most affected, while the selection of Nup98 and Nup107 is not well explained.

      The results for the Western blots are less impressive than single nuclei imaging analysis because the protocol for isolating brain nuclei is heterogeneous and includes non-neuronal cells. For this reason, we selected specific nucleoporins for Western blot studies to complement the nonspecificity of pan-NPC antibodies for which the detection is based on the glycosylated moieties. We reasoned that a combination of pan-NPC and select NUPs will give the strongest complementary validation for the mutant phenotype. We have discussed the rationale of NUP selection in discussion. In brief, we selected NUP107 as it is a major component of the Yscaffold complex and is a long-lived subunit of the NPCs (Boehmer et al., 2003; D'Angelo et al., 2009). NUP98 is a mobile nucleoporin and is associated with the central pore, nuclear basket and cytoplasmic filaments. Both NUPs have been implicated in degenerative disorders. (Eftekharzadeh et al., 2018; Wu et al., 2001).

      There is also no clear hypothesis on how Aβ pathology may affect nucleoporin levels and NPC function. All functional NCT experiments are based on reporters or dyes, although one would expect widespread mislocalization of endogenous proteins, likely affecting many cellular pathways.

      We agree that the interaction between Aβ pathology and the NPC remains a work in progress. We decided to rigorously characterize Aβ-mediated deficits in App KI neurons – using different approaches and in more than one animal model – before moving on to explore mechanisms in subsequent studies, which we think deserves more extensive experiments. We seek your understanding and have included in the discussion, possible mechanisms for direct and indirect Aβ-mediated disruption of NPCs. We have also included an additional study to show the disruption in the localization of an endogenous nucleocytoplasmic protein – CRTC1 (cAMP Regulated Transcriptional Coactivator), which is CREB coactivator responsive to neural activity. We observed under basal and also in tetrodotoxin-silenced conditions, there is much higher CRTC1 in the nucleus in App KI neurons relative to WT. This reflects the compromised permeability barrier that we observed via FRAP studies. (Supplementary Figure S15).

      The second part of this manuscript reports that in App KI neurons, disruption in the permeability barrier and nucleocytoplasmic transport may enhance activation of key components of the necrosome complex that include receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain1 like (MLKL) protein, resulting in an increase in TNFα-induced necroptosis. While this is of potential interest, it is not well integrated in the study. This potential disease pathway is not shown in the very simple schematic (Fig. 8) and is barely mentioned in the Discussion section, although it would deserve a more thorough examination.

      The study of necroptosis is meant to showcase a single cellular pathway that requires nucleocytoplasmic transport for activation that is compromised and is relevant for AD. We agree there is much more to explore in this pathway but feel is outside the scope of this study. We have included a new illustration that models how damage to NPCs and permeability barrier results in enhanced vulnerability of App KI neurons for necroptosis (Supplemental figure S12).

      Reviewer #2 (Public Review):

      (1) Adding statistics and comparisons between wild-type changes at different times/ages to determine if the nuclear pore changes with time in wild-type neurons. The images show differences in the Nuclear pore in neurons from the wild-type mice, with time in culture and age. However, a rigorous statistical analysis is lacking to address the impact of age/development on NUP function. Although the authors state that nuclear pore transport is reported to be altered in normal brain aging, the authors either did not design their experiments to account for the normal aging mechanisms or overlooked the analysis of their data in this light.

      All our quantifications and statistical comparisons in neuron cocultures are time-matched between WT and App KI neurons, and thus independent of age and maturity of the neurons in culture. The accelerated loss of NUP expression is evident across all time groups. However, we cannot compare across age groups in cultured neurons as the time-matched WT and App KI samples for each time point were processed and imaged separately as neurons matured over time (Fig. 1B-C). An experiment must be done simultaneously across all age groups to compare agerelated effects for WT and App KI neurons in order to account for time-dependent changes. Given the unique challenges of studying “aging” in culture systems, we opted to be more conservative in our interpretation of the results and as such, we were careful to describe the accelerated nuclear pore deficits in App KI neurons relative to time-matched WT expression and speculate its relationship to normal brain aging only in the discussion section. We seek your understanding in this matter. That said, we are able to capture the decline of the NPC in histology of brain sections and observed a statistically significant drop in WT NUP levels in animal sections across age groups where we quantified and compared the raw nuclear intensities from brain sections that were processed and imaged simultaneously across independent experiments (Fig. 1D-E). We have included a statement in the results section to highlight that point.

      (2) Add experiments to assess the contribution of wild-type beta-amyloid accumulation with aging. It was described in 2012 (Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. 2012. Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Mol Med 4:660-673, doi:10.1002/emmm.201200243) and 2021 (Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. 2021. Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J Cell Sci 134. doi:10.1242/jcs.255752), 28 DIV neurons are senescent and accumulate beta-amyloid42. In addition, beta-amyloid 42 accumulates normally in the human brain (Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C. 2015. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 138:1722-1737. doi:10.1093/brain/awv024), thus, it would be important to determine if it contributes to NUP dysfunction. Unfortunately, the authors tested the Abeta contribution at div14 when wild-type Abeta accumulation was undetected. It would enrich the paper and allow the authors to conclude about normal aging if additional experiments were performed, namely, treating 28Div neurons with DAPT and assessing if NUP is restored.

      Your point is well-noted. We are intrigued at the potential contribution of WT Aβ to the decline in NUPs and NPC but decided to focus on mutant Aβ for this manuscript. We have observed negligible MOAB2-positive Aβ signals in WT neurons across all age groups (data not shown) but acknowledge the potential contributions of aging toward a reduction in NPC function. Instead, we have included a section in the discussion to highlight the aging-related expression of Aβ in WT neurons and a subset of the citations above to indicate a possible link with normal decay of NPCs.

      Reviewer #3 (Public Review):

      Weaknesses:

      (1) It does not consider the relationship of the findings here to other published work on the intraneuronal perinuclear and nuclear accumulation of amyloid in other transgenic mouse models and in humans.

      We have updated the discussion to further elaborate on intraneuronal and perinuclear accumulation of amyloid and how that relates to our NPC phenotype.

      (2) It appears to presume that soluble, secreted Abeta is responsible for the effect rather than the insoluble amyloid fibrils.

      At present, our data cannot fully discount the role of fibrils or other forms of Aβ causing the NPC deficits, but our studies do show that external presence of Aβ (e.g. addition of synthetic oligomeric Aβ or App KI conditioned media) leads to intracellular accumulation and NPC dysfunction. We are aware that endogenous formation of fibrils could also contribute to the NPC dysfunction but refrained from drawing any conclusions without further studies. We have stated this in the discussion.

      (5) It is not clear when the alteration in NUP expression begins in the KI mice as there is no time at which there is no difference between NUP expression in KI and Wt and the earliest time shown is 2 months. If NUP expression is decreased from the earliest times at birth, then this makes the significance of the observation of the association with amyloid pathology less clear.

      The phenotype we observed early in neuronal cultures and in very young animals is subtle and in all our studies, the severity of the NUP phenotypes consistently correlates with elevated intracellular Aβ. We expect that by looking at earlier/younger neurons, the deficits will not be present. However, neurons before DIV7 are immature, and hence we chose not to include those in our observations. In animals, we observed Aβ expression in neuronal soma in young mice (2 mo.), but it is not clear when the deficits manifests and how early to look. While the NUP expression is reduced at an early stage, we speculate in discussion that cellular homeostatic mechanisms can compensate for any compromised nuclear functions and to maintain viability to the point where age-dependent degradation of cellular mechanisms will eventually lead to progression of AD.

      Reviewer #1 (Recommendations For The Authors):

      While the App KI model is suitable for modeling one key aspect of human AD, the use of the term "AD neurons" throughout the manuscript is misleading and should be avoided when describing experiments with "App KI neurons".

      Noted and corrected.

      The claim that Aβ pathology causes NPC dysfunction via reduced nucleoporin protein expression would be stronger if it was better supported by biochemical evidence based on western blots (WBs) to complement the strong microscopy data. The results shown in Figure 2H show a very weak effect compared to microscopy data that does not appear to match the quantification (e.g. Lamin-B1 staining appears reduced after 2 months in WB but not the graph). It is also not clear why nuclear fractionation is required. WB analyses with RL1 and MAB414 (that recognizes multiple FG-Nupsin ICCs and WBs) would help identify Nups that are most affected by Aβ pathology.

      The weaker Western blot results is due to the heterogeneity of the nuclei we isolated from the whole brain which includes non-neuronal cells. We reasoned that isolating the nuclear fraction would give us a cleaner Western blot with fewer background bands as the input lysate is more specific. We also decided to use antibodies against specific NUPs as a way to complement the pan-NPC antibodies that detect glycosylation-enriched epitopes in the nucleus. We reasoned that Western blot identification of individual subunits should provide complementary and stronger evidence for the reduction of NUPs at the peptide level. Overall, we used four different nuclear pore antibodies (RL1, Mab414, NUP98, NUP107) to demonstrate the same mutant phenotype in App KI neurons.

      While the observed NCT defects are discussed in detail, the authors do not present any potential mechanisms to be tested, how intracellular Aβ may impact NPCs. Does Aβ pathology affect nucleoporin expression or stability?

      We have observed the presence of Aβ adjacent to the nuclear membrane and also in the cytosol via high resolution confocal microscopy (Supplementary Figure S14). Our primary goal in this paper is to provide convincing evidence – using different assays and in more than one mouse model – for the reduction of NUPs and lower NPC counts. We feel mechanistic details of Aβdriven NPC disruption requires more extensive experimentation more suitable for subsequent publications.

      The very simple schematic just represents the loss of compartmentalization, without illustrating more complex concepts. It would also be improved by representing the outer and inner nuclear membrane fusing around the NPCs with a much wider perinuclear space between the membranes. As shown now, the nuclear envelope almost looks like a single membrane, while >60kDa proteins are shown at a similar size as the 125MDa NPC.

      We have updated the illustration along with a new schematic for necroptosis (Supplementary Figure S12). We have refrained from giving specific details of the damage to the nuclear pore complex because it is not yet clear the nature of these deficits.

      Misspelling of "Hoechst" as "Hochest" in several figures (Fig. 1, 2, S5, S7).

      Noted and corrected

      Reviewer #2 (Recommendations For The Authors):

      (1) Additional data analysis is required concerning the wild-type controls. The figures show clear differences in the wild-type neurons with time in culture (referring to figures 1A, 1B, 1C; 2A, 2B, 2C, 2D,6E, 6F, 6G, s4) and in different ages (2E, 2F, 2G, 5B, 5C, 5D). The data analysis is shown for knockin vs the time-matched wild-type condition. The effect of time in wild-type neurons/mice should also be analyzed. All the data is suggested to be normalized to 7 DIV/2month wild-type neurons/mice. Were these experiments done with different time points of the same culture? This would be the best to conclude on the effect of time.

      We have noted a decline of NUPs in WT neurons over time in primary cultures and in animal sections. This is not surprising since the NPC and nuclear signaling pathways deteriorate with age (Liu and Hetzer, 2022; Mertens et al., 2015). However, we are unable to do a direct comparison across age groups in cultured neurons as the time-matched WT and App KI neuronal samples for each time point were processed and imaged separately as neurons matured over time (Fig. 1B-C). Hence, we perform statistical analysis for each time-matched WT and App KI neurons. To be clear, multiple independent experiments across different cultures were performed at each time point. Given the inherent challenges of studying aging in culture systems, we opted to be more conservative in our interpretation of the results and as such, we were careful to describe the accelerated nuclear pore deficits in App KI neurons relative to WT levels without inferring the effect of time and speculate its relationship to normal brain aging only in the discussion section. That said, we are able to capture the decline of the nuclear pore complex across different age groups in histology of brain sections where we observed a drop in WT NUP levels in animal sections when we quantified and compared the raw nuclear intensities from brain sections that were processed and imaged simultaneously across independent experiments (Fig. 1D-E).

      Similarly, in Figure 2H, why aren't 2 months compared with 14 months? Why were these ages chosen? 2 months is a young adult, and 14 months is a middle-aged adult. To conclude, aging should have included an age between 18 and 24 months old.

      As with cultures, we isolated age-matched WT and App KI animals separately. We chose 2 to 14 months as they represent young and middle-aged adults as we wanted to showcase the nuclear pore deficits induced by the presence of Aβ without drawing a conclusion on the effects of age or time. That said, we do show histology of brain sections at 18 months of age with individual NUPs. We agree that the temporal aspects of NPC loss in WT neurons is interesting, however, given our experimental parameters, we cannot draw conclusions across different age groups at the moment.

      In Figure 3, statistics between wild type should have been included.

      Similar to the above comment, samples were processed and imaged independently across different groups, hence we cannot compare the datapoints across time.

      (4) Additional quantification: The intensity of MOAB2 at 2 and 13 months should be measured as in Figure 3C.

      Intracellular Aβ signal in 2-mo. old App KI mice is diffuse throughout the soma but in older animals, they are punctate. This observation was similarly described by Lord et al. for tgAPPArcSwe mice (Lord et al., 2006). We have included a confocal micrograph of MOAB-2 immunocytochemistry of a 13-mo. App KI brain section in supplemental figures (Supplementary Figure S13). We found it challenging to differentiate whether the signal is localized intracellularly or as an extracellular aggregate. Regardless, the differences in the quality and uneven distribution of Aβ signal makes any direct comparison of soma intensity across the different age groups harder to interpret in the context of the mutant phenotype.

      (5) Additional experiments: Because primary neurons differentiate, mature, and age with time in culture, they are required to control for the developmental stage of your cultures. Analyzing neuronal markers such as doublecortin for neuronal precursors, MAP2 (or Tau) for dendritic/axonal maturation, synapsin for synaptic maturation, and accumulation of senescenceassociated beta-galactosidase (SA-Beta-Gal) as an aging marker.

      As part of the maintenance of cultures, we stain cultures for axodendritic markers (e.g. MAP2), glial cell distribution (e.g GFAP) and excitatory vs. inhibitory neuronal subpopulations (e.g. Gad65) and synaptic markers (e.g. PSD95) to ensure that growth, survival and viability of neurons are not compromised (data not shown). These markers for maturity are routinely tracked to ensure proper development. We also test the health of the cultures (e.g. apoptosis, necrosis) and to look for cytoskeletal disruption or fragmentation for neuronal processes.

      (6) Additional methods: The quantification of Abeta intensity in Figure 3 is not clearly explained in the methods. Was the intensity measured per field, per cell body?

      The quantifications for Aβ are done for each MAP2-positive cell body and have included that statement in the methods.

      (7) Missing in discussion integration and references to these papers:

      a. Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy JR, Gonçalves JT, Toda T, Kim Y, Winkler J, Yao J, Hetzer MW, Gage FH. 2015. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell 17:705-718. doi:10.1016/j.stem.2015.09.001

      b. Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M, Berezovska O, Muñoz FJ, Dotti CG, De Strooper B. 2012. Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease. EMBO Mol Med 4:660-673. doi:10.1002/emmm.201200243

      c. Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. 2021. Upregulation of APP endocytosis by neuronal aging drives amyloid-dependent synapse loss. J Cell Sci 134. doi:10.1242/jcs.255752),

      Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 138:1722-1737. doi:10.1093/brain/awv024).

      We have cited a subset of the papers in the discussion section and also expanded the discussion to include the possibility of time-dependent changes for Aβ expression in WT neurons.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments:

      (1) Fig. 1D,E. Fig. 2E, F. This shows the change in NUP IR with time for the APP-KI, but there is also a difference between Wt and KI from the earliest time shown. How early is this difference apparent? From birth? The study should go back to the earliest time possible as the timing of the staining for NUP is important to correlate this with other events of intraneuronal Abeta and amyloid IR. Is the difference between 4 and 7-month ko mice in Figures 2G and 2F statistically significant? If not, perhaps we need a larger N to determine the timing accurately.

      The point is well taken. We have not examined the WT and App KI brains before 2-mo. of age. At this early time point, the extracellular amyloid deposits are very low but intracellular Aβ can be readily detected in neuronal soma. We expect that as the animal ages, the Aβ inside cells will directly impact the NPC mutant phenotype, but it is unclear how early this phenotype manifests in animals and when we should look. To be clear, in less mature neurons (DIV7), the phenotype is very subtle and can only be observed via high resolution microscopy. The differences between 4-7 mo. old animals (Fig. 2F and G) in terms of severity of the reduction cannot be assessed as the age-matched animals for each time point were processed separately, but at each time point, we observed a significant reduction of NPC relative to WT. Nevertheless, in Figure 1E, we performed immunohistochemistry experiments with pan-NPC antibodies and quantified raw intensities to show a difference between 4/7-mo. with 13-mo. old animals.

      (2) Similarly, the increase in Abeta IR is only shown for cultured neurons and only a single time point of 2 months is shown for CA1 in KI brain. Since a major point is that the decrease in NUP IR is correlated with an increase in Abeta IR, a more convincing approach would be to stain for both simultaneously in KI brain, especially since Abeta IR is quite sensitive to conformational variation between APP, Abeta, and aggregated forms and whether they are treated with denaturants for "antigen retrieval". The entire brain hemisphere should be shown as the pathology is not limited to CA1. There are many different Abeta antibodies that are specific to the amyloid state so it should be possible to come up with a set of antibodies and conditions that work for both Abeta and NUP staining.

      The intracellular Aβ signal in 2-mo. old App KI mice is diffuse throughout the soma but in older animals, they are punctate. We have included a confocal micrograph of MOAB-2 immunocytochemistry of a 13-mo. App KI brain section (Supplementary Figure S13). We did not quantify Aβ as it was challenging to differentiate if the signal is intracellular Aβ or amyloid β plaques. Regardless, the differences in the quality and uneven distribution of Aβ signal makes any direct comparison of soma intensity across the different age groups much harder to interpret.

      (3) Figure 3A. The staining with MOAB 2 and 82E1 appears qualitatively different with 82E1 exhibiting larger perinuclear puncta. Both antibodies appear to stain puncta inside the nucleus consistent with previously published reports of intranuclear amyloid IR. If these are flattened images, then 3D Z stacks should be shown to clarify this. Figure 3H shows what appears to be Abeta immunofluorescence quantitation in DAPT-treated cells, but the actual images are apparently not shown. The details of this experiment aren't clear or what antibody is used, but this may not be Abeta as many APP fragments that are not Abeta also react with antibodies like MOAB2.

      Since 82E1 detects a larger epitope (aa1-16 as compared to 1-4 in MOAB-2), it is possible some forms of Aβ are differentially detected inside the cell. MOAB-2 is shown to detect the different forms of Aβ40 and 42, with a stronger selectivity for the latter. However, it is not known to react with APP or APP/CTFs (Youmans et al., 2012). DAPT-treated cells were processed and imaged as with other experiments in figure 3 using MOAB-2 antibodies to detect Aβ. We have included that information in the figure legends.

      The way we image the cell is to collect LSM800 confocal stacks and use IMARIS software to render the nucleus in a 3D object prior to quantifying the intensity or coverage. In this way, we are capturing and quantifying the entire volume of the nucleus and not just a single plane. The majority of signal for MOAB-2 positive Aβ are punctate signals in the cytosol with a subset adjacent to the nucleus (Supplementary Figure 14; Airyscan; single plane). We also detected MOAB-2 signals coming from within the nucleus. The nature of this interaction between Aβ and the nuclear membrane/perinuclear space/nucleoplasm remains unclear.

      (4) P20 L12. "We demonstrate an Aβ-driven loss of NUP expression in hippocampal neurons both in primary cocultures and in AD mouse models" It isn't clear that exogenous or extracellular Abeta drives this in living animals. All the data that demonstrate this is derived from cell culture and things may be very different (eg. Soluble Abeta concentration) in vivo. It is OK to speculate that the same thing happens in vivo, but to say it has been demonstrated in vivo is not correct.

      We have rewritten the opening statement in the paragraph to narrowly define our observations in the context of App KI. We understand the caveats of our studies in primary cultures, but we have done our due diligence to study the phenomenon in different assays, using at least four different nuclear pore antibodies, and in more than one mouse model to show the deficits. We mentioned Aβ-driven loss but did not conclude which Aβ peptide (e.g. 40 vs. 42) or form (e.g. fibrillar) that drives the deficits. However, we have shown some data that oligomers and not monomers as well as extracellular Aβ can accumulate in the soma and trigger NPC deficits. We also state in the discussion that other possible mechanisms of action, mainly via indirect interactions of Aβ with the cell, could result in the deficits.

      (5) P21, L21 "Inhibition of γ-secretase activity prevented cleavage of mutant APP and generation of Aβ, which led to the partial restoration of NUP levels". What the data actually shows is that treatment of the cells with DAPT led to partial restoration of NUP levels. Other studies have shown that DAPT is a gamma secretase inhibitor, so it is reasonable to suspect that the effect to gamma secretase activity, but the substrates and products are assumed rather than measured, so a little caution is a good idea here. For example, CTF alpha is also a substrate, producing P3, which is not considered abeta. The products Abeta and P3 also typically are secreted, where they can be further degraded. Abeta and P3 can also aggregate into amyloid, so whether the effect is really due to Abeta per se as a monomer or Abeta-containing aggregates isn't clear.

      The point is noted. DAPT inhibition of -secretase can impact more than one substate as the complex can cleave multiple substrates. However, we have measured Aβ intensity which increases with DAPT, and while a singular experiment is insufficient to show direct Aβ involvement, we have performed other experiments that show a correlation of Aβ levels inside the soma and the degree of NPC reduction. This includes the direct application of synthetic Aβ42 oligomers. We agree the data cannot fully exclude the involvement of other -secretase cleavage products, but we feel there is strong enough evidence that Aβ – in whatever form - is at least partially if not, the main driver that promote these deficits.

      (6) Discussion. The authors point to "intracellular Abeta" as a potential causative agent for decreased NUP expression and function and cite a number of papers reporting intracellular Abeta. (D'Andrea et al., 2001; Iulita et al., 2014; Kimura et al., 2003; LaFerla et al., 1997; Oddo et al., 2003b; Takahashi et al., 2004; Wirths et al., 2001). Most of these papers report immunoreactivity with Abeta antibodies and argue about whether this is really Abeta40 or 42 and not APP or APP-CTF immunoreactivity. What is missing from these papers and the discussion in this manuscript is that this is not just soluble Abeta, but Abeta amyloid of the same type that ends up in plaques because it has the same immunoreactivity with Abeta amyloid fibril-specific antibodies and even the classical anti-Abeta antibodies 6E10 and 4G8 after antigen retrieval as shown in papers by Pensalfini, et al., 2014 and Lee, et al., 2022 (1,2) who describe the evolution of neuritic plaques and their amyloid core beginning inside neurons. The term "dystrophic neurite" is a misnomer because the structures that resemble "neurites" morphologically are actually autophagic vesicles packed with Abeta and APP immunoreactive material which has the detergent insolubility properties of amyloid plaques. See (1,2). The apparent intranuclear IR of MOAB2 and 82E1 mentioned in comment 3 is relevant here. In Lee et al., the 3D serial section EM reconstruction of one of these neurons with perinuclear and nuclear amyloid shows abundant amyloid fibrils in the remnant of the nucleus. The nuclear envelope appears to break down as evidenced by the redistribution of NeuN immunoreactivity (Pensalfini et al.,) and other nuclear markers and the EM evidence (Lee et al.,). These papers are also improperly cited as evidence for a hypothetical intracellular source for soluble Abeta.

      We have devoted a section of the discussion to highlight some of these findings in the context of Pensalfini et al. 2014 and Lee et al. 2022. Lee et al. tested multiple animal strains to observe the Panthos structures but did not use the App KI mouse model. Since none of our experiments directly tested their observations (e.g. perinuclear fibrils or acidity of autophagic vesicles) in App KI, we decided to take a more conservative approach in our interpretations by framing the NPC deficits without specifying the nature of the intracellular Aβ. We note in discussion that it is entirely possible that App KI animals also show the same Panthos phenotypes and the perinuclear accumulation of Aβ which results in damaged NUPs. To do that, the Panthos phenotype must first be established in App KI mice.

      (7) The authors also cite the work of Ditaranto et al., 2001 and Ji et al., 2002 for Aβ-induced lysosomal leakage from these vesicular structures but overlook the original publications on Abeta-induced lysosomal leakage by Yang et al., (3) who further show that this is correlated with aggregation of Abeta42 upon internalization which also leads to the co-aggregation of APP and APP-CTFs in a detergent-insoluble form (4) and pulse-chase studies demonstrate that metabolically-labeled APP ultimately ends up as insoluble Abeta that have "ragged" N-termini (5). This work seems relevant to the results reported here as the perinuclear amyloid that the authors report here is likely to be the same insoluble, aggregated APP and APP-CTF-containing amyloid as that reported in references 1 and 2.

      We have included the literature references in the discussion, highlighting the possibility of lysosomal leakage contributing to the NPC damage.

      Minor points.

      (1) P2, L28 "permeability barrier facilities passive" should be 'facilitates'.

      (2) P7, L24 "homogenate and grounded for 5 additional strokes" One of the peculiarities of English is that the past tense of grind is ground. Grounded means something else.

      (3) P8, L9 "For synthetic Aβ experiments," Abeta what? 42? 40? It makes a difference and if it is Abeta42, you should be specific in the rest of the text where it is used.

      (4) P11, L14. "To determine if Aβ can trigger changes in nuclear structure and function" It seems a little early to start by presupposing that it is Abeta that triggers changes in nuclear structure and function. It sounds like you are starting out with a bias.

      (5) P11, L16,17 "While Aβ pathology is robustly detected in App KIs" At some point in the manuscript, either here or in the introduction, it would be useful to include a couple of sentences about what the pathology is in these mice along with the timing of the development of the pathology to compare with the results presented here. There are several types of amyloid deposits, "neuritic" plaques, diffuse plaques, and cerebrovascular amyloid. This is important because the early "neuritic" plaques are intraneuronal at least early on before the neuron dies. See (1,2).

      (6) P19, L10. "LMB is an inhibitor or CRM-1 mediated" should be of

      All minor points have been addressed in the manuscript and figures.

      References

      (1) Pensalfini, A., Albay, R., 3rd, Rasool, S., Wu, J. W., Hatami, A., Arai, H., Margol, L., Milton, S., Poon, W. W., Corrada, M. M., Kawas, C. H., and Glabe, C. G. (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71C, 53-61

      (2) Lee, J. H., Yang, D. S., Goulbourne, C. N., Im, E., Stavrides, P., Pensalfini, A., Chan, H., Bouchet-Marquis, C., Bleiwas, C., Berg, M. J., Huo, C., Peddy, J., Pawlik, M., Levy, E., Rao, M., Staufenbiel, M., and Nixon, R. A. (2022) Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25, 688-701

      (3) Yang, A. J., Chandswangbhuvana, D., Margol, L., and Glabe, C. G. (1998) Loss of endosomal/lysosmal membrane impermeability is an early event in amyloid Aß1-42 pathogenesis. J. Neurosci. Res. 52, 691-698

      (4) Yang, A. J., Knauer, M., Burdick, D. A., and Glabe, C. (1995) Intracellular A beta 1-42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J Biol Chem 270, 14786-14792

      (5) Yang, A., Chandswangbhuvana, D., Shu, T., Henschen, A., and Glabe, C. G. (1999) Intracellular accumulation of insoluble, newly synthesized Aßn-42 in APP transfected cells that have been treated with Aß1-42. J. Biol. Chem. 274, 20650-20656

      References

      Boehmer, T., Enninga, J., Dales, S., Blobel, G., and Zhong, H. (2003). Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc Natl Acad Sci U S A 100, 981-985.

      D'Angelo, M.A., Raices, M., Panowski, S.H., and Hetzer, M.W. (2009). Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284-295.

      Eftekharzadeh, B., Daigle, J.G., Kapinos, L.E., Coyne, A., Schiantarelli, J., Carlomagno, Y., Cook, C., Miller, S.J., Dujardin, S., Amaral, A.S., et al. (2018). Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99, 925-940 e927.

      Liu, J., and Hetzer, M.W. (2022). Nuclear pore complex maintenance and implications for agerelated diseases. Trends Cell Biol 32, 216-227.

      Lord, A., Kalimo, H., Eckman, C., Zhang, X.Q., Lannfelt, L., and Nilsson, L.N. (2006). The Arctic Alzheimer mutation facilitates early intraneuronal Abeta aggregation and senile plaque formation in transgenic mice. Neurobiol Aging 27, 67-77.

      Mertens, J., Paquola, A.C., Ku, M., Hatch, E., Bohnke, L., Ladjevardi, S., McGrath, S., Campbell, B., Lee, H., Herdy, J.R., et al. (2015). Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell stem cell 17, 705-718.

      Wu, X., Kasper, L.H., Mantcheva, R.T., Mantchev, G.T., Springett, M.J., and van Deursen, J.M. (2001). Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci U S A 98, 3191-3196.

      Youmans, K.L., Tai, L.M., Kanekiyo, T., Stine, W.B., Jr., Michon, S.C., Nwabuisi-Heath, E., Manelli, A.M., Fu, Y., Riordan, S., Eimer, W.A., et al. (2012). Intraneuronal Abeta detection in 5xFAD mice by a new Abeta-specific antibody. Molecular neurodegeneration 7, 8.

  3. Apr 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to express our gratitude to the reviewers for their suggestions and critiques as we continually strive to enhance the quality of the manuscript. We improved it, by incorporating the reviewers’ suggestions, changing the content and numbering of figures (Figs 1, 3S1 were edited; 4 figures were moved to supplemental materials), and adding several analyses suggested by the reviewers along with accompanying figures (1S2, 1S3) and tables (1 and 2). These analyses include investigating the link between freezing behavior and 44-kHz calls as well as their sound mean power and duration. Also, we have introduced detailed information regarding the experiments performed as well as expanded the description and discussion of the results section. Finally, we added the information about 44-kHz calls reported by another group – which was inspired by our findings.

      Below is the point-by-point response to the reviewers’ comments.

      Reviewer #1 (Public Review):

      Olszyński and colleagues present data showing variability from canonical "aversive calls", typically described as long 22 kHz calls rodents emit in aversive situations. Similarly long but higher-frequency (44 kHz) calls are presented as a distinct call type, including analyses both of their acoustic properties and animals' responses to hearing playback of these calls. While this work adds an intriguing and important reminder, namely that animal behavior is often more variable and complex than perhaps we would like it to be, there is some caution warranted in the interpretation of these data. The authors also do not provide adequate justification for the use of solely male rodents. With several reported sex differences in rat vocal behaviors this means caution should be exercised when generalizing from these findings.

      We fully agree that our data should be interpreted with caution and we followed the Reviewer’s suggestions along these lines (see below). Also, we appreciate the suggestion to explore the prevalence of 44-kHz calls in female subjects, which would indeed represent an important and intriguing extension of our research. However, due to present financial constraints, we can only plan such experiments. To address the comment, we have added the sentence: “Here we are showing introductory evidence that 44-kHz vocalizations are a separate and behaviorally-relevant group of rat ultrasonic calls. These results require further confirmations and additional experiments, also in form of repetition, including research on female rat subjects.”

      It is important to note that the data presented in the current manuscript originates primarily from previously conducted experiments. These earlier experiments employed male subjects only; it was due to established evidence indicating that the female estrus cycle significantly influences ultrasonic vocalization (Matochik et al., 1992). Adhering to controls for the estrus cycle would require a greater number of female subjects than males, which would not only increase animal suffering but also escalate the demands of human labor and financial costs.

      Firstly, the authors argue that the shift to higher-frequency aversive calls is due to an increase in arousal (caused by the animals having received multiple aversive foot shocks towards the end of the protocols). However, it cannot be ruled out that this shift would be due to factors such as the passage of time and increase in fatigue of the animals as they make vocalizations (and other responses) for extended periods of time. In fact the gradual frequency increase reported for 22 kHz calls and the drop in 44 kHz calls the next day in testing is in line with this.

      Answer: We would like to point out that the “increased-arousal” hypothesis, declared in the manuscript, is only a hypothesis – as reflected by the wording used. However, we changed the beginning of the sentence in question from “It could be argued” to “We would like to propose a hypothesis” to emphasize the speculative aspect of the proposed explanation behind the increase of 44-kHz ultrasonic emissions.

      Also, we do agree that other factors could contribute to the increased emission of 44kHz calls. These factors could include: heightened fear, stress/anxiety, annoyance/anger, disgust/boredom, grief/sadness, despair/helplessness, and weariness/fatigue. We are listing these potential factors in the discussion. Also, we added: “It is not possible, at this stage, to determine which factors played a decisive role. Please note that the potential contribution of these factors is not mutually exclusive”. However, we propose a list of arguments supporting the idea that 44-kHz vocalizations communicate an increased negative emotional state. Among these arguments were the conclusions drawn from additional analyses – mostly inspired by the fatigue hypothesis proposed by the Reviewer #1. In particular, we investigated changes in the sound mean power and duration of 22-kHz and 44-kHz calls. Specifically, we showed that the mean power of 44-kHz vocalizations did not change, and was higher than that of 22-kHz vocalizations (Fig. 1S2EF).

      Finally, the Reviewer #1 listed “the gradual frequency increase reported for 22 kHz calls and the drop in 44 kHz calls the next day” as arguments for the fatigue hypothesis. We do not agree that the “increase” should be interpreted as a sign of fatigue [Producing and maintaining higher frequency calls require greater effort from the vocalizer, on which we elaborated in the manuscript], also we are not sure what “drop in 44 kHz calls” the Reviewer is referring to [We assume it refers to less 44-kHz calls during testing vs. training; we suppose that the levels of arousal are lower in the test due to shorter session time and lack of shocks, which additionally contributes to fear extinction].

      Secondly, regarding the analysis where calls were sorted using DBSCAN based on peak frequency and duration, it is not surprising that the calls cluster based on frequency and duration, i.e. the features that are used to define the 44 kHz calls in the first place. Thus presenting this clustering as evidence of them being truly distinct call types comes across as a circular argument.

      Answer: The DBSCAN sorting results were to convey that when changing the clustering ε value, the degree of cluster separation, the 44-kHz vocalizations remained distinct from the 22-kHz and various short-call clusters that merged. In other words: 44-kHz calls remained separate from long 22-kHz, short 22-kHz and 50-kHz vocalizations, which all consolidated into one common cluster. As a result, in this mathematical analysis, 44-kHz vocalizations remained distinct without applying human biases. Additionally, frequency and duration are the two most common features used to define all types of calls (Barker et al., 2010; Silkstone & Brudzynski, 2019a, 2019b; Willey & Spear, 2013). In summary, we did not expect the analysis to isolate out the 44-kHz calls, and we were surprised by this result.

      The sparsity of calls in the 30-40 kHz range (shown in the individual animal panels in Figure 2C) could in theory be explained by some bioacoustics properties of rat vocal cords, without necessarily the calls below and above that range being ethologically distinct.

      Answer: We respectfully disagree with the argument regarding sparsity. It is important to note that, during prolonged fear conditioning experiments, we observed an increased incidence of 44-kHz calls (Fig. 1E-G) of up to >19% (Fig. 1S2AB) of the total ultrasonic vocalizations during specific inter-trial intervals. Also, it is possible that in observed experimental circumstances almost every fifth call could be attributed to the vocal apparatus as an artifact of its functioning (assuming we are interpreting the Reviewer’s argument correctly). While we do not believe this to be the case, we acknowledge the importance of considering such a hypothesis.

      The behavioral response to call playback is intriguing, although again more in line with the hypothesis that these are not a distinct type of call but merely represent expected variation in vocalization parameters. Across the board animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls. This does raise interesting questions about how, ethologically, animals may interpret such variation and integrate this interpretation in their responses. However, the categorical approach employed here does not address these questions fully.

      Answer: We are unsure of the Reviewer’s critique in this paragraph and will attempt to address it to the best of our understanding. Our finding of up to >19% of long seemingly aversive, 44-kHz calls, at a frequency in the define appetitive ultrasonic range (usually >32 kHz) is unexpected rather than “expected”. We would agree that aversive call variation is expected, but not in the appetitive frequency range.

      Kindly note the findings by Saito et al. (2019), which claim that frequency band plays the main role in rat ultrasonic perception. It is possible that the higher peak frequency of 44kHz calls may be a strong factor in their perception by rats, which is, however, modified by the longer duration and the lack of modulation.

      Also, from our experience, it is quite challenging to demonstrate different behavioral responses of naïve rats to pre-recorded 22-kHz (aversive) vs. 50-kHz (appetitive) vocalizations. Therefore, to demonstrate a difference in response to two distinct, potentially aversive, calls, i.e., 22-kHz vs. 44-kHz calls, to be even more difficult (as to our knowledge, a comparable experiment between short vs. long 22-kHz ultrasonic vocalizations, has not been done before).

      Therefore, we do not take lightly the surprising and interesting finding that “animals respond rather similarly to hearing 22 kHz calls as they do to hearing 44 kHz calls, with occasional shifts of 44 kHz call responses to an intermediate between appetitive and aversive calls”. We would rather put this description in analogous words: “the rats responded similarly to hearing 44-kHz calls as they did to hearing aversive 22-kHz calls, especially regarding heartrate change, despite the 44-kHz calls occupying the frequency band of appetitive 50-kHz vocalizations” and “other responses to 44-kHz calls were intermediate, they fell between response levels to appetitive vs. aversive playback” – which we added to the Discussion.

      Finally, we acknowledge that our findings do not present a finite and complete picture of the discussed aspects of behavioral responses to the presented ultrasonic stimuli (44-kHz vocalizations). Therefore, we have incorporated the Reviewer’s suggestion in the discussion. The added sentence reads: “Overall, these initial results raise further questions about how, ethologically, animals may interpret the variation in hearing 22-kHz vs. 44-kHz calls and integrate this interpretation in their responses.”

      In sum, rather than describing the 44kHz long calls as a new call type, it may be more accurate to say that sometimes aversive calls can occur at frequencies above 22 kHz. Individual and situational variability in vocalization parameters seems to be expected, much more so than all members of a species strictly adhering to extremely non-variable behavioral outputs.

      Answer: The surprising fact that there are presumably aversive calls that are beyond the commonly applied thresholds, i.e. >32 kHz, while sharing some characteristics with 22-kHz calls, is the main finding of the current publication. Whether they be finally assigned as a new type, subtype, i.e. a separate category or become a supergroup of aversive calls with 22-kHz vocalizations is of secondary importance to be discussed with other researchers of the field of study.

      However, we would argue – by showing a comparison – that 22-kHz calls occur at durations of <300 ms and also >300 ms, and are, usually, referred to in literature as short and long 22-kHz vocalizations, respectively (not introduced with a description that “sometimes 22kHz calls can occur at durations below 300 ms”). These are then regarded and investigated as separate groups or classes usually referred to as two different “types” (e.g., Barker et al., 2010) or “subtypes” (e.g., Brudzynski, 2015). Analogously, 44-kHz vocalizations can also be regarded as a separate type or a subtype of 22-kHz calls. The problem with the latter is that 22-kHz vocalizations are traditionally and predominantly defined by 18–32 kHz frequency bandwidth (Araya et al., 2020; Barroso et al., 2019; Browning et al., 2011; Brudzynski et al., 1993; Hinchcliffe et al., 2022; Willey & Spear, 2013).

      Reviewer #2 (Public Review):

      Olszyński et al. claim that they identified a "new-type" ultrasonic vocalization around 44 kHz that occurs in response to prolonged fear conditioning (using foot-shocks of relatively high intensity, i.e. 1 mA) in rats. Typically, negative 22-kHz calls and positive 50-kHz calls are distinguished in rats, commonly by using a frequency threshold of 30 or 32 kHz. Olszyński et al. now observed so-called "44-kHz" calls in a substantial number of subjects exposed to 10 tone-shock pairings, yet call emission rate was low (according to Fig. 1G around 15%, according to the result text around 7.5%).

      Answer: We are thankful for praising the strengths. Please note Figure 1G referred to 10-trial Wistar rats during delay fear conditioning session in which 44-kHz constituted 14.1% of ultrasonic vocalizations. The 7.5% number in results refers to the total of vocalizations analyzed across all animal groups used in fear conditioning experiments. These values have been updated in the current version of the manuscript. Also, please note – 44-kHz calls constituted up to 19.4% of calls, on average, in one of the ITI during fear conditioning session. However, the prevalence of aversive calls and of 44-kHz vocalizations in particular varied. It varied between individual rats; we added the text: “for n = 3 rats, 44-kHz vocalizations accounted for >95% of all calls during at least one ITI (e.g., 140 of total 142, 222 of 231, and 263 of 265 tallied 44-kHz calls), and in n = 9 rats, 44-kHz vocalizations constituted >50% of calls in more than one ITI.” See also further for the description of the array of experiments analyzed and the prevalence/percentage of 44-kHz calls encountered (Tab. 1, Fig. 1S3).

      Weaknesses: I see a number of major weaknesses.

      While the descriptive approach applied is useful, the findings have only focused importance and scope, given the low prevalence of "44 kHz" calls and limited attempts made to systematically manipulate factors that lead to their emission. In fact, the data presented appear to be derived from reanalyses of previously conducted studies in most cases and the main claims are only partially supported. While reading the manuscript, I got the impression that the data presented here are linked to two or three previously published studies (Olszyński et al., 2020, 2021, 2023). This is important to emphasize for two reasons:

      (1) It is often difficult (if not impossible) to link the reported data to the different experiments conducted before (and the individual experimental conditions therein). While reanalyzing previously collected data can lead to important insight, it is important to describe in a clear and transparent manner what data were obtained in what experiment (and more specifically, in what exact experimental condition) to allow appropriate interpretation of the data. For example, it is said that in the "trace fear conditioning experiment" both single- and grouphoused rats were included, yet I was not able to tell what data were obtained in single- versus group-housed rats. This may sound like a side aspect, however, in my view this is not a side aspect given the fact that ultrasonic vocalizations are used for communication and communication is affected by the social housing conditions.

      Answer: Preparing the current manuscript, we indeed used data collected during fear conditioning experiments which were described previously (Olszyński et al., 2021; Olszyński et al., 2022). Please note, however, that vocalization behavior during the fear conditioning itself was not the main subject of these publications. Our previous publications (Olszyński et al., 2020; Olszyński et al., 2021; Olszyński et al., 2022) present primarily ultrasonic-vocalization data from playback-part of experiments whereas here we analyze recordings obtained during fear conditioning experiments, thus we are analyzing new parts, i.e., not yet analyzed, of previously published studies. Also, we have performed additional experiments.

      In the first version of the current manuscript, we did not attempt to demonstrate exactly which calls were recorded in which conditions as the focus was to demonstrate that 44-kHz calls were emitted in several different fear-conditioning experiments. Also, as the experiments were not performed simultaneously and are results from different experimental situations, we would prefer to not compare these results directly.

      However, in the current version of the manuscript, we have introduced an additional reference system, based on Tab. 1, to more clearly indicate which rats have been employed in each analysis, e.g. the group of “Wistar rats that undergone 10 trials of fear conditioning” are described as “Tab. 1/Exp. 1-3/#2,4,8,13; n = 46”, i.e., these are the rats listed in rows 2, 4, 8, and 13 of Tab. 1.

      We have also tried to unify the analyses, in terms of rats used, as much as possible. Finally, we have also introduced Fig. 1S3 to demonstrate the prevalence of 44-kHz calls in all experiments analyzed with the note that “the experiments were not performed in parallel”.

      Regarding the Reviewer’s concerns about analyzing single- and pair-housed rats together. We have examined ultrasonic vocalizations emitted and freezing behavior in these two groups.

      • Ultrasonic vocalizations; when comparing the number of vocalizations, their duration, peak frequency and latency to first occurrence, equally for all types of calls and divided into types (short 22-kHz, long 22-kHz, 44-kHz, 50-kHz), the only difference was observed in peak frequency in 50-kHz vocalizations (50.7 ± 2.8 kHz for paired vs. 61.8 ± 3.1 kHz for single rats; p = 0.0280, Mann-Whitney). Since 50-kHz calls are not the subject of the current publication, we did not investigate this difference further. Also, this difference was not observed during playback experiments (Olszyński et al., 2020, Tab. 1).

      • Freezing. There were no differences between single- and pair-housed groups in freezing behavior, both in the time before first shock presentation and during fear conditioning training (Mann-Whitney).

      In summary, since the two groups did not differ in relevant ultrasonic features and freezing, we decided to present the results obtained from these rats together. However, we agree with the Reviewer, and it is possible that social housing conditions may in fact affect the emission of 44-kHz vocalizations, which could be a subject of another project – involving, e.g., larger experimental groups observed under hypothesis-oriented and defined conditions.

      (2) In at least two of the previously published manuscripts (Olszyński et al., 2021, 2023), emission of ultrasonic vocalizations was analyzed (Figure S1 in Olszyński et al., 2021, and Fig. 1 in Olszyński et al., 2023). This includes detailed spectrographic analyses covering the frequency range between 20 and 100 kHz, i.e. including the frequency range, where the "newtype" ultrasonic vocalization, now named "44 kHz" call, occurs, as reflected in the examples provided in Fig. 1 of Olszyński et al. (2023). In the materials and methods there, it was said: "USV were assigned to one of three categories: 50-kHz (mean peak frequency, MPF >32 kHz), short 22-kHz (MPF of 18-32 kHz, <0.3 s duration), long 22-kHz (MPF of 18-32 kHz, >0.3 s duration)". Does that mean that the "44 kHz" calls were previously included in the count for 50-kHz calls? Or were 44 kHz calls (intentionally?) left out? What does that mean for the interpretation of the previously published data? What does that mean for the current data set? In my view, there is a lack of transparency here.

      Answer: As mentioned above, we indeed used data collected during fear conditioning experiments which were described previously (Olszyński et al., 2021; Olszyński et al., 2022). However, in these publications, ultrasonic vocalizations emitted during playback experiments were the main subject, while the ultrasonic calls emitted during fear conditioning (performed before the playback) were only analyzed in a preliminary way. As a result, the 44-kHz vocalizations analyzed in the current manuscript were not included in the previous analyses. In particular, in Olszyński et al. (2021), we counted the overall number of ultrasonic vocalizations before fear conditioning session to determine the basal ultrasonic emissions (Fig. S1). Then, our next article (Olszyński et al., 2022), we analyzed again the number of all ultrasonic vocalizations before fear conditioning (Fig. S1) and restricted the analysis of vocalizations during fear conditioning to 22-kHz calls (Tab. S1 and S2).

      Also, we re-reviewed all the data used in our previous playback publications. Overall, 44-kHz calls were extremely rare in playback parts of the experiments. There were no 44-kHz calls in the playback data used in Olszyński et al. (2022) and Olszyński et al. (2020). In Olszyński et al. (2021), one rat produced eight 44-kHz calls. These 44-kHz calls constituted 0.03% of all vocalizations analyzed in the experiment (8/24888) and were included in the total number of calls analyzed (but not in the 50-kHz group), they were not described in further detail in that publication.

      Moreover, whether the newly identified call type is indeed novel is questionable, as also mentioned by the authors in their discussion section. While they wrote in the introduction that "high-pitch (>32 kHz), long and monotonous ultrasonic vocalizations have not yet been described", they wrote in the discussion that "long (or not that long (Biały et al., 2019)), frequency-stable high-pitch vocalizations have been reported before (e.g. Sales, 1979; Shimoju et al., 2020), notably as caused by intense cholinergic stimulation (Brudzynski and Bihari, 1990) or higher shock-dose fear conditioning (Wöhr et al., 2005)" (and I wish to add that to my knowledge this list provided by the authors is incomplete). Therefore, I believe, the strong claims made in abstract ("we are the first to describe a new-type..."), introduction ("have not yet been described"), and results ("new calls") are not justified.

      Answer: We would argue that 44-kHz vocalizations were indeed reported but not described. As far as we are concerned, an in-depth analysis of the properties and experimental circumstance of emission of long, high-frequency calls has not yet been performed. These researchers have observed, at least to a degree, similar calls to the ones we observed – as we mentioned in the discussion section. However, since these reported 44-kHz vocalizations were not fully described, we can only guess that they may be similar to ours. We speculate that perhaps like us, these researchers unknowingly recorded 44-kHz calls in their experiments and may also be able to describe them more extensively when re-analyzing their data as we have done here.

      Possibly, it was difficult to find reports on vocalizations, similar to the 44-kHz calls that we observed, because of the canonical and accepted definitions of ultrasonic vocalization types. Biały et al. (2019) allocated them as a part of 22-kHz group, perhaps because their calls were often of a step variation having both low and high components. Shimoju et al. (2020) grouped them along with 50-kHz vocalizations because they appeared during stroking rats held vertically; this procedure was compared to tickling which usually elicits appetitive calls.

      The Reviewer #2 states there are other publications to complete the list. We are aware of other articles authored by the same team as Shimoju et al. (2020) with different first authors. However, they are reporting similar findings to the cited article. Otherwise, we would gladly cite a more complete list of publications showing atypical, long, monotonous highfrequency vocalizations, similar to those observed in our experiments. Therefore, we would argue that ultrasonic vocalizations which were long, flat, high in frequency, and repeatedly occurring in a defined behavioral situation, have not been reported before. However, concerning the strong claims of novelty of our finding, we toned them down where we found this was warranted.

      In general, the manuscript is not well written/ not well organized, the description of the methods is insufficient, and it is often difficult (if not impossible) to link the reported data to the experiments/ experimental conditions described in the materials and methods section.

      Answer: The description of the methods has been adjusted and expanded. We added the requested link to each particular experiment as a formula “Tab. 1/Exp. nos./# nos.” which shows, each time, which experiments and experimental groups were analyzed. The list of the experiments and groups is found in the Tab. 1.

      For example, I miss a clear presentation of basic information: 1) How many rats emitted "44 kHz" calls (in total, per experiment, and importantly, also per experimental condition, i.e. single- versus group-housed)?

      Answer: We now clearly show which experiments were performed and how many animals were tested in each condition (Tab. 1), while the prevalence of 44-kHz calls amongst experimental conditions and animal groups is shown in Fig. 1S3. Also, we included information regarding the number of animals and treatment of each group of rats when reporting results. For example, we are stating that:

      (1a) “53 of all 84 conditioned Wistar rats (Tab. 1/Exp. 1-3/#2,4,6-8,13, Figs 1B, 1E, 1S1BC) displayed” 44-kHz vocalizations – as a general assessment; these numbers are different from those in the first version of the Ms, when we are mentioning Wistar rats conditioned 6 or 10 times only.

      (1b) “From this group of rats (n = 46), n = 41 (89.1%) emitted long 22-kHz calls, and 32 of them (69.6%) emitted 44-kHz calls” – this time referring only to 10-times conditioned Wistar rats as the biggest group that could be analyzed together (Figs 1F, 1G, 1S2A).

      (1c) “for n = 3 rats, 44-kHz vocalizations accounted for >95% of all calls during at least one ITI (e.g., 140 of total 142, 222 of 231, and 263 of 265 tallied 44-kHz calls), and in n = 9 rats, 44kHz vocalizations constituted >50% of calls in more than one ITI.”

      (2) Out of the ones emitting "44 kHz" calls, what was the prevalence of "44 kHz" calls (relative to 22- and 50-kHz calls, e.g. shown as percentage)?

      Answer: The prevalence of 44-kHz vocalizations in all investigated experiments and groups is shown in Fig. 1S3CD. Also, more information regarding the percentage of 44-kHz calls was demonstrated in Fig. 1S2AB where we calculated the distribution of 44-kHz calls to 22-kHz calls in Wistar rats, in 10-trial fear conditioning, across the length of the session.

      Additionally, the values are listed in the sentence regarding all Wistar rats which underwent 10 trials of fear conditioning: “these vocalizations were less frequent following the first trial (1.2 ± 0.4% of all calls), and increased in subsequent trials, particularly after the 5th (8.8 ± 2.8%), through the 9th (19.4 ± 5.5%, the highest value), and the 10th (15.5 ± 4.9%) trials, where 44-kHz calls gradually replaced 22-kHz vocalizations in some rats (Fig. 1F, 1S2B, Video 1; comp Fig. 1D vs. 1E).”

      (3) How did this ratio differ between experiments and experimental conditions?

      Answer: The prevalence of 44-kHz vocalizations in all experimental conditions is shown in Fig. 1S3. However, the direct comparison of results obtained in different conditions was not the goal of the present work. Also, we would argue, that such direct comparisons of results of different experiments would not be allowed. These experiments were done with different groups of animals, at different times, with different timetables of experimental manipulations.

      However, we are comfortable to state that:

      • There were more 44-kHz vocalizations during fear conditioning training than testing in all fear-conditioned Wistar rats;

      • We observed more 44-kHz vocalizations in Wistar rats compared to SHR.

      (4) Was there a link to freezing? Freezing was apparently analyzed before (Olszyński et al., 2021, 2023) and it would be important to see whether there is a correlation between "44-kHz" calls and freezing. Moreover, it would be important to know what behavior the rats are displaying while such "44-kHz" calls are emitted? (Note: Even not all 22-kHz calls are synced to freezing.) All this could help to substantiate the currently highly speculative claims made in the discussion section ("frequency increases with an increase in arousal" and "it could be argued that our prolonged fear conditioning increased the arousal of the rats with no change in the valence of the aversive stimuli"). Such more detailed analyses are also important to rule out the possibility that the "new-type" ultrasonic vocalization, the so-called "44 kHz" call, is simply associated with movement/ thorax compression.

      Answer: We analyzed freezing behavior and its association with ultrasonic emissions. The emission of 44-kHz vocalizations was associated with freezing. The results are now described and presented in the manuscript, i.e., Tab. 2, its legend and the description in Results: “Freezing during the bins of 22-kHz calls only (p < 0.0001, for both groups) and during 44-kHz calls only bins (p = 0.0003) was higher than during the first 5 min baseline freezing levels of the session. Also, the freezing associated with emissions of 44-kHz calls only was higher than during bins with no ultrasonic vocalizations (p = 0.0353), and it was also 9.9 percentage points higher than during time bins with only long 22-kHz vocalizations, but the difference was not significant (p = 0.1907; all Wilcoxon)” and “To further investigate this potential difference, we measured freezing during the emission of randomly selected single 44-kHz and 22-kHz vocalizations. The minimal freezing behavior detection window was reduced to compensate for the higher resolution of the measurements (3, 5, 10, or 15 video frames were used). There was no difference in freezing during the emission of 44-kHz vs. 22-kHz vocalizations for ≥150ms-long calls (3 frames, p = 0.2054) and for ≥500-ms-long calls (5 frames, p = 0.2404; 10 frames, p = 0.4498; 15 frames, p = 0.7776; all Wilcoxon, Tab. 2B).”

      Please note, that the general observation that "frequency increases with an increase in arousal" is not our claim but a general rule derived from large body of observations and proposed by the others (Briefer et al., 2012); we changed the wording of this statement to: “frequency usually increases with an increase in arousal (Briefer et al., 2012)”.

      The figures currently included are purely descriptive in most cases - and many of them are just examples of individual rats (e.g. majority of Fig. 1, all of Fig. 2 to my understanding, with the exception of the time course, which in case of D is only a subset of rats ("only rats that emitted 44-kHz calls in at least seven ITI are plotted" - is there any rationale for this criterion?)), or, in fact, just representative spectrograms of calls (all of Fig. 3, with the exception of G, all of Fig. 4).

      Answer: Please note, the former figures 2, 4, 6, and 8 have been now moved to supplementary figures 1S1, 2S1, 3S1, and 4S1 – to better organize the presentation of data. Figures 1, 3, 5, 7 are now 1, 2, 3, 4 respectively. In regards to presenting data from individual rats, this was to show the general patterns of ultrasonic-calls distributions observed. Showing the full data set as seen in Fig. 5A (now Fig. 3A) would obscure the readability of the graph without using mathematical clustering techniques such as DBSCAN.

      Concerning the Reviewer’s #2 question regarding the criterion of “minimum seven ITI”, we selected the highest vocalizers by taking animals above the 75th percentile of the number of ITI with 44-kHz calls. However, in the current version of the manuscript, we decided to omit this part of the analysis and the accompanying part of the figure, since it did not provide any additional informative value (apart from employing questionable criterion).

      Moreover, the differences between Fig. 5 and Fig. 6 are not clear to me. It seems Fig. 5B is included three times - what is the benefit of including the same figure three times?

      Answer: We hope that designating Fig. 6 as supplementary to Fig. 5 (now Figs 3S1 and 3, respectively) will make interpreting them more streamlined. Fig. 6A (now Fig. 3S1A) is a more detailed look on information presented in Fig. 5B (now Fig. 3B) with spectrogram images of ultrasonic vocalizations from different areas of the plot. Also, Fig. 3B (former Fig. 5B) was removed from Fig. 3S1B (former Fig. 6B).

      A systematic comparison of experimental conditions is limited to Fig. 7 and Fig. 8, the figures depicting the playback results (which led to the conclusion that "the responses to 44-kHz aversive calls presented from the speaker were either similar to 22-kHz vocalizations or in between responses to 22-kHz and 50-kHz playbacks", although it remains unclear to me why differences were seen b e f o r e the experimental manipulation, i.e. the different playback types in Fig. 8B).

      Answer: There were indeed instances of such before-differences. Such differences were observed in our previous studies (Olszyński et al., 2020, Tabs S9-12; Olszyński et al., 2021, Tabs S7; Olszyński et al., 2022, Tabs S4, S9, S13, S17, S18) and were most likely due to analyzing multiple comparisons. However, we think that the carry-over effect, mentioned by the Reviewer #2 (see below), also played a role.

      Related to that, I miss a clear presentation of relevant methodological aspects: 1) Why were some rats single-housed but not the others?

      Answer: As stated before, data were collected from our previous experiments and the observation of 44-kHz vocalizations in fear conditioning was an emergent discovery as we decided to analyze ultrasonic recordings from fear conditioning procedures. Single-housed animals were part of our experiment comparing fear conditioning and social situation on the perception of ultrasonic playback as described in Olszyński et al. (2020). Aside from this experiment, all other rats were housed in pairs.

      (2) Is the experimental design of the playback study not confounded? It is said that "one group (n = 13) heard 50-kHz appetitive vocalization playback while the other (n = 16) 22-kHz and 44kHz aversive calls". How can one compare "44 kHz" calls to 22- and 50-kHz calls when "44 kHz" calls are presented together with 22-kHz calls but not 50-kHz calls? What about carry-over effects? Hearing one type of call most likely affects the response to the other type of call. It appears likely that rats are a bit more anxious after hearing aversive 22-kHz calls, for example. Therefore, it would not be very surprising to see that the response to "44 kHz" calls is more similar to 22-kHz calls than 50-kHz calls.

      Of note, in case of the other playback experiment it is just said that rats "received appetitive and aversive ultrasonic vocalization playback" but it remains unclear whether "44 kHz" calls are seen as appetitive or aversive. Later it says that "rats were presented with two 10-s-long playback sets of either 22-kHz or 44-kHz calls, followed by one 50-kHz modulated call 10-s set and another two playback sets of either 44-kHz or 22-kHz calls not previously heard" (and wonder what data set was included in the figures and how - pooled?). Again, I am worried about carry-over effects here. This does not seem to be an experimental design that allows to compare the response to the three main call types in an unbiased manner.

      Answer: We apologize for being confounding and brief in our original description of the playback experiments. We wanted to avoid confusion associated with including several additional playback signals (please note some are not related to the current comparisons and include different 50-kHz ultrasonic subtypes and two different subtypes of short 22-kHz calls). We lengthened the description of these playback experiments in the current version.

      In general, including more than one type of ultrasonic calls as playback has a risk of a carry-over effect as well as a habituation effect (the responses become weak). However, it greatly reduces the number of required animals. Finally, regarding the first experiment, we chose 3 playbacks to compare the rats’ reactions, as this was the most conservative choice we thought of.

      We would like to highlight that we wanted to compare specifically the rats’ responses to 22-kHz vs. 44-kHz playback (as well as the effects of playback of different subtypes 50-kHz calls, which is not the subject of the current work). Therefore, we would argue, that the design of both experiments is actually unbiased regarding this key comparison (responses to 22-kHz vs. 44-kHz playback). In both experiments, 22-kHz and 44-kHz playbacks were included in the same sequences of stimuli and counterbalanced regarding their order (i.e., taking into account possible carry-over effects), and presented to the same rats. We regarded the group of rats that heard 50-kHz recordings as a baseline/control, since we know from previous playback studies what reactions to expect from rats exposed to these vocalizations (and 22-kHz playback), while in the second experiment, we reduced the 50-kHz playback to one set in order to minimize possible habituation to multiple playbacks.

      We agree that the design of both experiments does not allow for full comparison of the effects of aversive playbacks to 50-kHz playback. Also, we agree that some carry-over effects could play a role. It was mentioned in the discussion: ”Please factor in potential carryover effects (resulting from hearing playbacks of the same valence in a row) in the differences between responses to 50-kHz vs. 22/44-kHz playbacks, especially, those observed before the signal (Fig. 4AB).” However, we would still argue that the observed lack of difference in heartrate response (Fig. 4A) and the differences regarding the number of 50-kHz calls emitted (e.g., Fig. 4S1F) are void of the constraints raised by the Reviewer #2.

      We acknowledge that our studies do not give a complete picture of 44-kHz ultrasonic perception in relation to other ultrasonic bands and, given the possibility, we would like to perform more in-depth and focused experiments to study this aspect of 44-kHz calls in the future.

      Finally, regarding the second experiment, the description of the rats now includes that they “received 22-kHz, 44-kHz, and 50-kHz ultrasonic vocalization playback”, while the description of the experiment itself includes: “Responses to the pairs of playback sets were averaged”.

      Of note, what exactly is meant by "control rats" in the context of fear conditioning is also not clear to me. One can think of many different controls in a fear conditioning experiment.

      More concrete information is needed.

      Answer: This information was included in our previous publications. However, it was now provided in the method section of the current version of the manuscript. In general, control rats were subjected to the same procedures but did not receive electric shocks.

      Literature included in the answers

      Araya, E. I., Baggio, D. F., Koren, L. O., Andreatini, R., Schwarting, R. K. W., Zamponi, G. W., & Chichorro, J. G. (2020). Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain, 161(12), 2830-2840. https://doi.org/10.1097/j.pain.0000000000001970

      Barker, D. J., Root, D. H., Ma, S., Jha, S., Megehee, L., Pawlak, A. P., & West, M. O. (2010). Dose-dependent differences in short ultrasonic vocalizations emitted by rats during cocaine self-administration. Psychopharmacology (Berl), 211(4), 435-442. https://doi.org/10.1007/s00213-010-1913-9

      Barroso, A. R., Araya, E. I., de Souza, C. P., Andreatini, R., & Chichorro, J. G. (2019). Characterization of rat ultrasonic vocalization in the orofacial formalin test: Influence of the social context. Eur Neuropsychopharmacol, 29(11), 1213-1226. https://doi.org/10.1016/j.euroneuro.2019.08.298

      Biały, M., Podobinska, M., Barski, J., Bogacki-Rychlik, W., & Sajdel-Sulkowska, E. M. (2019). Distinct classes of low frequency ultrasonic vocalizations in rats during sexual interactions relate to different emotional states. Acta Neurobiol Exp (Wars), 79(1), 1-12. https://www.ncbi.nlm.nih.gov/pubmed/31038481

      Briefer, E. F., Padilla de la Torre, M., & McElligott, A. G. (2012). Mother goats do not forget their kids' calls. Proc Biol Sci, 279(1743), 3749-3755. https://doi.org/10.1098/rspb.2012.0986

      Browning, J. R., Browning, D. A., Maxwell, A. O., Dong, Y., Jansen, H. T., Panksepp, J., & Sorg, B. A. (2011). Positive affective vocalizations during cocaine and sucrose self administration: a model for spontaneous drug desire in rats. Neuropharmacology, 61(1-2), 268-275. https://doi.org/10.1016/j.neuropharm.2011.04.012

      Brudzynski, S. M. (2015). Pharmacology of Ultrasonic Vocalizations in adult Rats: Significance, Call Classification and Neural Substrate. Curr Neuropharmacol, 13(2), 180-192. https://doi.org/10.2174/1570159x13999150210141444

      Brudzynski, S. M., & Bihari, F. (1990). Ultrasonic vocalization in rats produced by cholinergic stimulation of the brain. Neurosci Lett, 109(1-2), 222-226. https://doi.org/10.1016/0304-3940(90)90567-s

      Brudzynski, S. M., Bihari, F., Ociepa, D., & Fu, X. W. (1993). Analysis of 22 kHz ultrasonic vocalization in laboratory rats: long and short calls. Physiol Behav, 54(2), 215-221. https://doi.org/10.1016/0031-9384(93)90102-l

      Hinchcliffe, J. K., Jackson, M. G., & Robinson, E. S. (2022). The use of ball pits and playpens in laboratory Lister Hooded male rats induces ultrasonic vocalisations indicating a more positive affective state and can reduce the welfare impacts of aversive procedures. Lab Anim, 56(4), 370-379. https://doi.org/10.1177/00236772211065920

      Matochik, J. A., White, N. R., & Barfield, R. J. (1992). Variations in scent marking and ultrasonic vocalizations by Long-Evans rats across the estrous cycle. Physiol Behav, 51(4), 783-786. https://doi.org/10.1016/0031-9384(92)90116-j

      Olszyński, K. H., Polowy, R., Małż, M., Boguszewski, P. M., & Filipkowski, R. K. (2020). Playback of Alarm and Appetitive Calls Differentially Impacts Vocal, Heart-Rate, and Motor Response in Rats. iScience, 23(10), 101577. https://doi.org/10.1016/j.isci.2020.101577

      Olszyński, K. H., Polowy, R., Wardak, A. D., Grymanowska, A. W., & Filipkowski, R. K. (2021). Increased Vocalization of Rats in Response to Ultrasonic Playback as a Sign of Hypervigilance Following Fear Conditioning. Brain Sci, 11(8). https://doi.org/10.3390/brainsci11080970

      Olszyński, K. H., Polowy, R., Wardak, A. D., Grymanowska, A. W., Zieliński, J., & Filipkowski, R. K. (2022). Spontaneously hypertensive rats manifest deficits in emotional response to 22-kHz and 50-kHz ultrasonic playback. Prog Neuropsychopharmacol Biol Psychiatry, 120, 110615. https://doi.org/10.1016/j.pnpbp.2022.110615

      Saito, Y., Tachibana, R. O., & Okanoya, K. (2019). Acoustical cues for perception of emotional vocalizations in rats. Scientific Reports, 9(1), 10539.

      Sales, G. D. (1979). Strain Differences in the Ultrasonic Behavior of Rats (Rattus norvegicus) Am Zool, 19(2), 513-527. https://www.jstor.org/stable/3882331

      Shimoju, R., Shibata, H., Hori, M., & Kurosawa, M. (2020). Stroking stimulation of the skin elicits 50-kHz ultrasonic vocalizations in young adult rats. J Physiol Sci, 70(1), 41. https://doi.org/10.1186/s12576-020-00770-1

      Silkstone, M., & Brudzynski, S. M. (2019a). The antagonistic relationship between aversive and appetitive emotional states in rats as studied by pharmacologically-induced ultrasonic vocalization from the nucleus accumbens and lateral septum. Pharmacology Biochemistry and Behavior, 181, 77-85. https://doi.org/10.1016/j.pbb.2019.04.009

      Silkstone, M., & Brudzynski, S. M. (2019b). Intracerebral injection of R-(-)-Apomorphine into the nucleus accumbens decreased carbachol-induced 22-kHz ultrasonic vocalizations in rats. Behavioural Brain Research, 364, 264-273. https://doi.org/10.1016/j.bbr.2019.01.044

      Willey, A. R., & Spear, L. P. (2013). The effects of pre-test social deprivation on a natural reward incentive test and concomitant 50 kHz ultrasonic vocalization production in adolescent and adult male Sprague-Dawley rats. Behav Brain Res, 245, 107-112. https://doi.org/10.1016/j.bbr.2013.02.020

      Wöhr, M., Borta, A., & Schwarting, R. K. (2005). Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose-response study in the rat. Neurobiol Learn Mem, 84(3), 228-240. https://doi.org/10.1016/j.nlm.2005.07.004

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      Additional considerations:

      The discussion of the "perfect fifth" and the proposition that this observation could be evidence of an evolutionary mechanism underlying it is rather far-fetched, especially for being presented in the Results section (with no supporting non-anecdotal evidence).

      Answer: We agree with the Reviewer #1. The text was modified, the word “evolutionary” was deleted. Instead, we expended on the possible reason for prevalence of the perfect fifth in the current version of the manuscript; we added that the prevalence of the perfect fifth: “could be explained by the observation that all physical objects capable of producing tonal sounds generate harmonic vibrations, the most prominent being the octave, perfect fifth, and major third (Christensen, 1993, discussed in Bowling and Purves, 2015).”

      It is not clear why Sprague-Dawleys were used as "receivers" in the playback experiment, when presumably the calls were recorded from Wistars and SHRs. While this does not critically impact the conclusions, within the species rats should be able to respond appropriately to calls made by rats of different genetic backgrounds, it adds an unnecessary source of variance.

      Answer: Sprague-Dawley rats were used to test another normotensive strain of rats. Regarding the Reviewer’s main point – we beg to differ as we think that it is worth testing playback stimuli in different strains. Diverging the stimuli between different rat strains would add unnecessary variance and it seemed logical to use the same recordings to test effects in different strains. Please note that finally, in spite of this additional variance, the results of both playback experiments are, in general, similar – which may point to a universal effect of 44-kHz playback across rat strains.

      It is pertinent to note that for the trace fear conditioning experiment, the rats had previously been exposed to a vocalization playback experiment. While such a pre-exposure is unlikely to be a very strong stressor, the possibility for it to influence the vocal behaviors of these rats in later experiments cannot be ruled out. It is also not clear what the control rats in this experiment experienced (home cage only?), nor what they were used for in analyses.

      Answer: In the current version of the manuscript, we have described in greater detail all the experiments performed and analyzed. We would like to emphasize that both delay and trace fear conditioning experiments with radiotelemetric transmitters were not performed specifically to elicit any particular response during fear conditioning, rather that our observation of 44-kHz vocalizations emerged as a result of re-examining the audio recordings. As a result, this work summarizes our observations of 44-kHz calls from several different experiments. It is relevant to note, that 44-kHz vocalizations were observed “in rats which were exposed to vocalization playback experiment”, in rats before the playback experiments as well as in naïve rats, without transmitters implemented, trained in fear conditioning (Tab. 1/Exp. 1-3).

      Our main message is that 44-kHz vocalizations were present in several experiments, with different conditions and subjects, while we are not attempting to compare in detail the results across the different experiments. In other words, we agree that pre-exposure to playback (and even more likely – transmitters implantation) could influence, but are not necessary, for 44-kHz ultrasonic emissions by the rats. To demonstrate this, we added a prolonged fear conditioning group with naïve Wistar rats (Exp. 3) to verify the emission of 44kHz calls in the absence of those experimental factors.

      We modified the methods section to clarify the circumstances under which these discoveries were made, such as including the information regarding the control rats in trace fear conditioning. In particular we mention that: “Control rats were subjected to the exact same procedures but did not receive the electric shock at the end of trace periods”.

      For Figure 1A-E, only example call distributions from individual rats are shown. It would perhaps be more informative to see the full data set displayed in this manner, with color/shape codes distinguishing individuals if desired.

      Answer: Please note the Fig. 1S1 shows more examples of ultrasonic call distribution. Showing all the data would make it more difficult to read and interpret. The problem is partly amended in Fig. 3A.

      It is not clear what is presented in Figure 2D vs. E, i.e. panel D is shown only for "selected rats" but the legend does not clarify how and why these rats were selected. It is also not clear why the legend reports p-values for both Friedman and Wilcoxon tests; the latter is appropriate for paired data which seems to be the case when the question is whether the call peak frequency alters across time, but the Friedman assumes non-paired input data.

      Answer: The question refers to the current Fig. 1S2C panel (former Fig. 2E panel) and the former Fig. 2D panel. The latter was not included in the current version of the manuscript, since both reviewers opposed the presentation of “selected rats” only (see above). The full description of the Fig. 1S2C panel is now in the results section together with p-values for Friedman and Wilcoxon test. We used the latter to investigate the difference between the first and the last ITI (selected paired data), while the Friedman to investigate the presence of change within the chain of ten ITI – since it is a suitable test for a difference between two or more paired samples.

      Reviewer #2 (Recommendations For The Authors):

      The weaknesses listed in the public review need to be addressed.

      Answer: We have done our best to address the weaknesses.

      Notes: 1) Page and line numbers would have been useful.

      Answer: We are including a separate manuscript version with page and line numbers.

      .(2) English language needs to be improved.

      Answer: The text has been checked by two native English speakers (one with a scientific background). Both only identified minor changes to improve the text which we applied.

      (3) I am a bit unsure whether the comment about the Star Wars movie (1997) and the Game of Thrones series (2011) is supposed to be a joke.

      Answer: These are indeed two genuine examples of the perfect fifth in human music that we hope are easily recognizable and familiar to readers. Parts of the same examples of the perfect fifth can also heard in the rat voice files provided.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      During the last decades, extensive studies (mostly neglected by the authors), using in vitro and in vivo models, have elucidated the five-step mechanism of intoxication of botulinum neurotoxins (BoNTs). The binding domain (H chain) of all serotypes of BoNTs binds polysialogangliosides and the luminal domain of a synaptic vesicle protein (which varies among serotypes). When bound to the synaptic membrane of neurons, BoNTs are rapidly internalized by synaptic vesicles (SVs) via endocytosis. Subsequently, the catalytic domain (L chain) translocates, a process triggered by the acidification of these organelles. Following translocation, the disulfide bridge connecting the H chain with the L chain is reduced by the thioredoxin reductase/thioredoxin system, and it is refolded by the chaperone Hsp90 on SV's surface. Once released into the cytosol, the L chains of different serotypes cleave distinct peptide bonds of specific SNARE proteins, thereby disrupting neurotransmission. In this study, Yeo et al. extensively revise the neuronal intoxication model, suggesting that BoNT/A follows a more complex intracellular route than previously thought. The authors propose that upon internalization, BoNT/A-containing endosomes are retro-axonally trafficked to the soma. At the level of the neuronal soma, this serotype then traffics to the endoplasmic reticulum (ER) via the Golgi apparatus. The ER SEC61 translocon complex facilitates the translocation of BoNT/A's LC from the ER lumen into the cytosol, where the thioredoxin reductase/thioredoxin system and HSP complexes release and refold the catalytic L chain. Subsequently, the L chain diffuses and cleaves SNAP25 first in the soma before reaching neurites and synapses. Strengths:

      I appreciate the authors' efforts to confirm that the newly established methods somehow recapitulate aspects of the BoNTs mechanism of action, such as toxin binding and uptake occurring at the level of active synapses. Furthermore, even though I consider the SNAPR approach inadequate, the genome-wide RNAi screen has been well executed and thoroughly analyzed. It includes well-established positive and negative controls, making it a comprehensive resource not only for scientists working in the field of botulinum neurotoxins but also for cell biologists studying endocytosis more broadly. Weaknesses:

      I have several concerns about the authors' main conclusions, primarily due to the lack of essential controls and validation for the newly developed methods used to assess toxin cleavage and trafficking into neurons. Furthermore, there is a significant discrepancy between the proposed intoxication model and existing studies conducted in more physiological settings. In my opinion, the authors have omitted over 20 years of work done in several labs worldwide (Montecucco, Montal, Schiavo, Rummel, Binz, etc.). I want to emphasize that I support changes in biological dogma only when these changes are supported by compelling experimental evidence, which I could not find in the present manuscript.

      We thank the reviewer for his reading and comments and for pointing out the discrepancy between our proposed model and the existing model. However, we respectfully disagree with the phrase of “extensive studies have elucidated the five-steps mechanism of intoxication…”. This sentence and the following imply that the model is well-established and demonstrated. It also highlights how the reviewer is convinced about this previous model.

      We contest this model for theoretical reasons and contest the strength of evidences that support it. We previously included references to previous work showing that the model is also being challenged by others. In light of the reviewer’s comments, we incluced more references in the introduction and we also explicit our main theoretical concern in the introduction:

      “Arguably, the main problem of the model is its failure to propose a thermodynamically consistent explanation for the directional translocation of a polypeptidic chain across a biologial membrane. Other known instances of polypeptide membrane translocation such as the co-translational translocation into the ER indicate that it is an unfavorable process, which consumes significant energy (Alder and Theg 2003). ”

      We also added the following text in the Discussion to address with the reviewer’s concerns: “Our study contradicts the long-established model of BoNT intoxication, which is described in several reviews specifically dedicated to the subject 1–4. In short, these reviews support the notion that BoNT are molecular machines able to mediate their own translocation across membranes; this notion has convinced some cell biologists interested in toxins and retrograde traffic, who describe BoNT mode of translocation in their reviews 5,6.

      But is this notion well supported by data? A careful examination of the primary literature reveals that early studies indeed report that BonTs form ion channels at low pH values 7,8. These studies have been extended by the use of patch-clamp 9,10. These works and others lead to various suppositions on how the toxin forms a channel and translocate the LC 1,11 .

      However, only a single study claims to reconstitute in vitro the translocation of BonT LC across membranes 12. In this paper, the authors report using a system of artificial membranes separating two aqueous compartments. They load the toxin in the cis compartment and measure the protease activity in the trans compartment after incubation. However, when the experimental conditions described are actually converted in terms of molarity, it appears that the cis compartment was loaded at 10e-8M BonT and that the reported translocated protease activity is equivalent to 10e-17 M (Figure 3D, 12). Thus, in this experiment, about 1 LC molecule in 100 millions has crossed the membrane. Such extremely low transfert rate does not tally with the extreme efficiency of intoxication in vivo, even while taking into account the difference between artificial and biological membranes.

      In sum, a careful analysis of the primary literature indicate that while there is ample evidence that BoNTs have the ability to affect membranes and possibly create ion channels, there is actually no credible evidence that these channels mediate translocation of the LC. As mentioned earlier, it is not clear how such a self-translocation mechanism would function thermodynamically. By contrast, our model proposes a mechanism without a thermodynamic problem, is consistent with current knowledge about other protein toxins, such as PE, Shiga and Ricin, and can help explain previously puzzling features of BonT effects. It is worth noting that a similar self-translocation model was proposed for other protein toxins such as Pseudomonas exotoxin, which have similar molecular organisation as BonT (68). However, it has since been demonstrated that the PE toxins require cellular machinery, in particular in the ER, for intoxication (21,69,70).”

      Reviewer #2 (Public Review):

      Summary:

      The study by Yeo and co-authors addresses a long-lasting issue about botulinum neurotoxin (BoNT) intoxication. The current view is that the toxin binds to its receptors at the axon terminus by its HCc domain and is internalized in recycled neuromediator vesicles just after the release of the neuromediators. Then, the HCn domain assists the translocation of the catalytic light chain (LC) of the toxin through the membrane of these endocytic vesicles into the cytosol of the axon terminus. There, the LC cleaves its SNARE substrate and blocks neurosecretion. However, other views involving kinetic aspects of intoxication suggest that the toxin follows the retrograde axonal transport up to the nerve cell body and then back to the nerve terminus before cleaving its substrate.

      In the current study, the authors claim that the BoNT/A (isotype A of BoNT) not only progresses to the cell body but once there, follows the retrograde transport trafficking pathway in a retromer-dependent fashion, through the Golgi apparatus, until reaching the endoplasmic reticulum. Next, the LC dissociates from the HC (a process not studied here) and uses the translocon Sec61 machinery to retro-translocate into the cytosol. Only then, does the LC traffic back to the nerve terminus following the anterograde axonal transport. Once there, LC cleaves its SNARE substrate (SNAP25 in the case of BoTN/A) and blocks neurosecretion.

      To reach their conclusion, Yeo and co-authors use a combination of engineered tools: a cell line able to differentiate into neurons (ReNcell VN), a reporter dual fluorescent protein derived from SNAP25, the substrate of BoNT/A (called SNAPR), the use of either native BoNT/A or a toxin to which three fragment 11 of the reporter fluorescent protein Neon Green (mNG) are fused to the N-terminus of the LC (BoNT/A-mNG11x3), and finally ReNcell VN transfected with mNG1-10 (a protein consisting of the first 10 beta strands of the mNG).

      SNAPR is stably expressed all over in the ReNcell VN. SNAPR is yellow (red and green) when intact and becomes red only when cleaved by BoNT/A LC, the green tip being degraded by the cell. When the LC of BoNT/A-mNG11x3 reaches the cytosol in ReNcell VN transfected by mNG1-10, the complete mNG is reconstituted and emits a green fluorescence.

      In the first experiment, the authors show that the catalytic activity of the LC appears first in the cell body of neurons where SNAPR is cleaved first. This phenomenon starts 24 hours after intoxication and progresses along the axon towards the nerve terminus during an additional 24 hours. In a second experiment, the authors intoxicate the ReNcell VN transfected by mNG1-10 using the BoNT/A-mNG11x3. The fluorescence appears also first in the soma of neurons, then diffuses in the neurites in 48 hours. The conclusion of these two experiments is that translocation occurs first in the cell body and that the LC diffuses in the cytosol of the axon in an anterograde fashion.

      In the second part of the study, the authors perform a siRNA screen to identify regulators of BoNT/A intoxication. Their aim is to identify genes involved in intracellular trafficking of the toxin and translocation of the LC. Interestingly, they found positive and negative regulators of intoxication. Regulators could be regrouped according to the sequential events of intoxication.

      Genes affecting binding to the cell-surface receptor (SV2) and internalization. Genes involved in intracellular trafficking. Genes involved in translocation such as reduction of the disulfide bond linking the LC to the HC and refolding in the cytosol. Genes involved in signaling such as tyrosine kinases and phosphatases. All these groups of genes may be consistent with the current view of BoNT intoxication within the nerve terminus. However, two sets of genes were particularly significant to reach the main conclusion of the work and definitely constitute an original finding important to the field. One set of genes consists of those of the retromer, and the other relates to the Sec61 translocon. This should indicate that once endocytosed, the BoNT traffics from the endosomes to the Golgi apparatus, and then to the ER. Ultimately, the LC should translocate from the ER lumen to the cytosol using the Sec61 translocon. The authors further control that the SV2 receptor for the BoNT/A traffics along the axon in a retromer-dependent fashion and that BoNT/A-mNG11x3 traverses the Golgi apparatus by fusing the mNG1-10 to a Golgi resident protein.

      Strengths:

      The findings in this work are convincing. The experiments are carefully done and are properly controlled. In the first part of the study, both the activity of the LC is monitored together with the physical presence of the toxin. In the second part of the work, the most relevant genes that came out of the siRNA screen are checked individually in the ReNcell VN / BoNT/A reporter system to confirm their role in BoNT/A trafficking and retro-translocation.

      These findings are important to the fields of toxinology and medical treatment of neuromuscular diseases by BoNTs. They may explain some aspects of intoxication such as slow symptom onset, aggravation, and appearance of central effects.

      Weaknesses:

      The findings antagonize the current view of the intoxication pathway that is sustained by a vast amount of observations. The findings are certainly valid, but their generalization as the sole mechanism of BoNT intoxication should be tempered. These observations are restricted to one particular neuronal model and engineered protein tools. Other models such as isolated nerve/muscle preparations display nerve terminus paralysis within minutes rather than days. Also, the tetanus neurotoxin (TeNT), whose mechanism of action involving axonal transport to the posterior ganglia in the spinal cord is well described, takes between 5 and 15 days. It is thus possible that different intoxication mechanisms co-exist for BoNTs or even vary depending on the type of neurons.

      Although the siRNA experiments are convincing, it would be nice to reach the same observations with drugs affecting the endocytic to Golgi to ER transport (such as Retro-2, golgicide or brefeldin A) and the Sec61 retrotranslocation (such as mycolactone). Then, it would be nice to check other neuronal systems for the same observations.

      We thank the reviewer for the careful reading and comments of our manuscript. The reference to “a vast amount of observation” is a similar argument to the Reviewer 1 and used to suggest that our study may not be applicable as a general mechanism.

      We respectfully disagree as described above and posit on the contrary that the model we propose is much more likely to be general than the model presented in current reviews for the several reasons cited (see added text in Introduction and Discussion). While we agree that more work is needed to confirm the proposed mechanisms of BonT translocation in other models, these experiments fall outside the perimeter of our study.

      The fact that nerve/muscle preparations of BonT activity have relatively fast kinetics does not pose a contradiction to our model. Our model reveals primarily the requirement for trafficking to the ER membranes. This ER targeting requires trafficking through the Golgi complex, in turn explaining the requirement for trafficking to the soma of neurons in the experimental system we used. However, in neuronal cells in vivo, Golgi bodies can be found along the lenght of the axon, thus BonT may not always require trafficking to the soma of the affected cells. The time required for intoxication could thus vary greatly depending on the neuronal structural organisation.

      TenT is proposed to transfer from excitatory neurons into inhibitory neurons before exerting its action. While the detailed mechanism of this fascinating mechanism remain to be explored, it clearly falls beyond the purview of this manuscript.

      Regarding the use of drugs, we agree that it would be a nice addition; unfortunately we are unable to perform such experiments at this stage. Setting up a large scale siRNA screen for BonT mechanism of action is challenging as it requires a special facility with controlled access and police authorisation (in Singapore) given the high toxicity of this molecule. Unfortunately, the authorisations have now lapsed.

      Reviewer #3 (Public Review): Summary:

      The manuscript by Yao et al. investigates the intracellular trafficking of Botulinum neurotoxin A (BoNT/A), a potent toxin used in clinical and cosmetic applications. Contrary to the prevailing understanding of BoNT/A translocation into the cytosol, the study suggests a retrograde migration from the synapse to the soma-localized Golgi in neurons. Using a genome-wide siRNA screen in genetically engineered neurons, the researchers identified over three hundred genes involved in this process. The study employs organelle-specific split-mNG complementation, revealing that BoNT/A traffics through the Golgi in a retromer-dependent manner before moving to the endoplasmic reticulum (ER). The Sec61 complex is implicated in the retro-translocation of BoNT/A from the ER to the cytosol. Overall, the research challenges the conventional model of BoNT/A translocation, uncovering a complex route from synapse to cytosol for efficient intoxication. The findings are based on a comprehensive approach, including the introduction of a fluorescent reporter for BoNT/A catalytic activity and genetic manipulations in neuronal cell lines. The conclusions highlight the importance of retrograde trafficking and the involvement of specific genes and cellular processes in BoNT/A intoxication.

      Strengths:

      The major part of the experiments are convincing. They are well-controlled and the interpretation of their results is balanced and sensitive.

      Weaknesses:

      To my opinion, the main weakness of the paper is in the interpretation of the data equating loss of tGFP signal (when using the Red SNAPR assay) with proteolytic cleavage by the toxin. Indeed, the first step for loss of tGFP signal by degradation of the cleaved part is the actual cleavage. However, this needs to be degraded (by the proteasome, I presume), a process that could in principle be affected (in speed or extent) by the toxin.

      We thank the reviewer for his comments and careful reading of our manuscript.

      Regarding the read-out of the assay, we agree that the assay could be sensitive to alteration in the protein degradation pathway. We have added the following sentence in the Discussion to take it into account:

      “As noted by one reviewer, the assay may be sensitive to perturbation in the general rate of protein degradation, a consideration to keep in mind when evaluating the results of large scale screens.”

      While this may be valid for some hits in the general list, it is important to note that the main hits have been shown to affect toxin trafficking by an independent, orthogonal assay based on the split GFP reconstitution.

      Recommendations to authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) To assess the activity of BoNT/A in neurons, Yeo et al. have generated a neuronal stem line referred to as SNAPR. This cell line stably expresses a chimeric reporter protein that consists of SNAP25 flanked at its N-terminus with a tagRFPT and at its C-terminus with a tagGFP. After exposure to BoNT/A, SNAP25 is cleaved and, the C-terminal tGFP-containing moiety is rapidly degraded. I have many doubts about the validity of the described method. Indeed, BoNT/A activity is analysed in an indirect way by quantifying the degradation of the GFP moiety generated after toxin cleavage (Fig. 2). In this regard, the authors should consider that their approach is dependent, not only on the toxin's metalloprotease activity but also on the functionality of the proteasome in neurons. Therefore, considering the current dataset, it is impossible to rule out the possibility that the progression of GFP signal loss from the soma to the neurite terminals may be attributed to the different proteasome activity in these compartments. Is it conceivable that the GFP fragment generated upon toxin cleavage degrades more rapidly in the soma in comparison to axonal terminals? This alternative explanation could challenge the conclusion drawn in Fig. 2.

      The reviewer’s alternative explanation disregards the experiments performed with the split-GFP complementation approach, which indicate translocation in the soma first. The split GFP reporter is not dependent on the proteasome activity. It also disregard the genetic data implicating many genes involved in membrane retrograde traffic, which are also not consistent with the hypothesis of the reviewer. These genes depletions not only affect SNAPR degradation but also BoNT/A-mNG11 trafficking: thus, their effect cannot be attributed to an completely hypothetical spatial heterogeneous distribution of the proteasome.

      For this reason, I strongly suggest using a more physiological approach that does not depend on proteasomal degradation or on the expression of the sensor in neurons. The authors should consider performing a time course experiment following intoxication and staining BoNT/A-cleaved SNAP25 by using specific antibodies (see Antonucci F. et al., Journal of Neuroscience, 2008 or Rheaume C. et al., Toxins 2015).

      For the above reason, we do not agree with the pressing importance of confirming by a third method using specific antibodies; especially considering that BonT is very difficult to detect in cells when incubated at physiological levels. By the way, the cited paper, by Antonucci F; et al. documents long distance retrograde traffic of BonT/A, which is in line with our data.

      An alternative approach could involve the use of microfluidic devices that physically separate axons from cell bodies. Such a separation will allow us to test the authors' primary conclusion that SNAP25 is initially cleaved in the soma. The suggested experiments will also rule out potential overexpression artifacts that could influence the authors' conclusions when using the newly developed SNAPR approach. Without these additional experiments, the authors' main conclusion that SNAP25 is cleaved first in the neuronal soma rather than at the nerve terminal is inadequate.

      As discussed above we disagree about the doubts raised by the reviewer: we present three types of evidences (SNAPR, split GFP and genetic hits) and they all point in the same direction. Thus, we respectfully doubt that a fourth approach would convince this reviewer. To note, we have attempted to use microfluidics devices as suggested by the reviewer, however, the Ren-VM neurons were not able to extend axons long enough across the device.

      (2) To detect BoNT/A translocation into the cytosol, the authors have used a complementation assay by intoxicating ReNcell VM cell expressing a cytosolic HA-tagged split monomeric NeonGreen (Cyt-mNG1-10) with an engineered BoNT/A, where the catalytic domain (LC) was fused to mNG1-11. When drawing conclusions regarding the detection of cytosolic LC in the neuronal soma, the authors should highlight the limitations of this assay and explicitly describe them to the readers. Firstly, the authors need to investigate whether the addition of mNG1-11 to the LC affects the translocation process itself (by comparing with a WT, not tagged, LC).

      Additionally, from the data shown in Fig. 2C, it is evident that the Cyt-mNG1-10 is predominantly expressed in the cytosol and less detected in neurites. This raises the question of whether there might be a bias for the cell soma in this assay. To address this important concern, I suggest quantifying MFI per cell (Fig. 2D) taking into consideration the amount of HA-tagged Cyt-mNG1-10. Furthermore, I strongly suggest targeting mNG1-10 to synapses and performing a similar time course experiment to observe when LC translocation occurs at nerve terminals. Alternative experiments, to prove that BoNT/A requires retrograde trafficking before it can translocate, may be done to repeat the experiments shown in Fig. 2D in the presence of inhibitors (or by KD some of the hits identified as microtubule stabilizers) that should interfere with BoNT/A trafficking to the neuronal somata. Without these additional experiments, the authors' main conclusion that the BoNT/A catalytic domain is first detected in the neuronal soma rather than at the nerve terminal is very preliminary.

      Similarly as for the SNAPR assay, the reviewer is raising the level of doubt to very high levels. We respect his thoroughness and eagerness to question the new model. However, we note that a similar level of scrutiny does not apply to the prevalent competitive model. Indeed, the data supporting the self-translocation model is based on a single in vitro experiment published in one panel as we have explain din the discussion (see above).

      (3) In the genome-wide RNAi screening, rather than solely assessing SV2 surface levels, it would have been beneficial to directly investigate BoNT/A binding to the neuronal membrane. For instance, this could have been achieved by using a GFP-tagged HC domain of BoNT/A. At present, the authors cannot exclude the possibility that among the 135 hits that did not affect SV2 levels, some might still inhibit BoNT/A binding to the neuronal surface. These concerns, already exemplified by B4CALT4 (which is known to be involved in the synthesis of GT1b), should be explicitly addressed in the main text.

      We agree with the reviewer that perturbation of binding of BonT is possible. We added the following text:

      “Network analysis reveals regulators of signaling, membrane trafficking and thioreductase redox state involved in BoNT/A intoxication

      Among the positive regulators of the screen, 135 hits did not influence significantly surface SV2 levels and are thus likely to function in post-endocytic processes (Supplementary Table 2). However, we cannot formerly exclude that they could affect binding of BonT to the cell surface independently of SV2.”

      (4) The authors should clearly state which reagents they have tried to use in order to explain the challenges they faced when directly testing the trafficking of BoNT/A. The accumulation of Dendra-SV2 bulbous structures at the neurite tips in VPS35-depleted cells could be interpreted as a sign of neuronal stress/death. Have the authors investigated other proteins that do not undergo retro-axonal trafficking in a retromer-dependent manner? This control is essential. In this regard, the use of a GFP-tagged HC domain of BoNT/A could prove to be quite helpful.

      We tried multiple commercially available antibodies against BonT but we could not get a very good signal. The postdoc in charge of this project has now gone to greener pastures and we are not in the capacity to provide the details corresponding to these antibodies. We di dnot observe significant cell death after VPS-35 knockdown at the time of the experiment, however longe rterm treatment might result in toxicity indeed.

      (5) Considering my concerns related to the SNAPR system and the complementation assay to study SNAP25 cleavage and BoNT/A trafficking, I suggest validating some of their major hits (ex. VPS34 and Sec61) by performing WB or IF analysis to examine the cleavage of endogenous SNAP25. Furthermore, the authors should test VPS35 depletion in the context of the experiments performed in Fig. 6G-H, by validating that this protein is essential for BoNT/A retrograde trafficking.

      The reviewer concerns are well noted but as discussed above, the two systems we used are completely orthogonal. Thus, for the reviewer’s concerns to be valid, it would have to be two completely independent artefacts giving rise to the same result. The alternative explanation is that BonT/A translocates in the soma. The Ockham razor principle dictates that the simplest explanation is the likeliest.

      (6) The introduction and the discussion section of this paper completely disregard more than 20 years of research conducted by several labs worldwide (Montecucco, Montal, Schiavo, Rummel, Binz, etc). The authors should make an effort to contextualize their data within the framework of these studies and address the significant discrepancies between their proposed intoxication model and existing research that clearly demonstrates BoNTs translocating upon the endocytic retrieval of SVs at presynaptic sites. Nevertheless, even assuming that the model proposed by the authors is accurate, numerous questions emerge. One such question is: How can the authors explain the exceptional toxicity of botulinum neurotoxin in an ex vivo neuromuscular junction preparation devoid of neuronal cell bodies (see Cesare Montecucco and Andreas Rummel's seminal studies)?

      Please see above in the answer to public reviews.

      (7) Scale bars should be added to all representative pictures.

      This has been done. Thank you for the thorough reading of our manuscript.

      Reviewer #2(Recommendations For The Authors):*

      (1) The title overstates the results. It may be indicated "in differenciated ReNcell VM".

      Title changed to: “Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons”

      (2) In the provided manuscript there are two Figure 2 and no Figure 3. This made the reading and understanding extremely difficult and should be corrected. As a result, the Figure legends do not fit the numbering. There are also discrepancies between some Figure panels (A, B, C, etc), the text, and the Legends. All this needs to be carefully checked.

      We apologize for the confusion as the manuscript as followed multiple rounds of revisions. We have carefully verified labels and legends.

      (3) The BoNT/A-mNG11x3 may introduce some bias that could be discussed. Would these additional peptides block LC translocation from synaptic vesicles in the nerve termini? In addition, the mNG peptides that are unfolded before complementation may direct LC towards Sec61. These aspects should be discussed.

      The comment would be valid if BoNT/A-mNG11x3 was the only approach used in the paper, however the SNAPR reporter is used with native BonT and shows data consistent with the split GFP approach.

      (4) In the Figure about SV2 (Fig 3 or 4): The authors did not locate SV2. The cells seem not to have the same differentiated phenotype as in Figure 1 and Figure 2/3A.

      We apologized above for the mislabeling. It is not clear what is the question here.

      (5) The authors should check whether BoNT/A wt cleaves the endogeneous SNAP25 by western blot for instance in the original ReNcell VN before SNAPR engineering. This should be compared with wt SNAP25 cleavage by the BoNT/A-LC-mNG.

      It is likely that BoNT/A-LC-mNG11 should have similar activity as it is only adding a small peptide at the end of the LC. At any rate, it is not clear why this is so important since both molecules translocate in the cytosol, with the same kinetics and in the same subcellular locale.

      (6) Perhaps I did not understand. How can the authors exclude that what is observed is the kinetic overproduction of the reporter substrate SNAPR?

      The authors could use SLO toxin (PNAS 98, 3185-3190, 2001) to permeabilize the cells all along their body and axon to introduce BoNT/A or LC (wt) and observe synchronized SNAPR cleavage throughout the cells.

      The concept mentioned here is not very clear to us. The reviewer is proposing that the SNAPR is produced much more efficiently at the tips of the neurites and thus its cleavage takes longer to be detected and is apparent first in the soma?? With all due respect, this is a strange hypothesis, at odds with what we know of protein dynamics in the neurons (i.e. most proteins are largely made in the soma and transported or diffuse into the neurites).

      Again, the two orthogonal approaches: split GFP and SNAPR reporter use different constructs and methods, yet converge on similar results. Perhaps, the incredulity of the reviewer might be more productively directed at the current data “demonstrating” the translocation of LC in the synaptic button?

      (7) The authors could also use an essay on neurotransmitter release monitoring by electrophysiology measurements to check the functional consequences of the kinetic diffusion of LC activity along the axon. Can the authors exclude that some toxin molecules translocate from the endocytic vesicles and block neurotransmission within minutes or a few hours?

      It is well established that inhibition of neurotransmission does not occur within minutes in vivo and in vitro, but rather within hours or even days. This kinetic delay is experienced by many patients and is one of the key argument against the current model of self-translocation at the synaptic vesicle level.

      Minor remarks

      Thank you for pointing out all these.

      (1) Please check typos. There are many. Check space before the parenthesis, between numbers and h (hours), reference style etc.

      Thank you. We have reviewed the text and try to eliminate all these instances.

      (2) Line 90: The C of HC should be capitalized.

      Fixed

      (3) Line 107: add space between "neurons(Donato".

      Fixed

      (4) Line 109: space "72 h".

      Fixed

      (5) Line 115: a word is missing ? ...to show retro-axonal... ? Please clarify this sentence.

      Fixed

      (6) Figure 1E: does nm refer to nM (nanomolar)? Please correct. No mention of panel F.

      Fixed

      (7) Line 161: do you mean ~16 µm/h? Please correct.

      Fixed

      (8) Line 168, words are missing.

      Fixed, thank you

      We verified that Cyt-mNG1-10 was expressed using the HA tag, the expression was homogeneously distributed in differentiated neurons and we observed no GFP signal (Figure2C).

      (9) Line 171: Isn't mNG 11 the eleventh beta strand of the neon green fluorescent protein, not alpha helix? Otherwise, can the authors confirm it acquires the shape of an alpha helix? Same at line 326.

      We have corrected the mistake; thanks for pointing it out.

      (10) Figure 2 is doubled. The legend of Fig 2 refers to Figure 3. There is no legend for Figure 2. Then, some figures are shifted in their numbering.

      Fixed

      (11) The fluorescence in the cell body must appear before the fluorescence in the axon due to higher volume. Please discuss.

      The fluorescence progresses in the neurites extensions in a centripetal fashion. The volume of the neurite near the cell body is not significantly different from the end of the neurite. Thus the fluorescence data is consistent with translocation in soma and not with an effect due to higher volume in the soma.

      (12) Figure 2D, right: the term intoxication is improper for this experiment. Rather, it is the presence of the BoNT/A-mNG11 that is detected. I believe the authors should be particularly careful about the use of terms: intoxication means blockade of neurosecretion, SNAPR cleavage means activity etc.

      While the reviewer is correct that it is the presence of BoNT/A-mNG11 that is detected, it remains that it is an active toxin, so the neurons are effectively intoxicated; as they are when we use the wild type toxin. We do not imply that we are measuring intoxication, but simply that the neurons are put into contact with a toxin.

      (13) Line 196: Should we read TXNRD1 is required for BoNT/A LC translocation? TXNRD1 in the current model of translocation is located in the cytoplasm and is supposed to play a role in the cleavage of the disulfide bond linking LC to HC. In the model proposed by this study, LC is translocated through the Sec61 translocon. In this case, I would assume that the protein disulfide isomerase (PDI) in the endoplasmic reticulum would reduce the LC-HC disulfide bond. In that case, TXNRD1 would not be required anymore. Please discuss.

      Why should we assume that a PDI is involved in the reduction of the LC-HC disulfide bond? In our previous studies on A-B toxins (PE and Ricin), different reduction systems seemed to be at play. There is no conceptual imperative to assume reduction in the ER because the Sec61 translocon is implicated. Reduction might occur on the cytosolic side by TXNRD1 or the effect of this reductase could be indirect.

      (14) The legend of Figure 4 (in principle Figure 5?) is not matching with the panels and panel entries are missing (Figure 4F in particular).

      Fixed

      (15) Figure 6 panels E and H, please match colors with legend (grey and another color).

      Not clear

      (16) Please indicate BoNT/A construct concentrations in all Figure legends.

      Done

      (17) Line 416: isn't SV2 also involved in epilepsy?

      Yes it is.

      (18) Line 433: as above, shouldn't the disulfide bond linking LC to HC be cleaved by PDI in the ER in this model (as for other translocating bacterial toxins) rather than by thioredoxin reductases in the cytoplasm? Please discuss.

      See above

      (19) Identification of vATPase in the screen could be consistent with the endocytic vesicle acidification model of translocation.

      Yes

      (20) Did the authors add KCl in screening controls without toxins? This should be detailed in the Materials and Methods. Could there be a KCl effect on the cells? KCl exposure for 48 hours may be highly stressful for cells. The KCl exposure should last only several minutes for toxin entry.

      We did not observe significant cell detah with the cell culture conditions used. Cell viability was controlled at multiple stages using nuclei number for instance

      Reviewer #3 (Recommendations For The Authors):

      Main comments: (1) In Figure 1B: could you devise a means to prevent proteosomal degradation of the tGFP cleaved part to assess whether this is formed?

      We have also used a FRET assay after tintoxication and obtained similar results

      (2) Line 152: Where it reads "was not surprising", maybe I missed something, but to me, this is indeed surprising. If the toxin is rapidly internalized and translocated (therefore, it is able to cleave SNAP25), the fact that tGFP requires 48 hours to be degraded seems surprising to me. Or does it mean that the toxin also slows down the degradation of the tGFP fragment? So, how can you differentiate between the effect being on cleavage of the fragment or in tGFP degradation?

      The reviewer is correct, the “not” was a typo due to re-writting; the long delay between adding the toxin and observing cleavage was suprising indeed. Our interpretation is that it is trafficking that takes time, indeed, the split-GFP data kinetics indicates that the toxin takes about 48h to fill up the entire cytosol (Fig. 2D).

      (3) Regarding the effect of Sec61G knockdown, is it possible that the observed effects are indirect and not due to the translocon being directly responsible for translocating the protein?

      As discussed in the last part of the results,Sec61 knock-down results in block of intoxication, but does not prevent BonT from reaching the lumen of the ER (Figure 6G,H). Thus, Sec61 is “is instrumental to the translocation of BoNT/A LC into the neuronal cytosol at the soma.”

      Minor comments:

      (1) Fig. 3E: in the legend I think one of the NT3+ should be NT3-.

      Yes, thanks for spotting it

      (2) Would you consider adding Figure S4 as a main figure?

      Thanks for the suggestion

      (3) Please, check that all microscopy image panels have scale bars.

      Done

      (4) Figure 6B (bottom panes): why does it seem that there is a lot of mNeonGreen positive signal in regions that are not positive for HA? Shouldn't complementation keep HA in the complemented protein.

      Our assumption i sthat there is an excess of receptor protein (HA tag) over reconstituted protein (GFP protein) given the relatively low concentration of toxin being internalized and translocated Refs: (1) Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta. 2016 Mar;1858(3):467–474. PMID: 26307528

      (2) Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017 Apr;69(2):200–235. PMCID: PMC5394922

      (3) Dong M, Masuyer G, Stenmark P. Botulinum and Tetanus Neurotoxins. Annu Rev Biochem. Annual Reviews; 2019 Jun 20;88(1):811–837.

      (4) Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum Neurotoxins: Mechanism of Action. Handb Exp Pharmacol. 2021;263:35–47. PMCID: 6671090

      (5) Williams JM, Tsai B. Intracellular trafficking of bacterial toxins. Curr Opin Cell Biol. 2016 Aug;41:51–56. PMCID: PMC4983527

      (6) Mesquita FS, van der Goot FG, Sergeeva OA. Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cell Microbiol. 2020 Apr;22(4):e13167. PMCID: PMC7154709

      (7) Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1692–1696. PMCID: PMC397338

      (8) Donovan JJ, Middlebrook JL. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry. 1986 May 20;25(10):2872–2876. PMID: 2424493

      (9) Fischer A, Montal M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10447–10452. PMCID: PMC1965533

      (10) Fischer A, Nakai Y, Eubanks LM, Clancy CM, Tepp WH, Pellett S, Dickerson TJ, Johnson EA, Janda KD, Montal M. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1330–1335. PMCID: PMC2635780

      (11) Fischer A, Montal M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem. 2007Oct 5;282(40):29604–29611. PMID: 17666397

      (12) Koriazova LK, Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nature structural biology. 2003. p. 13–18. PMID: 12459720

      (13) Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F.Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell. 2011 Aug 16;21(2):231–244. PMID: 21782526

      (14) Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I, Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA, Leproust EM, McManus MT, Weissman JS. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell. 2013 Feb 14;152(4):909–922. PMCID: PMC3652613

      (15) Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 2018 Nov;16(11):e2006951. PMCID: PMC6258472

    1. Author response:

      We would like to thank the reviewers for their helpful comments. We note that both reviews are strongly supportive with comments including, “a biophysical tour de force” (rev #1), “the study is exemplary” (rev #2), and “represents a roadmap for future work” (rev #2). Below we respond to each reviewer comment.

      Reviewer #1

      This study provides a detailed and quantitative description of the allosteric mechanisms resulting in the paradoxical activation of BRAF kinase dimers by certain kinase inhibitors. The findings provide a much needed quantiative basis for this phenomenon and may lay the foundation for future drug development efforts aimed at the important cancer target BRAF. The study builds on very evidence obtained by multiple independent biophysical methods.

      Summary:

      The authors quantitatively describe the complex binding equilibria of BRAF and its inhibitors resulting in some cases in the paradoxical activation of BRAF dimer when bound to ATP competitive inhibitors. The authors use a biophysical tour de force involving FRET binding assays, NMR, kinase activity assays and DEER spectroscopy.

      We are gratified by the reviewer’s supportive summary.

      Strengths:

      The strengths of the study are the beautifully conducted assays that allow for a thorough characterization of the allostery in this complex system. Additionally, the use of F-NMR and DEER spectroscopy provide important insights into the details of the process. The resulting model for binding of inhibitors and dimerization (Fig.4) is very helpful.

      Weaknesses:

      This is a complex system and its communication is inherently challenging. It might be of interest to the broader readership to understand the implications of the model for drug development and therapy.

      We agree with the reviewer that this is a complicated system. With regard to inhibitor development, a key insight is that designing aC-in state inhibitors that avoid paradoxical activation may be non-trivial because these molecules not only induce dimers but also tend to bind the second dimer subunit more weakly than the first, due to allosteric asymmetry and/or inherently different affinities for each RAF isoform. We feel the full implications for future therapeutic development are an extensive topic that is beyond the scope of our work, which is focused on the properties of current inhibitors.

      Recommendations for the author:

      The experimental work, analysis and resulting model are excellent. I had some difficulty following the complex model in some instances and it may be useful to review the description of the model and see whether it can be made more palatable to the broader readership. I think it would be useful to discuss the model presented in reference 40 (Kholodenko) and to compare it to the presented model here.

      We regret any confusion with regards to the nature of the model. Our analysis was built upon the model developed by Boris Kholodenko as reported in his 2015 Cell Reports paper. This formed the theoretical framework that combined with our experimental data allowed us to parameterize this model to obtain experimental values for the equilibrium constants and allosteric coupling factors.

      Reviewer #2

      This manuscript combines elegant biophysical solution measurements to address paradoxical kinase activation by Type II BRAF inhibitors. The novel findings challenge prevailing models, through experiments that are rigorous and carefully controlled. The study is exemplary in the breadth of strategies it uses to address protein kinase dynamics and inhibitor allostery.

      Summary:

      This manuscript uses FRET, 19F-NMR and DEER/EPR solution measurements to examine the allosteric effects of a panel of BRAF inhibitors (BRAFi). These include first-generation aC-out BRAFi, and more recent Type I and Type II aC-in inhibitors. Intermolecular FRET measurements quantify Kd for BRAF dimerization and inhibitor binding to the first and second subunits. Distinct patterns are found between aC-in BRAFi, where Type I BRAFi bind equally well to the first and second subunits within dimeric BRAF. In contrast, Type II BRAFi show stronger affinity for the first subunit and weaker affinity for the second subunit, an effect named "allosteric asymmetry". Allosteric asymmetry has the potential for Type II inhibitors to promote dimerization while favoring occupancy of only one subunit (BBD form), leading to enrichment of an active dimer.

      Measurements of in vitro BRAF kinase activity correlate amazingly well with the calculated amounts of the half site-inhibited BBD forms with Type II inhibitors. This suggests that the allosteric asymmetry mechanism explains paradoxical activation by this class of inhibitors. DEER/EPR measurements further examine the positioning of helix aC. They show systematic outward movement of aC with Type II inhibitors, relative to the aC-in state with Type I inhibitors, and further show that helix aC adopts multiple states and is therefore dynamic in apo BRAF. This makes a strong case that negative cooperativity between sites in the BRAF dimer can account for paradoxical kinase activation by Type II inhibitors by creating a half site-occupied homodimer, BBD. In contrast, Type I inhibitors and aC-out inhibitors do not fit this model, and are therefore proposed to be explained by previous proposed models involving negative allostery between subunits in BRAF-CRAF heterodimers, RAS priming, and transactivation.

      Strengths:

      This study integrates orthogonal spectroscopic and kinetic strategies to characterize BRAF dynamics and determine how it impacts inhibitor allostery. The unique combination of approaches presented in this study represents a road map for future work in the important area of protein kinase dynamics. The work represents a worthy contribution not only to the field of BRAF regulation but protein kinases in general.

      Weaknesses:

      Some questions remain regarding the proposed model for Type II inhibitors and its comparison to Type I and aC-out inhibitors that would be useful to clarify. Specifically, it would be helpful to address whether the activation of BRAF by Type II inhibitors, while strongly correlated with BBD model predictions in vitro, also depends on CRAF via BRAF-CRAF in cells and therefore overlaps with the mechanisms of paradoxical activation by Type I and aC-out inhibitors.

      We agree with the reviewer that this is a worthy question to be pursued. However, given the substantial experimental effort required for such an endeavor, and the highly supportive nature of the reviewer comments, including that “This is a strong manuscript that I feel is well above the bar for publication”, we believe this effort is more appropriate for a future study.

      This is a strong manuscript that I feel is well above the bar for publication. Nevertheless, it is recommended that the authors consider addressing the following points in order to support their major conclusions.

      (1) Fig 3D shows similar effects of Type II and Type I inhibitors in the biphasic increase of cellular pMEK/pERK. From this, the authors argue that Type II inhibitors are explained by negative allostery in the BRAF homodimer (based on Fig 2E), while Type I inhibitors are not. But it seems possible that despite the terrific correlation between BBD and BRAF kinase activities measured in vitro, CRAF is still important to explain pathway activation in cells. It also seems conceivable that the calculated %BBD between different Type II inhibitors may not correlate as well with their effects on pathway activation in cells. These possibilities should be addressed.

      We agree with the reviewer that it is likely that CRAF contributes to paradoxical activation by type II inhibitors in cells. It is also likely that other cellular factors such as RAS-priming and membrane recruitment play a role in activation. However, we note that for the type II inhibitors there is good agreement between the biophysical predictions and the concentration regimes in which activation is observed in cells, suggesting that these predictions are capturing a key part of the activation process that occurs in cells.

      (2) In Fig 2A, is it possible to report the activity of dimeric BRAF-WT in the absence of inhibitor? This would help confirm that the maximal activity measured after titrating inhibitor is indeed consistent with the predicted %BBD population, which would be expected to have half of the specific activity of BB.

      In principle, it is possible to determine the catalytic activity of apo dimers (BB) by combining our model predictions for the concentration of BB dimers and our activity measurements. However, because the activity assays are performed at nanomolar kinase concentrations, whereas the baseline dimerization affinity of BRAF is in the micromolar range, the observed activity of apo BRAF arises from a small subpopulation of dimers (on the order of 4 percent under the conditions of our experiments) and is therefore difficult to define accurately. As a result, we deemed it more suitable to compare our results to published activity measurements derived from 14-3-3-activated dimers which should represent fully dimerized BRAF. This analysis, as reported in Figure 2E, suggests that the BBD activity is approximately half of that of BB.

      (3) The 19F-NMR experiments make a good case for broadening of the helix aC signal in the BRAF dimer. From this, the study proposes that after inhibitor binds one subunit, the second unoccupied subunit retains dynamics. It would be useful to address this experimentally, if possible. For example, can the 19F-NMR signal be measured in the presence of inhibitor, to support the prediction that the unoccupied subunit is indeed dynamic and samples multiple conformations as in apo BRAF?

      We agree with the reviewer that it would be interesting to determine the dynamic response of BRAF to inhibitor binding. However, this is a challenging undertaking due to the biochemical heterogeneity that occurs at sub saturating inhibitor concentrations. For example, at any given inhibitor concentration, BRAF exists as a mixture of monomers, apo dimers, dimers with one inhibitor molecule, and dimers with two inhibitor molecules bound. This makes it challenging to relate the 19F NMR signal to a single biochemical state. Addressing this would require a substantial experimental effort that we feel is beyond the scope of this study.

    1. Author response:

      Reviewer 1:

      The paper “Quantifying gliding forces of filamentous cyanobacteria by self-buckling” combines experiments on freely gliding cyanobacteria, buckling experiments using two-dimensional V-shaped corners, and micropipette force measurements with theoretical models to study gliding forces in these organisms. The aim is to quantify these forces and use the results to perhaps discriminate between competing mechanisms by which these cells move. A large data set of possible collision events are analyzed, bucking events evaluated, and critical buckling lengths estimated. A line elasticity model is used to analyze the onset of buckling and estimate the effective (viscous type) friction/drag that controls the dynamics of the rotation that ensues post-buckling. This value of the friction/drag is compared to a second estimate obtained by consideration of the active forces and speeds in freely gliding filaments. The authors find that these two independent estimates of friction/drag correlate with each other and are comparable in magnitude. The experiments are conducted carefully, the device fabrication is novel, the data set is interesting, and the analysis is solid. The authors conclude that the experiments are consistent with the propulsion being generated by adhesion forces rather than slime extrusion. While consistent with the data, this conclusion is inferred.

      We thank the reviewer for the positive evaluation of our work.

      Summary:

      The paper addresses important questions on the mechanisms driving the gliding motility of filamentous cyanobacteria. The authors aim to understand these by estimating the elastic properties of the filaments, and by comparing the resistance to gliding under a) freely gliding conditions, and b) in post-buckled rotational states. Experiments are used to estimate the propulsion force density on freely gliding filaments (assuming over-damped conditions). Experiments are combined with a theoretical model based on Euler beam theory to extract friction (viscous) coefficients for filaments that buckle and begin to rotate about the pinned end. The main results are estimates for the bending stiffness of the bacteria, the propulsive tangential force density, the buckling threshold in terms of the length, and estimates of the resistive friction (viscous drag) providing the dissipation in the system and balancing the active force. It is found that experiments on the two bacterial species yield nearly identical values of f (albeit with rather large variations). The authors conclude that the experiments are consistent with the propulsion being generated by adhesion forces rather than slime extrusion.

      We appreciate this comprehensive summary of our work.

      Strengths of the paper:

      The strengths of the paper lie in the novel experimental setup and measurements that allow for the estimation of the propulsive force density, critical buckling length, and effective viscous drag forces for movement of the filament along its contour – the axial (parallel) drag coefficient, and the normal (perpendicular) drag coefficient (I assume this is the case, since the post-buckling analysis assumes the bent filament rotates at a constant frequency). These direct measurements are important for serious analysis and discrimination between motility mechanisms.

      We thank the reviewer for this positive assessment of our work.

      Weaknesses:

      There are aspects of the analysis and discussion that may be improved. I suggest that the authors take the following comments into consideration while revising their manuscript.

      The conclusion that adhesion via focal adhesions is the cause for propulsion rather than slime protrusion is consistent with the experimental results that the frictional drag correlates with propulsion force. At the same time, it is hard to rule out other factors that may result in this (friction) viscous drag - (active) force relationship while still being consistent with slime production. More detailed analysis aiming to discriminate between adhesion vs slime protrusion may be outside the scope of the study, but the authors may still want to elaborate on their inference. It would help if there was a detailed discussion on the differences in terms of the active force term for the focal adhesion-based motility vs the slime motility.

      We appreciate this critical assessment of our conclusions. Of course we are aware that many different mechanisms may lead to similar force/friction characteristics, and that a definitive conclusion on the mechanism would require the combination of various techniques, which is beyond the scope of this work. Therefore, we were very careful in formulating the discussion of our findings, refraining, in particular, from a singular conclusion on the mechanism but instead indicating “support” for one hypothesis over another, and emphasizing “that many other possibilities exist”.

      The most common concurrent hypotheses for bacterial gliding suggest that either slime extrusion at the junctional pore complex [A1], rhythmic contraction of fibrillar arrays at the cell wall [A2], focal adhesion sites connected to intracellular motor-microtubule complexes [A3], or modified type-IV pilus apparati [A4] provide the propulsion forces. For the slime extrusion hypothesis, which is still abundant today, one would rather expect an anticorrelation of force and friction: more slime extrusion would generate more force, but also enhance lubrication. The other hypotheses are more conformal to the trend we observed in our experiments, because both pili and focal adhesion require direct contact with a substrate. How contraction of fibrilar arrays would micromechanically couple to the environment is not clear to us, but direct contact might still facilitate force transduction. Please note that these hypotheses were all postulated without any mechanical measurements, solely based on ultra-structural electron microscopy and/or genetic or proteomic experiments. We see our work as complementary to that, providing a mechanical basis for evaluating these hypotheses.

      We agree with the referee that narrowing down this discussion to focal adhesion should have been avoided. We rewrote the concluding paragraph (page 8):

      “…it indicates that friction and propulsion forces, despite being quite vari able, correlate strongly. Thus, generating more force comes, inevitably, at the expense of added friction. For lubricated contacts, the friction coefficient is proportional to the thickness of the lubricating layer (Snoeijer et al., 2013 ), and we conjecture active force and drag both increase due to a more intimate contact with the substrate. This supports mechanisms like focal adhesion (Mignot et al., 2007 ) or a modified type-IV pilus (Khayatan et al., 2015 ), which generate forces through contact with extracellular surfaces, as the underlying mechanism of the gliding apparatus of filamentous cyanobacteria: more contacts generate more force, but also closer contact with the substrate, thereby increasing friction to the same extent. Force generation by slime extrusion (Hoiczyk and Baumeister, 1998 ), in contrast, would lead to the opposite behavior: More slime generates more propulsion, but also reduces friction. Besides fundamental fluid-mechanical considerations (Snoeijer et al., 2013 ), this is rationalized by two experimental observations: i. gliding velocity correlates positively with slime layer thickness (Dhahri et al., 2013 ) and ii. motility in slime-secretion deficient mutants is restored upon exogenous addition of polysaccharide slime. Still we emphasize that many other possibilities exist. One could, for instance, postulate a regulation of the generated forces to the experienced friction, to maintain some preferred or saturated velocity.”

      Can the authors comment on possible mechanisms (perhaps from the literature) that indicate how isotropic friction may be generated in settings where focal adhesions drive motility? A key aspect here would probably be estimating the extent of this adhesion patch and comparing it to a characteristic contact area. Can lubrication theory be used to estimate characteristic areas of contact (knowing the radius of the filament, and assuming a height above the substrate)? If the focal adhesions typically cover areas smaller than this lubrication area, it may suggest the possibility that bacteria essentially present a flat surface insofar as adhesion is concerned, leading to a transversely isotropic response in terms of the drag. Of course, we will still require the effective propulsive force to act along the tangent.

      We thank the referee for suggesting to estimate the dimensions of the contact region. Both pili and focal adhesion sites would be of sizes below one micron [A3, A4], much smaller than the typical contact region in the lubricated contact, which is on the order of the filament radius (few microns). So indeed, isotropic friction may be expected in this situation [A5] and is assumed frequently in theoretical work [A6–A8]. Anisotropy may then indeed be induced by active forces [A9], but we are not aware of measurements of the anisotropy of friction in bacterial gliding.

      For a more precise estimate using lubrication theory, rheology and extrusion rate of the secreted polysaccharides would have to be known, but we are not aware of detailed experimental characterizations.

      We extended the paragraph in the buckling theory on page 5 regarding the assumption of isotropic friction:

      “We use classical Kirchhoff theory for a uniform beam of length L and bending modulus B, subject to a force density ⃗b = −f ⃗t− η ⃗v, with an effective active force density f along the tangent ⃗t, and an effective friction proportional to the local velocity ⃗v, analog to existing literature (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Presumably, this friction is dominated by the lubrication drag from the contact with the substrate, filled by a thin layer of secreted polysaccharide slime which is much more viscous than the surrounding bulk fluid. Speculatively, the motility mechanism might also comprise adhering elements like pili (Khayatan et al., 2015 ) or foci (Mignot et al., 2007 ) that increase the overall friction (Pompe et al., 2015 ). Thus, the drag due to the surrounding bulk fluid can be neglected (Man and Kanso, 2019 ), and friction is assumed to be isotropic, a common assumption in motility models (Fei et al., 2020; Tchoufag et al., 2019; Wada et al., 2013 ). We assume…”

      We also extended the discussion regarding the outcome of isotropic friction (page 7):

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      I am not sure why the authors mention that the power of the gliding apparatus is not rate-limiting. The only way to verify this would be to put these in highly viscous fluids where the drag of the external fluid comes into the picture as well (if focal adhesions are on the substrate-facing side, and the upper side is subject to ambient fluid drag). Also, the friction referred to here has the form of a viscous drag (no memory effect, and thus not viscoelastic or gel-like), and it is not clear if forces generated by adhesion involve other forms of drag such as chemical friction via temporary bonds forming and breaking. In quasi-static settings and under certain conditions such as the separation of chemical and elastic time scales, bond friction may yield overall force proportional to local sliding velocities.

      We agree with the referee that the origin of the friction is not easily resolved. Lubrication yields an isotropic force density that is proportional to the velocity, and the same could be generated by bond friction. Importantly, both types of friction would be assumed to be predominantly isotropic. We explicitly referred to lubrication drag because it has been shown that mutations deficient of slime extrusion do not glide [A4].

      Assuming, in contrast, that in free gliding, friction with the environment is not rate limiting, but rather the internal friction of the gliding apparatus, i.e., the available power, we would expect a rather different behavior during early-buckling evolution. During early buckling, the tangential motion is stalled, and the dynamics is dominated by the growing buckling amplitude of filament regions near the front end, which move mainly transversely. For geometric reasons, in this stage the (transverse) buckling amplitude grows much faster than the rear part of the filament advances longitudinally. Thus that motion should not be impeded much by the internal friction of the gliding apparatus, but by external friction between the buckling parts of the filament and the ambient. The rate at which the buckling amplitude initially grows should be limited by the accumulated compressive stress in the filament and the transverse friction with the substrate. If the latter were much smaller than the (logitudinal) internal friction of the gliding apparatus, we would expect a snapping-like transition into the buckled state, which we did not observe.

      In our paper, we do not intend to evaluate the exact origin of the friction, quantifying the gliding force is the main objective. A linear force-velocity relation agrees with our observations. A detailed analysis of friction in cyanobacterial gliding would be an interesting direction for future work.

      To make these considerations more clear, we rephrased the corresponding paragraph on page 7 & 8:

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      For readers from a non-fluids background, some additional discussion of the drag forces, and the forms of friction would help. For a freely gliding filament if f is the force density (per unit length), then steady gliding with a viscous frictional drag would suggest (as mentioned in the paper) f ∼ v! L η||. The critical buckling length is then dependent on f and on B the bending modulus. Here the effective drag is defined per length. I can see from this that if the active force is fixed, and the viscous component resulting from the frictional mechanism is fixed, the critical buckling length will not depend on the velocity (unless I am missing something in their argument), since the velocity is not a primitive variable, and is itself an emergent quantity.

      We are not sure what “f ∼ v! L η||” means, possibly the spelling was corrupted in the forwarding of the comments.

      We assumed an overdamped motion in which the friction force density ff (per unit length of the filament) is proportional to the velocity v0, i.e. ff ∼ η v0, with a friction coefficient η. Overdamped means that the friction force density is equal and opposite to the propulsion force density, so the propulsion force density is f ∼ ff ∼ η v0. The total friction and propulsion forces can be obtained by multiplication with the filament length

      L, which is not required here. In this picture, v0 is an emergent quantity and f and η are assumed as given and constant. Thus, by observing v0, f can be inferred up to the friction coefficient η. Therefore, by using two descriptive variables, L and v0, with known B, the primitive variable η can be inferred by logistic regression, and f then follows from the overdamped equation of motion.

      To clarify this, we revised the corresponding section on page 5 of the paper:

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over- damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E,F show the buckling behavior…”

      Reviewer 2:

      In the presented manuscript, the authors first use structured microfluidic devices with gliding filamentous cyanobacteria inside in combination with micropipette force measurements to measure the bending rigidity of the filaments.

      Next, they use triangular structures to trap the bacteria with the front against an obstacle. Depending on the length and rigidity, the filaments buckle under the propulsive force of the cells. The authors use theoretical expressions for the buckling threshold to infer propulsive force, given the measured length and stiffnesses. They find nearly identical values for both species, f ∼ (1.0 ± 0.6) nN/µm, nearly independent of the velocity.

      Finally, they measure the shape of the filament dynamically to infer friction coefficients via Kirchhoff theory. This last part seems a bit inconsistent with the previous inference of propulsive force. Before, they assumed the same propulsive force for all bacteria and showed only a very weak correlation between buckling and propulsive velocity. In this section, they report a strong correlation with velocity, and report propulsive forces that vary over two orders of magnitude. I might be misunderstanding something, but I think this discrepancy should have been discussed or explained.

      We regret the misunderstanding of the reviewer regarding the velocity dependence, which indicates that the manuscript should be improved to convey these relations correctly.

      First, in the Buckling Measurements section, we did not assume the same propulsion force for all bacteria. The logistic regression yields an ensemble median for Lc (and thus an ensemble median for f ), along with the width ∆Lc of the distribution (and thus also the width of the distribution of f ). Our result f ∼ (1.0 ± 0.6) nN/µm indicates the median and the width of the distribution of the propulsion force densities across the ensemble of several hundred filaments used in the buckling measurements. The large variability of the forces found in the second part is consistently reflected by this very wide distribution of active forces detected in the logistic regression in the first part.

      We did small modifications to the buckling theory paragraph to clarify that in the first part, a distribution of forces rather than a constant value is inferred (page 6)

      “Inserting the population median and quartiles of the distributions of bending modulus and critical length, we can now quantify the distribution of the active force density for the filaments in the ensemble from the buckling measurements. We obtain nearly identical values for both species, f ∼ (1.0±0.6) nN/µm, where the uncertainty represents a wide distribution of f across the ensemble rather than a measurement error.”

      The same holds, of course, when inferring the distribution of the friction coefficients (page 5):

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over- damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E,F show the buckling behavior…”

      The (naturally) wide distribution of force (and friction) leads to a distribution of Lc as well. However, due to the small exponent of 1/3 in the buckling threshold Lc ∼ f 1/3, the distribution of Lc is not as wide as the distributions of the individually inferred f or η. This is visualized in panel G of Figure 3, plotting Lc as a function of v0 (v0 is equivalent to f , up to a proportionality coefficient η). The natural length distribution, in contrast, is very wide. Therefore, the buckling propensity of a filament is most strongly characterized by its length, while force variability, which alters Lc of the individual, plays a secondary role.

      In order to clarify this, we edited the last paragraph of the Buckling Measurements section on page 5 of the manuscript:

      “…Within the characteristic range of observed velocities (1 − 3 µm/s), the median Lc depends only mildly on v0, as compared to its rather broad distribution, indicated by the bands in Figure 3 G. Thus a possible correlation between f and v0 would only mildly alter Lc. The natural length distribution (cf. Appendix 1—figure 1 ), however, is very broad, and we conclude that growth rather than velocity or force distributions most strongly impacts the buckling propensity of cyanobacterial colonies. Also, we hardly observed short and fast filaments of K. animale, which might be caused by physiological limitations (Burkholder, 1934 ).”

      Second, in the Profile analysis section, we did not report a correlation between force and velocity. As can be seen in Figure 4—figure Supplement 1, neither the active force nor the friction coefficient, as determined from the analysis of individual filaments, show any significant correlation with the velocity. This is also written in the discussion (page 7):

      We see no significant correlation between L or v0 and f or η, but the observed values of f and η cover a wide range (Figure 4 B, C and Figure 4—figure Supplement 1 ).

      Note that this is indeed consistent with the logistic regression: Using v0 as a second regressor did not significantly reduce the width of the distribution of Lc as compared to the simple logistic regression, indicating that force and velocity are not strongly correlated.

      In order to clarify this in the manuscript, we modified that part (page 7):

      “…We see no significant correlation between L or v0 and f or η, but the observed values of f and η cover a wide range (Figure 4 B,C and Figure 4— figure Supplement 1 ). This is consistent with the logistic regression, where using v0 as a second regressor did not significantly reduce the width of the distribution of critical lengths or active forces. The two estimates of the friction coefficient, from logistic regression and individual profile fits, are measured in (predominantly) orthogonal directions: tangentially for the logistic regression where the free gliding velocity was used, and transversely for the evolution of the buckling profiles. Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic…”

      From a theoretical perspective, not many new results are presented. The authors repeat the well-known calculation for filaments buckling under propulsive load and arrive at the literature result of buckling when the dimensionless number (f L3/B) is larger than 30.6 as previously derived by Sekimoto et al in 1995 [1] (see [2] for a clamped boundary condition and simulations). Other theoretical predictions for pushed semi-flexible filaments [1–4] are not discussed or compared with the experiments. Finally, the Authors use molecular dynamics type simulations similar to [2–4] to reproduce the buckling dynamics from the experiments. Unfortunately, no systematic comparison is performed.

      [1]        Ken Sekimoto, Naoki Mori, Katsuhisa Tawada, and Yoko Y Toyoshima. Symmetry breaking instabilities of an in vitro biological system. Physical review letters, 75(1):172, 1995.

      [2]       Raghunath Chelakkot, Arvind Gopinath, Lakshminarayanan Mahadevan, and Michael F Hagan. Flagellar dynamics of a connected chain of active, polar, brownian particles. Journal of The Royal Society Interface, 11(92):20130884, 2014.

      [3]       Rolf E Isele-Holder, Jens Elgeti, and Gerhard Gompper. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. Soft matter, 11(36):7181–7190, 2015.

      [4]       Rolf E Isele-Holder, Julia J¨ager, Guglielmo Saggiorato, Jens Elgeti, and Gerhard Gompper. Dynamics of self-propelled filaments pushing a load. Soft Matter, 12(41):8495–8505, 2016.

      We thank the reviewer for pointing us to these publications, in particular the work by Sekimoto we were not aware of. We agree with the referee that the calculation is straight forward (basically known since Euler, up to modified boundary conditions). Our paper focuses on experimental work, the molecular dynamics simulations were included mainly as a consistency check and not intended to generate the beautiful post-buckling patterns observed in references [2-4]. However, such shapes do emerge in filamentous cyanobacteria, and with the data provided in our manuscript, simulations can be quantitatively matched to our experiments, which will be covered by future work.

      We included the references in the revision of our manuscript, and a statement that we do not claim priority on these classical theoretical results.

      Introduction, page 2:

      “…Self-Buckling is an important instability for self-propelling rod-like micro-organisms to change the orientation of their motion, enabling aggregation or the escape from traps (Fily et al., 2020; Man and Kanso, 2019; Isele-Holder et al., 2015; Isele-Holder et al., 2016 ). The notion of self-buckling goes back to work of Leonhard Euler in 1780, who described elastic columns subject to gravity (Elishakoff, 2000 ). Here, the principle is adapted to the self-propelling, flexible filaments (Fily et al., 2020; Man and Kanso, 2019; Sekimoto et al., 1995 ) that glide onto an obstacle. Filaments buckle if they exceed a certain critical length Lc ∼ (B/f)1/3, where B is the bending modulus and f the propulsion force density…”

      Buckling theory, page 5:

      “…The buckling of gliding filaments differs in two aspects: the propulsion forces are oriented tangentially instead of vertically, and the front end is supported instead of clamped. Therefore, with L < Lc all initial orientations are indifferently stable, while for L > Lc, buckling induces curvature and a resultant torque on the head, leading to rotation (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Buckling under concentrated tangential end-loads has also been investigated in literature (de Canio et al., 2017; Wolgemuth et al., 2005 ), but leads to substantially different shapes of buckled filaments. We use classical Kirchhoff theory for a uniform beam of length L and bending modulus B, subject to a force density ⃗b = −f ⃗t − η ⃗v, with an effective active force density f along the tangent ⃗t, and an effective friction proportional to the local velocity ⃗v, analog to existing literature (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 )…”

      Further on page 6:

      “To derive the critical self-buckling length, Equation 5 can be linearized for two scenarios that lead to the same Lc: early-time small amplitude buckling and late-time stationary rotation at small and constant curvature (Fily et al., 2020; Chelakkot et al., 2014 ; Sekimoto et al., 1995 ). […] Thus, in physical units, the critical length is given by Lc = (30.5722 B/f)1/3, which is reproduced in particle based simulations (Appendix Figure 2 ) analogous to those in Isele-Holder et al. (2015, 2016).”

      Discussion, page 7 & 8:

      “…This, in turn, has dramatic consequences on the exploration behavior and the emerging patterns (Isele-Holder et al., 2015, 2016; Abbaspour et al., 2021; Duman et al., 2018; Prathyusha et al., 2018; Jung et al., 2020 ): (L/Lc)3 is, up to a numerical prefactor, identical to the flexure number (Isele-Holder et al., 2015, 2016; Duman et al., 2018; Winkler et al., 2017 ), the ratio of the Peclet number and the persistence length of active polymer melts. Thus, the ample variety of non-equilibrium phases in such materials (Isele-Holder et al., 2015, 2016; Prathyusha et al., 2018; Abbaspour et al., 2021 ) may well have contributed to the evolutionary success of filamentous cyanobacteria.”

      Reviewer 3:

      Summary:

      This paper presents novel and innovative force measurements of the biophysics of gliding cyanobacteria filaments. These measurements allow for estimates of the resistive force between the cell and substrate and provide potential insight into the motility mechanism of these cells, which remains unknown.

      We thank the reviewer for the positive evaluation of our work. We have revised the manuscript according to their comments and detail our replies and modifications next to the individual points below.

      Strengths:

      The authors used well-designed microfabricated devices to measure the bending modulus of these cells and to determine the critical length at which the cells buckle. I especially appreciated the way the authors constructed an array of pillars and used it to do 3-point bending measurements and the arrangement the authors used to direct cells into a V-shaped corner in order to examine at what length the cells buckled at. By examining the gliding speed of the cells before buckling events, the authors were able to determine how strongly the buckling length depends on the gliding speed, which could be an indicator of how the force exerted by the cells depends on cell length; however, the authors did not comment on this directly.

      We thank the referee for the positive assessment of our work. Importantly, we do not see a significant correlation between buckling length and gliding speeds, and we also do not see a correlation with filament length, consistent with the assumption of a propulsion force density that is more or less homogeneously distributed along the filament. Note that each filament consists of many metabolically independent cells, which renders cyanobacterial gliding a collective effort of many cells, in contrast to gliding of, e.g., myxobacteria.

      In response also to the other referees’ comments, we modified the manuscript to reflect more on the absence of a strong correlation between velocity and force/critical length. We modified the Buckling measurements section on page 5 of the paper:

      “The substrate contact requires lubrication from polysaccharide slime to enable bacteria to glide (Khayatan et al., 2015 ). Thus we assume an over-damped motion with co-linear friction, for which the propulsion force f and the free gliding velocity v0 of a filament are related by f = η v0, with a friction coefficient η. In this scenario, f can be inferred both from the observed Lc ∼ (f/B)−1/3 and, up to the proportionality coefficient η, from the observed free gliding velocity. Thus, by combining the two relations, one may expect also a strong correlation between Lc and v0. In order to test this relation for consistency with our data, we include v0 as a second regressor, by setting x = (L−Lc(v0))/∆Lc in Equation 1, with Lc(v0) = (η v0/(30.5722 B))−1/3, to reflect our expectation from theory (see below). Now, η rather than f is the only unknown, and its ensemble distribution will be determined in the regression. Figure 3 E, F show the buckling behavior…”

      Further, we edited the last paragraph of the Buckling measurements section on page 5 of the manuscript:

      “Within the characteristic range of observed velocities (1 − 3 µm/s), the median Lc depends only mildly on v0, as compared to its rather broad distribution, indicated by the bands in Figure 3 G. Thus a possible correlation between f and v0 would only mildly alter Lc. The natural length distribution (cf. Appendix 1—figure 1 ), however, is very broad, and we conclude that growth rather than velocity or force distributions most strongly impacts the buckling propensity of cyanobacterial colonies. Also, we hardly observed short and fast filaments of K. animale, which might be caused by physiological limitations (Burkholder, 1934 ).”

      We also rephrased the corresponding discussion paragraph on page 7:

      “…Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces…”

      Weaknesses:

      There were two minor weaknesses in the paper.

      First, the authors investigate the buckling of these gliding cells using an Euler beam model. A similar mathematical analysis was used to estimate the bending modulus and gliding force for Myxobacteria (C.W. Wolgemuth, Biophys. J. 89: 945-950 (2005)). A similar mathematical model was also examined in G. De Canio, E. Lauga, and R.E Goldstein, J. Roy. Soc. Interface, 14: 20170491 (2017). The authors should have cited these previous works and pointed out any differences between what they did and what was done before.

      We thank the reviewer for pointing us to these references. The paper by Wolgemuth is theoretical work, describing A-motility in myxobacteria by a concentrated propulsion force at the rear end of the bacterium, possibly stemming from slime extrusion. This model was a little later refuted by [A3], who demonstrated that focal adhesion along the bacterial body and thus a distributed force powers A-motility, a mechanism that has by now been investigated in great detail (see [A10]). The paper by Canio et al. contains a thorough theoretical analysis of a filament that is clamped at one end and subject to a concentrated tangential load on the other. Since both models comprise a concentrated end-load rather than a distributed propulsion force density, they describe a substantially different motility mechanism, leading also to substantially different buckling profiles. Consequentially, these models cannot be applied to cyanobacterial gliding.

      We included both citations in the revision and pointed out the differences to our work in the introduction (page 2):

      “…A few species appear to employ a type-IV-pilus related mechanism (Khayatan et al., 2015; Wilde and Mullineaux, 2015 ), similar to the better- studied myxobacteria (Godwin et al., 1989; Mignot et al., 2007; Nan et al., 2014; Copenhagen et al., 2021; Godwin et al., 1989 ), which are short, rod-shaped single cells that exhibit two types of motility: S (social) motility based on pilus extension and retraction, and A (adventurous) motility based on focal adhesion (Chen and Nan, 2022 ) for which also slime extrusion at the trailing cell pole was earlier postulated as mechanism (Wolgemuth et al., 2005 ). Yet, most gliding filamentous cyanobacteria do not exhibit pili and their gliding mechanism appears to be distinct from myxobacteria (Khayatan et al., 2015 ).”

      And in Buckling theory, page 5:

      “….The buckling of gliding filaments differs in two aspects: the propulsion forces are oriented tangentially instead of vertically, and the front end is supported instead of clamped. Therefore, with L < Lc all initial orientations are indifferently stable, while for L > Lc, buckling induces curvature and a resultant torque on the head, leading to rotation (Fily et al., 2020; Chelakkot et al., 2014; Sekimoto et al., 1995 ). Buckling under concentrated tangential end-loads has also been investigated in literature (de Canio et al., 2017; Wolgemuth et al., 2005 ), but leads to substantially different shapes of buckled filaments.”

      The second weakness is that the authors claim that their results favor a focal adhesion-based mechanism for cyanobacterial gliding motility. This is based on their result that friction and adhesion forces correlate strongly. They then conjecture that this is due to more intimate contact with the surface, with more contacts producing more force and pulling the filaments closer to the substrate, which produces more friction. They then claim that a slime-extrusion mechanism would necessarily involve more force and lower friction. Is it necessarily true that this latter statement is correct? (I admit that it could be, but is it a requirement?)

      We thank the referee for raising this interesting question. Our claim regarding slime extrusion is based on three facts: i. mutations deficient of slime extrusion do not glide, but start gliding as soon as slime is provided externally [A4]. ii. A positive correlation between speed and slime layer thickness was observed in Nostoc [A11]. iii. The fluid mechanics of lubricated sliding contacts is very well understood and predicts a decreasing resistance with increasing layer thickness.

      We included these considerations in the revision of our manuscript (page 8):

      “…it indicates that friction and propulsion forces, despite being quite variable, correlate strongly. Thus, generating more force comes, inevitably, at the expense of added friction. For lubricated contacts, the friction coefficient is proportional to the thickness of the lubricating layer (Snoeijer et al., 2013 ), and we conjecture active force and drag both increase due to a more intimate contact with the substrate. This supports mechanisms like focal adhesion (Mignot et al., 2007 ) or a modified type-IV pilus (Khayatan et al., 2015 ), which generate forces through contact with extracellular surfaces, as the underlying mechanism of the gliding apparatus of filamentous cyanobacteria: more contacts generate more force, but also closer contact with the substrate, thereby increasing friction to the same extent. Force generation by slime extrusion (Hoiczyk and Baumeister, 1998 ), in contrast, would lead to the opposite behavior: More slime generates more propulsion, but also reduces friction. Besides fundamental fluid-mechanical considerations (Snoeijer et al., 2013 ), this is rationalized by two experimental observations: i. gliding velocity correlates positively with slime layer thickness (Dhahri et al., 2013 ) and ii. motility in slime-secretion deficient mutants is restored upon exogenous addition of polysaccharide slime. Still we emphasize that many other possibilities exist. One could, for instance, postulate a regulation of the generated forces to the experienced friction, to maintain some preferred or saturated velocity.”

      Related to this, the authors use a model with isotropic friction. They claim that this is justified because they are able to fit the cell shapes well with this assumption. How would assuming a non-isotropic drag coefficient affect the shapes? It may be that it does equally well, in which case, the quality of the fits would not be informative about whether or not the drag was isotropic or not.

      The referee raises another very interesting point. Given the typical variability and uncertainty in experimental measurements (cf. error Figure 4 A), a model with a sightly anisotropic friction could be fitted to the observed buckling profiles as well, without significant increase of the mismatch. Yet, strongly anisotropic friction would not be consistent with our observations.

      Importantly, however, we did not conclude on isotropic friction based on the fit quality, but based on a comparison between free gliding and early buckling (Figure 4 D). In early buckling, the dominant motion is in transverse direction, while longitudinal motion is insignificant, due to geometric reasons. Thus, independent of the underlying model, mostly the transverse friction coefficiont is inferred. In contrast, free gliding is a purely longitudinal motion, and thus only the friction coefficient for longitudinal motion can be inferred. These two friction coefficients are compared in Figure 4 D. Still, the scatter of that data would allow to fit a certain anisotropy within the error margins. What we can exclude based on out observation is the case of a strongly anisotropic friction. If there is no ab-initio reason for anisotropy, nor a measurement that indicates it, we prefer to stick with the simplest

      assumption. We carefully chose our wording in the Discussion as “mainly isotropic” rather

      than “isotropic” or “fully isotropic”.

      We added a small statement to the Discussion on page 7 & 8:

      “... Thus we plot f/v over η in Figure 4 D, finding nearly identical values over about two decades. Since f and η are not correlated with v0, this is due to a correlation between f and η. This relation is remarkable in two aspects: On the one hand, it indicates that friction is mainly isotropic. This suggests that friction is governed by an isotropic process like bond friction or lubrication from the slime layer in the contact with the substrate, the latter being consistent with the observation that mutations deficient of slime secretion do not glide but exogenous addition of slime restores motility (Khayatan et al., 2015 ). In contrast, hydrodynamic drag from the surrounding bulk fluid (Man and Kanso, 2019 ), or the internal friction of the gliding apparatus would be expected to generate strongly anisotropic friction. If the latter was dominant, a snapping-like transition into the buckling state would be expected, rather than the continuously growing amplitude that is observed in experiments. On the other hand, it indicates that friction and propulsion forces ...”

      Recommendations for the authors

      The discussion regarding how the findings of this paper imply that cyanobacteria filaments are propelled by adhesion forces rather than slime extrusion should be improved, as this conclusion seems questionable. There appears to be an inconsistency with a buckling force said to be only weakly dependent on the gliding velocity, while its ratio with the velocity correlates with a friction coefficient. Finally, data and source code should be made publicly available.

      In the revised version, we have modified the discussion of the force generating mechanism according to the reviewer suggestions. The perception of inconsistency in the velocity dependence of the buckling force was based on a misunderstanding, as we detailed in our reply to the referee. We revised the corresponding section to make it more clear. Data and source code have been uploaded to a public data repository.

      Reviewer #2 (recommendations for the authors)

      Despite eLife policy, the authors do not provide a Data Availability Statement. For the presented manuscript, data and source code should be provided “via trusted institutional or third-party repositories that adhere to policies that make data discoverable, accessible and usable.” https://elifesciences.org/inside-elife/51839f0a/for-authors-updates- to-elife-s-data-sharing-policies

      Most of the issues in this reviewer’s public review should be easy to correct, so I would strongly support the authors to provide an amended manuscript.

      We added the Data Availability Statement in the amended manuscript.

      References

      [A1] E. Hoiczyk and W. Baumeister. “The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria”. In: Curr. Biol. 8.21 (1998), pp. 1161–1168. doi: 10.1016/s0960-9822(07)00487-3.

      [A2] N. Read, S. Connell, and D. G. Adams. “Nanoscale Visualization of a Fibrillar Array in the Cell Wall of Filamentous Cyanobacteria and Its Implications for Gliding Motility”. In: J. Bacteriol. 189.20 (2007), pp. 7361–7366. doi: 10.1128/jb.00706- 07.

      [A3] T. Mignot, J. W. Shaevitz, P. L. Hartzell, and D. R. Zusman. “Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility”. In: Science 315.5813 (2007), pp. 853–856. doi: 10.1126/science.1137223.

      [A4] Behzad Khayatan, John C. Meeks, and Douglas D. Risser. “Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria”. In: Mol. Microbiol. 98.6 (2015), pp. 1021–1036. doi: 10.1111/mmi.13205.

      [A5] Tilo Pompe, Martin Kaufmann, Maria Kasimir, Stephanie Johne, Stefan Glorius, Lars Renner, Manfred Bobeth, Wolfgang Pompe, and Carsten Werner. “Friction- controlled traction force in cell adhesion”. In: Biophysical journal 101.8 (2011), pp. 1863–1870.

      [A6] Hirofumi Wada, Daisuke Nakane, and Hsuan-Yi Chen. “Bidirectional bacterial gliding motility powered by the collective transport of cell surface proteins”. In: Physical Review Letters 111.24 (2013), p. 248102.

      [A7] Jo¨el Tchoufag, Pushpita Ghosh, Connor B Pogue, Beiyan Nan, and Kranthi K Mandadapu. “Mechanisms for bacterial gliding motility on soft substrates”. In: Proceedings of the National Academy of Sciences 116.50 (2019), pp. 25087–25096.

      [A8] Chenyi Fei, Sheng Mao, Jing Yan, Ricard Alert, Howard A Stone, Bonnie L Bassler, Ned S Wingreen, and Andrej Kosmrlj. “Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates”. In: Proceedings of the National Academy of Sciences 117.14 (2020), pp. 7622–7632.

      [A9] Arja Ray, Oscar Lee, Zaw Win, Rachel M Edwards, Patrick W Alford, Deok-Ho Kim, and Paolo P Provenzano. “Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration”. In: Nature communications 8.1 (2017), p. 14923.

      [A10] Jing Chen and Beiyan Nan. “Flagellar motor transformed: biophysical perspectives of the Myxococcus xanthus gliding mechanism”. In: Frontiers in Microbiology 13 (2022), p. 891694.

      [A11] Samia Dhahri, Michel Ramonda, and Christian Marliere. “In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization”. In: PLoS One 8.4 (2013), e61663.

    1. Author response:

      eLife assessment

      This study provides valuable evidence indicating that Syngap1 regulates the synaptic drive and membrane excitability of parvalbumin- and somatostatin-positive interneurons in the auditory cortex. Since haplo-insufficiency of Syngap1 has been linked to intellectual disabilities without a well-defined underlying cause, the central question of this study is timely. However, the support for the authors' conclusions is incomplete in general and some parts of the experimental evidence are inadequate. Specifically, the manuscript requires further work to properly evaluate the impact on synaptic currents, intrinsic excitability parameters, and morphological features.

      We are happy that the editors found that our study provides valuable evidence and that the central question is timely. We thank the reviewers for their detailed comments and suggestions. Below, we provide a point-by-point answer (in blue) to the specific comments and indicate the changes to the manuscript and the additional experiments we plan to perform to answer these comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study is designed to assess the role of Syngap1 in regulating the physiology of the MGE-derived PV+ and SST+ interneurons. Syngap1 is associated with some mental health disorders, and PV+ and SST+ cells are the focus of many previous and likely future reports from studies of interneuron biology, highlighting the translational and basic neuroscience relevance of the authors' work.

      Strengths of the study are using well-established electrophysiology methods and the highly controlled conditions of ex vivo brain slice experiments combined with a novel intersectional mouse line, to assess the role of Syngap1 in regulating PV+ and SST+ cell properties. The findings revealed that in the mature auditory cortex, Syngap1 haploinsufficiency decreases both the intrinsic excitability and the excitatory synaptic drive onto PV+ neurons from Layer 4. In contrast, SST+ interneurons were mostly unaffected by Syngap1 haploinsufficiency. Pharmacologically manipulating the activity of voltage-gated potassium channels of the Kv1 family suggested that these channels contributed to the decreased PV+ neuron excitability by Syngap insufficiency. These results therefore suggest that normal Syngap1 expression levels are necessary to produce normal PV+ cell intrinsic properties and excitatory synaptic drive, albeit, perhaps surprisingly, inhibitory synaptic transmission was not affected by Syngap1 haploinsufficiency.

      Since the electrophysiology experiments were performed in the adult auditory cortex, while Syngap1 expression was potentially affected since embryonic stages in the MGE, future studies should address two important points that were not tackled in the present study. First, what is the developmental time window in which Syngap1 insufficiency disrupted PV+ neuron properties? Albeit the embryonic Syngap1 deletion most likely affected PV+ neuron maturation, the properties of Syngap-insufficient PV+ neurons do not resemble those of immature PV+ neurons. Second, whereas the observation that Syngap1 haploinsufficiency affected PV+ neurons in auditory cortex layer 4 suggests auditory processing alterations, MGE-derived PV+ neurons populate every cortical area. Therefore, without information on whether Syngap1 expression levels are cortical area-specific, the data in this study would predict that by regulating PV+ neuron electrophysiology, Syngap1 normally controls circuit function in a wide range of cortical areas, and therefore a range of sensory, motor and cognitive functions. These are relatively minor weaknesses regarding interpretation of the data in the present study that the authors could discuss.

      We agree with the reviewer on the proposed open questions, which we will certainly discuss in the revised manuscript we are preparing. We do have experimental evidence suggesting that Syngap1 mRNA is expressed by PV+ and SST+ neurons in different cortical areas, during early postnatal development and in adulthood; therefore, we agree that it will be important, in future experiments, to tackle the question of when the observed phenotypes arise.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors investigated how partial loss of SynGap1 affects inhibitory neurons derived from the MGE in the auditory cortex, focusing on their synaptic inputs and excitability. While haplo-insufficiently of SynGap1 is known to lead to intellectual disabilities, the underlying mechanisms remain unclear.

      Strengths:

      The questions are novel

      Weaknesses:

      Despite the interesting and novel questions, there are significant concerns regarding the experimental design and data quality, as well as potential misinterpretations of key findings. Consequently, the current manuscript fails to contribute substantially to our understanding of SynGap1 loss mechanisms and may even provoke unnecessary controversies.

      Major issues:

      (1) One major concern is the inconsistency and confusion in the intermediate conclusions drawn from the results. For instance, while the sEPSC data indicates decreased amplitude in PV+ and SOM+ cells in cHet animals, the frequency of events remains unchanged. In contrast, the mEPSC data shows no change in amplitudes in PV+ cells, but a significant decrease in event frequency. The authors conclude that the former observation implies decreased excitability. However, traditionally, such observations on mEPSC parameters are considered indicative of presynaptic mechanisms rather than changes of network activity.‎ The subsequent synapse counting experiments align more closely with the traditional conclusions. This issue can be resolved by rephrasing the text. However, it would remain unexplained why the sEPSC frequency shows no significant difference. If the majority of sEPSC events were indeed mediated by spiking (which is blocked by TTX), the average amplitudes and frequency of mEPSCs should be substantially lower than those of sEPSCs. Yet, they fall within a very similar range, suggesting that most sEPSCs may actually be independent of action potentials. But if that was indeed the case, the changes of purported sEPSC and mEPSC results should have been similar.

      We understand the reviewer’s perspective; indeed, we asked ourselves the very same question regarding why the sEPSC and mEPSC frequency fall within a similar range when we analysed neuron means (bar graphs). We have already recorded sEPSCs followed by mEPSCs from several PV neurons (control and cHet) and are in the process of analyzing the data. We will add this data to the revised version of the manuscript. We will also rephrase the manuscript to present multiple potential interpretations of the data.

      We hope that we have correctly interpreted the reviewer's concern. However, if the question is why sEPSC amplitude but not frequency is affected in cHet vs ctrl then the reviewer’s comment is perhaps based on the assumption that the amplitude and frequency of miniature events should be lower for all events compared to those observed for spontaneous events. However, it's essential to note that changes in the mean amplitude of sEPSCs are primarily driven by alterations in large sEPSCs (>9-10pA, as shown in cumulative probability in Fig. 1b right), with smaller ones being relatively unaffected. Consequently, a reduction in sEPSC amplitude may not necessarily result in a significant decrease in frequency since their values likely remain above the detection threshold of 3 pA. This could explain the lack of a significant decrease in average inter-interval event of sEPSCs (as depicted in Fig. 1b left).

      If the question is whether we should see the same parameters affected by the genetic manipulation in both sEPSC and mEPSC, then another critical consideration is the involvement of the releasable pool in mEPSCs versus sEPSCs. Current knowledge suggests that activity-dependent and -independent release may not necessarily engage the same pool of vesicles or target the same postsynaptic sites. This concept has been extensively explored (reviewed in Kavalali, 2015). Consequently, while we may have traditionally interpreted activity-dependent and -independent data assuming they utilize the same pool, this is no longer accurate. The current discussion in the field revolves around understanding the mechanisms underlying such phenomena. Therefore, comparisons between sEPSCs and mEPSCs may not yield conclusive data but rather speculative interpretations. For a rigorous analysis, particularly in this context involving thousands of events, it is essential to assess these data sets (mEPSCs vs sEPSCs) separately and provide cumulative probability curves. This approach allows for a more comprehensive understanding of the underlying distributions and helps to elucidate any potential differences between the two types of events. We will rephrase the text, and as mentioned above, add additional data, to better reflect these considerations.

      (2) Another significant concern is the quality of synapse counting experiments. The authors attempted to colocalize pre- and postsynaptic markers Vglut1 and PSD95 with PV labelling. However, several issues arise. Firstly, the PV labelling seems confined to soma regions, with no visible dendrites. Given that the perisomatic region only receives a minor fraction of excitatory synapses, this labeling might not accurately represent the input coverage of PV cells. Secondly, the resolution of the images is insufficient to support clear colocalization of the synaptic markers. Thirdly, the staining patterns are peculiar, with PSD95 puncta appearing within regions clearly identified as somas by Vglut1, hinting at possible intracellular signals. Furthermore, PSD95 seems to delineate potential apical dendrites of pyramidal cells passing through the region, yet Vglut1+ partners are absent in these segments, which are expected to be the marker of these synapses here. Additionally, the cumulative density of Vglut2 and Vglut1 puncta exceeds expectations, and it's surprising that subcortical fibers labeled by Vglut2 are comparable in number to intracortical Vglut1+ axon terminals. Ideally, N(Vglut1)+N(Vglut2) should be equal or less than N(PSD95), but this is not the case here. Consequently, these results cannot be considered reliable due to these issues.

      We apologize, as it appears that the images we provided have caused confusion. The selected images represent a single focal plane of a confocal stack, which was visually centered on the PV cell somata. We chose just one confocal plane because we thought it showed more clearly the apposition of presynaptic and postsynaptic immunolabeling around the somata. In the revised version of the manuscript, we will provide higher magnification images, which will clearly show how we identified and selected the region of interest for the quantification of colocalized synaptic markers. In our confocal stacks, we can also identify PV immunolabeled dendrites and colocalized vGlut1/PSD95 or vGlut2/PSD95 puncta on them; but these do not appear in the selected images because, as explained, only one focal plane, centered on the PV cell somata, was shown.

      We acknowledge the reviewer's point that in PV+ cells the majority of excitatory inputs are formed onto dendrites; however, we focused on the somatic excitatory inputs to PV cells, because despite their lower number, they produce much stronger depolarization in PV neurons than dendritic excitatory inputs (Hu et al., 2010; Norenberg et al., 2010). Further, quantification of perisomatic putative excitatory synapses is more reliable since by using PV immunostaining, we can visualize the soma and larger primary dendrites, but smaller, higher order dendrites are not be always detectable. Of note, PV positive somata receive more excitatory synapses than SST positive and pyramidal neuron somata as found by electron microscopy studies in the visual cortex (Hwang et al., 2021; Elabbady et al., 2024).

      Regarding the comment on the density of vGlut1 and vGlut2 puncta, the reason that the numbers appear high and similar between the two markers is because we present normalized data (cHet normalized to their control values for each set of immunolabelling) to clearly represent the differences between genotypes. This information is present in the legends but we apologize for not clearly explaining it the methods section. We will provide a more detailed explanation of our methods in the revised manuscript.

      Briefly, immunostained sections were imaged using a Leica SP8-STED confocal microscope, with a 63x (NA 1.4) at 1024 X 1024, z-step =0.3 μm, stack size of ~15 μm. Images were acquired from the auditory cortex from at least 3 coronal sections per animal. All the confocal parameters were maintained constant throughout the acquisition of an experiment. All images shown in the figures are from a single confocal plane. To quantify the number of vGlut1/PSD95 or vGlut2/PSD95 putative synapses, images were exported as TIFF files and analyzed using Fiji (Image J) software. We first manually outlined the profile of each PV cell soma (identified by PV immunolabeling). At least 4 innervated somata were selected in each confocal stack. We then used a series of custom-made macros in Fiji as previously described (Chehrazi et al, 2023). After subtracting background (rolling value = 10) and Gaussian blur (σ value = 2) filters, the stacks were binarized and vGlut1/PSD95 or vGlut2/PSD95 puncta were independently identified around the perimeter of a targeted soma in the focal plane with the highest soma circumference. Puncta were quantified after filtering particles for size (included between 0-2μm2) and circularity (included between 0-1). Data quantification was done by investigators blind to the genotype, and presented as normalized data over control values for each experiment.

      (3) One observation from the minimal stimulation experiment was concluded by an unsupported statement. Namely, the change in the onset delay cannot be attributed to a deficit in the recruitment of PV+ cells, but it may suggest a change in the excitability of TC axons.

      We agree with the reviewer, please see answer to point below.

      (‎4) The conclusions drawn from the stimulation experiments are also disconnected from the actual data. To make conclusions about TC release, the authors should have tested release probability using established methods, such as paired-pulse changes. Instead, the only observation here is a change in the AMPA components, which remained unexplained.

      We agree with the reviewer and we will perform additional paired-pulse ratio experiments at different intervals. We will rephrase the discussion and our interpretation and potential hypothesis according to the data obtained from this new experiment.

      (5) The sampling rate of CC recordings is insufficient ‎to resolve the temporal properties of the APs. Therefore, the phase-plots cannot be interpreted (e.g. axonal and somatic AP components are not clearly separated), raising questions about how AP threshold and peak were measured. The low sampling rate also masks the real derivative of the AP signals, making them apparently faster.

      We acknowledge that a higher sampling rate could offer a more detailed analysis of the action potential waveform. However, in the context of action potential analysis, it is acceptable to use sampling rates ranging from 10 kHz to 20 kHz (Golomb et al., 2007; Stevens et al., 2021; Zhang et al., 2023), which are considered adequate in the context of the present study. Indeed, our study aims to evaluate "relative" differences in the electrophysiological phenotype when comparing groups following a specific genetic manipulation. A sampling rate of 10 kHz is commonly employed in similar studies, including those conducted by our collaborator and co-author S. Kourrich (e.g., Kourrich and Thomas 2009, Kourrich et al., 2013), as well as others (Russo et al., 2013; Ünal et al., 2020; Chamberland et al., 2023).

      Despite being acquired at a lower sampling rate than potentially preferred by the reviewer, our data clearly demonstrate significant differences between the experimental groups, especially for parameters that are negligibly or not affected by the sampling rate used here (e.g., #spikes/input, RMP, Rin, Cm, Tm, AP amplitude, AP latency, AP rheobase).

      Regarding the phase-plots, we agree that a higher sampling rate would have resulted in smoother curves and more accurate absolute values. However, the differences were sufficiently pronounced to discern the relative variations in action potential waveforms between the experimental groups.

      A related issue is that the Methods section lacks essential details about the recording conditions, such as bridge balance and capacitance neutralization.

      We indeed performed bridge balance and neutralized the capacitance before starting every recording. We will add the information in the methods.

      (6) Interpretation issue: One of the most fundamental measures of cellular excitability, the rheobase, was differentially affected by cHet in BCshort and BCbroad. Yet, the authors concluded that the cHet-induced changes in the two subpopulations are common.

      We are uncertain if we have correctly interpreted the reviewer's comment. While we observed distinct impacts on the rheobase (Fig. 7d and 7i), there seems to be a common effect on the AP threshold (Fig. 7c and 7h), as interpreted and indicated in the final sentence of the results section for Figure 7 (page 12). If our response does not address the reviewer's comment adequately, we would greatly appreciate it if the reviewer could rephrase their feedback.

      (7) Design issue:

      The Kv1 blockade experiments are disconnected from the main manuscript. There is no experiment that shows the causal relationship between changes in DTX and cHet cells. It is only an interesting observation on AP halfwidth and threshold. However, how they affect rheobase, EPSCs, and other topics of the manuscript are not addressed in DTX experiments.

      Furthermore, Kv1 currents were never measured in this work, nor was the channel density tested. Thus, the DTX effects are not necessarily related to changes in PV cells, which can potentially generate controversies.

      While we acknowledge the reviewer's point that Kv1 currents and density weren't specifically tested, an important insight provided by Fig. 5 is the prolonged action potential latency. This delay is significantly influenced by slowly inactivating subthreshold potassium currents, namely the D-type K+ current. It's worth noting that D-type current is primarily mediated by members of the Kv1 family. The literature supports a role for Kv1.1-containing channels in modulating responses to near-threshold stimuli in PV cells (Wang et al., 1994; Goldberg et al., 2008; Zurita et al., 2018). However, we recognize that besides the Kv1 family, other families may also contribute to the observed changes.

      To address this concern, we will revise our interpretation. We will opt for the more accurate term "D-type K+ current" and only speculate about the involved channel family in the discussion. It is not our intention to open unnecessary controversy, but present the data we obtained. We believe this approach and rephrasing the discussion as proposed will prevent unnecessary controversy and instead foster fruitful discussions.

      (8) Writing issues:

      Abstract:

      The auditory system is not mentioned in the abstract.

      One statement in the abstract is unclear‎. What is meant by "targeting Kv1 family of voltage-gated potassium channels was sufficient..."? "Targeting" could refer to altered subcellular targeting of the channels, simple overexpression/deletion in the target cell population, or targeted mutation of the channel, etc. Only the final part of the Results revealed that none of the above, but these channels were blocked selectively.

      We agree with the reviewer and we will rephrase the abstract accordingly.

      Introduction:

      There is a contradiction in the introduction. The second paragraph describes in detail the distinct contribution of PV and SST n‎eurons to auditory processing. But at the end, the authors state that "relatively few reports on PV+ and SST+ cell-intrinsic and synaptic properties in adult auditory cortex". Please be more specific about the unknown properties.

      We agree with the reviewer and we will rephrase more specifically.

      (9) The introduction emphasizes the heterogeneity of PV neurons, which certainly influences the interpretation of the results of the current manuscript. However, the initial experiments did not consider this and handled all PV cell data as a pooled population.

      In the initial experiments, we handled all PV cell data together because we wanted to be rigorous and not make assumptions/biases on the different PV cells, which in later experiments we were to distinguish based on the intrinsic properties alone. We will make this point clear in the revised manuscript.

      (10) The interpretation of the results strongly depends on unpublished work, which potentially provide the physiological and behavioral contexts about the role of GABAergic neurons in SynGap-haploinsufficiency. The authors cite their own unpublished work, without explaining the specific findings and relation to this manuscript.

      We agree with the reviewer and apologize for the lack of clarity. Our unpublished work is in revision right now. We will provide more information and update references in the revised version of this manuscript.

      (11) The introduction of Scholl analysis ‎experiments mentions SOM staining, however, there is no such data about this cell type in the manuscript.

      We apologize for the error, we will change SOM with SST (SOM and SST are two commonly used acronyms for Somatostatin expressing interneurons).

      Reviewer #3 (Public Review):

      This paper compares the synaptic and membrane properties of two main subtypes of interneurons (PV+, SST+) in the auditory cortex of control mice vs mutants with Syngap1 haploinsufficiency. The authors find differences at both levels, although predominantly in PV+ cells. These results suggest that altered PV-interneuron functions in the auditory cortex may contribute to the network dysfunction observed in Syngap1 haploinsufficiency-related intellectual disability. The subject of the work is interesting, and most of the approach is direct and quantitative, which are major strengths. There are also some weaknesses that reduce its impact for a broader field.

      (1) The choice of mice with conditional (rather than global) haploinsufficiency makes the link between the findings and Syngap1 relatively easy to interpret, which is a strength. However, it also remains unclear whether an entire network with the same mutation at a global level (affecting also excitatory neurons) would react similarly.

      The reviewer raises an interesting and pertinent open question which we will address in the discussion of the revised paper.

      (2) There are some (apparent?) inconsistencies between the text and the figures. Although the authors appear to have used a sophisticated statistical analysis, some datasets in the illustrations do not seem to match the statistical results. For example, neither Fig 1g nor Fig 3f (eNMDA) reach significance despite large differences.

      We respectfully disagree, we do not think the text and figures are inconsistent. In the cited example, large apparent difference in mean values does not show significance due to the large variability in the data; further, we did not exclude any data points, because we wanted to be rigorous. In particular, for Fig.1g, statistical analysis shows a significant increase in the inter-mEPSC interval (*p=0.027, LMM) when all events are considered (cumulative probability plots), while there is no significant difference in the inter-mEPSCs interval for inter-cell mean comparison (inset, p=0.354, LMM). Inter-cell mean comparison does not show difference with Mann-Whitney test either (p=0.101, the data are not normally distributed, hence the choice of the Mann-Whitney test). For Fig. 3f (eNMDA), the higher mean value for the cHet versus the control is driven by two data points which are particularly high, while the other data points overlap with the control values. The Mann-Whitney test show also no statistical difference (p=0.174).

      In the manuscript, discussion of the data is based on the results of the LMM analysis, which takes in account both the number of cells and the numbers of mice from which these cells are recorded. We chose this statistical approach because it does not rely on the assumption that cells recorded from same mouse are independent variables. In the supplemental tables, we provided the results of the statistical analysis done with both LMM and the most commonly used Mann Whitney (for not normally distributed) or t-test (for normally distributed), for each data set.

      Also, the legend to Fig 9 indicates the presence of "a significant decrease in AP half-width from cHet in absence or presence of a-DTX", but the bar graph does not seem to show that.

      We apologize for our lack of clarity. In legend 9, we reported the statistical comparisons between 1) cHET mice in absence of a-DTX and control mice and 2) cHET mice in presence of a-DTX and control mice. We will rephrase result description and the legend of the figure to avoid confusion.

      (3) The authors mention that the lack of differences in synaptic current kinetics is evidence against a change in subunit composition. However, in some Figures, for example, 3a, the kinetics of the recorded currents appear dramatically different. It would be important to know and compare the values of the series resistance between control and mutant animals.

      We agree with the reviewer that there appears to be a qualitative difference in eNMDA decay between conditions, although quantified eNMDA decay itself is similar between groups. We have used a cutoff of 15 % for the series resistance (Rs), which is significantly more stringent as compared to the cutoff typically used in electrophysiology, which are for the vast majority between 20 and 30%. To answer this concern, we re-examined the Rs, we compared Rs between groups and found no difference for Rs in eAMPA (13.2±0.5 in WT n=16 cells, 7 mice vs 13.7±0.3 in cHet n=14 cells, 7 mice, p=0.432 LMM) and eNMDA (12.7±0.7 in WT n=6 cells, 3 mice vs 13.8±0.7 in cHet n=6 cells, 5 mice, p=0.231, LMM). Thus, the apparent qualitative difference in eNMDA decay stems from inter-cell variability rather than inter-group differences. Notably, this discrepancy between the trace (Fig. 3a) and the data (Fig. 3f, right) is largely due to inter-cell variability, particularly in eNMDA, where a higher but non-significant decay rate is driven by a couple of very high values (Fig. 3f, right). In the revised manuscript, we will show traces that better represent our findings.

      (4) A significant unexplained variability is present in several datasets. For example, the AP threshold for PV+ includes points between -50-40 mV, but also values at around -20/-15 mV, which seems too depolarized to generate healthy APs (Fig 5c, Fig7c).

      We acknowledge the variability in AP threshold data, with some APs appearing too depolarized to generate healthy spikes. However, we meticulously examined each AP that spiked at these depolarized thresholds and found that other intrinsic properties (such as Rin, Vrest, AP overshoot, etc.) all indicate that these cells are healthy. Therefore, to maintain objectivity and provide unbiased data to the community, we opted to include them in our analysis. It's worth noting that similar variability has been observed in other studies (Bengtsson Gonzales et al., 2020; Bertero et al., 2020).

      Further, we conducted a significance test on AP threshold excluding these potentially unhealthy cells and found that the significant differences persist. After removing two outliers from the cHet group with values of -16.5 and 20.6 mV, we obtain: -42.6±1.01 mV in control, n=33, 15 mice vs -36.2±1.1 mV in cHet, n=38 cells, 17 mice, ***p<0.001, LMM. Thus, whether these cells are included or excluded, our interpretations and conclusions remain unchanged.

      We would like to clarify that these data have not been corrected with the junction potential. We will add this info in the revised version.

      (5) I am unclear as to how the authors quantified colocalization between VGluts and PSD95 at the low magnification shown in Supplementary Figure 2.

      We apologize for our lack of clarity. Although the analysis was done at high resolution, the figures were focused on showing multiple PV somata receiving excitatory inputs. We will add higher magnification figures and more detailed information in the methods of the revised version. Please also see our response to reviewer #2.

      (6) The authors claim that "cHet SST+ cells showed no significant changes in active and passive membrane properties", but this claim would seem to be directly refused by the data of Fig 8f. In the absence of changes in either active or passive membrane properties shouldn't the current/#AP plot remain unchanged?

      While we acknowledge the theoretical expectation that changes in intrinsic parameters should correlate with alterations in neuronal firing, the absence of differences in the parameters analyzed in this study should not overshadow the clear and significant decrease in firing rate observed in cHet SST+ cells. This decrease serves as a compelling indication of reduced intrinsic neuronal excitability. It's certainly possible that other intrinsic factors, not assessed in this study, may have contributed to this effect. However, exploring these mechanisms is beyond the scope of our current investigation. We will rephrase the discussion and add this limitation of our study in the revised version.

      (7) The plots used for the determination of AP threshold (Figs 5c, 7c, and 7h) suggest that the frequency of acquisition of current-clamp signals may not have been sufficient, this value is not included in the Methods section.

      This study utilized a sampling rate of 10 kHz, which is a standard rate for action potential analysis in the present context. We will describe more extensively the technical details in the method section of the revised manuscript we are preparing. While we acknowledge that a higher sampling rate could have enhanced the clarity of the phase plot, our recording conditions, as detailed in our response to Rev#2/comment#5, were suitable for the objectives of this study.

      Reference list

      Bengtsson Gonzales C, Hunt S, Munoz-Manchado AB, McBain CJ, Hjerling-Leffler J (2020) Intrinsic electrophysiological properties predict variability in morphology and connectivity among striatal Parvalbumin-expressing Pthlh-cells. Scientific Reports, 10, 15680. https://doi.org/10.1038/s41598-020-72588-1

      Bertero A, Zurita H, Normandin M, Apicella AJ (2020) Auditory long-range parvalbumin cortico-striatal neurons. Frontiers in Neural Circuits, 14, 45. http://doi.org/ 10.3389/fncir.2020.00045

      Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW (2023) Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron, 111, 1264–1281. http://doi.org/10.1016/j.neuron.2023.01.017

      Chehrazi P, Lee KKY, Lavertu-Jolin M, Abbasnejad Z, Carreño-Muñoz MI, Chattopadhyaya B, Di Cristo G (2023). The p75 Neurotrophin Receptor in Preadolescent Prefrontal Parvalbumin Interneurons Promotes Cognitive Flexibility in Adult Mice. Biol Psychiatry, 94, 310-321. doi: 10.1016/j.biopsych.2023.04.019.

      Elabbady L, Seshamani S, Mu S, Mahalingam G, Schneider-Mizell C, Bodor AL, Bae JA, Brittain D, Buchanan J, Bumbarger DJ, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kapner D, Kemnitz N, Kinn S, Lee K, Li K…Collman F (2024) Perisomatic features enable efficient and dataset wide cell-type classifications across large-scale electron microscopy volumes. bioRxiv, https://doi.org/10.1101/2022.07.20.499976

      Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B (2008) K+ Channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron, 58, 387–400. https://doi.org/10.1016/j.neuron.2008.03.003

      Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Computational Biology, 38, e156. http://doi.org/10.1371/journal.pcbi.0030156

      Hu H, Martina M, Jonas P (2010). Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science, 327, 52–58. http://doi.org/10.1126/science.1177876

      Hwang YS, Maclachlan C, Blanc J, Dubois A, Petersen CH, Knott G, Lee SH (2021). 3D ultrastructure of synaptic inputs to distinct gabaergic neurons in the mouse primary visual cortex. Cerebral Cortex, 31, 2610–2624. http://doi.org/10.1093/cercor/bhaa378

      Kavalali E (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nature Reviews Neuroscience, 16, 5–16. https://doi.org/10.1038/nrn3875

      Kourrich S, Thomas MJ (2009) Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. Journal of Neuroscience, 29, 12275-12283. http://doi.org:10.1523/JNEUROSCI.3028-09.2009

      Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell, 152, 236–247. http://doi.org/10.1016/j.cell.2012.12.004

      Norenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proceedings of the National Academy of Sciences, 107, 894–9. http://doi.org/10.1073/pnas.0910716107

      Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN (2021) Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K+ channels. Elife, 10, e66491. http://doi.org/10.7554/eLife.66491

      Russo G, Nieus TR, Maggi S, Taverna S (2013) Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons. Frontiers in Cellular Neuroscience, 7, 209. https://doi.org/10.3389/fncel.2013.00209

      Ünal CT, Ünal B, Bolton MM (2020) Low-threshold spiking interneurons perform feedback inhibition in the lateral amygdala. Brain Structure and Function, 225, 909–923. http://doi.org/10.1007/s00429-020-02051-4

      Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. The Journal of Neuroscience, 14, 4588-4599. https://doi.org/10.1523/JNEUROSCI.14-08-04588.1994

      Zhang YZ, Sapantzi S, Lin A, Doelfel SR, Connors BW, Theyel BB (2023) Activity-dependent ectopic action potentials in regular-spiking neurons of the neocortex. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1267687

      Zurita H, Feyen PLC, Apicella AJ (2018) Layer 5 callosal parvalbumin-expressing neurons: a distinct functional group of GABAergic neurons. Frontiers in Cellular Neuroscience, 12, 53. https://doi.org/10.3389/fncel.2018.00053

    1. For example, the person in charge of the donations seemed to be overwhelmed and could not always answer questions we may have regarding delivery. She always sounded frustrated whenever she was asked questions because she indicated no one informed her of what and where things were going. I think if they provided her with more information, she would feel more comfortable answering questions as well as feeling more motivated to seek out the answers.

      insightful observation

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General response of the authors to the editor and the reviewers:

      We thank the reviewers for their feedback, input and questions as these have helped us to (hopefully) improve the manuscript. We have rewritten several sections of the manuscript, moved methodological descriptions from the Results to the Methods section, and added imaging data for two cytoskeletal proteins, Shot and Cofilin/Twinstar, which confirm the predicted differential DV expression. Because the changes to the text were extensive, we did not mark them by track changes (the manuscript would have been illegible), but would be happy to provide an additional version that includes the tracked changes.

      We provide below the point-by-point response to each question and comment made by the reviewers. Our text is in blue.



      __Reviewer #1 __

      __Evidence, reproducibility and clarity __

      __Summary __

      This manuscript investigated changes in the proteome and phosphoproteome during dorsovental axis specification in the Drosophila embryo. To model the three regions in the embryo that are relevant for DV axis development, the authors used specific mutations to enrich for a single type of cells (ventral, lateral, or dorsal). The detected proteins and phosphopeptides were clustered according to the region of expression. There were differences between the protein and corresponding phosphopeptide abundance, suggesting that phosphorylation is a regulatory modification in DV axis establishment. Two different mutations that both result in a ventralized phenotype were found to change marker protein expression in different ways. Using inhibition of microtubule polymerization, this study also investigated the role of microtubules in epithelial folding.

      __Major comments __

      1. Generally, there is a lack of significance testing throughout the manuscript. Simply reporting fold changes can be misleading, if these changes are not significant. Examples:

      2. Rigor of the proteomics evidence showing changes for the expected markers is insufficient because no statistical evaluation is provided. Specifically, in Fig. 1D and Suppl Fig 2: are the fold changes statistically significant?

      3. Data in Fig. 4F, 5F need to be assessed for significance. There are other instances in the manuscript where significance should be tested.

      We did ANOVA testing for all proteome and phosphoproteome data, and the outcome of these analyses is reported in Supplementary Tables 2 and 3. We have added references to significance throughout, wherever possible and relevant and have included a table that summarizes all p values for all comparisons in all of the figures (Supplementary Table 2). However, note that we do our clustering independent of statistical significance, i.e., we include all values, as we explain in the manuscript.

      It is difficult to see the value of the obtained dataset for the community, in part because the data are analyzed by a linear model and cluster assignment developed by the authors, which is a somewhat arbitrary representation. Perhaps the authors could explain how their data could be used by other researchers, and maybe even develop an accessible portal for interacting with the data.

      We do provide the entire set of data in a formatted Excel Table as Supplementary Tables 3 and 4, which contain common pairwise comparisons and ANOVA tests that allow a researcher without a strong proteomics background to explore the data, and we also provide the raw proteomics datasets deposited in PRIDE, so any interested colleague can re-analyse them in the manner that suits their purposes best.

      We analysed the data in the way we did because it takes account of the knowledge from genetics that we have of all these cell populations. This also allowed us to include the important set of proteins and phosphosites that are completely absent from all but one mutant genotype, and would therefore have dropped out of the statistical analyses.

      For example, what does it mean biologically that a protein is a member of a specific cluster shown in Fig. 3C? Is there a predictive value in such an assignment, and how does it relate to the main question of DV axis regulation? An example of a novel insight obtained for specific protein(s) would be useful to illustrate the utility of this analysis.

      The clusters represent groups of proteins that are present at higher or lower abundance in subsets of cell populations. So, for example, being present in cluster 5 means (Fig. 3C) that this protein is predicted to be more abundant in the mesoderm than elsewhere (which includes being detected ONLY in the mesoderm, like Snail). This clustering therefore is the way for us to find new proteins that conform to these groups.

      We provide here the immunostainings of two cytoskeleton-associated proteins that our proteomic analyses predicted to be more abundant in the ectoderm (Cluster 6: dorsal+lateral):

      • The actin-microtubule crosslinker Short-stop (Shot), which is seen to be reduced in the mesoderm.
      • The actin-severing protein Cofilin/Twinstar, which was also found downregulated in the mesoderm in the work cited in Ref.:10 Gong L. et al., Development (2004). The staining shows that cofilin-GFP is abundant in the entire subapical region of ectodermal cells, but strongly reduced in ventral furrow cells, where it is only retained in a few apical membrane blebs. These proteins are targets for functional analyses in follow-up work.

      [Imaging Data for Reviewers]

      Figure: Physical cross-sections of fixed embryos showing the enrichment of proteins in the ectoderm (cluster 6: DL). Dorsal is top, ventral is bottom. Scale bar: 50 um Top panel: Staining for short-stop (shot; cyan / grayscale) and snail (yellow) in embryos expressing gap43-mCherry. Bottom panel: staining for discs large (dlg, magenta) and GFP (green / grayscale) in embryos expressing cofilin-GFP (Kyoto protein trap for Cofilin/Twinstar).

      Overall, at present the study appears to have limited novelty and mechanistic insight. The data generally align with prior expectations, but it is unclear how this work advances the field.

      We were reassured that the data align with previous studies, but as we state in the text, they go well beyond these valuable and important studies in several dimensions. We had made the following assumptions:

      1. DV patterning mutants recapitulate biological qualities of DV cell populations and the differential expression of DV fate determinants, as confirmed in Fig. 1 and Fig. 3D.
      2. The differential regulation of the proteomes and phosphoproteomes across DV patterning mutants recapitulates the abundances of proteins and phosphosites within DV cell populations of a wildtype embryo. We confirmed this in Fig. 3A and Fig. 5C with the implementation of a linear model for the abundances of detected proteins and phosphosites. The resulting analysis revealed new avenues for future functional studies, as intended. Most of the work on cell shape regulation at the gastrulation stage has focused on actomyosin and a subset of cell adhesion molecules. We have identified networks of proteins and phosphoproteins that may also control gastrulation (Fig. 6 and Supplementary Fig. 5), including microtubules, which were significantly enriched in networks of phosphoproteins (Fig. 7 and Supplementary Fig. 6).

      For example, the observed differences between marker proteins in Toll10B vs. spn27A data seem to confirm previous suggestions that spn27A has a stronger ventralizing effect.

      This suggestion was made by colleagues who had unpublished observations on a limited number of gene expression patterns that supported their contention. A correlation analysis (see figure below) of our results now shows that proteins with a restricted dorso-ventral pattern change more in spn27Aex mutants than in Toll10B. If we look at the known mesodermal genes such as Snail, Twist, Mdr49 and CG4500 we find them at higher abundance in spn27Aex than Toll10B , while the ectodermal genes Egr, Zen, Dtg, Tsg, Bsk, and Ptr are reduced more strongly in spn27Aex than in Toll10B. This takes the prior observation of a stronger ventralization of spn27Aex from an anecdotal to a systematic analysis.

      [Correlation analyses available for reviewers]

      Cross-correlation between the fold changes (FCs) in Toll10B/WT vs. spn27Aex/WT for all proteins detected in wildtype, Toll10B and spn27Aex. Each dot is a protein. The green line is the 'identity' function (slope = 1) that would be expected if the FCs for each protein in both ventralized mutants were exactly the same. A set of proteins with restricted dorso-ventral distribution are highlighted in yellow: mesodermal (ventral) and blue: ectodermal (dorsal).

      The role of microtubules in epithelial folding in the embryo has also been demonstrated before.

         The role of microtubules in epithelial folding in the *Drosophila *embryo has indeed been examined in three previous studies that studied dorsal fold formation (Ref.: 35, Takeda et al. NCB 2018), ventral furrow formation (VFF, Ref.: 36, Ko et al. JCB 2019), and salivary gland invagination (Booth et al. Dev Cell 2014). These data reveal diverse and non-conservative functional requirements, ranging from acto-myosin contractility during apical constriction (Booth et al. 2014), force transmission and repair of the supracellular contractile network (but not apical constriction per se, Ko et al 2019), to the generation of expansile forces during cell shape homeostasis (Takeda et al 2018). In light of this potentially broad functional spectrum, we sought to compare three epithelial folds that form within the context of gastrulation: ventral furrow, cephalic furrow and dorsal folds. We confirmed that the initiation of VFF was normal, but the final invagination failed, as per Ko et al. 2019, while dorsal fold initiation did not occur (extending conclusions from Takeda et al 2018). In contrast, cephalic furrow formation, though delayed, did not require microtubules. We also revealed a novel commonality of MT function. Specifically, prior to the initiation of all three epithelial folds, proper nuclear positioning requires MTs. We additionally discovered novel membrane abnormalities in two distinct types of blebs during ventral furrow and dorsal fold formation, respectively. Thus, our data provide insights into the roles of microtubules during epithelial folding that go beyond prior work.
      

      The shown phosphorylation changes (if they are significant) for Toll and Cactus are difficult to explain. In Suppl Fig 2B, E: why is Toll more phosphorylated in the lateralized than in ventralized embryos? (the provided reference 20 does not seem to clarify this).

         These changes are indeed significant (Toll-S871: Vtl vs. WT p = 0.01 , Vsp vs. WT p = 0.002; Cactus-S463: Vsp vs WT p = 0.03); see Supplementary Figure 2B and Supplementary Table 2).
      
         We have corrected Ref. 20 (Shen B. and Manley J.L., Development 1998). Ref. 20 only shows that Tl is phosphorylated by Pelle (Ref 20: Fig. 6A), although neither the exact position of Tl phosphosite(s) nor the function of Tl phosphorylation were explored in this article. A hallmark of Toll Like Receptor (TLR) regulation is these receptors are subject to tyrosine phosphorylation, which has been widely connected to the regulation of the binding of adaptor proteins to the cytoplasmic tail of TLRs. Both our finding of Serine phosphorylation in Tl, and the differential phosphorylation across cell populations is new, but since we do not know what this particular Serine phosphorylation site does in TLRs in general, we cannot speculate on the meaning of it occurring more in lateral than in ventral cells. In Ref. 20, the authors speculate that Tl phosphorylation by Pelle regulates the association between Tl and Pelle, which then enables Dorsal translocation to the nucleus. It might also be part of a feedback regulation loop, but this is entirely speculative.
      

      Also, certain Cactus phosphorylations appear higher in dorsalized and ventralized embryos, but not in lateralized embryos. Are such changes expected and do they make sense biologically? It is unclear why these phosphorylation data are used to validate the success of the approach.

         The three Cactus phosphosites S463, S467 and S468 were identified and characterised in the work cited in Ref. 19 (Liu Z.P. et al., Genes and Development, 1997), and we used these sites to validate that our approach was sensitive enough to detect known phosphosites in proteins that act on the dorso-ventral patterning pathway specifically at the point of gastrulation (Stage 6 of embryonic development). We also reported in this manuscript the detection of known phosphosites within the Rho-pathway (Fig. 5E,F, Myosin Light Chain: T21, S22; Cofilin: S3).
      
         Liu Z.P. et al. reported that these three sites map to the Cactus PEST domain, which is required for Cactus degradation in the mesoderm (Belvin M. et al, Genes and Development 1995).  Liu Z.P. et al. also showed that mutating these phosphosites impairs Cactus turnover without affecting the ability of Cactus to bind Dorsal. We can only speculate that the differential phosphorylation across dorso-ventral embryonic cell populations is associated with the regulation of Cactus turnover. Consistent with this, we find Cactus downregulated 1.5 log2 fold in ventralized embryos derived from *spn27Aex/def* mothers. Furthermore, there are a number of signalling pathways that act both in the dorsal and the ventral-lateral domain (e.g., rhomboid/EGF), so it is not surprising to find modifications that are shared by these regions.
      

      The rationale to use a diffusion algorithm for data analysis is not clear. How would the analysis differ if diffusion was not used?

      Phosphoproteomics data are often sparse and noisy for a number of reasons (technical; low abundance of phosphorylated peptides compared to other peptides in the cell; biological: not all phosphosites are functional). Network diffusion is a common way used for various data types to boost the signal-to-noise ratio. For example, if from a list of 10 phosphosites, 5 all fall in the same network region or process, and the rest are randomly distributed in the network, chances are that the first region is more representative of the regulated process in that dataset. Using network propagation, the signal coming from the first 5 phosphosites would give a higher score to that network region, marking it as the predominant signal. Our specific implementation, which uses the semantic similarity between nodes to model the edges in the network, further boosts the functional signal by preferentially including nodes that have a higher functional similarity to the initial phosphosites. Our approach therefore allows us to identify the processes that are predominantly ‘active’ in our dataset. We refer the reviewer to our recent preprint for more evidence that this strategy boosts the signal-to-noise ratio in phosphoproteomic datasets and further prioritises more functional phosphosites (https://www.biorxiv.org/content/10.1101/2023.08.07.552249v1). If this approach was not used and we based the identification of relevant processes only on the list of phosphosites, we would have acquired more spurious terms in our functional enrichment analysis. The above preprint also shows that different methods such as the Prize Collecting Steiner Forest algorithm perform worse for phosphoproteomics data.

      Generally, the discussion of enriched GO categories presented in Fig. 6 is not rigorous, and it is unclear what biological insight is provided by this figure, probably because the categories are extremely diverse and not clustered in a meaningful way. Despite stating that the work on microtubules came out as a result of proteomic analysis, there is no connection between proteomic data (e.g., data shown in Fig. 6) and microtubule analysis in Fig. 7.

         The connection is between the __phosphoproteomic__ data and the microtubules. The reviewer is correct about the fact there is little connection at the proteomic level with microtubules. Only the diffused network analyses performed on the phosphoproteomic data pointed in this direction. We have improved the writing about this point.
      

      The Discussion section touches on areas of differential protein degradation and mRNA regulation; however, these data are not presented in Results or Figures and so it is difficult to assess the relevance of this analysis.

           We present these data in Figure 6A,B. The network analyses of the clusters showed significant enrichment of cellular component terms that are connected with protein turnover and mRNA regulation. We have added a reference to figure 6 in the Discussion for clarity.
      

      There is insufficient citation of prior literature throughout the manuscript: many statements are lacking proper references.

      We have corrected the mistakes and added missing references.

      Proteomics data should be deposited into a standard repository that is a member of ProtomeXchange Consortium, such as PRIDE, etc.

      All proteomics and phosphoproteomics data have been uploaded to PRIDE:

      The raw files for the proteomics and phosphoproteomics experiments were deposited in PRIDE under separate identifiers:

      Proteome: Identifier PXD046050 (Reviewer account details: reviewer_pxd046050@ebi.ac.uk, pw: coJ9otiX).

      Phosphoproteome: Identifier PXD046192 (Reviewer account details: reviewer_pxd046192@ebi.ac.uk, pw: nvkbwClp).

      We have included a statement of raw data availability in the revised version of the manuscript with the PRIDE access information.

      __Minor comments __

      The text has several typos and should be proof-read, and references to figures and tables should be checked, as some of these are not correct.

      We have corrected typos, references to figures and tables in the revised version of the manuscript.

      The genotypes for the mutations used in this study should be accompanied by citation describing identification of these mutations and the resulting phenotypes. It would also be helpful to describe the nature of these alleles (molecular lesion, gain vs loss of function, etc.). Some of this information is included in the Discussion, but it would be useful for the reader to learn this early on, when the chosen genotypes are presented.

      All this information is and was provided in the methods section and in Table 1, including stock numbers and sources of the stocks. Please see 'Methods, Drosophila genetics and embryo collections'.

      2G,H - the X axis should be clearly labeled as logarithmic.

      We introduced the log2 label in the X-axis of Fig. 2G,H and any other panel in which this was not expressly made clear.

      In Fig. 2G the locations of lines showing fold changes for Twist and Snail seem incorrect. In Fig. 2H the dotted line does not appear to correspond to 50% of the number of phosphosites.

      We apologise for these errors, both have been corrected in the revised version of the manuscript.

      5D can be improved by adding letters for the coloured clusters.

      We have labelled the clusters in Fig. 3B and Fig. 5D. to ease the identification of biologically relevant clusters.

      It is unclear if any specific additional insight was obtained using SILAC, the authors may want to discuss this approach and outcomes more.

      SILAC has been widely used to deal with the inherent variability of proteomic analyses by introducing a standard that is metabolically labelled, in our case, w1118 flies fed with SILAC yeast were used as the standard. Because the inherent variability is larger in phosphoproteomic experiments (because protein identification is based on phosphorylated peptides only, see Methods), we used SILAC labelling only in the phosphoproteomic experiment.



      __Reviewer #2 __

      Evidence, reproducibility and clarity


      The present article by Gomez et al describes a deep proteomics analysis of the proteome and phosphoproteome of embryos mutated for key genes involved in the dorso-ventral axis in Drosophila melanogaster. Overall, this is a nice article showing new insight in this development process. The results are mainly descriptive, yet identifies potential new players in the definition of the dorso-ventral axis.

      The generation of mutants for genes found up- or down-regulated in each mutant strain would be a significant addition to this manuscript. But I think in its current form the data brings enough new information on this particular developmental step and would be of interest for the fly community.

      My main concern is that the manuscript can be difficult to read and overly convoluted at times even for experts in the field. I would suggest the author move some methodological explanations from the results to the methods section to further detail the goals of some results sections.

      We have followed these suggestions and hope we have made the manuscript more easily readable.

      As an example, the goal of part 3) « A linear model for quantitative interpretation of the proteomes » is not clear to me. Are the authors comparing the abundance of a protein in the WT versus a theoretical WT in order to determine which fractions of mesoderm, lateral ectoderm and dorsal region are actually present in the WT? (...)

      Yes, in part, but the main purpose was to compare how well the theoretical WT, as ‘reconstituted’ from the mutants, corresponds to the observed actual WT (for which we have at least approximate values).

      The question that we faced when we started these calculations was: what is the ‘correct’ fraction (or proportion) we should use to weight each protein (or phosphosite) measurement in the mutants. Theoretically, these values should be those that result in the best match between the theoretical WT and the measured WT abundance of each protein (or phosphosite). We knew from actual measurements only the mesodermal fraction, which was determined to be ~20% of the cross-sectional area (Ref. 21: Rahimi, N., et al Dev. Cell. 2016). The neuroectoderm and ectoderm fractions were estimated to be approx. 40% each (Ref.: 22, Jazwinska, A et al. Development 1999), but we lacked an exact number. The systematic exploration of these proportions led us to conclude that indeed both the neuroectoderm and ectoderm fractions should be around 40% each, provided the mesoderm is fixed at 20%. Thus, we used these fractions: D: 0.4 L: 0.4 V: 0.2 for our follow-up analyses.

      (...) Or are they using it as a reference to obtain a fold change for the different proteins quantified (in this case why not use the WT?)?

      yes, again, in part: as a reference for the EXPECTED fold changes, as would be predicted from the WT.

      Since we have moved some of the details of this approach from the main text to the methods section, we have also revised the remaining text and hope it is now clearer.

      The proteomics data must be deposited in a public repository. I did not see it stated in the methods section.

      All proteomics and phosphoproteomics data have been uploaded to PRIDE; see further comments above in response 13.

      The version of the uniprot database is quite old (2016) so is the version of MaxQuant used in this study. Any reasons for that (other than that the analysis was performed in 2016)?

      That is indeed the reason.

      The data were run on different MS platforms, how did the authors account for the variability in MS signals? What samples were run on which MS platform? Were the WT embryos ran on both?

      We measured three replicates, and all five genotypes (four mutant genotypes plus wildtype) for each of the replicates were measured on the same instrument. Specifically, for the whole proteome analyses, replicate one and three of all genotypes were measured on the QExactive Plus instrument and replicate 2 of all genotypes were measured on a QExactive HF-x instrument, as were the phosphoproteomes. So, indeed, the wildtype was measured on both instruments. We thus did not observe instrument-specific bias in the PCA analysis for the proteome data.

      We have added this in more detail to the method section:

      “Samples of replicate one and three were measured on the QE-Plus system and replicate two was measured on the QE-HF-x system.

      For phosphoproteome analysis, (…) Samples of all three replicates were measured on the QEx-HFx system. We added trial samples measured on the QEx-Plus system to increase the phosphosite coverage using the match between runs algorithm.”

      In the methods section the authors mention that a high-pH reverse phase fractionation was performed? How many fractions of High-pH reverse phase separation were injected per sample? Was this separation performed for all the samples?

      We have adjusted the Methods section regarding the high-pH fractionation by adding the following sentence: “Fractions were collected every 60s in a 96 well plate over 60 min gradient time collecting a total number of 8 fractions per sample.“

      Why did the authors used label-free (proteome) and SILAC (phosphoproteome) quantification methods?

      See our response to reviewer #1, point 19.

      Why is the threshold based on the Q3 of the standard deviation (if I got it right) ? Couldn't they be calculated directly on the distribution of the ratio?

      We could also have done it that way.

      However, we had wanted also to take into account the variation between the replicates, i.e., the quality of the individual measurements, and we therefore devised the procedure we used, by which the standard deviation of the individual technical replicates enters the calculation with the ratio of the averages, the variability between replicates would have been ignored and we considered it more appropriate to take the more conservative approach. But as it turns out, the cut-off would have ended up being very similar had we calculated it the way the referee suggests,

      Page 6: The supplementary figure 2E refers to the protein Cactus and the text to CKII, please modify one or the other to avoid any confusion. Page 7: A dot is missing at the end of the following sentence « if used with the assumed weightings for the populations »

      We have corrected these sentences.

      Page 19: Replace SppedVac by SpeedVac

      We have corrected the error in the manuscript and thank the reviewer for the detailed inspection.

      Page 8: why not using a z-score with thresholds directly instead of a -1/+1/0 system and then using the z-score?

      Because we wanted to compare the relative changes over wt between mutants (i.e. the similarity between 1 0 0 and 0 -1 -1) rather than the relationship of their absolute values to the wt, and to assign proteins with similar relationships into the same dorso-ventral regulation categories.

      The text states this (previously in main text, now in methods):

      “The reason for this is that this method takes into account that value sets that represent similar relative differences between the mutants (for example, 0 -1 -1 vs. 1 -1 -1 or 1, 0, 0) are biologically more similar to each other than the raw values indicate. The z-scores for all of these cases would be 1.1547 -0.5774 -0.5774.”

      In the abstract it is mentioned that 3,399 proteins are differentially regulated at the proteome level versus 1,699 significantly deregulated at a 10 % FDR in the main text (page 5). Is there a reason for this discrepancy? Same comment for the phosphopeptides.

      But we now also see the need to better clarify this point, and we have edited the text accordingly.

      The second number refers to those proteins that show statistically significant changes based on ANOVA (1699 proteins).

      The first number (3398; note that the number 3399 in the abstract was a typo, now corrected) includes all proteins that were detected in at least 1 replicate in the wildtype (5883/6111) minus those that do not change between the genotypes (2156/6111) and minus all those that change in the same direction in all mutants (329).

      This includes proteins that are automatically excluded from ANOVA, i.e., those that are detected only in the wildtype (35/6111 proteins) or in two or more genotypes but only in 1 technical replicate ANOVA negative ones.

      As we stated, we did this because it “allows us to include the important group of proteins that show a ‘perfect’ behaviour, like dMyc and WntD, in that they are undetectable in the mutants that correspond to the regions in the normal embryo where these genes are not expressed.”. This 'regulated' set consists of those proteins that exceed the |0.5| fold threshold.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This review is a list of many individual critiques. It is unclear what the expertise of the reviewer is (they do not provide the answer to that question in the review form, unlike the other referees), but several of the criticisms are unfounded. Three of the PIs of this work are researchers with extensive experience in Drosophila genetics and early development but are nevertheless confounded by some of the comments made by this referee.

      The mutants do not completely "flatten" the embryos.

      We do not claim that they do. Nor are the ventral, lateral and dorsal regions in the normal embryo completely ‘flat’ or homogeneous. But the mutants are good representations of the major fates in these regions, as a wealth of published literature from the last 30 years indicates.

      For instance, Tl10B broadly expresses snail but also expresses sog in the head. (i.e. Fig 1B - sog and sna expression in Figure 1B mutant backgrounds looks odd.) The sog expression likely relates to a deficiency specific effect.

      This ‘sensitive’ area is well known also from other genetic conditions – e.g. partial loss of dorsal and indeed in Spn27A mutants. It is therefore not specific to the Tl10B deficiency but says something about gene interactions in this region. Thus, this cannot be a deficiency-specific effect.

      Is sog seen in a Toll10B/+ mutant background?

      Yes, it is, and more frequently than in Toll10B/Def.

      The deficiency used for the Toll10B experiment is Df(3R)ro80b which is quite large and deletes 14+ genes.

      True. However, this does not matter: the mothers are heterozygous, so the genes are not missing, they are present in one wildtype copy! And these mothers are then mated with wildtype fathers, so if expression of these genes were needed in the embryo, then there would be another full wt copy of each. We appreciate that maternal effect genetics can be difficult to follow, but this is all work that has been done a long time ago, and is not the point of this paper at all.

      The deficiency used for the spn27A experiment is Df(2L)BSC7 and removes 4+ genes.

      Again, this would only matter if these were maternal effect genes that were needed for the establishment of the dorso-ventral axis, and they are not.

      Furthermore, the gd9 allele may not be a complete loss of function.

      It may not be – but what matters is the well characterized phenotype which has been shown to represent dorsal cell types.

      It is possible that the Toll10B allele picked up an accessory dominant mutation.

      This again would only matter if it was a dominant AND maternal effect mutation that affects the DV axis in the embryo – and there are very few of these known. And nothing in our analysis of these embryos, with which we have been working on and off over 3 decades and therefore know very well, indicates that our current stock is any different from those we have seen in the past.

      Unfortunately, these mutant phenotypes that affect DV and AP patterning mean that conclusions cannot be made that changes in protein relate to DV patterning.

      We simply do not understand this statement.

      Why do the mutant phenotypes (gene expression patterns and cell morphologies representative of the ventral, lateral and dorsal cell populations) not mean that the proteins downstream of the fate changes correspond to the cell fates?

      To get a better view of the ventralized phenotype, the authors should repeat the analysis by ectopically expressing Toll10B using the Gal4-UAS system; UAS-activate Toll transgenes are available.

      All Gal4-UAS maternal drivers, even the best and the strongest, result in mosaic expression. Our lab has extensive experience with this system and we know that, for example, the homogeneous, high levels of twist or snail expression that we see in spn or Tl10B embryos cannot be achieved with GAL4.

      Fig 1C-F - due to combined AP and DV effects seen with ventralizing mutants, it is important that the authors confirm that cross-section views relate to the middle to posterior of the embryo.

      We confirm this.

      Costaining with anti-Kr or -Caudal would help to ensure they are assaying the correct AP domain for pure DV effects.

      In our view, this is an unnecessary experiment. I know where the middle of the embryo is. If the reviewer does not believe when we say we are showing a section from the middle, they can see that the sections are not from the end region by, for example, the cell number, and the section angles.

      The authors refer to reference [60] for stages but there is no information regarding morphological criteria used under the microscope to stage the embryos.

      We have now added more detail in the methods section:

      Briefly. using a Zeiss binocular, the embryos were individually hand-selected on wet agar which made the embryos semi-transparent, allowing the assessment of a range of morphological features, of which at least some are visible in each of the mutants:

      • Yolk distance to embryonic surface: distinguishes between early (stage 5a) and late cellularisation (stage 5b).
      • Yolk distribution within the embryo: identification of large embryonic movements of the germ band (e.g.: Initiation of germ band extension, marking the initiation of stage 7). In DV patterning mutants this is seen as twisting of the embryo.
      • Change in the outline of the dorsal-posterior region: polar cell movement from the posterior most region of the embryo (stage 5a/b) to stage 6a/b.
      • Formation of the cephalic and dorsal folds: identification of stage 6 (initiation of cephalic fold) and stage 7 (dorsal folds). The combined use of these morphological criteria, together with the synchronised egg collections allows accurate staging of wild type and mutant embryos.

      Furthermore, what is stage 6a,b? Stage 6 is not typically divided in two stages nor is it clear what a,b relate to.

      We used a generally accepted standard for staging embryos: Campos-Ortega J.A. and Hartenstein V. ‘The embryonic development of Drosophila melanogaster’ book (ref. Nº 60). In this book, they describe the morphological criteria that can be followed in living embryos for proper staging. These stages, with these exact names, are shown on pages 11 and 12 of the 1997 edition (2nd edition).

      According to the published timetable of Drosophila development by Foe et al. 1993 (not cited), gastrulating embryos are 200 min or 3 hr 20'. It's unclear if this is the stage that was assayed.

      Foe is a beautiful paper, but we did not cite it because the commonly used nomenclature predates it (Campos-Ortega and Hartenstein 1985).

      In addition, timing depends on temperature whereas morphological criteria do not.

      The mutant embryos likely develop at different rates relative to wildtype. It seems important to provide details about the staging of embryos. If the mutant embryos take longer to gastrulate, for instance, might that also be a factor that impacts the proteome.

      As described above, we used a combination of criteria to accurately judge staging. DV patterning embryos could in principle develop faster or slower than wildtype. We performed synchronised egg collections (Methods: Embryo collections) for 15’. Therefore, any developmental timing defect would have become evident based on a difference in the number of embryos entering stage 6 and 7 at the point of visual inspection of the collections. This was not the case.

      How many replicates for each genotype? In the text it states, "replicates from the same genotype clustered together (Fig. 2E)....." Similar vague reference for phosphoproteome follows (Fig 2F). It is then stated that it was impossible to determine the experimental source for this variation. Could it relate to differences in timing of samples?

      We had given the numbers of replicates in the figure legend but have now also included them in the methods section for more clarity. We did 3 replicates for each genotype in each experiment, with the exception of gd9 and spn27aex mutants, for which we did 2 biological replicates each with 3 replicates, making a total of 6 replicates for these genotypes in the proteomic experiment. We have included an additional clarification in figure legend 2. The number of replicates per genotype per experiment can also be seen from the correlation matrices shown Fig. 2E and 2F, in which the replicates are shown individually. The measurements for each replicate for each genotype within each experiment were reported in Supplementary Tables 2 and 3, 'description' tabs of the worksheets.

      The lengthy discussion of ratio estimation on page 7 should be streamlined and made more clear. Are the authors throwing out data and only keeping samples that support their model? This seems like overfitting - if I am understanding correctly, you are selecting the samples that support the "majority of proteins fit the linear model" but this isn't necessarily the case.

      No, this is a misunderstanding. We do not select data.

      We have rephrased this section, but to explain here briefly: We do not select any samples, we state that the majority of proteins fit the theoretical model (and that is not even surprising, because any protein that does not change across the populations will automatically fit the model). We then discuss why some might NOT fit the model. The model doesn’t need to be supported, it simply is a calculation that allows us to stratify the data.

      They call this the 'correct' manner (see section 4 page 7) but it seems like a working model and presumptuous to imply that it is the correct way.

      We explained in the text why we refer to this as ‘correct’. It is a matter or definition, not presumption, and we even used quotes to be clear about this. ’Correct’ indicates a combination of values that is consistent with the biological model that the DV mutants are good representations of the corresponding embryonic cell populations in a wild type embryo. We do not in any way ‘throw out’ other data, we just note they don’t fit that model. Clarifications on the concept for the model have been added in various places in the text

      Figure 3C - it is confusing to use a circular diagram to show DV inferred position of the 14 clusters as their position on the circle does not correspond to where they are expressed on the embryos. Perhaps a stacked bar graph for 6 different domains would be better.

      This figure does not show positions of clusters. It is simply a pie chart, as is stated in the figure legend and as can be seen by the numbers and the corresponding sizes of the sectors. We have tried a stacked representation (shown below), but find it no clearer and have therefore stuck with this very common way of representing quantities, and in particular, proportions. We use the same representation with the same colour schemes in all subsequent figures, so proportions can be compared across figures.

      It is very hard to follow the text on page 9.

      We have rephrased this section

      It is very hard to see the gene expression patterns shown in Fig 4A with the color scheme/scale used.

      We appreciate this colour scheme does not correspond to the commonly used dark colour on a light background which would mimic histochemistry to show gene expression. The ‘inferno’ colour scheme was used because it allows better quantitative comparisons between subtly different patterns. However, to make these figures more similar to the types of in situ hybridisations that embryologists are used to seeing, we now use a different representation.

      In general, Figure 4 is uninterpretable - in particular, what do the numbers mean on the greyscale circle plots in panel D?

      We apologize for having failed to explicitly include the explanation for this in the figure legend. The reader will notice that these numbers add up to the number in the circle to the left, and the numbers indicate the number of proteins showing perfect matches (white), partial overlaps (grey) and mismatches (black). We have improved the graphic representation and added an explanation in the figure legend.

      Figure 5A. Why wasn't protein abundance and phosphosites identified from an individual, identical sample?

      This was because of the way the project developed over the course of the research, and the protein part was originally intended only as a proof of concept, with the intended focus being the phosphoproteome. We later decided to include a full analysis of the proteome, but did not consider it worthwhile and necessary to repeat the entire laborious and expensive experiment with both analyses being done from the same samples.

      How can one be sure that the phosphosites were correctly assigned if the proteins were not detected in the proteome but they were only identified in the phosphosite analysis?

      We are not sure we understand this question. The phosphoproteomic analysis identifies phosphopeptides of proteins that in turn allow one to identify the protein itself and the amino acid in that peptide that is phosphorylated. So the identification is done only WITHIN the phosphoproteomic analysis and does not relate directly to the proteomic analysis. This explains why we found some phosphopeptides for which we did not detect the full host protein in the proteomic analysis.

      Thus, if a protein was detected only in either of the experiments, this fact doesn’t modify the validity of the result, because the identification was done individually for each experiment.

      Page 16 - much discussion about the difference between Spn27A and Toll10b/def mutant background. One has half as much Toll receptor. The phenotype of Toll10b/+ should be examined.

      Both genotypes have been extensively examined in the past. Tl10B/def has only one copy of the gene from the mother, and the mutant protein is constitutively active. By putting it over a deficiency, we (and others in the past) made sure that the exclusive source for Tl signalling is from this gain of function Tl allele, and that the wildtype receptor, which would still be activated by the natural ligand in a graded pattern along the DV axis, does not confound the result.

      The Tl10B/+ combination creates a less ventralized phenotype which is not more similar to that of spn27Aex/def but in fact less similar.

      Page 12 - hard to follow the discussion of modeling (?) presented in Figure 6. The results (bottom of page 12 - #1 "most networks are enriched for cellular components associated with regulation of gene expression" and page 13 #2 - "cytoskleeton emerges as a major target of regulation") seem vague and unsubstantiated. Rhabdomere, P granule, micropyle, autophagosome?

      We agree with the reviewer that there are many cellular components that are enriched in the diffused network analyses, many of them unrelated to morphogenesis. We had highlighted this finding on page 12, paragraph 3. Nevertheless, we have rephrased the statements as ‘the heat maps illustrate that most of the enriched cellular components in both experiments were highly enriched with cellular components associated with DNA and RNA metabolism or the regulation of gene expression.’ and have now included numbers.

      We think ‘a major target’ for phosphorylation does in fact apply to the cytoskeleton, and we had already supplied the number to substantiate this in the manuscript (14/62).

      Readers will be able to evaluate these network analyses based on their own fields of interest or particular questions they may wish to address. We haven’t excluded any cellular component terms.

      Figure 7 seems like a separate study.

      Why were the phosphopeptides investigated to determine if they relate to phosphorylated proteins? Phosphoantibodies could have been generated for a subset. Instead the manuscript pivots to analysis of microtubules.

      We are reporting here one example of a proof-of-concept study that we carried out, chosen based on our own research interests and on available tools and reagents. There are clearly many other avenues that could have been explored and that others may want to explore, but that go well beyond this report. We have made this more explicit in the text.

      Page 14 - discussion first paragraph. Please cite ref[10] when discussing the "previous study" otherwise the reader will not understand which study you are referring to until the next paragraph.

      We have moved the reference from its current position to the one suggested by the reviewer.

      • In general, the study would benefit from more attention to references and citations of prior work. A comparison of this work to the Gong et al. Development 2004 study should be made earlier. This work is cited very early on, namely in the introduction.

      • The authors start off saying that no other study has looked at proteins from a spatial perspective. We are unsure what the reviewer refers to. We say precisely the opposite: we indicate that studies have been performed to look at differences in cell populations, including that by the lab of Jon Minden (Gong et al), a highly respected former co-author of one of the current authors (ML). We do state that the technologies at the time did not allow the same depth and temporal resolution as the methods that are available nowadays. For instance, Gong et al. used an excellent and original approach at the time, which however did not detect Snail and Twist in the ventralized mutants.

      The only time we say ‘no other study’ is about ‘region-specific post-translational regulation of proteins’ - though we do state in the discussion that Gong et al would have detected some of these cases because they used 2D gels.

      • Along these lines, there is another more recent proteomic study from Beati et al. Fly 2020 using similarly staged embryos. How do these other experiments compare to the current ones? As they apparently analyzed proteome and phosphopeptides from an identical sample, are the authors' new data using separate samples consistent? This study is actually about a later stage (stage 8 embryos, post-gastrulation). Again, an excellent study, but not directly relevant to our current analysis. It validates the use of SILAC in Drosophila, although it is not the first study to do this. Furthermore, it looks at a different question and biological process using a mutant, htl, to understand the effect of FGF signalling.

      • Furthermore, Adam Martin's lab has been studying microtubule action along the dorsoventral axis (Denk-Lobnig et al 2021) and this work is not cited. Denk-Lobnig et al 2021 is about spatial patterns of myosin and actin and how that is governed genetically on the ventral side of the embryo, pertaining primarily to ventral furrow formation. It does not analyse microtubules nor dorsal-ventral cell populations.

      It is possible there may be some confusion with another excellent study from Adam Martin’s lab, in which the role of microtubules is analysed. But this is exclusively in the ventral furrow, and the study did not look at the effect of microtubule depolymerisation on nuclear positioning nor membrane behaviour. We cite this work extensively (Ref.: 36, Ko et al. JCB 2019) and we compare our results to that paper. However, our work here goes beyond this study in that it looks at all cells along the DV axis.

      General comments:

      Typos throughout. For example, page .4 section heading "dorso-ventral cell..."

      We have scanned the entire document for typos.

      Font size extremely small - for example see Figure 1A gene names, and 1F magnified view.

      We have adjusted the fonts in the main figures.

      Scale bars not shown when showing magnified views. For example, see Fig 1E,

      We have added these.

      Reviewer #3 (Significance (Required)): This study by Gomez et al. uses a proteomic-centered approach to study proteomes associated with cell populations in the embryo that they argue relate to different positions along the dorso-ventral axis. They generate a proteomic resource, though it was unclear how anyone could use the data they produce. There is no searchable database and we have to trust that the authors will ultimately provide such a resource to the community.

      All proteomics and phosphoproteomics data have been uploaded to PRIDE. Also see responses to the other referees’ queries about this point.

      There is the potential for interesting insights but the work is not presented in a way that is accessible or useful. The presentation needs significant improvement.

      We have improved the presentation and way the results are presented as per the suggestion of all reviewers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths:

      This work (almost didactically) demonstrates how to develop, calibrate, validate and analyze a comprehensive, spatially resolved, dynamical, multicellular model. Testable model predictions of (also non-monotonic) emergent behaviors are derived and discussed. The computational model is based on a widely-used simulation platform and shared openly such that it can be further analyzed and refined by the community.

      Weaknesses:

      While the parameter estimation approach is sophisticated, this work does not address issues of structural and practical non-identifiability (Wieland et al., 2021, DOI:10.1016/j.coisb.2021.03.005) of parameter values, given just tissue-scale summary statistics, and does not address how model predictions might change if alternative parameter combinations were used. Here, the calibrated model represents one point estimate (column "Value" in Suppl. Table 1) but there is specific uncertainty of each individual parameter value and such uncertainties need to be propagated (which is computationally expensive) to the model predictions for treatment scenarios.

      We thank the reviewer for the excellent suggestions and observations. The CaliPro parameterization technique applied puts an emphasis on finding a robust parameter space instead of a global optimum. To address structural non-identifiability, we utilized partial rank correlation coefficient with each iteration of the calibration process to ensure that the sensitivity of each parameter was relevant to model outputs. We also found that there were ranges of parameter values that would achieve passing criteria but when testing the ranges in replicate resulted in inconsistent outcomes. This led us to further narrow the parameters into a single parameter set that still had stochastic variability but did not have such large variability between replicate runs that it would be unreliable. Additional discussion on this point has been added to lines 623-628. We acknowledge that there are likely other parameter sets or model rules that would produce similar outcomes but the main purpose of the model was to utilize it to better understand the system and make new predictions, which our calibration scheme allowed us to accomplish.

      Regarding practical non-identifiability, we acknowledge that there are some behaviors that are not captured in the model because those behaviors were not specifically captured in the calibration data. To ensure that the behaviors necessary to answer the aims of our paper were included, we used multiple different datasets and calibrated with multiple different output metrics. We believe we have identified the appropriate parameters to recapitulate the dominating mechanisms underlying muscle regeneration. We have added additional discussion on practical non-identifiability to lines 621-623.

      Suggested treatments (e.g. lines 484-486) are modeled as parameter changes of the endogenous cytokines (corresponding to genetic mutations!) whereas the administration of modified cytokines with changed parameter values would require a duplication of model components and interactions in the model such that cells interact with the superposition of endogenous and administered cytokine fields. Specifically, as the authors also aim at 'injections of exogenously delivered cytokines' (lines 578, 579) and propose altering decay rates or diffusion coefficients (Fig. 7), there needs to be a duplication of variables in the model to account for the coexistence of cytokine subtypes. One set of equations would have unaltered (endogenous) and another one have altered (exogenous or drugged) parameter values. Cells would interact with both of them.

      Our perturbations did not include delivery of exogenously delivered cytokines and instead were focused on microenvironmental changes in cytokine diffusion and decay rates or specific cytokine concentration levels. For example, the purpose of the VEGF delivery perturbation was to test how an increase in VEGF concentrations would alter regeneration outcome metrics with the assumption that the delivered VEGF would act in the same manner as the endogenous VEGF. We have clarified the purpose of the simulations on line 410. We agree that exploring if model predictions would be altered if endogenous and exogenous were represented separately; however, we did not explore this type of scenario.

      This work shows interesting emergent behavior from nonlinear cytokine interactions but the analysis does not provide insights into the underlying causes, e.g. which of the feedback loops dominates early versus late during a time course.

      Indeed, analyzing the model to fully understand the time-varying interactions between the multiple feedback loops is a challenge in and of itself, and we appreciate the opportunity to elaborate on our approach to addressing this challenge. First: the crosstalk/feedback between cytokines and the temporal nature was analyzed in the heatmap (Fig. 6) and lines 474-482. Second: the sensitivity of cytokine parameters to specific outputs was included in Table 9 and full-time course sensitivity is included in Supplemental Figure 2. Further correlation analysis was also included to demonstrate how cytokine concentrations influenced specific output metrics at various timepoints (Supplemental Fig. 3). We agree that further elaboration of these findings is required; therefore, we added lines 504-509 to discuss the specific mechanisms at play with the combined cytokine interactions. We also added more discussion (lines 637-638) regarding future work that could develop more analysis methods to further investigate the complex behaviors in the model.

      Reviewer #2 (Public Review):

      Strengths:

      The manuscript identified relevant model parameters from a long list of biological studies. This collation of a large amount of literature into one framework has the potential to be very useful to other authors. The mathematical methods used for parameterization and validation are transparent.

      Weaknesses:>

      I have a few concerns which I believe need to be addressed fully.

      My main concerns are the following:

      (1) The model is compared to experimental data in multiple results figures. However, the actual experiments used in these figures are not described. To me as a reviewer, that makes it impossible to judge whether appropriate data was chosen, or whether the model is a suitable descriptor of the chosen experiments. Enough detail needs to be provided so that these judgements can be made.

      Thank you for raising this point. We created a new table (Supplemental table 6) that describes the techniques used for each experimental measurement.

      (2) Do I understand it correctly that all simulations are done using the same initial simulation geometry? Would it be possible to test the sensitivity of the paper results to this geometry? Perhaps another histological image could be chosen as the initial condition, or alternative initial conditions could be generated in silico? If changing initial conditions is an unreasonably large request, could the authors discuss this issue in the manuscript?

      We appreciate your insightful question regarding the initial simulation geometry in our model. The initial configuration of the fibers/ECM/microvascular structures was kept consistent but the location of the necrosis was randomly placed for each simulation. Future work will include an in-depth analysis of altered histology configuration on model predictions which has been added to lines 618-621. We did a preliminary example analysis by inputting a different initial simulation geometry, which predicted similar regeneration outcomes. We have added Supplemental Figure 5 that provides the results of that example analysis.

      (3) Cytokine knockdowns are simulated by 'adjusting the diffusion and decay parameters' (line 372). Is that the correct simulation of a knockdown? How are these knockdowns achieved experimentally? Wouldn't the correct implementation of a knockdown be that the production or secretion of the cytokine is reduced? I am not sure whether it's possible to design an experimental perturbation which affects both parameters.

      We appreciate that this important question has been posed. Yes, in order to simulate the knockout conditions, the cytokine secretion was reduced/eliminated. The diffusion and decay parameters were also adjusted to ensure that the concentration within the system was reduced. Lines 391-394 were added to clarify this assumption.

      (4) The premise of the model is to identify optimal treatment strategies for muscle injury (as per the first sentence of the abstract). I am a bit surprised that the implemented experimental perturbations don't seem to address this aim. In Figure 7 of the manuscript, cytokine alterations are explored which affect muscle recovery after injury. This is great, but I don't believe the chosen alterations can be done in experimental or clinical settings. Are there drugs that affect cytokine diffusion? If not, wouldn't it be better to select perturbations that are clinically or experimentally feasible for this analysis? A strength of the model is its versatility, so it seems counterintuitive to me to not use that versatility in a way that has practical relevance. - I may well misunderstand this though, maybe the investigated parameters are indeed possible drug targets.

      Thank you for your thoughtful feedback. The first sentence (lines 32-34) of the abstract was revised to focus on beneficial microenvironmental conditions to best reflect the purpose of the model. The clinical relevance of the cytokine modifications is included in the discussion (lines 547-558) with additional information added to lines 524-526. For example, two methods to alter diffusion experimentally are: antibodies that bind directly to the cytokine to prevent it from binding to its receptor on the cell surface and plasmins that induce the release of bound cytokines.

      (5) A similar comment applies to Figure 5 and 6: Should I think of these results as experimentally testable predictions? Are any of the results surprising or new, for example in the sense that one would not have expected other cytokines to be affected as described in Figure 6?

      We appreciate the opportunity to clarify the basis for these perturbations. The perturbations included in Figure 5 were designed to mimic the conditions of a published experiment that delivered VEGF in vivo (Arsic et al. 2004, DOI:10.1016/J.YMTHE.2004.08.007). The perturbation input conditions and experimental results are included in Table 8 and Supplemental Table 6 has been added to include experimental data and method description of the perturbation. The results of this analysis provide both validation and new predictions, because some the outputs were measured in the experiments while others were not measured. The additional output metrics and timepoints that were not collected in the experiment allow for a deeper understanding of the dynamics and mechanisms leading to the changes in muscle recovery (lines 437-454). These model outputs can provide the basis for future experiments; for example, they highlight which time points would be more important to measure and even provide predicted effect sizes that could be the basis for a power analysis (lines 639-640).

      Regarding Figure 6, the published experimental outcomes of cytokine KOs are included in Table 8. The model allowed comparison of different cytokine concentrations at various timepoints when other cytokines were removed from the system due to the KO condition. The experimental results did not provide data on the impact on other cytokine concentrations but by using the model we were able to predict temporally based feedback between cytokines (lines 474-482). These cytokine values could be collected experimentally but would be time consuming and expensive. The results of these perturbations revealed the complex nature of the relationship between cytokines and how removal of one cytokine from the system has a cascading temporal impact. Lines 533-534 have been added to incorporate this into the discussion.

      (6) In figure 4, there were differences between the experiments and the model in two of the rows. Are these differences discussed anywhere in the manuscript?

      We appreciate your keen observation and the opportunity to address these differences. The model did not match experimental results for CSA output in the TNF KO and antiinflammatory nanoparticle perturbation or TGF levels with the macrophage depletion. While it did align with the other experimental metrics from those studies, it is likely that there are other mechanisms at play in the experimental conditions that were not captured by simulating the downstream effects of the experimental perturbations. We have added discussion of the differences to lines 445-454.

      (7) The variation between experimental results is much higher than the variation of results in the model. For example, in Figure 3 the error bars around experimental results are an order of magnitude larger than the simulated confidence interval. Do the authors have any insights into why the model is less variable than the experimental data? Does this have to do with the chosen initial condition, i.e. do you think that the experimental variability is due to variation in the geometries of the measured samples?

      Thank you for your insightful observations and questions. The lower model variability is attributed to the larger sample size of model simulations compared to experimental subjects. By running 100 simulations it narrows in the confidence interval (average 2.4 and max 3.3) compared to the experiments that typically had a sample size of less than 15. If the number of simulations had been reduced to 15 the stochasticity within the model results in a larger confidence interval (average 7.1 and max 10). There are also several possible confounding variables in the experimental protocols (i.e. variations in injury, different animal subjects for each timepoint, etc.) that are kept constant in the model simulation. We have added discussion of this point to the manuscript (lines 517519). Future work with the model will examine how variations in conditions, such as initial muscle geometry, injury, etc, alter regeneration outcomes and overall variability. This discussion has been incorporated into lines 640-643.

      (8) Is figure 2B described anywhere in the text? I could not find its description.

      Thank you for pointing that out. We have added a reference for Fig. 2B on line 190.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The model code seems to be available from https://simtk.org/projects/muscle_regen but that website requests member status ("This is a private project. You must be a member to view its contents.") and applying for membership could violate eLife's blind review process. So, this reviewer liked to but couldn't run the model her/himself. To eLife: Can the authors upload their model to a neutral server that reviewers and editors can access anonymously?

      The code has been made publicly available on the following sites:

      SimTK: https://simtk.org/docman/?group_id=2635

      Zendo: https://zenodo.org/records/10403014

      GitHub: https://github.com/mh2uk/ABM-of-Muscle-Regeneration-with-MicrovascularRemodeling

      Line 121 has been updated with the new link and the additional resources were added to lines 654-657.

      (2) The muscle regeneration field typically studies 2D cross-sections and the present model can be well compared to these other 2D models but cells as stochastic and localized sources of diffusible cytokines may yield different cytokine fields in 3D vs. 2D. I would expect more broadened and smoothened cytokine fields (from sources in neighboring cross-sections) than what the 2D model predicts based on sources just within the focus cross-section. Such relations of 2D to 3D should be discussed.

      We thank the reviewer for the excellent suggestions and observations. It has been reported in other Compucell3D models (Sego et al. 2017, DOI:10.1088/17585090/aa6ed4) that the convergence of diffusion solutions between 2D and 3D model configurations had similar outcomes, with the 3D simulations presenting excessive computational cost without contributing any noticeable additional accuracy. Similarly, other cell-based ABMs that incorporate diffusion mechanisms (Marino et al. 2018, DOI:10.3390/computation6040058) have found that 2D and 3D versions of the model both predict the same mechanisms and that the 2D resolution was sufficient for determining outcomes. Lines 615-618 were added to elaborate on this topic.

      (3) Since the model (and title) focuses on "nonlinear" cytokine interactions, what would change if cytokine decay would not be linear (as modeled here) but saturated (with nonlinear Michaelis-Menten kinetics as ligand binding and endocytosis mechanisms would call for)?

      Thank you for raising an intriguing point. The model includes a combination of cytokine decay as well as ligand binding and endocytosis mechanisms that can be saturated. For a cytokine-dependent model behavior to occur the cytokines necessary to induce that action had to reach a minimum threshold. Once that threshold was reached, that amount of the cytokine would be removed at that location to simulate ligand-receptor binding and endocytosis. These ligand binding and endocytosis mechanisms behave in a saturated way, removing a set amount when above a certain threshold or a defined ratio when under the threshold. Lines 313-315 was revised to clarify this point. There were certain concentrations of cytokines where we saw a plateau in outputs likely as a result of reaching a saturation threshold (Supplemental Fig. 3). In future work, more robust mathematical simulation of binding kinetics of cytokines (e.g., using ODEs) could be included.

      (4) Limitations of the model should be discussed together with an outlook for model refinement. For example, fiber alignment and ECM ultrastructure may require anisotropic diffusion. Many of the rate equations could be considered with saturation parameters etc. There are so many model assumptions. Please discuss which would be the most urgent model refinements and, to achieve these, which would be the most informative next experiments to perform.

      We appreciate your thoughtful consideration of the model's limitations and the need for a comprehensive discussion on model refinements and potential future experiments. The future direction section was expanded to discuss additional possible model refinements (lines 635-643) and additional possible experiments for model validation (lines 630-634).

      (5) It is not clear how the single spatial arrangement that is used affects the model predictions. E.g. now the damaged area surrounds the lymphatic vessel but what if the opposite corner was damaged and the lymphatic vessel is deep inside the healthy area?

      Thank you for highlighting the importance of considering different spatial arrangements in the model and its potential impact on predictions. We previously tested model perturbations that included specifying the injury surrounding the lymphatic vessel versus on the side opposite the vessel. Since this paper focuses more on cytokine dynamics, we plan to include this perturbation, along with other injury alterations, in a follow-on paper. We added more context about this in the future efforts section lines 640-643.

      (6) It seems that not only parameter values but also the initial values of most of the model components are unknown. The parameter estimation strategy does not seem to include the initial (spatial) distributions of collagen and cytokines and other model components. Please discuss how other (reasonable) initial values or spatial arrangements will affect model predictions.

      We appreciate your thoughtful consideration of unknown initial values/spatial arrangements and their potential influence on predictions. Initial cytokine levels prior to injury had a low relative concentration compared to levels post injury and were assumed to be negligible. Initial spatial distribution of cytokines was not defined as initial spatial inputs (except in knockout simulations) but are secreted from cells (with baseline resident cell counts defined from the literature). The distribution of cytokines is an emergent behavior that results from the cell behaviors within the model. The collagen distribution is altered in response to clearance of necrosis by the immune cells (decreased collagen with necrosis removal) and subsequent secretion of collagen by fibroblasts. The secretion of collagen from fibroblast was included in the parameter estimation sweep (Supplemental Table 1).

      We are working on further exploring the model sensitivity to altered spatial arrangements and have added this to the future directions section (lines 618-621), as well as provided Supplemental Figure 5 to demonstrate that model outcomes are similar with altered initial spatial arrangements.

      (7) Many details of the CC3D implementation are missing: overall lattice size, interaction neighborhood order, and "temperature" of the Metropolis algorithm. Are the typical adhesion energy terms used in the CPM Hamiltonian and if so, then how are these parameter values estimated?

      Thank you for bringing attention to the missing details regarding the CC3D implementation in our manuscript. We have included supplemental information providing greater detail for CPM implementation (Lines 808-854). We also added two additional supplemental tables for describing the requested CC3D implementation details (Supplemental Table 4) and adhesion energy terms (Supplemental Table 5).

      (8) Extending the model analysis of combinations of altered cytokine properties, which temporal schedules of administration would be of interest, and how could the timing of multiple interventions improve outcomes? Such a discussion or even analysis would further underscore the usefulness of the model.

      In response to your valuable suggestion, lines 558-562 were added to discuss the potential of using the model as a tool to perturb different cytokine combinations at varying timepoints throughout regeneration. In addition, this is also included in future work in lines 636-637.

      (9) The CPM is only weakly motivated, just one sentence on lines 142-145 which mentions diffusion in a misleading way as the CPM just provides cells with a shape and mechanical interactions. The diffusion part is a feature of the hybrid CompuCell3D framework, not the CPM.

      Thank you for bringing up this distinction. We removed the statement regarding diffusion and updated lines 143-146 to focus on CPM representation of cellular behavior and interactions. We also added a reference to supplemental text that includes additional details on CPM.

      (10) On lines 258-261 it does not become clear how the described springs can direct fibroblasts towards areas of low-density collagen ECM. Are the lambdas dependent on collagen density?

      Thank you for highlighting this area for clarification. The fibroblasts form links with low collagen density ECM and then are pulled towards those areas based on a constant lambda value. The links between the fibroblast and the ECM will only be made if the collagen is below a certain threshold. We added additional clarification to lines 260-264.

      (11) On line 281, what does the last part in "Fibers...were regenerating but not fully apoptotic cells" mean? Maybe rephrase this.

      The last of part of that line indicates that there were some fibers surrounding the main injury site that were damaged but still had healthy portions, indicating that they were impacted by the injury and are regenerating but did not become fully apoptotic like the fiber cells at the main site of injury. We rephrased this line to indicate that the nearby fibers were damaged but not fully apoptotic.

      (12) Lines 290-293 describe interactions of cells and fields with localized structures (capillaries and lymphatic vessel). Please explain in more detail how "capillary agents...transport neutrophiles and monocytes" in the CPM model formalism. Are new cells added following rules? How is spatial crowding of the lattice around capillaries affecting these rules? Moreover, how can "lymphatic vessel...drain the nearby cytokines and cells"? How is this implemented in the CPM and how is "nearby" calculated? We appreciate your detailed inquiry into the interactions of cells and fields with localized structures. The neutrophils and monocytes are added to the simulation at the lattice sites above capillaries (within the cell layer Fig. 2B) and undergo chemotaxis up their respective gradients. The recruitment of the neutrophils and monocytes are randomly distributed among the healthy capillaries that do not have an immune cell at the capillary location (a modeling artifact that is a byproduct of only having one cell per lattice site). This approach helped to prevent an abundance of crowding at certain capillaries. Because immune cells in the simulation are sufficiently small, chemotactic gradients are sufficiently large, and the simulation space is sufficiently large, we do not see aggregation of recruited immune cells in the CPM.

      The lymphatic vessel uptakes cytokines at lattice locations corresponding to the lymphatic vessel and will remove cells located in lattice sites neighboring the lymphatic vessel. In addition, we have included a rule in our ABM to encourage cells to migrate towards the lymphatic vessel utilizing CompuCell3D External Potential Plugin. The influence of this rule is inversely proportional to the distance of the cells to the lymphatic vessel.

      We have updated lines 294-298 and 305-309 to include the above explanation.

      (13) Tables 1-4 define migration speeds as agent rules but in the typical CPM, migration speed emerges from random displacements biased by chemotaxis and other effects (like the slope of the cytokine field). How was the speed implemented as a rule while it is typically observable in the model?

      We appreciate your inquiry regarding the implementation of migration speeds. To determine the lambda parameters (Table 7) for each cell type, we tested each in a simplified control simulation with a concentration gradient for the cell to move towards. We tuned the lambda parameters within this simulation until the model outputted cell velocity aligned with the literature reported cell velocity for each cell type (Tables 1-4). We have incorporated clarification on this to lines 177-180.

      (14) Line 312 shows the first equation with number (5), either add eqn. (1-4) or renumber.

      We have revised the equation number.

      (15) Typos: Line 456, "expect M1 cell" should read "except M1 cell".

      Line 452, "thresholds above that diminish fibroblast response (Supplemental Fig 3)." remains unclear, please rephrase.

      Line 473, "at 28." should read "at 28 days.".

      Line 474, is "additive" correct? Was the sum of the individual effects calculated and did that match?

      Line 534, "complexity our model" should read "complexity in our model".

      We have corrected the typos and clarified line 452 (updated line 594) to indicate that the TNF-α concentration threshold results in diminished fibroblast response. We updated terminology line 474 (updated line 512) to indicate that there was a synergistic effect with the combined perturbation.

      (16) Table 7 defines cell target volumes with the same value as their diameter. This enforces a strange cell shape. Should there be brackets to square the value of the cell diameter, e.g. Value=(12µm)^2 ?

      The target volume parameter values were selected to reflect the relative differences in average cell diameter as reported in the literature; however, there are no parameters that directly enforce a diameter for the cells in the CPM formalism separate from the volume. We have observed that these relative cell sizes allow the ABM to effectively reproduce cell behaviors described in the literature. Single cells that are too large in the ABM would be unable to migrate far enough per time step to carry out cell behaviors, and cells that are too small in the CPM would be unstable in the simulation environment and not persist in the simulation when they should. We removed the units for the cell shape values in Table 7 since the target volume is a relative parameter and does not directly represent µm.

      (17) Table 7 gives estimated diffusion constants but they appear to be too high. Please compare them to measured values in the literature, especially for MCP-1, TNF-alpha and IL-10, or relate these to their molecular mass and compare to other molecules like FGF8 (Yu et al. 2009, DOI:10.1038/nature08391).

      We utilized a previously published estimation method (Filion et al. 2004, DOI:10.1152/ajpheart.00205.2004) for estimating cytokine diffusivity within the ECM. This method incorporates the molecular masses and accounts for the combined effects of the collagen fibers and glycosaminoglycans. The paper acknowledged that the estimated value is faster than experimentally determined values, but that this was a result of the less-dense matrix composition which is more reflective of the tissue environment we are simulating in contrast to other reported measurements which were done in different environments. Using this estimation method also allowed us to more consistently define diffusion constants versus using values from the literature (which were often not recorded) that had varied experimental conditions and techniques (such as being in zebrafish embryo Yu et al. 2009, DOI:10.1038/nature08391 as opposed to muscle tissue). This also allowed for recalculation of the diffusivity throughout the simulation as the collagen density changed within the model. Lines 318-326 were updated to help clarify the estimation method.

      (18) Many DOIs in the bibliography (Refs. 7,17,20,31,40,47...153) are wrong and do not resolve because the appended directory names are not allowed in the DOI, just with a journal's URL after resolution.

      Thank you for bringing this to our attention. The incorrect DOIs have been corrected.

      Reviewer #2 (Recommendations For The Authors):

      Minor comments:

      (9) On line 174, the authors say "We used the CC3D feature Flip2DimRatio to control the number of times the Cellular-Potts algorithm runs per mcs." What does this mean? Isn't one monte carlo timestep one iteration of the Cellular Potts model? How does this relate to physical timescales?

      We appreciate your attention to detail and thoughtful question regarding the statement about the use of the CC3D feature Flip2DimRatio. Lines 175-177 were revised to simplify the meaning of Flip2DimRatio. That parameter alters the number of times the Cellular-Potts algorithm is run, which is the limiting factor for cell movement. The physical timescale is kept to a 15-minute timestep but a high Flip2DimRatio allows more flexibility and stability to allow the cells to move faster in one timestep.

      (10) Has the costum matlab script to process histology images into initial conditions been made available?

      The Matlab script along with CC3D code for histology initialization with documentation has been made available with the source code on the following sites:

      SimTK: https://simtk.org/docman/?group_id=2635

      Zendo: https://zenodo.org/records/10403014

      GitHub: https://github.com/mh2uk/ABM-of-Muscle-Regeneration-with-MicrovascularRemodeling

      (11) Equation 5 is provided without a reference or derivation. Where does it come from and what does it mean?

      Thank you for highlighting the diffusion equation and seeking clarification on its origin and significance. Lines 318-326 were revised to clarify where the equation comes from. This is a previously published estimation method that we applied to calculate the diffusivity of the cytokines considering both collagen and glycosaminoglycans.

      (12) Line 326: "For CSA, experimental fold-change from pre-injury was compared with fold-change in model-simulated CSA". Does this step rely on the assumption that the fold change will not depend on the CSA? If so, is this something that is experimentally known, or otherwise, can it be confirmed by simulations?

      We appreciate the opportunity to clarify our rationale. The fold change was used as a method to normalize the model and experiment so that they could be compared on the same scale. Yes, this step relies on the assumption that fold change does not depend on pre-injury CSA. Experimentally it is difficult to determine the impact of initial fiber morphology on altered regeneration time course. This fold-change allows us to compare percent recovery which is a common metric utilized to assess muscle regeneration outcomes experimentally. Line 340-343 was revised to clarify.

      (13) Line 355: "The final passing criteria were set to be within 1 SD for CSA recovery and 2.5 SD for SSC and fibroblast count" Does this refer to the experimental or the simulated SD?

      The model had to fit within those experimental SD. Lines 371-372 was edited to specify that we are referring the experimental SD.

      (14) "Following 8 iterations of narrowing the parameter space with CaliPro, we reached a set that had fewer passing runs than the previous iteration". Wouldn't one expect fewer passing runs with any narrowing of the parameter space? Why was this chosen as the stopping criterion for further narrowing?

      We appreciate your observation regarding the statement about narrowing the parameter space with CaliPro. We started with a wide parameter space, expecting that certain parameters would give outputs that fall outside of the comparable data. So, when the parameter space was narrowed to enrich parts that give passing output, initially the number of passing simulations increased.

      Once we have narrowed the set of possible parameters into an ideal parameter space, further narrowing will cut out viable parameters resulting in fewer passing runs. Therefore, we stopped narrowing once any fewer simulations passed the criteria that they had previously passed with the wider parameter set. Lines 375-379 have been updated to clarify this point.

      (15) Line 516: 'Our model could test and optimize combinations of cytokines, guiding future experiments and treatments." It is my understanding that this is communicated as a main strength of the model. Would it be possible to demonstrate that the sentence is true by using the model to make actual predictions for experiments or treatments?

      This is demonstrated by the combined cytokine alterations in Figure 7 and discussed in lines 509-513. We have also added in a suggested experiment to test the model prediction in lines 691-695.

      (16) Line 456, typo: I think 'expect' should be 'except'.

      Thank you for pointing that out. The typo has been corrected.

    1. All roads lead to progress.

      for - key insight - all roads lead to progress - progress trap - Prometheus complex - impuslive urge to invent

      Comment - This is fleshed out in the final three paragraphs of this article - I disagree with the closing sentence, however

      • “It’s not possible [to avoid invention],
        • because all knowledge is interconnected like a web,” Carlin told Big Think.
      • “If you walled off a certain part of it because you saw the potential downside,
        • you would get to the same outcome sort of in a roundabout way, right?
      • The connections might not be direct, like saying, ‘Oh, I see nuclear weapons in the distance; let’s go there,’

        • but we would go through the back door, and eventually we would discover everything around that thing.”
      • To bring Carlin’s analogy home,

        • we can think about the idea of artificial general intelligence, or AGI.
      • AGI is the point at which AI can perform a wide variety of tasks so competently
        • that it matches or exceeds human intelligence and performance.
      • Some people might see AGI as dangerous.
      • Others may see AGI as the savior of humanity.
      • But while we have debates and conversations,
        • we’re still marching toward AGI.
      • Scientists and programmers behind their computers are
        • solving “everything around that thing.”
      • Our hands and our brains will,
        • perhaps unconsciously,
      • drift toward the very thing we’re debating if we should do.

      • The Prometheus complex can be seen over and over again

        • in the history of science.
      • It is not simply that Edenic urge to eat the fruit or push the red button.
      • It’s the fact that
        • as the rational, intellectual part of ourselves wrestles with the decision,
        • a deeper, Promethean part of ourselves has pressed it already.
      • Thankfully, it usually turns out okay.

      comment - I disagree with the last line - If the meta-poly-perma-crisis is what is meant by "OK", then it is a very distorted use of that word. - Rather, this Promethian way of thinking and act - compounded over the lifetime of human civilization - is EXACTLY what has brought us to the brink of civilizational disaster - and it may not turn out to be "ok"!

    1. We often think of software development as a ticket-in-code-out business but this is really only a very small portion of the entire thing. Completely independently of the work done as a programmer, there exists users with different jobs they are trying to perform, and they may or may not find it convenient to slot our software into that job. A manager is not necessarily the right person to evaluate how good a job we are doing because they also exist independently of the user–software–programmer network, and have their own sets of priorities which may or may not align with the rest of the system.

      Software development as a conversation

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      The authors collected genomic information from public sources covering 423 eukaryote genomes and around 650 prokaryote genomes. Based on pre-computed CDS annotation, they estimated the frequency of alternative splicing (AS) as a single average measure for each genome and computed correlations with this measure and other genomic properties such as genome size, percentage of coding DNA, gene and intergenic span, etc. They conclude that AS frequency increases with genome complexity in a somewhat directional trend from "lower" organisms to "higher" organisms.

      Strengths:

      The study covers a wide range of taxonomic groups, both in prokaryotes and eukaryotes.

      Weaknesses:

      The study is weak both methodologically and conceptually. Current high throughput sequencing technologies, coupled with highly heterogeneous annotation methods, can observe cases of AS with great sensitivity, and one should be extremely cautious of the biases and rates of false positives associated with these methods. These issues are not addressed in the manuscript. Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

      We are aware of the bias that may exist in annotation files. Since the source of noise can be highly variable, we have assumed that most of the data has a similar bias. However, we agree with the reviewer that we could perform some analysis to test for these biases and their association to different methodologies. Thus, we will measure the uncertainty present in the data. From one side, we will be more explicit about the data limitations and the biases it can generate in the results. On the other side, while analyzing the false positives in the data is out of our scope, we will perform a statistical test to detect possible biases regarding different methods of sequencing and annotation, and types of organisms (model or non-model organisms). If positive, we will proceed, as far as possible, to normalize the data or to estimate a confidence interval.

      Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

      Beyond taking into account the differential bias that may exist in the data, we do not consider that our AS measure is problematic. The NCBI database is one of the most reliable databases that we have to date and is continuously updated from all scientific community. So, the use of this data and the corresponding procedures for deriving the AS measure are perfectly acceptable for a comparative analysis on such a huge global scale. Furthermore, the proposal of a new genome-level measure of AS that allows to compare species spanning the whole tree of life is part of the novelty of the study. We understand that small-scale studies require a high specificity about the molecular processes involved in the study. However, this is not the case, where we are dealing with a large-scale problem. On the other side, as we have previously mention, we agree with the reviewer to analyze the degree of uncertainty in the data to better interpret the results.

      There is no mention of the possibility that AS could be largely caused by random splicing errors, a possibility that could very well fit with the manuscript's data. Instead, the authors adopt early on the view that AS is regulated and functional, generally citing outdated literature.

      There is no question that some AS events are functional, as evidenced by strongly supported studies. However, whether all AS events are functional is questionable, and the relative fractions of functional and non-functional AS are unknown. With this in mind, the authors should be more cautious in interpreting their data.

      Many studies suggest that most of the AS events observed are the result of splicing errors and are therefore neither functional nor conserved. However, we still have limited knowledge about the functionality of AS. Just because we don’t have a complete understanding of its functionality, doesn’t mean there isn’t a fundamental cause behind these events. AS is a highly dynamic process that can be associated with processes of a stochastic nature that are fundamental for phenotypic diversity and innovation. This is one of the reasons why we do not get into a discussion about the functionality of AS and consider it as a potential measure of biological innovation. Nevertheless, we agree with the reviewer’s comments, so we will add a discussion about this issue with updated literature and look at any possible misinterpretation of the results.

      The "complexity" of organisms also correlates well (negatively) with effective population size. The power of selection to eliminate (slightly) deleterious mutations or errors decreases with effective population size. The correlation observed by the authors could thus easily be explained by a non-adaptive interpretation based on simple population genetics principles.

      We appreciate the observation of the reviewer. We know well the M. Lynch’s theory on the role of the effective population size and its eventual correlation with genomic parameters, but we want to emphasize that our objective is not to find an adaptive or non-adaptive explanation of the evolution of AS, but rather to reveal it. Nevertheless, as the reviewer suggests, we will look at the correlation between the AS and the effective population size and discuss about a possible non-adaptive interpretation.

      The manuscript contains evidence that the authors might benefit from adopting a more modern view of how evolution proceeds. Sentences such as "... suggests that only sophisticated organisms optimize alternative splicing by increasing..." (L113), or "especially in highly evolved groups such as mammals" (L130), or the repeated use of "higher" and "lower" organisms need revising.

      As the reviewer suggests, we will proceed with the corresponding linguistic corrections.

      Because of the lack of controls mentioned above, and because of the absence of discussion regarding an alternative non-adaptive interpretation, the analyses presented in the manuscript are of very limited use to other researchers in the field. In conclusion, the study does not present solid conclusions.

      Reviewer #2 (Public Review):

      Summary:

      In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF. When correlating the degree of alternative splicing with these three variables, they find that the different taxonomic groups have a different correlation coefficient, and identify a "progressive pattern" among metazoan groups, namely that the correlation coefficient mostly increases when moving from flowering plants to arthropods, fish, birds, and finally mammals. They conclude that therefore the amount of splicing that is performed by an organismal group could be used as a measure of its complexity.

      Weaknesses:

      While I find the analysis of alternative splicing interesting, I also find that it is a very imperfect measure of organismal complexity and that the manuscript as a whole is filled with unsupported statements. First, I think it is clear to anyone studying evolution over the tree of life that it is the complexity of gene regulation that is at the origin of much of organismal structural and behavioral complexity. Arguably, creating different isoforms out of a single ORF is just one example of complex gene regulation. However, the complexity of gene regulation is barely mentioned by the authors.

      We disagree with the reviewer with that our measure of AS is imperfect. Just as we responded to the first reviewer, we will quantify the uncertainty in the data and correct for differential biases caused by annotation and sequencing methods. Thus, beyond correcting relevant biases in the data, we consider that our measure is adequate for a comparative analysis at a global scale. A novelty of our study is the proposal of a genome-level measure of AS that takes into account data from the entire scientific community. 

      We want also to emphasize that we assume from the beginning that AS may reflect some kind of biological complexity, it is not a conclusion from the results. An argument in favor of such an assumption is that AS is associated with stochastic processes that are fundamental for phenotypic diversity and innovation. Of course, we agree with the reviewer that it is not the only mechanism behind biological complexity, so we will emphasize it in the manuscript. On the other side, we will be more explicit about the assumptions and objectives, and will correct any unsupported statement.

      Further, it is clear that none of their correlation coefficients actually show a simple trend (see Table 3). According to these coefficients, birds are more complex than mammals for 3 out of 4 measures.

      An evolutionary trend is broadly defined as the gradual change in some characteristic of organisms as they evolve or adapt to a specific environment. Under our context, we define an evolutionary trend as the gradual change in genome composition and its association with AS across the main taxonomic groups. If we look at Figure 4 and Table 3 we can conclude that there is a progressive trend. We will be more precise about how we define an evolutionary trend and correct any possible misinterpretation of the results. On the other side, we do not assume that mammals should be more complex than birds. First, we will emphasize that our results show that birds have the highest values of such a trend. Second, after reading the reviewer’s comments, we have decided that we will perform an additional analysis to correct for differences in the taxonomic group sizes, which will allow us to have more confidence in the results.

      It is also not clear why the correlation coefficient between alternative splicing ratio and genome length, gene content, and coding percentage should display such a trend, rather than the absolute value. There are only vague mechanistic arguments.

      The study analyzes the relationship of AS with genomic composition for the large taxonomic groups. We assume that significant differences in these relationships are indicators of the presence of different mechanisms of genome evolution. However, we agree with the reviewer that a correlation does not imply a causal relation, so we will be more cautious when interpreting the results.

      To quantify the relationships we use correlation coefficients, the slopes of such correlations, and the relation of variability. Although the absolute values of AS are also illustrated in Table 4, we consider that they are less informative than if we include how it relates to the genomic composition. For example, we observe that plants have a different genome composition and relation with AS if compared to animals, which suggest that they follow different mechanisms of genome evolution. On the other hand, we observe a trend in animals, where high values of AS are associated to a large percentage of introns and a percentage of intergenic DNA of about the 50% of genomes.

      Much more troubling, however, is the statement that the data supports "lineage-specific trends" (lines 299-300). Either this is just an ambiguous formulation, or the authors claim that you can see trends *within* lineages.

      We agree with the reviewer that this statement is not correct, so we will proceed to correct it.

      The latter is clearly not the case. In fact, within each lineage, there is a tremendous amount of variation, to such an extent that many of the coefficients given in Table 3 are close to meaningless. Note that no error bars or p-values are presented for the values shown in Table 3. Figure 2 shows the actual correlation, and the coefficient for flowering plants there is given as 0.151, with a p-value of 0.193. Table 3 seems to quote r=0.174 instead. It should be clear that a correlation within a lineage or species is not a sign of a trend.

      The reviewer is not understanding correctly the results in Table 3. It is precisely the variation of the genome variables what we are measuring. Given the standardization of these values by the mean values, we have proceeded to compare the variability between groups, which is the result shown in Table 3. In this case there are no error bars or p-values associated. On the other hand, we agree that a correlation is not a sign of a trend. But the relations of variability, together with the results obtained in Figure 3, are indicators of a trend. As we mentioned before, we will proceed to analyze whether the variation in the group sizes is causing a bias in the results.

      There are several wrong or unsupported statements in the manuscript. Early on, the authors state that the alternative splicing ratio (a number greater or equal to one that can be roughly understood as the number of different isoforms per ORF) "quantifies the number of different isoforms that can be transcribed using the same amount of information" (lines 51-52). But in many cases, this is incorrect, because the same sequence can represent different amounts of information depending on the context. So, if a changed context gives rise to a different alternative splice, it is because the genetic sequence has a different meaning in the changed context: the information has changed.

      We agree that there are not well supported statements, so we will proceed to revise them.

      In line 149, the authors state that "the energetic cost of having large genomes is high". No citation is given, and while such a statement seems logical, it does not have very solid support.

      We will also revise the bibliography and support our statements with updated references.

      If there was indeed a strong selective force to reduce genome size, we would not see the stunning diversity of genome sizes even within lineages. This statement is repeated (without support) several times in the manuscript, apparently in support of the idea that mammals had "no choice" to increase complexity via alternative splicing because they can't increase it by having longer genomes. I don't think this reasoning can be supported.

      We agree with the reviewer in this issue, so we will carefully revise the statements that indirectly (or directly) assume the action of selective forces on the genome composition.

      Even more problematic is the statement that "the amount of protein-coding DNA seems to be limited to a size of about 10MB" (line 219). There is no evidence whatsoever for this statement.

      In Figure 1A we observe a one-to-one relationship between the genome size and the amount of coding. However, in multicellular organisms, although the genome size increases we observe that the amount of coding does not increase by more than 10Mb, which suggest the presence of some genomic limitation. Of course, this is not an absolute or general statement, but rather a suggestion. We are only describing our results.

      The reference that is cited (Choi et al 2020) suggests that there is a maximum of 150GB in total genome size due to physiological constraints. In lines 257-258, the authors write that "plants are less restricted in terms of storing DNA sequences compared to animals" (without providing evidence or a citation).

      We will revise the bibliography and add updated references.

      I believe this statement is made due to the observation that plants tend to have large intergenic regions. But without examining the functionality of these interagency regions (they might host long non-coding RNA stretches that are used to regulate the expression of other genes, for example) it is quite adventurous to use such a simple measure as being evidence that plants "are less restricted in terms of storing DNA sequences", whatever that even means. I do not think the authors mean that plants have better access to -80 freezers. The authors conclude that "plant's primary mechanism of genome evolution is by expanding their genome". This statement itself is empty: we know that plants are prone to whole genome duplication, but this duplication is not, as far as we understand, contributing to complexity. It is not a "primary mechanism of genome evolution".

      We will revise these statements.

      In lines 293-294, the authors claim that "alternative splicing is maximized in mammalian genomes". There is no evidence that this ratio cannot be increased. So, to conclude (on lines 302-303) that alternative splicing ratios are "a potential candidate to quantify organismal complexity" seems, based on this evidence, both far-fetched and weak at the same time.

      Our results show the highest values of AS in mammals, but we understand that the results are limited to the availability and accuracy of data, which we will emphasize in the manuscript. As we previously mention, we will also proceed to analyze the uncertainty in data and carry out the appropriate corrections.

      I am also not very comfortable with the data analysis. The authors, for example, say that they have eliminated from their analysis a number of "outlier species". They mention one: Emmer wheat because it has a genome size of 900 Mb (line 367). Since 900MB does not appear to be extreme, perhaps the authors meant to write 900 Gb. When I consulted the paper that sequenced Triticum dicoccoides, they noted that 14 chromosomes are about 10GB. Even a tetraploid species would then not be near 900Gb. But more importantly, such a study needs to state precisely which species were left out, and what the criteria are for leaving out data, lest they be accused of selecting data to fit their hypothesis.

      The reviewer is right, we wanted to say 900Mb, which is approximately 7.2Gb. We had a mistake of nomenclature. This value is extreme compared to the typical values, so it generates large deviations when applying measures of central tendency and dispersion. We want to obtain mean values that are representative of the most species composing the taxonomic groups, so we find appropriate to exclude all outlier values in the study. Nevertheless, we will specify the criteria that we have used to select the data in a rigorous way.

      I understand that Methods are often put at the end of a manuscript, but the measures discussed here are so fundamental to the analysis that a brief description of what the different measures are (in particular, the "alternative splicing ratio") should be in the main text, even when the mathematical definition can remain in the Methods.

      We agree with the reviewer, so we will add a brief description of the genomic variables at the beginning of the Results section.

      Finally, a few words on presentation. I understand that the following comments might read differently after the authors change their presentation. This manuscript was at the border of being comprehensible. In many cases, I could discern the meaning of words and sentences in contexts but sometimes even that failed (as an example above, about "species-specific trends", illustrates). The authors introduced jargon that does not have any meaning in the English language, and they do this over and over again.

      Note that I completely agree with all the comments by the other reviewer, who alerted me to problems I did not catch, including the possible correlation with effective population size: a possible non-adaptive explanation for the results.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02154

      Corresponding author(s): Marco, Galardini

      1. General Statements

      We have carefully read the comments put forward by the two reviewers and we have produced a revised version of the manuscript that we believe addresses all the concerns expressed by the reviewers. In short, we have validated our approach against experimentally derived epistatic coefficients, compared our mutual information (MI) method against one that uses direct coupling analysis (DCA), and experimentally tested three interactions in the spike RBD that we have predicted and which emerged only in summer 2023, thus demonstrating the potential predictive power of this approach. We have also carefully reworded the manuscript to acknowledge the inherent limitation of a method based on MI to identify epistatic interactions. We believe that the revised manuscript is now more robust with these new in-silico and in-vitro validations, and more direct in exposing the advantages (speed) and caveats (higher false-positives) of this approach.

      Note: the line numbers referenced in the responses to reviewers below refer to the document in which the changes are highlighted.

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors inferred the pairwise epistasis through the Mutual Information provided by the spydrpick algorithm. They claim that the MIs could serve as a real-time identification of the epistatic interactions with the SARS-CoV-2 genomes due to the fast inference and high sensitivities.

      Major comments:

      1.The authors take a data-driven approach to infer the Mutation Information as the epistatic interactions between the mutations over different sites over SARS-CoV-2 genomes. However, it would be better to specify why this metric is reliable to be used as the representation of the pairwise epistatic interactions, and any theoretical explanations to support this.

      We agree that readers should be better informed on why MI can be used to estimate epistatic interactions from genomic data. We have therefore expanded the introduction (lines 93-98), methods (lines 540-543) and discussion (lines 453-457) sections to provide a proper theoretical and practical foundation on the use of a MI-based method. Furthermore, we have expanded the results section to add one additional in-silico validation (lines 244-249, Supplementary Figure 5, and updated Supplementary Figure 8) and an in-vitro one (Figure 5, see also reply to comment 2 from reviewer #2), which we believe give strong support to the MI-based method.

      2.The authors claimed that the DCA method requires more computational resources and more time to complete. However, with a proper filtering procedure, the computational time could be reduced heavily. An example is Physical Review E 106 (4), 044409, 2002, in which the DCA was used to investigate the real-time pair-wise interactions (month-to-month). There the DCA results were compared with the correlation analysis. It would be nice to have comparisons of the inferred interactions between MIs and other methods.

      We agree that our MI-based approach should be compared against DCA-based methods. The original manuscript had in fact one such comparison (for the 2023-03 dataset, Figure 3C), which indicated a strong correlation between the two methods. To make this result more robust we have computed the DCA values for the complete time-series dataset and measured the correlation with the MI values (Supplementary Figure 4)

      We observed a relatively high correlation in estimated values between the two methods, with the exception of three time points, i.e., 2020-11, 2023-02 and 2023-03. We can explain these lower correlations with the low overall sequence diversity observed in the early phase of the pandemic (2020-11) and with the different weighting scheme of our approach, which would significantly alter the dataset when compared to the one used by the DCA method, especially towards the later timepoints (see also the reply to reviewer #2, comment 3, section iv). When those three timepoints are excluded, the two methods show a high degree of correlation, implying that they are comparably suitable in detecting coevolutionary signals.

      We have also used the 2nd order coefficients derived from experimental data in Moulana et al., 2022 (10.1038/s41467-022-34506-z) to validate both approaches (see methods, lines 624-631).

      The panels which we have combined to create the new Supplementary Figure 5, indicate how both approaches (MI for panel A and C, and DCA for panels B and D) correctly recover the interaction with 2nd order epistatic coefficient > 0.15, based on the odds-ratio metric. Our MI-based approach has, however, a higher recall across multiple time points, which is especially visible comparing panels A and B. The DCA-based method did correctly identify known epistatic interactions, but did so only in sporadic timepoints, even though the distribution of the underlying variants did not change significantly month to month. We believe that the higher recall of the MI-based method has a higher value for genomic epidemiology, at least for SARS-CoV-2.

      3.In Figure 1C, the authors show that their spydrpick algorithm provides more pairwise MIs for longer distances, where the outliers are denser than those with short distances. How do we explain this phenomenon?

      We thank the reviewer for bringing this point up; we actually think that our data shows the opposite, meaning that we observe a higher proportion of close interactions when normalizing by the number of possible interactions. If we take an arbitrary distance threshold of 1'000 bases to define "close" Vs. "distant" interactions, we observe 194 and 280 interactions, respectively. It is true that distant interactions would be more, but the space of possible interactions is orders of magnitude larger for "distant" interactions, simply by the fact that there are more sites from which interactions can originate. As a crude estimate we can use the combinations between 1,000 sites (499,500 possible interactions) Vs those between 28,903 sites (the full SARS-CoV-2 genome length 29,903 bp minus 1,000, 417,677,253). Based on these estimates we have indeed observed less "close" than "distant" interactions.

      Minor comments:

      4.The explanations of Fig. 1E could be in more detail. Say, the grey dots in Fig. 1E, which is marked as "other" and such "other"s are dominated here. Why?

      We thank the reviewer for pointing out a section where more clarity was needed. We have added the following sentence to the figure legend: "The category "other" indicates positions which are not known to have an impact on affinity to ACE2, immune escape or otherwise flagged as MOI/MOC.". This indicates that predicted interactions involving a site classified as "other" are either false positives or previously undiscovered interactions.

      5.On line 210, the authors mentioned that the weights of the old sequences are lower "at around six months (120 days)". It would be better to specify why six months is 120 days instead of 180 days,

      We have corrected this mistake and indicated 4 months. We thank the reviewer for spotting this error.

      Referees cross-commenting

      I agree with what Reviewer #2 presented in the Consults Comments. The authors should present the reasons why MIs can be explained as the epistatic interations between sites as both of us mentioned this point. I checked the other revision points that raised by the Reviewer #2. They would be definetely helpful for enhancing the quality of the manuscript.

      Reviewer #1 (Significance (Required)):

      The work in the current manuscript is interesting and presented nicely. However, the theoretical foundations that the MIs could be explained as epistatic interactions should be illustrated. Otherwise, the tools would be useful for SARS-CoV-2 and other potential pandemics by different virus.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript proposes an approach to identify epistatic interactions in the SRAR-CoV-2 genome using the large amount of genomic data which accumulated during the COVID pandemics. They argue that due to a relatively low computational cost, this can be done online in any ongoing pandemics nowadays (i.e. in the situation where the viral spreading and evolution are closely monitored by massive sequencing). In principle, this is interesting, but in my opinion the manuscript has some strong problems and will require major rewrighting:

      1) In difference to the claims of the manuscript, detected correlation does not necessarily imply epistatic couplings:

      • Even in a totally neutral setting, mutations may occur by chance together, and expand due to genetic drift or when ecountering a susceptible population. Equally, to independent muations may spread in different geographic regions, without the double mutant ever arising. Both cases lead to non-zero mutual information.

      • In evolution, frequently driver and passenger mutations are observed, in particular in settings of relatively high mutation rate. The passenger will rise in frequency with the driver, without any epistatic coupling.

      • The very unequal sequencing across geographic areas will enhance certain variants and leave others undetected. Even if the authors avoid double counting of identical sequences, more small variation is detected when sequencing deeper. The Omicron variant illustrates an extreme case here: it combined a large number of mutations, never detected before, but epistasis is not the most likely explanation, but rather lack of monitoring of the evolutionary path from the ancestral variants to Omicron.

      • MI has been criticised because it overestimates the effect of indirecrt correlations in particular in dense epistatic networks. The situation in the spike protein in Fig. 1B seems very dense.

      Currently the manuscript does not make any effort to disentangle any of these effects.

      Following this (and reviewer 1) comments, we have made a number of changes to the manuscript in order to provide more context into how MI can be used to estimate epistatic interactions and the inherent limitations of this approach. In particular, we have expanded the introduction (lines 93-98), methods (lines 540-543) and discussion (lines 453-457) sections in a way that we believe exposes the limitations of the approach. Despite these limitations, we still believe that a MI-based approach strikes a good balance between speed, ease of implementation, and sensitivity. To further demonstrate this point we have added two additional validations to our results: the first one (in-silico) uses estimated 2nd order epistatic coefficients derived from experimental data (Moulana et al., 2022, 10.1038/s41467-022-34506-z), and the second (in-vitro) our own experimental data on three predicted interactions. The results of the new in-vitro validation have been described in the reply to comment #2 from reviewer 1; in short they show how the MI-based method has comparable sensitivity and specificity as the DCA-based method, and most importantly they allow the recovery of known epistatic interactions across the time period in which they have appeared. The results of the in-vitro validation are discussed in the reply to the next comment from this reviewer, as they directly address the predictive power of our approach: in short, we show how we could also validate these predictions. We think that these new results clearly show how, despite its limitations, the MI-based approach is able to identify bona-fide epistatic interactions, with the advantage of being a simple method to be implemented and with the possibility to be run in real time. For a more detailed discussion of the merits of the MI-based approach over DCA, see the reply to comment #3 from this reviewer.

      2) What are the predictive capacities of the approach? Mutual information is bounded from above by the individual site entropies. So high MI can be detected only in highly mutated sites - i.e. in sides for sure already under monitoring. In fact, the sites in Fig. 1B with many links reflect the overall profile of variant frequencies in single sites (i.e. a totally non-epistatic measure) available on Nextstrain, and extracted from the same data sources.

      The discussion of the results is very anecdotal and it is not clear to me in how far there is any real prediction in the paper, which might surprise and trigger observation or further analyses.

      There is an entire line of related research in estimating and exploiting epistatic couplings in HIV evolution (A Chakraborty, M. Kardar, J. Barton, M MacKay and others) - not cited in the manuscript but relevant for the question how to detect epistatic couplings and what they are good for.

      We thank the reviewer for pointing out relevant literature we had not covered in the original manuscript, and which can be used to indicate how epistatic interaction signals can be leveraged when studying viruses. We have added citations to these studies in the introduction (lines 76-78) to provide a better background for our own study. Regarding the broader concern of showing the predictive power of our approach, we had a similar concern after the manuscript was submitted, and we had already planned a "blind" in-vitro validation to put our approach to the test. In order to make this validation as "blind" as possible, we expanded the dataset to include sequences until August 2023. We then selected interactions within the spike RBD with confidence level O4 in at least the last 4 time points and with one position already flagged as either "affinity", "escape" or "other MOI/MOC"

      We then selected the top three interactions (446-460, 446-486 and 452-490) for our validation, as they have an outlier confidence O4 in at least the 4 time points, and lower or no prediction before. We also added the known 498-501 interaction as a control (Figure 5, panel B)

      We then focused on selecting a set of non-synonymous substitutions to test for their potential epistatic interactions. We decided to select 6 substitutions affecting the 3 predicted interactions based on their frequency in the time points after the cutoff of the original manuscript, shown in Figure 5, panel C.

      Of those, L452R/F490S and G446S/F486V are anti-correlated in their frequency and virtually never observed together in our dataset, G446S/F486S is observed at low frequency (87 samples after 2023-05), and G446S/N460H is virtually never observed (5 samples). We chose the anti-correlated pairs to test the potential of the MI method to explain these "avoidance" phenomenon, and the low frequency pairs as a way to test an early warning system for mutation signatures that might rise in the future. We then planned to test the impact of the individual variants, the double variants, both in the wild-type background and in the Q498R/N501Y background as a crude model for the Omicron variant.

      We then used a pseudovirus assay to test mutated RBDs across two phenotypes: infectivity (i.e. the ability to infect Vero B4 cells) and immune escape (i.e. antibody neutralization curves). We then tested for the presence of epistatic interactions for the double mutants in both backgrounds using a simple linear model (see Methods, lines 711-727). The results of these in-vitro assays are summarized below (Figure 5, panel E for infectivity, F for immune escape).

      Double mutants with a significant (p-value -10) interaction have been highlighted with an asterisk. We confirmed the epistatic interaction for the Q498R/N501H, both for its effect on infectivity and immune escape. For both anti-correlated pairs we found a significant interaction for either the infectivity assay (both) and immune escape (G446S/F486V). In particular, we found that the one hand the G446S/F486V pair induced a large drop in infectivity in the Q498R/N501H background while the double mutant was fairly similar to the immune escape profile of the single G446S variant, thus compensating for the loss of escape shown by the F486V variant alone. We observed the opposite for the L452R/F490S pair in terms of infectivity, with the pair showing a large increase in infectivity in the Q498R/N501H background, an effect we found to be significant. The double mutant had a slightly better immune escape profile than the single mutants, although not significant. From these observations we can hypothesize that the G446S/F486V is anticorrelated for their strong defect in infectivity; we cannot apply the same reasoning for the L452R/F490S pair, whose absence from circulating variants could be ascribed to stochasticity in population dynamics or interactions with other variants. We observed a similar impact of the G446S/F486S and G446S/N460H pairs on infectivity as G446S/F486V; based on these results we could estimate that variants carrying these pairs might have a fitness disadvantage. The inability of unsupervised methods (MI or DCA based) to predict the direction of the effect of course makes it difficult to inform which of the two pairs should be added to a "watchlist", but it would potentially reduce the number of interactions to be tested. We believe that the results of this admittedly small scale in-vitro validation demonstrates the potential of the MI-based approach to flag emerging interactions worthy of further studying. Recent advances in scalability of molecular assays (e.g. 10.1101/2024.03.08.584176) could then be coupled with a real-time system as the one we describe in our manuscript to filter out the more relevant interactions. We have added this forward-looking observation in the discussion as well (lines 465-474).

      3) The authors say that more involved methods like the Direct Coupling Analysis with Pseudolikelihood maximisation would be too slow for the analysis, but several papers show the contrary. The paper by Zeng et al. (Ref. [39]) does so very early in the pandemics in 2020, and another uncited paper of the same authors (Physical Review 2022) uses a nearly identical approach to study the time evolution of epistatic couplings (extractions from Gisaid at several times). As one of theit results, they show that their approach is not only feasible, but delivers more stable results than simpler correlation measures like MI.

      We thank the reviewer for pointing out a relevant reference we had missed in the initial manuscript. At a general level Zeng et al. take a similar approach to what we have described, namely to divide the data according to the isolation date to look for temporal trends. We however see a few differences that we think are in favor of the approach we describe:

      1- Our manuscript covers the time period after the emergence of the Omicron variant, in which epistatic interactions are known and have been characterized and validated experimentally, a crucial requirement for validation. We have also conducted an in-vitro validation on a selected set of predicted interactions (see the reply to the previous comment), which indicates that the method is sound and predictive.

      2- We have prepared a cumulative time-series dataset, meaning that each month introduces new sequences on top of the ones already selected from the previous time points. To the best of our knowledge the Zheng et al. dataset has "insulated" sequences at each month. We believe our approach has the advantage of allowing for a higher recall, as it includes a representation of extinct lineages, which may increase diversity at key loci and thus boost the signal. As described in the original manuscript and in the reply to this reviewer's comments "iv" and "v", we have added a weighting scheme in order to reduce the influence of older sequences and increase the relevance of smaller lineages.

      3- While we have not tested the DCA implementation used by Zeng et al., and we cannot therefore directly comment on its scalability, we have encountered serious limitations when scaling up the popular plmc C implementation developed by the lab of Deborah Marks. In particular we were unable to successfully run it for datasets with more than ~300k sequences, encountering segmentation faults.

      Regarding the third point, while this meant that we could not test the DCA approach on the full dataset, we could still manage to apply it on the time series data, focusing exclusively on the spike (S) gene. As shown above in the reply to reviewer's 1 comment #2, the two methods have a high correlation and are both able to recover known interactions, although with the DCA method having a lower recall. Taken together we believe that the MI-based approach we describe is robust enough to be considered when a tradeoff between speed, ease of implementation and sensitivity has to be struck, which we believe may be the case for a rapid response during a potential future pandemic. We have added more details to the part of the discussion in which the comparison with the DCA-based methods was made to point out how those are still feasible with very large collections of sequences (lines 444-448).

      It would therefore be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.

      We believe that our response to both reviewers have addressed these concerns, and as a result we have provided a more nuanced view on the use of MI-based methods in the prediction of epistatic interactions in pandemic viruses. Our wording has been modified to make sure that readers interested in replicating our approach are aware of its strengths (speed, ease of implementation) and limitations.

      Furthermore, there are some minor issues in the formulations, which should be corrected

      i) "the virus has differentiated into a number of lineages, almost all of which have taken over the whole population..." This is wrong. SARS-CoV-2 has always been very heterogeneous, with diverse variants circulating (the authors use millions of non-redundant sequences), and only very few have become VOIs or VOCs at some point. This image of competition between multiple coexisting strains is much closer to clonal interference than what the authors describe (even if clonal interference does not rely on population structure, which has always been an important element in COVID).

      We thank the reviewer for pointing out this error in our observation. We have changed "almost all" to "some", which we agree is more accurate.

      ii) The authors say that pseudolikelihood methods would require "aggressive subsampling". This is not true, in machine learning massive training data are frequently used in the context of batch learning, i.e. in each learning epoch a "batch" is sampled from the full data. This leads to stochasticity in learning, but all data are eventually used.

      We have reformulated this sentence (lines 85-90) to indicate how batch learning could also be used to make certain methods scalable, with the caveat that they would be more complicated to implement.

      iii) The authors say that the download also a phylogenetic tree, but I do not see where it is used.

      As indicated in the methods section, we have used the phylogenetic tree for two purposes:

      1- To single out high quality sequences from the raw MSA (line 515)

      2- To compute the weight of each sequence in the final MSA, as described in line 540-549

      iv)The authors use sequence weights as implemented in Ref. [31]. There a weighting at sequence similarity threshold of 90% is used. I would expect that there are no SARS-CoV-2 genomes having accumulated more than 10% of nucleotide mutations, i.e. the weighting procedure would be without any effect.

      We realized that the sequence weighting scheme we have used is not described in Pensar et al. (10.1093/nar/gkz656), but rather in the implementation of the spydrpick algorithm used by the panaroo software (Tonkin-Hill et al., 10.1186/s13059-020-02090-4). This weighting scheme is based on the more granular metric that is the patristic distance of each sequence from the root of the tree, divided at each branching point by the number of its terminal leaves. In practical terms this means that sequences belonging to smaller lineages (i.e. with fewer observed samples) will have a larger weight, regardless of a discrete sequence similarity threshold, as was done in the original implementation. We have updated the methods section to clearly indicate that the weighting scheme is that first shown in the panaroo software package (line 543).

      v)The authors estimate that they need 10,000-100,000 sequences to estimate MI, but find the epistatic coupling in spike residues 498-501 as soon as 6 double mutants are present, which is a frequency of about 1e-4. The corresponding entropies should be low and in consequence the MI, too.

      We thank the reviewer for raising this point, which prompted us to devise a way to better illustrate the sequence weighting scheme we have used. As a side note we also discovered that the number of Omicron sequences at the 2021-11 was actually 7, and not 6 as stated throughout the original manuscript, an error we have now fixed. As described in the methods section we have combined two weights in the time-series analysis: the first one, described in the response to the previous comment, is based on the "density" of the phylogenetic tree, which deflates the contribution of "denser" regions of the tree, and the second reduces the relevance of older sequences. The two weights are then combined multiplicatively. As a result the "real" (i.e. effective) number of sequences harboring a particular double mutation will be different than by just counting their occurrences.

      As shown in Supplementary Figure 3, the combination of both weights (first column) leads to an increased effective number of sequences for "younger" samples and those that come from "sparser" regions of the overall phylogenetic tree. This is particularly evident for the middle row (2021-11); the light orange dot, which indicates sequences belonging to the first Omicron lineage to appear in the dataset (BA.1), has an actual N of 7, but an effective N of ~100 (exact value 86), thanks to its "novelty" both in the tree (middle panel) and in terms of time (right panel). We again thank the reviewer for raising this point, which led us to generate this visualization, which will hopefully clarify the rationale for the weighting strategy we have used for moist readers.

      vi)The authors say that the public health toll of COVID has been "balanced" by scientific discovery - I would urge the authors to avoid such formulations, which sound cynical.

      We agree with the reviewer that this comment might sound cynical and tone-deaf, and have reformulated to indicate that the impact of the pandemic has coincided with an accelerated pace of applied scientific discovery.

      Referees cross-commenting

      Both reports bring up very similar points (points 1 of both reports, point 2 of Reviewer #1 vs. my point 3) but add partially complementary questions (point 3 of Reviewer #1, my point 2), both related to the interpretation of the data. My report is more severe, but reading the ms I am convinced that the paper requires serious revision. So reports seem coherent but with different degrees of recommendations. However, none of the comments of one reviewer is contradiction to the other reviewer.

      Reviewer #2 (Significance (Required)):

      While the paper asks interesting questions and wants to make use of the quite unique data which have accumulated during the COVID pandemics, the above mentioned problems raise important questions about the manuscript. It would be essential that the authors strongly revise their manuscript to show the relaibility of the results, the predictive value of the predicted couplings, and the originality and robustness of the approach.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.

      Strengths:

      Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study. The authors have appropriately addressed a few concerns about statistical significance and the relationship between their findings and previous studies of the possible roles of Txnip on GLUT1 expression and localization on the surfaces of RPE cells.

      We are delighted that Reviewer #1 is satisfied with this revised version.

      Reviewer #2 (Public Review):

      The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.

      There are a few areas in which the article may be improved through further analysis and application of the data, as well as some adjustments that should be made in to clarify specific points in the article.

      Strengths

      • The follow-up study builds on innovative ground by exploring the impact of TxnipC247S and its combination with HSP90AB1 knockdown on cone survival, offering novel therapeutic pathways.

      • Testing of different Txnip deletion mutants provides a nuanced understanding of its functional domains, contributing valuable insights into the mechanism of action in RP treatment.

      • The findings regarding GLUT1 clearance and the differential effects of Txnip mutants on cone and RPE cells lay the groundwork for targeted gene therapy in RP.

      Weaknesses

      • The focus on specific mutants and overexpression systems might overlook broader implications of Txnip interactions and its variants in the wider context of retinal degeneration.

      Txnip is not expressed in WT or RP cones, as described in our previous study (Xue et al., 2021, eLife), so we could not perform loss of function assays. We thus chose overexpression, and assayed various alleles, based upon the literature, as we describe in our manuscript.

      • The study's reliance on cell count and GLUT1 expression as primary outcomes misses an opportunity to include functional assessments of vision or retinal health, which would strengthen the clinical relevance.

      In our previous study, we demonstrated that the optomotor response of Txnip-treated RP mice improved (Xue et al., 2021, eLife). Also, as described in our previous Txnip study, as well as an independent study (Xue et al., 2021, eLife; Xue et al., 2023, PNAS), ERG assays of Txnip-treated RP cones were no different than the controls. Other therapies that prolong RP cone survival and the optomotor response in our lab also failed to save the ERG, suggesting that there are other pathways that need to be addressed, e.g. the visual cycle. A combination therapy addressing multiple problems is one of our goals.

      • The paper could benefit from a deeper exploration of why certain treatments (like Best1-146 Txnip.C247S) do not lead to cone rescue and the potential for these approaches to exacerbate disease phenotypes through glucose shortages.

      This system is more complicated than we currently understand, and more work needs to be done.

      • Minor inconsistencies, such as the missing space in text references and the need for clarification on data representation (retinas vs. mice), should be addressed for clarity and accuracy.

      The missing spaces are added.

      We described the strategy of injecting the same mouse in each eye, one eye with control and one with the experimental vector. However, the following sentence has been added to the Materials and Methods to better assist the reader:

      “In almost all experiments, other than as noted, one eye of the mouse was treated with control (AAV8-RedO-H2BGFP, 2.5 × 108 vg/eye), and the other eye was treated with the experimental vector plus AAV8-RedO-H2BGFP, 2.5 × 108 vg/eye.”

      • The observation of promoter leakage and potential vector tropism issues raise questions about the specificity and efficiency of the gene delivery system, necessitating further discussion and validation.

      The following sentences have been added to the Results. We do not think this phenomenon affects the practice of the experiments or the interpretation of the results in this study.

      “To enable automated cone counting and trace the infection, we co-injected an AAV (AAV8-RedO-H2BGFP-WPRE-bGHpA) encoding an allele of GFP fused to histone 2B (H2BGFP), which localized to the nucleus. As the red opsin promoter was used to express this gene, H2BGFP was seen in cone nuclei, but not in the RPE, if AAV8-RedO-H2BGFP-WPRE-bGHpA was injected alone. However, when an AAV that expressed in the RPE, i.e. AAV8-Best1-Sv40intron-(Gene)-WPRE-bGHpA, was co-injected with AAV8-RedO-H2BGFP-WPRE-bGHpA, H2BGFP was expressed in the RPE, along with expression in cones (Figure 2A). We speculate that this is due to concatenation or recombination of the two genomes, such that the H2BGFP comes under the control of the RPE promoter. This may be due to the high copy number of AAV in the RPE, as it did not happen in the reverse combination, i.e. AAV with an RPE promoter driving GFP and a cone promoter driving another gene, perhaps due to the observation that the AAV genome copy number is »10 fold lower in cones than in the RPE (Wang et al., 2020).”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      This paper provides a straightforward mechanism of how mycobacterial cAMP level is increased under stressful conditions and shows that the increase is important for the survival of the bacterium in animal hosts. The cAMP level is increased by decreasing the expression of an enzyme that degrades cAMP.

      We thank the reviewer for these extremely encouraging comments.

      Strengths:

      The paper shows that under different stresses the response regulator PhoP represses a phosphodiesterase (PDE) that degrades cAMP specifically. Identification of PhoP as a regulator of cAMP is significant progress in understanding Mtb pathogenesis, as increase in cAMP apparently increases bacterial survival upon infection. On the practical side, reduction of cAMP by increasing PDE can be a means to attenuate the growth of the bacilli. The results have wider implications since PhoP is implicated in controlling diverse mycobacterial stress responses and many bacterial pathogens modulate host cell cAMP level. The results here are straightforward, internally consistent, and of both theoretical and applied interests. The results also open considerable future work, especially how increases in cAMP level help to increase survival of the pathogen.

      Weaknesses:

      It is not clear whether PhoP-PDE Rv0805 is the only pathway to regulate cAMP level under stress.

      Reviewer 1 (Recommendations for the authors):

      (1) L.1: "maintenance of" or 'regulating'- I thought change in cAMP level upon stress is the whole point of the paper. Also, can replace "intracellular survival" with 'survival in host macrophages' if you want to be more specific.

      We agree with the reviewer, and therefore, we have now replaced “maintenance of” with “regulating cAMP level” in the title. However, we feel more comfortable with “intracellular survival” rather than being more specific with ‘survival in host macrophages’ as we have also shown animal experiments to demonstrate ‘in vivo’ effect in mice lung and spleen.

      (2) L.26: ---requires the bacterial virulence regulator –

      The suggested change has been made to the text.

      (3) L.30: Replace "phoP locus since the" with 'PhoP since this'. (The product, not the locus, is the regulator). The same comment for l.113.

      We agree with the reviewer. The suggested changes have been made to the text.

      (4) L.31: Change represtsor to repressor.

      We are sorry for the embarrassing spelling mistake. We have rectified the mistake in the revised version.

      (5) L.32: "hydrolytically degrades" or hydrolyses? (lytic and degrade sound like tautology). Same comment for l.117.

      We agree. The suggested change has been made to the text in both places of the revised manuscript.

      (6) L.35: I would also suggest changing "intra-mycobacterial" to 'intra bacterial' because you are talking about one bacterium here. The same change is recommended in l.29.

      Following reviewer’s recommendation, we have made the changes in the revised manuscript.

      (7) L.37: bacillus unless use of the plural form is the norm in the field.

      We agree. The suggested change has been made to the text.

      (8) L.43: Delete "intracellular" and change "intracellular" to host in l.44.

      The suggested changes have been made to the text.

      (9) L.66: --that a burst--

      We have corrected the mistake in the revised manuscript.

      (10) L.76: Receptor or receptor?

      We have corrected the mistake in the revised manuscript.

      (11) L.86: -- mechanisms of regulation of mycobacterial cAMP level. (homeostasis needs to be introduced first, and not used in the concluding statement for the first time).

      The suggested changes have been made to the text.

      (12) L.96: "essential" or 'a requirement'. (reduction is not the same as elimination)

      We understand the reviewer’s concern. However, several studies have independently established that phoPR remains an essential requirement for mycobacterial virulence.

      (13) L.97: Moreover, a mutant

      The suggested change has been made to the text.

      (14) L.113: --locus since PhoP has been –

      The suggested change has been made to the text.

      (15) L.119: mechanism or manner? (you are stating a fact, not a mechanism)

      We agree. We have now replaced ‘mechanism’ with ‘manner’ in the revised manuscript.

      (16) L.130: --lacking copies of both phoP and phoR (I am assuming you don't have two copies of each gene)

      We understand the reviewer’s concern. For better clarity, we have now clearly mentioned that the phoPR-KO mutant lacks both the single copies of phoP and phoR genes.

      (17) L.156: Indicate why GroEL2? - cells as another cytoplasmic protein, GroEL2 was also undetectable

      We have now mentioned it in the secretion experiments that mycobacterial cells did not undergo autolysis. To prove this point, we have used cytoplasmic GroEL2 as a marker protein. The absence of detectable GroEL2 in the culture filtrates (CFs) suggests absence of autolysis. To this end, we have modified the sentence in the revised manuscript (duplicated below):

      “Fig. 1C confirms absence of autolysis of mycobacterial cells as GroEL2, a cytoplasmic protein, was undetectable in the culture filtrates (CF).”

      (18) L.266: May delete "Together". Start with These data--, which would draw more attention to integrated view. In l.268-270, a reminder that intracellular pH is acidic in the normal course would enhance the physiological significance of the present results.

      We agree. We have made the suggested changes to the text. In view of the second comment of the reviewer, we have modified the text (duplicated below):

      “These data represent an integrated view of our results suggesting that PhoP-dependant repression of rv0805 regulates intra-mycobacterial cAMP level. In keeping with these results, activated PhoP under acidic pH conditions significantly represses rv0805, and intracellular mycobacteria most likely utilizes a higher level of cAMP to effectively mitigate stress for survival under hostile environment including acidic pH of the phagosome.”

      (19) L.272: Delete "and intracellular survival" (?) (I am assuming the survival is due to stress tolerance; also the section talks about stress only). No period in l.273.

      Following reviewer’s recommendations, the suggested changes have been made to the text.

      (20) L.295: Start the sentence thus: It appears that at least one of ---. (This would put more emphasis on the inference)

      We agree. We have now incorporated the recommended changes in the revised version.

      (21) L.301: No parenthesis.

      The parenthesis has been removed in the revised manuscript.

      (22) L.306: Together already implies these. Either delete Together (which I would prefer) or say 'Together, the results suggest that strains expressing wild type and mutant----properties, and the results are

      We agree. We have now deleted ‘Together’ in the revised manuscript.

      (23) L.311: These results support our view that higher---- (to avoid repetition of l.266)

      We agree. We have now incorporated the suggested change in the revised manuscript.

      (24) L.316: Using or with?

      We think “with” goes well with the statement.

      (25) L.329: Rephrase thus: Effect of intra-bacterial cAMP level on in vivo--

      The recommended change has been made to the text.

      (26) L.333: I would use ~, if you want to indicate about.

      We agree. We have now used ‘~’ in the revised version. Changes were incorporated in lines 328, 330 and 333 of the revised manuscript.

      (27) L.350: Change "somewhat functionally" to phenotypically?

      We thank the reviewer for this suggestion. We have changed “somewhat functionally” to “phenotypically” in the revised manuscript.

      (28) L.361: Change "is connected to" to 'regulates'.

      The suggested change has been made to the text.

      (29) L.365: ACs (to be parallel with PDEs)

      We agree. The suggested change has been made to the text.

      (30) L.366: delete "very" (let the readers decide how recent from the reference date).

      The suggested change has been made to the text.

      (31) L.382: level remained unknown before the present study.

      The recommended change has been made to the text.

      (32) L.399: add at the end of the sentence 'under stress'. Also, represent, not represents.

      The recommended changes have been made to the text.

      (33) L.560 and 571: Section headings formatted differently from the rest. Similar problem in l.900.

      We have rectified the issue and all of the section headings are now formatted in the same style.

      Reviewer #2 (Public Review):

      Summary:

      In the manuscript, the authors have presented new mechanistic details to show how intracellular cAMP levels are maintained linked to the phosphodiesterase enzyme which in turn is controlled by PhoP. Later, they showed the physiological relevance linked to altered cAMP concentrations.

      Strengths:

      Well thought out experiments. The authors carefully planned the experiments well to uncover the molecular aspects of it diligently.

      We thank the reviewer for these extremely encouraging comments.

      Weaknesses:

      Some fresh queries were made based on the author's previous responses and hope to get satisfactory answers this time.

      We provide below a point-by-point response to the fresh queries.

      (2) Line 134: please describe the complementation strain features as it is mentioned for the first time (plasmid, copy number, promoter etc.) in the manuscript. Especially under NO stress what could be the authors' justification regarding the high cAMP concentration in the complementation strain?

      As recommended by the reviewer, the details of construction of the complemented strain have been incorporated in the 'Materials and Methods' section of the revised manuscript (duplicated below): "To complement phoPR expression, pSM607 containing a 3.6-kb DNA fragment of M. tuberculosis phoPR including 200-bp phoP promoter region, a hygromycin resistance cassette, attP site and the gene encoding phage L5 integrase, as detailed earlier (Walters et al., 2006) was used to transform phoPR mutant to integrate at the L5 attB site.

      " To address the reviewer's other concern, we have now included the following sentence in the 'Results' section of the revised manuscript (duplicated below): "A higher cAMP level in the complemented strain under NO stress is possibly attributable to reproducibly higher phoP expression in the complemented mutant under specific stress condition (Khan et al., 2022)."

      Reference: Khan et al. (2022) Convergence of two global regulators to coordinate expression of essential virulence determinants of Mycobacterium tuberculosis. eLife 2022, 11:e80965.

      New query: The complemented gene (in pSM607 plasmid) becomes a single copy after chromosomal integration, so it should ideally behave like a WT strain. How could authors still justify the high cAMP concentration under NO stress?

      We agree with the reviewer. We are unable to provide a cogent justification regarding this result. We speculate that PhoP is strikingly activated under NO stress by a non-canonical mechanism and strongly represses rv0805 expression. As a result, there is a significantly higher cAMP concentration in case of the complemented mutant under NO stress.

      (13) Line 292: There is a difference between red and green bars. Authors should do statistical analysis and then comment on whether overexpression of WT and mutant pde are different or similar, to me they are different; also, explain why the WT-Rv0805 strain is different than the phoPR-KO strain in the context of cell wall metabolism.

      As recommended by the reviewer, we have now included statistical significance of the data in the revised version, and modified the text accordingly in the manuscript.

      New query: Authors are asked to put a statistical significance test between WT-Rv0805 and WT-Rv0805M.

      We have included it in the modified figure. Also, to explain it we incorporated new text in the legend to Fig. 4C of the revised manuscript (duplicated below):

      “Note that similar to phoPR-KO, WT-Rv0805 shows a comparably higher sensitivity to CHP relative to WT bacilli. However, WT-Rv0805M expressing a mutant Rv0805, shows a significantly lower sensitivity to CHP relative to WT-Rv0805, as measured by the corresponding CFU values.”

      (14) Line 299-303: Authors should explain how the colocalization % are calculated. Also, in the figure 4D merge panel please highlight the difference.

      As suggested by the reviewer, we have now explained the methodology used to calculate percent colocalization in greater details. Also, we have modified Figure 4D to highlight the difference between samples shown in merge panel. Please see our response to comment # 33 from the Reviewer 1.

      New query: In the figure legend it should be mentioned that the white arrow indicates non-co-localization which is visibly higher in WT and WT Rvo805M.

      We thank the reviewer for this very important suggestion. We have now included the following text in the legend to Fig. 4D of the revised manuscript.

      “White arrowheads in the merge panels indicate non-colocalization, which remains higher in WT-H37Rv and WT-Rv0805M relative to phoPR-KO or WT-Rv0805.”

  4. docdrop.org docdrop.org
    1. The older you get, the worse it is

      I did not previously think about how age impacts the way you experience poverty, but I can see how this may be true. When we are little kids, we are still unaware of a lot of the different facets of identity that set us apart, and are more likely to be open minded to more things-- we are still very easily impressionable. As we become older though, and cliques form, there is a way clearer understanding of what may be deemed as cool or desirable for teenagers and what is embarrassing or something to be ashamed of.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendation for the authors):

      (1) On a few occasions, I found that the authors would introduce a concept, but provide evidence much later on. For example, in line 57, they introduced the idea that feedback timing modulates engagement of the hippocampus and striatum, but they provided the details much later on around line 99. There are a few instances like these, and the authors may want to go through the manuscript critically to bridge such gaps to improve the flow of reading.

      First, we thank the reviewer for acknowledging the contribution of our study and the methodological choices. We acknowledge the concern raised about the flow of information in the introduction. We have critically reviewed the manuscript, especially on writing style and overall structure, to ensure a smoother transition between the introduction of concepts and the provision of supporting evidence. In the case of the concept of feedback timing and memory systems, lines 46-58 first introduce the concept enhanced with evidence regarding adults, and we then pick up the concept around line 103 again to relate it to children and their brain development to motivate our research question. To further improve readability, we have included an outline of what to expect in the introduction. Specifically, we added a sentence in line 66-68 that provides an overview of the different paragraphs: “We will introduce the key parameters in reinforcement learning and then we review the existing literature on developmental trajectories in reinforcement learning as well as on hippocampus and striatum, our two brain regions of interest.”

      This should prepare the reader better when to expect more evidence regarding the concepts introduced. We included similar “road-marker” outline sentences in other occasions the reviewer commented on, to enhance consistency and readability.

      (2) I am curious as to how they think the 5-second delay condition maps onto real-life examples, for example in a classroom setting feedback after 5 seconds could easily be framed as immediate feedback.

      The authors may want to highlight a few illustrative examples.

      Thank you for asking about the practical implications of a 5-second delay condition, which may be very relevant to the reader. We have modified the introduction example in line 39-41 towards the role of feedback timing in the classroom to point out its practical relevance early on: “For example, children must learn to raise their hand before speaking during class. The teacher may reinforce this behavior immediately or with a delay, which raises the question whether feedback timing modulates their learning”.

      We have also expanded a respective discussion point in lines 720-728 to pick up the classroom example and to illustrate how we think timescale differences may apply: “In scenarios such as in the classroom, a teacher may comment on a child’s behavior immediately after the action or some moments later, in par with our experimental manipulation of 1 second versus 5 seconds. Within such short range of delay in teachers’ feedback, children’s learning ability during the first years of schooling may function equally well and depend on the striatal-dependent memory system. However, we anticipate that the reliance on the hippocampus will become even more pronounced when feedback is further delayed for longer time. Children’s capacity for learning over longer timescales relies on the hippocampal-dependent memory system, which is still under development. This knowledge could help to better structure learning according to their development.”

      (3) In the methods section, there are a few instances of task description discrepancies which make things a little bit confusing, for example, line 173 reward versus punishment, or reward versus null elsewhere e.g. line 229. In the same section, line 175, there are a few instances of typos.

      We appreciate your attention to detail in pointing out discrepancies in task descriptions and typos in the method section. We have revised the section, corrected typos, and now phrased the learning outcomes consistently as “reward” and “punishment”.

      (4). I wasn't very clear as to why the authors did not compute choice switch probability directly from raw data but implemented this as a model that makes use of a weight parameter. Former would-be much easier and straightforward for data plotting especially for uninformed readers, i.e., people who do not have backgrounds in computational modelling.

      Thank you for asking for clarification on the calculation of switching behavior. Indeed, in the behavioral results, switching behavior was directly calculated from the raw data. We now stressed this in the methods in lines 230-235, also by naming win-stay and lose-shift as “proportions” instead of as “probabilities”:“As a first step, we calculated learning outcomes diretly from the raw data, which where learning accuracy, win-stay and lose-shift behavior as well as reaction time.

      Learning accuracy was defined as the proportion to choose the more rewarding option, while win-stay and lose-shift refer to the proportion of staying with the previously chosen option after a reward and switching to the alternative choice after receiving a punishment, respectively.”

      In contrast to the raw data switching behavior, the computational heuristic strategy model indeed uses a weight for a relative tendency of switching behavior. We have also stressed the advantage of the computational measure and its difference to the raw data switching behavior in lines 248-252 and believe that the reader can now clearly distinguish between the raw data and the computational results: “Note that these model-based outcomes are not identical to the win-stay and lose-shift behavior that were calculated from the raw data. The use of such model-based measure offers the advantage in discerning the underlying hidden cognitive process with greather nuance, in contrast to classical approaches that directly use raw behavioral data.”

      (5) I agree with the authors' assertion that both inverse temperature and outcome sensitivity parameters may lead to non-identifiability issues, but I was not 100% convinced about their modelling approach exclusively assessing a different family of models (inv temperature versus outcome sensitivity). Here, I would like to make one mid-way recommendation. They may want to redefine the inverse temperature term in terms of reaction time, i.e., B=exp^(s+g(RT-mean (RT)) where s and g are free parameters (see Webb, 2019), and keep the outcome sensitivity parameter in the model with bounds [0,2] so that the interpretation could be % increase or decrease in actual outcome. Personally, in tasks with binary outcomes i.e. [0,1: null vs reward] I do not think outcome sensitivity parameters higher than 2 are interpretable as these assign an inflated coefficient to outcomes.

      We appreciate the mid-way recommendation regarding the modeling approach for inverse temperature and outcome sensitivity parameters. We have carefully revised our analysis approach by considering alternative modeling choices. Regarding the suggestion to redefine the inverse temperature in terms of reaction time by B=exp^(s+g(RT-mean (RT)), we unfortunately were not able to identify the reference Webb (2019), nor did we find references to the suggested modeling approach. Any further information that the reviewer could provide will be greatly appreciated. Regardless, we agree that including reaction times through the implementation of drift-diffusion modeling may be beneficial. However, changing the inverse temperature model in such a way would necessitate major changes in our modeling approach, which unfortunately would result in non-convergence issues in our MCMC pipeline using Rstan. Hence, this approach goes beyond the scope of the manuscript. Nonetheless, we have decided to mention the use of a drift-diffusion model, along with other methodological considerations, as future recommendation for disentangling outcome sensitivity from inverse temperature in lines 711-712: “Future studies might shed new light by examining neural activations at both task phases, by additionally modeling reaction times using a drift-diffusion approach, or by choosing a task design that allows independent manipulations of these phases and associated model parameters, e.g., by using different reward magnitudes during reinforcement learning, or by studying outcome sensitivity without decisionmaking.“

      Regarding the upper bound of outcome sensitivity, we agree that traditionally, limiting the parameter values at 2 is the choice for the parameter to be best interpretable. During model fitting, we had experienced non-convergence issues and ceiling effects in the outcome sensitivity parameter when fixing the inverse temperature at 1. The non-convergence issue was not resolved when we fixed the inverse temperature at 15.47, which was the group mean of the winning inverse temperature family. Model convergence was only achieved after increasing the outcome sensitivity upper bound to 20, with inverse temperature again fixed at 1. Since this model also performed well during parameter and model recovery, we argue that the parameter is nevertheless meaningful, despite the more extreme trial-to-trial value fluctuations under higher outcome sensitivity. We described our choice for this model in the methods section in lines 282-288: “Even though outcome sensitivity is usually restricted to an upper bound of 2 to not inflate outcomes at value update, this configuration led to ceiling effects in outcome sensitivity and non-converging model results. Further, this issue was not resolved when we fixed the inverse temperature at the group mean of 15.47 of the winning inverse temperature family model. It may be that in children, individual differences in outcome sensitivity are more pronounced, leading to more extreme values. Therefore, we decided to extend the upper bound to 20, parallel to the inverse temperature, and all our models converged with Rhat < 1.1.”.

      (6) I think the authors reporting optimal parameters for the model is very important (line 464), but the learning rate they report under stable contingencies is much higher than LRs reported by for example Behrens et al 2007, LRs around 0.08 for the optimal learning behaviour. The authors may want to discuss why their task design calls for higher learning rates.

      Thank you for appreciating our optimal parameter analysis, and for the recommendation to discuss why optimal learning rates in our task design may call for higher learning rates compared to those reported in some other studies. As largely articulated in Zhang et al (2020; primer piece by one of our co-authors), the optimal parameter combination is determined by several factors, such as the reward schedule (e.g., 75:25, vs 80:20) and task design (e.g., no reversal, one reversal, vs multiple reversal) and number of trials (e.g., 80, vs 100, vs, 120). Notably, in these taskrelated regards, our task is different from Behrens et al. (2007), which hinders a quantitative comparison among the optimal parameters in the two tasks. We have now included more details in our discussion in lines 643-656: “However, the differences in learning rate across studies have to be interpreted with caution. The differences in the task and the analysis approach may limit their comparability. Task proporties such as the trial number per condition differed across studies. Our study included 32 trials per cue in each condition, while in adult studies, the trials per condition ranged from 28 to 100. Optimal learning rates in a stable learning environment were at around 0.25 for 10 to 30 trials, another study reported a lower optimal learning rate of around 0.08 for 120 trials. This may partly explain why in our case of 32 trials per condition and cue, optimal learning rates called for a relatively high optimal learning rate of 0.29, while in other studies, optimal learning rates may be lower. Regarding differences in the analysis approach, the hierarchical bayesian estimation approach used in our study produces more reliable results in comparison to maximum likelihood estimation, which had been used in some of the previous adult studies and may have led to biased results towards extreme values. Taken together, our study underscores the importance of using longitudinal data to examine developmental change as well as the importance of simulation-based optimal parameters to interpret the direction of developmental change.”

      (7) The authors may want to report degrees of freedom in t-tests so that it would be possible to infer the final sample size for a specific analysis, for example, line 546.

      We appreciate the recommendation to include degrees of freedom, which are now added in all t-test results, for example in line 579: “Episodic memory, as measured by individual corrected object recognition memory (hits - false alarms) of confident (“sure”) ratings, showed at trend better memory for items shown in the delayed feedback condition (𝛽!""#$%&’(#")%*"# = .009, SE =.005, t(df = 137) = 1.80, p = .074, see Figure 5A).”

      (8) I'm not sure why reductions in lose shift behaviour are framed as an improvement between 2 assessment points, e.g. line 578. It all depends on the strength of the contingency so a discussion around this point should be expanded.

      We acknowledge that a reduction in lose-shift behavior only reflect improvements under certain conditions where uncertainty is low and the learning contingencies are stable, which is the case in our task. We have added Supplementary Material 4 to illustrate the optimality of win-stay and lose-shift proportions from model simulation and to confirm that children’s longitudinal development was indeed towards more optimal switching behavior. In the manuscript, we refer to these results in lines 488-490: “We further found that the average longitudinal change in win-stay and lose-shift proportion also developed towards more optimal value-based learning (Supplementary Material 4).”

      (9) If I'm not mistaken, the authors reframe a trend-level association as weak evidence. I do not think this is an accurate framing considering the association is strictly non-significant, therefore should be omitted line 585.

      We thank for the point regarding the interpretation of a trend-level association as weak evidence. We changed our interpretation, corrected in lines 581-585: “The inclusion of poor learners in the complete dataset may have weakend this effect because their hippocampal function was worse and was not involved in learning (nor encoding), regardless of feedback timing. To summarize, there was inconclusive support for enhanced episodic memory during delayed compared to immediate feedback, calling for future study to test the postulation of a selective association between hippocampal volume and delayed feedback learning.” as well as lines 622-623: “Contrary to our expectations, episodic memory performance was not enhanced under delayed feedback compared to immediate feedback.”

      Reviewer # 2 (Public Review):

      We thank the reviewer for acknowledging the strength of our study and pointing out its weaknesses.

      Weaknesses:

      There were a few things that I thought would be helpful to clarify. First, what exactly are the anatomical regions included in the striatum here?

      We appreciate the clarification question regarding the anatomical regions included in the striatum. The striatum included ventral and dorsal regions, i.e., accumbens, caudate and putamen. We have now specified the anatomical regions that were included in the striatum in lines 211-212: “We extracted the bilateral brain volumes for our regions of interest, which were striatum and hippocampus. The striatum regions included nucleus accumbens, caudate and putamen.”

      Second, it was mentioned that for the reduced dataset, object recognition memory focused on "sure" ratings. This seems like the appropriate way to do it, but it was not clear whether this was also the case for the full analyses in the main text.

      Thank you for pointing out that in the full dataset analysis, the use of “sure” ratings for object recognition memory was previously not mentioned. Including only “sure” ratings was used consistently across analyses. This detail is now described under methods in lines 332-333: “Only confident (“sure”) ratings were included in the analysis, which were 98.1 % of all given responses.”

      Third, the children's fitted parameters were far from optimal; is it known whether adults would be closer to optimal on the task?

      We thank for your question on whether adult learning rates in the task have been reported to be more optimal than those of the children in our study. This indeed seems to be the case, and we added this point in our discussion in line 639-643: “Adult studies that examined feedback timing during reinforcement learning reported average learning rates range from 0.12 to 0.34, which are much closer to the simulated optimal learning rates of 0.29 than children’s average learning rates of 0.02 and 0.05 at wave 1 and 2 in our study. Therefore, it is likely that individuals approach adult-like optimal learning rates later during adolescence.”

      The main thing I would find helpful is to better integrate the differences between the main results reported and the many additional results reported in the supplement, for example from the reduced dataset when excluding non-learners. I found it a bit challenging to keep track of all the differences with all the analyses and parameters. It might be helpful to report some results in tables side-by-side in the two different samples. And if relevant, discuss the differences or their implication in the Discussion. For example, if the patterns change when excluding the poor learners, in particular for the associations between delayed feedback and hippocampal volume, and those participants were also those less well fit by the value-based model, is that something to be concerned about and does that affect any interpretations? What was not clear to me is whether excluding the poor learners at one extreme simply weakens the general pattern, or whether there is a more qualitative difference between learners and non-learners. The discussion points to the relevance of deficits in hippocampaldependent learning for psychopathology and understanding such a distinction may be relevant.

      We appreciate the feedback that it might seem challenging to keep track of differences between the analyses of the full and the reduced dataset. We have now gathered all the analyses for the reduced dataset in Supplementary Material 6, with side-by-side tables for comparison to the full dataset results. Whenever there were differences between the results, they were pointed out in the results section, see lines 557-560: “In the results of the reduced dataset, the hippocampal association to the delayed learning score was no longer significant, suggesting a weakened pattern when excluding poor learners (Supplementary Material 6). It is likely that the exclusion reduced the group variance for hippocampal volume and delayed learning score in the model.” and lines 579-581: “Note that in the reduced dataset, delayed feedback predicted enhanced item memory significantly (Supplementary Material 6).”

      The found differences were further included in our discussion in lines 737-740 in the context of deficits in hippocampal-dependent learning and psychopathology: “Interestingly, poor learners showed relatively less value-based learning in favor of stronger simple heuristic strategies, and excluding them modulated the hippocampal-dependent associations to learning and memory in our results. More studies are needed to further clarify the relationship between hippocampus and psychopathology during cognitive and brain development.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) There appears to be a flaw in the exploration of cortical inputs. the authors never show that HFS of cortical inputs has no effect in the absence of thalamic stimulation. It appears that there is a citation showing this, but I think it would be important to show this in this study as well.

      We understand that the reviewer would like us to induce an HFS protocol on cortical input and then test if there is any change in synaptic strength in thalamic input. We have done this experiment which shows that without a footshock, high-frequency stimulation (HFS) of the cortical inputs did not induce synaptic potentiation on the thalamic pathway (Extended Data Fig. 4d).

      (2) t is somewhat confusing that the authors refer to the cortical input as driving heterosynaptic LTP, but this is not shown until Figure 4J, that after non-associative conditioning (unpaired shock and tone) HFS of the cortex can drive freezing and heterosynaptic LTP of thalamic inputs.

      We agree with the reviewer that it is in figure 4j and figure 5,b,c which we show electrophysiological evidence for cortical input driving heterosynaptic LTP. It is only to be consistent with our terminology that initially we used behavioral evidence as the proxy for heteroLTP (figure 3c).

      …, the authors are 'surprised' by this outcome, which appears to be what they predict.

      We removed the phrase “To our surprise”.

      (3) 'Cortex' as a stimulation site is vague. The authors have coordinates they used, it is unclear why they are not using standard anatomical nomenclature.

      We replaced “cortex” with “auditory/associative cortex”.

      (4) The authors' repeated use of homoLTP and heteroLTP to define the input that is being stimulated makes it challenging to understand the experimental detail. While I appreciate this is part of the goal, more descriptive words such as 'thalamic' and 'cortical' would make this much easier to understand.

      We agree with the reviewer that a phrase such as “an LTP protocol on thalamic and cortical inputs” would be more descriptive. We chose the words “homoLTP” and “heteroLTP” only to clarify (for the readers) the physiological relevance of these protocols. We thought by using “thalamic” and “cortical” readers may miss this point. However, when for the first time we introduce the words “homoLTP” and “heteroLTP”, we describe which stimulated pathway each refers to.

      Reviewer #2 (Public Review):

      (1) …The experimental schemes in Figs. 1 and 3 (and Fig. 4e and extended data 4a,b) show that one group of animals was subjected to retrieval in the test context at 24 h, then received HFS, which was then followed by a second retrieval session. With this design, it remains unclear what the HFS impacts when it is delivered between these two 24 h memory retrieval sessions.

      We understand that the reviewer has raised the concern that the increase in freezing we observed after the HFS protocol (ex. Fig. 1b, the bar labeled as Wth+24hHFSth) could be caused or modulated by the recall prior to the HFS (Fig. 1a, top branch). To address this concern, in a new group of mice, 24 hours after weak conditioning, we induced the HFS protocol, followed by testing (that is, no testing prior to the HFS protocol). We observed that homoLTP was as effective in mice that were tested prior to the induction protocol as those that were not (Fig. 1b, Extended Data Fig. 1d,e).

      It would be nice to see these data parsed out in a clean experimental design for all experiments (in Figs 1, 3, and 4), that means 4 groups with different treatments that are all tested only once at 24 h, and the appropriate statistical tests (ANOVA). This would also avoid repeating data in different panels for different pairwise comparisons (Fig 1, Fig 3, Fig 4, and extended Fig 4).

      While we understand the benefit of the reviewer’s suggestion, the current presentation of the data was done to match the flow of the text and the delivery of the information throughout the manuscript. We think it is unlikely that the retrieval test prior to the HFS impacts its effectiveness, as confirmed by homosynaptic HFS data (Extended Data Fig. 1d,e). It is beyond the scope of current manuscript to investigate the mechanisms and manipulations related to reconsolidation and retrieval effects.

      (2) … It would be critical to know if LFPs change over 24 h in animals in which memory is not altered by HFS, and to see correlations between memory performance and LFP changes, as two animals displayed low freezing levels. … They would suggest that thalamo-LA potentiation occurs directly after learning+HFS (which could be tested) and is maintained over 24 h.

      We have performed the experiment where we recorded the evoked LFP 2hrs and 24hrs following the weak conditioning protocol. We observed that a weak conditioning protocol that was not followed by an optical LTP protocol on the cortical inputs failed to produce synaptic potentiation of the thalamic inputs (tested 2hrs and 24hrs after the LTP protocol; Extended Data Fig. 5d,e).

      (3) The statistical analyses need to be clarified. All statements should be supported with statistical testing (e.g. extended data 5c, pg 7 stats are missing). The specific tests should be clearly stated throughout. For ANOVAs, the post-hoc tests and their outcomes should be stated. In some cases, 2-way ANOVAs were performed, but it seems there is only one independent variable, calling for one-way ANOVA.

      All the statistical analyses have been revised and the post-hoc tests performed after the ANOVAs are mentioned in the relevant figure legends.

      Reviewer #2 (Recommendations For The Authors):

      The wording "transient" and "persistent" used here in the context of memory seems a bit misleading, as only one timepoint was assessed for memory recall (24 h), at which the memory strength (freezing levels) seem to change.

      As the reviewer mentioned, we have tested memory recall only at one time point. For this reason, throughout the text we used “transient” exclusively to refer to the experience (receiving footshock) and not to the memory. We replaced “persistence” with “stabilization” where it refers to a memory (“the induction of plasticity influences the stabilization of the memory”).

      For the procedures in which the CS and US were not paired, the term "unpairing" is used (which is probably the more adequate one), but the term "non-associative conditioning" appears in the text, which seems a bit misleading, as this term may have another connotation. There is also literature that an unpairing of CS and US could lead to the formation of a safety memory to the CS, that may be disrupted by HFS stimulation.

      We replaced "non-associative" with “unpaired”.

      Validation of viral injection sites for all experiments: Only representative examples are shown, it would be nice to see all viral expression sites.

      For this manuscript, we have used 155 mice. For this reason, including the injection sites for all the animals in the manuscript is not feasible. Except for the mice that have been excluded, (please see exclusion criteria added in the methods), the expression pattern we observed was consistent across animals and therefore the images shown are true representatives.

      Extended Data 1b: Please explain what N, U, W, and S behavioral groups mean. To what groups mentioned in the text (pg 2,3) do these correspond?

      The requested clarifications are implemented in the figure legend.

      Please elaborate on the following aspects of your methods and approaches:

      • Please explain if the protocol for HFS to manipulate behavior was the same as the one used for the LTP experiments (Fig 1d, Fig 4j) and was identical for homo/hetero inputs from thal and ctx?

      We used the same HFS protocol for all the HFS inductions. We included this information in the methods section.

      • Please state when the HFS was given in respect to the conditioning (what means immediately before and after?) and in which context it was given. Were animals subjected to HFS exposed to the context longer (either before or after the conditioning while receiving HFS) than the other groups? When the HFS was given in another context (for the 24 h group)- how was this controlled for?

      Requested information has been added to the methods section. The control and intervention groups were treated in the same way.

      • When were the footshocks given in the anesthesized recordings (Fig. 4j) and how was the temporal relationship to the HFS? Was the timing the same as for the HFS in the behavioral experiments?

      Requested information has been added to the methods section.

      • Please add information on how the LFP was stimulated and how the LFP- EPSP slope was determined in in vivo recordings, likewise for the whole cell recordings of EPSPs in Fig. 5d-f.

      Requested information has been added to the methods section.

      Here, the y-Axis in Fig. 5e should be corrected to EPSP slope rather than fEPSP slope if these are whole-cell recordings.

      This has been corrected.

      • Please include information if the viral injections and opto-manipulations were done bilateral or unilateral and if so in which hemisphere. Likewise, indicate where the LFP recordings were done.

      Requested information has been added to the methods section.

      • Were there any exclusion criteria for animals (e.g. insufficient viral targeting or placement of fibers and electrodes), other than the testing of the optical CS for adverse effects?

      Requested information has been added to the methods section.

      Statistics: In addition to clarifying analytical statistics, please clarify n-numbers for slice recordings (number of animals, number of slices, and number of cells if applicable).

      Requested information has been added to the methods section.

      It would be nice to scrutinize the results in extended data 4b. The freezing levels with U+24h HFS show a strong trend towards an increase, the effect size may be similar to immediate HFS Fig 4f and extended data 4a) if n was increased.

      We agree with the reviewer. To address this point, we added “HomoLTP protocol when delivered 24hrs later, produced an increase in freezing; however, the value was not statistically significant.” To show this point, we used the same scale for freezing in Extended Data Fig. 4a and b.

      In the final experiment (Fig. 5a-c), Fig. 5b seems to show results from only one animal, but behavioral results are from 4 animals (Fig 5c). It would be helpful to see the quantification of potentiation in each animal.

      The results (now with error bar) include all mice.

      Please spell out the abbreviation "STC".

      Now, it is spelled out.

      Page 8 last sentence of the discussion does not seem to fit there.

      The sentence has been removed.

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors did not determine how WTh affects Th-LA synapses, as field EPSPs were recorded only after HFS. WTh was required for the effects of HFS, as HFS alone did not produce CR in naïve and/or unpaired controls. As such the effects of the WTh protocol on synaptic strength must be investigated.

      We have performed the experiment where we recorded the evoked LFP 2hrs and 24hrs following the weak conditioning protocol. We observed that a weak conditioning protocol that was not followed by an optical LTP protocol on the cortical inputs failed to produce synaptic potentiation of the thalamic inputs (tested 2hrs and 24hrs after the LTP protocol; Extended Data Fig. 5d,e).

      (2) The authors provide some evidence that their dual opsin approach is feasible, particularly the use of sustained yellow light to block the effects of blue light on ChrimsonR. However, this validation was done using single pulses making it difficult to assess the effect of this protocol on Th input when HFS was used. Without strong evidence that the optogenetic methods used here are fault-proof, the main conclusions of this study are compromised. Why did the authors not use a protocol in which fibers were placed directly in the Ctx and Th while using soma-restricted opsins to avoid cross-contamination?

      We understand that the reviewer raises the possibility that our dual-opsin approach, although effective with single pulses, may fail in higher frequency stimulation protocols (10Hz and 85Hz). To address this concern, in a new group of mice we applied our approach to 10Hz and 85Hz stimulation protocols. We show that our approach is effective in single-pulse as well as in 10Hz and 85Hz stimulation protocols (Fig. 2d-h).

    1. Author response:

      The following is the authors’ response to the current reviews.

      We sincerely appreciate the reviewer’s dedication to evaluating our manuscript and raising essential considerations regarding the classification of the migration behavior we described. While the reviewer suggests that this behavior aligns with the concept of itinerancy, we contend that it represents a distinct phenomenon, albeit with similarities, as both involve the non-breeding movements of birds. We acknowledge that our manuscript did not adequately address this distinction and have considered the reviewer’s feedback. In our response, we clarify the difference between the described phenomenon and itinerancy. Our revised manuscript will include a new section in the Discussion to address this issue comprehensively.

      In the first part of the review, the reviewer emphasizes that the pattern we are describing is consistent with itinerancy. Regardless of the terminology used, we want to highlight the existence of two different types of migratory behavior, both of which involve movement in non-breeding areas.

      The first type, called itinerancy, was first described by Moreau in 1972 in “The Palaearctic-African Bird Migration Systems.” As noted by the reviewer, this behavior involves an alternation of stopovers and movements between different short-term non-breeding residency areas. They usually occur in response to food scarcity in one part of the non-breeding range, causing birds to move to another part of the same range. These movements typically cover distances of 10 to 100 kilometers but are neither continuous nor directional. Moreau (1972) defined itinerancy as prolonged stopovers, normally lasting several months, primarily in tropical regions. He noted observations of certain species disappearing from his study areas in sub-Saharan Africa in December and others appearing, suggesting they may have multiple home ranges during the non-breeding season. Subsequent research, as mentioned by the reviewer, has confirmed itinerancy in many species, particularly among Palaearctic-African migrants in sub-Saharan Africa. In particular, the Montagu’s Harrier has been extensively studied in this regard. The reviewer rightly points out that our study does not include recent findings on this species. In our revised version, we will include references to recent studies, such as those by Trierweiler et al. (2013, Journal of Animal Ecology, 82:107-120) and Schlaich et al. (2023, Ardea, 111:321-342), which show that Montagu’s Harrier has an average of 3-4 home ranges separated by approximately 200 kilometers. These studies suggest that the species spends approximately 1.5 months at each site, with the most extended period typically observed at the last site before migrating to the breeding grounds.

      In the second type, birds undertake a post-breeding migration, arrive in their non-breeding range, and then gradually move in a particular direction throughout the season. This continuous directional movement covers considerable distances and continues throughout the non-breeding period. In our study, this movement covered about 1000 km, comparable to the total migration distance of Rough-legged Buzzards of about 1500 km. As observed in our research, these movements are influenced by external factors such as snow cover. In such cases, the progression of snow cover in a south-westerly direction during winter can prevent birds from finding food, forcing them to continue migrating in the same direction. In essence, this movement represents a prolonged phase of the migration process but at a slower pace. Similar behavior has been documented in buzzards, as reported by Strandberg et al. (2009, Ibis 151:200-206). Although several transmitters in their study stopped working in mid-winter, the authors observed a phenomenon they termed ‘prolonged autumn migration.’

      In the second part of the review, the reviewer questions the need to distinguish between the two behaviors we have discussed. However, we believe these behaviors differ in their structure (with the first being intermittent and often non-directional, whereas the second is continuous and directional) and in their causes (with the first being driven by seasonal food resource cycles and the second by advancing snow cover). We therefore argue that it is worth distinguishing between them. To differentiate these forms of non-breeding movement, we propose to use ‘itinerancy’ for the first type, as described initially by Moreau in 1972, and introduce a separate term for the second behavior. Although ‘slow directional itinerancy’ could be considered, we find it too cumbersome.

      Moreover, ‘itinerancy’ in the literature refers not only to non-breeding movements but also to the use of different nesting sites, e.g., Lislevand et al. (2020, Journal of Avian Biology: e02595), reinforcing its association with movements between multiple sites within habitats. We, therefore, propose that the second behavior be given a distinct name. We acknowledge the reviewer’s point that we did not adequately address this distinction in the Discussion and plan to include a separate section in our paper’s revised version. In the third part of his review, the reviewer suggests an alternative title. Another reviewer, Dr Theunis Piersma, suggested the current title during the first round of reviewing, and we have chosen his version.

      In the fourth part of the review, the reviewer questions whether it is appropriate to discuss the conservation aspect of this study. This type of non-breeding movement raises concerns about accurately determining non-breeding ranges and population dynamics for species that exhibit this behavior. We believe that accurate determination of range and population dynamics is critical to conservation efforts. While this may be less important for species breeding in Europe and migrating to Africa, for which monitoring breeding territories is more feasible, it’s essential for Arctic and sub-Arctic breeding species. Large-scale surveys in these regions have historically been challenging and have become even more so with the end of Arctic cooperation following Russia’s war with Ukraine (Koivurova, Shibata, 2023). For North America and Europe, non-breeding abundance is typically estimated once per season in mid-winter. In North America, these are the so-called Christmas counts (which take place once at the end of December), and in Europe, they are the IWC counts mentioned by the reviewer (as follows from their official website - “The IWC requires a single count at each site, which should be repeated each year. The exact dates vary slightly from region to region, but take place in January or February”). Because of such a single count in mid-winter, non-breeding habitats occupied in autumn and spring will be listed as ‘uncommon’ at best, while south-western habitats where birds are only present in mid-winter will be listed as ‘common.’ However, the situation will be reversed if we consider the time birds spend in these habitats.

      The reviewer also highlights the introduction’s unconventional structure and information redundancy at the beginning. We have chosen this structure and provided basic explanations to improve readability for a wider audience, given eLife’s readership. At the same time, we will certainly take the reviewers’ feedback into account in the revised version. We plan to include the references to modern itinerancy research mentioned above and to add a section on itinerancy to the Discussion.

      We appreciate the reviewer’s input and sincerely thank them for their time and effort in reviewing our paper. While we may not fully agree on the classification of the behavior we describe, we value the opportunity to engage in discussion and believe that presenting arguments and counterarguments to the reader is beneficial to scientific progress.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      I much enjoyed reading this manuscript, that is, once I understood what it is about. Titles like "Conserving bird populations in the Anthropocene: the significance of non-breeding movements" are a claim to so-called relevance, they have NOTHING to do with the content of the paper, so once I understood that this paper was about the "Quick quick slow: the foxtrot migration of rough-legged buzzards is a response to habitat and snow" (an alternative title), it was becoming very interesting. So the start of the abstract as well as the introduction is very tedious, as clearly much trouble is taken here to establish reputability. In my eyes this is unnecessary: eLife should be interested in publishing such a wonderful description of such a wonderful migrant in a study that comes to grips with limiting factors on a continental scale!

      We sincerely appreciate your time and effort in reviewing our manuscript. Thank you for your appreciation of our study.

      We agree that the focus of the article should be changed from conservation to migration patterns. We have rewritten the Introduction and Discussion as suggested. We have added the application of this pattern including conservation at the end of the Discussion by completely changing Figure 5. We have also changed the title to the suggested one.

      Not sure that the first paragraph statements that seek to downplay what we know about wintering vs breeding areas are valid (although I see what purpose they serve). Migratory shorebirds have extensively been studied in the nonbreeding areas, for example, including movement aspects (see, as just one example, Verhoeven, M.A., Loonstra, A.H.J., McBride, A.D., Both, C., Senner, N.R. & Piersma, T. (2020) Migration route, stopping sites, and non breeding destinations of adult Black tailed Godwits breeding in southwest Fryslân, The Netherlands. Journal of Ornithology 162, 61-76) and there are very impressive studies on the winter biology of migrants across large scale (for example in Zwarts' Living on the Edge book on the Sahel wetlands). Think also about geese and swans and about seabirds!

      We have rewritten the first paragraph and it now talks about patterns of migratory behavior. We have also rewritten the second paragraph, now it is devoted to studies of movements in the non-breeding period. We explain how our pattern differs from those already studied and give references to the papers you mentioned.

      Directional movements in nonbreeding areas as a function of food (in this case locusts) have really beautifully been described by Almut Schlaich et al in JAnimEcol for Montagu's harriers.

      We have added Montagu's harrier example in the second paragraph of the Introduction and the Discussion. We have added a reference to Schlaich and to Garcia and Arroyo, who suggested that Montagu's harriers have long directional migrations during the non-breeding period.

      Once the paper starts talking buzzards, and the analyses of the wonderful data, all is fine. It is a very competent analysis with a description of a cool pattern.

      Thank you for your appreciation of our study. We hope the revised version is better and clearer.

      However, i would say that it is all a question of spatial scale. The buzzards here respond to changes in food availability, but there is not an animal that doesn't. The question is how far they have to move for an adequate response: in some birds movements of 100s of meters may be enough, and then anything to the scale of rough-legged buzzards.

      In the new version of the manuscript, we emphasize that this is a large distance (about 1000 km), comparable to the distance of the fall and spring migrations (about 1400 km) in lines 70-72 of the Introduction and 379-383 of the Discussion.

      And actually, several of the shorebirds I know best also do a foxtrot, such as red knots and bar-tailed godwits moulting in the Wadden Sea, then spending a few months in the UK estuaries, before returning to the Wadden Sea before the long migrations to Arctic breeding grounds. The publication of the rough-legged buzzard story may help researchers to summarize patterns such as this too. Mu problem with this paper is the framing. A story on the how and why of these continental movements in response to snow and other habitat features would be a grand contribution. Drop Anthropocene, and rethink whether foxtrot should be introduced as a hypothesis or a summary of cool descriptions. I prefer the latter, and recommend eLife to go with that too, rather than encourage "disconnected frames that seek 'respectability'" Good luck, theunis piersma

      We thank the reviewer again for his valuable comments and suggestions. We have changed the framing to the suggested one and removed the Anthropocene from the article.

      Reviewer #2 (Recommendations For The Authors):

      We sincerely appreciate the time and effort you have taken to review our manuscript. We have carefully considered all of your comments, including both public and author comments, and provided detailed responses to each of them below. In addition, we would like to address the most important public comments.

      We agree with the suggestion to shift the focus of the article from conservation to migration patterns. Accordingly, we have rewritten both the Introduction and Discussion sections to focus on migration behavior rather than conservation.

      However, we respectfully disagree with the suggestion that the migration patterns we describe are synonymous with itinerancy. We acknowledge that our original presentation may have been unclear and may have hindered full understanding. In the revised version, we provide a detailed analysis of migratory behavior in the Introduction that describes how our pattern differs from itinerancy. We also revisit this distinction in the Discussion section. We have also carefully revised Figure 1 to improve clarity and avoid potential misunderstandings.

      Regarding the applicability of the described migration pattern, we acknowledge that the Rough-legged Buzzard is not listed as an endangered species. However, we believe that our findings have practical implications. We have moved our discussion of this issue to the end of the Discussion section and have completely revised Figure 5. While the overall population of Rough-legged Buzzards is not declining, certain regions within its range are experiencing declines. We show that this decline does not warrant listing the species as endangered. Instead, it may represent a redistribution within the non-breeding range - a shift in range dynamics. We use the example of the Rough-legged Buzzard to illustrate this concept and emphasize the importance of considering such dynamics when assessing the conservation status of species in the future.

      We also acknowledge that the hypothesis of this form of behavior has been proposed previously for Montagu's Harrier, and we have included this information in the revised manuscript. In addition, we agree that the focus on the Anthropocene is unnecessary in this context and have therefore removed it.

      We believe that these revisions significantly improve the clarity and robustness of the manuscript, and we are grateful for your insightful comments and suggestions.

      As a general comment, please note that including line numbers (as it is the standard in any manuscript submission) would facilitate reviewers providing more detailed comments on the text.

      We apologize for this oversight and have added line numbers to our revised manuscript.

      Dataset: unclear what is the frequency of GPS transmissions. Furthermore, information on relative tag mass for the tracked individuals should be reported.

      We have included this information in our manuscript (L 157-163). We also refer to the study in which this dataset was first used and described in detail (L 164).

      Data pre-processing: more details are needed here. What data have been removed if the bird died? The entire track of the individual? Only the data classified in the last section of the track? The section also reports on an 'iterative procedure' for annotating tracks, which is only vaguely described. A piecewise regression is mentioned, but no details are provided, not even on what is the dependent variable (I assume it should be latitude?).

      Regarding the deaths. We only removed the data when the bird was already dead. We have corrected the text to make this clear (L 170).

      Regarding the iterative procedure. We have added a detailed description on lines 175-188.

      Data analysis: several potential issues here:

      (1) Unclear why sex was not included in all mixed models. I think it should be included.

      Our dataset contains 35 females and eight males. This ratio does not allow us to include sex in all models and adequately assess the influence of this factor. At the same time, because adult females disperse farther than males in some raptor species, we conducted a separate analysis of the dependence of migration distance on sex (Table S8) and found no evidence for this in our species. We have written a separate paragraph about this. This paragraph can be found on lines 356-360 of the new manuscript.

      (2) Unclear what is the rationale of describing habitat use during migration; is it only to show that it is a largely unsuitable habitat for the species? But is a formal analysis required then? Wouldn't be enough to simply describe this?

      Habitat use and snow cover determine the two main phases (quick and slow) of the pattern we describe. We believe that habitat analysis is appropriate in this case and that a simple description would be uninformative and would not support our conclusions.

      (3) Analysis of snow cover: such a 'what if' analysis is fine but it seems to be a rather indirect assessment of the effect of snow cover on movement patterns. Can a more direct test be envisaged relating e.g. daily movement patterns to concomitant snow cover? This should be rather straightforward. The effectiveness of this method rests on among-year differences in snow cover and timing of snowfall. A further possibility would be to demonstrate habitat selection within the entire non-breeding home range of an individual in relation snow cover. Such an analysis would imply associating presence-absence of snow to every location within the non-breeding range and testing whether the proportion of locations with snow is lower than the proportion of snow of random locations within the entire non-breeding home range (95% KDE) for every individual (e.g. by setting a 1/10 ratio presence to random locations).

      The proposed analysis will provide an opportunity to assess whether the Rough-legged Buzzard selects areas with the lowest snow cover, but will not provide an opportunity to follow the dynamics and will therefore give a misleading overall picture. This is especially true in the spring months. In March-April, Rough-legged Buzzards move northeast and are in an area that is not the most open to snow. At this time, areas to the southwest are more open to snow (this can be seen in Figure 4b). If we perform the proposed analysis, the control points for this period would be both to the north (where there is more snow) and to the south (where there is less snow) from the real locations, and the result would be that there is no difference in snow cover.

      A step-selection analysis could be used, as we did in our previous work (Curk et al 2020 Sci Rep) with the same Rough-legged Buzzard (but during migration, not winter). But this would only give us a qualitative idea, not a quantitative one - that Rough-legged Buzzards move from snow (in the fall) and follow snowmelt progression (in the spring).

      At the same time, our analysis gives a complete picture of snow cover dynamics in different parts of the non-breeding range. This allows us to see that if Rough-legged Buzzards remained at their fall migration endpoint without moving southwest, they would encounter 14.4% more snow cover (99.5% vs. 85.1%). Although this difference may seem small (14.4%), it holds significance for rodent-hunting birds, distinguishing between complete and patchy snow cover. Simultaneously, if Rough-legged Buzzards immediately flew to the southwest and stayed there throughout winter, they would experience 25.7% less snow cover (57.3% vs. 31.6%). Despite a greater difference than in the first case, it doesn't compel them to adopt this strategy, as it represents the difference between various degrees of landscape openness from snow cover.

      We write about this in the new manuscript on lines 385-394.

      Results: it is unclear whether the reported dispersion measures are SDs or SEs. Please provide details.

      For the date and coordinates of the start and end of the different phases of migration, we specified the mean, sd, and sample size. We wrote this in line 277. For the values of the parameters of the different phases of the migration (duration, distance, speed, and direction), we used the mean, the standard error of the mean, and the confidence interval (obtained using the ‘emmeans’ package). We have indicated this in lines 302-303 and the caption of Table 1 (L 315) and Figure 2 (L 293-294). For the values of habitat and snow cover experienced by the Rough-legged Buzzards, we used the mean and the error of the mean. We reported this on lines 322 and 337 and in Figures 3 (L 332-333) and 4 (L 355-356).

      Discussion: in general, it should be reshaped taking into account the comments. It is overlong, speculative and quite naive in several passages. Entire sections can be safely removed (I think it can be reduced by half without any loss of information). I provide some examples of the issues I have spotted below. For instance, the entire paragraph starting with 'Understanding....' is not clear to me. What do you mean by 'prohibited management' options? Without examples, this seems a rather general text, based on unclear premises when related to the specific of this study. Some statements are vague, derive from unsubstantiated claims, and unclear. E.g. "Despite their scarcity in these habitats, forests appear to hold significant importance for Rough-legged buzzards for nocturnal safety". I could not find any day-night analysis showing that they actually roost in forests during nighttime. Being a tundra species, it may well be possible that rough-legged buzzards perceive forests as very dangerous habitats and that they prefer instead to roost in open habitats. Analysing habitat use during day and night during the non-breeding period may be of help to clarify this. Furthermore, considering the fast migration periods, what is the flight speed during day and night above forests? Do these birds also migrate at night or do they roost during the night? Perhaps a figure visualizing day and night track segments could be of help (or an analysis of day vs. night flight speed) (there are several R packages to annotate tracks in relation to day and night). This is an example of another problematic statement: "The progression of snow cover in the wintering range of Rough-legged buzzards plays a significant role in their winter migration pattern." The manuscript does not contain any clear demonstration of this, as I wrote in my previous comments. Without such evidence, you must considerably tone down such assertions. But since providing a direct link is certainly possible, I think that additional analyses would clearly strengthen your take-home message.

      The paragraph starting with "The quantification of environmental changes that could prove fatal to bird species presents yet another challenge for conservation efforts in an era of rapid global change." is quite odd. Take the following statement "For instance, the presence of small patches of woodland in the winter range might appear crucial to the survival of the Rough-legged buzzard. Elimination of these seemingly minor elements of vegetation cover through management actions could have dire consequences for the species.". It is based on the assumption that minor vegetation elements play a key role in the ecology of the species, without any evidence supporting this. Does it have any sense? I could safely say exactly the opposite and I would believe it might even be more substantiated.

      We agree with these comments.

      We have completely rewritten this section. As suggested, we have shortened it by removing statements that were not supported by the research. We have completely removed the statements about "prohibited management". We have also removed the statement that "forests appear to be of significant importance to Rough-legged buzzards for nocturnal safety" and everything associated with that statement, e.g. the statement about "small elements of vegetation cover", etc. We do believe that this statement is true in substance, but we also agree that it is not supported by the results and requires separate analysis. At the same time, we believe that this is a topic for a separate study and would be redundant here. Therefore, we leave it for a separate publication.

      Conclusion paragraph: I believe this severely overstates the conservation importance of this study. That the results have "crucial implications for conservation efforts in the Anthropocene, where rapidly changing environmental factors can severely impact bird migration" seems completely untenable to me. What is the evidence for such crucial implications? For instance, these results may suggest that climate change, because global warming is predicted to reduce snow cover in the non-breeding areas, might well be beneficial for populations of this species, by reducing non-breeding energy expenditure and improving non-breeding survival. I think statements like these are simply not necessary, and that the study should be more focused on the actual results and evidence provided.

      We have completely rewritten this section. We removed the reference to the Anthropocene and focused on migratory behavior and migration patterns.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      Connelly and colleagues provide convincing genetic evidence that importation from mainland Tanzania is a major source of Plasmodium falciparum lineages currently circulating in Zanzibar. This study also reveals ongoing local malaria transmission and occasional near-clonal outbreaks in Zanzibar. Overall, this research highlights the role of human movements in maintaining residual malaria transmission in an area targeted for intensive control interventions over the past decades and provides valuable information for epidemiologists and public health professionals.

      Reviewer #1 (Public Review):

      Zanzibar archipelago is close to achieving malaria elimination, but despite the implementation of effective control measures, there is still a low-level seasonal malaria transmission. This could be due to the frequent importation of malaria from mainland Tanzania and Kenya, reservoirs of asymptomatic infections, and competent vectors. To investigate population structure and gene flow of P. falciparum in Zanzibar and mainland Tanzania, they used 178 samples from mainland Tanzania and 213 from Zanzibar that were previously sequenced using molecular inversion probes (MIPs) panels targeting single nucleotide polymorphisms (SNPs). They performed Principal Component Analysis (PCA) and identity by descent (IBD) analysis to assess genetic relatedness between isolates. Parasites from coastal mainland Tanzania contribute to the genetic diversity in the parasite population in Zanzibar. Despite this, there is a pattern of isolation by distance and microstructure within the archipelago, and evidence of local sharing of highly related strains sustaining malaria transmission in Zanzibar that are important targets for interventions such as mass drug administration and vector control, in addition to measures against imported malaria.

      Strengths:

      This study presents important samples to understand population structure and gene flow between mainland Tanzania and Zanzibar, especially from the rural Bagamoyo District, where malaria transmission persists and there is a major port of entry to Zanzibar. In addition, this study includes a larger set of SNPs, providing more robustness for analyses such as PCA and IBD. Therefore, the conclusions of this paper are well supported by data.

      Weaknesses:

      Some points need to be clarified:

      (1) SNPs in linkage disequilibrium (LD) can introduce bias in PCA and IBD analysis. Were SNPs in LD filtered out prior to these analyses?

      Thank you for this point. We did not filter SNPs in LD prior to this analysis. In the PCA analysis in Figure 1, we did restrict to a single isolate among those that were clonal (high IBD values) to prevent bias in the PCA. In general, disequilibrium is minimal only over small distances <5-10kb without selective forces at play. This is much less than the average spacing of the markers in the panel. If there is minimal LD, the conclusions drawn on relative levels and connections at high IBD are unlikely to be confounded by any effects of disequilibrium.

      ( 2) Many IBD algorithms do not handle polyclonal infections well, despite an increasing number of algorithms that are able to handle polyclonal infections and multiallelic SNPs. How polyclonal samples were handled for IBD analysis?

      Thank you for this point. We added lines 157-161 to clarify. This section now reads:

      “To investigate genetic relatedness of parasites across regions, identity by descent (IBD) estimates were assessed using the within sample major alleles (coercing samples to monoclonal by calling the dominant allele at each locus) and estimated utilizing a maximum likelihood approach using the inbreeding_mle function from the MIPanalyzer package (Verity et al., 2020). This approach has previously been validated as a conservative estimate of IBD (Verity et al., 2020).”

      Please see the supplement in (Verity et al., 2020) for an extensive simulation study that validates this approach.

      Reviewer #1 (Recommendations For The Authors):

      (3) I think Supplementary Figures 8 and 9 are more visually informative than Figure 2.

      Thank you for your response. We performed the analysis in Figure 2 to show how IBD varies between different regions and is higher within a region than between.

      Reviewer #2 (Public Review):

      This manuscript describes P. falciparum population structure in Zanzibar and mainland Tanzania. 282 samples were typed using molecular inversion probes. The manuscript is overall well-written and shows a clear population structure. It follows a similar manuscript published earlier this year, which typed a similar number of samples collected mostly in the same sites around the same time. The current manuscript extends this work by including a large number of samples from coastal Tanzania, and by including clinical samples, allowing for a comparison with asymptomatic samples.

      The two studies made overall very similar findings, including strong small-scale population structure, related infections on Zanzibar and the mainland, near-clonal expansion on Pemba, and frequency of markers of drug resistance. Despite these similarities, the previous study is mentioned a single time in the discussion (in contrast, the previous research from the authors of the current study is more thoroughly discussed). The authors missed an opportunity here to highlight the similar findings of the two studies.

      Thank you for your insights. We appreciated the level of detail of your review and it strengthened our work. We have input additional sentences on lines 292-295, which now reads:

      “A recent study investigating population structure in Zanzibar also found local population microstructure in Pemba (Holzschuh et al., 2023). Further, both studies found near-clonal parasites within the same district, Micheweni, and found population microstructure over Zanzibar.”

      Strengths:

      The overall results show a clear pattern of population structure. The finding of highly related infections detected in close proximity shows local transmission and can possibly be leveraged for targeted control.

      Weaknesses:

      A number of points need clarification:

      (1) It is overall quite challenging to keep track of the number of samples analyzed. I believe the number of samples used to study population structure was 282 (line 141), thus this number should be included in the abstract rather than 391. It is unclear where the number 232 on line 205 comes from, I failed to deduct this number from supplementary table 1.

      Thank you for this point. We have included 282 instead of 391 in the abstract. We added a statement in the results at lines 203-205 to clarify this point, which now reads:

      “PCA analysis of 232 coastal Tanzanian and Zanzibari isolates, after pruning 51 samples with an IBD of greater than 0.9 to one representative sample, demonstrates little population differentiation (Figure 1A).”

      (2) Also, Table 1 and Supplementary Table 1 should be swapped. It is more important for the reader to know the number of samples included in the analysis (as given in Supplementary Table 1) than the number collected. Possibly, the two tables could be combined in a clever way.

      Thank you for this advice. Rather than switch to another table altogether, we appended two columns to the original table to better portray the information (see Table 1).

      Methods

      (3) The authors took the somewhat unusual decision to apply K-means clustering to GPS coordinates to determine how to combine their data into a cluster. There is an obvious cluster on Pemba islands and three clusters on Unguja. Based on the map, I assume that one of these three clusters is mostly urban, while the other two are more rural. It would be helpful to have a bit more information about that in the methods. See also comments on maps in Figures 1 and 2 below.

      Cluster 3 is a mix of rural/urban while the clusters 2, 4 and 5 are mostly rural. This analysis was performed to see how IBD changes in relation to local context within different regions in Zanzibar, showing that there is higher IBD within locale than between locale.

      (4) Following this point, in Supplemental Figure 5 I fail to see an inflection point at K=4. If there is one, it will be so weak that it is hardly informative. I think selecting 4 clusters in Zanzibar is fine, but the justification based on this figure is unclear.

      The K-means clustering experiment was used to cluster a continuous space of geographic coordinates in order to compare genetic relatedness in different regions. We selected this inflection point based on the elbow plot and based the number to obtain sufficient subsections of Zanzibar to compare genetic relatedness. This point is added to the methods at lines 174-178, which now reads:

      “The K-means clustering experiment was used to cluster a continuous space of geographic coordinates in order to compare genetic relatedness in different regions. We selected K = 4 as the inflection point based on the elbow plot (Supplemental Figure 5) and based the number to obtain sufficient subsections of Zanzibar to compare genetic relatedness.”

      (5) For the drug resistance loci, it is stated that "we further removed SNPs with less than 0.005 population frequency." Was the denominator for this analysis the entire population, or were Zanzibar and mainland samples assessed separately? If the latter, as for all markers <200 samples were typed per site, there could not be a meaningful way of applying this threshold. Given data were available for 200-300 samples for each marker, does this simply mean that each SNP needed to be present twice?

      Population frequency is calculated based on the average within sample allele frequency of each individual in the population, which is an unbiased estimator. Within sample allele frequency can range from 0 to 1. Thus, if only one sample has an allele and it is at 0.1 within sample frequency, the population allele frequency would be 0.1/100 = 0.001. This allele is removed even though this would have resulted in a prevalence of 0.01. This filtering is prior to any final summary frequency or prevalence calculations (see MIP variant Calling and Filtering section in the methods). This protects against errors occurring only at low frequency.

      Discussion:

      (6) I was a bit surprised to read the following statement, given Zanzibar is one of the few places that has an effective reactive case detection program in place: "Thus, directly targeting local malaria transmission, including the asymptomatic reservoir which contributes to sustained transmission (Barry et al., 2021; Sumner et al., 2021), may be an important focus for ultimately achieving malaria control in the archipelago (Björkman & Morris, 2020)." I think the current RACD program should be mentioned and referenced. A number of studies have investigated this program.

      Thank you for this point. We have added additional context and clarification on lines 275-280, which now reads:

      “Thus, directly targeting local malaria transmission, including the asymptomatic reservoir which contributes to sustained transmission (Barry et al., 2021; Sumner et al., 2021), may be an important focus for ultimately achieving malaria control in the archipelago (Björkman & Morris, 2020). Currently, a reactive case detection program within index case households is being implemented, but local transmission continues and further investigation into how best to control this is warranted (Mkali et al. 2023).”

      (7) The discussion states that "In Zanzibar, we see this both within and between shehias, suggesting that parasite gene flow occurs over both short and long distances." I think the term 'long distances' should be better defined. Figure 4 shows that highly related infections rarely span beyond 20-30 km. In many epidemiological studies, this would still be considered short distances.

      Thank you for this point. We have edited the text at lines 287-288 to indicate that highly related parasites mainly occur at the range of 20-30km, which now reads:

      “In Zanzibar, highly related parasites mainly occur at the range of 20-30km.”

      (8) Lines 330-331: "Polymorphisms associated with artemisinin resistance did not appear in this population." Do you refer to background mutations here? Otherwise, the sentence seems to repeat lines 324. Please clarify.

      We are referring to the list of Pfk13 polymorphisms stated in the Methods from lines 146-148. We added clarifying text on lines 326-329:

      “Although polymorphisms associated with artemisinin resistance did not appear in this population, continued surveillance is warranted given emergence of these mutations in East Africa and reports of rare resistance mutations on the coast consistent with spread of emerging Pfk13 mutations (Moser et al., 2021). “

      (9) Line 344: The opinion paper by Bousema et al. in 2012 was followed by a field trial in Kenya (Bousema et al, 2016) that found that targeting hotspots did NOT have an impact beyond the actual hotspot. This (and other) more recent finding needs to be considered when arguing for hotspot-targeted interventions in Zanzibar.

      We added a clarification on this point on lines 335-345, which now reads:

      “A recent study identified “hotspot” shehias, defined as areas with comparatively higher malaria transmission than other shehias, near the port of Zanzibar town and in northern Pemba (Bisanzio et al., 2023). These regions overlapped with shehias in this study with high levels of IBD, especially in northern Pemba (Figure 4). These areas of substructure represent parasites that differentiated in relative isolation and are thus important locales to target intervention to interrupt local transmission (Bousema et al., 2012). While a field cluster-randomized control trial in Kenya targeting these hotspots did not confer much reduction of malaria outside of the hotspot (Bousema et al. 2016), if areas are isolated pockets, which genetic differentiation can help determine, targeted interventions in these areas are likely needed, potentially through both mass drug administration and vector control (Morris et al., 2018; Okell et al., 2011). Such strategies and measures preventing imported malaria could accelerate progress towards zero malaria in Zanzibar.”

      Figures and Tables:

      (10) Table 2: Why not enter '0' if a mutation was not detected? 'ND' is somewhat confusing, as the prevalence is indeed 0%.

      Thank you for this point. We have put zero and also given CI to provide better detail.

      (11) Figure 1: Panel A is very hard to read. I don't think there is a meaningful way to display a 3D-panel in 2D. Two panels showing PC1 vs. PC2 and PC1 vs. PC3 would be better. I also believe the legend 'PC2' is placed in the wrong position (along the Y-axis of panel 2).

      Supplementary Figure 2B suffers from the same issue.

      Thank you for your comment. A revised Figure 1 and Supplemental Figure 2 are included, where there are separate plots for PC1 vs. PC2 and PC1 vs. PC3.

      (12) The maps for Figures 1 and 2 don't correspond. Assuming Kati represents cluster 4 in Figure 2, the name is put in the wrong position. If the grouping of shehias is different between the Figures, please add an explanation of why this is.

      Thank you for this point. The districts with at least 5 samples present are plotted in the map in Figure 1B. In Figure 2, a totally separate analysis was performed, where all shehias were clustered into separate groups with k-means and the IBD values were compared between these clusters. These maps are not supposed to match, as they are separate analyses. Figure 1B is at the district level and Figure 2 is clustering shehias throughout Zanzibar.

      The figure legend of Figure 1B on lines 410-414 now reads:

      “B) A Discriminant Analysis of Principal Components (DAPC) was performed utilizing isolates with unique pseudohaplotypes, pruning highly related isolates to a single representative infection. Districts were included with at least 5 isolates remaining to have sufficient samples for the DAPC. For plotting the inset map, the district coordinates (e.g. Mainland, Kati, etc.) are calculated from the averages of the shehia centroids within each district.”

      The figure legend of Figure 2 on lines 417-425 now reads:

      “Figure 2. Coastal Tanzania and Zanzibari parasites have more highly related pairs within their given region than between regions. K-means clustering of shehia coordinates was performed using geographic coordinates all shehias present from the sample population to generate 5 clusters (colored boxes). All shehias were included to assay pairwise IBD between differences throughout Zanzibar. Pairwise comparisons of within cluster IBD (column 1 of IBD distribution plots) and between cluster IBD (column 2-5 of IBD distribution plots) was done for all clusters. In general, within cluster IBD had more pairwise comparisons containing high IBD identity.”

      (13) Figure 2: In the main panel, please clarify what the lines indicate (median and quartiles?). It is very difficult to see anything except the outliers. I wonder whether another way of displaying these data would be clearer. Maybe a table with medians and confidence intervals would be better (or that data could be added to the plots). The current plots might be misleading as they are dominated by outliers.

      Thank you for this point and it greatly improved this figure. We changed the plotting mechanisms through using a beeswarm plot, which plots all pairwise IBD values within each comparison group.

      (14) In the insert, the cluster number should not only be given as a color code but also added to the map. The current version will be impossible to read for people with color vision impairment, and it is confusing for any reader as the numbers don't appear to follow any logic (e.g. north to south).

      Thank you very much for these considerations. We changed the color coding to a color blind friendly palette and renamed the clusters to more informative names; Pemba, Unguja North (Unguja_N), Unguja Central (Unguja_C), Unguja South (Unguja_S) and mainland Tanzania (Mainland).

      (15) The legend for Figure 3 is difficult to follow. I do not understand what the difference in binning was in panels A and B compared to C.

      Thank you for this point. We have edited the legend to reflect these changes. The legend for Figure 3 on lines 427-433 now reads:

      “Figure 3. Isolation by distance is shown between all Zanzibari parasites (A), only Unguja parasites (B) and only Pemba parasites (C). Samples were analyzed based on geographic location, Zanzibar (N=136) (A), Unguja (N=105) (B) or Pemba (N=31) (C) and greater circle (GC) distances between pairs of parasite isolates were calculated based on shehia centroid coordinates. These distances were binned at 4km increments out to 12 km. IBD beyond 12km is shown in Supplemental Figure 8. The maximum GC distance for all of Zanzibar was 135km, 58km on Unguja and 12km on Pemba. The mean IBD and 95% CI is plotted for each bin.”

      (16) Font sizes for panel C differ, and it is not aligned with the other panels.

      Thank you for pointing this out. Figure 3 and Supplemental Figure 10 are adjusted with matching formatting for each plot.

      (17) Why is Kusini included in Supplemental Figure 4, but not in Figure 1?

      In Supplemental Figure 4, all isolates were used in this analysis and isolates with unique pseudohaplotypes were not pruned to a single representative infection. That is why there are additional isolates in Kusini. The legend for Supplemental Figure 4 now reads:

      “Supplemental Figure 4. PCA with highly related samples shows population stratification radiating from coastal Mainland to Zanzibar. PCA of 282 total samples was performed using whole sample allele frequency (A) and DAPC was performed after retaining samples with unique pseudohaplotypes in districts that had 5 or more samples present (B). As opposed to Figure 1, all isolates were used in this analysis and isolates with unique pseudohaplotypes were not pruned to a single representative infection.”

      (18) Supplemental Figures 6 and 7: What does the width of the line indicate?

      The sentence below was added to the figure legends of Supplemental Figures 6 and 7 and the legends of each network plot were increased in size:

      “The width of each line represents higher magnitudes of IBD between pairs.”

      (19) What was the motivation not to put these lines on the map, as in Figure 4A? This might make it easier to interpret the data.

      Thank you for this comment. For Supplemental Figure 8 and 9, we did not put these lines that represent lower pairwise IBD to draw the reader's attention to the highly related pairs between and within shehias.

      Reviewer #2 (Recommendations For The Authors):

      (1) There is a rather long paragraph (lines 300-323) on COI of asymptomatic infections and their genetic structure. Given that the current study did not investigate most of the hypotheses raised there (e.g. immunity, expression of variant genes), and the overall limited number of asymptomatic samples typed, this part of the discussion feels long and often speculative.

      Thank you for your perspective. The key sections highlighted in this comment, regarding immunity and expression of variant genes, were shortened. This section on lines 300-303 now reads:

      “Asymptomatic parasitemia has been shown to be common in falciparum malaria around the globe and has been shown to have increasing importance in Zanzibar (Lindblade et al., 2013; Morris et al., 2015). What underlies the biology and prevalence of asymptomatic parasitemia in very low transmission settings where anti-parasite immunity is not expected to be prevalent remains unclear (Björkman & Morris, 2020).”

      (2) As a detail, line 304 mentions "few previous studies" but only one is cited. Are there studies that investigated this and found opposite results?

      Thank you for this comment. We added additional studies that did not find an association between clinical disease and COI. These changes are on lines 303-308, which now reads:

      “Similar to a few previous studies, we found that asymptomatic infections had a higher COI than symptomatic infections across both the coastal mainland and Zanzibar parasite populations (Collins et al., 2022; Kimenyi et al., 2022; Sarah-Matio et al., 2022). Other studies have found lower COI in severe vs. mild malaria cases (Robert et al., 1996) or no significant difference between COI based on clinical status (Earland et al. 2019; Lagnika et al. 2022; Conway et al. 1991; Kun et al. 1998; Tanabe et al. 2015)”

      (3) Table 2: Percentages need to be checked. To take one of several examples, for Pfk13-K189N a frequency of 0.019 for the mutant allele is given among 137 samples. 2/137 equals to 0.015, and 3/137 to 0.022. 0.019 cannot be achieved. The same is true for several other markers. Possibly, it can be explained by the presence of polyclonal infections. If so, it should be clarified what the total of clones sequenced was, and whether the prevalence is calculated with the number of samples or number of clones as the denominator.

      Thank you for this point. We mistakenly reported allele frequency instead of prevalence. An updated Table 2 is now in the manuscript. The method for calculating the prevalence is now at lines 148-151:

      “Prevalence was calculated separately in Zanzibar or mainland Tanzania for each polymorphism by the number of samples with alternative genotype calls for this polymorphism over the total number of samples genotyped and an exact 95% confidence interval was calculated using the Pearson-Klopper method for each prevalence.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents useful findings regarding the role of formin-like 2 in mouse oocyte meiosis. The submitted data are supported by incomplete analyses, and in some cases, the conclusions are overstated. If these concerns are addressed, this paper would be of interest to reproductive biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The presented study focuses on the role of formin-like 2 (FMNL2) in oocyte meiosis. The authors assessed FMNL2 expression and localization in different meiotic stages and subsequently, by using siRNA, investigated the role of FMNL2 in spindle migration, polar body extrusion, and distribution of mitochondria and endoplasmic reticulum (ER) in mouse oocytes.

      Strengths:

      Novelty in assessing the role of formin-like 2 in oocyte meiosis.

      Weaknesses:

      Methods are not properly described.

      Overstating presented data.

      It is not clear what statistical tests were used.

      My main concern is that there are missing important details of how particular experiments and analyses were done. The material and methods section are not written in the way that presented experiments could be repeated - it is missing basic information (e.g., used mouse strain, timepoints of oocytes harvest for particular experiments, used culture media, image acquisition parameters, etc.). Some of the presented data are overstated and incorrectly interpreted. It is not clear to me how the analysis of ER and mitochondria distribution was done, which is an important part of the presented data interpretation. I'm also missing important information about the timing of particular stages of assessed oocytes because the localization of both ER and mitochondria differs at different stages of oocyte meiosis. The data interpretation needs to be justified by proper analysis based on valid parameters, as there is considerable variability in the ER and mitochondria structure and localization across oocytes based on their overall quality and stage.

      Thank you for your comment. We regret the oversight of omitting critical information in the manuscript. In the revised manuscript, we have included essential details such as mouse strains, culture media, stages of oocyte and statistical methods in the materials and methods section. Please find our details responses in the “Recommendations for the authors” part.

      Reviewer #2 (Public Review):

      Summary:

      This research involves conducting experiments to determine the role of Fmnl2 during oocyte meiosis I.

      Strengths:

      Identifying the role of Fmnl2 during oocyte meiosis I is significant.

      Weaknesses:

      The quantitative analysis and the used approach to perturb FMNL2 function are currently incomplete and would benefit from more confirmatory approaches and rigorous analysis.

      (1) Most of the results are expected. The new finding here is that FMNL2 regulates cytoplasmic F-actin in mouse oocytes, which is also expected given the role of FMNL2 in other cell types. Given that FMNL2 regulates cytoplasmic F-actin, it is very expected to see all the observed phenotypes. It is already established that F-actin is required for spindle migration to the oocyte cortex, extruding a small polar body and normal organelle distribution and functions.

      Thank you for your comment. In the recent decade, Arp2/3 complex (Nat Cell Biol 2011), Formin2 (Nat Cell Biol 2002, Nat Commun 2020), and Spire (Curr Biol 2011) were reported to be 3 key factors to involve into this process. These factors regulate actin filaments in different ways. However, how they cross with each other for the subcellular events were still fully clear. Our current study identified that FMNL2 played a critical role in coordinating these molecules for actin assembly in oocytes. Our findings demonstrate that FMNL2 interacts with both the Arp2/3 complex and Formin2 to facilitate actin-based meiotic spindle migration. Additionally, we discovered a novel role for FMNL2 in determining the distribution and function of the endoplasmic reticulum and mitochondria, which may in turn influence meiotic spindle migration in oocytes. Our results not only uncover the novel functions of FMNL2-mediated actin for organelle distribution, but also extend our understanding of the molecular basis for the unique meiotic spindle migration in oocyte meiosis.

      (2) The authors used Fmnl2 cRNA to rescue the effect of siRNA-mediated knockdown of Fmnl2. It is not clear how this works. It is expected that the siRNA will also target the exogenous cRNA construct (which should have the same sequence as endogenous Fmnl2) especially when both of them were injected at the same time. Is this construct mutated to be resistant to the siRNA?

      Thank you for your question. We regret any misunderstanding that may have been caused by the inappropriate description in our manuscript. In the rescue experiments, we initially injected FMNL2 siRNA into oocytes, followed by the microinjection of FMNL2 mRNA 18-20 hours later. After conducting our previous experiments, we have verified through Western blotting that endogenous FMNL2 is effectively suppressed 18-20 hours following the microinjection of FMNL2 siRNA. Additionally, we observed a significant increase in exogenous FMNL2 protein expression 2 hours after the injection of FMNL2 mRNA. We believe that the exogenous FMNL2 could compensate the decrease by FMNL2 knockdown, and this approach was adopted in many oocyte studies.

      (3) The authors used only one approach to knockdown FMNL2 which is by siRNA. Using an additional approach to inhibit FMNL2 would be beneficial to confirm that the effect of siRNA-mediated knockdown of FMNL2 is specific.

      Thank you for your question. Yes, the specificity is always the concern for siRNA or morpholino microinjection due to the off-target issue. Due to the limitation we could not generate the knock out model, and there are no known inhibitors with specific targeting capabilities for FMNL2. To solve this, we performed the rescue study with exogenous mRNA to confirm the effective knock down of FMNL2. These measures provide reassurance regarding the credibility of the experimental outcomes, and this is also the general way to avoid the off-target of siRNA or morpholino.

      Reviewer #3 (Public Review):

      Summary:

      The authors focus on the role of formin-like protein 2 in the mouse oocyte, which could play an important role in actin filament dynamics. The cytoskeleton is known to influence a number of cellular processes from transcription to cytokinesis. The results show that downregulation of FMNL2 affects spindle migration with resulting abnormalities in cytokinesis in oocyte meiosis I.

      Weaknesses:

      The overall description of methods and figures is overall dismissively poor. The description of the sample types and number of replicate experiments is impossible to interpret throughout, and the quantitative analysis methods are not adequately described. The number of data points presented is unconvincing and unlikely to support the conclusions. On the basis of the data presented, the conclusions appear to be preliminary, overstated, and therefore unconvincing.

      Thank you for your comment. We regret the oversight of omitting critical information in the manuscript. In the revised manuscript, we have incorporated your suggestions for modification, particularly regarding the Materials and Methods section. Please see the detailed revision and responses in the “Recommendations for the authors” part.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for The Authors):

      My main concern is that there are missing important details of how particular experiments and analyses were done. The material and methods section is not written in the way that presented experiments could be repeated - it is missing basic information (e.g., used mouse strain, timepoints of oocytes harvest for particular experiments, used culture media, image acquisition parameters, etc.). Some of the presented data are overstated and incorrectly interpreted. It is not clear to me how the analysis of ER and mitochondria distribution was done, which is an important part of the presented data interpretation. I'm also missing important information about the timing of particular stages of assessed oocytes because the localization of both ER and mitochondria differs at different stages of oocyte meiosis. The data interpretation needs to be justified by proper analysis based on valid parameters, as there is considerable variability in the ER and mitochondria structure and localization across oocytes based on their overall quality and stage. My specific comments are listed below.

      (1) Information about statistical tests that were used needs to be provided for all quantification experiments.

      Thank you for your suggestion. Based on your suggestions, we revised the statistical analysis description in the Materials and Methods section. Additionally, we also included a description of the statistical methods in the legends of the relevant result figures.

      (2) I recommend replacing the plunger plots, used in most quantification data, with alternatives allowing evaluation of the distribution of the data (dot plots, box plots, whisker plots).

      Thank you for your suggestion. Following your suggestion, we replaced the plunger plots in Fig 2C, D, H, I and Fig3 B, C with dot plots.

      (3) Can the authors provide information about particular time points when were individual oocyte stages (GVBD, meiosis I, and meiosis II) harvested/used for immunofluorescence protein detection, western blotting, microinjection, and ER and mitochondria staining? Were the time points always the same in all presented experiments and experimental vs control group? If not, this needs to be clarified.

      Thank you for your suggestion. We used oocytes in the metaphase I (MI) stage for the statistical analysis of spindle migration, actin filament aggregation, endoplasmic reticulum localization, and mitochondrial localization. In the Western blot analysis, GV stage oocytes were utilized to evaluate the efficiency of knockdown and rescue experiments. The protein expression levels of Arp2, Formin2, INF2, Cofilin, Grp78, and Chop in different treatment groups were detected using MI-stage oocytes. In the revised version, we provided all the detailed information about the stages.

      (4) Figure 1B: Can the authors comment on why there is a missing representative image of MII oocyte FMBL2-Ab? I recommend including this in the figure to have a complete view of comparing overexpressed and endogenous FMNL2 localization in oocyte meiosis.

      Thank you for your suggestion. In the revised manuscript, we added immunostaining images of FMNL2 antibody in MII stage oocytes.

      (5) Figure 1C: The figure legend says, "FMNL2 and actin overlapped in cortex and spindle surrounding". In MI oocytes, there is usually no accumulated actin signal around the spindle, which is also true in the presented images, so there cannot be overlapping with the FMNL2 signal. The interpretation should be changed.

      We apologize for this inappropriate description that was used, and we deleted this sentence.

      (6) Figure 2B: What were the parameters of the "large" and "normal" polar bodies for performing the analysis?

      Thank you for your question. In order to assess the size of the polar body, we conducted a comparison between the diameter of the polar body and that of the oocyte. If the diameter of the polar body was found to be less than 1/3 of the oocyte's diameter, we categorized it as normal-sized polar body. Conversely, if the polar body's diameter exceeded 1/3 of the oocyte's diameter, we categorized it as a large polar body. We have included these details in the Results section of the manuscript.

      (7) Figure 2F: Can the authors comment on what can be the second band in the rescue group?

      Thank you for your question. In the rescue experiment, we microinjected exogenous FMNL2-EGFP mRNA into the oocytes. As a result, compared to endogenous FMNL2, the protein size increased due to the addition of the EGFP tag, approximately 27 kDa. Hence, in the Western blot bands of the rescue group, the upper band represents the expression of exogenous FMNL2-EGFP, while the lower band corresponds to the expression of endogenous FMNL2. We have provided annotations in the revised Figure 2F to clarify this.

      (8) Can the authors comment on the variability of PBE between 2C and 2H in the FMNL2-KD groups? In panel C, the PBE in the KD group was 59.5 {plus minus} 2.82%; in panel H, the PBE in the KD group was 48.34 {plus minus} 4.2%, and in the rescue group, the PBE was 62.62 {plus minus} 3.6%. The rescue group has a similar PBE rate as the KD group in panel C. How consistent was the FMNL2 knockdown across individual replicates? Can the authors provide more details on how the rescue experiment was performed?

      Thank you for your question. We believe that the difference in PBE observed in Figure 2C and 2H of the FMNL2-KD group was due to the microinjection times and the duration of in vitro arrest. The results shown in Figure 2C depict the outcome of a single injection of FMNL2 siRNA into GV stage oocytes, followed by 18 hours of in vitro arrest; the results shown in Figure 2H contain a subsequent additional injection of FMNL2-EGFP mRNA with another 2 hours of arrest. The two rounds of microinjection and the extended period of in vitro arrest both affect oocyte maturation rates.

      (9). Figure 2J and K: What groups were compared together? The used statistic needs to be properly described.

      Thank you for your question. The FMNL2-KD, FMNL3-KD, and FMNL2+3-KD groups were all compared to the Control group, therefore, t-test was used for analysis. We have provided explanations in the revised manuscript.

      (10) Figure 4B and C: Can the authors provide representative images without oversaturated actine signal?

      Thank you for your question. For the analysis of oocyte F-actin, the F-actin are divided into cortex actin and cytoplasmic actin. Due to the contrast during imaging, the strong cortex actin signals affected the detection of cytoplasmic actin, therefore, it is necessary to increase the scanning index, which will cause the overexpose the cortex actin signal. This is for the better observation of the cytoplasmic signals.

      (11) Figure 4G + 5H: Can the authors comment on why they used as a housekeeping gene actin instead of tubulin, which was used in the rest of the WB experiments?

      Thank you for your question. In most of the western blot experiments conducted in this study, we used tubulin as a housekeeping gene. However, due to the supply of antibodies by delivery period, we had GAPDH and actin as well for some experiments. These housekeeping genes were all valid for the study.

      (12) Based on what parameters was ER considered normally or abnormally distributed, and what stages of oocytes were assessed?

      Thank you for your question. In this study, we employed oocytes at the MI stage for the analysis of ER localization. In the MI stage, the ER localized around the spindle, which is regarded as the typical localization pattern. The ER displayed a dispersed distribution throughout the cytoplasm or clustered were categorized as aberrant positioning. We included relevant descriptions in the revised version of the manuscript.

      (13) Figure 5H: As a housekeeping gene was used actin - the quantification is labeled as a Grp78 to tubulin ratio.

      Thank you for pointing out the error. This is a label mistake and we corrected it.

      (14) Information about how JC-1 staining was done needs to be provided.

      Thank you for your carefully reading. We included a description of JC1 staining in the Materials and Methods section.

      (15). Line 231-232: "As shown in Figure 4A" - the text doesn't correspond to the figure.

      Thank you for pointing out the error. We revised this mistake in the revised manuscript by correcting "Fig3A" to "Fig4A."

      (16) Line 265: there is probably a missing word "Formin2".

      Thank you and we corrected the error and made the necessary changes in the revised manuscript.

      Reviewer #2 (Recommendations for The Authors):

      (1) Quantification and analysis:

      • Fig. 3B: The rate of spindle migration should be quantified based on the distance from the spindle to the cortex. Also, the orientation of the spindle (Z-position) needs to be taken into consideration.

      • Fig. 5C, D: It is unclear how the rate of ER distribution was calculated.

      • Western blot: In many experiments (such as Fig. 5H), the bands are saturated which will prevent accurate intensity measurements and quantifications.

      For spindle migration, we specifically focused on spindles exhibiting a distinctive spindle-like shape with clear bipolarity to eliminate any statistical discrepancies potentially caused by variations in Z-axis alignment. Our criterion for determining successful migration was based on the contact between the spindle pole and the cortical region of the oocyte. Therefore, we think that the rate is better to reflect the phenotype than the distance.

      For the examination of ER localization, Reviewer 1 also raised this issue. We utilized oocytes at the MI stage in this study. The ER localized around the spindle in MI stage. The ER displayed a dispersed distribution throughout the cytoplasm or clustered were categorized as aberrant positioning. We included relevant descriptions in the revised version of the manuscript.

      For the bands of the western blot results, during the experimental procedure we typically capture multiple images at different exposure levels (3-5 images). In the revised manuscript, we have replaced the inappropriate images with more suitable ones.

      (2) Given that all Immunoprecipitation experiments in this manuscript were performed on the whole ovary which contains more somatic cells than oocytes, the results do not necessarily reflect meiotic oocytes. Please consider this possibility during the interpretation.

      Thank you for your suggestion. Yes, we agree with you. In the revised manuscript, we made appropriate modifications to the relevant descriptions.

      (3) 351-365: The conclusion that Arp2/3 compensates for the decreased formin 2 in FMNL2 knockdown oocytes is a bit unconvincing. 1- In mouse oocytes, it is already known that Arp2/3 and formin 2 regulate different pools of F-actin nucleation. 2- The authors found an increase in Arp2/3 in FMNL2 knockdown oocytes compared to control oocytes without any change in cortical F-actin. Given that Arp2/3 is primarily promoting cortical F-actin, it is expected to see an increase in cortical F-actin in FMNL2 knockdown oocytes, which was not the case.

      Thank you for your question. Yes, previous studies showed that formin2 localizes to the cytoplasm of oocytes and accumulates around the spindle, which facilitate cytoplasmic actin assembly. While Arp2/3 is primarily responsible for actin assembly at the cortex region of oocytes. In invasive cells, FMNL2 is mainly localized in the leading edge of the cell, lamellipodia and filopodia tips, to improve cell migration ability by actin-based manner (Curr Biol 2012). We showed that FMNL2 localized both at spindle periphery and cortex, but depletion of FMNL2 did not affect cortex actin intensity. We think that FMNL2 and Arp2/3 both contribute to the cortex actin dynamics, when FMNL2 decreased, ARP2 increased to compensate for this, which maintained the cortex actin level. In the revised manuscript, we have made modifications to avoid excessive extrapolation from our results, ensuring that our conclusions are presented in a more objective manner.

      (4) Lines 195-197: The spindle is initially formed soon after the GVBD, so there is no spindle during GVBD. Also, I can't see oocytes at anaphase I or telophase I in this figure. Please revise.

      Thank you for your suggestion. We apologize for the inappropriate descriptions that were used. In the revised manuscript, we have made modifications to the respective descriptions in the Results part.

      (5) Fig. 2E: It seems that the control oocyte is abnormal with mild cytokinesis defects. Please replace or delete it since this information is already included in Fig. 3A.

      Thank you for your suggestion. Based on our observations, during the extrusion of the first polar body in oocytes, there is a temporary occurrence of cellular morphological fragmentation due to cortical reorganization (11h in control oocyte from Fig 2E). However, after the extrusion of the first polar body, the oocyte morphology returns to normal. Figure 2E illustrates the meiotic division process of oocytes, while Figure 3A primarily focuses on the process of oocyte spindle migration. We think that it is better to retain both to present our results.

      Reviewer #3 (Recommendations for The Authors):

      In the case of the observed phenotype, the stage of GV is important. The phenotypes presented also occur in meiotic or developmentally incompetent oocytes. In addition, the images of GV oocytes appear as NSN, which also show the KD phenotype in Figs. 2 and 3.

      Thank you for your concern. As the oocyte grows, the proportion of SN-type oocytes gradually increases. When the oocyte diameter reaches 70-80 μm, the proportion of SN oocytes is approximately 52.7% (Mol Reprod Dev. 1995). In our study, both the control and knockdown groups collected oocytes with a diameter of around 80 μm, which is considered as fully-grown oocytes, predominantly in the SN phase. Since the collection period and size of the oocytes were consistent, we can sure that the observed differences between the control and knockdown groups in phenotype analysis could be solid and reliable.

      MII is absent in Fig. 1B.

      In the revised manuscript, we added immunostaining images of FMNL2 in MII stage oocytes.

      The result of KD is not convincing. Also, discuss whether the heterozygous effect of Fmnl2 deletion affects reproductive fitness.

      Thank you for your concern. In our investigation, limited to the setup of knock out model, we employed siRNA to knockdown FMNL2 expression, to avoid the risk of off-target, we performed rescue experiment with exogenous mRNA, which we believe that it could solve this issue. When designing siRNA sequences, we ensured their specificity for binding to FMNL2 mRNA only, and we assessed the levels of FMNL2 and FMNL3 mRNA in oocytes after injection of FMNL2 siRNA. The results showed that, compared to the control group, the expression of FMNL2 mRNA decreased by approximately 70% after 18 hours of FMNL2 siRNA injection, while the level of FMNL3 mRNA was not decreased.

      Fig. 2F rescue experiment with double bands. What bands are seen here? Did the authors inject tagged or untagged FMNL2? Or does endogenous FMNL2 appear higher in the sample after KD?

      Thank you for your question. In the rescue experiment, we microinjected exogenous FMNL2-EGFP mRNA into the oocytes. As a result, compared to endogenous FMNL2, the protein size increased due to the addition of the EGFP tag, approximately 27 kDa. Hence, in the Western blot bands of the rescue group, the upper band represents the expression of exogenous FMNL2-EGFP, while the lower band corresponds to the expression of endogenous FMNL2. We provided annotations in the revised Figure 2F to clarify this.

      Variability in mitochondria and ER distribution patterns is also known in healthy and developing oocytes, although the authors described only a single phenotype.

      Thank you for your concern. Yes, mitochondria and ER show dynamic localization in different stage of oocyte maturation. However, in this study we employed oocyte MI stage for the analysis of ER and mitochondria localization, and in MI stage, both the ER and mitochondria localize around the spindle. This pattern is considered as the normal localization. Several studies showed that dispersed or clustered localization contributed to maturation defects. We included relevant descriptions in the revised manuscript.

      What exactly is meant by input in the IP experiments? Why is the target missing in the input sample?

      Thank you for your question. We subjected the input samples to electrophoresis on a single channel, all the analyzed proteins demonstrated normal expression, thereby confirming the viability of the input sample. However, upon simultaneous exposure with the IP samples, we observed a lack of clear signal for certain proteins in the input group. This phenomenon is due to the excessive signal intensity resulting from protein enrichment in the IP group, which caused the low exposure of proteins in input group.

      Explain the rationale for using, actin or tubulin as loading or normalization controls in the study focusing on the cytoskeleton.

      Thank you for your question. Actin and tubulin are both widely used as the control due to their stable expression. For actin, there are α-actin and β-actin isoforms. Formins and Arp2/3 complex regulate the polymerization of α-actin and β-actin to form F-actin, not isoform expression. In our study F-actin (the functional type) was examined. While α-tubulin and β-tubulin are two subtypes of tubulin, and they interact with each other to form stable α/β-tubulin heterodimers. The changes of cytoskeleton dynamics could not change the expression of α/β-tubulin. Therefore, β-actin and α-tubulin could be used as normalization controls.

      Fig. 6E shows only , but the legend says *.

      Thank you for pointing out the error. We correct the mistake in the revised manuscript.

      Spindle positioning appears to differ between control and KD. Does this affect the quantification of Fig. 6F? Adequate nomenclature should be used here.

      Thank you for your question. Yes, spindle positioning was affected by FMNL2 depletion. However, central spindle or cortex spindle all belong to MI stage, and JC1 is not related with the stage difference. To avoid misunderstanding we replaced the representative images and corresponding description in Figure 6F.

      The description of the methods and legends should be significantly improved.

      Thank you for your suggestion. Reviewer 1 and 2 also raised the similar concern. We enriched the description of methods and legends in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful comments. We were pleased that they thought our study was "well crafted and written", "important", and that it provides a "valuable resource for researchers studying color vision". They also expressed several constructive criticisms, concerning – among other things – the lack of details regarding experimental procedures and analysis, the challenge in relating retinal data to cortical recordings, and consistency of results across animals. In response to the reviewers’ comments and following their suggestions, we performed additional analyses, and substantially revised the paper:

      We added a section in the Discussion about "Limitations of the stimulus paradigm". In addition, we added a new Suppl. Figure that illustrates the effect of deconvolution of calcium traces on our results and clarified in the text why we use deconvolved signals for all analyses. The new Suppl. Figure also shows an additional analysis with a more conservative threshold of neuron exclusion.

      We now clarify how retinal signaling relates to our cortical results and rewrote the text to be more conservative regarding our conclusions.

      In addition, we added a new Suppl. Figure showing the key analyses from Figures 2 and 4 separately for each animal. We now mention consistency across animals in the Results section and clearly state which analyses were performed an data pooled across animals.

      We are positive that these additions address the issues raised by the reviewers. Please find our point-by-point replies to all comments below.

      eLife assessment

      Franke et al. explore and characterize the color response properties in the mouse primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The data is solid; however, the evidence supporting some conclusions and details about some procedures are incomplete. In its current form, the paper makes a useful contribution to how color is coded in mouse V1. Significance would be enhanced with some additional analyses and resolution of some technical issues.

      We thank the reviewers for appreciating our manuscript and their thoughtful comments.

      Referee 1 (Remarks to the Author):

      Summary:

      In this study, Franke et al. explore and characterize the color response properties across the primary visual cortex, revealing specific color opponent encoding strategies across the visual field. The authors use awake-behaving 2P imaging to define the spectral response properties of visual interneurons in Layer 2/3. They find that opponent responses are more prominent at photopic light levels, and diversity in color opponent responses exists across the visual science, with green ON/ UV OFF responses being stronger represented in the upper visual field. This is argued to be relevant for detecting certain features that are more salient when the chromatic space is used, possibly due to noise reductions.

      Strengths:

      The work is well crafted and written and provides a thorough characterization that reveals an uncharacterized diversity of visual properties in V1. I find this characterization important because it reveals how strongly chromatic information can modulate the response properties in V1. In the upper visual field, 25% of the cells differentially relay chromatic information, and one may wonder how this information will be integrated and subsequently used to aid vision beyond the detection of color per see. I personally like the last paragraph of the discussion that highlights this fact.

      We thank the reviewer for appreciating our manuscript.

      Weaknesses: One major point highlighted in this paper is the fact that Green ON/UV OFF responses are not generated in the retina. But glancing through the literature, I saw this is not necessarily true. Fig 1. of Joesch and Meister, a paper cited, shows this can be the case. Thus, I would not emphasize that this wasn’t present in the retina. This is a minor point, but even if the retina could not generate these signals, I would be surprised if the diversity of responses would only arise through feed-forward excitation, given the intricacies of cortical connectivity. Thus, I would argue that the argument holds for most of the responses seen in V1; they need to be further processed by cortical circuitries.

      We thank the reviewer for this comment. When analyzing available data from the retina using a similar center-surround color flicker stimulus (Szatko et al. 2020), we found that Green On/UV Off color opponency is very rare in the RF center of retinal ganglion cells (Suppl. Fig. 5). This suggests that center Green On/UV Off color opponency in V1 neurons is not inherited by the RF center of retinal neurons. However, we agree with the reviewer that retinal neurons might still contribute to V1 color opponency, for example by being center-surround color opponent (e.g. Joesch et al. 2016 and Szatko et al. 2020). We rephrased the text to acknowledge this fact.

      This takes me to my second point, defining center and surround. The center spot is 37.5 deg of visual angle, more than 1 mm of the retinal surface. That means that all retinal cells, at least half and most likely all of their surrounds will also be activated. Although 37.5 deg is roughly the receptive field size previously determined for V1 neurons, the one-to-one comparison with retinal recording, particularly with their center/surround properties, is difficult. This should be discussed. I assume that the authors tried a similar approach with sparse or dense checker white noise stimuli. If so, it would be interesting if there were better ways of defining the properties of V1 neurons on their complex/simple receptive field properties to define how much of their responses are due to an activation of the true "center" or a coactivation of the surround. Interestingly, at least some of the cells (Fig. 1d, cells 2 and 5) don’t have a surround. Could it be that in these cases, the "center" and "surround" are being excited together? How different would the overall statistics change if one used a full-filed flicker stimulus instead of a center/surround stimulus? How stable are the results if the center/surround flicker stimulus is shifted? These results won’t change the fact that chromatic coding is present in the VC and that there are clear differences depending on their position, but it might change the interpretation. Thus, I would encourage you to test these differences and discuss them.

      Thanks for this comment. We agree with the reviewer that a one-to-one comparison of retina and V1 data is challenging, due to differences in both RF and stimulus size. We rephrased the Results text to clarify this point and now also mention it in the Discussion.

      To be able to record from many V1 neurons simultaneously, we used a stimulus size of 37.5 degree visual angle in diameter, which is slightly larger than center RFs of single V1 neurons. As the reviewer mentions, the disadvantage of this approach is that the stimulus is only roughly centered on the neurons’ center RFs. To reduce the impact of potential stimulus misalignment on our results, we used the following steps:

      For each recording, we positioned the monitor such that the mean RF across all neurons lies within the center of the stimulus field of view.

      We confirmed that this procedure results in good stimulus alignment for the large majority of recorded neurons within individual recording fields by using a sparse noise stimulus (Suppl. Fig. 1a-c). Specifically, we found that for 83% of tested neurons, more than two thirds of their center RF, determined by the sparse noise stimulus, overlapped with the center spot of the color noise stimulus.

      For analysis, we excluded neurons without a significant center STA, which may be caused by misalignment of the stimulus.

      Together, we believe these points strongly suggest that the center spot and the surround annulus of the noise stimulus predominantly drive center (i.e. classical RF) and surround (i.e. extraclassical RF), respectively, of the recorded V1 neurons. This is further supported by the fact that color response types identified using an automated clustering method were robust across mice (Suppl. Fig. 6c), indicating consistent stimulus centering.

      Nevertheless, we cannot exclude that the stimulus was misaligned for a subset of the recorded neurons used for analysis. We agree with the reviewer that such misalignment might have contributed to cells not having surround STAs, due to simultaneous activation of antagonistic center and surround RF components by the surround stimulus. While a full-field stimulus would get rid of the misalignment problem, it would not allow to study color tuning in center and surround RF components separately. Instead, one could compare the results of our approach with an approach that centers the stimulus on individual neurons. However, we believe that performing these additional experiments is out of the scope of the current study.

      To acknowledge the experimental limitations of our study and the concerns brought up by the reviewer, we now explicitly mention the steps we perform to reduce the effects of stimulus misalignment in the Results section and discuss the problem of stimulus alignment in the Discussion. We believe these changes will help the reader to interpret our results.

      Referee 2 (Remarks to the Author):

      Summary:

      Franke et al. characterize the representation of color in the primary visual cortex of mice and how it changes across the visual field, with a particular focus on how this may influence the ability to detect aerial predators. Using calcium imaging in awake, head-fixed mice, they characterize the properties of V1 neurons (layer 2/3) using a large center-surround stimulation where green and ultra-violet were presented in random combinations. Using a clustering approach, a set of functional cell-types were identified based on their preference to different combinations of green and UV in their center and surround. These functional types were demonstrated to have varying spatial distributions in V1, including one neuronal type (Green-ON/UV-OFF) that was much more prominent in the posterior V1 (i.e. upper visual field). Modelling work suggests that these neurons likely support the detection of predator-like objects in the sky.

      Strengths:

      The large-scale single-cell resolution imaging used in this work allows the authors to map the responses of individual neurons across large regions of the visual cortex. Combining this large dataset with clustering analysis enabled the authors to group V1 neurons into distinct functional cell types and demonstrate their relative distribution in the upper and lower visual fields. Modelling work demonstrated the different capacity of each functional type to detect objects in the sky, providing insight into the ethological relevance of color opponent neurons in V1.

      We thank the reviewer for appreciating our manuscript.

      Weaknesses:

      While the study presents solid evidence a few weaknesses exist, including the size of the dataset, clarity regarding details of data included in each step of the analysis and discussion of caveats of the work. The results presented here are based on recordings of 3 mice. While the number of neurons recorded is reasonably large (n > 3000) an analysis that tests for consistency across animals is missing. Related to this, it is unclear how many neurons at each stage of the analysis come from the 3 different mice (except for Suppl. Fig 4).

      Thank you for this comment. We apologize that the original manuscript did not clearly indicate the consistency of our results across animals. We have revised the manuscript in the following ways:

      We have added an additional Suppl. Figure, which shows the variability of the data within and across animals (Suppl. Fig. 4). Specifically, we show the distribution of color and luminance selectivity for (i) center and surround components of V1 RFs and (ii) for upper and lower visual field. This data is used for all analyses shown in Figures 2-4. The figure legend of this figure also states the number of neurons per animal.

      We now clearly state in the Results section that all analyses in the main figures were performed by pooling data across animals, and refer to the Suppl. Figures for consistency across animals.

      We believe these changes help the reader to interpret our results.

      Finally, the paper would greatly benefit from a more in depth discussion of the caveats related to the conclusion drawn at each stage of the analysis. This is particularly relevant regarding the caveats related to using spike triggered averages to assess the response preferences of ON-OFF neurons, and the conclusions drawn about the contribution of retinal color opponency.

      Thanks. We substantially revised the text to discuss caveats and limitations of the approach. For example, we added a section into the Discussion called "Limitations of the stimulus paradigm". In addition, we clarified how retinal signals relate to cortical ones and phrased our conclusions more conservatively.

      The authors provide solid evidence to support an asymmetric distribution of color opponent cells in V1 and a reduced color contrast representation in lower light levels. Some statements would benefit from more direct evidence such as the integration of upstream visual signals for color opponency in V1.

      Based on the comments from Reviewer 1, we have rephrased the statements regarding the integration of upstream visual signals for color opponency in V1. We think these revisions increase the clarity of the results and help the reader with interpretation.

      Overall, this study will be a valuable resource for researchers studying color vision, cortical processing, and the processing of ethologically relevant information. It provides a useful basis for future work on the origin of color opponency in V1 and its ethological relevance.

      Thanks! We thank the reviewer again for the helpful comments.

      Referee 3 (Remarks to the Author):

      This paper studies chromatic coding in mouse primary visual cortex. Calcium responses of a large collection of cells are measured in response to a simple spot stimulus. These responses are used to estimate chromatic tuning properties - specifically sensitivity to UV and green stimuli presented in a large central spot or a larger still surrounding region. Cells are divided based on their responses to these stimuli into luminance or chromatic sensitive groups. Several technical concerns limit how clearly the data support the conclusions. If these issues can be fixed, the paper would make a valuable contribution to how color is coded in mouse V1.

      We thank the reviewer for the helpful comments.

      Analysis: The central tool used to analyze the data is a "spike triggered average" of the responses to randomly varying stimuli. There are several steps in this analysis that are not documented, and hence evaluating how well it works is difficult. Central to this is that the paper does not measure spikes. Instead, measured calcium traces are converted to estimated spike rates, which are then used to estimate STAs. There are no raw calcium traces shown, and the approach to estimate spike rates is not described in any detail. Confirming the accuracy of these steps is essential for a reader to be able to evaluate the paper. Further, it is not clear why the linear filters connecting the recorded calcium traces and the stimulus cannot be estimated directly, without the intermediate step of estimating spike rates.

      Thank you for this comment. We have used the genetically encoded calcium sensor GCaMP6s in our recordings. This sensor is a very sensitive GCaMP6 variant, but also one with slow kinetics. To remove the effect of the slow sensor kinetics from recorded calcium responses, the recorded traces are commonly deconvolved with the impulse function of the sensor to obtain the deconvolved calcium traces. We now include this reasoning in the Results section. To illustrate the effect of the deconvolution, we added a new Suppl. Figure (Suppl. Fig. 2) showing raw calcium and deconvolved traces, and the STAs estimated from both types of traces. This illustrates that the results regarding neuronal color preferences are consistent across raw and deconvolved calcium traces.

      We agree with the reviewer that the term STA might be confusing. We have replaced it with the term "even-triggered-average" (ETA). In addition, we have replaced the phrase "estimated spike rate" with "deconvolved calcium trace" throughout the manuscript because the unit of the deconvolved traces is not interpretable, like spike rate would be (spikes per second). In the revised version, we now clarify in the Methods section that we estimate the ETAs based on deconvolved calcium traces, which is correlated with and an approximation for spike rate.

      A further issue about the STAs is that the inclusion criterion (correlation of predicted vs measured responses of 0.25) is pretty forgiving. It would be helpful to see a distribution of those correlation values, and some control analyses to check whether the STA is providing a sufficiently accurate measure to support the results (e.g. do the central results hold for the cells with the highest correlations).

      We thank the reviewer for this comment. To exclude noisy neurons from analysis, we used the following procedure:

      For each of the four stimulus conditions (center and surround for green and UV stimuli), kernel quality was measured by comparing the variance of the STA with the variance of the baseline, defined as the first 500 ms of the STA. Only cells with at least 10-times more variance of the kernel compared to baseline for UV or green center STA were considered for further analysis.

      We have added the distribution of quality values to a new Suppl. Figure (Suppl. Fig. 2d,e). We now also show the percentage of neurons above threshold, given different quality thresholds. Finally, we have repeated the analysis shown in Figure 2 for a much more conservative threshold, including only the top 25% of neurons (Suppl. Fig. 2e,f). We now mention this new analysis in the Methods and Results section.

      Limitations of stimulus choice: The paper relies on responses to a large (37.5 degree diameter) modulated spot and surrounding region. This spot is considerably larger than the receptive fields of both V1 cells and retinal ganglion cells. As a result, the spot itself is very likely to strongly activate both center and surround mechanisms, and responses of cells are likely to depend on where the receptive fields are located within the spot (and, e.g., how much of the true neural surround samples the center spot vs the surround region). The impact of these issues on the conclusions is considered briefly at the start of the results but needs to be evaluated in considerably more detail. This is particularly true for retinal ganglion cells given the size of their receptive fields (see also next point).

      We agree with the reviewer that the centering of the stimulus is critical and apologize if this point was not discussed sufficiently. To be able to record from many V1 neurons simultaneously, we used a stimulus size of 37.5 degree visual angle in diameter, which is slightly larger than center RFs of single V1 neurons. As the reviewer mentions, the disadvantage of this approach is that the stimulus is only roughly centered on the neurons’ center RFs. To reduce the impact of potential stimulus misalignment on our results, we have used different experimental and analysis steps and controls (see also second comment of Reviewer 1):

      For each recording, we positioned the monitor such that the mean RF across all neurons lies within the center of the stimulus field of view.

      We confirmed that this procedure results in good stimulus alignment for the large majority of recorded neurons within individual recording fields by using a sparse noise stimulus (Suppl. Fig. 1a-c). Specifically, we found that for 83% of tested neurons, more than two thirds of their center RF, determined by the sparse noise stimulus, overlapped with the center spot of the color noise stimulus.

      For analysis, we excluded neurons without a significant center STA, which may be caused by misalignment of the stimulus.

      We now mention those clearly in the Results section and added the limitations of our approach to the Discussion section.

      Comparison with retina: A key conclusion of the paper is that the chromatic tuning in V1 is not inherited from retinal ganglion cells. This conclusion comes from comparing chromatic tuning in a previously-collected data set from retina with the present results. But the retina recordings were made using a considerably smaller spot, and hence it is not clear that the comparison made in the paper is accurate. This issue may be handled by the analysis presented in the paper, but if so it needs to be described more clearly. The paper from which the retina data is taken argues that rod-cone chromatic opponency originates largely in the outer retina. This mechanism would be expected to be shared across retinal outputs. Thus it is not clear how the Green-On/UV-Off vs Green-Off/UV-On asymmetry could originate. This should be discussed.

      We agree with the reviewer that a one-to-one comparison of retina and V1 data is challenging, due to differences in both RF and stimulus size. We rephrased the Results text to clarify this point and now also mention it in the Discussion.

      When analyzing available data from the retina using a similar center-surround color flicker stimulus (Szatko et al. 2020), we found that Green On/UV Off color opponency is very rare in the RF center of retinal ganglion cells (Suppl. Fig. 5). This suggests that center Green On/UV Off color opponency in V1 neurons is not inherited by the RF center of retinal neurons. However, we agree with the reviewer that retinal neurons might still contribute to V1 color opponency, for example by being center-surround color opponent (e.g. Joesch et al. 2016 and Szatko et al. 2020). We rephrased the text to acknowledge this fact.

      Residual chromatic cells at low mesopic light levels The presence of chromatically tuned cells at the lowest light level probed is surprising. The authors describe these conditions as rod-dominated, in which case chromatic tuning should not be possible. This again is discussed only briefly. It either reflects the presence of an unexpected pathway that amplifies weak cone signals under low mesopic conditions such that they can create spectral opponency or something amiss in the calibrations or analysis. Data collected at still lower light levels would help resolve this.

      Thank you for this comment. We call the lowest light level "low mesopic" and "rod-dominated" because the spectral contrast of V1 center responses in posterior recording fields is green-shifted for this light level (Fig. 3a). This is only expected if responses in the UV-cone dominant ventral retina are predominantly driven by rod photoreceptors. We now explain this rationale in the Results section. In addition, we mention in the Discussion that future studies are required to test whether cone signals need to be amplified for low light levels. While we agree with the reviewer that it would be exciting to use even lower light levels during recordings, we believe this is out of the scope of the current study due to the technical challenges involved in achieving scotopic stimulation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We have revised the manuscript mainly in the following aspects: (1) the data of electrophysiological and behavioral responses of larvae and adults to trehalose have been added, and the related figures and texts have been modified accordingly; (2) the photos of taste organs of larvae and adults indicating the position of recorded sensilla have been added; (3) the potential off-target effects of GR knock-out on other GR expressions has been carefully explained and revised in the relevant text; (4) the abstract has been revised to present the findings more technically in a limited number of words; (5) some details of experiments in Materials and Methods and some new literatures have been added; (6) a new figure (Figure 8) summarizing the main findings of the study has been added.

      In the following, we respond to the reviewers’ comments and suggestions one by one. We hope that our answers will satisfy you and the three reviewers. We are also very happy to get further valuable advices from you.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The process of taste perception is significantly more intricate and complex in Lepidopteran insects. This investigation provides valuable insights into the role of Gustatory receptors and their dynamics in the sensation of sucrose, which serves as a crucial feeding cue for insects. The article highlights the differential sensitivity of Grs to sucrose and their involvement in feeding and insect behavior.

      Strengths:

      To support the notion of the differential specificity of Gr to sucrose, this study employed electrophysiology, ectopic expression of Grs in Xenopus, genome editing, and behavioral studies on insects. This investigation offers a fundamental understanding of the gustation process in lepidopteran insects and its regulation of feeding and other gustation-related physiological responses. This study holds significant importance in advancing our comprehension of lepidopteran insect biology, gustation, and feeding behavior.

      Thank you for your recognition of our research.

      Weaknesses:

      While this manuscript demonstrates technical proficiency, there exists an opportunity for additional refinement to optimize comprehensibility for the intended audience. Several crucial sugars have been overlooked in the context of electrophysiology studies and should be incorporated. Furthermore, it is imperative to consider the potential off-target effects of Gr knock-out on other Gr expressions. This investigation focuses exclusively on Gr6 and Gr10, while neglecting a comprehensive narrative regarding other Grs involved in sucrose sensation.

      We accept the reviewer's suggestion. Because trehalose is a main sugar in insect blood, and it is converted by insects after feeding on plant sugars, we have added the new data on electrophysiological and behavioral responses of larvae and adults of Helicoverpa armigera to trehalose (see Figure 1-2, Figure 1-figure supplement 1, Figure 2-figure supplement 1). Now, the total eight sugars include 2 pentoses (arabinose and xylose), 4 hexoses (fructose, fucose, galactose and glucose), and 2 disaccharides (sucrose and trehalose), which were chosen because they are mainly present in host-plants of H. armigera and/or representative in the structure and source of sugars.

      We fully agree to the reviewer’s opinion and have already taken the potential off-target effects of CRISPR/Cas9 knockout of Gr on other GR expressions into consideration. To predict the potential off-target sites of sgRNA of Gr6 and Gr10 establishing homozygous mutants using CRISPR/Cas9 technology, we first use online software CasOFFinder (http://www.rgenome.net/cas-offinder/) to blast the genome of the wild type cotton bollworm and set the mismatch number less than or equal to 3. We found that Gr10 sgRNA had no potential potential off-target site, and the sgRNA of Gr6 had only one potential off-target site. Therefore, we designed primers according to the sequence of potential off-target sites of Gr6 sgRNA, and conducted PCR using genomic DNA of homozygous mutant as a template, performed Sanger sequencing on the PCR products obtained, and found that the potential off-target sites of Gr6 sgRNA were no different from those of the wild type. Particularly, concerning the sgRNA of Gr6 and Gr10 may produce off-target effects on other sugar receptor genes of H. armigera, we conducted the same off-target site analysis with the designed sgRNA on each of the other eight sugar receptor genes, and found that there were no off-target sites on these receptor genes (see Line254-256).

      Reviewer #2 (Public Review):

      Summary:

      To identify sugar receptors and assess the capacity of these genes the authors first set out to identify behavioral responses in larvae and adults as well as physiological response. They used phylogenetics and gene expression (RNAseq) to identify candidates for sugar reception. Using first an in vitro oocyte system they assess the responses to distinct sugars. A subsequent genetic analysis shows that the Gr10 and Gr6 genes provide stage specific functions in sugar perception.

      Strengths:

      A clear strength of the manuscript is the breadth of techniques employed allowing a comprehensive study in a non-canonical model species.

      Thank you for your recognition of our research.

      Weaknesses:

      There are no major weaknesses in the study for the current state of knowledge in this species. Since it is much basic work to establish a broader knowledge, context with other modalities remains unknown. It might have been possible to probe certain contexts known from the fruit fly, which would have strengthened the manuscript.

      Thank you so much for your suggestion. According to this suggestion, we further added some sentences probing sugar sensing and behaviors of fruit fly larvae in the Introduction and discussion sections (Line 68-71 in Introduction section, Line 395-399 in Discussion section).

      Reviewer #3 (Public Review):

      In this study, the authors combine electrophysiology, behavioural analyses, and genetic editing techniques on the cotton bollworm to identify the molecular basis of sugar sensing in this species.

      The larval and adult forms of this species feed on different plant parts. Larvae primarily consume leaves, which have relatively lower sugar concentrations, while adults feed on nectar, rich in sugar. Through a series of experiments-spanning electrophysiological recordings from both larval and adult sensillae, qPCR expression analysis of identified GRs from these sensillae, response profiles of these GRs to various sugars via heterologous expression in Xenopus oocytes, and evaluations of CRISPR mutants based on these parameters-the authors discovered that larvae and adults employ distinct GRs for sugar sensing. While the larva uses the highly sensitive GR10, the adult uses the less sensitive and broadly tuned GR6. This differential use of GRs are in keeping with their behavioral ecology.

      The data are cohesive and consistently align across the methodologies employed. They are also well presented and the manuscript is clearly written.

      Recommendations for the authors:

      While appreciating the quality of the work and its presentation, we have a few comments for the authors, should they wish to consider them, that would significantly improve the presentation of the work.

      Title: Could the authors please revisit their title to better reflect the main finding of their work?

      The title has been changed into “The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sugars”.

      Text: There are a few comments related to the text, and these are listed below:

      (1) Could the authors place their work in the context of what's known about sugar sensing in Drosophila larva and adult?

      In the Introduction section, we added the status of research on sugar perception in Drosophila larvae, pointing out "No external sugar-sensing mechanism in Drosophila larvae has yet been characterized." (Line 70-71); in the Discussion section, the research progress of sugar sensing in Drosophila adults and larvae was also summarized (Line 397-399).

      (2) For each results section, could the authors please include a sentence or two that interprets the data in the context of previously presented data?

      We accept the reviewer's suggestion. In order to make it easy for readers to follow up, we included a sentence interprets the above data at the beginning of each part of the Results on the premise of avoiding duplication.

      (3) Could the authors please provide details of the generation and screening of the CRISPR mutants?

      We have added more details on mutant establishment and screening in the Materials and Methods section (Line 722-726, 729-732).

      Figures: Could the authors please include images and schematics wherever possible? For example, a schematic depicting the position of the sense organs and one summarising the main findings of the studies.

      In Figure 1 we added the photo of each taste organ, on which the recorded sensilla were indicated. We also added a new figure, Figure 8, summarizing the main findings of the study.

      Choice of Sugars: Could the authors please justify their choice of sugars they have used in the analyses?

      In the first paragraph of the Results section of the article, we further explain the reasons for using the sugars in the study. “We first investigated the electrophysiological responses of the lateral and medial sensilla styloconica in the larval maxillary galea to eight sugars. These sugars were chosen because they are mostly found in host-plants of H. armigera or are representative in the structure and source of sugars.”

      In addition to this, there are several specific comments in the detailed reviewers comments below, which the authors could consider responding to.

      Reviewer #1 (Recommendations For The Authors):

      The article titled "Sucrose taste receptors exhibit dissimilarities between larval and adult stages of a moth" by Shuai-Shuai Zhang and colleagues provides an intriguing analysis. The authors have conducted a meticulously planned and executed study. However, I do have some inquiries.

      (1) What precisely does the term "differ" signify in the title? It can be expounded upon in terms of differing in expression or sensitivity. The title could benefit from being more informative. The authors should appropriately specify the insect species in the title of the paper. This would make it more comprehensible to readers. Merely mentioning the term "moth" does not provide any information about the model organism. Hence, it would be preferable to mention Helicoverpa armigera instead of using the generic term "moth" in the title.

      Thank you for your suggestions. We considered it better to emphasize that the receptors for sucrose are different, and we have accepted the suggestion of adding the name of the animal. The title has been changed into “The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sugars”.

      (2) The abstract is written in a simple and easily understandable manner, but it overlooks important findings from a technical standpoint.

      We add some key experimental techniques to illustrate some important findings in the Abstract.

      (3). Almost all herbivorous insects are said to consume plants and utilize sucrose as a stimulus for feeding, as stated by the authors. Sucrose, glucose, and fructose sugar are among the commonly observed stimulants for feeding in numerous insects. It would be appropriate to incorporate not only sucrose but also glucose and fructose as feeding stimulants for almost all herbivorous insects.

      Thank you for your suggestion. Sucrose is the major sugar in plants, and its concentration varies greatly from tissue to tissue, while the concentration of the hexose sugars is much lower and the concentration does not change much. In Line 48, we state that sucrose, glucose, and fructose are feeding stimuli for herbivorous insects. From the previous studies, it seems that sucrose is the strongest, followed by fructose, and finally glucose. The cotton bollworm larvae showed no electrophysiological and behavioral response to glucose.

      (4) The reason why trehalose is not considered in the electrophysiology analysis is unclear. Given that trehalose is a major sugar in insects and plants, it would be intriguing to include it in the analysis.

      We have accepted the reviewer's suggestion, and supplemented the electrophysiological responses of taste organs in larvae and adults of Helicoverpa armigera to trehalose (Figure 1, Figure 1-Figure Supplement 1), and also tested the behavioral responses of the larvae and adults to trehalose (Figure 2, Figure 2-Figure Supplement 1). Therefore, all the related figures have been changed.

      (5) The author's intention regarding the co-receptor relationship between Gr5 and Gr6 (line 211) is unclear. If this is indeed the case, then the reason for considering Gr5 in further studies remains uncertain.

      We have changed the sentence as follows: “Since Gr5 was highly expressed with Gr6 in the proboscis and tarsi (Figure 3D-3E, Figure 3—figure supplement 1), we suspected that Gr5 and Gr6 might be expressed in the same cells, and then tested the response profile of their co-expression in oocytes.”

      (6) The homologous nature of Grs is emphasized by the authors. It is not specified how the author ensured that the guide RNA targeting Gr6 or Gr10 did not result in off-target effects on other Grs.

      Thank you so much for your suggestion. We have rewritten the relevant paragraph (Line 238-251), detailing our tests and the results on the potential off-target effects of knocking out GRs by CRISPR/Cas9: “In order to predict the potential off-target sites of sgRNA of Gr6 and Gr10, we used online software Cas-OFFinder (http://www.rgenome.net/cas-offinder/) to blast the genome of H. armigera, and the mismatch number was set to less than or equal to 3. According to the predicted results, the Gr10 sgRNA had no potential off-target region but Gr6 sgRNA had one. Therefore, we amplified and sequenced the potential off-target region of Gr6-/- and found there was no frameshift or premature stop codon in the region compared to WT (Figure 5—figure supplement 2). It is worth mentioning that there was no potential off-target region of Gr6 and Gr10 sgRNA in other sugar receptor genes of H. armigera, Gr4, Gr5, Gr7, Gr8, Gr9, Gr11 and Gr12. We further found there was no difference in the response to xylose of the medial sensilla styloconica among WT, Gr10-/- and Gr6-/- (Figure 5—figure supplement 2). Furthermore, WT, Gr10-/- and Gr6-/- did not show differences in the larval body weight, adult lifespan, and number of eggs laid per female (Figure 5—figure supplement 2). All these results suggest that no off-target effects occurred in the study.”

      (7) Is it possible that knocking out Gr10 is not compensated for by the overexpression of Gr6 or other sucrose sensing Grs? Similarly, would the vice versa scenario hold true?

      In the Discussion section, we have added some sentences to discuss this issue: “From our results, knocking out Gr10 or Gr6 is unlikely to be compensated by overexpression of other sugar GRs. One of our recent studies showed that Orco knockout had no significant effect on the expression of most OR, IR and GR genes in adult antennae of H. armigera, but some genes were up- or down-regulated (Fan et al., 2022).”

      (8) What was the rationale for selecting nine candidate GR genes for expression analysis?

      Based on the reviewer's suggestion, we expanded the relevant paragraphs to illustrate the rationale for selecting nine candidate GR genes for expression analysis: “To reveal the molecular basis of sugar reception in the taste sensilla of H. armigera, we first analyzed the putative sugar gustatory receptor genes based on the reported gene sequences of GRs in H. armigera and their phylogenetic relationship of D. melanogaster sugar gustatory receptors (Jiang et al., 2015; Pearce et al., 2017; Xu et al., 2017). Nine putative sugar GR genes, Gr4–12 were identified, and their full-length cDNA sequences were cloned (The GenBank accession number is provided in Appendix—Table S1).” (Line 155-161)

      (9) What is the potential reason for the difference between the major larval sugar receptors of Drosophila and Lepidopterans?

      The difference between the major larval sugar receptors of Drosophila and Lepidopterans is probably due to differences in the food their larvae feed on. Fruit fly larvae feed on rotten fruit, the main sugar of which is fructose. The larvae of Lepidoptera mainly feed on plants, and the main sugar is sucrose. In the Discussion section, we have added a sentence “This is most likely due to fruit fly larvae feeding on rotten fruits, which contain fructose as the main sugar.” (Line 399-401)

      (10) There is a disparity in GRs, specifically GR5 and GR6, between the female antenna, proboscis, and tarsi. What could be the possible justification and significance of this?

      Thank you so much for this question. We have added a sentence in the Discussion section, “In this study, the expression patterns of 9 sugar GRs in three taste organs of adult H. armigera show that there is a disparity in GRs, specifically GR5 and GR6, between the female antenna, tarsi and proboscis, which may be an evolutionary adaptation reflecting subtle differentiation in the function of these taste organs in adult foraging. Antennae and tarsi play a role in the exploration of potential sugar sources, while the proboscis plays a more precise role in the final decision to feed.” (Line 433-438)

      (11) I suggest that a visual representation illustrating the positioning of GSNs, particularly the lateral and medial sensilla, in both larva and adult stages would enhance the correlation with the results.

      In Figure 1 we added the photo of each taste organ and the position of the recorded sensilla, and also added a new figure, Figure 8 summarizing the main findings of the studies.

      (12) Further experiments can be conducted to elucidate the precise molecular mechanisms, particularly the downstream effects of GRs, in order to establish the specificity of GRs more convincingly.

      Thank you so much for your suggestion. We have discussed the further experiments in the Discussion section, “To elucidate the precise molecular mechanisms of sugar reception in H. armigera is necessary to compare a series of single, double and even multiple Gr knock-out lines and investigate the downstream effects of the GRs.” (Line 363-369)

      (13) Figure 6 caption: In Figure 6 (D to I), the percentage of PER is depicted. There is redundancy in the Y-axis title (Percentage of PER) and the legend. This appears to be repetitive. I suggest that it would be better to include the Y-axis title only in Figure D or in Figures D and G.

      We accept the suggestion. Figure 7 (not Figure 6) has been revised accordingly.

      (14) In Figures 6A and 6C, there is inconsistency in the colors used for WT, Gr6, and Gr10. This could potentially confuse the reader. I recommend using the same colors in both figures instead of using a blue color. Please specify how the authors calculated the feeding area in Figure 6.

      We accept the reviewer's suggestion and have changed the color of Figure 7A, B. We have also added the detail method for calculating feeding area (Line 541-545).

      (15) In Two-choice tests, why did the authors use 0.01% Tween 80? Please provide comments on this.

      Use of 0.01% Tween 80 is to reduce the surface tension and increase the malleability of the solution. We have given detailed explanation in the Method section and cite the reference. (Line538-540)

      (16) It would be valuable if the authors could comment on the prospects of this study, considering that GRs play a vital role in controlling behavior and developmental pathways. What are the potential consequences of blocking or disrupting these receptors in terms of behavioral and developmental phenotypic deformities? Could this potentially lead to increased insect mortality?

      Thank you so much for your suggestions. In the last paragraph of the Discussion section, we have added the following perspectives, “Knockout of Gr10 or Gr6 led to a significant decrease in sugar sensitivity and food preference of the larvae and adults of H. armigera, respectively, which is bound to bring adverse consequences to survival and reproduction of the insects. Therefore, studying the molecular mechanisms underlying sugar perception in phytophagous insects may provide new insights into the behavioral ecology of this important and highly diverse group of insects, and measures blocking or disrupting sugar receptors could also have applications to control agricultural pests and improve crop yields worldwide” (Line 449-456).

      Reviewer #2 (Recommendations for The Authors):

      There are a few comments, that I feel would be beneficial to be addressed.

      • The authors used 7 different sugars for their experimental approach. While I agree that this is a sufficiently large collection for a study, I was wondering why they specifically chose these sugars; an explanatory section might be helpful for a reader to follow the reasoning.

      According to reviewer 1's suggestion, we increased trehalose to 8 sugars in experiments. Trehalose is a main sugar in insect blood. It is converted by insects after feeding on plant sugars. The 8 sugars were chosen because they are present in host-plants of H. armigera or are representative in the structure and source of sugars. They contain 2 pentoses (arabinose and xylose), 4 hexoses (fructose, fucose, galactose and glucose), and 2 disaccharides (sucrose and trehalose).

      • It might be beneficial to provide some broader overview on the gustatory system in the cotton bollworm, particularly at the larval stage since this may not be common knowledge. Along these lines eg. the complexity of sensilla types, organs and overall number (or estimation) of neurons might be good to know, a graphical representation of the sense organs might be informative.

      In the Introduction section, we give a more specific description on sugar sensitive GSNs in the taste system of the larva and adult of H. armigera, and cite the corresponding references.

      • Concerning phylogeny of GRs, it might be relevant to know how complete the genome information is and some more general background on GR diversity in the cotton bollworm.

      We agree to your opinion. According to this idea, we got the putative sugar GRs from the previously published genome (Pearce et al. 2017) and the related annotation of GRs (Jiang et al. 2015, Xu et al. 2012). We have made a more detailed explanation about this in the new version of the manuscript, “We first analyzed the putative sugar gustatory receptor genes based on the genome data of H. armigera (Pearce et al. 2017), the reported gene sequences of sugar GRs in H. armigera and their phylogenetic relationship of D. melanogaster sugar gustatory receptors (Jiang et al. 2015, Xu et al. 2012). All nine putative sugar GR genes in H. armigera, Gr4–12 were validated, and their full-length cDNA sequences were cloned (The GenBank accession number is provided in Appendix—Table S1).” (Line 155-161).

      • Generation of mutants based on CRISPR is intriguing and a powerful step. While the techniques are well described in the method section, there is no information concerning efficiency or broader feasibility of the approach. I feel it would be quite interesting to learn about how feasible or laborious the approach is to generate mutants (e.g. number of initial injected eggs, the resulting F0 offspring, number of back-crosses, number of screened F1s ....).

      In the Materials and Methods section, we have added specific success rates for each step in the process of building the two mutants (Line 722-726, 729-732).

      Reviewer #3 (Recommendations For The Authors):

      I want to congratulate the authors on this very nice study and have only minor comments for them.

      (1) It would be very nice to include pictures of the larva and adult of H. armigera. It would also help to have schematics of where the sensilla they are recording from are.

      We have added photos of four taste organs on which the recoded sensilla were indicated (Figure 1), and picture of the larva and adult on which the stimulating site was indicated (Figure 2).

      (2) A schematic summarising their findings, including the relevance to the animal's behavioural ecology, will greatly improve interpretations for the broader audience.

      A schematic summarizing the findings has been added.

      (3) The manner in which PIs are represented in figure 2A, B (among others) is confusing. Can the authors please plot the PI and not the feeding area? From the PI values listed beside the plot, it actually suggests that the larvae don't really show a preference. Could the authors please comment on this?

      Yes, sucrose has a significant stimulating effect on larva feeding, but the effect is not as large as the predicted based on the sensitivity of the sensillum, the main reasons are as follows: (1) there are many factors affecting larva feeding, sucrose is only one of them; (2) due to the substrate leaf discs also contain sugar, the effect of newly added sucrose may be reduced. After careful consideration, we think it is better to display the feeding area and PI together so that readers have a complete understanding of the data.

      (4) The heterologous expression experiments suggest that co-expression of GR6 with either GR10 or GR5 somehow suppress the response of the GR6 alone to fucose. Am I reading the data correctly? Why would this be? Perhaps the authors could discuss this. In this context, it would help to reproduce all the GR6 data together.

      Your interpretation is reasonable to a certain extent. The result of co-injection might be that Gr10 or Gr5 inhibited the response of Gr6. However, there is another possibility that the amount of Gr6 sRNA was diluted by co-injection of two GRs, resulting in a reduced response of Gr6 to fucose.

      (5) In general, for each results section, it would help to have a sentence or two that interprets the data in the context of previously presented data. This would help the reader digest the data and interpret it as they read along. Currently, the authors summarise the observations and leave all the interpretation to the discussion section.

      We accept the suggestion. In each part of the results, we have added a sentence to explain the above data, which will help readers to clarify the context of the research more easily.

      (6) Is the GR6 data in 4C not lined up correctly?

      Yes, it is right.

      (7) Line 228 suggests that the mutants were validating with qPCRs - I don't see that data.

      The mutants were not validating with qPCR. We used the ordinary PCR technology at the mRNA level to verify whether the related sequences were really deleted in the mutants.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors present a detailed study of a nearly complete Entomophthora muscae genome assembly and annotation, along with comparative analyses among related and non-related entomopathogenic fungi. The genome is one of the largest fungal genomes sequenced, and the authors document the proliferation and evolution of transposons and the presence/absence of related genetic machinery to explore how this may have occurred. There has also been an expansion in gene number, which appears to contain many "novel" genes unique to E. muscae. Functionally, the authors were interested in CAZymes, proteases, circadian clock related genes (due to entomopathogenicity/ host manipulation), other insect pathogenspecific genes, and secondary metabolites. There are many interesting findings including expansions in trahalases, unique insulinase, and another peptidase, and some evidence for RIP in Entomophthoralean fungi. The authors performed a separate study examining E. muscae species complex and related strains. Specifically, morphological traits were measured for strains and then compared to the 28S+ITSbased phylogeny, showing little informativeness of these morpho characters with high levels of overlap.

      This work represents a big leap forward in the genomics of non-Dikarya fungi and large fungal genomes. Most of the gene homologs have been studied in species that diverged hundreds of millions of years ago, and therefore using standard comparative genomic approaches is not trivial and still relatively little is known. This paper provides many new hypotheses and potential avenues of research about fungal genome size expansion, entomopathogenesis in zygomycetes, and cellular functions like RIP and circadian mechanisms.

      Strengths:

      There are many strengths to this study. It represents a massive amount of work and a very thorough functional analysis of the gene content in these fungi (which are largely unsequenced and definitely understudied). Too often comparative genomic work will focus on one aspect and leave the reader wondering about all the other ways genome(s) are unique or different from others. This study really dove in and explored the relevant aspects of the E. muscae genome.

      The authors used both a priori and emergent properties to shape their analyses (by searching for specific genes of interest and by analyzing genes underrepresented, expanded, or unique to their chosen taxa), enabling a detailed review of the genomic architecture and content. Specifically, I'm impressed by the analysis of missing genes (pFAMs) in E. muscae, none of which are enriched in relatives, suggesting this fungus is really different not by gene loss, but by its gene expansions.

      Analyzing species-level boundaries and the data underlying those (genetic or morphological) is not something frequently presented in comparative genomic studies, however, here it is a welcome addition as the target species of the study is part of a species complex where morphology can be misleading and genetic data is infrequently collected in conjunction with the morphological data.

      Thank you for your careful reading of our work. We’re glad that you identified these areas as strengths.

      Weaknesses:

      The conclusions of this paper are mostly well supported by data, but a few points should be clarified.

      In the analysis of Orthogroups (OGs), the claim in the text is that E. muscae "has genes in multi-species OGs no more frequently than Enotomophaga maimaiga. (Fig. 3F)" I don't see that in 3F. But maybe I'm really missing something.

      Thank you for catching this. You were, in fact, not missing anything at all. There was a mismatch between the data plotted in F and G and how the caption described these data. We very much apologize for the confusion that this must have caused. We have corrected these plots and also made changes to improve interpretability (see below).

      Also related, based on what is written in the text of the OG section, I think portions of Figure 3G are incorrect/ duplicated. First, a general question, related to the first two portions of the graph. How do "Genes assigned to an OG" and "Genes not assigned to an OG" not equal 100% for each species? The graph as currently visualized does not show that. Then I think the bars in portion 3 "Genes in speciesspecific OG" are wrong (because in the text it says "N. thromboides had just 16.3%" species-specific OGs, but the graph clearly shows that bar at around 50%. I think portion 3 is just a duplicate of the bars in portion 4 - they look exactly the same - and in addition, as stated in the text portion 4 "Potentially speciesspecific genes" should be the simple addition of the bars in portion 2 and portion 3 for each species.

      As mentioned above, we sincerely regret the error made in the plot and for the confusion that this caused. F now reflects the percentage of orthogroups (OGs) that possess at least one representative from the indicated species (left) and the percentage of OGs that are species-specific (only possess genes from one species; right). The latter is a subset of the former. G now reflects the percentage of annotated genes that were assigned an OG, per species, as well as the inverse of this - genes that were not assigned to any OG. These should, and now do, sum to 100%. The “Within species-specific OG” data summed with the “Not assigned OG” data yields the “Potentially species-specific data” in the rightmost column.

      In the introduction, there is a name for the phenomenon of "clinging to or biting the tops of plants," it's called summit disease. And just for some context for the readers, summit disease is well-documented in many of these taxa in the older literature, but it is often ignored in modern studies - even though it is a fascinating effect seen in many insect hosts, caused by many, many fungi, nematodes (!), etc. This phenomenon has evolved many times. Nice discussions of this in Evans 1989 and Roy et al. 2006 (both of whom cite much of the older literature).

      You’re right. We have now clarified that this behavior is called “summit disease” and referenced the suggested articles, along with a more recent review.

      Reviewer #2 (Public Review):

      In their study, Stajich and co-authors present a new 1.03 Gb genome assembly for an isolate of the fungal insect parasite Entomophthora muscae (Entomophthoromycota phylum, isolated from Drosophila hydei). Many species of the Entomophthoromycota phylum are specialised insect pathogens with relatively large genomes for fungi, with interesting yet largely unexplored biology. The authors compare their new E. muscae assembly to those of other species in the Entomophthorales order and also more generally to other fungi. For that, they first focus on repetitive DNA (transposons) and show that Ty3 LTRs are highly abundant in the E. muscae genome and contribute to ~40% of the species' genome, a feature that is shared by closely related species in the Entomophthorales. Next, the authors describe the major differences in protein content between species in the genus, focusing on functional domains, namely protein families (pfam), carbohydrate-active enzymes, and peptidases. They highlight several protein families that are overrepresented/underrepresented in the E. muscae genome and other

      Entomophthorales genomes. The authors also highlight differences in components of the circadian rhythm, which might be relevant to the biology of these insect-infecting fungi. To gain further insights into E. muscae specificities, the authors identify orthologous proteins among four Entomophthorales species. Consistently with a larger genome and protein set in E. muscae, they find that 21% of the 17,111 orthogroups are specific to the species. To finish, the authors examine the consistency between methods for species delineation in the genus using molecular (ITS + 28S) or morphological data (# of nuclei per conidia + conidia size) and highlight major incongruences between the two.

      Although most of the methods applied in the frame of this study are appropriate with the scripts made available, I believe there are some major discrepancies in the datasets that are compared which could undermine most of the results/conclusions. More precisely, most of the results are based on the comparison of protein family content between four Entomophthorales species. As the authors mention on page 5, genome (transcriptome) assembly and further annotation procedures can strongly influence gene discovery. Here, the authors re-annotated two assemblies using their own methods and recovered between 30 and 60% more genes than in the original dataset, but if I understand it correctly, they perform all downstream comparative analyses using the original annotations. Given the focus on E. muscae and the small sample size (four genomes compared), I believe performing the comparisons on the newly annotated assemblies would be more rigorous for making any claim on gene family variation.

      Thank you for this comment. While we did compare gene model predictions for two of these assemblies to assess if this difference could account for discrepancies in gene counts, completely reannotating all non-E. muscae datasets was outside of the scope of this study. In our opinion, the total number of predicted genes in a genome is not a best representation of differences since splitting or fusing gene models can inflate seeming differences; the orthology and domain counts are a more accurate assessment of the content. It’s possible that annotation differences may have inflated some gene family counts, however we will note that similar domain trends were observed between the closest species to E. muscae, Entomophaga maimaiga, suggesting that these differences were not sufficient to prevent us from detecting real biological signals. We look forward to continued improvement of our genome through additional sequencing and more clarity on total gene content of E. muscae.

      The authors also investigate the putative impact of repeat-induced point mutation on the architecture of the large Entomophthorales genomes (for three of the eight species in Figure 1) and report low RIP-like dinucleotide signatures despite the presence of RID1 (a gene involved in the RIP process in Neurospora crassa) and RNAi machinery. They base their analysis on the presence of specific PFAM domains across the proteome of the three Entomophthorales species. In the case of RID1, the authors searched for a DNA methyltransferase domain (PF00145), however other proteins than RID1 bear such functional domain (DNMT family) so that in the current analysis it is impossible to say if the authors are actually looking at RID1 homologs (probably not, RID1 is monophyletic to the Ascomycota I believe). Similar comments apply to the analysis of components of the RNAi machinery. A more reliable alternative to the PFAM analysis would be to work with full protein sequences in addition to the functional domains.

      While we understand this concern regarding domain vs. full length protein, the advantage of the domain search is that HMM-based searches are sensitive to detecting more distantly related homologs. Entomophthoralean fungi are distantly related from the ascomycetes in which these mechanisms have been characterized, so we chose a broader search approach that may identify proteins with similar domain structure, but are not necessarily homologs. These searches are presented in the manuscript as preliminary, but worth further investigation. However, our RID-based analysis did not identify convincing homologs for RID1 in entomophthoralean fungi included in our investigation, and we reported low homology (i.e., 12-14%) among our orthogroup of interest and RID1. We have further edited this section to clarify our understanding that these candidates are not RID1 homologs. We had hoped to avoid this implication, but we felt this investigation and null result were worth reporting.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Specific points:

      Results:

      "1.03 Gb genome consisting of 7,810 contigs (N50 = 301.1 kb). Additional... resulted in a final contig count of 7,810 (N50 = 329.6 kb)" So you started and ended with the same contig count but a different N50? Is this a typo?

      Yes, this was a typo. Thank you for bringing this to our attention.

      Figure 1D.

      The colors of Complete1x and Complete2x are too similar to tell them apart.

      The colors have been made more distinct.

      Figure 4B.

      I know C. rosea has been found from insects before, but it's mostly a mycoparasite and occasionally an endophyte, and has bioactivity against a lot of things. I just saw that it's listed as an entomopathogen, and I was surprised. Anyway, leave it as is if you want to, but it's definitely better studied and better known (Google Scholar) as a mycoparasite.

      Thanks for this comment. For the sake of including a more diverse representation of entomopathogenic fungi, we have opted to leave this as is.

      Full references (from the public comment)

      Evans, H.C., 1989. Mycopathogens of insects of epigeal and aerial habitats. Insect-fungus interactions, pp.205-238.

      Roy, H.E., Steinkraus, D.C., Eilenberg, J., Hajek, A.E. and Pell, J.K., 2006. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol., 51, pp.331-357.

      Reviewer #2 (Recommendations For The Authors):

      I believe the manuscript could largely benefit from restructuring the results section to enhance clarity. The results section reads like a lot of descriptive back and forth, so that the reader lacks a clear rationale. The absence of a consistent dataset used for the different comparisons made all along the manuscript makes it hard to follow.

      Minor comments:

      (No line numbers were available so I refer to page numbers).

      p1

      • not sure about the use of "allied" to describe other fungal species in the title and after (sister species?).

      We didn’t want to use the word sister because not all of these species could be considered sister.

      • Genomic defence against transposable elements rather than "anti"?

      We have rephrased to genomic defense.

      p3

      • Extra parenthesis at Bronski et al.

      This is now corrected.

      • What does newly-available mean here?

      We mean recent. A lot of the datasets we used were very new, and we wanted to emphasize that point.

      • The back and forth between genomes and transcriptomes makes it hard to follow, would clarify from the beginning (in addition to the sequencing method - short vs long-read assemblies as in Figure 1B) or perhaps use a consistent dataset for all subsequent comparative analysis in the Entomophthorales.

      We have denoted our transcriptomic datasets in Fig 1C using parentheses.

      p5

      • Perhaps clarify that class II DNA transposons can also "copy" (single-strand excisions can be repaired by the host machinery).

      We have now included mention of “copy” as well as “jump” mechanisms of Class II transposons per your suggestion.

      p6

      • "beginning roughly concurrently", not clear what "began".

      This is now corrected.

      • "control" rather than "protect against"?

      We’ve changed “protect against” to “counter”.

      • I believe RIP has only been observed (experimentally) in a handful of fungal species, all from the Ascomycota phylum.

      Hood et al, 2005 found signatures of RIP in anther-smut fungus and Horns et al, 2012, found evidence of hypermutability across repeat elements within several Pucciniales species.

      • "RID1 contains two DNA_methylase domains", RID1 has one methyltransferase domain according to the reference Freitag et al, 2002.

      Thank you for drawing this to our attention. It is true RID1 has one methyltransferase region; however, the sequence deposited by Freitag et al, 2002 (AAM27408) is predicted by HMMer to have two adjacent Pfam DNA_methylase domains (i.e., PF00145). In this exploratory analysis, we tried to leverage this characteristic to identify candidate proteins of interest. We have reworded this section to clarify this.

      p8

      • Here and after I would use more informative titles for each paragraph.

      With the exception of the headings for Pfam, CAZy and MEROPs analyses, we believe the other headings are informative. We appreciate this comment, but opt to leave the heading titles as is.

      • I believe presenting the orthology analysis before the more in-depth protein family domain search.

      We leveraged the OG analysis mostly as a way to identify potentially unique genes in E. muscae, so we think the current order makes the most sense.

      p10

      • Figures 3F and G are confusing. The legend for Figure 3F mentions "OGs with >= 2 species" while the figure shows "multi-species OGs", and reads as redundant with the "species-specific" OGs. For the "OGs within species" do I understand it correctly that it represents the number of genes assigned to OGs for each species? If yes, the numbers are in contradiction with Figure 3G. And in Figure 3G shouldn't the sum of "genes assigned in OGs" and "genes nor assigned in OGs" add up to 100? I'm probably missing something here, but I would clarify what the different sets of orthogroups are in the figure and in the text (perhaps adopting a pangenome-like nomenclature).

      Thanks for this comment. This legend, unfortunately, reflected an earlier version of the figure and was overlooked prior to submission. We have since amended this and sincerely apologize for the error on our part.

      p12

      • The whole first paragraph reads more like it should be part of an introduction/discussion.

      We’ve moved some of this paragraph to the discussion but left the background information necessary for the reader to understand why we were looking for homologs of wc and frq.

      p13

      • The last paragraph reads like discussion.

      We have revised this paragraph so it now reads: “Because E. muscae is an obligate insect-pathogen only living inside live flies, we investigate the presence of canonical entomopathogenic enzymes in the genome. We find that E. muscae appear to have an expanded group of acid-trehalases compared to other entomopathogenic and non-entomopathogenic Entomophthorales (Fig. 4A), which correlates with the primary sugar in insect blood (hemolymph) being trehalose (Thompson, 2003). The obligate insectpathogenic lifestyle is also evident when comparing the repertoire of lipases, subtilisin-like serine proteases, trypsins, and chitinases in our focal species versus Zoopagomycota and Ascomycota fungi that are not obligate insect pathogens (Fig. 4B). Sordariomycetes within Ascomycota contains the other major transition to insect-pathogenicity within the kingdom Fungi (Araújo and Hughes, 2016). Based on our comparison of gene numbers, Entomophthorales possess more enzymes suitable for cuticle penetration than Sordariomycetes (Fig. 4B). In contrast, insect-pathogenic fungi within Hypocreales possess a more diverse secondary metabolite biosynthesis machinery as evidenced by the absence of polyketide synthase (PKS) and indole pathways in Entomophthorales (Fig. 4C).”

      p15 and 16

      • This all reads as redundant with the previous protein family domain analysis. I would try to merge them.

      Thank you for this comment, however we have opted to maintain the current structure.

      p18

      • In the first sentence, I'm not sure about what was performed here.

      This has been reworded to clarify.

      p20

      • Regarding the assembly, do I understand it correctly that a nuclear genome can be partially haploid / diploid?

      Thanks for your comment. The genome itself is, of course, some integer multiple of n, but based on BUSCO scores our assembly doesn’t appear to have completely collapsed into a haploid genome. We think it makes more sense here to say “partially haploid” than “partially diploid” so have altered this.

      p21

      • RIP has only been observed in a couple of Ascomycetes. RIP-like genomic signatures (GC bias) have been observed elsewhere.

      Hood et al, 2005 found signatures of RIP in anther-smut fungus and Horns et al, 2012, found evidence of hypermutability across repeat elements within several Pucciniales species.

      p23

      • Interesting that the peptidase A2B domain is found uniquely in E. muscae genome and is associated with Ty3 activity. Does the domain often overlap with annotated Ty3 in E. muscae genome? Or how come the domain is not present in other sister species with large genomes full of Ty3 transposons? Could it relate to a new active transposon in E. muscae specifically?

      Thanks for this comment. The domain-based analysis was only performed on the predicted transcriptome of the genome assembly, which does not include the repeat elements (e.g., Ty3). It could be that this peptidase reflects a new active transposon that’s specific to E. muscae, which would certainly be very interesting. We’ve now included this idea in the discussion.

      p26

      • In the case of fungal genomes, I would not advise masking the assembly for repeated sequences prior to gene annotation (in particular given the current focus on protein family variation).

      Thank you for this comment, however we disagree with this assertion as a typical approach for genome annotation in fungi and eukaryotic genomes is to use soft masking of transposable elements before performing gene prediction to avoid over-prediction. While there could be alternative approaches that compare masked or unmasked. This is a recommended protocol for underlying tools like Augustus (10.1002/cpbi.57) and in general descriptions of genome annotation (10.1002/0471250953.bi0401s52). The false positive rate of genes predicted through TE regions is likely to be more a problem than false negatives of missed genes in our experience. Further it seems appropriate to use consistent approach to annotation throughout when including genomes from other sources (e.g., Joint Genome Institute annotated genomes) which also use a repeat masking approach first before annotation. It seems most appropriate to use consistent methods when generating datasets to be used for comparative analyses. It is outside the scope of this project to reannotate all genomes with and without repeat masking.

      p27

      • Interrupted sentence at "Classification of DNA and LTR .. by similarity The".

      This was an unnecessary partial phrase as the information on classification of elements via RepBase was made a few sentences above this.

      p28

      • Enriched/depleted rather than "significantly different"?

      Thank you for this comment, however we have opted to maintain the current phrasing.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for a careful review of the manuscript and for their comments, which we address below.

      Reviewer #1:

      (1) …the authors could examine division in a population of cells with only one centrosome. Seeing some restoration of mitotic progression in the absence of SAC-dependent delays would suggest that even one centrosome with uninhibited Eg5 is sufficient to negate SAC-dependent delays, and would limit models for what exactly centrosomes contribute.

      We agree that the one-centrosome question (i.e. whether cells with a single centriole, and therefore a single centrosome, have the same SAC dependence) would be interesting to address. It is known that cells with a single centriole generated through centrinone treatment also have elongated mitoses, like cells lacking centrioles (see Chinen, et. al. 2021, compare Fig 2C to Fig 2D), We have tried this experiment in RPE-1 cells with preliminary results confirming that there is a mitotic delay. It is not known whether this delay requires SAC activity, and we hope to address that in future work. In addition, we note that we show in Fig. 4b-c that cells with the normal centrosome number but with a single focus of microtubules due to Eg5 inhibition, were also sensitive to MPS1 inhibition. This suggests that centrosome presence alone cannot overcome the requirement for SAC activity, rather, the centrosomes need to be able to separate in a timely fashion.

      Reviewer #2:

      (1) An example is how to interpret the effect of Aurora B inhibition, which does not block acentrosomal cell division. If Aurora B is required for SAC activity, it suggests this effect of MPS1 may be a function other than SAC. Given the complexity of the SAC, it would be informative to test other SAC components. Instead, the authors conclude that the mitotic delay caused by MPS is required for acentrosomal cell division. I don't think they have ruled out, or even addressed other functions of MPS1.

      We agree that it is possible that functions of the MPS1 kinase other than those involved in the SAC could be important. Although we have not directly tested other SAC components, we did “mimic” SAC activity by delaying anaphase onset using APC/C inhibition while also inhibiting MPS1 (Fig. 2b-b’’). The fact that this restored division suggests that it is the SAC function of MPS1 kinase activity that is relevant to this delay. 

      (2) The authors find that when both the APC and MPS1 are inhibited, the cells eventually divide. These results are intriguing, but hard to interpret. The authors suggest that the failure to divide in MPS1-inhibited cells is because they enter anaphase, and then must back out. This is hard to understand and there is not data supporting some kind of aborted anaphase. Is the division observed with double inhibition some sort of bypass of the block caused by MPS1 inhibition alone? It is not clear why inhibition of APC causes increased cell division when MPS1 is inhibited.

      As described in the response to 1), we believe that reinstating the delay to anaphase onset by APC/C inhibition provided the time needed to establish a functional bipolar spindle even in the absence of the SAC, and that cells eventually overcome the proTAME block and proceed through mitosis, as observed in control cells in our experiments. We note that we chose concentrations of proTAME specifically for each cell line (RPE-1 and U2OS) that would result only in a temporary block, following on the work of Lara-Gonzalez and Taylor (2012), who reported similar findings for HeLa cells.

      (3) The authors characterize MTOC formation in these cells, which is also interesting. MTOCs are established after NEB in acentrosomal cells. Indeed, forming these MTOCs is probably a key mechanism for how these cells complete a division, like mouse oocytes.

      We agree that the observed intermediates of MTOCs are interesting and likely crucial to the mechanism of cell division in acentrosomal somatic cells. We are investigating further the differences and similarities between somatic cell MTOC formation in the absence of centrosomes and the naturally-occurring form of that process in oocytes.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      Seleit and colleagues set out to explore the genetics of developmental timing and tissue size by mapping natural genetic variation associated with segmentation clock period and presomitic mesoderm (PSM) size in different species of Medaka fish. They first establish the extent of variation between five different Medaka species of in terms of organismal size, segmentation rate, segment size and presomitic mesoderm size, among other traits. They find that these traits are species-specific but strongly correlated. In a massive undertaking, they then perform developmental QTL mapping for segmentation clock period and PSM size in a set of ~600 F2 fish resulting from the cross of Orizyas sakaizumii (Kaga) and Orizyas latipes (Cab). Correlation between segmentation period and segment size was lost among the F2s, indicating that distinct genetic modules control these traits. Although the researchers fail to identify causal variants driving these traits, they perform proof of concept perturbations by analyzing F0 Crispants in which candidate genes were knocked out. Overall, the study introduces a completely new methodology (QTL mapping) to the field of segmentation and developmental tempo, and therefore provides multiple valuable insights into the forces driving evolution of these traits.

      Major comments: - The first sentence in the abstract reads "How the timing of development is linked to organismal size is a longstanding question". It is therefore disappointing that organismal size is not reported for the F2 hybrids. Was larval length measured in the F2s? If so, it should be reported. It is critical to understand whether the correlation between larval size and segmentation clock period is preserved in F2s or not, therefore determining if they represent a single or separate developmental modules. If larval length data were not collected, the authors need to be more careful with their wording.

      The question the reviewer raises here is indeed a very relevant one, and a question that we also were curious about ourselves. While it was not possible (logistically) to grow the 600 F2 fish to adulthood, we did measure larval length in a subset of F2 hatchling (n=72) to ask precisely the question the reviewer raises here. Our results (new Supplementary Figure 5) show that the correlation between larval length and segmentation timing (which we report across the Oryzias species) is absent in the F2s. This indeed argues that the traits represent separate developmental modules.

      In the current version of the paper, organismal size is often incorrectly equated to tissue size (e.g. PSM size, segment size). For example, in page 3 lines 33-34, the authors state that faster segmentation occurred in embryos of smaller size (Fig. 1D). However, Fig. 1D shows correlation between segmentation rate and unsegmented PSM area. The appropriate data to show would be segmentation rate vs. larval or adult length.

      The reviewer is correct. We have now linked the data more clearly to data we show in Supplementary Figure 1, which shows that adult length and adult mass are strongly correlated (S1A) and that adult mass is in turn strongly correlated with segmentation rate in the different Oryzias species (S1B). Additionally main Figure 1B shows that larval length is correlated with PSM length. We have corrected the main text to reflect these relationships more clearly.

      • Is my understanding correct in that the her7-venus reporter is carried by the Cab F0 but not the Kaga F0? Presumably only F2s which carried the reporter were selected for phenotyping. I would expect the location of the reporter in the genome to be obvious in Figure 3J as a region that is only Cab or het but never Kaga. Can the authors please point to the location of the reporter?

      The reviewer is correct. Indeed the location of our her7-venus KI is on chromosome 16 and the recombination patterns on this chromosome overwhelmingly show either Hom Cab (green) or Het Cab/Kaga (Black). This is expected as we selected fish carrying the her7-venus KI for phenotyping.

      • devQTL mapping in this study seems like a wasted opportunity. The authors perform mapping only to then hand pick their targets based on GO annotations. This biases the study towards genes known to be involved in PSM development, when part of the appeal of QTL mapping is precisely its unbiased nature and the potential to discover new functionally relevant genes. The authors need to better justify their rationale for candidate prioritization from devQTL peaks. The GO analysis should be shown as supplemental data. What criteria were used to select genes based on GO annotations?

      We have now commented on these valid points and outlined our rationale in more detail in the text (page 4, lines 20-30). Our rationale now also includes selection of differentially expressed genes (n=5 genes) that fall within segmentation timing devQTL hits (for more details see below). Essentially, while we indeed finally focused on the proof of principle using known genes, these genes were previously not known to play a role in either setting the timing of segmentation or controlling the size of the PSM. Hence, we do think our strategy demonstrates the "the potential to discover new functionally relevant genes", even though the genes themselves had been involved overall in somitogenesis. We added the GO analysis as supplemental data as requested (new Supplementary Figure 7E).

      • Analysis of the predicted functional consequence of divergent SNPs (Fig. S6B, F) is superficial. Among missense variants, which genes harbor the most deleterious mutations? Which missense variants are located in highly conserved residues? Which genes carry variants in splice donors/acceptors? Carefully assessing the predicted effect of SNPs in coding regions would provide an alternative, less biased approach to prioritize candidate genes.

      We now included our analysis of SNPs based on the Variant effect predictor (VEP) tool from ensembl. This analysis does rank the predicted severity of the SNP on protein structure and function (Impact: low, moderate, high) and does annotate which variants can affect splice donors/acceptors. The VEP analysis for both phenotypes is now added to the manuscript as supplemental data (new Supplementary Data S2, S5).

      • Another potential way to prioritize candidate genes within devQTL peaks would be to use the RNA seq data. The authors should perform differential expression analysis between Kaga and Cab RNA-seq datasets. Do any of the differentially expressed genes fall within the devQTL peaks?

      As suggested we have performed this additional experiment and report the RNAseq differential analysis in new Supplement Figure 7C-D. The analysis revealed 2606 differentially expressed genes in the PSM between Kaga and Cab, five of which were candidate genes from the devQTL analysis. We now tested all of these (5 in total, 4 new and 1 previously targeted adgrg1) for segmentation timing by CRISPR/Cas9 KO in the her7-venus background, none of which showed a timing phenotype (new Supplementary Figure 7F-F'). We provide the complete set of results in new Supplementary Figure 7 , Supplementary Data file 3 (DE-genes), all data were deposited on publicly available repository Biostudies under accession number: E-MTAB-13927.

      • The use of crispants to functionally test candidate genes is inappropriate. Crispants do not mimic the effect of divergent SNPs and therefore completely fail to prove causality. While it is completely understandable that Medaka fish are not amenable to the creation of multiple knock-in lines where divergent SNPs are interconverted between species, better justification is needed. For instance, is there enough data to suggest that the divergent alleles for the candidate genes tested are loss of function? Why was a knockout approach chosen as opposed to overexpression?

      We agree with the reviewer that we do not address the causality of SNPs with the CRISPR/Cas9 KO approach we followed. And medaka does offer the genome editing capabilities to create tailored sequence modifications. So in principle, this can be done. In practice, however, we reasoned that any given SNP will contribute only partially to the observed phenotypes and combinatorial sequence edits are simply very laborious given the current state of the art in genome editing technologies. We therefore opted for an alternative proof of principle approach that aims to "to discover new functionally relevant genes", not SNPs.

      -Along the same line, now that two candidate genes have been shown to modulate the clock period in crispants (mespb and pcdh10b), the authors should at least attempt to knock in the respective divergent SNPs for one of the genes. This is of course optional because it would imply several months of work, but it would significantly increase the impact of the study.

      As above, this is in principle the correct rationale to follow though very time, cost and labour intensive. It is for the later practical consideration that we decided not to follow this option.

      Minor Comments - It would be highly beneficial to describe the ecological differences between the two Medaka species. For example, do the northern O. sakaizumii inhabit a colder climate than the southern O. latipes? Is food more abundant or easily accessible for one species compared to the other? What, if anything, has been described about each species' ecology?

      There are indeed differences in the ecology of both species, with the northern O.sakaizumii inhabiting a colder climate than the southern O. latipes. In addition, it is known that the breeding season is shorter in the north than the south, and also there is the fact that northern species have been shown to have a faster juvenile growth rate than southern species. While it would be premature to link those ecological factors to the timing differences we observe, we can certainly speculate. A line to this effect has been added to the main text (Page 5, line 28-30).

      • The authors describe two different methods for quantifying segmentation clock period (mean vs. intercept). It is still unclear what is the difference between Figs. 3A (clock period), S4A (mean period) and S4B (intercept period). Is clock period just mean period? Are the data then shown twice? How do Fig. 3A and S4A differ?

      The clock period shown in all the main figures is the intercept period, which was also used for the devQTL analysis. Both measurements (mean and intercept) are indeed highly correlated and we include both in supplement for completeness.

      • devQTL as shorthand for developmental QTL should be defined in page 4 line 1 (where the term first appears), not later in line 12 of the same page.

      Noted and corrected, we thank the reviewer for spotting this error.

      • Python code for period quantification should be uploaded to Github and shared with reviewers.

      All period quantification code that was used in this study was obtained from the publicly available tool Pyboat (https://www.biorxiv.org/content/10.1101/2020.04.29.067744v3). All code that is used in PyBoat is available from the Github page of the creator of the tool (https://github.com/tensionhead/pyBOAT). Both are linked in the references and materials and methods sections.

      • RNA-seq data should be uploaded to a publicly accessible repository and the reviewer token shared with reviewers.

      We have uploaded all RNA-sequencing Data to public repository BioStudies under accession numbers : E-MTAB-13927, E-MTAB-13928. This information is now also added to material and methods in the manuscript text.

      Why are the maintenance (27-28C) vs. imaging (30C) temperatures different?

      Medaka fish have a wide range of temperatures they can physiologically tolerate, i.e. 17-33. The temperature 30C was chosen for practical reasons, i.e. a slightly faster developmental rate enables higher sample throughput in overnight real-time imaging experiments.

      • For Crispants, control injections should have included a non-targeting sgRNA control instead of simply omitting the sgRNA.

      We agree a non-targeting sgRNA control can be included, though we choose a different approach. For clarity, we now also include a control targeting Oca2, a gene involved in the pigmentation of the eye to probe for any injection related effect on timing and PSM size. As expected, 3 sgRNAs + Cas9 against Oca2 had no impact on timing or PSM size. This data is now shown in new Supplementary Figure 9 F-G'.

      It is difficult to keep track of the species and strains. It would be most helpful if Fig. S1 appeared instead in main figure 1.

      We agree and included an overview of the phylogenetic relationship of all species and their geographical locales in new Figure 1 A-B.

      Significance

      • The study introduces a new way of thinking about segmentation timing and size scaling by considering natural variation in the context of selection. This new framing will have an important impact on the field.
      • Perhaps the most significant finding is that the correlation between segment timing and size in wild populations is driven not by developmental constraints but rather selection pressure, whereas segment size scaling does form a single developmental module. This finding should be of interest to a broad audience and will influence how researchers in the field approach future studies.
      • It would be helpful to add to the conclusion the author's opinion on whether segmentation timing is a quantitative trait based on the number of QTL peaks identified.
      • The authors should be careful not to assign any causality to the candidate genes that they test in crispants.
      • The data and results are generally well-presented, and the research is highly rigorous.
      • Please note I do have the expertise to evaluate the statistical/bioinformatic methods used for devQTL mapping.

      Reviewer #2

      Evidence, reproducibility and clarity

      Seleit et al. investigate the correlation between segment size, presomitic mesoderm and the rhythm of periodic oscilations in the segmentation clock of developing medaka fish. Specifically, they aim to identify the genetic determinants for said traits. To do so, they employ a common garden approach and measure such traits in separate strains (F0) and in interbreedings across two generations (F1 and F2). They find that whereas presomitic mesoderm and segment size are genetically coupled, the tempo of her7 oscilations it is not. Genetic mapping of the F0 and F2 progeny allows them to identify regions associated to said traits. They go on an perturb 7 loci associated to the segmentation clock and X related to segment size. They show that 2/7 have a tempo defect, and 2/ affect size.

      Major comments: The conclusions are convincing and well supported by the data. I think the work could be published as is in its current state, and no additional experiments that I can think of are needed to support the claims in the paper.

      Minor comments: - The authors could provide a more detailed characterization of the identified SNPs associated to the clock and to PSM size. For the segmentation clock, the authors identify 46872 SNPs, most of which correspond to non-coding regions and are associated to 57 genes. They narrow down their approach to those expressed in the PSM of Cab Kaga. Was the RNA selected from F1 hybrids? I wonder if this would impact the analysis for tempo and or size in any way, as F2 are derived from these, and they show broader variability in the clock period than the F0 and F1 fishes.

      The RNA was obtained from the pure F0 strains and we have now extended this analysis by deep bulk-RNA sequencing and differential gene expression analysis. As indicated also to reviewer 1, this revealed 2606 differentially expressed genes in the unsegmented tails of Kaga and Cab embryos, some of which occurred in devQTL peaks. Based on this information we expanded our list of CRISPR/Cas9 KOs by targeting all differentially expressed genes (5 in total, 4 new and 1 previously targeted) for segmentation timing, none of which showed a timing phenotype (new Supplementary figure 7C-D). We provide the complete set of results in new Supplementary Figure 7, Supplementary Data file 3 (DE-genes). All data were deposited on publicly available repository Biostudies under accession number: E-MTAB-13927.

      It would be good if the authors could discuss if there were any associated categories or overall functional relationships between the SNPs/genes associated to size. And what about in the case of timing?

      In the case of PSM size there were no clear GO terms or functional relationships between the genes that passed the significance threshold on chromosome 3.

      For the 35 genes related to segmentation timing, there were a number of GO enrichment terms directly related to somitogenesis. We have included the GO analysis in the new Supplementary Figure 7E.

      • Have any of the candidate genes or regulatory loci been associated to clock defects (57) or segment size (204) previously in the literature?

      To the best of our knowledge none of the genes have been associated with clock or PSM size defects so far. It might be worthwhile using our results to probe their function in other systems enabling higher throughput functional analysis, such as newly developed organoid models.

      • When the authors narrow down the candidate list, it is not clear if the genes selected as expressed in the PSM are tissue specific. If they are, I wonder if genes with ubiquitous expression would be more informative to investigate tempo of development more broadly. It would be good if the authors could specifically discuss this point in the manuscript.

      We have not addressed the spatial expression pattern of the 35 identified PSM genes in this study, so we cannot speculate further. But the reviewer raises an important point, how timing of individual processes (body axis segmentation) are linked at organismal scale is indeed a fundamental, additional, question that will be addressed in future studies, indeed the in-vivo context we follow here would be ideal for such investigations.

      Can the authors speculate mechanistically why mespb or pchd10b accelerates the period of her7 oscillations?

      While we do not have a mechanistic explanation yet, an additional experiment we performed, i.e. bulk-RNAsequencing on WT and mespb mutant tails, provided additional insight, we now added this data to the manuscript . This analysis revealed 808 differentially expressed genes between wt and mespb mutants. Interestingly, many of these affected genes are known to be expressed outside of the mespb domain, i.e. in the most posterior PSM (i.e. tbxt, foxb1,msgn1, axin2, fgf8, amongst others). This indicates that the effect of mespb downregulation is widespread and possibly occurs at an earlier developmental stage. This requires more follow up studies. This data is now shown in new Supplementary figure 9A, Supplementary Data file S4. We now comment on this point in the revised manuscript.

      • Are there any size difference associated to the functionally validated clock mutants?

      We addressed this point directly and added this analysis as supplementary Figure 9H-H'. While pcdh10b mutants do not show any detectable difference in PSM size, we find a small, statistically significant reduction in PSM size (area but not length) in mespb mutants. All this data is now included in the revised manuscript.

      -Ref 27 shows a lack of correlation between body size and the segmentation period in various species of mammals. The work supports their findings, and it would be good to see this discussed in the text.

      We are not certain how best to compare our in-vivo results in externally developing fish embryos to in-vitro mammalian 2-D cell cultures. In our view, the correlation of embryo size, larval and adult size that we find in Oryzias might not necessarily hold in mammalian species, which would make a comparison more difficult. We do cite the work mentioned so the reader is pointed towards this interesting, complementary literature.

      Significance

      The work is quite remarkable in terms of the multigenerational genetic analysis performed. The authors have analysed >600 embryos from three separate generations to obtain quantitative data to answer their question (herculean task!). Moreover, they have associated this characterization to specific SNPs. Then, to go beyond the association, they have generated mutant lines and identified specific genes associated to the traits they set out to decipher.

      To my knowledge, this is the first project that aims to identify the genetic determinants for developmental timing. Recent work on developmental timing in mammals has focused on interspecies comparisons and does not provide genetic evidence or insight into how tempo is regulated in the genome. As for vertebrates, recent work from zebrafish has profiled temperature effects on cell proportions and developmental timing. However, the genetic approach of this work is quite elegant and neat.

      Conceptually, it is quite important and unexpected that overall size and tempo are not related. Body size, lifespan, basal metabolic rates and gestational period correlate positively and we tend to think that mechanistically they would all be connected to one another. This paper and Lazaro et al. 2023 (ref 27) are one of the first in which this preconception is challenged in a very methodical and conclusive manner. I believe the work is a breakthrough for the field and this work would be interesting for the field of biological timing, for the segmentation clock community and more broadly for all developmental biologists.

      My field is quantitative stem cell biology and I work on developmental timing myself, so I acknowledge that I am biased in the enthusiasm for the work. It should be noted that as an expert on the field, I have identified instances where other work hasn't been as insightful or well developed in comparison to this piece. It is also worth noting that I am not an expert in fish development, phylogenetic studies or GWAS analyses, so I am not capable to asses any pitfalls in that respect.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      __Summary: __

      This manuscript explores the temporal and spatial regulation of vertebrate body axis development and patterning. In the early stages of vertebrate embryo development, the axial mesoderm (presomitic mesoderm - PSM) undergoes segmentation, forming structures known as somites. The exact genetic regulation governing somite and PSM size, and their relationship to the periodicity of somite formation remains unclear.

      To address this, the authors used two evolutionarily closely related Medaka species, Oryzias sakaizumii and Oryzias latipes, which, although having distinct characteristics, can produce viable offspring. Through analysis spanning parental (generation F0) and offspring (generations F1 and F2) generations, the authors observed a correlation between PSM and somite size. However, they found that size scaling does not correlate with the timing of somitogenesis.

      Furthermore, employing developmental quantitative trait loci (devQTL) mapping, the authors identified several new candidate loci that may play a role during somitogenesis, influencing timing of segment formation or segment size. The significance of these loci was confirmed through an innovative CRISPR-Cas9 gene editing approach.

      This study highlights that the spatial and temporal aspects of vertebrate segmentation are independently controlled by distinct genetic modular mechanisms.

      __Major comments: __

      1) In the main text page 3, lines 11 and 12, the authors state that the periodicity of the embryo clock of the F1 generation is the intermediate between the parental F0 lineages. However, the authors look only at the periodicity of the Cab strain (Oryzias latipes) segmentation clock. The authors should have a reporter fish line for the Kaga strain (Oryzias sakaizumii) to compare the segmentation clock of both parental strains and their offspring. Since it could be time consuming and laborious, I advise to alternatively rephrase the text of the manuscript.

      We agree a careful distinction between segment forming rate (measured based on morphology) and clock period (measured using the novel reporter we generated) is essential. We show that both measures correlate very well in Cab, in both F0 and F1 and F2 carrying the Cab allele. For Kaga F0, we indeed can only provide the rate of somite formation, which nevertheless allows comparison due to the strong correlation to the clock period we have found. We have rephrased the text accordingly.

      2) It is evident that only a few F0 and F1 animals were analyzed in comparison with the F2 generation. Could the authors kindly explain whether and how this could bias or skew the observed results?

      We provide statistical evidence through the F-test of equality that the variances between the F0, F1 and F2 samples are equal. Additionally if we sub-sample and separate the F2 data into groups of 100 embryos (instead of all 638) we get the same distribution of the F2s. We therefore believe that this is sufficient evidence against a bias or skew in the results.

      3) It would be interesting to create fish lines with the validated CRISPR-Cas9 gene manipulations in different genetic contexts (Cab or Kaga) to analyze the true impact on the segmentation clock and/or PSM & somite sizes.

      We agree with the reviewer this would in principle be of interest indeed, please see our response to reviewer 1 earlier.

      4) Please add the results of the Go Analysis as supplementary material.

      We have added the GO analysis in new Supplementary Figure 7E.

      __Minor comments: __

      1) In the main text, page 2, line 29, Supplementary Figure 1D should be referenced.

      We have added a clearer phylogeny and geographical location of the different species in new Figure 1 A-B. And reference it at the requested location.

      2) In the main text, page 2, line 32, the authors refer to Figure 1B, but it should be 1C.

      We have corrected the information.

      3) Regarding the topic "Correlation of segmentation timing and size in the Oryzias genus" the authors should also give information on the total time of development of the different Oryzias species, as well as the total number of formed somites.

      We follow this recommendation and have added this information in new Supplementary Figure 5. We also now include segment number measured in F2 embryos. We indeed view segmentation rate as a proxy for developmental rate, which however needs to be distinguished from total developmental time. The latter can be measured for instance by quantifying hatching time, which we did. These measurements show that Kaga, Cab and O.hubbsi embryos kept at constant 28 degrees started hatching on the same day while O.minutillus and O.mekongensis embryos started hatching one day earlier. We have not included this data in the manuscript because we think a distinction should be made between rate of development and total development time.

      4) In Figures 3A and B, please add info on the F1 lines for comparison.

      The information on F1 lines is provided in Supplementary Figure 3

      5) Supplementary Figures 2F shows that the generation F1 PSM is similar to Cab F0, and not an intermediate between Kaga F0 and Cab F0. This is interesting and should be discussed.

      We show that the F1 PSM is indeed closer to the PSM of Cab than it is to the Kaga PSM. This is indeed intriguing and we have now commented on this point directly in the text.

      6) Supplementary Figures 6C to H are not mentioned either in the main text or in the extended information. Please add/mention accordingly.

      We have added references to both in the text

      7) The order of Supplementary Figure 8 E to H and A to D appears to be not correct and not following the flow of the text. Please update/correct accordingly.

      We have updated the text accordingly.

      8) The authors should choose between "Fig.", "Fig", "fig.", "fig" or "Figure". All 'variants' can be found in the text.

      Noted, and updated. Fig. is used for main figures and fig. is used for supplementary figures.

      9) The color scheme of several figures (graphs with colored dots) should be revised. Several appear to be difficult to discern and analyze.

      We have enhanced the colours and increased the font on the figure panels. The colour panel was chosen to be colour-blind friendly.

      10) Please address/discuss following questions: What are the known somitogenesis regulating genes in Medaka? How do they correlate with the new candidates?

      The candidates we found and tested had not been implicated in regulating the tempo of segmentation or PSM size, while for some a role in somite formation had been previously established, hence the enrichment in GO analysis Somitogenesis.

      Reviewer #3 (Significance (Required)):

      General assessment:

      This interesting manuscript describes a novel approach to study and find new players relevant to the regulation of vertebrate segmentation. By employing this innovative methodology, the authors could elegantly demonstrate that the segmentation clock periodicity is independent from the sizes of the PSM and forming somites. The authors were further able to find new genes that may be involved in the regulation of the segmentation clock periodicity and/or the size of the PSM & somites. A limitation of this study is the fact that the results mainly rely on differences between the two species. The integration of additional Medaka species would be beneficial and may help uncover relevant genes and genetic contexts.

      Advance:

      To my best knowledge this is the first time that such a methodology was employed to study the segmentation clock and axial development. Although the topic has been extensively studied in several model organisms, such as mice, chicken, and zebrafish, none of them correlated the size of the embryonic tissues and the periodicity of the embryo clock. This study brings novel technological and functional advances to the study of vertebrate axial development.

      Audience:

      This work is particularly interesting to basic researchers, especially in the field of developmental biology and represents a fresh new approach to study a core developmental process. This study further opens the exciting possibility of using a similar methodology to investigate other aspects of vertebrate development. It is a timely and important manuscript which could be of interest to a wider scientific audience and readership.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:* In this paper the authors explore the function of Syndecan in Drosophila stem cells focussing primarily on the intestinal stem cells. They use RNAi knockdown to conclude that Syndecan is required for long term stem cell maintenance as its knockdown results in apoptosis. They suggest that this effect is independent of LINC complex proteins but is associated with changes to nuclear morphology and DNA damage. They go on to show that a similar impact on nuclear shape can be seen in larval neuroblasts but not in stem cells of the female germline. *

      Major Comments: *The key conclusion that underpins the paper is that reduced Syndecan causes loss of stem cells. This is based entirely on evidence from cell-type specific RNAi using 3 independent RNAi lines. Overexpression has no phenotype and there is no analysis of loss of function mutants. SdcRNAi3 gives strong phenotypes that are statistically significant and is used throughout the paper. SdcRNAi2 gives comparatively moderate phenotypes which trend in the same direction but it is not clear if these are statistically significant (Fig S1). SdcRNAi line 1 appears to have very little effect (and if anything trends in the opposite direction in S1A). In addition, the knockdown efficiency of the three lines has not been assessed. Another possible concern given the dependence on RNAi3 is that the RNAi control line used is not an ideal match for the VDRC GD RNAi lines as it is in a different genetic background. In order to robustly draw conclusions: the phenotypes with RNAi lines 1 and 2 should be tested for significance; the extent of knockdown in each should be quantified either by qPCR in whole tissue knockdown, or by staining for protein levels if possible, to assess whether the variation in phenotypes is due to different knockdown levels. The use of a loss of function mutant in clones or tissue specific CRISPR-Cas9 KO or KD would also significantly increase confidence in the findings. *

      • Our qPCR data indicate that SdcRNAi3 produces the most efficient knockdown, whilst SdcRNAi1 generates the weakest knockdown. The new manuscript version will incorporate this data in figure S1. Knockdown efficacy of SdcRNAi 3 has also been previously reported (Eveland et al., 2016).

      • We apologise for omitting to add the statistical tests on phenotypic categories in figure S1A, this will be revised. We confirm that all Sdc RNAi phenotypic distributions are significantly different to that seen for age-matched controls (p- It should also be noted that despite weaker knockdowns with SdcRNAi1 and 2, we still observed statistically significant ISC depletion after 28 days of RNAi expression - we will add this data in figure S1. Overall, we are confident about Sdc’s role in maintaining intestinal stem cells.

      *Similarly, the evidence for a lack of LINC protein role in the phenotype relies on single RNAi lines without validation of knockdowns. The authors should ideally validate these lines in this system or reference other studies that have validated the lines in this or other contexts. *

      • The klarsicht RNAi line (BDSC 36721) and klaroid RNAi line (BDSC 40924) used in this study have been validated and used in other studies. (Falo-Sanjuan & Bray, 2022; Collins et al., 2017)

      • For Msp300 RNAi knockdown we have used two independent RNAi lines which gave similar results. We will amend the text to clarify these points. In addition, the line reported in the manuscript was previously validated (Dondi et al., 2021; Frost et al., 2016).

      Minor Comments: *The figures are generally very clear but some of the IF image panels are very small and require significant on-screen enlargement to be legible. In particular in Figure 1B the cross section views make it difficult to assess expression in the different cell types (and don't show very many cells), could this be shown in wholemount or as separated channels in a supplementary figure? In addition, it would strengthen the argument to include counterstains for markers of the different cell types (particularly to distinguish ISC/EB from EE). This could include esg-lacZ to mark ISC/EBs or prospero for EEs. However, if a broader view of these panels makes it clearer that all epithelial cells are expressing Syndecan this may not be essential. *

      • We are happy to incorporate larger fields of view, and co-immunostaining with different cell type markers.

      *Syndecan is referred to throughout as a stem cell regulator. This implies that in certain contexts or in response to certain stimuli its expression may be altered to elicit a stem cell response but no examples of this are shown. Moreover, only knockdown and not overexpression gives phenotypes suggesting its role may be as a required protein than a regulator. Either examples of its expression being modulated in homeostasis or in response to a challenge could be included or the wording could be amended. *

      • We agree with the reviewer and will amend the wording.

      *Expression of Syndecan in neuroblasts is described as data not shown, it would be better to include this for completeness. *

      • We will add this data in figure 4.

      *In addition to the intestinal validation of the Syndecan RNAi lines, validation of knockdown in the germline would be valuable to support the conclusions of Fig S4 given differences of knockdown in the germline with some RNAi lines (although inclusion of Dicer in the driver line should have overcome this). *

      • Sdc expression is very low in the germline, compared to the surrounding somatic cells, therefore we are not confident that we can detect differences in expression level after knockdown. We suggest adding a panel in figure S4 to show the low expression and adding a comment in the text. Reviewer #1 (Significance (Required)): *The study describes a potentially very interesting, novel link between Syndecan, nuclear shape and apoptosis in cycling cells that could have broad relevance. If fully validated this could have implications for other stem cell populations, including those in mammals and disease relevance in the context of cancer. The paper is fundamentally descriptive in nature and so the level of significance hinges on the strength of evidence and how interesting the phenotype itself is. At this stage the audience will be primarily in the areas of fundamental research in biology of the nucleus and cytoskeleton. Defining the mechanistic link between Syndecan and nuclear morphology will be a critical next step and while not essential for this study would significantly increase the likely interest in the paper. *

      • We thank the reviewer for these constructive comments. We agree that discovering the mechanistic links between Syndecan and nuclear morphology in future studies, in this and other model systems, will be relevant to many areas of biological research.

      *In terms of significance in stem cell biology the distinction between a regulator and a requirement to prevent stem cell apoptosis is important and the lack of evidence for a context in which Syndecan plays a regulatory role somewhat detracts from the breadth of impact. My field of expertise is in epithelial stem cell biology. *

      • We agree and will amend our wording.

      Reviewer #2 *(Evidence, reproducibility and clarity (Required)): ** Summary: Stem cell (SC) maintenance and proliferation are necessary for tissue morphogenesis and homeostasis. The basement membrane (BM) has been shown to play a key role in regulating stem cell behavior. In this work, the authors unravel a new connection between the receptor for BM components Syndecan (Sdc) and SC behavior, using Drosophila as model system. They show that Sdc is required for intestine stem cell (ISC) maintenance, as Sdc depletion results in their progressive loss. At a cellular level, they also find that Sdc depletion in ISCs affects cell survival, cell and nuclear shape, nuclear lamina and DNA damage. In addition, they show that the defects in shape are not related to cell death. They also find that Sdc depletion in neural stem cells also results in nuclear envelope remodeling during cell division. This is in contrast to what happens in female germline stem cells where Sdc does not seem to be required for their survival or maintenance. In general, I believe that this work unravels a connection between Sdc and stem cell behavior. However, I think the study is still at a preliminary stage, as how Sdc regulates different facets of stem cell behavior remains unclear.

      Major comments: 1. To clearly show that the cellular changes produced by loss of Sdc are not due to cell death, one should quantify the ISC area and shape of Sdc-depleted ISCs expressing DIAP1 and compare it to that of Sdc-depleted ISCs. As DIAP1 overexpression only partially rescues ISC loss due to Sdc depletion, one should show that the Sdc-depleted ISCs expressing DIAP1 that still show cellular changes are not dying, as overexpression of Diap1 might not be sufficient to completely rescue cell death in all Sdc-depleted ISCs. In fact, apoptosis in Sdc depleted guts and the ability of Diap1 overexpression to rescue cell death should be analyzed using markers of caspase activity, this will provide a better idea of the contribution of apoptosis to the phenotypes associated to Sdc depletion. *

      • We can, as suggested by the reviewer, quantify the area and shape of Sdc-depleted ISCs expressing DIAP1 and compare it to that of Sdc-depleted ISCs. However, our immunostainings with anti-Caspase 3 or Drice do not pick up apoptotic cells in the fly gut. This is not entirely unexpected, as apoptosis is unfortunately not easily detected in this tissue. In the absence of a positive readout of apoptosis, we will not be able to discriminate between apoptotic and non-apoptotic stem cells when quantifying area and shape and will only have global quantifications.

      • The authors show that ISC loss is associated with reduced cell density, suggesting that this is most likely due to failure in new cell production. What do they mean with cell production? Is this related to a problem in regulating cell division or to the fact that as some ISCs are lost by apoptosis there is progressively less ISCs or to a combination of both? I think that cell division should be monitored throughout time as well as cell death in ISCs.*

      • Based on esgF/O experiments (fig. 1D-F and S1C) where we can trace the production of new cells with GFP, we know that Sdc RNAi expression (i) impairs the appearance of newly differentiated cells in the tissue and (ii) results in the disappearance of progenitor cells (fig. S1C). Supporting these points, (i) we have observed PH3+ mitotic stem cells upon Sdc RNAi, so we are confident the cells are able to initiate cell division (see also fig. 2G), and (ii) we have occasionally noted in fixed samples stem cells looking like they were in the process of delaminating. Overall, the failure of cell production is likely related to problems with both completion of cell division and progressive stem cell loss. High resolution live imaging will in future give us a better insight into stem cell division dynamics/behaviour, however, the technical improvements required are beyond the scope of this project. In the meantime, we propose to clarify our statement in the text.

      • The authors report that in contrast to what happens when Sdc is eliminated from ISCs, its elimination from EEs results in an increase in the number of these cells. An explanation for this result is missing.*

      • Based on known roles of Syndecan in other Drosophila tissues (Johnson et al., 2004; Steigemann et al., 2004; Chanana et al., 2009; Schulz et al., 2011), we speculate that Syndecan may contribute to robo/slit signalling, which is an important regulator of EE activity in the Drosophila gut (Biteau & Jasper 2014; Zeng et al., 2015). We propose to amend the text to express this hypothesis.

      • The authors suggest that "Sdc function is unlikely to be fully accounted for by individual LINC complex proteins, although these proteins might act redundantly". Checking redundancy seems a straight forward experiment, which only requires the simultaneous expression of RNAis against several of these proteins. This would help to settle the implication of LINC complex proteins on Sdc function.*

      • To check redundancy, we propose to combine Klaroid RNAi with Msp300 or Klarsicht RNAis, and express two RNAis at a time in ISCs. We will then measure stem cell proportions and the proportion of ISCs with DNA damage.

      • Although quantification of DNA damage, by immunolabelling with gH2Av, reveals that knockdown of individual LINC complex components did not recapitulate the damage observed upon Sdc depletion (Fig.3G), the image shown in Fig.3F reflects much higher levels of gH2Av in Msp300 RNAi cells compared to Sdc RNAi cells. Authors should clarify this. *

      • Like the reviewer, we are intrigued by the higher levels of H2Av staining in the tissue, despite Msp300 knockdown in stem cells only (fig. 3F). It is worth noting that we observed this with two independent RNAi lines (we showed only one RNAi in the manuscript, but we will amend the text to indicate this). In fig. 3F, we will indicate with an arrow the only ISC that is H2Av positive, and mention in the text that the majority of DNA damage signal observed in the Msp300 RNAi condition is in enterocytes, not ISCs. We currently do not have an explanation for why loss of Msp300 in ISCs should cause DNA damage in neighboring cells.

      *In addition, the consequences of the simultaneous elimination of more than one component of the LINC complex on DNA damage should be analyzed. *

      • We agree, and as we check for redundancy (as in point 4), we will also immunostain the tissues for H2Av.

      • The authors claim that the fact that "DNA damage was found more frequently in Sdc-depleted ISCs with lamina invaginations compared to those without (Figure 3H), supports a model whereby the development of nuclear lamina invaginations precedes the acquisition of DNA damage". However, to me, these results show that there is a relation between these two phenotypes, but not that one precedes the other. In order to show which one is the possible cause and which the consequence, the authors should perform a time course of the appearance of each of these phenotypes.*

      • We agree with the reviewer that we should rephrase our statement to indicate a relationship between lamina invaginations and DNA damage, rather than a causality (as stated in fig. 3H).

      (In terms of performing a time course analysis, the difficulty is that after 3 days of Sdc RNAi expression, the apparent DNA damage (fig. 3G) corresponds to a very small proportion of stem cells, meaning that an exceptionally large sample size would be required to achieve robust statistical analysis.)

      • When studying the role of Sdc in neural stem cells, the authors show that elimination of Sdc in neuroblasts also affect nuclear envelope and shape. Furthermore, in this case, they also show that Sdc elimination affects cell division. To look for a more conserved role of Sdc in stem cell behavior, I believe the authors should also analyze whether Sdc elimination in neural stem cells results in an increase in DNA damage, as it is the case in ISCs.*

      • We will stain larval brains for H2Av to see if DNA damage is also observed following Sdc knockdown in neuroblasts.

      • When analyzing a possible role of Sdc in fGSCs, quantification of germline stem cells and gH2Av levels in control nosGal4 and nos>Sdc RNAi germaria should be done. In addition, it is not clear to me whether Sdc is in fact expressed in fGSCs.*

      • *

      • As mentioned in comments to reviewer 1, we will add a panel in figure S4 to show the low Sdc expression in fGSCs. We will also clarify in the text that we do not see any H2Av staining in the fGSCs (thus, there is nothing to quantify in this case).

      * The authors should show presence of Sdc in neuroblasts.*

      • Yes, we agree, as also mentioned in comments to reviewer 1.

      Reviewer #2 (Significance (Required)): *In general, although this work reveals that elimination of Sdc affects different aspects of intestinal and neural stem cell behavior, including cell survival, cell production, nuclear shape, nuclear lamina or DNA damage, their contribution to stem cell loss and interactions between them have not been analyzed in detail. The role of the basement membrane in stem cell behavior has been extensively studied. In particular, the role of syndecan in stem cell regulation has been primarily confined to cancer, muscle, neural and hematopoietic stem cells. Thus, the study here presented could extend the role of Sdc to intestinal stem cells and could potentially reveals a conserved role for Sdc in neural stem cell behavior. However, the problem with the data mentioned above, hinders the assessment of the significance of this work. *

      • We thank the reviewer for their assessment and are glad that they also find that our study provides novel connections between Syndecan and the regulation of intestinal and neural stem cell behaviors. To strengthen our conclusions, we will include additional experiments or amend the text, as indicated above.

      Reviewer #3* (Evidence, reproducibility and clarity (Required)): ** Peer-review: The transmembrane protein Syndecan regulates stem cell nuclear properties and cell maintenance.

      In this work, the authors investigate the role of the transmembrane protein Syndecan (Sdc) in nuclear organisation and stem cell maintenance. Theys show that Sdc knockdown in intestinal stem cells (ISCs) results in a reduction of the ISC pool as well as of their progeny. They hypothesise that these ISCs might get eliminated via cell death, however, expression of the apoptotic inhibitor DIAP1 only rescued ISC loss by 50%. Hence, they suggest that apoptosis can not account for the total decrease in ISCs observed upon Sdc loss. ISCs depleted from Sdc exhibited abnormal cytoplasmic and nuclear morphologies. As Sdc has previously been implicated in the abscission machinery in mammalian cultured cells, they tested if Sdc could be playing a similar role in the abscission of ISCs. However, ISCs were capable of undergoing cytokinesis. Next, they tested if Sdc depletion could be altering the linkage between the plasma membrane and the nucleus mediated by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. However, individual knockdowns of the different components of the complex did not disrupt the nuclear morphology to the same extent as Sdc knockdown, suggesting that Sdc function may be independent of the LINC complex. Finally, they observed that Sdc-depleted ISCs exhibited DNA damage, suggesting that Sdc may play a role in DNA protection. The authors next tested if Sdc played similar roles in other stem cell types such as the female germline stem cells (fGSCs) and larval neural stem cells (NSCs). While Sdc depletion appeared dispensable for fGSC maintenance, it prolonged NSC divisions and altered the nuclear morphology of NSCs. Upon further investigations, they observed that the NSC's nuclear envelope was disrupted upon division, hence causing defects in the nuclear size ratio of NSC and their progeny. This study provides with interesting findings in the field and proves a new role for Sdc in the regulation of intestinal and neural stem cell maintenance. I would recommend this manuscript to be accepted if the authors address the following comments.

      __Major comments: __ 1. In Figure 2 A-B, Sdc RNAi should ideally have a UAS control transgene to match the number of UAS being expressed to that of Sdc RNAi, DIAP1. Otherwise, it is plausible that reduced RNAi expression of Sdc RNAi, DIAP1 animals is the cause of the partial rescue. Staining against cell death markers such as Dcp-1 or TUNEL might also quantify the number of cells undergoing cell death in each of the genotypes. *

      • As mentioned in comments to reviewer 2 (point 1), it is difficult to label apoptotic cells in the fly gut. However, we could set up an additional control to test that the partial rescue observed upon DIAP1 expression is not a result of Gal4 dilution.

      • " These phenotypes were observed both with and without DIAP1 expression (Figure 2C), indicating that these cell shapes are not caused by apoptosis."Misleading, as DIAP overexpression in Sdc knockdown background only rescued apoptosis by 50%. Hence, it is possible that those cells undergoing morphological defects, protrusions and blebbing might still undergo death - also considering those morphological changes are typically observed in apoptotic cells...Therefore, to rule apoptosis out, these cells should be shown to be negative for cell death markers. *

      • We agree, however, it is difficult to label apoptotic cells. We think that the quantification of shape and area (as suggested by reviewer 2, point 1) will clearly show that the cell shapes resulting from Sdc depletion are not caused by apoptosis.

      • Show if Sdc is expressed in fGSCs - the lack of phenotype caused by Sdc knockdown might be due to lack of expression of Sdc.*

      • As mentioned in comments to reviewers 1&2, we will add a panel in figure S4 to show the low sdc expression in fGSCs.

      • "After confirming the presence of Sdc in neuroblasts (data not shown)."Data should be shown. It would be of great interest for researchers if you showed a staining of different brain cell types (NBs, glia, neurons) and the Sdc expression patterns.*

      • As mentioned in comments to reviewers 1&2, we will add a panel in figure 4 to show sdc expression in NBs and the overall expression pattern.

      • You show how Slc-depleted NBs have disrupted nuclear morphologies. However, does Slc KD in NB lineages affect their ability to self-renew and generate differentiated progeny? Is the number of NBs and of their progeny cells altered as it is for ISCs?*

      • We propose to knockdown Sdc in NBs and quantify brain size in 3rd instar larvae to test if the ability to generate progeny is affected.

      • Does protection against DNA damage in an Slc knockdown background prevent the defects observed with the single knockdown and ISC elimination?*

      • This is a good question, and we should emphasize this point in the discussion. However, because of the multiple routes of DNA damage response, and the multiple lines needed to explore this connection, we feel that investigating this question is beyond this project.

      • Any idea the similarities between ISC and NBs that can account for why Sdc knockdown has effects in those systems, while no effect was observed in the germ cells?*

      • Besides the differences in expression level, we speculate that GSCs may have a different nuclear / lamina architecture which might reflect differences in how GSCs control the physical integrity of their nuclei. It is also possible that the differences observed between tissues reflect the way stem cells connect to their microenvironment. Notably, fGSCs rely extensively on E-Cadherin mediated adhesion with neighbouring cells, and it is possible that contact with the extracellular matrix is dispensable. We will consider these possibilities in the discussion.

      Minor comments:* ** 8. Lamina invaginations, for example in Figure 3 A, could be indicated with an arrow for easier detection. *

      • Thanks for this suggestion, we will amend the figure.

      Specify the type and location of NB imaged during live cell experiments.

      • The NBs were imaged in the brain lobes, and we did not distinguish between type I and II NBs. We will add a sentence in the method section to clarify.

      *Reviewer #3 (Significance (Required)): Expertise: Drosophila stem cells *

      • Many thanks for the constructive comments.
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The data strongly suggest that iron depletion in urine leads to conditional essentiality of some genes. It would be informative to test the single gene deletions (Figure 3G) for growth in urine supplemented with iron, to determine how many of those genes support growth in urine due to iron limitation.

      We appreciate this suggestion. We have now included this suggested experiment as a new panel (Figure 5G).

      (2) Line 641. The authors raise the intriguing possibility that some mutants can "cheat" by benefitting from the surrounding cells that are phenotypically wild-type. Growing a fepA deletion strain in urine, either alone or mixed with wild-type cells, would address this question. Given that other mutants may be similarly "masked", it is important to know whether this phenomenon occurs.

      We thank the reviewer for this suggestion but believe that this would be very difficult to ascertain in K. pneumoniae as several redundant iron uptake systems exist. This would require significantly more time to construct sequential/combinatorial iron-uptake mutants to exactly determine this “cheating” and “masking” phenomenon and such work is beyond the scope of the current study.

      (3) In cases where there are disparities between studies, e.g., for genes inferred to be essential for serum resistance, it would be informative to test individual deletions for genes described as essential in only one study.

      We thank the reviewer for this suggestion, and we agree that deleting conditionally essential genes (i.e. serum resistance) could help identify discrepancies in methodology with other studies but this is beyond the scope of this study. Furthermore, we do not have these other strains readily available to us and importing these strains into Australia is challenging due to the strict import/quarantine laws.

      Reviewer #1 (Recommendations For The Authors)

      (4) Line 529. Why was 50 chosen as the read count threshold?

      This was chosen as the minimum threshold needed to exclude essential genes from the comparative analysis, as these can contribute false positive results where a change from, for example, 2 to 5 reads between conditions is considered a >2-fold change. We have updated the manuscript text to highlight this: “were removed from downstream analysis to exclude confounding essential genes and minimize the effect of stochastic mutant loss” (line 539

      (5) The titles for Figure 5 and Figure 6 appear to be switched.

      Thank you, we have now corrected this error.

      (6) Line 381. "Forty-six of these regions contain potential open reading frames that could encode proteins". How is a potential ORF defined?

      This was based on submitting the selected 145bp regions to BLASTx using default parameters and listing the top hit (if one was found). We have now edited the manuscript text to make this clearer. (Line 394)

      (7) Two previous TnSeq studies looking at Escherichia coli and Vibrio cholerae suggest that H-NS can prevent transposon insertion, leading to false positive essentiality calls. Is there any evidence of this phenomenon here? A/T content could be used as a proxy for H-NS occupancy.

      We thank the reviewer for this point and also agree that H-NS or other DNA-binding proteins could indeed lead to false-positive essentiality calls using TraDIS. Based on this, we have now included a sentence in the conclusion section mentioning this methodological caveat (Line 631). We believe that A/T content could potentially be used as a proxy for H-NS occupancy,

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors may wish to reformat the manuscript by decanting a number of panels and figures as supplementary material. These include the panels related to the description of TraDIS (for example Fig 1D, 1E, 1F. 1G, Fig 2A, Fig 3C, 3D, 3E, 3F, Fig 5C, Fig 6D). This is a well-established method.

      We thank the reviewer for this suggestion but believe that these panels allow the methodology and resulting insertion plots to be more followable and allow other researchers, of varying expertise, to better understand this functional genetic screen technique.

      (2) The authors need to indicate how relevant the strain they have probed is. Is it a good reference strain of the KpI group?

      This is a great suggestion and we have now included a new figure illustrating the genetic context and relatedness of K. pneumoniae ECL8 within the KpI phylogroup (New Figure 3).

      (3) The authors need to provide an extensive comparison between the data obtained and those reported testing other Klebsiella strains. A Table identifying the common and different genes, as well as a figure, may suffice. I would encourage authors to compare also their data against E. coli and Salmonella. For example, igaA seems to be not essential in Kebsiella although data indicates it is in Salmonella.

      We thank the reviewer for their comment and appreciate that our data could be extended and compared to other relevant Enterobacteriaceae members. However, we believe this is beyond the scope of this study as the focus is more on K. pneumoniae.

      (4) None of the mutants tested further are complemented. Without these experiments, it cannot be rigorously claimed that these loci play any role in the phenotypes investigated.

      We agree that complementation is an important tenet for validation of mutant gene phenotypes to specific gene loci, in this case wbbY has already been complemented and believe complementation for an already known molecular mechanism would be redundant. Please refer to our response in point 6.

      We complemented isolated transposon mutants hns7::Tn5 and hns18::Tn5 with a mid-copy IPTG inducible . We observed a slight increase in serum susceptibility but not full rescue of the WT phenotype (i.e. serum susceptibility). We suspect that the imperfect rescue of the serum-resistance phenotype observed could be due to the expression levels and copy number of the complement hns plasmid used. As hns is a known global regulator its possible pleiotropic role is complex as many aspects of stress response, metabolism or capsule could be affected in Klebsiella (doi.org/10.1186/1471-2180-6-72, doi.org/10.3389/fcimb.2016.00013). We have now included in the text our efforts in complementation and have included a new supplementary figure (Figure S11).

      (5) The contribution of siderophores to survival in urine is not conclusively established. Authors may wish to test the transcription of relevant genes, and to assess whether the expression is fur dependent in urine. Also, authors may wish to identify the main siderophore needed for survival in urine by probing a number of mutants; this will allow us to assess whether there is a degree of selection and redundancy.

      We thank the reviewer for their comment and agree siderophore uptake is important. We have now included an additional panel (Figure 5G) interrogating the importance of iron-uptake genes grown in urine which is iron limited. We do appreciate that further experiments looking into the Fur regulon and siderophore biosynthesis would be interesting but believe this is outside the scope of this study.

      (6) The role of wbbY is intriguing, pointing towards the importance of high molecular weight O-polysaccharide. In this mutant background, the authors need to assess whether the expression of the capsule, and ECA is affected. Authors need also to complement the mutant. Which is the mechanism conferring resistance?

      We thank the reviewer for their comment and would like to mention that wbbY has already been shown to play a role in LPS profile/biosynthesis and serum-resistance (10.3389/fmicb.2014.00608 ). Furthermore, blast analysis shows that the wbbY gene between the NTUH-K2044 (strain used in aforementioned study) and ECL8 shares 100% sequence identity and also shares lps operon structure. Hence, we do not find it pertinent to complement this mutant as we believe its molecular mechanism has already been established. We have now in the text more prominently highlighted the results of this study and how our screen was robust enough to also identify this gene for serum resistance.

      (7) hns and gnd mutants most likely will have their capsule affected. The authors need to assess whether this is the case. Which is the mechanism conferring resistance?

      As mentioned in point 6, we believe that the serum resistance phenotype is attributable to the LPS phenotype. Previous studies have listed hns and gnd mutants would likely have differences in capsule but due to hns being pleiotropic and gnd being intercalated/adjacent to the LPS/O-antigen biosynthesis it would be difficult to exactly delineate which cellular surface structure is involved.

      (8) The conclusion section can be shortened significantly as much of the text is a repetition of the results/discussion section.

      We thank the reviewer for their suggestion and have made edits to limit repetition in the conclusion section.

      Reviewer #3 (Public Review):

      Below I include several comments regarding potential weaknesses in the methodology used:

      • The study was done with biological duplicates. In vitro studies usually require 3 samples for performing statistical robust analysis. Thus, are two duplicates enough to reach reproducible results? This is important because many genes are analyzed which could lead to false positives. That said, I acknowledge that genes that were confirmed through targeted mutagenesis led to similar phenotypic results. However, what about all those genes with higher p and q values that were not confirmed? Will those differences be real or represent false positives? Could this explain the differences obtained between this and other studies?

      We thank the reviewer for their comment and apologize for the confusion, data were only pooled for the statistical analysis of gene essentiality. Here, two technical replicates of the input library were sequenced and the number of insertions per gene quantified (insertion index scores). These replicates had a correlation coefficient of r2 = 0.955, and the insertions per gene data were pooled to give total insertions index scores to predict gene essentiality. For conditional analyses (growth in urine or serum), replicate data were not combined. As mentioned previously, differences between this and other studies could also be attributed to inherent genomic differences or due to differences in experimental methodology, computational approaches, or the stringency of analysis used to categorize these genes.

      • Two approaches are performed to investigate genes required for K. pneumoniae resistance to serum. In the first approach, the resistance to complement in serum is investigated. And here a total of 356 genes were identified to be relevant. In contrast, when genes required for overall resistance to serum are studied, only 52 genes seem to be involved. In principle, one would expect to see more genes required for overall resistance to serum and within them identify the genes required for resistance to complement. So this result is unexpected. In addition, it seems unlikely that 356 genes are involved in resistance to complement. Thus, is it possible false positives account for some of the results obtained?

      We thank the reviewer for their comment and do believe false positives may account for some of the identified genes. Specifically, to the large contrast in genes, we believe this is due to the methodology as alluded to in our conclusion section. For overall resistance to serum, we used a longer time point (180 min exposure) where fewer surviving mutants are recovered hence fewer overall genes will be identified, whereas strains with short killing windows will have more (i.e. complement-mediated killing, 90 minute exposure).

      Reviewer #3 (Recommendations For The Authors):

      • In Figure 4 it is shown that genes important for growth in urine include several that are required for enterobactin uptake. Moreover, an in vitro experiment shows that the complementation of urine with iron increases K. pneumoniae growth. It would have been informative to do a competition experiment between the WT and Fep mutants in urine supplemented with iron. This could demonstrate that the genes identified are only necessary for conditions in which iron is in limiting concentrations and confirm that the defect of the mutants is not due to other characteristics of urine.

      We appreciate this suggestion. We have now included a new panel (Figure 5G) addressing the supplementation of iron in urine for these select mutants.

      • Considering the results section, the title for Figure 6 seems to be more appropriate for Figure 5.

      Thank you, this has now been corrected.

      Other points:

      • Line 44: treat instead of treating

      Thank you, this has now been corrected.

      • Line 63: found that only 3 genes played a role instead of "found only 3 genes played a role"

      Thank you, this has now been corrected.

      • Line 105: is there any reason for only using males? Since UTIs are frequent in women? Why not use urine from women volunteers?

      Due to accessibility of willing volunteers and human ethic application processes, only male samples were available. We are currently undertaking further studies to understand how male and female urine influences growth of uropathogens.

      • Line 105: since the urine was filter-sterilized, maybe the authors can comment that another point that is missing in urine - and that it may be important to study - will be the presence of the urine microbiome and how this affects growth of K. pneumoniae.

      We again thank the reviewer for this comment and have now edited the manuscript discussing how the absence of urine microbiome could affect growth (Line 659). As an aside, future studies in our lab are interested in looking at the role of commensal/microbiome co-interactions for essentiality/pathogenesis using TraDIS.

      • Line 116: I understand that the 8 healthy volunteers combined males and females

      Thank you, we have now edited this methods line to make this clearer.

      • Line 120: incubate in serum 90 min and 180 RPM shaking: any reasons for using these conditions, any reference supporting these conditions?

      Thank you for pointing this out, we were mirroring a previous K. pneumoniae serum-resistance study (doi.org/10.1128/iai.00043-).

      • Line 156: space after the dot.

      Thank you, we have now corrected this in the manuscript.

      • Line 164: resulting reads were mapped to the K. pneumoniae: what are the parameters used for mapping (e.g. % of identity...)?

      Thank you for bringing this to our attention, we have now included in our manuscript that we used the default parameters of BWA-MEM for mapping for minimum seed length (default -k =20bp exact match)

      • Line 180: it will be good to upload to a repository the In-house scripts used or indicate the link beside the reference for those scripts.

      Our scripts are derived from the pioneering TraDIS study (doi: 10.1101/gr.097097.109). We are currently still optimizing our scripts and intend to upload these to be publicly available. However, in the meantime we are more than happy to share them with other parties upon request.

      • Line 191: why were genes classified as 12 times more likely to be situated in the left mode? Any particular reason for using this threshold?

      We opted for a more-stringent threshold for classifying essential genes, in keeping with previous and comparable studies (doi.org/10.1371/journal.pgen.1003834).

      • Line 209: do you mean Q-value of <0.05 instead of >0.05 ? How is this Q value is calculated, and which specific tests are applied?

      Thank you for pointing out this Q value error, we have now corrected this in the manuscript. These values were generated using the biotradis tradis_comparison.R script which uses the EdgeR package. For further reading please see DOI: 10.1093/bioinformatics/btp616. The Q-values are from P values corrected for multiple testing by the Benjamini-Hochberg method.

      • Line 212: again, which type of test is used? What about the urine growth analysis? The same type of tests were applied?

      Thank you for bringing this to our attention, we have now indicated in the referenced method section the use of which package for which datasets (i.e. or serum). Line 212 refers to our use of the AlbaTraDIS package, which builds on the biotradis toolkit, to identify gene commonalities/differences in the selected growth conditions again using multiple testing by the Benjamini-Hochberg methods. For further reading, please refer to DOI: 10.1371/journal.pcbi.1007980

      • Line 226: do the authors mean Sanger sequencing instead of SangerSanger sequencing?

      Thank you, we have now corrected this in the manuscript.

      • Line 239: does the WT strain contain another marker for differentiating this strain from the mutant? Or is the calculation of the number of WT CFUs done by subtracting the number of CFUs in media with antibiotics from the total number of CFUs in media without antibiotics? The former will be a more accurate method.

      The calculation was based on the latter assumption, “number of WT CFUs done by subtracting the number of CFUs in media with antibiotics from the total number of CFUs in media without antibiotics”. We have now updated the methods section to make this clearer.

      • Line 266: can you indicate approximately how many CFUs you have in this OD?

      Thank you, we have now also indicated an approximate CFU for this mentioned OD600 (OD600 1 = 7 × 108 cells).

      • Line 309: besides indicating Figure 1D please indicate here Dataset S1 (the table where one can see the list of essential and non-essential genes). This table is shown afterwards but I think it will be more appropriate to show it at the begging of the section.

      Thank you, we have now taken on this recommendation and have now edited the manuscript to also indicate Dataset S1 earlier.

      • Table 3. regarding the comparison of essential genes between different strains. I think it will be more clear if a Venn diagram was drawn including only genes that have homologs in all the studied strains (i.e. defining the core genome essentially).

      We would like to thank the reviewer for suggesting a venn diagram and have now removed Table 3 which has been replaced with a new Figure 3.

      • Line 461: replicates were combined for downstream analyses? But are replicates combined for doing the statistical analysis? If so, how is the statistical analysis performed? How is it taken into account the potential variability in the abundance in each library? An r of 0.9 is high but not perfect.

      Technical replicates of the sequenced input library were combined following identification of a correlation coefficient of r2 = 0.955, for the calculation of insertion index scores used in gene essentiality analysis. While r2 = 0.955 is not perfect, discrepancies here can be attributed to higher variance in insertion index scores when sampling small genes, as these are represented by fewer insertions and the stochastic absence of a single insertion event has a greater effect on the overall IIS. Replicate data were not pooled for statistical analysis of mutant fitness (growth in urine and serum).

      • Line 487: is there any control strain containing the kanamycin gene in a part of the genome that does not affect the growth of K. pneumoniae? This could be used to show that having the kanamycin gene does not provide any defect in urine growth.

      We thank the reviewer for this suggestion but argue that introduction of the kanamycin gene into each unique loci may result in various levels of gene fitness that would be incomparable to a single control strain. Instead, we culture the ECL8 mutant library in urine and ensure that its kinetics are comparable to the wildtype. As the library contains thousands of kanamycin cassettes uniquely positioned across most of the genome with no observable growth defect, we do not anticipate the presence or expression of the cassette to have an appreciable impact.

      • Line 569: in the methodology it was indicated that control cells were incubated in PBS for the same amount of time. I think this is an important control that is not cited in the results section. Please can you indicate?

      We apologise for this misunderstanding due to how the methodology was written. The experiment did not sequence the PBS incubated samples as this was solely used a check for viability of the used K. pneumoniae ECL8 stock solution.

      • Line 597: "Mutants in igaA are enriched in our experiments". Can you show this data?

      We have now included this as a supplementary (Figure S11A)

      • Line 615: when doing this calculation, I guess the authors take into account only genes that are also present in the other strains.

      That is correct, we were aiming to highlight the high conservation of “essential genes” among all the selected strains.

      • Line 627: why surprisingly? Because is too low. Then indicate.

      Thank you, we have now edited this sentence to indicate that.

      • Figure 4: please, for clarity, can you indicate the meaning of the colors in the figure itself besides indicating it in the figure legend?

      Thank you, we have now included a color legend in these figure panels for clarity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors build upon prior data implicating the secreted peptidoglycan hydrolase SagA produced by Enterococcus faecium in immunotherapy. Leveraging new strains with sagA deletion/complementation constructs, the investigators reveal that sagA is non-essential, with sagA deletion leading to a marked growth defect due to impaired cell division, and sagA being necessary for the immunogenic and anti-tumor effects of E. faecium. In aggregate, the study utilizes compelling methods to provide both fundamental new insights into E. faecium biology and host interactions and a proof-of-concept for identifying the bacterial effectors of immunotherapy response.

      We thank the Reviewers for their positive feedback on our manuscript. We also appreciate their helpful comments/critiques and have revised the manuscript as indicated below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Klupt, Fam, Zhang, Hang, and colleagues present a novel study examining the function of sagA in E. faecium, including impacts on growth, peptidoglycan cleavage, cell separation, antibiotic sensitivity, NOD2 activation, and modulation of cancer immunotherapy. This manuscript represents a substantial advance over their prior work, where they found that sagA-expressing strains (including naturally-expressing strains and versions of non-expressing strains forced to overexpress sagA) were superior in activating NOD2 and improving cancer immunotherapy. Prior to the current study, an examination of sagA mutant E. faecium was not possible and sagA was thought to be an essential gene.

      The study is overall very carefully performed with appropriate controls and experimental checks, including confirmation of similar densities of ΔsagA throughout. Results are overall interpreted cautiously and appropriately.

      I have only two comments that I think addressing would strengthen what is already an excellent manuscript.

      In the experiments depicted in Figure 3, the authors should clarify the quantification of peptidoglycans from cellular material vs supernatants. It should also be clarified whether the sagA need to be expressed endogenously within E. faecium, and whether ambient endopeptidases (perhaps expressed by other nearby bacteria or recombinant enzymes added) can enzymatically work on ΔsagA cell wall products to produce NOD2 ligands?

      We mentioned in the main text that peptidoglycan was isolated from bacterial sacculi and digested with mutanolysin for LC-MS analysis. We have now also included “mutanolysin-digested” sacculi in the Figure 3 legend as well.

      We have added the following text “We next evaluated live bacterial cultures with mammalian cells to determine their ability to activate the peptidoglycan pattern recognition receptor NOD2” and “our analysis of these bacterial strains” to indicate live cultures were evaluated for NOD2 activation.

      We have also added the following text “Our results also demonstrated that while many enzymes are required for the biosynthesis and remodeling of peptidoglycan in E. faecium, SagA is essential for generating NOD2 activating muropeptides ex vivo.”

      In the murine experiments depicted in Figure 4, because the bacterial intervention is being performed continuously in the drinking water, the investigators have not distinguished between colonization vs continuous oral dosing of the mice peptidoglycans. While I do not think additional experimentation is required to distinguish the individual contributions of these 2 components in their therapeutic intervention, I do think the interpretation of their results should include this perspective.

      We have added the following text “We note that by continuous oral administration in the drinking water, live E. faecium and soluble muropeptides that are released into the media during bacterial growth may both contribute to NOD2 activation in vivo.” and revised the following text “Nonetheless, these results demonstrate SagA is not essential for E. faecium colonization, but required for promoting the ICI antitumor activity through NOD2 in vivo.

      Reviewer #2 (Public Review):

      Summary:

      The gut microbiome contributes to variation in the efficacy of immune checkpoint blockade in cancer therapy; however, the mechanisms responsible remain unclear. Klupt et al. build upon prior data implicating the secreted peptidoglycan hydrolase SagA produced by Enterococcus faecium in immunotherapy, leveraging novel strains with sagA deleted and complemented. They find that sagA is non-essential, but sagA deletion leads to a marked growth defect due to impaired cell division. Furthermore, sagA is necessary for the immunogenic and anti-tumor effects of E. faecium. Together, this study utilizes compelling methods to provide fundamental new insights into E. faecium biology and host interactions, and a proof-of-concept for identifying the bacterial effectors of immunotherapy response.

      Strengths:

      Klupt et al. provide a well-written manuscript with clear and compelling main and supplemental figures. The methods used are state-of-the-art, including various imaging modalities, bacterial genetics, mass spectrometry, sequencing, flow cytometry, and mouse models of immunotherapy response. Overall, the data supports the conclusions, which are a valuable addition to the literature.

      Weaknesses:

      Only minor revision recommendations were noted.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      General comments - the number/type of replicates and statistics are missing from some of the figure panels. Please be sure to add these throughout - all main figure panels should have replicates. I've also noted some specific cases below.

      Abstract - sagA is non-essential, need to edit text at "essential functions".

      This change has been made.

      "small number of mutations" - specify how many in the text.

      We revised the text. “Small number” is changed to “11”.

      "under control of its native promoter" - what was the plasmid copy number? It looks clearly overexpressed in Figure 1d despite using a native promoter, although it's a bit hard to know for sure without a loading control.

      pAM401 has p15A origin of replication, therefore the plasmid copy number ~20-30 copies (Lutz R. et al Nucleic Acids Res. 1997). Total protein was visualized by Stain-Free™ imaging technology (BioRad) and serves as protein loading control and has been relabeled accordingly.

      "decrease levels of small muropeptides" - the asterisks are missing from Figure 3a.

      Green asterisks for peaks 2, 3, 7 and purple asterisks for peaks 13, 14 were added.

      The use of "Com 15 WT" in the figures is confusing - just replace it with "wt" and specify the strain in the text. Presumably, all of the strains are on the Com 15 background.

      “Com15 WT” was replaced to “WT” in figures and main text.

      Change 1d to 1b so that the panels are in order (reading left to right and then top to bottom).

      Figure 1 legend is missing a number of replicates and statistics for 1a.

      Number of replicates were added.

      Figure 1b - it's unclear to me what to look at here, could add arrows indicating the feature or interest and expand the relevant text.

      Arrows pointing to cell clusters were added.

      Figure 1d - what is "stain free"? It would be preferable to show a loading control using an antibody against a constitutive protein to allow for normalization of the loading control.

      Stain-Free Imaging technology (BioRad) utilizes gel-containing trihalo compound to make proteins fluorescent directly in the gel with a short photoactivation, allowing the immediate visualization of proteins at any point during electrophoresis and western blotting. Stain-Free total protein measurement serves as a reliable loading control comparable to Coomassie Blue Staining. This has been relabeled a “Total protein” in the Figure and Stain-free imaging technology is noted in the legend.

      ED Figure 1 - representative of how many biological replicates?

      Legends are updated.

      ED Figure 2a - I would replace this with a table, it's not necessary to show the strip images. Also, please specify the number of replicates per group.

      Additional Extended Data Table 2 was added.

      ED Figure 2b - This data was not that convincing since the sagA KO has a marked growth defect and the time points are cut off too soon to know if growth would occur later. The MIC definition is potentially misleading. Should specific a % growth cutoff (i.e. <10% of vehicle control) and the metric used (carrying capacity or AUC). Then assign MIC to the tested concentration, not a range. The empty vector also seems to impact MIC, which is concerning and complicates the interpretation. Specify the number of replicates and add statistics. Given these various concerns, I might suggest removing this figure, as it doesn't really add much to the story.

      We appreciate this comment from the Reviewer, but believe this data is helpful for paper and have included longer time points for the growth data. The definition of MIC for ED Fig. 2b has been included in the legend.

      Figure 2 - specify the type of replicate. Number of cells? Number of slices? Number of independent cultures?

      For Cryo-ET experiments single bacterial cultures were prepared. Number of cells and slices for analysis are indicated in the legend. Legends are updated.

      Figure 4e - missing the water group, was it measured?

      Water (αPD-L1) group was not included in immune profiling of tumor infiltrating lymphocytes (TILs) experiment, as we have previously demonstrated limited impact on ICI anti-tumor activity and T cell activation in this setting (Griffin M et al Science 2021).

      Figure 4d - is this media specific to your strains? If not, qPCR may be a better method using strain-specific primers.

      Yes, HiCrome™ Enterococcus faecium agar plates (HIMEDIA 1580) are selective for Enterococcus species, moreover the agar is chromogenic allowing to identify E. faecium as yellow colonies among other Enterococcus species.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      RC-2023-02105R: Brunetta et al.,

      IF1 is a cold-regulated switch of ATP synthase to support thermogenesis in brown fat

      We are happy to submit our revised manuscript after considering the suggestions made by reviewers. The comments were overall positive, and the changes requested were mostly editorial. We have, nevertheless, added new experiments as quality controls. These experiments did not affect the main conclusions of our work. In addition, we also included two in vivo experimental models of gain and loss-of-function, to further address the physiological relevance of IF1 in BAT thermogenesis. We believe with these additional experiments, quality controls as well as in vivo models, our study has improved considerably. We hope our efforts will be appreciated by the reviewers and we make ourselves available to answer any further questions.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: In the present manuscript, the authors present data in support of their primary discovery that "IF1 controls UCP1-dependent mitochondrial bioenergetics in brown adipocytes". The opening figure convincingly demonstrates that IF1 expression is cold-exposure dependent. They then go on to show that loss of IF1 has functional consequences that would be predicted based on IF1's know role as a regulator of ATP hydrolysis by CV. They go on to make a few additional claims, succinctly detailed in the Discussion section. Specific claims include the following: 1) IF1 is downregulated in cold-adapted BAT, allowing greater hydrolytic activity of ATP synthase by operating in the reverse mode; 2) when IF1 is upregulated in brown adipocytes in vitro mitochondria unable to sustain the MMP upon adrenergic stimulation, 3) IF1 ablation in brown adipocytes phenocopies the metabolic adaptation of BAT to cold, and 4) IF1 overexpression blunts mitochondrial respiration without any apparent compensator response in glycolytic activity. The claims described above are well supported by the evidence. The manuscript is very well written, figures are clear and succinct. Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields. That said, a few areas of concern were apparent. Concerns are detailed in the "Major" and "Minor" comments section below. Additional experiments do not appear to be required, assuming the authors adequately acknowledge the limitations of the study and either remove or qualify speculative claims.

      Major Comments:

      1. The authors convincingly demonstrate that IF1 expression is specifically down-regulated in BAT upon cold-exposure. These data strongly implicate a role for IF1 in BAT bioenergetics, a major claim of the authors and a novel finding herein. Additional major strengths of the paper, which provide excellent scientific rigor include the use of both loss of function and gain of function approaches for IF1. In addition, the mutant IF1 experiments are excellent, as they convincingly show that the effects of IF1 are dependent on its ability to bind CV. RESPONSE: We thank the reviewer for the positive feedback on our work.

      Regarding Figure 1 - Did the content of ATP synthase change? In figure 1A-B, the authors show that ATPase activity of CV is higher in cold-adapted mice. While this result could be due to a loss of IF1, it could also be due to a higher expression of CV. To control for this, the authors should consider blotting for CV, which would allow for ATPase activity to be normalized to expression.

      RESPONSE: Thank you for this suggestion. We have now determined complex V subunit A in our experimental protocol. We found that cold exposure does not impact complex V protein levels. Given the importance of this control, we have now included it in Figure 1 (Please, see the revised version) alongside the IF1/complex V ratio. In addition, we have now performed WBs in the BAT from mice exposed for 3 and 7 days to thermoneutrality (~28°C). We found that IF1 is not reduced following whitening of BAT by this approach whilst UCP1 and other mitochondrial proteins are reduced. This set of data is now included in Figure 1I,K,L.

      Regarding MMP generated specifically by ATP hydrolysis at CV, the reversal potential for ANT occurs at a more negative MMP than that of CV (PMID: 21486564). Because reverse transport of ATP (cytosol to matrix) via ANT will also generate a MMP, it is speculative to state that the MMP in the assay is driven by ATP hydrolysis at CV. It is possible and maybe even likely that the majority of the MMP is driven by ANT flux, which in turn limits the amount of ATP hydrolyzed by CV. Admittedly, it is very challenging to different MMP from ANT vs that from CV, thus the authors simply need to acknowledge that the specific contribution of ATP hydrolysis to MMP remains to be fully determined. That said, the fact that ATP-dependent MMP tracks with IF1 expression does certainly implicate a role for ATP hydrolysis in the process. The authors should consider including a discussion of the ambiguity of the assay to avoid confusion. A role for ANT likely should be incorporated in the Fig. 1J cartoon.

      RESPONSE: Thank you for bringing the ANT contribution to MMP to our attention. The effects of ATP in the real-time MMP measurements were totally abolished by the addition of oligomycin in BAT-derived isolated mitochondria, thus suggesting dependency of complex V in this process. However, the assessment of MMP in intact cells is much more challenging given cytosolic vs. mitochondrial contribution to ATP pool, and ATP synthase vs. ANT reversal capacity depending on MMP. Nevertheless, we have addressed these points in the discussion section as well as added to our schematic cartoon in Figure 1m.

      Regarding the lack of effect of IF1 silencing on MMP, it is possible that IF1 total protein levels are simply lower in cultured brown fat cells relative to tissue? The authors could consider testing this by blotting for IF1 and CV in BAT and brown fat cells. The ratio of IF1/ATP5A1 in tissue versus cells may provide some amount of mechanistic evidence as to their findings.

      RESPONSE: We have now blotted for complex V and IF1 in both differentiated primary brown adipocytes and BAT homogenates derived from mice kept at room temperature (~22°C). We found the levels of complex V in primary brown adipocytes are higher than BAT homogenates. Therefore, IF1/complex V ratio is different between these two systems. This has indeed the potential to influence our gain and loss-of-function experiments. We have added these results alongside their interpretation in the revised manuscript.

      The calculation of ATP synthesis from respiration sensitive to oligomycin has many conceptual flaws. Unlike glycolysis, where ATP is produced via substrate level phosphorylation, during OXPHOS, the stoichiometry of ATP produced per 2e transfer is not known in intact brown adipose cells. This is a major limitation of this "calculated ATP synthesis" approach that is beginning to become common. Such claims are speculative and thus likely do more harm than good. In addition to ANT and CV, there are many proton-consuming reactions driven by the proton motive force (e.g., metabolite transport, Ca2+ cycling, NADPH synthesis). Although it remains unclear how much proton conductance is diverted to non-ATP synthesis dependent processes, it seems highly likely that these processes contribute to respiratory demand inside living cells. Moreover, just as occurs with UCP1 in response to adrenergic stimuli, proton conductance across the various proton-dependent processes likely changes depending on the cellular context, which is another reason why using a fixed stoichiometry to calculate how much ATP is produced from oxygen consumption is so highly flawed. Maximal P/O values that are often used for NAD/FAD linked flux are generated using experimental conditions that favor near complete flux through the ATP synthesis system (supraphysiological substrate and ADP levels). The true P/O value inside living cells is likely to be lower.

      RESPONSE: We agree with the reviewer regarding the limitations on calculating ATP production in intact cells based on respiration and proton flux. However, this was only one experiment on which we based our conclusions, as these were also supported by i.e. ATP/ADP ratio measurements and oxygen consumption using different substrates. Therefore, we do not rely exclusively on the ATP production estimative, rather we use this experiment to support complementary methodologies. Nevertheless, we have now better detailed our experimental protocol as well as acknowledged the limitations of the method, so the reader is aware of our procedure and its limitations. We hope the reviewer understands our motivation to perform these experiments and the contribution to our study.

      Why are the results in Figure 3K expressed as a % of basal? Could the authors please normalize the OCR data to protein and/or provide a justification for why different normalization strategies were used between 3K and 3M?

      RESPONSE: We apologize for the lack of consistency. We have now updated Figure 3 to show all the data in absolute values divided by protein content. This change does not affect the overall interpretation of the findings.

      The authors claim that IF1 overexpression lowers ATP production via OXPHOS. However, given the major limitations of this assay (ass discussed above), these claims should be viewed as speculation. This needs to be addressed by the authors as a major limitation. The fact that the ATP/ADP levels did not change do not support of reduction in ATP production, as claimed in the title of Figure 4.

      RESPONSE: The reduction in ATP levels and mitochondrial respiration (independent of the substrate offered) suggests a reduction in ATP production rather than an increase in ATP consumption. Moreover, the maintenance of ATP/ADP ratio suggests the existence of a compensatory mechanism to avoid cellular energy crises, which we interpreted as reduced metabolic activity of the cells. Nevertheless, we have now reworded our statements to address the limitations of the methods and our interpretation of the data.

      In the discussion, the authors state "However, considering that IF1 inhibits F1-ATP synthase in a 1:1 stoichiometric ratio, the relatively higher expression of IF1 in BAT at room temperature could represent an additional inhibitory factor for ATP synthesis in this tissue." This does not appear to be correct. Although IF1 has been suggested to partially lower maximal rates of ATP synthesis rates, most of this evidence comes from over-expression experiments. According to the current understanding of IF1-CV interaction, the protein is expelled from the complex during rotation in favor of ATP synthesis (PMID: 37002198). It is far more likely that ATP synthesis is low in BAT mitochondria due to the low CV expression. Relative to heart and when normalized to mitochondrial content, CV expression in BAT mitochondria is about 10% that of heart (PMID: 33077793).

      RESPONSE: We agree with the reviewer and removed this sentence.

      The last sentence of the manuscript states, "Given the importance of IF1 to control brown adipocyte energy metabolism, lowering IF1 levels therapeutically might enhance approaches to enhance NST for improving cardiometabolic health in humans." This sentence seems at odds with the evidence that IF1 levels go up, not down, in human BAT upon cold exposure.

      RESPONSE: In light of our new experiments, we have now updated our conclusions.

      Minor Comments:

      The term "anaerobic glycolysis" is used throughout. All experiments were performed under normoxic conditions, thus the correct term is "aerobic glycolysis.

      RESPONSE: Thank you for this comment and we have replaced this term as suggested.

      Only male mice were used in the study, could the authors please provide a justification for this?

      RESPONSE: Given we devoted most of our efforts to the manipulation of IF1 in vitro, we have used the mouse model as a proof-of-principle on the impact of IF1 in adrenergic-induced thermogenesis. We have now included IF1 KO male and female mice to address the role of IF1 in adrenergic-induced thermogenesis. However, due to the limitation of material, we could only perform AAV in vivo gain-of-function in male mice, therefore, our results cannot be immediately transferred to both sexes, unfortunately.

      Reviewer #1 (Significance (Required)):

      Overall, the quality of the work is very high. Given that IF1 is implicated across many fields of study, the novel discovery of IF1 as a regulator of brown adipose mitochondrial bioenergetics will be of significance across several fields.

      My expertise is in mitochondrial thermodynamics; thus, I do not feel there are any parts of the paper that I do not have sufficient expertise to evaluate.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      The manuscript by Brunetta and colleagues conveys the message that the ATPase inhibitory factor 1 (IF1) protein, a physiological inhibitor of mitochondrial ATP synthase, is expressed in BAT of C57BL/6J mice. Moreover, upon cold-adaption of mice they report that the content of IF1 in BAT is downregulated to sustain the mitochondrial membrane potential (MMP) as a result of reverse functioning of the enzyme. In experiments of loss and gain of function of IF1 in cultured brown adipocytes and WT cells they further stress that IF1 silencing promotes metabolic reprogramming to an enhanced glycolysis and lipid oxidation, whereas IF1 overexpression blunts ATP production rendering a quiescent cellular state of the adipocytes.

      RESPONSE: We appreciate the time the reviewer invested in our work. Please, see our responses below in a point-by-point manner.

      Reviewer #2 (Significance (Required)):

      Claims and conclusions:

      I have been surprised by the claim that IF1 protein is expressed in BAT under basal conditions and that its expression is downregulated in the cold-adapted tissue. In a previously published work by Forner et al., (2009) Cell Metab 10, 324-335 (reference 43), using a quantitative proteomic approach, it is reported that the mitochondrial proteome of mouse BAT under basal conditions contains a low content of IF1 (at level comparable to the background of the analysis). Remarkably, in the same study they show that there is roughly a 2-fold increase in the content of IF1 protein in mitochondria of BAT at 4d and 24d of cold-adaptation of mice. In other words, just the opposite of what is being reported in the Brunetta study.

      RESPONSE: We are aware of the inconsistencies between our findings and Forner et al. (2009). We would like to point out that we have determined IF1 levels in BAT in two separate cohorts with the same findings, and in a third cohort, we observed IF1 mRNA levels to be downregulated in a much shorter timeframe. Our functional analysis is line with this pattern of regulation. A closer look at the supplementary table provided by Forner et al. (2009), shows that the increase in IF1 content following cold exposure is not supported and since we do not have further insight into the methods and analysis employed by the Forner et al. group, we believe a direct comparison should be avoided at the moment. Regarding the baseline levels of IF1 in BAT, the relatively high abundance of IF1 in BAT was also found by another independent group (https://doi.org/10.1101/2020.09.24.311076).

      Importantly, the last paragraph of the discussion needs to be amended when mentioning the work of Forner et al. (ref.43). The mentioned reference studied changes in the mouse mitochondrial proteome not in human mitochondria, as it is stated in the alluded paragraph.

      RESPONSE: We apologize for this overlook; we have now reworded our statement.

      More puzzling are the western blots in Figures 1E, 1H, Supp. Fig. 1C, D were IF1 (ATP5IF1) is identified by a 17kDa band. However, in other Figures (Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2) IF1 is identified by its well-known 12kDa band. What is the reason for this change in labeling of the IF1 band? The reactivity of the anti-IF1 antibody used? It has been previously documented that liver of C57BL/6J and FVB mouse strains do not express IF1 to a significant level when compared to heart IF1 levels (Esparza-Molto (2019) FASEB J. 33, 1836-1851). However, in Fig. 1E they show opposite findings, much higher levels of IF1 in liver than in heart as reveal by the 17kDa band. Moreover, in Fig. 1H they show the vanishing of the 17 kDa band under cold adaptation, which is not the migration of IF1 in gels as shown in their own figures (see Fig. 2, Fig. 3, Fig. 4, Supp Fig. 2). I am certainly reluctant to accept that the 17kDa band shown in Figures 1E, 1H, Supp. Fig. 1C, D is indeed IF1. Most likely it represents a non-specific protein recognized by the antibody in the tissue extracts analyzed. Cellular overexpression experiments of IF1 in WT1 cells (Fig. 2E) and primary brown adipocytes (Fig. 4B) also support this argument. Overall, I do not support publication of this study for the reasons stated above.

      RESPONSE: We understand the concerns raised by the reviewer and apologize for the lack of details in our experimental procedures. While we used the same antibody in the study (Cell Sig. cat. Num. 8528, 1:500), we used two different types of gels. The difference in the molecular weight appearance of IF1 is likely through the migration of the protein in the agarose gel. By using custom-made gels, we observe the protein ~17kDa (Fig. 1 and 5), whereas by using commercial gels (Fig. 2, 3, and 4), we observe the protein closer to the predicted molecular weight (i.e. ~12kDa). Of note, gain and loss-of-function experiments, both in vivo as well as in vitro confirm this statement and the specificity of the antibody (Fig. 2, 3, 4, 5, Fig. EV2). In addition, when we ran a custom-made gel with primary BAT cells, we observed again the ~17kDa band (see Figure for the reviewer below). These experiments alongside the absence of other bands in the gels (see uncropped membranes in Supplementary Figure 1) make us conclude that the band we observe is indeed IF1. Nevertheless, we have now updated our methods section, so the reader is aware of our approaches. We hope the reviewer is satisfied with our additional experiments and editions throughout the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, Brunneta et al describe the role of IF1 in brown adipose tissue activation using in vivo and in vitro experimental models. They observed that cold adaptation promotes a reduction in IF1 expression and an increase in the reverse activity of mitochondrial ATPase or Complex V. Based on these results, the authors explore the contribution of IF1 in this metabolic pathway by modeling the thermogenic process in differentiated primary brown adipocytes. They silenced and overexpressed IF1 in culture and studied their adrenergic stimulation under norepinephrine.

      Major comments:

      The experiments are well explained and the manuscript flows very well. There are several comments that should be addressed.

      RESPONSE: We thank the reviewer for the kind words regarding our work.

      1. The authors measure ATP hydrolysis in isolated mitochondria from BAT in Figure 1. They observed that IF1 is decreased upon cold exposure and that ATP hydrolysis is increased. They assess protein levels of different OXPHOS proteins, including IF1 but not other proteins of Complex V (ATP5A) as they do in Figures 3 and 4. It is important to see that cold exposure only affects IF1 levels but not other proteins from Complex V. Does IF1/Complex V ratio change? RESPONSE: We thank the reviewer for this suggestion which was also raised by Reviewer #1. We have now measured complex V subunit A in our experimental protocol. We found that cold exposure does not impact complex V protein levels. Given the importance of this information, we have now included it in Figure 1 (Please, see the revised version) alongside the IF1/complex V ratio. In addition, we have now performed WBs in the BAT exposed for 3 and 7 days to thermoneutrality (~28°C) where we found that IF1 is not reduced following whitening of BAT by this approach whilst UCP1 and other mitochondrial proteins are reduced.

      This set of data is now included in Figure 1I,K,L.

      In Figure 2J, the drop in MMP is lower upon adrenergic stimulation than in Figure 2E. The same observation applies to other results when the reduction in MMP after NE addition is minimal. Why do the authors remove TMRM for the measurements of membrane potential? TMRM imaging is normally done in the presence of the dye in non-quenching mode. Treatments should be done prior to the addition of the dye and then TMRM should be added and left during the imaging analysis and measure in non-quenching mode. This might explain some of the above-mentioned points regarding the MMP data. Alternatively, if the dye is removed before the measurements, they should let the cells to adapt and so the dye equilibrates between mitochondria and cytosol. A more elegant method to measure membrane potential could be live-cell imaging. In addition, authors propose that mitochondrial membrane potential upon NE stimulation is maintained by reversal of ATP synthase. If this is the case, one would expect that addition of oligomycin in NE treated adipocytes would cause depolarization. However, in FigS2A this is not the case. Authors should comment on this in addition to considering more elegant approach to measure MMP.

      RESPONSE: We apologize for the lack of details in the methods. All treatments (i.e., transfection and norepinephrine stimulation) were performed before the addition of TMRM. Indeed, this approach does not have the resolution compared to safranine in isolated mitochondria (Fig. 1D), which limits our interpretation regarding the dynamic role of IF1 on MMP in brown adipocytes. We have taken care to state the limitations of our method throughout the entire paper to avoid overinterpretation of our data. Regarding the removal of the dye before the measurements, our internal controls indicate that this procedure does not change the ability of our method to detect fluctuations in MMP (i.e., oligomycin and FCCP as internal controls). Nevertheless, as suggested by the reviewer, to test the time effect of the probe equilibrium (i.e., mitochondria versus cytosol) in our method, we loaded cells with TMRM 20 nM for 30 min and measured the fluorescence right after the removal of the probe/washing steps for another 10 min. We were not able to detect differences in the fluorescence in a time-dependent manner (see below). Therefore, we conclude the removal of TMRM does not influence the fluorescence of the probe in differentiated brown adipocytes.

      +NE

      -NE

      In addition, we performed a similar experiment using TMRM in the quenching mode (200 nM), however, after the removal of TMRM, we added FCCP (1 mM) to the cells for 10 min under constant agitations at 37°C. This approach aimed to expel all TMRM that accumulated within the mitochondria in an MMP-dependent manner. Therefore, excluding the dynamic Brownian movement that we could have caused by the removal of the dye before the measurement mentioned by the reviewer. By doing this, we found the same effect of IF1 overexpression in the reduction of MMP in the presence of norepinephrine.

      Protocol:

      • Transfection (24h) on day 4 of differentiation + 24h just normal media

      • 30 min norepinephrine 10 µM

      • 200 nM TMRM on top of NE

      • Washing step

      • Add FCCP 1 µM for 10 min, and read (The aim here was to release all TMRM accumulated inside of mitochondria in a MMP-dependent manner)

      In summary, the data suggests the removal of the dye from the cells does not influence the fluorescence of TMRM, therefore, enabling us to make conclusions regarding the biological effects of IF1 manipulation in the MMP of brown adipocytes. Regarding the reverse mode of ATP synthase and the absence of effects with oligomycin, given oligomycin inhibits both rotation of ATP synthase and even uncoupled brown adipocytes respond to oligomycin (i.e. reduction in O2 consumption), the prediction of lowering MMP in the presence of oligomycin due to inhibition of the reserve mode of ATP synthase is more complicated than anticipated. Nevertheless, we have now addressed this topic in the discussion section. Lastly, we generally observe a reduction in MMP around 10-25% in differentiated adipocytes upon NE treatment (30 minutes, 10mM). However, due to the differentiation state of the cells, MMP response from norepinephrine fluctuated from experiment to experiment. Therefore, we did not compare experiments performed on different days or batches, but only within the same differentiation batch to reduce variability.

      In Figure 2, in the model of siIF1, there is baseline more phosphorylation of AMPK than in the scramble control (pAMPK). However, this is not the case of p-p38MAPK. Do the authors have any explanation for those differences in baseline activation of the stress kinases when IF1 is silenced? In the same experimental group, addition of NE seems to have more effect in the scrambled than in siIF1, but the plotted data does not reflect these differences. In contrast, increase in pAMPK upon NE is higher in IF1 overexpressing cells compared to EV (Figure 2H), but again this is not reflected in western blot quantification (Figure 2I).

      RESPONSE: Although some differences in pAMPK in the treatments were observed as gathered by the representative blots, these changes were not confirmed later in different biological replicates, therefore, the overall effect of IF1 manipulation in pAMPK does not change. Given we used this approach as quality control for our experiments to guarantee norepinephrine treatment works, we removed the pAMPK data from the study and kept p38 as a marker of adrenergic signaling activation (please see revised Fig. 2 in the main file).

      Does NE promote decrease of IF1 expression in control (siScramble and EV) adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice. This is very important point, as it could explain the lack of an additional effect of IF1 silencing on NE-induced depolarization (Figure 2E).

      RESPONSE: We thank the reviewer for this suggestion. In line, with the in vivo data, acute NE treatment in differentiated brown adipocytes does not change IF1 mRNA and protein levels. We have now added this information and the corresponding interpretation to the updated manuscript.

      Does NE promote decrease of IF1 expression in the scramble and EV adipocytes? The authors should test it and see whether it goes in the same direction as the observations derived from the experiments in cold exposed mice.

      RESPONSE: As this question is the same as #4, we believe the reviewer may have erroneously pasted this here.

      For MMP data in Fig2, they should include significance between non treated and NE-treated groups. They say: "While UCP1 ablation did not cause any effect on MMP upon adrenergic stimulation...", but NE caused (probably significant) depolarization in siUCP1, which seems even stronger than depolarization in EV. This is opposite to what you would expect. They also didn't confirm UCP1 silencing with western blot.

      RESPONSE: We thank the reviewer for this suggestion. We have now included the expected statistical main effect of NE upon MMP. Although the effects of IF1 overexpression were blunted when Ucp1 was silenced, we indeed still observed the same degree of reduction in MMP in brown adipocytes. This finding has two possible explanations, one is the effectiveness of the silencing protocol, therefore, residual Ucp1 expression may still play a role in this experiment; second, other ATP-consuming processes are able to lower MMP in a UCP1-independent manner. We have added this information to the updated manuscript to make the reader aware of our findings as well as the limitations of the method. Unfortunately, we were not able to detect UCP1 protein levels due to technical issues. Given the effects of IF1 overexpression were blunted when Ucp1 was silenced, we believe this functional outcome is sufficient, alongside mRNA levels, to demonstrate the effectiveness of our silencing protocol.

      It has been established that decreased expression of IF1 promotes increase in the reverse activity of Complex V, ATP hydrolytic activity. Increase in ATP hydrolysis also affects ECAR. The authors should consider this when calculating the contribution of ATP glycolysis versus ATP OXPHOS since the ATP hydrolysis is also playing a role in the ECAR increase. The data should be reinterpreted. ATP hydrolysis should be measured in the situation where IF1 is silenced and overexpressed. These measurements can be done in cells using the seahorse.

      RESPONSE: The only differences we observed in MMP are in the presence of norepinephrine (i.e. UCP-1-dependent proton conductance), which is not present during the estimation of ATP production by Seahorse analysis. Nevertheless, we have now improved the description of our experimental protocol and limitations to estimate ATP production to make it as clear as possible to the reader. Lastly, given the addition of in vivo gain-of-function experiments, we have now determined the ATP hydrolytic activity in this model, which offers a better understanding of the in vivo modulation of IF1 levels affecting ATP synthase activity (reverse mode). We hope the reviewer understands our motivation to focus on the in vivo model of gain-of-function regarding ATP synthase activity.

      The authors use GAPDH as loading control in western blots. They should use another protein since GAPDH is part of the intermediary metabolism and plays a role in glycolysis.

      RESPONSE: We understand the concern of the reviewer regarding the use of GAPDH as a loading control for the studies of metabolism. However, as can be observed by the western blot images, GAPDH levels do not change in our experimental models, therefore, we feel confident that our loading is homogeneous throughout our gels.

      The authors show that reduction of IF1 involves more lipid utilization. They should include more experiments showing the connection of the metabolic adaptation in the absence of IF1 and some lipid imaging.

      RESPONSE: We appreciate this suggestion. We have now performed Oil Red O staining in differentiated adipocytes following ablation of IF1. However, we did not observe any effect on lipid accumulation in primary brown adipocytes following IF1 knockdown. Therefore, the effects of IF1 ablation on lipid mobilization are not due to lipid content or reflected in lipid accumulation. We have now added this new information to the manuscript (please, see the revised form Fig. EV3).

      In the text, "Despite this adjustment of experimental conditions, we did not detect any effect of IF1 ablation on mitochondrial oxygen consumption (Supplementary Fig. 3A,B)", this is true for baseline, NE-driven and ATP-linked respiration, but what about maximal respiration? There is a huge increase in IF1 knockdown... They should explain these results.

      RESPONSE: We perform this experiment to address the question of whether the lipid mobilization induced by norepinephrine would uncouple mitochondria in a UCP1-independent manner. Given the absence of effect between scrambled and IF1 ablated cells in mitochondrial respiration in the presence of norepinephrine and following the addition of oligomycin, we concluded no effect of lipolysis-induced UCP1-independent uncoupling. However, as observed by the reviewer and consistent with other data within the study, the interaction between lipid metabolism and IF1 knockdown seems to affect maximal electron transport chain activity, which although interesting, was not the focus of the present study. Nevertheless, we have now acknowledged these findings and a possible explanation for them in the revised manuscript.

      In Figure 3K they present OCR as % of baseline, but in a similar experiment in Figire 4G it is OCR/protein, they should make the Y axis consistent across experiments.

      RESPONSE: We apologize for this overlook. We have now edited all the axes and labels for consistency.

      The graphical abstract is confusing. In BAT there are two populations of mitochondria, the cytosolic and the mitochondria attached to the lipid droplet, peridroplet mitochondria (PDM). Upon adrenergic stimulation, PDM leave the lipid droplet and lipolysis takes place. The authors propose that upon adrenergic stimulation, IF1 is reduced and there is lipid mobilization. The part of the scheme where it says "fully recruited" should be removed or rewritten, since adrenergic stimulation is not compatible with mitochondria recruitment around the lipid droplet.

      RESPONSE: Thank you for this input. Given the addition of new experiments and interpretation, we have now redrawn the graphical abstract and addressed this topic in the discussion section.

      The title should be rewritten to better reflect the research presented in the manuscript.

      RESPONSE: Thank you for this input. Given the addition of new experiments, we have now rewritten the title accordingly.

      Minor comments:

      Some of the Y axis should be corrected. For example, in Figure 2J, L and M should say % of EV untreated, Similarly, in Figure 2E, it should say % of scramble untreated. In Figure 3N, the Y axis is misspelled. All the Y axis referring to percentages should have the same scale for comparison purposes.

      RESPONSE: Thank you for the proofreading. We have now edited the scales and labels to keep consistency.

      The authors should describe better the results corresponding to Figure 2. There is a lot of information and they should improve the description pertaining the connection between the different pieces of data relating the different signaling pathways that are shown. For westerns in this Figure, they should provide some rationale (one to two sentences in the results section) as to why they are checking the expression of pAMPK and p38-MAPK.

      RESPONSE: We have now edited the description of our results to make them as clear as possible.

      Here are some comments referring to the methods section:

      For Complex V hydrolytic activity, the reaction buffer contains 10mM Na-azide. I guess this is to inhibit respiration, but wouldn't azide also inhibit complex V at this concentration?

      RESPONSE: We thank the reviewer for this question. To test that, we performed complex V activity in buffers containing or not 10 mM sodium azide. As demonstrated below, the presence of sodium azide in the buffer does not influence complex V activity in two different tissues with low and high complex V activity (BAT and heart, respectively).

      Table 1. ATP synthase hydrolytic activity in the presence or absence of Na-azide.

      BAT

      Heart

      +Na-azide

      100 ± 43.01

      100 ± 39.36

      -Na-azide

      82.6 ± 4.33

      111.3 ± 43.32

      +Na-azide + oligomycin

      15.3 ± 4.32*

      13.8 ± 14.01*

      -Na-azide + oligomycin

      14.2 ± 3.53*

      11.9 ± 2.88*

      Data presented as % of control (i.e. presence of Na-azide and absence of oligomycin) for both tissues independently. N = 2-3/condition. Statistical test: two-way ANOVA. * main effect of oligomycin (p In the mitochondrial isolation protocol, they say "mitochondria were centrifuged at 800g for 10min..." Will this speed pellet the mitochondria? I think this is a mistake in writing.

      RESPONSE: We apologize for the lack of clarity. What was centrifuged at 800 g was the whole-tissue homogenate to discard cellular debris, before pelleting mitochondria at 5000 g. We have now corrected this mistake in the methods section.

      For the safranin-O experiment, they don't mention mitochondrial substrate used, probably it's in the reference that they provide, but I think it should be included in the text.

      RESPONSE: We did not use any substrate because our goal was to test the contribution of ATP synthase to mitochondrial membrane potential. For that, we inhibited proton movement within the ETC with antimycin A and through UCP1 with GDP (see Methods). We have now edited our Method’s description to make sure the reader is aware of our approach.

      Reviewer #3 (Significance (Required)):

      The manuscript is well written, and it flows well when reading. However, there are some additional experiments that need to be performed to reach the conclusions the authors claim.

      RESPONSE: We thank the reviewer for the positive commentaries regarding our work and hope to have answered the open questions with the edits and new experiments.

      The role of ATP hydrolysis in BAT thermogenesis is novel and interesting as it can sed some light onto potential approaches to promotes BAT activation.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      This is an interesting investigation into the activity of IF1 in brown adipocytes. The findings are innovative and the conclusion is well-supported by the data. The conclusion is in line with previous reports on IF1 activities in other cell types, particularly in terms of its regulation of FoF1-ATPase. The authors have executed an exceptional job in designing the study, preparing the figures, and writing the manuscript. Overall, this study significantly contributes to the understanding of IF1 activity in brown adipocytes and its role in thermogenesis.

      RESPONSE: We thank the reviewer for the kind words. Please, find below our answers in a point-by-point manner.

      Reviewer #4 (Significance (Required)):

      The study demonstrates involvement of IF1 in regulating thermogenesis in brown adipocytes, which is a unique aspect not covered in existing literature. Advantage of the study is well-designed cellular studies. The major weakness is lack of proof of conclusion in vivo. There are a few minor concerns that should be addressed to further enhance quality of the manuscript.

      RESPONSE: We have now included two in vivo models, whole-body IF1 KO mice and BAT-injected IF1 overexpression to test the role of IF1 in BAT biology. The whole dataset is included in the main manuscript, where we conclude the BAT IF1 overexpression partially suppresses b3-adrenergic induction of thermogenesis alongside a reduction (overall and UCP1 dependent) in mitochondrial oxygen consumption. Also, similar to our in vitro experiments, IF1 KO mice did not present any difference in adrenergic-stimulated oxygen consumption.

      1. Current discussion does not mention the regulation of IF1 protein by the cAMP/PKA pathway. This point should be included to provide a comprehensive understanding of the regulatory mechanisms of IF1 protein. RESPONSE: Thank you for this suggestion. We have now added this topic to the discussion.

      It has been reported that IF1 also influences the structure of mitochondrial crista. Considering the observed changes with IF1 knockdown, it would be valuable to discuss this activity in relation to the findings of the study.

      RESPONSE: We discussed the implications of IF1 modulation in mitochondrial morphology in the revised manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02218R

      Corresponding author(s): Steven, McMahon

      1. General Statements [optional]

      *We were pleased to receive the encouraging critiques and very much appreciate the Reviewer's specific comments and suggestions. In this revised version of our manuscript, we have made a number of substantive additions and modifications in response to these comments/suggestions. We hope you agree that the study is now improved to the point where it is suitable for publication. *

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary This study describes efforts to characterize differences in the roles of the two related human decapping factors Dcp1a and Dcp1b by assessing mRNA decay and protein associations in knockdown and knockout cell lines. The authors conclude that these proteins are non-redundant based on the observations that loss of DCp1a versus Dcp1b impacts the decapping complex (interactome) and the transcriptome differentially.

      Major comments • While the experiments appear to be well designed and executed and the data of generally high quality, the conclusions are drawn without sufficient consideration for the fact that these two proteins form a heterotrimeric complex. The authors assume that there are distinct homotrimeric complexes rather than a single complex with both proteins in. Homotrimers may have new/different functions not normally seen when both proteins are expressed. Thus while it is acceptable to infer that the functions of these two proteins within the decapping complex are distinct, it is not clear that they act separately, or that complexes naturally exist without one or the other. A careful evaluation of the relative ratios of Dcp1a and b overall and in decapping complexes would be informative if the authors want to make stronger statements about the roles of these two factors.

      RESPONSE: Thank you for this valuable comment. We have substantially edited the manuscript to incorporate these points. Examples include a detailed analysis of iBAQ values for the DDX6, DCP1a, and DCP1b interactomes (which now allows us to estimate the ratios of DCP1a and DCP1b in these complexes) and cellular fractionation to interrogate complex integrity (using Superose 6).

      • The concept of buffering is not adequately introduced and the interpretation of observations that RNAs with increased half life do not show increased protein abundance - that Dcp1a/b are involved in transcript buffering is nebulous. In order to support this interpretation, the mRNA abundances (NOT protein abundances) should be assessed, and even then, there is no way to rule out indirect effects. RESPONSE: Thank you for this comment. In the revised version of the manuscript, we introduced the concept of transcript buffering at an earlier stage as one of the potential explanations for our findings. We were also able to use a new algorithm (grandR) to estimate half-lives and synthesis rates from our data. These new data add strength to the argument that DCP1a and DCP1b are linked to transcript buffering pathways.

      • It might be interesting to see what happens when both factors are depleted to get an idea of the overall importance of each one.

      RESPONSE: In our work we tried to emphasize the differences between the two paralogs. We believe that doing double knockout or knockdown would mask the distinct impacts of the paralogs. In data not included in this study, we have shown that cells lacking both DCP1a and DCP1b are viable. We did check PARP cleavage in the CRISPR generated cell pools of DCP1a KO, DCP1b KO, and the double KO. The WB measuring the PARP cleavage is shown in the supplemental material (Supplementary Material: Replicates)

      • The algorithms etc used for data analysis should be included at the time of publication. Version number and settings used for SMART to define protein domains, and webgestalt should be indicated

      RESPONSE: We apologize for this oversight. Version number and settings used for the webtools (SMART, Webgestalt) are now included. The analysis pipeline for half-lives and synthesis rates estimation as well as all the files and the code needed to generate the figures in the paper are available on zenodo (https://zenodo.org/records/10725429).

      • Statistical analysis is not provided for the IP experiments, the number of replicates performed is not indicated and quantification of KD efficiency are not provided.

      RESPONSE: The number of replicates performed in each experiment is now clearly indicated and quantifications of knockdown efficiency are provided (Supplemental Figure 3A and 3B, Figure 3A, Figure 3B).

      • The possibility that the IP Antibody interferes with protein-protein interactions is not mentioned.

      RESPONSE: Thank you for this comment. The revised manuscript includes a discussion of the antibody epitope location and the potential for impact on protein-protein interactions.

      Minor comments • P4 - "This translational repression of mRNA associated with decapping can be reversed, providing another point at which gene expression can be regulated (21)" - implies that decapping can be reversed or that decapped RNAs are translated. I don't think this is technically true.

      RESPONSE: There have been several studies that document the reversal of decapping. These findings are summarized in the following reviews.

      Schoenberg, D. R., & Maquat, L. E. (2009). Re-capping the message. Trends in biochemical sciences, 34(9), 435-442.

      Trotman, J. B., & Schoenberg, D. R. (2019). A recap of RNA recapping. Wiley Interdisciplinary Reviews: RNA, 10(1), e1504.

      • P11 - how common is it for higher eukaryotes to have 2 DCP genes? *RESPONSE: Metazoans have 2 DCP1 genes. *

      • Fig S1 - says "mammalian tissues" in the text but the data is all human. The statement that "expression analyses revealed that DCP1a and DCP1b have concordant rather than reciprocal expression patterns across different mammalian tissues (Supplemental Figure 1)" is a bit misleading as no evidence for correlation or anti-correlation is provided. Also co-expression is not strong support for the idea that these genes have non-redundant functions. Both genes are just expressed in all tissues - there's no evidence provided that they are concordantly expressed. In bone marrow it may be worth noting that one is high and the other low - i.e. reciprocal. *RESPONSE: We appreciate this comment. We have corrected the interpretation of the aforementioned dataset. We have also incorporated a more detailed discussion in the text of the paper. As the Reviewer pointed out, there are a subset of tissues where their expression appears to be reciprocal. *

      • Fig 1A - it is not clear what the different colors mean. Does Sc DCP1 have 1 larger EVH or 2 distinct ones. Are the low complexity regions in Sc DCP2 the SLiMs. *RESPONSE: Thank you for this comment. We have corrected this ambiguity to reflect that Sc DCP1 has one EVH1 domain that is interconnected by a flexible hinge. The low-complexity regions typically contain short linear motifs (SLIMs), however, not all low-complexity regions have been verified to contain them. In the figure, only low-complexity regions are shown. The text of the paper refers only to verified SLIMs . *

      • P11 - why were HCT116 cells selected? RESPONSE: HCT116 cells are an easily transfectable human cell line and have been widely used in biochemical and molecular studies, including studies of mRNA decapping (see references below). Since decapping is impacted by viral proteins we avoided the use of other commonly used cell models such as HEK293T or HeLa.

      https://pubmed.ncbi.nlm.nih.gov/?term=decapping+hct116&sort=date&size=200

      • Fig 1B - what are the asterisks by the RNA names? Might be worth noting that over-expression of DCP1b reduced IP of DCP1a. There's no quantification and no indication of the number of times this experiment was repeated. Data from replicates and quantification of the knockdown efficiency in each replicate would be nice to see. *RESPONSE: Thank you for this comment. Asterisks indicate that those bands were from a second gel, as DCP1a and DCP1b run at approximately the same molecular weight. We have now included a note in our figure legend to indicate this. The knockdown efficiency is provided (Figure 3 and Supplemental Figure 3). We also noted the number of replicas for each IP in figure 1. The replicas are provided as supplementary material (Supplementary Materials: Replicates). *

      • Fig 1C/1D - why are there 3 bands in the DCP1a blot? Quantification of the IP bands is necessary to say whether there is an effect or not of over-expression/KO. RESPONSE: The additional bands in DCP1a blots are background. When we stained the whole blot for DCP1a, in cells which with complete DCP1a KO cells (clone A3), these bands still appear (Supplementary Material: Validation of the KO clones). Quantifications of the bands in the overexpression experiments is now provided.

      • Fig 3 - is it possible that differences are due to epitope positions for the antibodies used for IP? RESPONSE: We do not believe so. DCP1a antibody binds roughly 300-400 residues on DCP1a, and DCP1b antibody binds around Val202. Antibodies therefore do not bind DCP1a or DCP1b low-complexity regions (which are largely responsible for interacting with the decapping complex interactome). Antibodies don't bind the EVH1 domains or the trimerization domain, which are needed for their interaction with DCP2 and each other.

      • Fig 5A - the legend doesn't match the colors in the figure. It is not clear how the pRESPONSE: Thank you for this comment. We have corrected this issue in the revised version of the paper. High-confidence proteins are those with pRESPONSE: Thank you for this comment. We have corrected this issue in the revised version of the paper.*

      • There are a few more recent studies on buffering that should be cited and more discussion of this in the introduction is necessary if conclusions are going to be drawn about buffering. *RESPONSE: We have included a discussion of transcript buffering in the introduction. *

      • The heatmaps in figure 2 are hard to interpret. RESPONSE: To clarify the heatmaps, we included a more detailed description in the figure legends, have enlarged the heatmaps themselves, and have added more extensive labeling.

      Reviewer #1 (Significance (Required)):

      • Strengths: The experiments appear to be done well and the datasets should be useful for the field. • Limitations: The results are overinterpreted - different genes are affected by knocking down one or other of these two similar proteins but this does not really tell us all that much about how the two proteins are functioning in a cell where both are expressed. • Audience: This study will appeal most to a specialized audience consisting of those interested in the basic mechanisms of mRNA decay. Others may find the dataset useful. • This study might complement and/or be informed by another recent study in BioRXiv - https://doi.org/10.1101/2023.09.04.556219 • My field of expertise is mRNA decay - I am qualified to evaluate the findings within the context of this field. I do not have much experience of LC-MS-MS and therefore cannot evaluate the methods/analysis of this part of the study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors provide evidence that Dcp1a and Dcp1b - two paralogous proteins of the mRNA decapping complex - may have divergent functions in a cancer cell line. In the first part, the authors show that interaction of Dcp2 with EDC4 is diminished upon depletion of Dcp1a but not affected by depletion of Dcp1b. The results have been controlled by overexpression of Dcp1b as it may be limiting factor (i.e. expression levels too low to compensate for depletion of Dcp1a reduced interaction with EDC3/4 while depletion of Dcp1b lead to opposite and increase interactions). They then defined the protein interactome of DDX6 in parental and Dcp1a or Dcp1b depleted cells. Here, the authors show some differential association with EDC4 again, which is along results shown in the first part. The authors further performed SLAM-seq and identified subsets of mRNA whose decay rates are common but also different upon depletion with Dcp1a and Dcp1b. Interestingly, it seems that Dcp1a preferentially targets mRNAs for proteins regulating lymphocyte differentiation. To further test whether changes in RNA decay rates are also reflected at the protein levels, they finally performed an MS analysis with Dcp1a/b depleted cells. However no significant overlap with mRNAs showing altered stability could be observed; and the authors suggested that the lack of congruence reflects translational repression.

      Major comments: 1. While functional difference between Dcp1a and Dcp1b are interesting and likely true, there are overinterpretations that need correction or further evidence for support. Sentences like "DCP1a regulates RNA cap binding proteins association with the decapping complex and DCP1b controls translational initiation factors interactions (Figure 2E)" sound misleading. While differential association with proteins has been recognised with MS-data, it does not necessary implement an active process of control/regulation. To make the claim on 'control/regulation', and inducible system or introduction of mutants would be required.

      RESPONSE: This set of comments were particularly useful in helping us refine the presentation of our findings. We have edited our manuscript to be more specific about the limits of our data.

      1. The MS analysis is not clearly described in the text and it is unclear how authors selected high-confident proteins. The reader needs to consider the supplemental tables to find out what controls were used. Furthermore, the authors should show correlation plots of MS data between replicates. For instance, there seems to be limited correlation among some of the replicates (e.g. Dcp1b_ko3 sample, Fig. 2c). Any explanation in this variance?

      *RESPONSE: We have now included a clear description of how all high-confidence proteins were selected in the Methods and Results sections. The revised manuscript also includes a more thorough description of the controls used and the number of replicates for individual experiments. The PCA plots have now been included where appropriate. The variance in this sample is likely technical. *

      1. GO analysis for the proteome analysis should consider the proteome and not the genome as the background. The authors should also indicate the corrected P-values (multiple testing) FDRs.

      *RESPONSE: Webgestalt uses a reference set of IDs to recognize the input IDs, and it does not use it for the background analysis in the classical sense. We repeated a subset of our proteome analyses using the 'genome-protein coding' as background and obtained the same result as in our original analysis. All ontology analyses now include raw p-values and/or FDRs when appropriate. *

      1. Fig 2E. The figures display GO enrichments needs better explanation and additional data can be added. The enrichment ratio is not explained (is this normalised?) and p-values and FDRs, number of proteins in respective GO category should be added. *RESPONSE: More thorough explanations of the GO enrichments are now included. The supplemental data contains all p-values (raw and adjusted), as well as the number of proteins in each GO category. The Enrichment ratio is normalized and contains information about the number of proteins that are redundant in multiple groups. GO Ontology analyses are now displayed with p-values and/or FDR values, and in this case the enrichment ratio contains information regarding the number of proteins found in our input set and the number of expected proteins in the GO group. The network analysis shows the FDR values and the number of proteins found in the groups compared. *

      Minor: 5. These studies were performed in a colorectal carcinoma cell line (HCT116). The authors should justify the choice of this specialised cell line. Furthermore, one wonders whether similar conclusions can be drawn with other cell lines or whether findings are specific to this cancer line.

      RESPONSE: The study that is currently in pre-print in BioRxiv (https://doi.org/10.1101/2023.09.04.556219*) utilized HEK293Ts and found similar results to ours when examining the various relationships between the core decapping core members. *

      1. Fig. 1B. It is unclear what DCP1b* refers to? There are bands of different size that are not mentioned by the authors - are those protein isoforms or what are those referring to? A molecular marker should be added to each Blots. Uncropped Western images and markers should be provided in the Supplement. *RESPONSE: The asterisk indicates that these images came from a second western blot gel (DCP1a and DCP1b have a similar molecular weight and cannot be probed on the same membrane). Uncropped western blot images and markers (as available) are provided in the supplement. *

      2. MS data submitted to public repository with access. No. indicated in the manuscript.

      RESPONSE: MS data is submitted as supplementary datasets to the paper. It contains the analyzed data as well as the LCMSMS output. We are in the process of submitting the raw LSMSMS data to a public repository.

      Fig 3. A Venn Diagram displaying the overlap of identified proteins should be added. GO analysis should be done considering the proteome as background (as mentioned above).

      *RESPONSE: A Venn diagram showing the overlap among the proteins identified is now included in the revised version. *

      Reviewer #2 (Significance (Required)):

      Overall, this is a large-scale integrative -omics study that suggest functional difference between Dcp1 paralogues. While it seems clear that both paralogous have some different functions and impact, there are overinterpretations in place and further evidence would to be provided to substantiate conclusions made in the paper. For instance, while the interactions with Dcp2/Ddx6 in the absence of Dcp1a,b with EDC4/3 may be altered (Fig. 1, 2), the functional implications of this changed associations remains unresolved and not further discussed. As such, it remains somehow disconnected with the following experiments and compromises the flow of the study. The observed differences in decay-rates for distinct functionally related sets of mRNAs is interesting; however, it remains unclear whether those are direct or rather indirect effects. This is further obscured by the absence of any correlation to changes in protein levels, which the authors interpreted as 'transcriptional buffering'. In this regard, it is puzzling how the authors can make a statement about transcriptional buffering? While this may be an interesting aspect and concept of the discussion, there is no primary data showing such a functional impact.

      As such, the study is interesting as it claims functional differences between DCP1a/b paralogous in a cancer cell line. Nevertheless, I am not sure how trustful the MS analysis and decay measurements are as there is not further validation. It woudl be interesting if the authors could go a bit further and draw some hypothesis how the selectivty could be achieved i.e interaction with RNA-binding proteins that may add some specificity towards the target RNAs for differential decay. As such, the study remains unfortunately rather descriptive without further functional insight.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Review on "Non-redundant roles for the human mRNA decapping cofactor paralogs DCP1a and DCP1b" by Steven McMahon and co-workers mRNA decay is a critical step in the regulation of gene expression. In eukaryotes, mRNA turnover typically begins with the removal of the poly(A) tail, followed by either removal of the 5' cap structure or exonucleolytic 3'-5' decay catalyzed by the exosome. The decapping enzyme DCP2 forms a complex with its co-activator DCP1, which enhances decapping activity. Mammals are equipped with two DCP1 paralogs, namely DCP1a and DCP1b. Metazoans' decapping complexes feature additional components, such as enhancer of decapping 4 (EDC4), which supports the interaction between DCP1 and DCP2, thereby amplifying the efficiency of decapping. This work focuses on DCP1a and DCP1b and investigates their distinct functions. Using DCP1a- and DCP1a-specific knockdowns as well as K.O. cell lines, the authors find surprising differences between the DCP1 paralogs. While DCP1a is essential for the assembly of EDC4-containig decapping complexes and interactions with mRNA cap binding proteins, DCP1b mediates interactions with the translational machinery. Furthermore, DCP1a and DCP1b target different mRNAs for degradation, indicating that they execute non-overlapping functions. The findings reported here expand our understanding of mRNA decapping in human cells, shedding light on the unique contributions of DCP1a and DCP1b to mRNA metabolism. The manuscript tackles an interesting subject. Historically, the emphasis has been on studying DCP1a, while DCP1b has been deemed a functionally redundant homolog of DCP1a. Therefore, it is commendable that the authors have taken on this topic and, with the help of knockout cell lines, aimed to dissect the function of DCP1a and DCP1b. Despite recognizing the significance of the subject and approach, the manuscript falls short of persuading me. Following a promising start in Figure 1 (which still has room for improvement), there is a distinct decline in overall quality, with only relatively standard analyses being conducted. However, I do not want to give the authors a detailed advice on maximizing the potential of their data and presenting it convincingly. So, here are just a few key points for improvement: Figure 1C: Upon closer examination, a faint band is still visible at the size of DCP1a in the DCP1a knockout cells. Could this be leaky expression of DCP1a? The authors should provide an in-depth characterization of their cells (possibly as supplementary material), including identification of genomic changes (e.g. by sequencing of the locus) and Western blots with longer exposure, etc.

      *RESPONSE: Thank you for this comment. The in-depth characterization of our cells is now included in the Supplementary Material. DCP1a KO cells and DCP1b KO cells indicated as single cell clones have been confirmed to have no DCP1a or DCP1b expression. In Figure 1D and Figure 3, polyclonal pool cells were used as indicated (only for DCP1a KO). *

      Figure 2: It is great to see that the effects of the KOs are also visible in the DDX6 immunoprecipitation. However, I wonder if the IP clearly confirms that the KO cells indeed do not express DCP1a or DCP1b. In the heatmap in Figure 2B, it appears as if the proteins are only reduced by a log2-fold change of approximately 1.5? Additionally, Figure 2 shows a problem that persists in the subsequent figures. The visual presentation is not particularly appealing, and essential details, such as the scale of the heatmap in 2B (is it log2 fold?), are lacking.

      *RESPONSE: The in-depth characterization of our cells is included in the Supplementary Materials and confirms the presence of single-cell clones where indicated. As noted above, only Figure 1D and Figure 3 used DCP1a KO pooled cells. The heatmap in Figure 2B is scaled by row using the pheatfunction in R studio. The actual data for the heatmap comes from protein intensities from the LC-MS/MS analysis. We have improved the visual presentation in the revised manuscript. *

      Figure 3: I wonder why there are no primary data shown here, only processed GO analyses. Wouldn't one expect that DCP2 interacts mainly with DCP1a, but less with DCP1b? Is this visible in the data? Moreover, such analyses are rather uninformative (as reflected in the GO terms themselves, for instance, "oxoglutarate dehydrogenase complex" doesn't provide much meaningful insight). The authors should rather try to derive functional and mechanistic insights from their data.

      RESPONSE: We have now revised this Figure to include primary data as well as the IP of DCP1a in DCP1b KO cells (single cell clones) and the IP of DCP1b in DCP1a KO cells (pooled cells). We identified EDC3 in the high-confidence protein pool. The EDC3:DCP1a interaction is enhanced in DCP1b KO cells. We also found that the EDC3:DCP1b interaction is less abundant in DCP1a KO cells. This is consistent with our data in Figures 1 and 2. DCP2 was not identified in the interactomes of either DCP1a or DCP1b. This is not unusual as DCP2 is highly flexible and the association between DCP1s with DCP2 is transient and facilitated by other proteins.

      In Fig. 4 the potential of the approach is not fully exploited. Firstly, I would advocate for omitting the GO analyses, as, in my opinion, they offer little insight. Again, crucial information is missing to assess the results. While 75 nt reads are mentioned in the methods, the sequencing depth remains unspecified. Figure 4b should be included in the supplements. Furthermore, I strongly recommend concentrating on insights into the mechanisms of DCP1a and DCP1b-containing complexes. E.g. what characteristics distinguish DCP1a and DCP1b-dependent mRNAs? Are these targets inherently unstable? Why are they degraded? Are they known decapping substrates?

      *RESPONSE: Thank you for this comment. We have now revised this figure and have included information about sequencing depth and other pertinent information. We have been able to use a newly available algorithm (grandR) and were able to estimate half-lives and synthesis rates. This is a significant addition to the paper. We were also able to compare significantly impacted mRNAs (by DCP1a or DCP1b loss) to the established DCP2 target list. *

      In general, I suggest the authors revise the manuscript with a focus on the potential readers. Reduce Gene Ontology (GO) analyses and heatmaps, and instead, incorporate more analyses regarding the molecular processes associated with the different decapping complexes.

      *RESPONSE: We removed selected GO analyses and heatmaps from the main body of the manuscript (included as Supplementary Figures instead). For our LC-MS/MS datasets, we added iBAQ analyses of the DDX6 IP, DCP1a IP, and DCP1b IP in the control conditions. Cellular fractionation studies (using Superose 6 chromatography) were also added to the paper and allow us to interrogate decapping complex composition in more detail. The revised version of the manuscript includes a new 4SU labeling experiment (pulse-chase) as well as estimation of half-lives and synthesis rates in our conditions. Also included is relevant information about DCP1b transcriptional regulation. *

      Reviewer #3 (Significance (Required)):

      The manuscript in its current form could benefit from substantial revisions for it to be considered impactful for researchers in the field.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      I have trialled the package on my lab's data and it works as advertised. It was straightforward to use and did not require any special training. I am confident this is a tool that will be approachable even to users with limited computational experience. The use of artificial data to validate the approach - and to provide clear limits on applicability - is particularly helpful.

      The main limitation of the tool is that it requires the user to manually select regions. This somewhat limits the generalisability and is also more subjective - users can easily choose "nice" regions that better match with their hypothesis, rather than quantifying the data in an unbiased manner. However, given the inherent challenges in quantifying biological data, such problems are not easily circumventable.

      *

      * I have some comments to clarify the manuscript:

      1. A "straightforward installation" is mentioned. Given this is a Method paper, the means of installation should be clearly laid out.*

      __This sentence is now modified. In the revised manuscript we now describe how to install the toolset and we give the link to the toolset website if further information is needed. __On this website, we provide a full video tutorial and a user manual. The user manual is provided as a supplementary material of the manuscript.

      * It would be helpful if there was an option to generate an output with the regions analysed (i.e., a JPG image with the data and the drawn line(s) on top). There are two reasons for this: i) A major problem with user-driven quantification is accidental double counting of regions (e.g., a user quantifies a part of an image and then later quantifies the same region). ii) Allows other users to independently verify measurements at a later time.*

      We agree that it is helpful to save the analyzed regions. To answer this comment and the other two reviewers' comments pointing at a similar feature, we have now included an automatic saving of the regions of interest. The user will be able to reopen saved regions of interest using a new function we included in the new version of PatternJ.

      * 3. Related to the above point, it is highlighted that each time point would need to be analysed separately (line 361-362). It seems like it should be relatively straightforward to allow a function where the analysis line can be mapped onto the next time point. The user could then adjust slightly for changes in position, but still be starting from near the previous timepoint. Given how prevalent timelapse imaging is, this seems like (or something similar) a clear benefit to add to the software.*

      We agree that the analysis of time series images can be a useful addition. We have added the analysis of time-lapse series in the new version of PatternJ. The principles behind the analysis of time-lapse series and an example of such analysis are provided in Figure 1 - figure supplement 3 and Figure 5, with accompanying text lines 140-153 and 360-372. The analysis includes a semi-automated selection of regions of interest, which will make the analysis of such sequences more straightforward than having to draw a selection on each image of the series. The user is required to draw at least two regions of interest in two different frames, and the algorithm will automatically generate regions of interest in frames in which selections were not drawn. The algorithm generates the analysis immediately after selections are drawn by the user, which includes the tracking of the reference channel.

      * Line 134-135. The level of accuracy of the searching should be clarified here. This is discussed later in the manuscript, but it would be helpful to give readers an idea at this point what level of tolerance the software has to noise and aperiodicity.

      *

      We agree with the reviewer that a clarification of this part of the algorithm will help the user better understand the manuscript.__ We have modified the sentence to clarify the range of search used and the resulting limits in aperiodicity (now lines 176-181). __Regarding the tolerance to noise, it is difficult to estimate it a priori from the choice made at the algorithm stage, so we prefer to leave it to the validation part of the manuscript. We hope this solution satisfies the reviewer and future users.

      *

      **Referees cross-commenting**

      I think the other reviewer comments are very pertinent. The authors have a fair bit to do, but they are reasonable requests. So, they should be encouraged to do the revisions fully so that the final software tool is as useful as possible.

      Reviewer #1 (Significance (Required)):

      Developing software tools for quantifying biological data that are approachable for a wide range of users remains a longstanding challenge. This challenge is due to: (1) the inherent problem of variability in biological systems; (2) the complexity of defining clearly quantifiable measurables; and (3) the broad spread of computational skills amongst likely users of such software.

      In this work, Blin et al., develop a simple plugin for ImageJ designed to quickly and easily quantify regular repeating units within biological systems - e.g., muscle fibre structure. They clearly and fairly discuss existing tools, with their pros and cons. The motivation for PatternJ is properly justified (which is sadly not always the case with such software tools).

      Overall, the paper is well written and accessible. The tool has limitations but it is clearly useful and easy to use. Therefore, this work is publishable with only minor corrections.

      *We thank the reviewer for the positive evaluation of PatternJ and for pointing out its accessibility to the users.

      *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      # Summary

      The authors present an ImageJ Macro GUI tool set for the quantification of one-dimensional repeated patterns that are commonly occurring in microscopy images of muscles.

      # Major comments

      In our view the article and also software could be improved in terms of defining the scope of its applicability and user-ship. In many parts the article and software suggest that general biological patterns can be analysed, but then in other parts very specific muscle actin wordings are used. We are pointing this out in the "Minor comments" sections below. We feel that the authors could improve their work by making a clear choice here. One option would be to clearly limit the scope of the tool to the analysis of actin structures in muscles. In this case we would recommend to also rename the tool, e.g. MusclePatternJ. The other option would be to make the tool about the generic analysis of one-dimensional patterns, maybe calling the tool LinePatternJ. In the latter case we would recommend to remove all actin specific wordings from the macro tool set and also the article should be in parts slightly re-written.

      *

      We agree with the reviewer that our initial manuscript used a mix of general and muscle-oriented vocabulary, which could make the use of PatternJ confusing especially outside of the muscle field. To make PatternJ useful for the largest community, we corrected the manuscript and the PatternJ toolset to provide the general vocabulary needed to make it understandable for every biologist. We modified the manuscript accordingly.

      * # Minor/detailed comments

      # Software

      We recommend considering the following suggestions for improving the software.

      ## File and folder selection dialogs

      In general, clicking on many of the buttons just opens up a file-browser dialog without any further information. For novel users it is not clear what the tool expects one to select here. It would be very good if the software could be rewritten such that there are always clear instructions displayed about which file or folder one should open for the different buttons.*

      We experienced with the current version of macOS that the file-browser dialog does not display any message; we suspect this is the issue raised by the reviewer. This is a known issue of Fiji on Mac and all applications on Mac since 2016. We provided guidelines in the user manual and on the tutorial video to correct this issue by changing a parameter in Fiji. Given the issues the reviewer had accessing the material on the PatternJ website, which we apologize for, we understand the issue raised. We added an extra warning on the PatternJ website to point at this problem and its solution. Additionally, we have limited the file-browser dialog appearance to what we thought was strictly necessary. Thus, the user will experience fewer prompts, speeding up the analysis.

      *

      ## Extract button

      The tool asks one to specify things like whether selections are drawn "M-line-to-M-line"; for users that are not experts in muscle morphology this is not understandable. It would be great to find more generally applicable formulations. *

      We agree that this muscle-oriented vocabulary can make the use of PatternJ confusing. We have now corrected the user interface to provide both general and muscle-specific vocabulary ("center-to-center or edge-to-edge (M-line-to-M-line or Z-disc-to-Z-disc)").*

      ## Manual selection accuracy

      The 1st step of the analysis is always to start from a user hand-drawn profile across intensity patterns in the image. However, this step can cause inaccuracy that varies with the shape and curve of the line profile drawn. If not strictly perpendicular to for example the M line patterns, the distance between intensity peaks will be different. This will be more problematic when dealing with non-straight and parallelly poised features in the image. If the structure is bended with a curve, the line drawn over it also needs to reproduce this curve, to precisely capture the intensity pattern. I found this limits the reproducibility and easy-usability of the software.*

      We understand the concern of the reviewer. On curved selections this will be an issue that is difficult to solve, especially on "S" curved or more complex selections. The user will have to be very careful in these situations. On non-curved samples, the issue may be concerning at first sight, but the errors go with the inverse of cosine and are therefore rather low. For example, if the user creates a selection off by 5 degrees, which is visually obvious, lengths will be affected by an increase of only 0.38%. The point raised by the reviewer is important to discuss, and we therefore added a paragraph to comment on the choice of selection (lines 94-98) and a supplementary figure to help make it clear (Figure 1 - figure supplement 1).*

      ### Reproducibility

      Since the line profile drawn on the image is the first step and very essential to the entire process, it should be considered to save together with the analysis result. For example, as ImageJ ROI or ROIset files that can be re-imported, correctly positioned, and visualized in the measured images. This would greatly improve the reproducibility of the proposed workflow. In the manuscript, only the extracted features are being saved (because the save button is also just asking for a folder containing images, so I cannot verify its functionality). *

      We agree that this is a very useful and important feature. We have added ROI automatic saving. Additionally, we now provide a simplified import function of all ROIs generated with PatternJ and the automated extraction and analysis of the list of ROIs. This can be done from ROIs generated previously in PatternJ or with ROIs generated from other ImageJ/Fiji algorithms. These new features are described in the manuscript in lines 120-121 and 130-132.

      *

      ## ? button

      It would be great if that button would open up some usage instructions.

      *

      We agree with the reviewer that the "?" button can be used in a better way. We have replaced this button with a Help menu, including a simple tutorial showing a series of images detailing the steps to follow by the user, a link to the user website, and a link to our video tutorial.

      * ## Easy improvement of workflow

      I would suggest a reasonable expansion of the current workflow, by fitting and displaying 2D lines to the band or line structure in the image, that form the "patterns" the author aims to address. Thus, it extracts geometry models from the image, and the inter-line distance, and even the curve formed by these sets of lines can be further analyzed and studied. These fitted 2D lines can be also well integrated into ImageJ as Line ROI, and thus be saved, imported back, and checked or being further modified. I think this can largely increase the usefulness and reproducibility of the software.

      *

      We hope that we understood this comment correctly. We had sent a clarification request to the editor, but unfortunately did not receive an answer within the requested 4 weeks of this revision. We understood the following: instead of using our 1D approach, in which we extract positions from a profile, the reviewer suggests extracting the positions of features not as a single point, but as a series of coordinates defining its shape. If this is the case, this is a major modification of the tool that is beyond the scope of PatternJ. We believe that keeping our tool simple, makes it robust. This is the major strength of PatternJ. Local fitting will not use line average for instance, which would make the tool less reliable.

      * # Manuscript

      We recommend considering the following suggestions for improving the manuscript. Abstract: The abstract suggests that general patterns can be quantified, however the actual tool quantifies specific subtypes of one-dimensional patterns. We recommend adapting the abstract accordingly.

      *

      We modified the abstract to make this point clearer.

      * Line 58: Gray-level co-occurrence matrix (GLCM) based feature extraction and analysis approach is not mentioned nor compared. At least there's a relatively recent study on Sarcomeres structure based on GLCM feature extraction: https://github.com/steinjm/SotaTool with publication: *https://doi.org/10.1002/cpz1.462

      • *

      We thank the reviewer for making us aware of this publication. We cite it now and have added it to our comparison of available approaches.

      * Line 75: "...these simple geometrical features will address most quantitative needs..." We feel that this may be an overstatement, e.g. we can imagine that there should be many relevant two-dimensional patterns in biology?!*

      We have modified this sentence to avoid potential confusion (lines 76-77).

      • *

      • Line 83: "After a straightforward installation by the user, ...". We think it would be convenient to add the installation steps at this place into the manuscript. *

      __This sentence is now modified. We now mention how to install the toolset and we provide the link to the toolset website, if further information is needed (lines 86-88). __On the website, we provide a full video tutorial and a user manual.

      * Line 87: "Multicolor images will give a graph with one profile per color." The 'Multicolor images' here should be more precisely stated as "multi-channel" images. Multi-color images could be confused with RGB images which will be treated as 8-bit gray value (type conversion first) images by profile plot in ImageJ. *

      We agree with the reviewer that this could create some confusion. We modified "multicolor" to "multi-channel".

      * Line 92: "...such as individual bands, blocks, or sarcomeric actin...". While bands and blocks are generic pattern terms, the biological term "sarcomeric actin" does not seem to fit in this list. Could a more generic wording be found, such as "block with spike"? *

      We agree with the reviewer that "sarcomeric actin" alone will not be clear to all readers. We modified the text to "block with a central band, as often observed in the muscle field for sarcomeric actin" (lines 103-104). The toolset was modified accordingly.

      * Line 95: "the algorithm defines one pattern by having the features of highest intensity in its centre". Could this be rephrased? We did not understand what that exactly means.*

      We agree with the reviewer that this was not clear. We rewrote this paragraph (lines 101-114) and provided a supplementary figure to illustrate these definitions (Figure 1 - figure supplement 2).

      * Line 124 - 147: This part the only description of the algorithm behind the feature extraction and analysis, but not clearly stated. Many details are missing or assumed known by the reader. For example, how it achieved sub-pixel resolution results is not clear. One can only assume that by fitting Gaussian to the band, the center position (peak) thus can be calculated from continuous curves other than pixels. *

      Note that the two sentences introducing this description are "Automated feature extraction is the core of the tool. The algorithm takes multiple steps to achieve this (Fig. S2):". We were hoping this statement was clear, but the reviewer may refer to something else. We agree that the description of some of the details of the steps was too quick. We have now expanded the description where needed.

      * Line 407: We think the availability of both the tool and the code could be improved. For Fiji tools it is common practice to create an Update Site and to make the code available on GitHub. In addition, downloading the example file (https://drive.google.com/file/d/1eMazyQJlisWPwmozvyb8VPVbfAgaH7Hz/view?usp=drive_link) required a Google login and access request, which is not very convenient; in fact, we asked for access but it was denied. It would be important for the download to be easier, e.g. from GitHub or Zenodo.

      *

      We are sorry for issues encountered when downloading the tool and additional material. We thank the reviewer for pointing out these issues that limited the accessibility of our tool. We simplified the downloading procedure on the website, which does not go through the google drive interface nor requires a google account. Additionally, for the coder community the code, user manual and examples are now available from GitHub at github.com/PierreMangeol/PatternJ, and are provided as supplementary material with the manuscript. To our knowledge, update sites work for plugins but not for macro toolsets. Having experience sharing our codes with non-specialists, a classical website with a tutorial video is more accessible than more coder-oriented websites, which deter many users.

      * Reviewer #2 (Significance (Required)):

      The strength of this study is that a tool for the analysis of one-dimensional repeated patterns occurring in muscle fibres is made available in the accessible open-source platform ImageJ/Fiji. In the introduction to the article the authors provide an extensive review of comparable existing tools. Their new tool fills a gap in terms of providing an easy-to-use software for users without computational skills that enables the analysis of muscle sarcomere patterns. We feel that if the below mentioned limitations could be addressed the tool could indeed be valuable to life scientists interested in muscle patterning without computational skills.

      In our view there are a few limitations, including the accessibility of example data and tutorials at sites.google.com/view/patternj, which we had trouble to access. In addition, we think that the workflow in Fiji, which currently requires pressing several buttons in the correct order, could be further simplified and streamlined by adopting some "wizard" approach, where the user is guided through the steps.

      *As answered above, the links on the PatternJ website are now corrected. Regarding the workflow, we now provide a Help menu with:

      1. __a basic set of instructions to use the tool, __
      2. a direct link to the tutorial video in the PatternJ toolset
      3. a direct link to the website on which both the tutorial video and a detailed user manual can be found. We hope this addresses the issues raised by this reviewer.

      *Another limitation is the reproducibility of the analysis; here we recommend enabling IJ Macro recording as well as saving of the drawn line ROIs. For more detailed suggestions for improvements please see the above sections of our review. *

      We agree that saving ROIs is very useful. It is now implemented in PatternJ.

      We are not sure what this reviewer means by "enabling IJ Macro recording". The ImageJ Macro Recorder is indeed very useful, but to our knowledge, it is limited to built-in functions. Our code is open and we hope this will be sufficient for advanced users to modify the code and make it fit their needs.*

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary In this manuscript, the authors present a new toolset for the analysis of repetitive patterns in biological images named PatternJ. One of the main advantages of this new tool over existing ones is that it is simple to install and run and does not require any coding skills whatsoever, since it runs on the ImageJ GUI. Another advantage is that it does not only provide the mean length of the pattern unit but also the subpixel localization of each unit and the distributions of lengths and that it does not require GPU processing to run, unlike other existing tools. The major disadvantage of the PatternJ is that it requires heavy, although very simple, user input in both the selection of the region to be analyzed and in the analysis steps. Another limitation is that, at least in its current version, PatternJ is not suitable for time-lapse imaging. The authors clearly explain the algorithm used by the tool to find the localization of pattern features and they thoroughly test the limits of their tool in conditions of varying SNR, periodicity and band intensity. Finally, they also show the performance of PatternJ across several biological models such as different kinds of muscle cells, neurons and fish embryonic somites, as well as different imaging modalities such as brightfield, fluorescence confocal microscopy, STORM and even electron microscopy.

      This manuscript is clearly written, and both the section and the figures are well organized and tell a cohesive story. By testing PatternJ, I can attest to its ease of installation and use. Overall, I consider that PatternJ is a useful tool for the analysis of patterned microscopy images and this article is fit for publication. However, i do have some minor suggestions and questions that I would like the authors to address, as I consider they could improve this manuscript and the tool:

      *We are grateful to this reviewer for this very positive assessment of PatternJ and of our manuscript.

      * Minor Suggestions: In the methodology section is missing a more detailed description about how the metric plotted was obtained: as normalized intensity or precision in pixels. *

      We agree with the reviewer that a more detailed description of the metric plotted was missing. We added this information in the method part and added information in the Figure captions where more details could help to clarify the value displayed.

      * The validation is based mostly on the SNR and patterns. They should include a dataset of real data to validate the algorithm in three of the standard patterns tested. *

      We validated our tool using computer-generated images, in which we know with certainty the localization of patterns. This allowed us to automatically analyze 30 000 images, and with varying settings, we sometimes analyzed 10 times the same image, leading to about 150 000 selections analyzed. From these analyses, we can provide with confidence an unbiased assessment of the tool precision and the tool capacity to extract patterns. We already provided examples of various biological data images in Figures 4-6, showing all possible features that can be extracted with PatternJ. In these examples, we can claim by eye that PatternJ extracts patterns efficiently, but we cannot know how precise these extractions are because of the nature of biological data: "real" positions of features are unknown in biological data. Such validation will be limited to assessing whether a pattern was found or not, which we believe we already provided with the examples in Figures 4-6.

      * The video tutorial available in the PatternJ website is very useful, maybe it would be worth it to include it as supplemental material for this manuscript, if the journal allows it. *

      As the video tutorial may have been missed by other reviewers, we agree it is important to make it more prominent to users. We have now added a Help menu in the toolset that opens the tutorial video. Having the video as supplementary material could indeed be a useful addition if the size of the video is compatible with the journal limits.

      * An example image is provided to test the macro. However, it would be useful to provide further example images for each of the three possible standard patterns suggested: Block, actin sarcomere or individual band.*

      We agree this can help users. We now provide another multi-channel example image on the PatternJ website including blocks and a pattern made of a linear intensity gradient that can be extracted with our simpler "single pattern" algorithm, which were missing in the first example. Additionally, we provide an example to be used with our new time-lapse analysis.

      * Access to both the manual and the sample images in the PatternJ website should be made publicly available. Right now they both sit in a private Drive account. *

      As mentioned above, we apologize for access issues that occurred during the review process. These files can now be downloaded directly on the website without any sort of authentication. Additionally, these files are now also available on GitHub.

      * Some common errors are not properly handled by the macro and could be confusing for the user: When there is no selection and one tries to run a Check or Extraction: "Selection required in line 307 (called from line 14). profile=getProfile( ;". A simple "a line selection is required" message would be useful there. When "band" or "block" is selected for a channel in the "Set parameters" window, yet a 0 value is entered into the corresponding "Number of bands or blocks" section, one gets this error when trying to Extract: "Empty array in line 842 (called from line 113). if ( ( subloc . length == 1 ) & ( subloc [ 0 == 0) ) {". This error is not too rare, since the "Number of bands or blocks" section is populated with a 0 after choosing "sarcomeric actin" (after accepting the settings) and stays that way when one changes back to "blocks" or "bands".*

      We thank the reviewer for pointing out these bugs. These bugs are now corrected in the revised version.

      * The fact that every time one clicks on the most used buttons, the getDirectory window appears is not only quite annoying but also, ultimately a waste of time. Isn't it possible to choose the directory in which to store the files only once, from the "Set parameters" window?*

      We have now found a solution to avoid this step. The user is only prompted to provide the image folder when pressing the "Set parameter" button. We kept the prompt for directory only when the user selects the time-lapse analysis or the analysis of multiple ROIs. The main reason is that it is very easy for the analysis to end up in the wrong folder otherwise.

      * The authors state that the outputs of the workflow are "user friendly text files". However, some of them lack descriptive headers (like the localisations and profiles) or even file names (like colors.txt). If there is something lacking in the manuscript, it is a brief description of all the output files generated during the workflow.*

      PatternJ generates multiple files, several of which are internal to the toolset. They are needed to keep track of which analyses were done, and which colors were used in the images, amongst others. From the user part, only the files obtained after the analysis All_localizations.channel_X.txt and sarcomere_lengths.txt are useful. To improve the user experience, we now moved all internal files to a folder named "internal", which we think will clarify which outputs are useful for further analysis, and which ones are not. We thank the reviewer for raising this point and we now mention it in our Tutorial.

      I don't really see the point in saving the localizations from the "Extraction" step, they are even named "temp".

      We thank the reviewer for this comment, this was indeed not necessary. We modified PatternJ to delete these files after they are used.

      * In the same line, I DO see the point of saving the profiles and localizations from the "Extract & Save" step, but I think they should be deleted during the "Analysis" step, since all their information is then grouped in a single file, with descriptive headers. This deleting could be optional and set in the "Set parameters" window.*

      We understand the point raised by the reviewer. However, the analysis depends on the reference channel picked, which is asked for when starting an analysis, and can be augmented with additional selections. If a user chooses to modify the reference channel or to add a new profile to the analysis, deleting all these files would mean that the user will have to start over again, which we believe will create frustration. An optional deletion at the analysis step is simple to implement, but it could create problems for users who do not understand what it means practically.

      * Moreover, I think it would be useful to also save the linear roi used for the "Extract & Save" step, and eventually combine them during the "Analysis step" into a single roi set file so that future re-analysis could be made on the same regions. This could be an optional feature set from the "Set parameters" window. *

      We agree with the reviewer that saving ROIs is very useful. ROIs are now saved into a single file each time the user extracts and saves positions from a selection. Additionally, the user can re-use previous ROIs and analyze an image or image series in a single step.

      * In the "PatternJ workflow" section of the manuscript, the authors state that after the "Extract & Save" step "(...) steps 1, 2, 4, and 5 can be repeated on other selections (...)". However, technically, only steps 1 and 5 are really necessary (alternatively 1, 4 and 5 if the user is unsure of the quality of the patterning). If a user follows this to the letter, I think it can lead to wasted time.

      *

      We agree with the reviewer and have corrected the manuscript accordingly (line 119-120).

      • *

      *I believe that the "Version Information" button, although important, has potential to be more useful if used as a "Help" button for the toolset. There could be links to useful sources like the manuscript or the PatternJ website but also some tips like "whenever possible, use a higher linewidth for your line selection" *

      We agree with the reviewer as pointed out in our previous answers to the other reviewers. This button is now replaced by a Help menu, including a simple tutorial in a series of images detailing the steps to follow, a link to the user website, and a link to our video tutorial.

      * It would be interesting to mention to what extent does the orientation of the line selection in relation to the patterned structure (i.e. perfectly parallel vs more diagonal) affect pattern length variability?*

      As answered to reviewer 1, we understand this concern, which needs to be clarified for readers. The issue may be concerning at first sight, but the errors grow only with the inverse of cosine and are therefore rather low. For example, if the user creates a selection off by 3 degrees, which is visually obvious, lengths will be affected by an increase of only 0.14%. The point raised by the reviewer is important to discuss, and we therefore have added a comment on the choice of selection (lines 94-98) as well as a supplementary figure (Figure 1 - figure supplement 1).

      * When "the algorithm uses the peak of highest intensity as a starting point and then searches for peak intensity values one spatial period away on each side of this starting point" (line 133-135), does that search have a range? If so, what is the range? *

      We agree that this information is useful to share with the reader. The range is one pattern size. We have modified the sentence to clarify the range of search used and the resulting limits in aperiodicity (now lines 176-181).

      * Line 144 states that the parameters of the fit are saved and given to the user, yet I could not find such information in the outputs. *

      The parameters of the fits are saved for blocks. We have now clarified this point by modifying the manuscript (lines 186-198) and modifying Figure 1 - figure supplement 5. We realized we made an error in the description of how edges of "block with middle band" are extracted. This is now corrected.

      * In line 286, authors finish by saying "More complex patterns from electron microscopy images may also be used with PatternJ.". Since this statement is not backed by evidence in the manuscript, I suggest deleting it (or at the very least, providing some examples of what more complex patterns the authors refer to). *

      This sentence is now deleted.

      * In the TEM image of the fly wing muscle in fig. 4 there is a subtle but clearly visible white stripe pattern in the original image. Since that pattern consists of 'dips', rather than 'peaks' in the profile of the inverted image, they do not get analyzed. I think it is worth mentioning that if the image of interest contains both "bright" and "dark" patterns, then the analysis should be performed in both the original and the inverted images because the nature of the algorithm does not allow it to detect "dark" patterns. *

      We agree with the reviewer's comment. We now mention this point in lines 337-339.

      * In line 283, the authors mention using background correction. They should explicit what method of background correction they used. If they used ImageJ's "subtract background' tool, then specify the radius.*

      We now describe this step in the method section.

      *

      Reviewer #3 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. Being a software paper, the advance proposed by the authors is technical in nature. The novelty and significance of this tool is that it offers quick and simple pattern analysis at the single unit level to a broad audience, since it runs on the ImageJ GUI and does not require any programming knowledge. Moreover, all the modules and steps are well described in the paper, which allows easy going through the analysis.
      • Place the work in the context of the existing literature (provide references, where appropriate). The authors themselves provide a good and thorough comparison of their tool with other existing ones, both in terms of ease of use and on the type of information extracted by each method. While PatternJ is not necessarily superior in all aspects, it succeeds at providing precise single pattern unit measurements in a user-friendly manner.
      • State what audience might be interested in and influenced by the reported findings. Most researchers working with microscopy images of muscle cells or fibers or any other patterned sample and interested in analyzing changes in that pattern in response to perturbations, time, development, etc. could use this tool to obtain useful, and otherwise laborious, information. *

      We thank the reviewer for these enthusiastic comments about how straightforward for biologists it is to use PatternJ and its broad applicability in the bio community.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      The authors present an ImageJ Macro GUI tool set for the quantification of one-dimensional repeated patterns that are commonly occurring in microscopy images of muscles.

      Major comments

      In our view the article and also software could be improved in terms of defining the scope of its applicability and user-ship. In many parts the article and software suggest that general biological patterns can be analysed, but then in other parts very specific muscle actin wordings are used. We are pointing this out in the "Minor comments" sections below. We feel that the authors could improve their work by making a clear choice here. One option would be to clearly limit the scope of the tool to the analysis of actin structures in muscles. In this case we would recommend to also rename the tool, e.g. MusclePatternJ. The other option would be to make the tool about the generic analysis of one-dimensional patterns, maybe calling the tool LinePatternJ. In the latter case we would recommend to remove all actin specific wordings from the macro tool set and also the article should be in parts slightly re-written.

      Minor/detailed comments

      Software

      We recommend considering the following suggestions for improving the software.

      File and folder selection dialogs

      In general, clicking on many of the buttons just opens up a file-browser dialog without any further information. For novel users it is not clear what the tool expects one to select here. It would be very good if the software could be rewritten such that there are always clear instructions displayed about which file or folder one should open for the different buttons.

      Extract button

      The tool asks one to specify things like whether selections are drawn "M-line-to-M-line"; for users that are not experts in muscle morphology this is not understandable. It would be great to find more generally applicable formulations.

      Manual selection accuracy

      The 1st step of the analysis is always to start from a user hand-drawn profile across intensity patterns in the image. However, this step can cause inaccuracy that varies with the shape and curve of the line profile drawn. If not strictly perpendicular to for example the M line patterns, the distance between intensity peaks will be different. This will be more problematic when dealing with non-straight and parallelly poised features in the image. If the structure is bended with a curve, the line drawn over it also needs to reproduce this curve, to precisely capture the intensity pattern. I found this limits the reproducibility and easy-usability of the software.

      Reproducibility

      Since the line profile drawn on the image is the first step and very essential to the entire process, it should be considered to save together with the analysis result. For example, as ImageJ ROI or ROIset files that can be re-imported, correctly positioned, and visualized in the measured images. This would greatly improve the reproducibility of the proposed workflow. In the manuscript, only the extracted features are being saved (because the save button is also just asking for a folder containing images, so I cannot verify its functionality).

      ? button

      It would be great if that button would open up some usage instructions.

      Easy improvement of workflow

      I would suggest a reasonable expansion of the current workflow, by fitting and displaying 2D lines to the band or line structure in the image, that form the "patterns" the author aims to address. Thus, it extracts geometry models from the image, and the inter-line distance, and even the curve formed by these sets of lines can be further analyzed and studied. These fitted 2D lines can be also well integrated into ImageJ as Line ROI, and thus be saved, imported back, and checked or being further modified. I think this can largely increase the usefulness and reproducibility of the software.

      Manuscript

      We recommend considering the following suggestions for improving the manuscript. Abstract: The abstract suggests that general patterns can be quantified, however the actual tool quantifies specific subtypes of one-dimensional patterns. We recommend adapting the abstract accordingly.

      Line 58: Gray-level co-occurrence matrix (GLCM) based feature extraction and analysis approach is not mentioned nor compared. At least there's a relatively recent study on Sarcomeres structure based on GLCM feature extraction: https://github.com/steinjm/SotaTool with publication: https://doi.org/10.1002/cpz1.462

      Line 75: "...these simple geometrical features will address most quantitative needs..." We feel that this may be an overstatement, e.g. we can imagine that there should be many relevant two-dimensional patterns in biology?!

      Line 83: "After a straightforward installation by the user, ...". We think it would be convenient to add the installation steps at this place into the manuscript.

      Line 87: "Multicolor images will give a graph with one profile per color." The 'Multicolor images' here should be more precisely stated as "multi-channel" images. Multi-color images could be confused with RGB images which will be treated as 8-bit gray value (type conversion first) images by profile plot in ImageJ.

      Line 92: "...such as individual bands, blocks, or sarcomeric actin...". While bands and blocks are generic pattern terms, the biological term "sarcomeric actin" does not seem to fit in this list. Could a more generic wording be found, such as "block with spike"?

      Line 95: "the algorithm defines one pattern by having the features of highest intensity in its centre". Could this be rephrased? We did not understand what that exactly means.

      Line 124 - 147: This part the only description of the algorithm behind the feature extraction and analysis, but not clearly stated. Many details are missing or assumed known by the reader. For example, how it achieved sub-pixel resolution results is not clear. One can only assume that by fitting Gaussian to the band, the center position (peak) thus can be calculated from continuous curves other than pixels.

      Line 407: We think the availability of both the tool and the code could be improved. For Fiji tools it is common practice to create an Update Site and to make the code available on GitHub. In addition, downloading the example file (https://drive.google.com/file/d/1eMazyQJlisWPwmozvyb8VPVbfAgaH7Hz/view?usp=drive_link) required a Google login and access request, which is not very convenient; in fact, we asked for access but it was denied. It would be important for the download to be easier, e.g. from GitHub or Zenodo.

      Significance

      The strength of this study is that a tool for the analysis of one-dimensional repeated patterns occurring in muscle fibres is made available in the accessible open-source platform ImageJ/Fiji. In the introduction to the article the authors provide an extensive review of comparable existing tools. Their new tool fills a gap in terms of providing an easy-to-use software for users without computational skills that enables the analysis of muscle sarcomere patterns. We feel that if the below mentioned limitations could be addressed the tool could indeed be valuable to life scientists interested in muscle patterning without computational skills.

      In our view there are a few limitations, including the accessibility of example data and tutorials at sites.google.com/view/patternj, which we had trouble to access. In addition, we think that the workflow in Fiji, which currently requires pressing several buttons in the correct order, could be further simplified and streamlined by adopting some "wizard" approach, where the user is guided through the steps. Another limitation is the reproducibility of the analysis; here we recommend enabling IJ Macro recording as well as saving of the drawn line ROIs. For more detailed suggestions for improvements please see the above sections of our review.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Bell et al. provide an exhaustive and clear description of the diversity of a new class of predicted type IV restriction systems that the authors denote as CoCoNuTs, for their characteristic presence of coiled-coil segments and nuclease tandems. Along with a comprehensive analysis that includes phylogenetics, protein structure prediction, extensive protein domain annotations, and an in-depth investigation of encoding genomic contexts, they also provide detailed hypotheses about the biological activity and molecular functions of the members of this class of predicted systems. This work is highly relevant, it underscores the wide diversity of defence systems that are used by prokaryotes and demonstrates that there are still many systems to be discovered. The work is sound and backed-up by a clear and reasonable bioinformatics approach. I do not have any major issues with the manuscript, but only some minor comments.

      Strengths:

      The analysis provided by the authors is extensive and covers the three most important aspects that can be covered computationally when analysing a new family/superfamily: phylogenetics, genomic context analysis, and protein-structure-based domain content annotation. With this, one can directly have an idea about the superfamily of the predicted system and infer their biological role. The bioinformatics approach is sound and makes use of the most current advances in the fields of protein evolution and structural bioinformatics.

      Weaknesses:

      It is not clear how coiled-coil segments were assigned if only based on AF2-predicted models or also backed by sequence analysis, as no description is provided in the methods. The structure prediction quality assessment is based solely on the average pLDDT of the obtained models (with a threshold of 80 or better). However, this is not enough, particularly when multimeric models are used. The PAE matrix should be used to evaluate relative orientations, particularly in the case where there is a prediction that parts from 2 proteins are interacting. In the case of multimers, interface quality scores, such as the ipTM or pDockQ, should also be considered and, at minimum, reported.

      A description of the coiled-coil predictions has been added to the Methods. For multimeric models, PAE matrices and ipTM+pTM scores have been included in Supplementary Data File S1.

      Reviewer #2 (Public Review):

      Summary:

      In this work, using in-depth computational analysis, Bell et al. explore the diverse repertoire of type IV McrBC modification-dependent restriction systems. The prototypical two-component McrBC system has been structurally and functionally characterised and is known to act as a defence by restricting phage and foreign DNA containing methylated cytosines. Here, the authors find previously unanticipated complexity and versatility of these systems and focus on detailed analysis and classification of a distinct branch, the so-called CoCoNut, named after its composition of coiled-coil structures and tandem nucleases. These CoCoNut systems are predicted to target RNA as well as DNA and to utilise defence mechanisms with some similarity to type III CRISPR-Cas systems.

      Strengths:

      This work is enriched with a plethora of ideas and a myriad of compelling hypotheses that now await experimental verification. The study comes from the group that was amongst the first to describe, characterize, and classify CRISPR-Cas systems. By analogy, the findings described here can similarly promote ingenious experimental and conceptual research that could further drive technological advances. It could also instigate vigorous scientific debates that will ultimately benefit the community.

      Weaknesses:

      The multi-component systems described here function in the context of large oligomeric complexes. Some of the single chain AF2 predictions shown in this work are not compatible, for example, with homohexameric complex formation due to incompatible orientation of domains. The recent advances in protein structure prediction, in particular AlphaFold2 (AF2) multimer, now allow us to confidently probe potential protein-protein interactions and protein complex formation. This predictive power could be exploited here to produce a better glimpse of these multimeric protein systems. It can also provide a more sound explanation for some of the observed differences amongst different McrBC types.

      Hexameric CnuB complexes with CnuC stimulatory monomers for Type I-A, I-B, I-C, II, and III-A CoCoNuT systems have been modeled with AF2 and included in Supplementary Data File S1, albeit without the domains fused to the GTPase N-terminus (with the exception of Type I-B, which lacks the long coiled-coil domain fused to the GTPase and was modeled with its entire sequence). Attempts to model the other full-length CnuB hexamers did not lead to convincing results.

      Recommendations for the authors:

      Reviewing Editor:

      The detailed recommendations by the two reviewers will help the authors to further strengthen the manuscript, but two points seem particularly worth considering: 1. The methods are barely sketched in the manuscript, but it could be useful to detail them more closely. Particularly regarding the coiled-coil segments, which are currently just statists, useful mainly for the name of the family, more detail on their prediction, structural properties, and purpose would be very helpful. 2. Due to its encyclopedic nature, the wealth of material presented in the paper makes it hard to penetrate in one go. Any effort to make it more accessible would be very welcome. Reviewer 1 in particular has made a number of suggestions regarding the figures, which would make them provide more support for the findings described in the text.

      A description of the techniques used to identify coiled-coil segments has been added to the Methods. Our predictions ranged from near certainty in the coiled-coils detected in CnuB homologs, to shorter helices at the limit of detection in other factors. We chose to report all probable coiled-coils, as the extensive coiled-coils fused to CnuB, which are often the only domain present other than the GTPase, imply involvement in mediating complex formation by interacting with coiled-coils in other factors, particularly the other CoCoNuT factors. The suggestions made by Reviewer 1 were thoughtful and we made an effort to incorporate them.

      Reviewer #1 (Recommendations For The Authors):

      I do not have any major issues with the manuscript. I have however some minor comments, as described below.

      • The last sentence of the abstract at first reads as a fact and not a hypothesis resulting from the work described in the manuscript. After the second read, I noticed the nuances in the sentence. I would suggest a rephrasing to emphasize that the activity described is a theoretical hypothesis not backed-up by experiments.

      This sentence has been rephrased to make explicit the hypothetical nature of the statement.

      • In line 64, the authors rename DUF3578 as ADAM because indeed its function is not unknown. Did the authors consider reaching out to InterPro to add this designation to this DUF? A search in interpro with DUF3578 results in "MrcB-like, N-terminal domain" and if a name is suggested, it may be worthwhile to take it to the IntrePro team.

      We will suggest this nomenclature to InterPro.

      • I find Figure 1E hard to analyse and think it occupies too much space for the information it provides. The color scheme, the large amount of small slices, and the lack of numbers make its information content very small. I would suggest moving this to the supplementary and making it instead a bar plot. If removed from Figure 1, more space is made available for the other panels, particularly the structural superpositions, which in my opinion are much more important.

      We have removed Figure 1E from the paper as it adds little information beyond the abundance and phyletic distribution of sequenced prokaryotes, in which McrBC systems are plentiful.

      • In Figure 2, it is not clear due to the presence of many colorful "operon schemes" that the tree is for a single gene and not for the full operon segment. Highlighting the target gene in the operons or signalling it somehow would make the figure easy to understand even in the absence of the text and legend. The same applies to Supplementary Figure 1.

      The legend has been modified to show more clearly that this is a tree of McrB-like GTPases.

      • In line 146, the authors write "AlphaFold-predicted endonucelase fold" to say that a protein contains a region that AF2 predicts to fold like an endonuclease. This is a weird way of writing it and can be confusing to non-expert readers. I would suggest rephrasing for increased clarity.

      This sentence has been rephrased for greater clarity.

      • In line 167, there is a [47]. I believe this is probably due to a previous reference formatting.

      Indeed, this was a reference formatting error and has been fixed.

      • In most figures, the color palette and the use of very similar color palettes for taxonomy pie charts, genomic context composition schemes, and domain composition diagrams make it really hard to have a good understanding of the image at first. Legends are often close to each other, and it is not obvious at first which belong to what. I would suggest changing the layouts and maybe some color schemes to make it easier to extract the information that these figures want to convey.

      It seemed that Figure 4 was the most glaring example of these issues, and it has been rearranged for easier comprehension.

      • In the paragraph that starts at line 199, the authors mention an Ig-like domain that is often found at the N-terminus of Type I CoCoNuTs. Are they all related to each other? How conserved are these domains?

      These domains are all predicted to adopt a similar beta-sandwich fold and are found at the N-terminus of most CoCoNuT CnuC homologs, suggesting they are part of the same family, but we did not undertake a more detailed sequenced-based analysis of these regions.

      We also find comparable domains in the CnuC/McrC-like partners of the abundant McrB-like NxD motif GTPases that are not part of CoCoNuT systems, and given the similarity of some of their predicted structures to Rho GDP-dissociation inhibitor 1, we suspect that they have coevolved as regulators of the non-canonical NxD motif GTPase type. Our CnuBC multimer models showing consistent proximity between these domains in CnuC and CnuB GTPase domains suggest this could indeed be the case. We plan to explore these findings further in a forthcoming publication.

      • In line 210, the authors write "suggesting a role in overcrowding-induced stress response". Why so? In >all other cases, the authors justify their hypothesis, which I really appreciated, but not here.

      A supplementary note justifying this hypothesis has been added to Supplementary Data File S1.

      • At the end of the paragraph that starts in line 264, the authors mention that they constructed AF2 multimeric models to predict if 2 proteins would interact. However, no quality scores were provided, particularly the PAE matrix. This would allow for a better judgement of this prediction, and I would suggest adding the PAE matrix as another panel in the figure where the 3D model of the complex is displayed.

      The PAE matrix and ipTM+pTM scores for this and other multimer models have been added to Supplementary Data File S1. For this model in particular, the surface charge distribution of the model has been presented to support the role of the domains that have a higher PAE in RNA binding.

      • In line 306, "(supplementary data)" refers to what part of the file?

      This file has been renamed Supplementary Table S3 and referenced as such.

      • In line 464, the authors suggest that ShdA could interact with CoCoNuTs. Why not model the complex as done for other cases? what would co-folding suggest?

      As we were not able to convincingly model full-length CnuB hexamers with N-terminal coiled-coils, we did not attempt modeling of this hypothetical complex with another protein with a long coiled-coil, but it remains an interesting possibility.

      • In line 528, why and how were some genes additionally analyzed with HHPred?

      Justification for this analysis has been added to the Methods, but briefly, these genes were additionally analyzed if there were no BLAST hits or to confirm the hits that were obtained.

      • In the first section of the methods, the first and second (particularly the second) paragraphs are extremely long. I would suggest breaking them to facilitate reading.

      This change has been made.

      • In line 545, what do the authors mean by "the alignment (...) were analyzed with HHPred"?

      A more detailed description of this step has been added to the Methods.

      • The authors provide the models they produced as well as extensive supplementary tables that make their data reusable, but they do not provide the code for the automated steps, as to excise target sequence sections out of multiple sequence alignments, for example.

      The code used for these steps has been in use in our group at the NCBI for many years. It will be difficult to utilize outside of the NCBI software environment, but for full disclosure, we have included a zipped repository with the scripts and custom-code dependencies, although there are external dependencies as well such as FastTree and BLAST. In brief, it involves PSI-BLAST detection of regions with the most significant homology to one of a set of provided alignments (seals-2-master/bin/wrappers/cog_psicognitor). In this case, the reference alignments of McrB-like GTPases and DUF2357 were generated manually using HHpred to analyze alignments of clustered PSI-BLAST results. This step provided an output of coordinates defining domain footprints in each query sequence, which were then combined and/or extended using scripts based on manual analysis of many examples with HHpred (footprint_finders/get_GTPase_frags.py and footprint_finders/get_DUF2357_frags.py), then these coordinates were used to excise such regions from the query amino acid sequence with a final script (seals-2-master/bin/misc/fa2frag).

      Reviewer #2 (Recommendations For The Authors):

      (1) Page 4, line 77 - 'PUA superfamily domains' could be more appropriate to use instead of "EVE superfamily".

      While this statement could perhaps be applied to PUA superfamily domains, our previous work we refer to, which strongly supports the assertion, was restricted to the EVE-like domains and we prefer to retain the original language.

      (2) Page 5. lines 128-130 - AF2 multimer prediction model could provide a more sound explanation for these differences.

      Our AF2 multimer predictions added in this revision indeed show that the NxD motif McrB-like CoCoNuT GTPases interact with their respective McrC-like partners such that an immunoglobulin-like beta-sandwich domain, fused to the N-termini of the McrC homologs and similar to Rho GDP-dissociation inhibitor 1, has the potential to physically interact with the GTPase variants. However, we did not probe this in greater detail, as it is beyond the scope of this already highly complex article, but we plan to study it in the future.

      (3) Page 8, line 252 - The surface charge distribution of CnuH OB fold domain looks very different from SmpB (pdb3iyr). In fact, the regions that are in contact with RNA in SmpB are highly acidic in CoCoNut CnuH. Although it looks likely that this domain is involved in RNA binding, the mode of interaction should be very different.

      We did not detect a strong similarity between the CnuH SmpB-like SPB domain and PDB 3IYR, but when we compare the surface charge distribution of PDB 1WJX and the SPB domain, while there is a significant area that is positively charged in 1WJX that is negatively charged in SPB, there is much that overlaps with the same charge in both domains.

      The similarity between SmpB and the SPB domain is significant, but definitely not exact. An important question for future studies is: If the domains are indeed related due to an ancient fusion of SmpB to an ancestor of CnuH, would this degree of divergence be expected?

      In other words, can we say anything about how the function of a stand-alone tmRNA-binding protein could evolve after being fused to a complex predicted RNA helicase with other predicted RNA binding domains already present? Experimental validation will ultimately be necessary to resolve these kinds of questions, but for now, it may be safe to say that the presence of this domain, especially in conjunction with the neighboring RelE-like RTL domain and UPF1-like helicase domain, signals a likely interaction with the A-site of the ribosome, and perhaps restriction of aberrant/viral mRNA.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript by Barba-Aliaga and colleagues describe a potential function of eIF5A for the control of TIM50 translation. The authors showed that in temperature-sensitive mutants of eIF5A several mitochondrial proteins are decreased including OXPHOS subunits, proteins of the TCA cycle and some components of protein translocases. Some precursor proteins appear to localize into the cytosol. As consequent of mitochondrial dysfunction, the expression of some stress components is induced. The idea is that eIF5A ribosome-stalling of the proline-rich Tim50 of the TIM23 complex and thereby controls mitochondrial protein set-up.

      The findings are potentially interesting. However, some control experiments are required to substantiate the findings.

      1. To support their conclusion the authors should show whether Tim50 levels are affected in the eIF5A-ts mutants used. Tim50 protein half-life is approximately 9.6 h (Christiano et al, 2014), which makes difficult to measure large differences in new protein synthesis upon eIF5A depletion. However, we used different approaches to show that reduction in eIF5A provokes a reduction in Tim50 protein levels and synthesis. 1) The steady-state levels of Tim50 protein (genomic HA-tagged version) are shown by western blotting analysis in Fig. S4B and confirm a significant drop of approximately 20% in the tif51A-1 mutant at restrictive temperature. 2) The use of a construct in which Tim50 is fused to a nanoluciferase reporter under the control of a tetO7 inducible promoter shows a significant 3-fold reduction in Tim50 protein synthesis in the tif51A-1 mutant compared to wild-type (Fig. 4C). In addition, the protein synthesis time is calculated and indicates that it takes the double time for the tif51A-1 strain to synthesize Tim50 protein than the wild-type (Fig. 4E). 3) The expression of a FLAG-TIM50-GFP version under a GAL inducible system also shows a significant reduction in Tim50 protein synthesis in the two eIF5A temperature-sensitive strains (Fig. S4C). 4) The proteomic analysis performed at 41ºC showed a 20% reduction in Tim50 protein levels in the two eIF5A temperature-sensitive strains, although not being statistically significant (Table S1). Furthermore, TIM50 mRNA levels were determined by RT-qPCR across all the experiments mentioned to confirm that the low levels of Tim50 protein were not due to decreased transcription or increased mRNA degradation. 5) An additional experiment of polysome profiling has been included in Fig. R1 (Figure for Reviewers) showing a higher TIM50 mRNA abundance at low polysomal fractions and a lower mRNA abundance at heavy polysomal fractions upon eIF5A depletion. This indicates that the TIM50 mRNA abundance is significantly shifted to earlier fractions and translation of Tim50 is reduced in the tif51A-1 mutant at restrictive temperature but not at permissive temperature. Altoghether, all these experiments confirm a significant reduction of Tim50 protein levels upon eIF5A depletion and conclusions are supported on these results.

      How are the levels of TOM and TIM23 subunits?

      Response: Our proteomic analysis shows that the protein levels of Tom70 and Tom20 receptor subunits of the TOM complex are significantly decreased in the two eIF5A temperature-sensitive strains (Table S1). These results are in agreement with the polysome profiling results, where it is seen a significant reduction of TOM70 and TOM20 mRNAs in the heavy polysomal fractions while a significant increase of these mRNAs is observed in the light fractions of eIF5A-depleted cells (Fig. 2C and Fig. S2D). Apart from Tim50, no other proteins of the Tim23 translocase complex were detected in the proteomic analysis.

      Furthermore, how are the levels of the Tim50 variant that lack the proline residues? Is the stability or function of Tim50 affected by these mutations?

      Although we did not specifically analysed the Tim50ΔPro protein levels, a quantification of the Tim50ΔPro fluorescent signal has been performed to address this matter and is shown in Fig. R2 and mentioned in the corresponding Results section. Results indicate that the Tim50 variant lacking the proline residues has similar protein levels to the wild-type version and therefore, it is tempting to say that its stability should also be similar. However, if Reviewers consider this to be essential for publishing, additional experiments using cycloheximide could be conducted in order to better assess the stability and half-life of this Tim50 version.

      Additionally, functional levels of Tim50ΔPro protein is shown by the fact that wild-type cells carrying this Tim50 protein version as the only copy of Tim50 grew well in glycerol media, where Tim50 is essential for the mitochondrial function (Fig. 5A). However, we suspect that Tim50ΔPro is a bit less efficient protein since a double mutant tif51A-1 Tim50ΔPro shows even reduced growth than the single tif51A-1 mutant (Fig. 5A). This information also responds to the comments made by Reviewer #2.

      How specific is the effect of eIF5A on Tim50? Is there any other mitochondrial substrate of eIF5A? It is not so clear to the reviewer why the authors focused on Tim50.

      Response: eIF5A has been shown to be necessary for the translation of mRNA codons encoding for consecutive prolines and, consequently, lack of eIF5A causes ribosome stalling in these polyproline motifs (Gutierrez et al., 2013; Pelechano and Alepuz, 2017; Schuller et al., 2017). In our manuscript we showed: 1) using an artificial tetO7-TIM50-nanoLuc genomic construct we demonstrate that the synthesis of Tim50 protein (measured as appearance of luciferase activity upon induction of tetO promoter) is significantly reduced by 3-fold under eIF5A depletion only when Tim50 contains the stretch of 7 consecutive prolines (Fig. 4A-D); 2) genomic Tim50-HA and plasmid FLAG-TIM50-GFP protein levels are significantly reduced upon eIF5A depletion (Fig. S4B); 3) calculation of the time for translation elongation of Tim50 mRNA shows that this time is double in cells with eIF5A depletion than in cells containing normal eIF5A levels (Fig. 4E); and 4) analysis of published ribosome profiling data shows a precipitous drop-off in ribosome density exactly where the stretch of polyprolines is located in Tim50 (540-561bp) upon eIF5A depletion but not in the control strain (Fig. 4F). This result is indicative of ribosome stalling at Tim50 polyproline motif upon eIF5A depletion. Altogether, our results strongly support a direct and specific role of eIF5A in Tim50 protein synthesis. However, as we discuss in relation to Fig. 5 and in the Discussion section, Tim50 does not seem to be the only mitochondrial substrate of eIF5A, since recovery of Tim50 protein synthesis does not rescue the growth of eIF5A mutants under respiratory conditions. In this line, we have added further data pointing to ribosome stalling for other co-translationally inserted mitoproteins which are potential substrates of eIF5A (Table S6). Accordingly, this has also been included in the Discussion section. This information also responds to the comments made by Reviewer #4.

      Our focus on Tim50 in this manuscript resides in that we found a global downregulation of mitochondrial protein synthesis (Fig.1 and 2) in parallel to the accumulation of mitochondrial precursor proteins in the cytoplasm and induction of the mitoCPR response (Fig.3). All these data were pointing to a mitochondrial protein import defect. Since Tim50 is an essential component of the Tim23 translocase complex, its protein levels are reduced in eIF5A mutants and Tim50 contains a polyproline motif, all these data were pointing towards a Tim50-dependent effect in mitochondrial protein import upon eIF5A depletion, which we addressed in the manuscript.

      Figure 1A: Which tif51A strain was used?

      Response: The proteomic analysis was performed with tif51A-1 and tif51A-3 temperature-sensitive strains (see Table S1) and Fig.1A shows the average of the values obtained for the two mutants (proteins detected as down-regulated in these two samples and from 3 different biological replicates). This is now clarified in the Figure 1A legend. A similar approach was also followed in Pelechano and Alepuz, 2017. Additionally, the ratios between the protein level in the temperature-sensitive mutant respect wild-type for each protein and for each eIF5A mutant are also shown in Table S1. This information also responds to the comments made by Reviewer #2.

      Figure 1C: The authors should show the steady state levels of some OXPHOS/TCA components to confirm the findings of Figure 1A.

      Response: Proteomic findings have been confirmed for several proteins. The steady state levels of Por1 and Hsp60 proteins were investigated by western blotting (Figs. 1C,D) and results show a significant down-regulation on the two eIF5A temperature-sensitive strains at 41ºC, which confirms the findings of Fig. 1A. Additionally, we have included the same experiment performed at 37ºC (Fig. S1E), which also confirms the same conclusion.

      Furthermore, the steady-state levels of Tim50 protein were also investigated by western blotting (Fig. S4B), and results also showed a significant down-regulation in the tif51A-1 mutant at restrictive temperature (37ºC), compared to wild-type. This result also confirms the findings of Fig. 1A.

      However, if Reviewers consider that additional confirmation for OXPHOS/TCA proteins to be essential for publishing, additional experiments could be conducted to assess the protein levels of other OXPHOS/TCA proteins.

      The manuscript contains several quantifications. However, central information like number of repeats or whether a standard deviation or S.E.M. is depicted are missing.

      Response: Clear information on the number of repeats, type of graphical representation and statistical analysis is now included for all figures in the corresponding figure legends and also detailed in the Materials and Methods section. This information also responds to the comments made by Reviewer #2.

      Figure 3: The authors propose that precursor form aggregates outside mitochondria. To assess the data, a quantification should address in how many cells are protein aggregates.

      Response: The quantification of cytoplasmic Yta12 aggregates is now included in Fig.3E, which shows significant differences between the tif51A-1 mutant and the wild-type strain. In addition, quantification of cytosolic Tim50 aggregates was already included in Fig. 4H, which also shows significant differences between the tif51A-1 mutant and the wild-type strain. These two figures include the individual values from three biological replicates (at least 150 cells were analyzed), mean, standard deviation and statistical analysis.

      Do the observed aggregated proteins interact with Hsp104? recycled?

      Response: Yes, the cytoplasmic mitochondrial precursor aggregated proteins co-localize with Hsp104 as shown in Fig. 3I for Cyc1 and in Fig. 4J for Tim50. The quantification of Cyc1 and Tim50 co-localization with Hsp104 is shown in Fig S5D.


      Significance

      See above


      Reviewer #2

      Evidence, reproducibility and clarity

      The authors report here novel findings concerning the role of eIF5A in mediating protein import to mitochondria in the model eukaryote Saccharomyces cerevisiae. It was previously known from structural and other studies that the translation factor eIF5A binds to the E-site of stalled ribosomes to help promote peptide bond formation. It was inferred by ribosome footprinting and reporter studies assessing the impact of eIF5A depletion that eIF5A is particularly needed to translate several specific amino acid motifs including polyproline stretches. However additional target sequences are known.

      Here a proteomics approach reveals clear evidence that mitochondrially targeted proteins are impacted by temperature sensitive mutations in eIF5A that deplete the factor, including those without polyprolines. The authors then use a range of molecular and cell biology to focus on the role of mitochondrial signal sequences/mitochondrial protein import and the mitochondrial stress response, before highlighting a role for poly-prolines in Tim50, a major mitochondrial protein import factor. Consistent with the ribosome footprinting done previously it is shown that a stretch of 7 prolines limit its translation when eIF5A is depleted and studies shown here are consistent with the idea that this has wider consequences for mitochondrial protein import and hence translation/stability of other proteins. However improved Tim50 translation alone, by eliminating the poly-proline motif, is not sufficient to overcome all consequences of eIF5A depletion for mitochondrial protein import and for viability, suggesting a wider role.

      In general the text flows nicely, this could be a study that explains why a large number of mitochondrially targeted proteins are impacted by depletion of eIF5A in yeast. As the poly Pro sequence in Tim50 is not conserved in higher eukaryotes it is unclear how this observation will scale to other systems, but it provides an example of how studies in a relatively simple system can trace wide-spread impact of the loss of one component of a central pathway-here protein synthesis to altered translation of a key component of another process-mitochondrial protein import. Given that eIF5A and its hypusine modifying enzymes are mutated in rare human disorders, it is likely there will be interest in this study.

      However, while the conclusions may be justified, there are significant deficiencies in how the experiments have been analysed and presented in this version of the manuscript that impact every figure shown, coupled with deficiencies in the methods section that all need to be addressed. Thus, we have here the basis of what should be a very interesting paper here, but there is a lot of work to do to remedy perceived weaknesses. It may be that the overall conclusions are entirely sound and appropriate, but I suspect that performing the statistics in less biased ways may change some of the significant differences claimed. Some explanations concerning how data analyses were conducted and the reasons for specific analysis decisions being made would also improve the narrative. These points are expanded on below.

      All the edits suggested here are aimed at improving the rigor of reporting in this study. Depending on how they are answered some may become major issues, or they could all be minor.

      1 Figure 1 shows proteomic data for response to heat shock at 41{degree sign}C. In the text it is made clear that two different temperature sensitive missense alleles the 51A-1 and 51A-3 were analysed, but the single volcano plot in Figure 1A does not say whether it is reporting one of these experiments compared to WT (which one) or some other analysis (ie have data from the 2 mutants been amalgamated somehow?). I would assume only one, but which one, and why only one plot? How different is the other experiment? Why does the Figure title say the experiment is an eIF5A deletion when it is not this?

      Response: The data shown in Figure 1A corresponds to the average values obtained in the proteomic analysis for the two temperature-sensitive mutants tif51A-1 and tif51A-3 (with data for each mutant obtained from 3 different biological replicates). Highly reproducible proteomic results and similar between the two mutants were obtained (see in Fig. S1A the MDS-plot showing all replicates for each strain and condition studied in the proteomic analysis). In addition, the proteomic data showing the protein 41°C/25°C ratio for each eIF5A temperature-sensitive mutant with respect to wild-type is shown in the Table S1. This is now clarified in the Figure 1A legend. A similar approach using the mean values of the two mutants was followed in the analysis of ribosome footprintings made in Pelechano and Alepuz, 2017. Additionally, the ratios between the protein level in the temperature-sensitive mutant respect wild-type for each protein and for each eIF5A mutant are also shown in Table S1. This information also responds to the comments made by Reviewer #1.

      Reviewer #2 is right with his/her comment and there was a mistake in the Fig.1 title. Now it is corrected and written “depletion” instead of the wrong “deletion”.

      2 Why were the experiments shown in Figure 1 done at 41{degree sign}C when all other experiments are done at 37{degree sign}C? This experimental difference is ignored in the text and no comparison of the impact of 37 vs 41 is made anywhere in the manuscript. For example it would be straightforward to perform a comparison of eIF5A depletion (by western blot), polyribosome profiles, strain growth/inhibition at both temperatures.

      Response: Our aim carrying out a proteomic experiment after 4 hours of incubation of the temperature-sensitive strains at 41°C was to get a more profound depletion of the eIF5A protein, which is very abundant and stable at normal conditions, in order to get clear proteomic results. The proteomic results were pointing to a reduction in the levels of many mitochondrial proteins, corroborating previous results obtained in murine embryonic fibroblasts upon depletion of active eIF5A conditions (https://doi.org/10.1016/j.cmet.2019.05.003). From this starting point we tried to find out the molecular mechanism involved and all the rest of experiments are done with temperature sensitive eIF5A mutants under restrictive temperature of 37°C that is the most common conditions used in yeast by us and others, and in which wild-type yeast cells still grow vigorously.

      In our previous manuscript version, the depletion of eIF5A after growing the cells at 41ºC for 4 h was shown in Fig. 1C. These data has been expanded and we have now included in Fig. S1E a western blotting analysis that shows the depletion of eIF5A after incubating the cells at 37ºC and 41 ºC for 4 h (Fig. S1E). The steady state level of the mitochondrial Por1 protein was investigated by western blotting (Figs. 1C,D) and results show a significant down-regulation in the two eIF5A temperature-sensitive strains at 41ºC. We have now included the same experiment performed at 37ºC (Fig. S1E), which also confirms the same conclusion. In addition, following Reviewer #2 suggestions, growth of the wild-type and tif51A-1 strains was tested by serial drop assays conducted at 25ºC, 37ºC and 41ºC and results confirm that both 37ºC and 41ºC temperatures impair the growth of the tif51A-1 strain but not the wild-type (Fig.S1B). The new information included in Figure S1 is now explained in the Results section. This information also responds to the comments made by Reviewer #4.

      3 Western blot quantification. In Figure 1D and E the authors present western blot quantification. However they have chosen to normalise every panel to the signal in lane 1. This means that there is no variation at all in that sample as every replicate is =1. This completely skews the statistical assumptions made (because there will be variation in that sample) and effectively invalidates all the statistics shown. An appropriate approach to use is to normalise the signal in each lane to the mean signal across all lanes in a single blot. That way if all are identical they remain at 1, but importantly variation across all samples is captured. This should be done to the loading controls as well before working out ratios or performing any statistical analyses.

      Response: Following Reviewer #2 suggestions we have changed the normalization methodology for the Western blots and we have now normalized the signal in each lane to the mean signal across all lanes in each single blot, and do so also for the loading controls. We have conducted this analysis in every western blotting experiment shown in the manuscript (Figs. 1D, S4B and S4C) and statistical analyses have been performed again to capture variation across all samples. In addition, this is also included in the Materials and Methods section (“Western blotting” subsection). Results obtain are similar to previous ones but we agree that this new approach improves the data presentation.

      For this type of experiment it is more appropriate to use Anova than a T-test. This advice applies to every western data analysis figure in the whole manuscript and so all associated statistics need to be done again from the original quantification values. If T-test is justified then a correction for multiple hypothesis testing should be applied.

      Response: After reviewing a large number of publications analysing similar data, and also following the recommendations of our statistical department, we have retained the statistics used in our previous version (with the new data normalisation as explained above, following the recommendations of Reviewer #2). This is because for each western blot figure shown, we have performed experiments with two different biological samples, wild-type cells and eIF5A mutant cells, and compared results for a single variable (Por1 protein level; eIF5A protein level or Hsp60 protein level) using three or more biological replicates. In this context, we compare the mean of the protein levels obtained from the biological replicate for two groups: wild-type and eIF5A mutant. Therefore, we believe that the statistical T-test is more appropriate. However, we could repeat the statistic if it is finally considered more appropriate.

      In all bar chart figures in addition to showing the mean and SD, each replicate value should be shown (eg as done in Fig 2C). Graphpad allows individual points to be plotted easily.

      Response: All Figures along the manuscript now include individual values from each replicate, in addition to showing the mean, SD and statistical analysis. All figure legends have been corrected accordingly.

      5 Figure 2. Polysome profiles. The impact of translation elongation stalls on global polysome profiles is complex, but a global run off is highly unlikely. Stalls later in the coding region would be anticipated to cause an increase in ribosome density as more ribosomes accumulate (like cars queueing held at a red light). However where a stall is early in a longer ORF, for example at a signal sequence, then there is less opportunity for ribosomes to join and so for those mRNAs moving to lighter points in the gradient may be observed. This may also cause knock on effects on AUG clearance and initiation which the authors appear to see as there may be an increased 60S peak in the traces shown. Are there differences in overall -low vs high polysomes, the traces shown suggest there may be? Discussion of these points is merited in the results section given the subsequent qPCR experiment.

      Response: The comments made by the Reviewer #2 are very interesting and we have made changes accordingly. First, we now show in Fig. 2A,B and Fig.S2B,C the quantification of polysomal and monosomal fractions in wild-type and tif51A-1 mutants at permissive and restrictive temperatures. It can be appreciated that there is no impact on global polysomal and monosomal fractions under eIF5A depletion. This result does not support a global stall at 3’ region of the ORF, because then an increase in polysomal fractions should be detected; nor a global stall at the 5’ region of the ORF, because then a decrease in polysomal fractions should be detected. However, with respect to individual mRNAs, our data show a significant reduction in the heavier polysomal fractions and a significant increase in lighter polysomal fractions for mRNAs encoding mitochondrial proteins, while no significant changes were observed for mRNAs encoding cytoplasmic proteins (Fig. 2C and Fig. S2D-I). These results could be interpreted as a result of ribosome stalls in the 5’ ORF regions, for example at the signal sequence, according to Reviewer #2 comments.

      We have now introduced this comment in the Results and Discussion sections.

      Figure 2 qPCR. Using qPCR to analyse RNA levels across polysome gradients is tricky for multiple reasons including that the total RNA level varies across fractions that can impact recovery efficiencies following precipitation of gradient fractions. Often investigators use a spike in control to act as a normalising factor. Here it is completely unclear what analysis was done because details are not stated anywhere. How were primers optimized, was amplification efficiency determined? Or are they assumed to be 100%, which they will not be? A detailed description or reference to a study where that is written is needed.

      Response: The RNA extraction and analyses by RT-qPCR of the mRNA levels in the polysomal gradients was done as in previous studies of our lab (Romero et al. Sci Rep. 2020;10(1):233. doi: 10.1038/s41598-019-57132-0; Ramos-Alonso et al. PLoS Genet. 2018;14(6):e1007476. doi: 10.1371/journal.pgen.1007476; van Wijlick et al. PLoS Genet. 2016;12(10):e1006395. doi: 10.1371/journal.pgen.1006395; Garre et al., 2012 Mol Biol Cell. ;23(1):137-50. doi: 10.1091/mbc.E11-05-0419.). Three independent replicates were analyzed and results were reproducible and statistically significant, as shown in Fig. S2. Total RNA was extracted from each fraction using the SpeedTools Total RNA Extraction kit (Biotools B&M Labs). In the first replicate a spike in RNA control (Phenylalanine) was added and tested that no significant differences in the results were obtained when using or not the spike in control (see below Figure R3 for referees). mRNA relative values are always obtained from qPCR using a calibrating efficiency standard curve for each pair of oligos, after the initial set up of the qPCR for this specific pair of oligos. Therefore, slight differences in amplification efficiencies for each oligo pair are taken into account. More details about qPCR are now included in the Materials and Methods section (“Polyribosome profile analysis” subsection) and one additional reference is also included for the processing of polysomal gradient fractions.

      It would be helpful to state how long CDS are for these mRNAs and where 2-3/2-8 cut off made is what for determining what is 'short' vs 'long' and the scientific basis for selecting 2-3 vs 2-8, why 8? Were M fractions also used in qPCR, they appear to be ignored in the analysis as currently presented?

      Response: The CDS lengths of the mRNAs analyzed by polysome profiling and other important features are now included in new Table S5. We decided to classify as short length mRNAs those with a length below 600 bp, while mRNAs with lengths above 600 bp were classified as long length mRNAs. This classification was made on the basis of specific mRNA profiles obtained by qPCR analysis. mRNAs with short lengths behaved similarly and we selected 2n-3n fractions since the main polysomal peak under normal conditions appeared among 4n-5n fractions. In this line, long length mRNAs also behaved similarly between them, and we selected 2n to 8n fractions since the main polysomal peak under normal conditions appeared right after the 8n fraction. This information is now included in the Results and Materials and Methods sections.

      Regarding the use of the Monosomal fractions, yes, they were used as it can be seen in Fig. S2 which includes the distribution in Monosomal (M), lighter (2n-3n/2n-8n) or heavier (n>3/n>8, P) polysomal fractions. In the polysomal profiles we can be see that depletion of eIF5A causes a reduction in the amount of mitochondrial mRNAs in the heavier fractions and a corresponding increase in the amount of mRNAs in the lighter polysomal fractions, while no significant changes are found in the monosomal fractions. Therefore, the statistically significant change in the heavier/lighter polysomal fraction ratio is indicative of the translation down-regulation and these ratios are shown in Fig. 2C. As the Reviewer #2 commented in point 5, the change in mRNA distribution to lighter polysomal fractions may be indicative or ribosome stalling at the 5’ ORF region, compatible with a stall at the mitochondrial target signal (MTS), and this discussion is now included in the Results and Discussion section.

      Which transcripts studied here encode proteins with signal sequences? As Signal sequence pauses early in translation should impact ribosome loading this is potentially important here as discussed above.

      Response: Yes, we agree with Reviewer #2 that this information may be relevant according to the hypothesis of ribosome stall at the MTS. Therefore, a score value of probability of harbouring an MTS presequence (Fukasawa et al., 2015) is now included in Table S5 for each of the mRNAS analyzed by polysome profiling. The discussion of this point has also been included in the Results and Discussion sections.

      While it has been shown that SRP recognition is able to slow and even arrest translation of ER signal recognition peptides, there is currently no known direct SRP like correlate for mitochondrial signal sequences. We are therefore unaware of literature showing that mitochondrial signal sequences pause translation in a manner similar to ER signal sequences. We have previously found that downstream translational slowing is important for mitochondrial mRNA targeting (Tsuboi et al 2020, Arceo et al 2022), but we believe that to be distinct to what the Reviewer #2 is addressing.

      Figures 3-5. Microscopy. The false green color images in Figure 3B do not show up well. They may be better shown in grayscale, with only the multiple overlays in color.

      Response: False color for fluorescent microscopy images are widely used because they help to visualize the results to the readers and also facilitate the interpretation of multiple overlays. The use of false color is also suggested by Reviewer #4.

      Figure 3C should show the data spread for all 150 cells and normalise differently as discussed above for westerns. I do not believe that all 150 WT cells have exactly the same GFP intensity, which is what the present plot claims.

      Response: As answered to point 3 made by this Reviewer, now all figures, including Fig. 3C, are made with Graphpad and scatter plot with all individual points plotted, additionally to showing the mean, SD and statistical analysis. Results correspond to three independent experiments and show a statistically significant difference in Pdr5-GFP intensity signal between wild-type and tif51A-1 mutant. Figure legend has been corrected accordingly.

      For panels 3D-F image quantification should be shown so that the variation across a population is clear. Eg in violin plots, or showing every point. It should be clear what proportion of cells have GFP aggregates and what the variation in number of granules is.

      Response: The quantification of cytoplasmic Yta12 aggregates is now included in Fig.3E, which shows significant differences between the tif51A-1 mutant and the wild-type strain. Results show the individual values from three independent experiments with a minimum of 150 cells counted. We used a bar graph in which the values (% of cells with 0, 1, 2 or 3 aggregates) for each independent experiment are shown together with the mean, SD and statistical analysis. Figure legend has been corrected accordingly. This information also responds to the comments made by Reviewer #1.

      Figure 4H has no error bars.

      Response: New Fig.4H now shows the individual values of each of the three independent replicates, mean and error bars (SD). Figure legend has been corrected accordingly.

      Figure 5C normalises 2 WTs to 1 as in Figure 3C. Both would be better as violin plots.

      Response: Results in Fig. 5C are now shown using Graphpad and scatter plot in which all individual values are plotted (not normalized wild-type to 1), and also mean, SD and statistical significance. Results correspond to three independent replicates with the fluorescence intensity measured in more than 150 cells.

      Figure 5D/E shows 37{degree sign}C data only. Do tif51A-1 cells have aggregates at 25{degree sign}C?There are no error bars in Figure 5E or any indication of how many cells/replicates were quantified.

      Response: Figures 5D and 5E only show data at 37ºC since there are no Tim50-GFP aggregates, nor aggregates of other mitochondrial proteins, in tif51A-1 mutants at 25ºC, as shown in Fig. S3C-F and Fig. S5C.

      New Fig. 5E shows individual values from each of the three independent experiments, mean, SD and statistical significance. Results correspond to the measurement of Tim50 protein aggregates in more than 150 cells. Figure legend has been corrected accordingly.

      There are no sizing bars on any of the micrographs.

      Response: Now, all sets of microscopy figures contain a size bar and this is indicated in the corresponding Figure legend.

      The methods states that all quantification was done using ImageJ, but there is no detail given about how this was done. There are lots of ways to use ImageJ.

      Response: A detailed description of the quantifications made using ImageJ is now included in the Materials and Methods section (“Fluorescent microscopy and analysis” subsection).

      Figure 4. Luciferase assay. It is clear that there are differences in Tim50 vs Tim50∆7pro signal over time from the primary plots. It is not clear why the quantification plots on the right are from 2 selected time points. It is more typical to calculate the rate of increase in RLU per min in the linear portion of the plot, for these examples it would be approximately 30-40 mins.

      Response: As luciferase mRNA level is also increasing with time, the total amount of luciferase protein will increase exponentially. At some point mRNA levels will reach a steady state and for a brief period there could be a linear portion of RLU increase, but that will be different for each condition and reporter as ribosome quality control can have a direct impact on mRNA half-life. We have instead chosen two time points to show that statistical differences in Tim50 protein expression upon eIF5A depletion are not dependent on the time point chosen. We have also included the full data plots for readers to view the raw data.

      Figure 4F. The text on p6 states Fig 4F is evidence of RQC induction. This is an overstatement. There are no data presented relating to RQC.

      Response: Ribosome-associated quality control (RQC) is a mechanism by which elongation-stalled ribosomes are sensed in the cell, and then removed from the stall site by ribosomal subunit dissociation. This is the definition of RQC. With high levels of RQC this will cause a drop in ribosome density downstream of the stall site because of ribosome removal. While we would agree that most studies do not show actual buildup of ribosomes at ribosome stalls, and removal after the stall, we do. Our ribosome profiling analysis shows in vivo distribution of ribosome density across the TIM50 mRNA in wild-type and upon eIF5A depletion. We show that in the eIF5A depletion the ribosome density is similar to wild-type for the first ~200 bp, then there is a buildup of ribosomes for ~300 bps up to the stretch of polyproline residues, indicative of slowed ribosome movement. This slowed ribosome movement is further supported by our translation duration measurements in Fig. 4E. Then the transcript is almost completely devoid of ribosomes after the stretch of proline residues, indicating the ribosomes are removed at the proline stretch. This combination of ribosome stalling (Fig. 4E,4F) and subsequent ribosome removal (Fig 4F) is the textbook definition of RQC, so we indicate this as evidence for RQC.

      Figure 5G. It is not clear to this reviewer why the CYC1 reporter is impacted by Tim50∆pro at 25{degree sign}C. Can the authors comment?

      Response: This is also not clear to us, however, no differences are seen with and without eIF5A depletion, supporting the interpretation that Cyc1 translation is not affected by eIF5A depletion when Tim50 protein levels are restored in the Tim50∆pro strain. However, in order to clarify this point, we propose, if it is considered necessary, to remake the Tim50∆pro CYC1 reporter strain.

      Does ∆pro impact Tim50 function or is there possibly some other off target impact of integrating the reporter in this strain?

      Response: As answered to Reviewer #1 in her/his point 1, the functionality of Tim50ΔPro is shown by the fact that wild-type cells carrying this Tim50 protein version as the only copy of Tim50 grew well in glycerol media, where Tim50 is essential for the mitochondrial function (Fig. 5A). However, we suspect that Tim50ΔPro is a bit less efficient protein since a double mutant tif51A-1 Tim50ΔPro shows even reduced growth than the single tif51A-1 mutant (Fig. 5A). We do not expect off target impact in this Tim50ΔPro strains, although we cannot exclude this 100%, as in any other yeast strain obtained by transformation.

      Significance

      Strengths and Limitations:

      Strengths are that the study uses a wide range of molecular approaches to address the questions and that the results present a clear story.

      Limitations are that the poly-proline residues identified in yeast Tim50 are not conserved through to humans, so the direct relevance to higher organisms is unclear. However there are many more poly-proline proteins in human genes than in yeast and there are rare genetic conditions affecting eIF5A and its hypusination

      Advance. provides a clear link between dysregulation of eIF5A, Tim50 expression and wider impact on mitochondria.

      Audience. Scientists interested in protein synthesis, mitochondrial biology and clinicians investigating rare human disorders of eIF5A and hypusination.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      eIF5A is required to mediate efficient translation elongation of some amino-acid sequences like polyproline motifs, and eIF5A depletion was reported to impair mitochondrial respiration functions, decreasing mitochondrial protein levels. In this study, Barba-Aliaga et al. showed that eIF5A is important for the translation of the Pro-repeat containing protein, Tim50, an essential subunit of the TIM23 complex, the presequence translocase in the mitochondrial inner membrane. eIF5A ts mutants caused ribosome stalling of Tim50 mRNA on the mitochondrial surface at non-permissive temperature, and the removal of the Pro-repeat from Tim50 (Tim50-delta7Pro mutant) made its translation independent of eIF5A. However, the replacement of endogenous Tim50 with Tim50-delta7Pro did not recover the cell growth defects of eIF5A ts mutant on respiration medium at semi-permissive temperature, suggesting that Tim50 is not the only reason for the global mitochondrial defects caused by defective eIF5A.

      (1) I am wondering why the authors mainly used the eIF5A ts mutant strains instead of the eIF5A degron strain since, for example, the decrease in the level of Tim50 was only marginal (Fig. EV4A).

      Response: eIF5A is a very abundant protein and with high stability (SGD data: 273594 molecules/cell in YPD and 9.1 h protein half-life). We have used temperature-sensitive strains, tif51A-1, instead of eIF5A-degron because eIF5A is depleted much quicker in the first than the second system. As it can be seen in Schuller et al., Mol Cell. 2017;66(2):194-205.e5. doi: 10.1016/j.molcel.2017.03.003, with the eIF5A-degron system the addition of auxin was made in parallel to a transcriptional shut off using GAL promoter to express eIF5A-degron, changing the media from galactose to glucose and incubating the cells for 10 hours. With our approach using temperature-sensitive proteins, almost full depletion (without affecting viability, see Li et al., Genetics 2014; 197(4):1191-200 doi: 10.1534/genetics.114.166926) can be done after 4-6 h incubation at 37ºC or 4 h incubation at 41ºC (Fig. 1C and Fig. S1E, almost no signal is detected by western blotting). Therefore, we chose to use eIF5A depletion with temperature-sensitive yeast strains to achieve stronger protein depletion with shorter times and avoid secondary effects. In addition, the two eIF5A temperature-sensitive strains used in this study have been widely used by us and others (Pelechano and Alepuz, 2017; Zanelli and Valentini, 2005; Zanelli et al., 2006; Dias et al., 2008; Muñoz-Soriano et al., 2017; Rossi et al., 2014; Li et al., 2014; Xiao et al., 2024).

      (2) To show that the compromised translation of Tim50 in the absence of functional eIF5A causes defects in the mitochondrial protein import by clogging the import channels, the authors should directly observe the accumulation of the precursor forms of several matrix-targeting proteins by immunoblotting. In this sense, the results in Fig. 1C for Hsp60 do not fit the interpretation of import channel clogging.

      Response: We did not see precursor mitochondrial proteins by Western blot upon eIF5A depletion possibly because: 1) the mature protein form is more abundant and stable; 2) the precursor mito-protein appears in cytoplasmic aggregates and this may not be easily extracted during preparation of proteins for Western blot analysis. In the work by Weidberg and Amon, 2018, who described the mitoCPR response; Krämer et al., 2023, who described mitostores; and others (Wrobel et al., 2015; Boos et al., 2019) the authors use extreme over-expression of mitoproteins or mutations in essential proteins for mitochondrial biogenesis to induce clogging of translocases and accumulation of precursors in the cytosol. However, we are using and detecting proteins at their physiological levels, expressed under their native promoters, what may explain why we do not detect precursor mito-proteins. We are using what we believe to be a much more physiologically relevant system, where we use endogenous expression of mitochondrially imported proteins. Yet we see similar transcriptional induction of mitoCPR targets (CIS1, PDR5, PDR15) and mislocalization of mitochondrial proteins to Hsp104 marked aggregates (MitoStores).

      (3) The authors speculated in the Discussion section that import defects caused by compromised translation of Tim50 could cause down-regulation of translation through prolonged mitochondrial stress. However, this lacks experimental evidence.

      Response: We do see that depletion of eIF5A causes import defects through Tim50 and correlates with the down-regulation of translation of mRNAs encoding mitoproteins as shown in Fig. 2C and Fig. S2. In these figures it can be seen that mito-mRNAs move from heavier to lighter polysomal fractions upon eIF5A depletion, indicating that less ribosomes are bound to these mRNAs. Importantly, synthesis of Cyc1 and Cox5A mitochondrial proteins is recovered when TIM50 gene is replaced by an eIF5A-translation independent TIM50ΔPro gene, arguing in favor of a translation defect caused by eIF5A depletion through the collapse of import systems produced by the ribosome stalling in TIM50 mRNA.

      As discussed by Reviewer #2 and in our answers to his/her points 5 and 6, the reduction in the number of ribosomes bound to mito-mRNAs upon eIF5A depletion may be a consequence of the stall of ribosomes after the mRNA 5’ coding region encoding the MTS. This discussion has now been introduced in the Discussion section. This information also responds to the comments made by Reviewer #2.

      (4) The authors stated that human Tim50 does not have Pro-repeat motif, but how about other organisms (like other fungi species)? Is the present observation specific only to S. cerevisiae?

      Response: We have now included a sequence alignment of the Tim50 protein sequences of different yeast species (Saccharomyces cerevisiae, Candida albicans, Candida glabrata, Candida lipolytica, Schizzosaccharomyces pombe, Schizzosaccharomyces jamonicus), mouse and human (Fig. S4A). The resulting alignment shows that S. cerevisiae is the only organism presenting the seven consecutive proline residues. Still, C. albicans and C. glabrata conserve five consecutive prolines while C. lipolytica conserves five non-consecutive prolines. Furthermore, S. pombe and S. jamonicus, and mouse and human, conserve three and four non-consecutive prolines respectively. This means that the observations presented in this manuscript could be extended to other fungi species as well since most of the proline residues are conserved and are predicted to behave as eIF5A-dependent motifs for translation. Moreover, the described eIF5A-dependent tripeptide motif PDP is found in humans, mice and S. pombe at the Tim50 region where we found the PPP motif inducing ribosome stalling in S. cerevisiae (Fig S4A). This may confer eIF5A-dependent ribosome stall since as we showed in our previous ribosome footprinting (Pelechano et al., 2017), this PDP motif causes a similar high ribosome stall as the PPP motif. This discussion has now been introduced in the Results and Discussion sections.

      (5) Two references in the text are marked with "?", which should be corrected.

      Response: We thank you the Reviewer #3 for noticing this, references have been corrected in the text.

      __Reviewer #3 (Significance (Required)): __

      The essence of this work, the role of eIF5A in the efficient translation of Pro-repeat containing Tim50 (Figs. 4 and 5), is important and worth publication. However, the results of the effects of defective eIF5A on the levels and localization of mitochondrial proteins (Figs.1-3) can be even deleted to make clear the point of this work.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      The manuscript submitted by Barba-Aliaga et al. aims to understand on the molecular level how eIF5A influences mitochondrial function. elF5A promotes translation elongation at stretches prone to translational stalling like e.g. polyproline sequence. The finding that eIF5a influences mitochondrial function has been previously reported by the same group and by others. In this context, it was suggested that eIF5a promotes translation of N-terminal mitochondrial targeting signals. Here, the authors propose an alternative mechanism and suggest that "eIF5a directly controls mitochondrial protein import through alleviation of ribosome stalling along TIM50 mRNA." Using luciferase reporter assay, the authors indeed convincingly show that the speed of Tim50 translation is dependent on the presence of functional TIF51A, the major eIF5a in yeast, and that this dependence comes from the presence of the polyproline stretch in Tim50. The rest of the manuscript is unfortunately less clear and it is very hard, if not impossible, to sort out direct from secondary effects and compensations. The authors use proteomics, biochemical methods, RNAseq and fluorescence microscopy to analyze the temperature sensitive tif51A mutant but the conditions used in the manuscript are non-consistent between various experiments presented, in respect to the medium, temperature, preculture condition and the length of treatment used.

      Response: We do not agree with this Reviewer #4 appreciation. We used different molecular approaches to investigate different questions. Indeed, this is one of the Strengths that is highlighted by Reviewer 2 as it reads above: “Strengths are that the study uses a wide range of molecular approaches to address the questions and that the results present a clear story.” All the experiments presented in the manuscript, apart from proteomics analysis (Fig. 1), have been performed in the same conditions respect to the medium (SGal), temperature (25ºC/37ºC), preculture condition (SGal, 25ºC) and length of treatment used (4 h of depletion at 37ºC). This is already clearly specified in every Figure legend along the whole manuscript and also in the Materials and Methods section. In addition, individual values from each replicate, mean, standard deviation and statistical tests are shown for every Figure in the manuscript. Therefore, we do believe that conditions are consistent between experiments and conclusions are made based on different experiments and different scientific approaches.

      We agree with Reviewer #4 in that depletion of eIF5A protein in the temperature sensitive tif51A-1 mutant was done in the proteomic at 41°C for 4 h, whereas in the rest of experiments depletion is made at 37°C for 4 h. As answered to Reviewer #2 (see answer to point 2), stronger depletion conditions were used to get clear proteomic results, and in order to compare both temperatures we have added now some controls showing eIF5A depletion and growth of tif51A-1 mutant at 41°C and 37°C; importantly, we also show the reduction in mito-protein levels upon eIF5A depletion at 37°C (Fig. S1B and E).

      In some cases, the genetic background of the yeast strains and plasmids used are also unclear (e.g. pYES2-pGAL-FLAG-TIM50-GFP-URA3 - based on the provided description, TIM50 was inserted between FLAG and GFP tags; if so, mitochondrial targeting signal of Tim50 would be masked making its import into mitochondria impossible).

      Response: We do not agree with this appreciation. The genetic background of the yeast strains is always the same along the whole manuscript (BY4741 background) and is clearly specified in Table S2. In this line, all the information regarding the plasmids used can be found at Table S3 and plasmids construction is extensively detailed in the Materials and Methods section (“Yeast strains, plasmids, and growth conditions” subsection).

      Regarding the pYES2-pGAL-FLAG-TIM50-GFP-URA3 plasmid and as already mentioned in the text, we only used this plasmid to analyze by western blotting the protein synthesis of Tim50 independently of its subcellular localization. Our results (Fig. S4C) confirm that the synthesis defect of this Tim50 version upon eIF5A depletion is only due to the presence of the polyproline region. Importantly, we did not make any conclusion regarding import defects or protein localization based on these results.

      I have no doubt that upon exposure of tif51A cells to 41{degree sign}C for 4h cells initiate a number of cellular responses including mitoCPR and formation of MitoStores, however, I don´t think that the authors convincingly show that these are initiated by reduced levels of Tim50 - on the contrary, the authors show that levels of Tim50 are actually not significantly changed. This can hardly be reconciled with the model proposed. In addition, should the effect of Tif51A on mitochondria primarily be due to its effect on Tim50, then Tim50deltaPro should rescue the phenotype of tif51a mutant but it didn´t; if anything, it made it worse (see Fig 5A - the double mutant grows worse than the single ones). Furthermore, expression of Cyc1 luciferase reporter is reduced in Tim50deltaPro strain even at permissive temperature, Figure 5G. Since cytochrome c is not a substrate of the presequence pathway this again points to the secondary effects that are being observed.

      Response: We believe that our main results, summarized next and all performed at 37°C, do show that translation defects in TIM50 mRNA are the cause of the mitoCPR induction and formation of MitoStores. First, Tim50 protein levels are significantly reduced upon eIF5A depletion, as shown in Fig. S4A and S4B. Although being statistically significant, we agree that the reduction in Tim50 protein level is quantitatively low. This can be explained by the high stability of Tim50 protein, with a half-life of approximately 9.6 h (Christiano et al, 2014), which makes it more difficult to measure large differences in new protein synthesis. This is why we additionally used an accurate and quantitative test for showing the eIF5A-dependency for TIM50 mRNA translation: the fusion of the TIM50 DNA sequence to a TetO7-inducible nLuc reporter, which allows to monitor the appearance of new Tim50 protein and to estimate the translation elongation rate (Fig.4C-E). The ribosome stalling at TIM50 mRNA provoked by eIF5A depletion, where this mRNA is located at the mitochondrial surface to promote the import of nascent Tim50 protein during translation (Fig. S5B), may cause by itself the clogging of the protein import system even though yields only a slight reduction in total Tim50 cellular protein. Second, as Reviewer #4 pointed with our model, Tim50deltaPro should rescue the phenotype of tif51A-1 mutant and it does it: no mitoCPR induction and no mito-protein cytoplasmic aggregation are observed (Fig. 5D-F). Moreover, no differences in Cyc1- and Cox5a-nanoLuc synthesis are observed in the tif51A-1 Tim50ΔPro strain between depletion and not depletion conditions (Fig. 5E). These results strongly suggest that the mitochondrial protein import defects (and consequently the mitoCPR induction and mito-protein cytoplasmic aggregation) caused by eIF5A depletion are a consequence of ribosome stalling during TIM50 mRNA translation. However, Reviewer #4 is right in that mitochondrial respiration and growth in glycerol are not restored in the tif51A-1 Tim50ΔPro strain, even though Tim50 protein levels have been restored under eIF5A depletion conditions. As we discuss in the manuscript, we expect that there are additional mitochondrial proteins as targets of eIF5A, such as Yta12 and/or others. We have added further data pointing to ribosome stalling and RQC for other cotranslationally inserted mitochondrial proteins (Table S6). Accordingly, this has also been included in the Discussion section. However, the identification and study of these other mitochondrial targets goes beyond the aim of our current study.

      Minor comments

      1. Page 1, mitochondrial proteins cross do not the intermembrane space through Tom40 but rather the outer membrane Response: We think the Reviewer #4 misunderstood the sentence because we are saying exactly what he/she states: mitoproteins cross the outer membrane to the intermembrane space through Tom40. Thus our sentence is:

      “Usually, mitoproteins contact the central receptor Tom20 and cross to the intermembrane space (IMS) through Tom40, the β-barrel pore-forming subunit.”

      Therefore, we kept the sentence.

      Page 4, ATP1 is present in the matrix and not the inner membrane

      Response: This has been corrected. We thank the Reviewer for pointing this.

      The citations are missing at several places - they are left as "?"

      Response: References have been corrected in the text.

      It would be nice if microscopy images were colored in magenta and cyan, rather than red and green, to make them accessible to a wider audience.

      Response: Green and red colors for fluorescent microscopy images are widely used in high-impact journals, especially when showing mitochondrial proteins and mitochondrial marker Su9-mCherry (Hughes et al., 2016, eLife, doi: 10.7554/eLife.13943; Kakimoto et al., 2018, Scientific Reports, doi: 10.1038/s41598-018-24466-0; Kreimendahl et al, 2020, BMC Biology, doi: 10.1186/s12915-020-00888-z). However, if the Reviewers think this is essential for publication, microscopy images can be colored in magenta and cyan instead.

      Formally speaking, Tim50 is not per se a translocase, it is either a component of the translocase or, more precisely, a receptor of the translocase. Similarly, Tom20 and Tom70 are not membrane transporters but rather receptors of the TOM complex.

      Response: We have changed the title and text to be more precise in the description of the components of the mitochondrial import systems as suggested by Reviewer #4.

      Reviewer #4 (Significance (Required)):


      This is a potentially interesting story, however, the conditions used for the analysis of the temperature sensitive mutants were either too harsh or these mutants are in general impossible to control, making the manuscript, in my opinion, unfortunately too premature for publication.

      Response: We do not agree with the Reviewer #4 opinion, all experiments were done at 37ºC except the proteomic analysis that it is also confirmed further for Tim50 and Por1 proteins at 37ºC. We want to stress that we show all experiments with at least three biological replicates, individual values for each measurement are included now in the graphics as recommended by Reviewer #2, and the mean, SD and statistical tests are included. We make conclusions based in statistical significant differences along the manuscript. The temperature-sensitive yeast mutants used show reproducible analysis, they behave as expected in the controlled conditions used and they have been widely used in our lab and others (Pelechano and Alepuz, 2017; Zanelli and Valentini, 2005; Zanelli et al., 2006; Dias et al., 2008; Muñoz-Soriano et al., 2017; Rossi et al., 2014; Li et al., 2014; Xiao et al., 2024).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This work provides a valuable contribution and assessment of what it means to replicate a null study finding, and what are the appropriate methods for doing so (apart from a rote p-value assessment). Through a convincing re-analysis of results from the Reproducibility Project: Cancer Biology using frequentist equivalence testing and Bayes factors, the authors demonstrate that even when reducing 'replicability success' to a single criterion, how precisely replication is measured may yield differing results. Less focus is directed to appropriate replication of non-null findings.

      Reviewer #1 (Public Review):

      Summary:

      The goal of Pawel et al. is to provide a more rigorous and quantitative approach for judging whether or not an initial null finding (conventionally with p ≥ 0.05) has been replicated by a second similarly null finding. They discuss important objections to relying on the qualitative significant/non-significant dichotomy to make this judgment. They present two complementary methods (one frequentist and the other Bayesian) which provide a superior quantitative framework for assessing the replicability of null findings.

      Strengths:

      Clear presentation; illuminating examples drawn from the well-known Reproducibility Project: Cancer Biology data set; R-code that implements suggested analyses. Using both methods as suggested provides a superior procedure for judging the replicability of null findings.

      Weaknesses:

      The proposed frequentist and the Bayesian methods both rely on binary assessments of an original finding and its replication. I'm not sure if this is a weakness or is inherent to making binary decisions based on continuous data.

      For the frequentist method, a null finding is considered replicated if the original and replication 90% confidence intervals for the effects both fall within the equivalence range. According to this approach, a null finding would be considered replicated if p-values of both equivalences tests (original and replication) were, say, 0.049, whereas would not be considered replicated if, for example, the equivalence test of the original study had a p-value of 0.051 and the replication had a p-value of 0.001. Intuitively, the evidence for replication would seem to be stronger in the second instance. The recommended Bayesian approach similarly relies on a dichotomy (e.g., Bayes factor > 1).

      Thanks for the suggestions, we now emphasize more strongly in the “Methods for assessing replicability of null results” and “Conclusions” sections that both TOST p-values and Bayes factors are quantitative measures of evidence that do not require dichotomization into “success” or “failure”.

      Reviewer #2 (Public Review):

      Summary:

      The study demonstrates how inconclusive replications of studies initially with p > 0.05 can be and employs equivalence tests and Bayesian factor approaches to illustrate this concept. Interestingly, the study reveals that achieving a success rate of 11 out of 15, or 73%, as was accomplished with the non-significance criterion from the RPCB (Reproducibility Project: Cancer Biology), requires unrealistic margins of Δ > 2 for equivalence testing.

      Strengths:

      The study uses reliable and shareable/open data to demonstrate its findings, sharing as well the code for statistical analysis. The study provides sensitivity analysis for different scenarios of equivalence margin and alfa level, as well as for different scenarios of standard deviations for the prior of Bayes factors and different thresholds to consider. All analysis and code of the work is open and can be replicated. As well, the study demonstrates on a case-by-case basis how the different criteria can diverge, regarding one sample of a field of science: preclinical cancer biology. It also explains clearly what Bayes factors and equivalence tests are.

      Weaknesses:

      It would be interesting to investigate whether using Bayes factors and equivalence tests in addition to p-values results in a clearer scenario when applied to replication data from other fields. As mentioned by the authors, the Reproducibility Project: Experimental Philosophy (RPEP) and the Reproducibility Project: Psychology (RPP) have data attempting to replicate some original studies with null results. While the RPCB analysis yielded a similar picture when using both criteria, it is worth exploring whether this holds true for RPP and RPEP. Considerations for further research in this direction are suggested. Even if the original null results were excluded in the calculation of an overall replicability rate based on significance, sensitivity analyses considering them could have been conducted. The present authors can demonstrate replication success using the significance criteria in these two projects with initially p < 0.05 studies, both positive and non-positive.

      Other comments:

      • Introduction: The study demonstrates how inconclusive replications of studies initially with p > 0.05 can be and employs equivalence tests and Bayesian factor approaches to illustrate this concept. Interestingly, the study reveals that achieving a success rate of 11 out of 15, or 73%, as was accomplished with the non-significance criterion from the RPCB (Reproducibility Project: Cancer Biology), requires unrealistic margins of Δ > 2 for equivalence testing.

      • Overall picture vs. case-by-case scenario: An interesting finding is that the authors observe that in most cases, there is no substantial evidence for either the absence or the presence of an effect, as evidenced by the equivalence tests. Thus, using both suggested criteria results in a picture similar to the one initially raised by the paper itself. The work done by the authors highlights additional criteria that can be used to further analyze replication success on a case-by-case basis, and I believe that this is where the paper's main contributions lie. Despite not changing the overall picture much, I agree that the p-value criterion by itself does not distinguish between (1) a situation where the original study had low statistical power, resulting in a highly inconclusive non-significant result that does not provide evidence for the absence of an effect and (2) a scenario where the original study was adequately powered, and a non-significant result may indeed provide some evidence for the absence of an effect when analyzed with appropriate methods. Equivalence testing and Bayesian factor approaches are valuable tools in both cases.

      Regarding the 0.05 threshold, the choice of the prior distribution for the SMD under the alternative H1 is debatable, and this also applies to the equivalence margin. Sensitivity analyses, as highlighted by the authors, are helpful in these scenarios.

      Thank you for the thorough review and constructive feedback. We have added an additional “Appendix C: Null results from the RPP and EPRP” that shows equivalence testing and Bayes factor analyses for the RPP and EPRP null results.

      Reviewer #3 (Public Review):

      Summary:

      The paper points out that non-significance in both the original study and a replication does not ensure that the studies provide evidence for the absence of an effect. Also, it can not be considered a "replication success". The main point of the paper is rather obvious. It may be that both studies are underpowered, in which case their non-significance does not prove anything. The absence of evidence is not evidence of absence! On the other hand, statistical significance is a confusing concept for many, so some extra clarification is always welcome.

      One might wonder if the problem that the paper addresses is really a big issue. The authors point to the "Reproducibility Project: Cancer Biology" (RPCB, Errington et al., 2021). They criticize Errington et al. because they "explicitly defined null results in both the original and the replication study as a criterion for replication success." This is true in a literal sense, but it is also a little bit uncharitable. Errington et al. assessed replication success of "null results" with respect to 5 criteria, just one of which was statistical (non-)significance.

      It is very hard to decide if a replication was "successful" or not. After all, the original significant result could have been a false positive, and the original null-result a false negative. In light of these difficulties, I found the paper of Errington et al. quite balanced and thoughtful. Replication has been called "the cornerstone of science" but it turns out that it's actually very difficult to define "replication success". I find the paper of Pawel, Heyard, Micheloud, and Held to be a useful addition to the discussion.

      Strengths:

      This is a clearly written paper that is a useful addition to the important discussion of what constitutes a successful replication.

      Weaknesses:

      To me, it seems rather obvious that non-significance in both the original study and a replication does not ensure that the studies provide evidence for the absence of an effect. I'm not sure how often this mistake is made.

      Thanks for the feedback. We do not have systematic data on how often the mistake of confusing absence of evidence with evidence of absence has been made in the replication context, but we do know that it has been made in at least three prominent large-scale replication projects (the RPP, RPEP, RPCB). We therefore believe that there is a need for our article.

      Moreover, we agree that the RPCB provided a nuanced assessment of replication success using five different criteria for the original null results. We emphasize this now more in the “Introduction” section. However, we do not consider our article as “a little bit uncharitable” to the RPCB, as we discuss all other criteria used in the RPCB and note that our intent is not to diminish the important contributions of the RPCB, but rather to build on their work and provide constructive recommendations for future researchers. Furthermore, in response to comments made by Reviewer #2, we have added an additional “Appendix B: Null results from the RPP and EPRP” that shows equivalence testing and Bayes factor analyses for null results from two other replication projects, where the same issue arises.

      Reviewer #1 (Recommendations For The Authors):

      The authors may wish to address the dichotomy issue I raise above, either in the analysis or in the discussion.

      Thank you, we now emphasize that Bayes factors and TOST p-values do not need to be dichotomized but can be interpreted as quantitative measures of evidence, both in the “Methods for assessing replicability of null results” and the “Conclusions” sections.

      Reviewer #2 (Recommendations For The Authors):

      Given that, here follow additional suggestions that the authors should consider in light of the manuscript's word count limit, to avoid confusing the paper's main idea:

      2) Referencing: Could you reference the three interesting cases among the 15 RPCB null results (specifically, the three effects from the original paper #48) where the Bayes factor differs qualitatively from the equivalence test?

      We now explicitly cite the original and replication study from paper #48.

      3) Equivalence testing: As the authors state, only 4 out of the 15 study pairs are able to establish replication success at the 5% level, in the sense that both the original and the replication 90% confidence intervals fall within the equivalence range. Among these 4, two (Paper #48, Exp #2, Effect #5 and Paper #48, Exp #2, Effect #6) were initially positive with very low p-values, one (Paper #48, Exp #2, Effect #4) had an initial p of 0.06 and was very precisely estimated, and the only one in which equivalence testing provides a clearer picture of replication success is Paper #41, Exp #2, Effect #1, which had an initial p-value of 0.54 and a replication p-value of 0.05. In this latter case (or in all these ones), one might question whether the "liberal" equivalence range of Δ = 0.74 is the most appropriate. As the authors state, "The post-hoc specification of equivalence margins is controversial."

      We agree that the post hoc choice of equivalence ranges is a controversial issue. The margins define an equivalence region where effect sizes are considered practically negligible, and we agree that in many contexts SMD = 0.74 is a large effect size that is not practically negligible. We therefore present sensitivity analyses for a wide range of margins. However, we do not think that the choice of this margin is more controversial for the mentioned studies with low p-values than for other studies with greater p-values, since the question of whether a margin plausibly encodes practically negligible effect sizes is not related to the observed p-value of a study. Nevertheless, for the new analyses of the RPP and EPRP data in Appendix B, we have added additional sensitivity analyses showing how the individual TOST p-values and Bayes factors vary as a function of the margin and the prior standard deviation. We think that these analyses provide readers with an even more transparent picture regarding the implications of the choice of these parameters than the “project-wise” sensitivity analyses in Appendix A.

      4) Bayes factor suggestions: For the Bayes factor approach, it would be interesting to discuss examples where the BF differs slightly. This is likely to occur in scenarios where sample sizes differ significantly between the original study and replication. For example, in Paper #48, Exp #2 and Effect #4, the initial p is 0.06, but the BF is 8.1. In the replication, the BF dramatically drops to < 1/1000, as does the p-value. The initial evidence of 8.1 indicates some evidence for the absence of an effect, but not strong evidence ("strong evidence for H0"), whereas a p-value of 0.06 does not lead to such a conclusion; instead, it favors H1. It would be interesting if the authors discussed other similar cases in the paper. It's worth noting that in Paper #5, Exp #1, Effect #3, the replication p-value is 0.99, while the BF01 is 2.4, almost indicating "moderate" evidence for H0, even though the p-value is inconclusive.

      We agree that some of the examples nicely illustrate conceptual differences between p-values and Bayes factors, e.g., how they take into account sample size and effect size. As methodologists, we find these aspects interesting ourselves, but we think that emphasizing them is beyond the scope of the paper and would distract eLife readers from the main messages.

      Concerning the conceptual differences between Bayes factors and TOST p-values, we already discuss a case where there are qualitative differences in more detail (original paper #48). We added another discussion of this phenomenon in the Appendix C as it also occurs for the replication of Ranganath and Nosek (2008) that was part of the RPP.

      5) p-values, magnitude and precision: It's noteworthy to emphasize, if the authors decide to discuss this, that the p-value is influenced by both the effect's magnitude and its precision, so in Paper #9, Exp #2, Effect #6, BF01 = 4.1 has a higher p-value than a BF01 = 2.3 in its replication. However, there are cases where both p-values and BF agree. For example, in Paper #15, Exp #2, Effect #2, both the original and replication studies have similar sample sizes, and as the p-value decreases from p = 0.95 to p = 0.23, BF01 decreases from 5.1 ("moderate evidence for H0") to 1.3 (region of "Absence of evidence"), moving away from H0 in both cases. This also occurs in Paper #24, Exp #3, Effect #6.

      We appreciate the suggestions but, as explained before, think that the message of our paper is better understood without additional discussion of more general differences between p-values and Bayes factors.

      6) The grey zone: Given the above topic, it is important to highlight that in the "Absence of evidence grey zone" for the null hypothesis, for example, in Paper #5, Exp #1, Effect #3 with a p = 0.99 and a BF01 = 2.4 in the replication, BF and p-values reach similar conclusions. It's interesting to note, as the authors emphasize, that Dawson et al. (2011), Exp #2, Effect #2 is an interesting example, as the p-value decreases, favoring H1, likely due to the effect's magnitude, even with a small sample size (n = 3 in both original and replications). Bayes factors are very close to one due to the small sample sizes, as discussed by the authors.

      We appreciate the constructive comments. We think that the two examples from Dawson et al. (2011) and Goetz et al. (2011) already nicely illustrate absence of evidence and evidence of absence, respectively, and therefore decided not to discuss additional examples in detail, to avoid redundancy.

      7) Using meta-analytical results (?): For papers from RPCB, comparing the initial study with the meta-analytical results using Bayes factor and equivalence testing approaches (thus, increasing the sample size of the analysis, but creating dependency of results since the initial study would affect the meta-analytical one) could change the conclusions. This would be interesting to explore in initial studies that are replicated by much larger ones, such as: Paper #9, Exp #2, Effect #6; Goetz et al. (2011), Exp #1, Effect #1; Paper #28, Exp #3, Effect #3; Paper #41, Exp #2, Effect #1; and Paper #47, Exp #1, Effect #5).

      Thank you for the suggestion. We considered adding meta-analytic TOST p-values and Bayes factors before, but decided that Figure 3 and the results section are already quite technical, so adding more analyses may confuse more than help. Nevertheless, these meta-analytic approaches are discussed in the “Conclusions” section.

      8) Other samples of fields of science: It would be interesting to investigate whether using Bayes factors and equivalence tests in addition to p-values results in a clearer scenario when applied to replication data from other fields. As mentioned by the authors, the Reproducibility Project: Experimental Philosophy (RPEP) and the Reproducibility Project: Psychology (RPP) have data attempting to replicate some original studies with null results. While the RPCB analysis yielded a similar picture when using both criteria, it is worth exploring whether this holds true for RPP and RPEP. Considerations for further research in this direction are suggested. Even if the original null results were excluded in the calculation of an overall replicability rate based on significance, sensitivity analyses considering them could have been conducted. The present authors can demonstrate replication success using the significance criteria in these two projects with initially p < 0.05 studies, both positive and non-positive.

      Thank you for the excellent suggestion. We added an Appendix B where the null results from the RPP and EPRP are analyzed with our proposed approaches. The results are also discussed in the “Results” and “Conclusions” sections.

      9) Other approaches: I am curious about the potential impact of using an approach based on equivalence testing (as described in https://arxiv.org/abs/2308.09112). It would be valuable if the authors could run such analyses or reference the mentioned work.

      Thank you. We were unaware of this preprint. It seems related to the framework proposed by Stahel W. A. (2021) New relevance and significance measures to replace p-values. PLoS ONE 16(6): e0252991. https://doi.org/10.1371/journal.pone.0252991

      We now cite both papers in the discussion.

      10) Additional evidence: There is another study in which replications of initially p > 0.05 studies with p > 0.05 replications were also considered as replication successes. You can find it here: https://www.medrxiv.org/content/10.1101/2022.05.31.22275810v2. Although it involves a small sample of initially p > 0.05 studies with already large sample sizes, the work is currently under consideration for publication in PLOS ONE, and all data and materials can be accessed through OSF (links provided in the work).

      Thank you for sharing this interesting study with us. We feel that it is beyond the scope of the paper to include further analyses as there are already analyses of the RPCB, RPP, and EPRP null results. However, we will keep this study in mind for future analysis, especially since all data are openly available.

      11) Additional evidence 02: Ongoing replication projects, such as the Brazilian Reproducibility Initiative (BRI) and The Sports Replication Centre (https://ssreplicationcentre.com/), continue to generate valuable data. BRI is nearing completion of its results, and it promises interesting data for analyzing replication success using p-values, equivalence regions, and Bayes factor approaches.

      We now cite these two initiatives as examples of ongoing replication projects in the introduction. Similarly as for your last point, we think that it is beyond the scope of the paper to include further analyses as there are already analyses of the RPCB, RPP, and EPRP null results.

      Reviewer #3 (Recommendations For The Authors):

      I have no specific recommendations for the authors.

      Thank you for the constructive review.

      Reviewing Editor (Recommendations For the Authors):

      I recognize that it was suggested to the authors by the previous Reviewing Editor to reduce the amount of statistical material to be made more suitable for a non-statistical audience, and so what I am about to say contradicts advice you were given before. But, with this revised version, I actually found it difficult to understand the particulars of the construction of the Bayes Factors and would have appreciated a few more sentences on the underlying models that fed into the calculations. In my opinion, the provided citations (e.g., Dienes Z. 2014. Using Bayes to get the most out of non-significant results) did not provide sufficient background to warrant a lack of more technical presentation here.

      Thank you for the feedback. We added a new “Appendix C: Technical details on Bayes factors” that provides technical details on the models, priors, and calculations underlying the Bayes factors.

    1. Author response:

      eLife assessment

      In this valuable study, Kumar et al., provide evidence suggesting that the p130Cas drives the formation of condensates that sprout from focal adhesions to cytoplasm and suppress translation. Pending further substantiation, this study was found to be likely to provide previously unappreciated insights into the mechanisms linking focal adhesions to the regulation of protein synthesis and was thus considered to be of broad general interest. However, the evidence supporting the proposed model was incomplete; additional evidence is warranted to substantiate the relationship between p130Cas condensates and mRNA translation and establish corresponding functional consequences.

      We thank the Elife editorial team for their positive assessment of the broad significance of our manuscript. We fully agree that the functional consequences need to be explored in more detail. We feel that many of the criticisms are valid points that are not easily addressed via available tools, thus, should be considered limitations of present approaches. We hope that readers appreciate that identification of a new class of liquid-liquid phase separations calls for much more work to fully explore their characteristics, regulation and function, which will likely advance many areas of cell biology and perhaps even medicine.

      Reviewer #1 (Public Review):

      Summary:

      The authors demonstrated the phenomenon of p130Cas, a protein primarily localized at focal adhesions, and its formation of condensates. They identified the constituents within the condensates, which include other focal adhesion proteins, paxillin, and RNAs. Furthermore, they proposed a link between p130Cas condensates and translation.

      Strengths:

      Adhesion components undergo rapid exchange with the cytoplasm for some unclear biological functions. Given that p130Cas is recognized as a prominent mechanical focal adhesion component, investigating its role in condensate formation, particularly its impact on the translation process, is intriguing and significant.

      We thank the reviewer for recognizing the functional significance of the work.

      Weaknesses:

      The authors identified the disordered region of p130Cas and investigated the formation of p130Cas condensate. They attempted to demonstrate that p130Cas condensates inhibit translation, but the results did not fully support this assertion. There are several comments below:

      (1) Despite isolating p130Cas-GFP protein using GFP-trap beads, the authors cannot conclusively eliminate the possibility of isolating p130Cas from focal adhesions. While the characterization of the GFP-tagged pulls can reveal the proteins and RNAs associated with p130Cas, they need to clarify their intramolecular mechanism of localization within p130Cas droplets. Whether the protein condensates retain their liquid phase or these GFP-p130Cas pulls represent protein aggregate remains uncertain.

      We agree, the isolation from cell lysates does not distinguish between focal adhesions and cytoplasmic LLPS. We note that p130Cas in focal adhesions also appears to be in LLPS. But there are no methods available to isolate them separately. We acknowledge this is a limitation of the study.

      (2) The authors utilized hexanediol and ammonium acetate to highlight the phenomenon of p130Cas condensates. Although hexanediol is an inhibitor for hydrophobic interactions and ammonium acetate is a salt, a more thorough explanation of the intramolecular mechanisms underlying p130Cas protein-protein interaction is required. Additionally, given that the size of p130Cas condensates can exceed >100um2, classification is needed to differentiate between p130Cas condensates and protein aggregation.

      Ammonium acetate, which works by promoting hydrophobic interactions and weak Van der Waals forces, has been widely used in phase separation studies to change ionic strength without altering intracellular pH. Conversely, hexanediol weakens hydrophobic/ Van der Walls interactions that commonly mediate phase separation of IDRs. In the case of p130Cas, the multiple tyrosines and within the scaffolding domain are obvious targets. If the reviewer is asking us to resolve the detailed hydrophobic interactions within the scaffolding domain, this is far beyond the scope of the current paper.

      Protein aggregates are defined by their characteristics (e.g irreversibility, departure from spherical) not by size. Older, larger droplets remain circular and show slower but still measurable rates of exchange. Moreover, droplets are essentially absent after trypsinizing and replating cells. All these results argue against aggregates.

      (3) The connection between p130Cas condensates and translation inhibition appears tenuous. The data only suggests a correlation between p130Cas expression and translation inhibition. Further evidence is required to bolster this hypothesis.

      The optogenetic experiment shows that triggering LLPS by dimerizing p130Cas results in inhibition of translation. This is a causal not a correlative experiment. The reviewer may be thinking that dimerizing p130Cas could stimulate focal adhesion signaling, activating FAK or a src family kinase or other signals. However, none of these signals has been linked to inhibition of cell growth or migration. Thus, we agree that this is a limitation but consider it a low probability mechanism.

      Reviewer #2 (Public Review):

      Summary:

      In this article, Kumar et al., report on a previously unappreciated mechanism of translational regulation whereby p130Cas induces LLPS condensates that then traffic out from focal adhesion into the cytoplasm to modulate mRNA translation. Specifically, the authors employed EGFP-tagged p130Cas constructs, endogenous p130Cas, and p130Cas knockouts and mutants in cell-based systems. These experiments in conjunction with various imaging techniques revealed that p130Cas drives assembly of LLPS condensates in a manner that is largely independent of tyrosine phosphorylation. This was followed by in vitro EGFP-tagged p130Cas-dependent induction of LLPS condensates and determination of their composition by mass spectrometry, which revealed enrichment of proteins involved in RNA metabolism in the condensates. The authors excluded the plausibility that p130Cas-containing condensates co-localize with stress granules or p-bodies. Next, the authors determined mRNA compendium of p130Cas-containing condensates which revealed that they are enriched in transcripts encoding proteins implicated in cell cycle progression, survival, and cell-cell communication. These findings were followed by the authors demonstrating that p130Cas-containing condensates may be implicated in the suppression of protein synthesis using puromycylation assay. Altogether, it was found that this study significantly advances the knowledge pertinent to the understanding of molecular underpinnings of the role of p130Cas and more broadly focal adhesions on cellular function, and to this end, it is likely that this report will be of interest to a broad range of scientists from a wide spectrum of biomedical disciplines including cell, molecular, developmental and cancer biologists.

      Strengths:

      Altogether, this study was found to be of potentially broad interest inasmuch as it delineates a hitherto unappreciated link between p130Cas, LLPS, and regulation of mRNA translation. More broadly, this report provides unique molecular insights into the previously unappreciated mechanisms of the role of focal adhesions in regulating protein synthesis. Overall, it was thought that the provided data sufficiently supported most of the authors' conclusions. It was also thought that this study incorporates an appropriate balance of imaging, cell and molecular biology, and biochemical techniques, whereby the methodology was found to be largely appropriate.

      We thank reviewer for this positive assessment.

      Weaknesses:

      Two major weaknesses of the study were noted. The first issue is related to the experiments establishing the role of p130Cas-driven condensates in translational suppression, whereby it remained unclear whether these effects are affecting global mRNA translation or are specific to the mRNAs contained in the condensates. Moreover, some of the results in this section (e.g., experiments using cycloheximide) may be open to alternative interpretation. The second issue is the apparent lack of functional studies, and although the authors speculate that the described mechanism is likely to mediate the effects of focal adhesions on e.g., quiescence, experimental testing of this tenet was lacking.

      We appreciate the reviewer’s insights. Assessing translational inhibition for specific genes rather than global measurement of translation is an important direction for future work.

      Regarding the cycloheximide experiments, we are unsure what the reviewer means. We used it as a control for puromycin labeling but this is a very standard approach. It seems more likely that the question concerns Fig 5G, where we used it to sequester mRNAs on ribosomes to deplete from other pools. In this case, p130cas condensates decrease after 2 minutes. The reviewer may be suggesting that this effect could be due to blocked translation per se and loss of short-lived proteins. We acknowledge that this is possible but given the very rapid effect (2 min), we think it unlikely.

      Lastly, we agree with the reviewer that further functional studies in quiescence or senescence are warranted; however, these are extensive, open-ended studies and we will not be able to include them as part of the current paper.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this valuable study, the authors investigate the transcriptional landscape of tuberculous meningitis, revealing important molecular differences contributed by HIV co-infection. Whilst some of the evidence presented is compelling, the bioinformatics analysis is limited to a descriptive narrative of gene-level functional annotations, which are somewhat basic and fail to define aspects of biology very precisely. Whilst the work will be of broad interest to the infectious disease community, validation of the data is critical for future utility.

      We appreciate with eLife’s positive assessment, although we challenge the conclusion that we ‘fail to define aspects of biology very precisely’. Our stated objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis and the eLife assessment affirms we have investigated ‘the transcriptional landscape of tuberculous meningitis’. To more precisely define aspects of the biology will require another study with different design and methods.

      Reviewer #1 (Public Review):

      Summary:

      Tuberculous meningitis (TBM) is one of the most severe forms of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest-ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C, and CD4) were identified as strong predictors of death from TBM.

      Strengths:

      This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample, and analyse, and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into a test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights into the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

      Weaknesses:

      The data on blood neutrophil count is really intriguing and seems to provide a very powerful yet easy-to-measure method to differentiate survival vs. death in TBM patients. It would be quite useful in this case to perform predictive analysis to see if neutrophil count alone, or in combination with gene signature, can predict (or better predict) mortality, as it would be far easier for clinical implementation than the RNA-based method. Moreover, genes associated with increased neutrophil activation and decreased T cell activation both have significantly higher enrichment scores in TBM (Figure 9) and in morality (Figure 8). While I understand the basis of selecting hub genes in the significant modules, they often do not represent these biological pathways (at least not directly associated in most cases). If genes were selected based on these biologically relevant pathways, would they have better predictive values?

      We conducted a sensitivity analysis including blood neutrophil as a potential predictor in the multivariate Cox elastic-net regression model for important predictor selection (Table S14). In this analysis, all six selected important predictors (genes and clinical risk factors) identified in the original analysis (Table S13) were also selected, together with blood neutrophil number. Additionally, we evaluated the predictive value of blood neutrophil alone, which demonstrated poor performance, with an optimism-corrected AUC of 0.63 for all TBM, 0.67 for HIV-negative TBM, and 0.70 for HIV-positive TBM. Even when combined with identified gene signatures, blood neutrophil did not improve the overall performance of predictive model (optimism-corrected AUC of 0.79 for all TBM, 0.76 for HIV-negative TBM, and 0.80 for HIV-positive). These results indicate that identified hub genes exhibit better predictive values compared to blood neutrophil alone or in combination. These findings have been incorporated into our manuscript results.

      To test whether pathway representative genes have better predictive values than hub genes, we included all these genes in the analysis for important predictor selection. Pathway representative genes comprised ANXA3 and CXCR2 representing neutrophil activation and IL1b representing acute inflammatory response. We observed that all hub genes (MCEMP1, NELL2, ZNF354C, and CD4) consistently emerged as the most important genes with the highest selection in the models, compared to the rest, in both the HIV-negative TBM and HIV-positive TBM cohorts. Additionally, these identified hub genes were still selected when testing together with other hub genes representing relevant biological pathways associated with TBM mortality, such as CYSTM1 involved in neutrophil activation, TRAF5 involved in NF-kappa B signaling pathway, CD28 and TESPA1 involved in T cell receptor signaling. These results show that selected genes based on known biologically relevant pathways did not give better predictive values than the identified hub genes in the significant modules.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

      Strengths:

      Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.

      The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.

      Weaknesses:

      The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis cannot be used to make causal inferences. In addition, the functional annotations are limited to 'high-level' terms that fail to define biology very precisely. At best, they require independent validation for a given context. As a result, the conclusions are not adequately substantiated. The identification of a prognostic blood transcriptomic signature uses an unusual discovery approach that leverages weighted gene network analysis that underpins the bioinformatic analyses. However, the main problem is that authors seem to use all the data for discovery and do not undertake any true external validation of their gene signature. As a result, the proposed gene signature is likely to be overfitted to these data and not generalisable. Even this does not achieve significantly better prognostic discrimination than the existing clinical scoring.

      As explained in response to the eLife assessment, our objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis. We agree that ‘This analysis cannot be used to make causal inferences’: that would require different study design and approaches. The proposed gene signature has higher AUC values than the existing clinical model alone or in combination with clinical risk factors (Table 4). We agree that independent validation of the gene signature will be a crucial next step for future utility. We have performed qPCR in another sample set, and have added these results in the revision (Table 4 and supplementary figure S8)

      Reviewer #1 (Recommendations For The Authors):

      I have a few additional comments most of which are relatively minor:

      (1) Can the authors please clarify if all the PTB cases are also HIV-negative?

      This has been added to the methods section.

      (2) For Table 1, can the authors please list the total number of patients with microbiologically confirmed TB regardless of the methods used? And for the two TBM groups, was the positive microbiology based on CSF findings?

      The total number of patients with microbiologically confirmed TB was presented in Table 2 in definite TBM group, which was microbiologically confirmed TB diagnosed using microscopy, culture, and Xpert testing in cerebrospinal fluid (CSF) samples. We have updated the note in Table 2 to provide clarity on the definition.

      (3) How was the discovery and validation set selected? Was it based on randomisation?

      We randomly split TBM data into two datasets, a discovery cohort (n=142) and a validation cohort (n=139) with a purpose to ensure reproducibility of data analysis. We described this in the methods section.

      (4) Line 107 can be better clarified by stating that the overall 3-month mortality rate is 21.7% for TBM regardless of HIV status.

      Thank you, we have restated this sentence in the results section.

      (5) The authors stated that samples were collected at enrolment when patients would have received less than 6 days of anti-tubercular treatment. Is there information on the median and IQR on the number of days that the patients would have received Rx, especially between the groups? Did the authors control for this variable when analysing for DEGs?

      One of criteria to enroll participants in LAST-ACT and ACT-HIV trials is that they must receive less than 6 consecutive days of two or more drugs active against M. tuberculosis. However, the information of the days that the patients would have received Rx was not recorded and we could not control this variable when performing differential expression analysis for DEGs. This has been clarified further in the methods section: ‘The samples were taken at enrollment, when patients could not have received more than 6 consecutive days of two or more drugs active against M. tuberculosis.’

      (6) I am a little bit concerned with the reads mapping accuracy (57%) to the human genome, which is fairly low. Did the authors investigate the reasons behind this low accuracy?

      Thank you. It was indeed a typo. We have corrected it in the results section.

      (7) On Tables S2-S4, can the authors please clarify what the last column (labelled as "B") shows?

      Tables S2-S4 now have been changed to S3-S5. We have updated the legend of these tables to provide clarification regarding the meaning of the last column.

      Reviewer #2 (Recommendations For The Authors):

      If the authors wish to revise their manuscript, I suggest the following amendments:

      (1) Provide a consort diagram for the selection of samples included in the present analysis (from parent study cohorts), allocation to test and validation splits for bioinformatics analysis, and outcomes.

      We have provided our consort diagram in supplementary Figure S10.

      (2) Provide details of inclusion criteria for pulmonary TB cohort, and how samples from this cohort were selected for inclusion in the present analysis. Please clarify whether this cohort excluded HIV-positive participants by design or by chance.

      The inclusion criteria for the pulmonary TB cohort were described in the methods section. Due to the very low prevalence of HIV in this prospective observational study, HIV-positive participants were excluded. We have clarified in the amended manuscript that the pulmonary TB cohort only included HIV-negative participants.

      (3) Baseline characteristics of HIV-positive participants (Table 1) should include CD4 count, HIV viral load, and whether anti-retroviral therapy was naïve or experienced.

      We have included pre-treatment CD4 cell count, information on anti-retroviral therapy, and HIV viral load data in Table 1, as well as described these information in the results section.

      (4) I note that the TBM samples were derived from RCTs of adjunctive steroid therapy, but not stratified in the present analysis by treatment arm allocation. Clearly, this may affect the survival/mortality outcomes that are the central focus of this manuscript. Therefore, they should be included in the models for differential gene expression analysis and prognostic signature discovery. To do so, the authors may need to wait until they are able to unblind the trial metadata.

      With permission from the trial investigators, we were able to adjust the analyses for treatment with corticosteroids. The investigators remained blind to the allocation and we have not reported any direct effects of corticosteroids on outcome – such an analysis could only be done once the LAST-ACT trial has been reported (which won’t be until the end of 2024). Treatment outcome and effect were blinded by extracting only the fold change difference between survival and death in the linear regression model, in which gene expression was outcome and survival and treatment were covariates.

      (5) I understood from the methods (lines 460-461) that batch correction of the RNAseq data was necessary. However, it is not clear how the samples were batched. PCA of the transcriptomes before and after batch correction with batch and study group labels should be provided. I would also advocate for a sensitivity analysis to check the robustness of the main findings without batch correction. I assume Fig2A represents batch-corrected data, but this is not clear.

      We have now added information about the RNA sequencing batch and the batch correction approach, analyses and data visualizations utilized batch-corrected data in the methods section. We have also updated results related to batch correction in Fig. 2A and Supplementary Figure S9.

      (6) I would encourage the authors to include a differential gene expression analysis to directly compare the transcriptome of TBM to that of pulmonary TB. I think it would add additional value to their focus on describing the transcriptome in TBM.

      We thank for reviewer’s suggestion. Conducting differential gene expression analysis to compare the transcriptome of TBM with that of PTB is beyond the scope of this manuscript and we will examine this question separately.

      (7) I don't really understand the purpose of splitting their data set into test and validation for the purposes of showing that WGCNA analysis is mostly reproduced in the two halves of the data. I would advocate that they scrap this approach to maximise the statistical power of their analysis in the descriptive work.

      As mentioned in response to reviewer #1 in question #3, the purpose of splitting data is to ensure the reproducibility of the data analysis as suggested by Langfelder et al. (PMID: 21283776). This approach served two purposes: (i) to affirm the existence of functional modules in an independent cohort and (ii) to validate the association of interested modules or their hub genes with survival outcomes.

      (8) The authors should soften the confidence in their interpretation of the GO/KEGG annotations of WGCNA modules. At least, they should include a paragraph that explicitly details the limitations of their analyses, including (i) the accuracy GO/KEGG annotations are not validated in this context (if at all), (ii) that none of the data can be used to make causal inferences and (iii) that peripheral blood assessments that are obviously impacted by changes in cellular composition of peripheral blood do not necessarily reflect immunopathogenesis at the site of disease - in fact if circulating cells are being recruited to the site of disease or other immune compartments, then quite the opposite interpretations may be true.

      We appreciate the reviewer's comment. (i) In our analysis, we initially confirmed the existence of Weighted Gene Co-expression Network Analysis (WGCNA) modules in discovery cohort and validated the association of these modules with mortality outcomes in validation cohort. We then applied GO/KEGG annotations to define the biological functions involved in WGCNA modules. Finally, we performed Qusage analysis to directly test the association of top-hit pathways of each WGCNA module with mortality outcomes (see supplementary S6). This analysis approach helped to identify and validate modules and biological pathways associated with TBM mortality in this context, avoiding potential false positives in GO/KEGG annotations of WGCNA modules. (ii) We agree with the assessment that 'This analysis cannot be used to make causal inferences,' as that would require a different study design and approach. (iii) The focus of this study is to investigate the pathogenesis of TBM in the systemic immune system. We have highlighted this focus in the title and the aim of the manuscript.

      (9) For the prognostic signature discovery and validation, I strongly recommend the authors include more robust validation. For example, to undertake an 80:20 split for sequential discovery (for feature selection and derivation of a prognostic model), followed by validation of a 'locked' model in data that made no contribution to discovery. In two separate sensitivity analyses. I also suggest they split their dataset (i) by treatment allocation in the RCT and (ii) by HIV status. In addition, their method for feature selection has to be clearer- precisely how they select hub genes from their WGCNA analysis as candidate predictors is not explained. Since this is such a prominent output of their manuscript, the results of this analysis should really be included in the main manuscript, and all performance metrics for discrimination should include confidence intervals.

      Employing an 80:20 split for training and testing models is a good approach for an internal validation. However, we addressed the issue of overestimating the performance of a prognostic model by bootstrapping sampling approach proposed by Steyerberg et al. (PMID: 11470385). This approach has been proven to provide stable estimates with low bias. The overall model performance for discrimination, reported in our manuscript, was corrected for “optimism” to ensure internal validity. This adjustment was achieved through a 1000-times bootstrapping approach, which effectively accounted for estimation uncertainty. As such, there is no need to present confidence intervals for these metrics.

      Moreover, in our revision, to confirm prognostic signatures independently, we have evaluated the predictive value of identified gene signatures using qPCR in another set of samples. The results have been added in Table 4, supplementary Figure S8 and the results section.

      For the reasons given above (comment 4), we are unable to split our dataset by treatment allocation in this analysis. But as described, we have adjusted the analysis for corticosteroid treatment. Once the primary results of the LAST ACT trial have been published, we will examine the impact of corticosteroids on TBM pathophysiology and outcomes, seeking to better understand the mechanisms by which steroids have their therapeutic effects.

      Given the difference in pathogenesis and immune response by HIV-coinfection, we stratified our analysis by HIV status. As the reviewer’s suggestion, we have provided additional details in the methods section regarding the selection of hub genes from associated WGCNA modules and the feature selection process for predictive modeling.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __Below is our point-by-point reply to the reviewer's comments __

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PNKP is one of critical end-processing enzymes for DNA damage repair, mainly base excision & single strand break repair, and double strand break repair to a certain extent. This protein has dual enzyme function: 3' phosphatase and 5' kinase to make DNA ends proper for ligation. It has been demonstrated that PTM of PNKP (e.g., S114, S126), particularly phosphorylation by either ATM or DNAPK, is important for PNKP function in DNA damage repair. The authors found a new phosphorylation site, T118, of PNKP which might be modified by CDK1 or 2 during S phase. This modification of phosphorylation is involved in maintenance and stability of the lagging strand, particularly Okazaki fragments. Loss of this phosphorylation could result in increased single strand gaps, accelerated speed of fork progression, and eventually genomic instability. And for this process, PNKP enzyme activity is not that important. And the authors concluded that PNKP T118 phosphorylation is important for lagging strand stability and DNA damage repair.

      Major comments

      In general, enzymes have protein interactions with its/their substrates. If PNKP is phosphorylated by either/both CDK1/2, the protein interaction between these would be expected. However, the authors did not provide any protein interactions in PNKP and CDKs. *Thank you for your suggestion. We will perform GFP-pulldown assays using cell extracts from HEK293 cells expressing GFP-WT-PNKP, GFP-T118A-PNKP. And then to confirm the interaction of PNKP and CDK1/2, we will blot with CDK1 and CDK2 antibodies. *

      It is not clear how T118 phosphorylation is involved in DNA damage repair itself as the authors suggested. The data presenting the involvement of T118 phosphorylation in this mechanism are limited. This claim opens more questions than answers. CDK1/2 still phosphorylates T118 in this DNA damage repair process? What would happen to DNA damage repair in which PNKP involves outside of S phase in terms of T118 phosphorylation?

      Thank you for your comment. We have investigated how T118 phosphorylation is important in DNA damage repair by several experiments. In figure S8, we tested SSB and DSB repair abilities of PNKP KO cells expressing PNKP T118A mutant, in which PNKP T118 phosphorylation has critical roles in both SSB and DSB repair pathways. Interestingly, the result of SSB repair assay (figure S8A & B) may indirectly indicate that T118 phosphorylation is important for SSB repair throughout cell cycle as these SSBs are instantly induced by IR exposure and recovered only for 30 mins that is presumably not enough time for cells to go through cell cycle. Along with the repair abilities, we also analyzed a recruitment kinetics/ability to DNA damage in PNKP T118A and T118D mutants using laser micro-irradiation assay in figure S9. This result indicates that the phosphorylation of PNKP at T118 is controlling its recruitment to at least laser-induced DNA damage sites. Moreover, we have analyzed recruitment of PNKP to a single-strand DNA gap structure, which mimics intermediates of some DNA repair pathways and incomplete Okazaki fragment maturation, using cell extracts from PNKP KO cells expressing PNKP T118A and T118D mutants and biochemical assay in figure 4H. This assay is much cleaner and shows that loss of T118 phosphorylation impairs PNKP recruitment to the ssDNA gap structure. We believe that these data sufficiently support our model that the phosphorylation of T118 on PNKP is involved in DNA repair in general. However, we agree with that we have not yet directly tested DNA repair ability of PNKP T118A in outside of S-phase. Therefore, in addition to these data, we will perform H2O2-induced SSB and IR-induced DSB repair assay using EdU (S phase) pulse labelling in PNKP KO cells expressing PNKP T118A mutant, then we will measure the ADP-ribose intensity and pH2AX foci in EdU negative cells (outside of S phase as the reviewer suggested).

      Along the same line with #1/2 comments, the recruitment of PNKP to the damage sites is XRCC1 dependent. Is not clear whether PNKP recruitment to gaps on the lagging strand is XRCC1 independent or dependent. It might be interesting to examine (OPTIONAL)

      *Thank you for an important suggestion. XRCC1 acts as a scaffold of PNKP and is required for recruitment of PNKP for canonical SSB repair, although we propose that PNKP is involved in two pathways in DNA replication: PARP1-XRCC1-dependent ssDNA gap filling pathway and Okazaki fragment maturation pathway working with FEN1. It is still important to address how XRCC1 is required for PNKP recruitment to the single-strand gaps on nascent DNA. Therefore, we will perform iPOND analysis in XRCC1 knock down + GFP-WT-PNKP expressed HEK293 cells. *

      Minor comments

      In results: 'Generation of PNKP knock out U2OS cell line' - In figure S2A; There are no data regarding diminishing the phosphorylation of g-H2AX.

      Thank you for your suggestion. We will add pH2AX blot data in fig S2A (all reviewers requested).

      • By showing data in figure S2B/C/D/E, the authors describe 'PNKP KO cells impaired the SSBs repair activity'. However, as the authors mentioned in this manuscript, PNKP could bind to either XRCC1 or XRCC4. Also for this experiment, IR had been applied, which induces DNA double strand breaks. Therefore, it is not certain that the authors' description is fully supported by these data presented. Perhaps, SSB inducing reagents should be used instead of IR.

      In figure S2B/C/D/E, we used gamma-ray as IR source, which classified as low energy transfer irradiation. which mainly act as indirect effect to the DNA. It is estimated gamma-ray induce DNA damage as 60-80% SSBs and 20-40 % DSBs. We believe our results are reasonable. In addition to these results, we will perform poly-ADP-ribose assay with H2O2 treatment to more specifically assess SSBs repair activity.

      • Is there any FACS analysis data to support the description of the last sentence 'especially the phosphorylation of PNKP T118, is required for S phase progression and proper cell proliferation'?

      Thank you for your suggestion. We will add the FACS analysis data of cell cycle profiles in PNKP KO cells expressing GFP, GFP-PNKP WT, T118A.

      In results: 'CDKs phosphorylate T118 of PNKP ~~~ replication forks'

      • In figure 3A, Is there any change in total PNKP (both GFP-tagged & endogenous) level?

      *Thank you for your suggestion. We agree with your comment. We will add the PNKP expression analysis in different cell cycle population in asynchronized and synchronized cells (G1, S, G2/M samples). *

      In results: 'Phosphorylation of PNKP at T118 ~~~ between Okazaki fragments'

      • In figure 4D, What happens in the ADP-ribose level, when T118D PNKP is expressed?

      *Thank you for your suggestion. This is interesting question. We will perform ADP-ribosylation assay in PNKP KO cells and PNKP KO cells expressing PNKP WT and T118D, and add data of ADP-ribose levels in those cells. *

      In results: 'PNKP is involved in postreplicative single-strand DNA gap-filling pathway'

      • The description regarding data presented in figure 6 is not clear enough. These data might suggest that wildtype U2OS does not have SSB which is a substrate for S1 nuclease (except under FEN1i and PARPi treatment), whereas PNKP KO has SSB during both IdU and CIdU incorporation, so that S1 nuclease treatment dramatically reduces the speed of fork formation in PNKP KO cells. Also In figure 6B/C/D, adding an experimental group of PNKP KO with S1 nuclease + PARPi might help to understand the role of PNKP during replication better. Also these additional data could support the description in discussion 'Furthermore, PNKP is required for the PARP1-dependent single-strand gap-filling pathway ~~~ DNA gap structure'.

      • *

      *We agree with reviewer's comment and suggestion. Since this point is also raised by reviewer 3, we will add the rationale of the experiment and more detailed description about the results, which would substantially improve this manuscript. We will also revise our representation in text followed by the comment. In addition to revising the text, we will add experiment groups of PNKP KO with S1 nuclease with/without PARPi as the reviewer suggested. *

      In results: 'Phosphorylation of PNKP at T118 is essential for genome stability'

      • In figure S8C, Did you measure g-H2AX foci disappearance for later time point, such as 24 hrs after DNA damage? Is not clear whether non-phosphorylated PNKP at T118 inhibit DNA damage repair or make it slower? How does T114A-PNKP behave in this experimental condition? T114 is well known target of ATM/DNAPK for DDR & DSB repair.

      Thank you for your suggestion. We agree with your point. It is very important to analyze whether T118A mutant shows delayed or total loss of DSB repair ability. We will add the measurement of pH2AX foci at 24 hrs after IR in PNKP KO cells expressing GFP, WT-PNKP, T118A-PNKP. Although the analysis of pS114 PNKP is previously reported (Segal-Raz et al., EMBO reports, 2011 and Zolner et al., Nucleic Acids Research, 2011), we will also perform pH2AX assay in PNKP KO cells expressing S114A-PNKP as a control.

      The result shown in figure S9 should be described in the result section, not in the discussion section.

      Thank you for your suggestion. This is a point also raised by Reviewer 3. Since we are going to re-consider the layout of the manuscript upon the planned revision (as reviewer 3 suggested), we will move these points to the appropriate result section from the discussion.

      **Referees cross-commenting**

      I could see a similar degree of positive tendency toward the manuscript. I agree with the comments and suggestions in additional experiments made by reviewers 2 and 3. Those suggestions will improve an impact of the manuscript in the DNA damage repair field.

      Reviewer #1 (Significance (Required)):

      Significance

      The authors discovered new phosphorylation site (T118) of PNKP which is an important DNA repair protein. This modification seems to play a role in maintenance of the lagging strand stability in S phase. This discovery is something positive in DNA repair field to expand the canonical and non-canonical functions of DNA repair factors.

      The data presented to support PNKP functions and T118 phosphorylation in S phase seem solid in general, yet it is not sure how much PNKP is critical in the Okazaki fragment maturation process which is known that several end processing enzymes (like FEN1, EXO1, DNA2 etc which leave clean DNA ends.) are involved.

      These finding might draw good attentions from researchers interested broadly in cell cycle, DNA damage repair, replication, and possibly new tumor treatment.

      My field and research interest: DNA damage response (including cell cycle arrest and programmed cell death), DNA damage repair (including BER, SSBR, DSBR)

      Thank you very much for your positive comment. As you mentioned, there are several other end processing enzymes that seem to be involved in Okazaki fragment maturation, however, none of those enzymes is reported as a protein involved in the gap-filling pathway as well. Therefore, the role(s) of PNKP in DNA replication are very outstanding as PNKP could be involved in two separate pathways, Okazaki fragment maturation and a back-up gap-filling repair process. As you suggested, we will add several experiments such as iPOND experiments using XRCC1-depleted cells, analysis of DNA repair ability of PNKP T118A mutant throughout cell cycle and S1 nuclease DNA fiber assays in PNKP KO cells with/without PARP inhibitor treatment, to reveal how much PNKP is critical in the Okazaki fragment maturation. We believe that performing those experiments makes the conclusion and this manuscript more solid and convincing.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Polynucleotide kinase phosphatase (PNPK) participates in multiple DNA repair processes, where it acts on DNA breaks to generate 5'-phosphate and 3'-OH ends, facilitating the downstream activities of DNA ligases or polymerases.

      This manuscript identifies a CDK-dependent phosphorylation site on threonine 118 in PNKP's linker region. The authors provide some convincing evidence that this modification is important to direct the activity of PNPK towards ssDNA gaps between Okazaki fragments during DNA replication. The authors monitored protein expression levels, enzymatic activity, the growth rate and replication fork speed, as well as the presence of ssDNA damage to make a comprehensive overview of the features of PNKP necessary for its function.

      Overall, the conclusions are sufficiently supported by the results and this manuscript is relevant and of general interest to the DNA repair and genome stability fields. Some level of revision to the experimental data and text would help strengthen its message and conclusions.

      Major points:

      In an iPOND experiment the authors detect the wt PNKP and the T118 phosphorylated form at the forks and conclude that this phosphorylation promotes interaction with nascent DNA (Figure 3E). An informative sample to include here would have been the T118A mutant. Based on the model proposed, the prediction would be that it would not be associated with the forks, or at least, associated at reduced levels compared to the wt. *Thank you for your suggestion. We agree with your comment. We will add the iPOND analysis in PNKP KO cells expressing T118A mutant to confirm that pT118 is important for recruitment of PNKP at nascent DNA. *

      The quality of the gels showing the phosphatase and kinase assays in Figure 5 could be improved to facilitate quantification of the results. The gel showing the phosphatase activity has a deformed band corresponding to K378A mutant. The gel showing the kinase activity seems to be hitting the detection limits, and the overall high background might influence the quantification of D171A mutant in the area of interest. The authors should provide a better quality of these gels, focusing on better separation (running them longer, eventually with a slightly increased electric current) and higher signal of the analyzed bands (longer incubation phosphatase/kinase prior to quenching or loading higher amount of DNA).

      We agree with your suggestion. This phosphatase and kinase assay could be improved. We will perform this assay again followed by reviewer's suggestions.

      The authors sometimes make statements like: "a slight increase, slightly increased, relatively high" without an evaluation of the statistical significance for the presented data. An example of such a statement is: "T118A mutant-expressing cells exhibited a marked delay in cell growth, which was not observed for S114A, although T122A, S126A, and S143A were slightly delayed," based on the figure 2E. A similar comment applies also to figures 4A, 5A, 5E. Whenever possible, the authors should include also an evaluation of the statistical significance in the statement.

      Thank you for your suggestion. We will check manuscript and revise representation as reviewer's suggestion.

      Minor revisions:

      I could not find a gH2AX blot for figure S2A.

      Thank you for your suggestion. We will add pH2AX blot data in fig S2A.

      The authors established two PNKP-/- clones and supported it with sequencing and several functional observations However, the C-terminal antibody appears to detect lower-intensity bands (Figure 1A). Can authors comment on those bands?

      Thank you for your comment. One possibility of this band is artificially recognized bands. To improve this problem, we will try electrophoresis for longer time to separate this band.

      Why the S1 nuclease data on DNA fibers do not show the same level of epistasis with the Fen1i, as do those on ADP-ribosylation?

      Because FEN1 dependent Okazaki fragment maturation and PARP1-XRCC1 dependent gap-filling pathway are different pathways, FEN1i and PARPi treatment resulted in an additive effect in S1 nuclease data in PNKP WT cells. To facilitate better understanding, we will add graphical scheme in figure 6 (a similar problem was raised by Reviewer 3 below) and revise the description of the result.

      **Referees cross-commenting**

      I agree with all the comments from the reviewers 1 and 3.

      Reviewer #2 (Significance (Required)):

      Significance:

      The manuscript identifies a CDK phosphorylation site in a relevant DNA repair protein. The experiments on this part are elegant and convincing. It seems that this phosphorylation is important during DNA replication and there is some supporting evidence in this point, although not as robust, meaning that it is not clear whether this phosphorylation is controlling specifically the recruitment to Okazaki fragments, or a general role in DNA repair. Maybe if they see a reduced recruitment of the T118A mutant to the forks (iPOND experiment) this would further increase the impact.

      This work will be relevant to the basic research, especially in the fields of DNA repair and DNA replication.

      My expertise: DNA replication, genome stability, telomere biology.

      Thank you very much for your positive comment. As you suggested, we will perform an iPOND assay using PNKP T118A mutant. In addition of the T118A iPOND assay, we will also analyze the DNA repair function of PNKP T118A mutant throughout cell cycle as reviewer 1 suggested. We believe that results of these experiments will pin down whether the phosphorylation of PNKP on T118 is controlling its recruitment to Okazaki fragments specifically or single-strand DNA gaps in general, and solidify the conclusion of the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Tsukada and colleagues studied the role of PNKP phosphorylation in processing single-strand DNA gaps and its link to fork progression and processing of Okazaki fragments.

      They generated two PNKP KO human clonal cell lines and described defects in cell growth, accumulation in S-phase, and faster fork progression. With some elegant experiments, they complement the KO cell lines with deletion and point mutants for PNKP, identifying a critical phosphorylation site (T118) in the linker regions, which is important for cell growth and DNA replication.

      They show that phosphorylation of PNKP peaks in the mid-S phase. CDK1 and CDK2/ with Cyclin A2 are the two main CDK complexes responsible for this modification. With the IPOND experiment, the author shows that PNKP is recruited at nascent DNA during replication.

      They described increased parylation activity in PNKP KO cells, and by using HU and emetin, they concluded that this increased activity depends on replication and synthesis of Okazaki fragments.

      Interfering with Okazaki fragment maturation by FEN1 inhibition is epistatic with PNKP KO (and T118A) in influencing parylation activity in the S phase and fork progression. The authors try to understand by mutant complementation which of the two functions (Phosphatase vs Kinase) is important in processing OF, and they propose a primary role for the phosphatase activity of PNKP. They also show that T118 is important in controlling genome stability following different genotoxic stress. Finally, by coupling the measurement of fork progression with PARP/FEN1 inhibitors and S1 treatment, they propose a role of PNKP in the post-replicative repair of single-strand gaps due to unligated OF.

      Here are my major points:

      The authors use a poly ADP ribose deposition measurement to estimate SSB nick/gap formation. Even if PARP activity is strictly linked to SSB repair, ADP ribosylation does not directly estimate SSB/nick gap formation. In addition, in Figs S2A, B, and C, the authors use IR and PARG inhibition to measure poly-ADP ribosylation in WT and PNKP KO cells. IR produces both SSB and DSB. A better and cleaner experiment would be to directly measure SSB formation (with alkaline comet assay, for example) in combination with treatments that are known to mainly cause SSB (H2O2, or low doses of bleomycin). Thank you for your suggestion. The main purpose of this manuscript is to clarify the potential role of PNKP in DNA replication. Therefore, we generated PNKP KO human cells and figure S2 showed confirmation of function of established role of PNKP in SSBs and DSBs repair. In addition, previous our report published in EMBO Journal (Shimada et al., 2015), we showed SSBs and DSBs repair defect in PNKP KO MEF with comet assay (both alkaline and neutral) after IR and H2O2 treatment. In addition to those observations, we will also perform BrdU incorporation assay in PNKP WT and KO cells treated with H2O2. BrdU staining under an undenatured condition has now been commonly used and is a more direct method to detect ssDNA nick/gap formation. We believe that the importance of PNKP in SSB repair is sufficiently supported by all data such as previous comet assays in PNKP KO MEF cells and two SSB repair assays in human cells using ADP-ribose staining or BrdU incorporation, which will be provided in the revised manuscript.

      The manuscript would benefit from substantially restructuring the figures' order and panels. Before starting the T118 part, the authors could create several figures to explain the main consequences of the loss of PNKP. A figure could be focused on DSB-driven genome instability (fig1 + fig S8 and S9). Then, a figure for the single-strand break and link to the S-phase. For example, by using data from Figure 6 and showing only WT vs PNKP KO +- Nuclease S1 (without FEN1 or PARP inhibitors), the authors could easily convince the readers that loss of PNKP leads to the accumulation of single-strand gaps. Only in the second part of the manuscript could they introduce all the T118 parts. Thank you for your suggestion. The layout of this manuscript makes reviewers feeling confusing. After performing all planned experiments, we will carefully re-consider the total layout of the revised manuscript.

      I understand the use of a FEN1 inhibitor to link the PNKP KO phenotype to OF processing, but this drug does not either rescue or exacerbate any of the phenotypes described by the authors. It seems to have just an epistatic effect everywhere. So, what other conclusion can we have if not that PNKO has a similar effect to FEN1? I think that the presence of this inhibitor in many plots complicates the digestion of several figures a little bit. Maybe clustering the data in a different way (DMSO on one side FEN1i on the other) would help. Thank you for your suggestion. We agree that this data set is complicate. To facilitate better understanding, we will change organization of the data according to your suggestion and add graphical scheme in figure 6.

      In terms of the other conclusion we can have from those experiments, the other conclusion is that PNKP might plays two important roles in DNA replication: Okazaki fragment maturation, which seems an epistatic effect with FEN1, and PARP1-XRCC1 dependent single-strand gap filling pathway, which is required for repairing single-strand gaps between Okazaki fragments when Okazaki fragment maturation pathway does not work properly (e.g., loss of FEN1 or PNKP). In figure 6D, we show that a double treatment of FEN1i and PARPi in PNKP WT cells with S1 nuclease treatment shows extensive amount of digested DNA fibers, although a single treatment of either FEN1i or PARPi in PNKP WT cells with S1 nuclease treatment leads to only limited amount of digested DNA fibers, which indicates that two pathways regulated by FEN1 or PARP are coordinately required for preventing eruption of ssDNA gaps in DNA replication. On the other hand, PNKP KO cells with S1 nuclease treatment cause extensive amount of digested DNA fibers even without FEN1i and PARP1i treatments, also it is not further increased by FEN1i and PARPi treatment. Those results indicate that PNKP itself is involved in two pathways mentioned above. Therefore, loss of PNKP has a similar phenotype with loss of FEN1 in terms of Okazaki fragment maturation, but also there is an additional effect in repairing ssDNA nicks/gaps, which is created in FEN1 loss condition, but FEN1 seems not dealing with it.

      Fig S9 should be removed from the discussion. Additionally, the authors should consider whether they want to keep that piece of data in a manuscript that is already pretty dense. Why should we focus on additional linker residues and microirradiation data at the end of this manuscript? *Thank you for your suggestion. This is a point also raised by Reviewer 1. Since we are going to re-consider the layout of the manuscript upon the planned revision, we will move these points to the appropriate result section from the discussion. *

      I suggest using a free AI writing assistant. I think this manuscript would substantially benefit from one. As a non-native English speaker, I personally use one of them and find it extremely useful. Thank you for your suggestion. Our manuscript was revised by a native speaker from an English correction company. However, for revised manuscript, we will discuss with native speakers as well as use a free AI writing assistant to improve the quality of the manuscript.

      Minor points:

      In Figure S1A, the author refers to P-H2AX, but I do not see this marker in the western blot. Thank you for your suggestion. We will add pH2AX blot data in fig S2A.

      **Referees cross-commenting**

      I agree with all comments from reviewer 1 and 2.

      Reviewer #3 (Significance (Required)):

      This is an interesting paper with generally solid data and proper statistical analysis. The figures are pretty straightforward. Unfortunately, the manuscript is dry, and the reader needs help to follow the logical order and the rationale of the experiments proposed. This is also complicated by the enormous amount of data the authors have generated. The authors should improve their narrative, explaining better why they are performing the experiment and not simply referring to a previous citation. Reordering panels and figures would help in this regard. Overall, with some new experiments, tone-downs over strong claims and a better explanation of the rationale behind experiments the authors could create a fascinating paper.

      Thank you very much for your positive comment about the data/analysis and the logic behind the experiments provided in the manuscript. We agree with that a manner and a structure of the manuscript could be improved by reordering figures, cutting down some redundant experiments, adding better explanation of the rationale behind experiments, and toning-down some claims. With rewriting the manuscript as stated above and performing several additional experiments suggested by the reviewers, we believe that the revised manuscript will be more convincing and fascinating.

      1. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      • *

      Reviewer #1:

      Minor comments

      • Is there any difference (except for PARGi exposure time?!) between figure S2B/C and S2D/E? Both data show increased ADP ribose after IR. It seems redundancy. Also it is hard to imagine that there is absolutely no sign of ADP ribose after IR w/o PARGi treatment (figure S2D).

      Figure S2B/C show spontaneous single strand DNA breaks (SSBs) in PNKP KO cells, on the other hand, figure 2S/E show ectopic SSBs induced by IR exposure in PNKP KO cells. We believe these data help for readers to understand the effect of endo or exo damage in PNKP KO cells. Poly-ADP ribosylations are immediately removed from SSB sites after repair as demonstrated previously (Tsukada, et al., PLoS One 2019, Kalasova et al., Nucleic Acids Research, 2020), although not zero (low level), it is very difficult to detect without PARGi treatment.

      • *

      Legend for figure S3 - typo!

      Thank you for your suggestion about typo. The legend for figure S3 is corrected as "Protein expression of PNKP mutants in U2OS cells".

      • *

      • In figure S3A/B, it is quite interesting that the PNKP antibody used for this analysis can detect all truncated and alanine substituted PNKP proteins. It might be helpful to indicate for other researchers which antibody used (Novus; epitope - 57aa to 189 aa or Abcam; epitope not revealed).

      In S3A/B, Novus PNKP antibody was used for all blots. We indicated this in the figure legend as "PNKP antibody (Novus: NBP1-87257) was used for comparing expression levels of endogenous and exogenous PNKP".

      • *

      In results: 'PNKP phosphorylation, especially of T118 ~~~ proliferation'

      • In the fork progression experiment (figure 2C), is there any statistical difference between D2 and D3/4 expressing cells?

      *Thank you for your suggestion. We performed statistical analysis as the reviewer suggested. Statistical analysis shows that there are no significant differences between D2 and D3/D4. Meanwhile, there are significant differences between WT and D3(P- What is the basis of the description 'Since the linker region of PNKP is considered to be involved in fork progression'? Any reference?

      This sentence was considered based on the above sentences "Furthermore, D2 mutant-expressing cells also showed an increased speed of the replication fork compared to WT and D1 mutant-expressing cells, although D3 and D4 showed mildly high-speed fork progression.". The D2 mutant lacks a whole linker region, which shows increased speed of DNA fiber in figure 2C. Therefore, we originally explained as the sentence above. We have revised the sentence to "Since these results may indicate the linker region of PNKP is involved in proper fork progression".

      • *

      • In figure 3B: pS114-PNKP (also pS15-p53) is DNA damage inducible. In this experiment, was DNA damage introduced? Roscovitine could hinder DNA repair process, but not inducing DNA damage itself.

      Thank you for your suggestion. DNA damage induction was not applied in this experiment. We agree that this panel makes confusing. We think that endogenously S114-PNKP (also S15-p53) might be phosphorylated slightly but not significant, although this is not the scope of this manuscript. This result showing that phosphorylated-T118 is reduced by Roscovitine treatment maybe redundant as we also have a result of in vitro phosphorylation assay using several combinations of CDKs and Cyclin proteins, which is a cleaner experiment to prove which CDK/Cyclin complex is directly controlling the T118 phosphorylation. Since the manuscript already contains enough amount of data to support the conclusion (as reviewer 3 also stated), we removed those blots result from the panel to avoid complicating the conclusion.

      • *

      In results: 'Phosphatase activity of PNKP is ~~~ of Okazaki fragments'

      • In figure 5C, any statistical analysis between WT-PNKP KO vs D171A-PNKP KO or K378A-PNKP KO has been done?

      Thank you for your comment. Statistical analysis shows P *

      In discussion, 'In contrast, the T118A mutants showed the absence of both SSBs and DSBs repair (Fig. S7) : figure S7 does not indicate what the authors describe.

      Thank you for pointing out this. This should refer to figure S8 instead of figure S7. We have corrected this error.

      In addition, the same sentence in discussion: No evidence demonstrate that 'the absence of both SSBs and DSBs repair', and the following sentence is not clear.

      *This is same point with above. We have corrected this mis-referencing and revised the sentence to "In contrast, the T118A mutants showed the impaired abilities of both SSBs and DSBs repair (Fig. S8).". We also revised the following sentence to "However, residual SSBs due to impaired SSB repair ability (e.g., in PARPi-treated cells and T118A cells) sometimes cause DNA replication-coupled DSBs formation in S phase, and the phenotype in DSB repair assay of the T118A mutant may be caused by an accumulated formation of DNA replication-coupled DSBs. Future works will be needed to distinguish whether the T118 phosphorylation directly regulate PNKP recruitment to DSBs as well as SSBs." for better explanation of the result. *

      • *

      In discussion, 'Because both CDK1/cyclin A2 and CDK2/cyclin A2 are involved in PNKP phosphorylation, cyclin A2 is likely important for these activities': It is not clear what this description intends? Is 'cyclin A2' important in what stance?

      This description is coming from Fig3C observation. Since both CDK1 and CDK2 activities are cyclin A2 dependent, we speculated cyclin A2 is important for CDK1/CDK2 dependent PNKP T118 phosphorylation. We revised the description to "Since both CDK1/Cyclin A2 and CDK2/Cyclin A2 phosphorylate T118 of PNKP, we speculated that PNKP T118 is phosphorylated in S phase to G2 phase in CDK1/Cyclin A2- and CDK2/Cyclin A2-dependent manner (Fig. 3B and C)".

      • *

      In discussion, 'This may be explained by the fact that mutations in the phosphorylated residue in the linker region are embryonic lethal': any reference to support this embryonic lethality?

      Thank you for your suggestion. We agree with that this sentence is overwriting. We revise the sentence to "This observation may indicate that mutations in the phosphorylated residue (T118) in the linker region are potentially embryonic lethal due to the importance of T118 in DNA replication, which is revealed in the present study.".

      • *

      • *

      Reviewer #2:

      Minor comments

      Sometimes there are incorrect references to the figures in the discussion (e.g. FigS9A, B, and C, are called out instead of E, F and G), a similar issue is found 4 lines below in the same page.

      Thank you for pointing out these errors. We checked the references in the discussion and corrected to the appropriate references.

      Based on the data in Figure 3A the authors suggest that pT118-PNKP follows Cyclin A2 levels, but this does not appear very clearly in the gel, especially for the last point. Even though the results are convincing, the authors should rephrase the conclusions of Figure 3A to reflect better the results.

      Thank you for your suggestion. We agree that this phrase is overwriting. We revised the conclusion to "pT118-PNKP was detected in asynchronized cells but increased particularly in the S phase, similar to Cyclin A2 expression levels, although the reduction of pT118, possibly dephosphorylation of T118, seems not as robust as the reduction of the Cyclin A2 expression level at the 12 hours time point. However, this effect was very weak during mitosis, suggesting that T118 phosphorylation plays a specific role in the S phase.".

      I did not find a reference to what seems to be a relevant work in this topic: PMID: 22171004

      Thank you for your suggestion. We have added the ref (Coquelle et al., PNAS, 2011) in Introduction section.


      Reviewer #3:

      Major comments

      The authors should consider and discuss the potential role of PNKP KO outside of the S-phase. In Figure 4C, while it is clear that poly ADP ribosylation is higher in S-phase, the effects of PNKP KO and complementation by WT or T118A are equally present. This would be more immediate if comparison, fold change, and statistical significance calculation were done within the same cell cycle phase instead of between cell stages. This is also clear by IF in Figure 4B. How do the authors explain this? Thank you for your suggestion. We agree with reviewer's suggestion. We compared intensities of ADP-ribose between cell lines in same cell cycle rather than between different cell cycles in a same cell line and added the respective statistics in figure 4C. Also, we agree with that poly ADP-ribose intensity is changed outside of S phase between WT and T118A PNKP expressing PNKP KO cells. As shown in figure S8, PNKP pT118 is also involved in DNA repair. These results might reflect of PNKP function outside of S phase. We have added the sentence "Of note, PNKP/*cells and PNKP T118A cells showed markedly higher ADP-ribose intensity in outside the S phase as well, which indicate that PNKP and T118 may have an endogenous role to prevent SSBs formation in outside the S phase. Since FEN1 has been reported to function in R-loop processing, PNKP could also be involved in this process. Future studies of a role of PNKP in different cell cycle will be able to address this question." to discuss about the function of PNKP outside the S phase. We have added the ref (Cristini et al., Cell Reports, 2019, and Laverde et al., Genes, 2022). *

      • *

      • *

      In connection with the previous point, can the author provide the same quantification in Figure 4E also for G2/M and not only the S phase? This should give an estimate of the activity of FEN1 outside the S-phase. This is important because FEN1 has other functions apart from OF maturation, such as R loop processing (Cristini 2019; Laverde 2023) Thank you for your suggestion. Here attached is the data of ADP-ribose intensity in cells outside the S phase as you suggested. FEN1i treatment still induces increased ADP-ribose intensity in outside the S phase as well, although the difference between with/without FEN1i treatment is much smaller than that in S phase, indicating that FEN1 has other functions outside the S phase. This finding is very interesting. However, the function of FEN1 in outside the S phase is outside the scope of this manuscript. Therefore, we would like to not put this data in the manuscript to avoid complicating the conclusion (as reviewer 3 also suggested).

      • *

      Why does FEN1 inhibition induce a faster fork progression in Fig4 but not in Fig5 and Fig6? Yes, it does in figure 4 and figure 5. In PNKP WT cells, FEN1i-treated fibers (CldU) show an increased speed of forks compared to non-treated fibers (IdU). However, loss of PNKP and T118 phosphorylation themselves cause a faster fork progression even if without FEN1i treatment, therefore the difference of speeds of forks before/after FEN1i treatment in PNKP KO and T118A cells is disappeared as both fibers grow faster than intact fibers in normal cells. In regard to figure 6, as you mentioned in a latter comment about figure 6, the title of vertical axis of the graph showing CldU length should not be speeds of replication forks as those DNA fibers are potentially digested by S1 nuclease, which is modified in the revised manuscript. Even so, DNA fibers from FEN1i-treated cells (CldU) with S1 nuclease shows similar length with fibers from untreated cells with S1 nuclease, whereas FEN1 inhibitor treatment accelerates a speed of forks in general (figure 4 and figure 5, assays without S1 nuclease), indicating that FEN1i treatment induces remaining of some ssDNA nicks/gaps which are substrates of S1 nuclease.

      • *

      How do the authors explain the impaired DNA gap binding activity of the phospho-mimetic T118D? Thank you for your suggestion. We think that the appropriate timing of phosphorylation of PNKP T118 is important, while the phosphor-mimetic mutant T118D mimics consecutively phosphorylated situation that may result in incomplete complementation of PNKP function.

      • *

      I would like to see a representative fiber image from Fig 6. Additionally, in Figure 6, the author should not label the y-axis as CldU-fork speed. Nuclease S1 treatment destroys single-strand gaps (in vitro) and does not affect the fork speed (in vivo) Thank you for your suggestion. We have added a representative fiber image. We also agree with that CldU fork speed is not a right label of y-axis as CldU fibers are potentially digested by S1 nuclease. We changed the y-axis label to "CldU tract length [kb/min]" in figure 6.

      • *

      Figure 5E: both mutants (kinase vs phosphatase) increase polyADP ribose intensity, while the title of this figure only emphasizes the phosphatase activity. We agree with your comment. We have changed this subtitle to "Enzymatic activities of PNKP is important for the end-processing of Okazaki fragments".

      • *

      • *

      Minor comments

      • *

      The authors refer to Hoch Nature 2017 when referring to polyADP ribose IF + PARG inhibition. Should they not refer to Hanzlikova Mol Cell 2018?

      Thank you for your suggestion. We have added the ref (Hanzlikova et al., Mol Cell 2018).

      Statistical analysis should be performed on the cell cycle profile in Figure 1B * *

      We performed statistical analysis to check whether there are significant differences of S phase population between WT and PNKP KO cells. There were significant differences between WT vs PNKP KO C1 (PThe authors should not refer to fork degradation or protection as a given fact without assessing it in these conditions. Thank you for your suggestion. We assume that this comment refers to the result section of figure 1 and figure 4. We have added a sentence "although future studies will be needed to investigate whether PNKP/ cells has the fork protection phenotype" in the result section of figure 1. We have changed representation in the section according to the reviewer's suggestion in the result section of figure 4.*

      • *

      • *

    1. Reviewer #1 (Public Review):

      Summary:

      The authors want to explore how much two known minibinder protein domains against the Spike protein of SARS-CoV-2 can function as a binding domain of 2 sets of synthetic receptors (SNIPR and CAR); the authors also want to know how some modifications of the linkers of these new receptors affect their activation profile.

      Major strengths and weaknesses of the methods and results:

      - Strengths include: analysis of synthetic receptor function for 2 classes of synthetic receptors, with robust and appropriate assays for both kinds of receptors. The modifications of the linkers are also interesting and the types of modifications that are often used in the field.

      - Weaknesses include: none of the data analysis provides statistical interpretation of the results (that I could find). One dataset is confusing: Figures 5A and C, are said to be the same assay with the same constructs, but the results are 30% in A, and 70% in C.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      Given the open-ended nature of the goal (implicit in it being an exploration), it is hard to say if the authors have reached their aims; they have done an exploration for sure; is it big enough an exploration? This reviewer is not sure.

      The results are extremely clearly presented, both in the figures and in the text, both for the methods and the results. The claims put forward (with limited exceptions see below) are very solidly supported by the presented data.

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      The work may stimulate others to consider minibinders as potential binding domains for synthetic receptors. The modifications that are presented although not novel, do provide a starting point for larger-scale analysis.

      It is not clear how much this is generalizable to other binders (the authors don't make such claims though). The claims are very focused on the tested modifications, and the 2 receptors and minibinder used, a scope that I would define as narrow; the take-home message if one wants to try it with other minibinders or other receptors seems to be: test a few things, and your results may surprise you.

      Any additional context you think would help readers interpret or understand the significance of the work:

      We are at the infancy stage of synthetic receptors optimization and next-generation derivation; there is a dearth of systematic studies, as most focus is on developing a few ones that work. This work is an interesting attempt to catalyze more research with these new minibinders. Will it be picked up based on this? Not sure.

    1. Social Media platforms use the data they collect on users and infer about users to increase their power and increase their profits.

      I agree with this statement and feel deeply concerned. When we use most social media platforms, they usually select user preference content for us when registering an account in order to push content to users that they are more interested in. And this is actually a way to obtain information and find ways to attract the user's attention. Moreover, as we use the software, we are also using different algorithms to infer how our interests have changed. At the same time, we may also cooperate with shopping software to directly push the items of interest we just mentioned in the video or forum social media so that we can purchase them. I think it’s a bit scary how much big data knows about us.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Huang and colleagues explored the role of iron in bacterial therapy for cancer. Using proteomics, they revealed the upregulation of bacterial genes that uptake iron, and reasoned that such regulation is an adaptation to the iron-deficient tumor microenvironment. Logically, they engineered E. Coli strains with enhanced iron-uptake efficiency, and showed that these strains, together with iron scavengers, suppress tumor growth in a mouse model. Lastly, they reported the tumor suppression by IroA-E. Coli provides immunological memory via CD8+ T cells. In general, I find the findings in the manuscript novel and the evidence convincing.

      (1) Although the genetic and proteomic data are convincing, would it be possible to directly quantify the iron concentration in (1) E. Coli in different growth environments, and (2) tumor microenvironment? This will provide the functional consequences of upregulating genes that import iron into the bacteria.

      We appreciate the reviewer’s comment regarding the precise quantification of iron concentrations. In our study, we attempted various experimental approaches, including Immunohistochemistry utilizing an a Fe3+ probe, iron assay kit (ab83366), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Despite these attempts, the quantification of oxidized Fe3+ concentrations proved challenging due to the inherently low levels of Fe ions and difficulty to distinguish Fe2+ and Fe3+. We observed measurements below the detection threshold of even the sensitive ICP-MS technique. To circumvent this limitation, we designed an experiment wherein bacteria were cultured in a medium supplemented with Chrome Azurol S (CAS) reagent, which colormetrically detects siderophore activity. We compared WT bacteria and IroA-expressing bacteria at varying levels of Lcn2 proteins. The outcome, as depicted in the updated Fig. 3b, reveals an enhanced iron acquisition capability in IroA-E. coli under the presence of Lcn2 proteins, in comparison to the wild-type E. coli strains. In addition to the Lcn2 study, the proteomic study in Figure 4 highlights the competitive landscape between cancer cells and bacteria. We observed that IroA-E. coli showed reduced stress responses and exerted elevated iron-associated stress to cancer cells, thus further supporting the IroA-E. coli’s iron-scavenging capability against nutritional immunity.

      (2) Related to 1, the experiment to study the synergistic effect of CDG and VLX600 (lines 139-175) is very nice and promising, but one flaw here is a lack of the measurement of iron concentration. Therefore, a possible explanation could be that CDG acts in another manner, unrelated to iron uptake, that synergizes with VLX600's function to deplete iron from cancer cells. Here, a direct measurement of iron concentration will show the effect of CDG on iron uptake, thus complementing the missing link.

      We appreciate the reviewer’s comment and would like to point the reviewer to our results in Figure S3, which shows that the expression of CDG enhances bacteria survival in the presence of LCN2 proteins, which reflects the competitive relationship between CDG and enterobactin for LCN2 proteins as previously shown by Li et al. [Nat Commun 6:8330, 2015]. We regret to inform the reviewer that direct measurement of iron concentration was attempted to no avail due to the limited sensitivity of iron detecting assays. We do acknowledge that CDG may exert different effects in addition to enhancing iron uptake, particularly the potentiation of the STING pathway. We pointed out such effect in Fig 2c that shows enhanced macrophage stimulation by the CDG-expressing bacteria. We would like to accentuate, however, that a primary objective of the experiment is to show that the manipulation of nutritional immunity for promoting anticancer bacterial therapy can be achieved by combining bacteria with iron chelator VLX600. The multifaceted effects of CDG prompted us to focus on IroA-E. coli in subsequent experiments to examine the role of nutritional immunity on bacterial therapy. We have updated the associated text to better convey our experimental design principle.

      Lines 250-268: Although statistically significant, I would recommend the authors characterize the CD8+ T cells a little more, as the mechanism now seems quite elusive. What signals or memories do CD8+ T cells acquire after IroA-E. Coli treatment to confer their long-term immunogenicity?

      We apologize for the overinterpretation of the immune memory response in our previous manuscript and appreciate the reviewer’s recommendation to further characterize CD8+ T cells post-IroA-E. coli treatment. Our findings, which show robust tumor inhibition in rechallenge studies, indicate establishment of anticancer adaptive immune responses. As the scope of the present work is aimed at demonstrating the value of engineered bacteria for overcoming nutritional immunity, expounding on the memory phenotypes of the resulting cellular immunity is beyond the scope of the study. We do acknowledge that our initial writing overextended our claims and have revised the manuscript accordingly. The revised manuscript highlights induction of anticancer adaptive immunity, attributable to CD8+ T cells, following the bacterial therapy.

      (3) Perhaps this goes beyond the scope of the current manuscript, but how broadly applicable is the observed iron-transport phenomenon in other tumor models? I would recommend the authors to either experimentally test it in another model or at least discuss this question.

      We highly appreciate the reviewer’s suggestion regarding the generalizability of the iron-transport phenomenon in diverse tumor models. To address this, we extended our investigations beyond the initial model, employing B16-F10 melanoma and E0771 breast cancer in mouse subcutaneous models. The results, as depicted in Figures 3g to 3j and Figure S5, demonstrate the superiority of IroA-E. coli over WT bacteria in tumor inhibition. These findings support the broad implication of nutritional immunity as well as the potential of iron-scavenging bacteria for different solid tumor treatments.

      Reviewer #2 (Public Review):

      Summary:

      The authors provide strong evidence that bacteria, such as E. coli, compete with tumor cells for iron resources and consequently reduce tumor growth. When sequestration between LCN2 and bacterobactin is blocked by upregulating CDG(DGC-E. coli) or salmochelin(IroA-E.coli), E. coli increase iron uptake from the tumor microenvironment (TME) and restrict iron availability for tumor cells. Long-term remission in IroA-E.coli treated mice is associated with enhanced CD8+ T cell activity. Additionally, systemic delivery of IroA-E.coli shows a synergistic effect with chemotherapy reagent oxaliplatin to reduce tumor growth.

      Strengths:

      It is important to identify the iron-related crosstalk between E. coli and TME. Blocking lcn2-bacterobactin sequestration by different strategies consistently reduces tumor growth.

      Weaknesses:

      As engineered E.coli upregulate their function to uptake iron, they may increase the likelihood of escaping from nutritional immunity (LCN2 becomes insensitive to sequester iron from the bacteria). Would this raise the chance of developing sepsis? Do authors think that it is safe to administrate these engineered bacteria in mice or humans?

      We appreciate the reviewer’s comment on the safety evaluation of the iron-scavenging bacteria. To address the concern, we assessed the potential risk of sepsis development by measuring the bacterial burden and performing whole blood cell analyses following intravenous injection of the engineered bacteria. As illustrated in Figures 3k and 3l, our findings indicate that the administration of these engineered bacteria does not elevate the risk of sepsis. The blood cell analysis suggests that mice treated with the bacteria eventually return to baseline levels comparable to untreated mice, supporting the safety of this approach in our experimental models.

      Reviewer #3 (Public Review):

      Summary:

      Based on their observation that tumor has an iron-deficient microenvironment, and the assumption that nutritional immunity is important in bacteria-mediated tumor modulation, the authors postulate that manipulation of iron homeostasis can affect tumor growth. They show that iron chelation and engineered DGC-E. coli have synergistic effects on tumor growth suppression. Using engineered IroA-E. coli that presumably have more resistance to LCN2, they show improved tumor suppression and survival rate. They also conclude that the IroA-E. coli treated mice develop immunological memory, as they are resistant to repeat tumor injections, and these effects are mediated by CD8+ T cells. Finally, they show synergistic effects of IroA-E. coli and oxaliplatin in tumor suppression, which may have important clinical implications.

      Strengths:

      This paper uses straightforward in vitro and in vivo techniques to examine a specific and important question of nutritional immunity in bacteria-mediated tumor therapy. They are successful in showing that manipulation of iron regulation during nutritional immunity does affect the virulence of the bacteria, and in turn the tumor. These findings open future avenues of investigation, including the use of different bacteria, different delivery systems for therapeutics, and different tumor types.

      Weaknesses:

      • There is no discussion of the cancer type and why this cancer type was chosen. Colon cancer is not one of the more prominently studied cancer types for LCN2 activity. While this is a proof-of-concept paper, there should be some recognition of the potential different effects on different tumor types. For example, this model is dependent on significant LCN production, and different tumors have variable levels of LCN expression. Would the response of the tumor depend on the role of iron in that cancer type? For example, breast cancer aggressiveness has been shown to be influenced by FPN levels and labile iron pools.

      We highly appreciate the reviewer’s insightful comment on the varying LCN2 activities across different tumor types. In light of the reviewer’s suggestion, we extended our investigations beyond the initial colon cancer model, employing B16-F10 melanoma and E0771 breast cancer in mouse subcutaneous models. The results, as depicted in Figures 3g to 3j and Figure S5, demonstrate that IroA-E. coli consistently outperforms WT bacteria in tumor inhibition. We acknowledge the reviewer’s comment regarding LCN2 being more prominently examined in breast cancer and have highlighted this aspect in the revised manuscript. For colon and melanoma cancers, several reports have pointed out the correlation of LCN2 expression and the aggressiveness of these cancers [Int J Cancer. 2021 Oct 1;149(7):1495-1511][Nat Cancer. 2023 Mar;4(3):401-418], albeit to a lesser extent. These findings support the broad implication of nutritional immunity as well as the potential of iron-scavenging bacteria for different solid tumor treatments. The manuscript has been revised to reflect the reviewer’s insightful comment.

      • Are the effects on tumor suppression assumed to be from E. coli virulence, i.e. Does the higher number of bacteria result in increased immune-mediated tumor suppression? Or are the effects partially from iron status in the tumor cells and the TME?

      We appreciate the reviewer’s question regarding the therapeutic mechanism of IroA-E. coli. Bacterial therapy exerts its anticancer action through several different mechanisms, including bacterial virulence, nutrient and ecological competition, and immune stimulation. Decoupling one mechanism from another would be technically challenging and beyond the scope of the present work. With the objective of demonstrating that an iron-scavenging bacteria can elevate anticancer activity by circumventing nutritional immunity, we highlight our data in Fig. S6, which shows that IroA-E. coli administration resulted in higher bacterial colonization within solid tumors compared to WT-E. coli on Day 15. This increased bacterial presence supports our iron-scavenging bacteria design, and we highlight a few anticancer mechanisms mediated by the engineered bacteria. Firstly, as shown in Fig. 4d, IroA-E. coli is shown to induce an elevated iron stress response in tumor cells as the treated tumor cells show increased expression of transferrin receptors. Secondly, our experiments involving CD8+ T cell depletion indicates that the IroA-E. coli establishes a more robust anticancer CD8+ T cell response than WT bacteria. Both immune-mediated responses and alterations in iron status within the tumor microenvironment are demonstrated to contribute to the enhanced anticancer activity of IroA-E. coli in the present study.

      • If the effects are iron-related, could the authors provide some quantification of iron status in tumor cells and/or the TME? Could the proteomic data be queried for this data?

      We appreciate the reviewer’s query regarding the quantification of iron concentrations. In our study, we attempted various experimental approaches, including Immunohistochemistry utilizing an a Fe3+ probe, iron assay kit (ab83366), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Despite these attempts, the quantification of oxidized Fe3+ concentrations proved challenging due to the inherently low levels of Fe ions and difficulty to distinguish Fe2+ and Fe3+. We observed measurements below the detection threshold of even the sensitive ICP-MS technique. Consequently, to circumvent this limitation, we designed an experiment wherein bacteria were cultured in a medium supplemented with Chrome Azurol S (CAS) reagent, which colormetrically detects siderophore activity. We compared WT bacteria and IroA-expressing bacteria at varying levels of Lcn2 proteins. The outcome, as depicted in the updated Fig. 3b, reveals an enhanced iron acquisition capability in IroA-E. coli under the presence of Lcn2 proteins, in comparison to the wild-type E. coli strains. In addition to the Lcn2 study, the proteomic study in Figure 4 highlights the competitive landscape between cancer cells and bacteria. We observed that IroA-E. coli showed reduced stress responses and exerted elevated iron-associated stress to cancer cells, thus further supporting the IroA-E. coli’s iron-scavenging capability against nutritional immunity.

      Reviewing Editor:

      The authors provide compelling technically sound evidence that bacteria, such as E. coli, can be engineered to sequester iron to potentially compete with tumor cells for iron resources and consequently reduce tumor growth. Long-term remission in IroA-E.coli treated mice is associated with enhanced CD8+ T cell activity and a synergistic effect with chemotherapy reagent oxaliplatin is observed to reduce tumor growth. The following additional assessments are needed to fully evaluate the current work for completeness; please see individual reviews for further details.

      We appreciate the editor’s positive comment.

      (1) The premise is one of translation yet the authors have not demonstrated that manipulating bacteria to sequester iron does not provide a potential for sepsis or other evidence that this does not increase the competitiveness of bacteria relative to the host. Only tumor volume was provided rather than animal survival and cause of death, but bacterial virulence is enhanced including the possibility of septic demise. Alternatively, postulated by the authors, that tumor volume is decreased due to iron sequestration but they do not directly quantify the iron concentration in (1) E. Coli in different growth environments, and (2) tumor microenvironment. These important endpoints will provide the functional consequences of upregulating genes that import iron into the bacteria.

      We appreciate the editor’s comment and have added substantial data to support the translational potential of the iron-scavenging bacteria. In particular, we added evidence that the iron-scavenging bacteria does not increase the risk of sepsis (Fig. 3k, l), evidence of increased bacteria competitiveness and survival in tumor (Fig. S6), and iron-scavenging bacteria’s superior anticancer ability and survival benefit across 3 different tumor models (Fig. 3e-j; Fig. S5). While direct measurement of iron concentration in the tumor environment is technically difficult due to the challenge in differentiating Fe2+ and Fe3+ by available techniques, we added a colormetric CAS assay to demonstrate the iron-scavenging bacteria can more effectively utility Fe than WT bacteria in the presence of LCN2 (Fig. 3b). These results substantiate the translational relevance of the engineered bacteria.

      (2) There is no discussion of the cancer type and why this cancer type was chosen. If the current tumor modulation system is dependent on LCN2 activity, there would need to be some recognition that different tumors have variable levels of LCN expression. Would the response of the tumor depend on the role of iron in that cancer type?

      We appreciate the comment and added relevant text and citations describing clinical relevance of LCN2 expression associated with the tumor types used in the study (breast cancer, melanoma, and colon cancer). Elevated LCN2 has been associated with higher aggressiveness for all three cancer types.

      (3) To demonstrate long-term anti-cancer memory was established through enhancement of CD8+ T cell activity (Fig 5c), the "2nd seeding tumor cells" experiment may need to be done in CD8 antibody-treated IronA mice since CD8+ T cells may play a role in tumor suppression regardless of whether or not iron regulation is being manipulated. It appears that the control group for this experiment is naive mice (and not WT-E. coli treated mice), in which case the immunologic memory could be from having had tumor/E. coli rather than the effect of IroA-E. coli.

      We acknowledge that our prior writing may have overstated our claim on immunological memory. Our intention is to show that upon treatment and tumor eradication by iron-scavenging bacteria, adaptive immunity mediated by CD8 T cells can be elicited. We also did not consider a WT-E. coli control as no WT-E. coli treated group achieved complete tumor regression. We have modified our text to reflect our intended message.

      Reviewer #1 (Recommendations For The Authors):

      All the figures seem to be in low resolution and pixelated. Please upload high-resolution ones.

      We have updated figures to high-resolution ones.

      Reviewer #2 (Recommendations For The Authors):

      Some specific comments towards experiments:

      (1) For Fig 2 f/ Fig 3f/ Fig 5d/Fig6c, the survival rate is based on the tumor volume (the mouse was considered dead when the tumor volume exceeded 1,500 mm3). Did the mice die from the experiment (how many from each group)? If it only reflects the tumor size, do these figures deliver the same information as the tumor growth figure?

      We appreciate the reviewer’s comment. The survival rate is indeed based on tumor volume, and we used a cutoff of 1500 mm3. No death event was observed prior to the tumors reaching 1500 mm3. Although the survival figures cover some of the information conveyed by the tumor volume tracking, the figures offer additional temporal resolution of tumor progression with the survival figures. Having both tumor volume and survival tracking are commonly adopted to depict tumor progression. We have the protocol regarding survival monitoring to the materials and method section.

      (2) Fig 3a, not sure if entE is a good negative control for this experiment. Neg. Ctrl should maintain its CFU/ml at a certain level regardless of Lcn2 conc. However, entE conc. is at 100 CUF/ml throughout the experiment suggesting there is no entE in media or if it is supersensitive to Lcn2 that bacteria die at the dose of 0.1nM?

      We appreciate the reviewer’s comment. The △entE-E. coli was indeed observed to be highly sensitive to LCN2. We included the control to highlight the competitive relationship between entE and LCN2 for iron chelation, which is previously reported in literature [Biometals 32, 453–467 (2019)].

      (3) Fig 4, the authors harvested bacteria from the tumor by centrifuging homogenized samples at different speeds. Internal controls confirming sample purity (positive for bacteria and negative for cells for panels a,b,c; or vice versa for panel d) may be necessary. This comment may also apply to samples from Fig 1.

      We acknowledge the reviewer’s concern and would like to point out that the proteomic analysis was performed using a highly cited protocol that provides reference and normalization standards for E. coli proteins [Mol Cell Proteomics. 2014 Sep; 13(9): 2513–2526]. The reference is cited in the Materials and Method section associated with the proteomic analysis.

      (4) To demonstrate long-term anti-caner memory was established through enhancement of CD8+ T cell activity, the "2nd seeding tumor cells" experiment may need to be done in CD8 antibody-treated IronA mice.

      We have modified our claims to highlight that the tumor eradication by iron scavenging bacteria can establish adaptive anticancer immunity through the elicitation of CD8 T cells. We apologize for overstating our claim in the previous manuscript draft.

      Minor suggestions:

      (1) Please include the tumor re-challenge experiment in the method section.

      The re-challenge experiment has been added to the method section as instructed.

      (2) Please cite others' and your previous work. E.g. line 281, 282, line 306-307.

      We have added the citations as instructed.

      (3) Line 448, BL21 is bacteria, not cells.

      We have made the correction accordingly.

      Reviewer #3 (Recommendations For The Authors):

      • The authors postulate that IroA-E. coli is more potent than DGC-E. coli in resisting LCN2 activity, and that this potency is the cause of the increased tumor suppression of this engineered strain. If so, Fig 3a should include DGC-E. coli for direct comparison.

      We appreciate the reviewer for the comment and would like to clarify that we intended construct IroA-E. coli as a more specific iron-scavenging strategy, which can aide the discussion of nutritional immunity and minimize compounding factors from the immune-stimulatory effect of CDG. We have modified our text to clarify our stance.

      • The data refers to the effects of WT bacteria-mediated tumor suppression, e.g. Figure 3e shows that even WT bacteria have a significant suppressive effect on tumor growth. Could the authors provide background on what is known about the mechanism of this tumor suppression, outside of tumor targeting and engineerability? They only reference "immune system stimulation."

      We appreciate the reviewer’s comment and would like to refer the reviewer to our recently published article [Lim et al., EMBO Molecular Medicine 2024; DOI: 10.1038/s44321-023-00022-w], which shows that in addition to immune system stimulation, WT bacteria can also be perceived as an invading species in the tumor that can exert differential selective pressure against cancer cells. Competition for nutrient is highlighted as a major contribution to contain tumor growth. In fact, the nutrient competition that we observed in the prior article inspired the design of the iron scavenging bacteria towards overcoming nutritional immunity. We have cited this recently published article to the revised manuscript to enrich the background.

      • The authors claim that there is immunologic memory because of tumor resistance in re-challenged mice after IroA-E. coli treatment (Fig 5c). It appears that the control group for this experiment is naive mice (and not WT-E. coli treated mice), in which case the immunologic memory could be from having had tumor/E. coli rather than the effect of IroA-E. coli.

      We have modified our claims to highlight that the tumor eradication by iron scavenging bacteria can establish adaptive anticancer immunity through the elicitation of CD8 T cells. We did not intend to highlight that the adaptive immunity stemmed from IroA-E. coli only, and we intend to build upon current literature that has reported CD8+ T cell elicitation by bacterial therapy. The IroA-E.coli is shown to enhance adaptive immunity. We also did not consider a WT-E. coli control as no WT-E. coli treated group achieved complete tumor regression.

      • The authors claim that CD8+ T cells are mechanistically important in the effects of iron status manipulation in E. coli-mediated tumor suppression (Fig 5). In order to show this, it seems that Fig 5c should include WT-E. coli and WT-E. coli+CD8 ab groups, as it may be that CD8+ T cells play a role in tumor suppression regardless of whether or not iron regulation is being manipulated.

      We apologize for the confusion from our prior writing. We have modified our claims to highlight that the tumor eradication by iron scavenging bacteria can establish adaptive anticancer immunity through the elicitation of CD8 T cells. We did not intend to convey that CD8+ T cells are mechanistically important in the effects of iron status manipulation.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1

      (1) Given the low trial numbers, and the point of sequential vs clustered reactivation mentioned in the public review, it would be reassuring to see an additional sanity check demonstrating that future items that are currently not on-screen can be decoded with confidence, and if so, when in time the peak reactivation occurs. For example, the authors could show separately the decoding accuracy for near and far items in Fig. 5A, instead of plotting only the difference between them.

      We have now added the requested analysis showing the raw decoded probabilities for near and distant items separately in Figure 5A. We have also chosen to replace Figure 5B with the new figure as we think it provides more information than the previous Figure 5B. Instead, we have moved Figure 5B to the supplement. The median peak decoded accuracy for near and distant items is equivalent. We have added the following description to the figure:

      “Decoded raw probabilities for off-screen items, that were up to two steps ahead of the current stimulus cue (‘near’,) vs. distant items that were more than two steps away on the graph, on trials with correct answers. The median peak decoded probability for near and distant items was at the same time point for both probability categories. Note that displayed lines reflect the average probability while, to eliminate influence of outliers, the peak displays the median.”

      (2) The non-sequential reactivation analyses often use a time window of peak decodability, and it was not entirely clear to me what data this time window is determined on, e.g., was it determined based on all future reactivations irrespective of graph distance? This should be clarified in the methods.

      Thank you for raising this. We now clarify this in the relevant section to read: “First, we calculated a time point of interest by computing the peak probability estimate of decoders across all trials, i.e., the average probability for each timepoint of all trials (except previous onscreen items) of all distances, which is equivalent to the peak of the differential reactivation analysis”

      (3) Fig 4 shows evidence for forward and backward sequential reactivation, suggesting that both forward and backward replay peak at a lag of 40-50msec. It would be helpful if this counterintuitive finding could be picked up in the discussion, explaining how plausible it is, physiologically, to find forward and backward replay at the same lag, and whether this could be an artifact of the TDLM method.

      This is an important point and we agree that it appears counterintuitive. However, we would highlight this exact time range has been reported in previous studies, though t never for both forward and backward replay. We now include a discussion of this finding. The section now reads:

      “[… ] Even though we primarily focused on the mean sequenceness scores across time lags, there appears s to be a (non-significant) peak at 40-60 milliseconds. While simultaneous forward and backward replay is theoretically possible, we acknowledge that it is somewhat surprising and, given our paradigm, could relate to other factors such as autocorrelations (Liu, Dolan, et al., 2021).”

      (4) It is reported that participants with below 30% decoding accuracy are excluded from the main analyses. It would be helpful if the manuscript included very specific information about this exclusion, e.g., was the criterion established based on the localizer cross-validated data, the temporal generalisation to the cued item (Fig. 2), or only based on peak decodability of the future sequence items? If the latter, is it applied based on near or far reactivations, or both?

      We now clarify this point to include more specific information, which reads:

      “[…] Therefore, we decided a priori that participants with a peak decoding accuracy of below 30% would be excluded from the analysis (nine participants in all) as obtained from the cross-validation of localizer trials”

      (5) Regarding the low amount of data for the reactivation analysis, the manuscript should be explicit about the number of trials available for each participant. For example, Supplemental Fig. 1 could provide this information directly, rather than the proportion of excluded trials.

      We have adapted the plot in the supplement to show the absolute number of rejected epochs per participant, in addition to the ratio.

      (6) More generally, the supplements could include more detailed information in the legends.

      We agree and have added more extensive explanation of the plots in the supplement legends.

      (7) The choice of comparing the 2 nearest with all other future items in the clustered reactivation analysis should be better motivated, e.g., was this based on the Wimmer et al. (2020) study?

      We have added our motivation for taking the two nearest items and contrasting them with the items further away. The paragraph reads:

      “[…] We chose to combine the following two items for two reasons: First, this doubled the number of included trials; secondly, using this approach the number of trials for each category (“near” and “distant”) was more balanced. […]”

      Reviewer 2

      (1) Focus exclusively on retrieval data (and here just on the current image trials).

      If I understand correctly, you focus all your analyses (behavioural as well as MEG analyses) on retrieval data only and here just on the current image trials. I am surprised by that since I see some shortcomings due to that. These shortcomings can likely be addressed by including the learning data (and predecessor image trials) in your analyses.

      a) Number of trials: During each block, you presented each of the twelve edges once. During retrieval, participants then did one "single testing session block". Does that mean that all your results are based on max. 12 trials? Given that participants remembered, on average, 80% this means even fewer trials, i.e., 9-10 trials?

      This is correct and a limitation of the paper. However, while we used only correct trials for the reactivation analysis, the sequential analysis was conducted using all trials disregarding the response behaviour. To retain comparability with previous studies we mainly focused on data from after a consolidation phase. Nevertheless, despite the trial limitation we consider the results are robust and worth reporting. Additionally, based on the suggestion of the referee, we now include results from learning blocks (see below).

      b) Extend the behavioural and replay/reactivation analysis to predecessor images.

      Why do you restrict your analyses to the current image trials? Especially given that you have such a low trial number for your analyses, I was wondering why you did not include the predecessor trials (except the non-deterministic trials, like the zebra and the foot according to Figure 2B) as well.

      We agree it would be great to increase power by adding the predecessor images to the current image cue analysis, excluding the ambiguous trials, we did not do so as we considered the underlying retrieval processes of these trial types are not the same, i.e. cannot be simply combined. Nevertheless, we have performed the suggested analysis to check if it increases our power. We found, that the reactivation effect is robust and significant at the same time point of 220-230 ms. However, the effect size actually decreased: While before, peak differential reactivation was at 0.13, it is now at 0.07. This in fact makes conceptual sense. We suspect that the two processes that are elicited by showing a single cue and by showing a second, related, cue are distinct insofar as the predecessor image acts as a primer for the current image, potentially changing the time course/speed of retrieval. Given our concerns that the two processes are not actually the same we consider it important to avoid mixing these data.

      We have added a statement to the manuscript discussing this point. The section reads:

      “Note that we only included data from the current image cue, and not from the predecessor image cue, as we assume the retrieval processes differ and should not be concatenated.”

      c) Extend the behavioural and replay/reactivation analysis to learning trials.

      Similar to point 1b, why did you not include learning trials in your analyses?

      The advantage of including (correct and incorrect) learning trials has the advantage that you do not have to exclude 7 participants due to ceiling performance (100%).

      Further, you could actually test the hypothesis that you outline in your discussion: "This implies that there may be a switch from sequential replay to clustered reactivation corresponding to when learned material can be accessed simultaneously without interference." Accordingly, you would expect to see more replay (and less "clustered" reactivation) in the first learning blocks compared to retrieval (after the rest period).

      To track reactivation and replay over the course of learning is a great idea. We have given a lot of thought as to how to integrate these findings but have not found a satisfying solution. Thus, analysis of the learning data turned out to be quite tricky: We decided that each participant should perform as many blocks as necessary to reach at least 80% (with a limit of six and lower bound of two, see Supplement figure 4). Indeed, some participant learned 100% of the sequence after one block (these were mostly medical students, learning things by hard is their daily task). With the benefit of hindsight, we realise our design means that different blocks are not directly comparable between participants. In theory, we would expect that replay emerges in parallel with learning and then gradually changes to clustered reactivation as memory traces become consolidated/stronger. However, it is unclear when replay should emerge and when precisely a switch to clustered reactivation would happen. For this reason, we initially decided not to include the learning trials into the paper.

      Nevertheless, to provide some insight into the learning process, and to see how consolidation impacts differential reactivation and replay, we have split our data into pre and post resting state, aggregating all learning trials of each participant. While this does not allow us to track processes on a block basis, it does offer potential (albeit limited) insight into the hypothesis we outline in the discussion.

      For reactivation, we see emergence of a clear increase, further strengthening the outlined hypothesis, however, for replay the evidence is less clear, as we do not know over how many learning blocks replay is expected.

      We calculated individual trajectories of how reactivation and replay changes from learning to retrieval and related these to performance. Indeed, we see an increase of reactivation is nominally associated with higher learning performance, while an increase in replay strength is associated with lower performance (both non-significant). However, due to the above-mentioned reasons we think it would premature to add this weak evidence to the paper.

      To mitigate problems of experiment design in relation to this question we are currently implementing a follow-study, where we aim to normalize the learning process across participants and index how replay/reactivation changes over the course of learning and after consolidation.

      We have added plots showing clustered reactivation sequential replay measures during learning (Figure 5D and Supplement 8)

      The added section(s) now read:

      “To provide greater detail on how the 8-minute consolidation period affected reactivation we, post-hoc, looked at relevant measures across learning trials in contrast to retrieval trials. For all learning trials, for each participant, we calculated differential reactivation for the same time point we found significant in the previous analysis (220-260 milliseconds). On average, differential reactivation probability increased from pre to post resting state (Figure 5D). […]

      Nevertheless, even though our results show a nominal increase in reactivation from learning to retrieval (see Figure 5D), due to experimental design features our data do not enable us to test for an hypothesized switch for sequential replay (see also “limitations” and Supplement 8).”

      d) Introduction (last paragraph): "We examined the relationship of graph learning to reactivation and replay in a task where participants learned a ..." If all your behavioural analyses are based on retrieval performance, I think that you do not investigate graph learning (since you exclusively focus the analyses on retrieving the graph structure). However, relating the graph learning performance and replay/reactivation activity during learning trials (i.e., during graph learning) to retrieval trials might be interesting but beyond the scope of this paper.

      We agree. We have changed the wording to be more accurate. Indeed, we do not examine graph learning but instead examine retrieval from a graph, after graph learning. The mentioned sentence now read

      “[…] relationship of retrieval from a learned graph structure to reactivation [...]”

      e) It is sometimes difficult to follow what phase of the experiment you refer to since you use the terms retrieval and test synonymously. Not a huge problem at all but maybe you want to stick to one term throughout the whole paper.

      Thank you for pointing this out. We have now adapted the manuscript to exclusively refer to “retrieval” and not to “test”.

      (2) Is your reactivation clustered?

      In Figure 5A, you compare the reactivation strength of the two items following the cue image (i.e., current image trials) with items further away on the graph. I do not completely understand why your results are evidence for clustered reactivation in contrast to replay.

      First, it would be interesting to see the reactivation of near vs. distant items before taking the difference (time course of item probabilities).

      (copied answer from response to Reviewer 1, as the same remark was raised)

      We have added the requested analysis showing the raw decoded probabilities for near and distant items separately in Figure 5A. We have chosen to replace Figure 5B with the new figure as we think that it offers more information than the previous Figure 5B. Instead, we have moved Figure 5B to the supplement. The median peak decoded accuracy for near and distant items is equivalent. We have added the following description to the figure:

      “Decoded raw probabilities for off-screen items, that were up to two steps ahead of the current stimulus cue (‘near’,) vs. distant items that were more than two steps away on the graph, on trials with correct answers. The median peak decoded probability for near and distant items was at the same time point for both probability categories. Note that displayed lines reflect the average probability while, to eliminate influence of outliers, the peak displays the median. .”

      Second, could it still be that the first item is reactivated before the second item? By averaging across both items, it becomes not apparent what the temporal courses of probabilities of both items look like (and whether they follow a sequential pattern). Additionally, the Gaussian smoothing kernel across the time dimension might diminish sequential reactivation and favour clustered reactivation. (In the manuscript, what does a Gaussian smoothing kernel of  = 1 refer to?). Could you please explain in more detail why you assume non-sequential clustered reactivation here and substantiate this with additional analyses?

      We apologise for the unclear description. Note the Gaussian kernel is in fact only used for the reactivation analysis and not the replay analysis, so any small temporal successions would have been picked up by the sequential analysis. We now clarify this in the respective section of the sequential analysis and also explain the parameter of delta= 1 in the reactivation analysis section. The paragraph now reads

      “[…] As input for the sequential analysis, we used the raw probabilities of the ten classifiers corresponding to the stimuli. [...]

      […] Therefore, to address this we applied a Gaussian smoothing kernel (using scipy.ndimage.gaussian_filter with the default parameter of σ=1 which corresponds approximately to taking the surrounding timesteps in both direction with the following weighting: current time step: 40%, ±1 step: 25%, ±2 step: 5%, ±3 step: 0.5%) [...]”

      (3) Replay and/or clustered reactivation?

      The relationship between the sequential forward replay, differential reactivation, and graph reactivation analysis is not really apparent. Wimmer et al. demonstrated that high performers show clustered reactivation rather than sequential reactivation. However, you did not differentiate in your differential reactivation analysis between high vs. low performers. (You point out in the discussion that this is due to a low number of low performers.)

      We agree that a split into high vs low performers would have been preferably for our analysis. However, there is one major obstacle that made us opt for a correlational analysis instead: We employed criteria learning, rendering a categorical grouping conceptually biased. Even though not all participants reached the criteria of 80%, our sample did not naturally split between high and low performers but was biased towards higher performance, leaving the groups uneven. The median performance was 83% (mean ~81%), with six of our subjects (~1/4th of included participant) having this exact performance. This makes a median or mean split difficult, as either binning assignment choice would strongly affect the results. We have added a limitations section in which we extensively discuss this shortcoming and reasoning for not performing a median split as in Wimmer et al (2020). The section now reads:

      “There are some limitations to our study, most of which originate from a suboptimal study design. [...], as we performed criteria learning, a sub-group analysis as in Wimmer et al., (2020) was not feasible, as median performance in our sample would have been 83% (mean 81%), with six participants exactly at that threshold. [...]”

      It might be worth trying to bring the analysis together, for example by comparing sequential forward replay and differential reactivation at the beginning of graph learning (when performance is low) vs. retrieval (when performance is high).

      Thank you for the suggestion to include the learning segments, which we think improves the paper quite substantially. However, analysis of the learning data turned out to be quite tricky> We had decided that each participant should perform as many blocks as necessary to reach at least 80% accuracy (with a limit of six and lower bound of two, see Supplement figure 4). Some participants learned 100% of the sequence after one block (these were mostly medical students, learning things by hard is their daily task). This in hindsight is an unfortunate design feature in relation to learning as it means different blocks are not directly comparable between participants.

      In theory, we would expect that replay emerges in parallel with learning and then gradually change to clustered reactivation, as memory traces get consolidated/stronger. However, it is unclear when replay would emerge and when the switch to reactivation would happen. For this reason, we initially decided not to include the learning trials into the paper at all.

      Nevertheless, to give some insight into the learning process and to see how consolidation effects differential reactivation and replay, we have split our data into pre and post resting state, aggregating all learning trials of each participant. While this does not allow us to track measures of interest on a block basis, it gives some (albeit limited) insight into the hypothesis outlined in our discussion.

      For reactivation, we see a clear increase, further strengthening the outlined hypothesis, However, for replay the evidence is less obvious, potentially due to that fact that we do not know across how many learning blocks replay is to be expected.

      The added section(s) now read:

      “To examine how the 8-minute consolidation period affected reactivation we, post-hoc, looked at relevant measures during learning trials in contrast to retrieval trials. For all learning trial, for each participant, we calculated differential reactivation for the time point we found significant during the previous analysis (220-260 milliseconds). On average, differential reactivation probability increased from pre to post resting state (Figure 5D).

      […]

      Nevertheless, even though our results show a nominal increase in reactivation from learning to retrieval (see Figure 5D), our data does not enable us to show an hypothesized switch for sequential replay (see also “limitations” and Supplement 8).”

      Additionally, the main research question is not that clear to me. Based on the introduction, I thought the focus was on replay vs. clustered reactivation and high vs. low performance (which I think is really interesting). However, the title is more about reactivation strength and graph distance within cognitive maps. Are these two research questions related? And if so, how?

      We agree we need to be clearer on this point. We have added two sentences to the introduction, which should address this point. The section now reads:

      “[…] In particular, the question remains how the brain keeps track of graph distances for successful recall and whether the previously found difference between high and low performers also holds true within a more complex graph learning context.”

      (4) Learning the graph structure.

      I was wondering whether you have any behavioural measures to show that participants actually learn the graph structure (instead of just pairs or triplets of objects). For example, do you see that participants chose the distractor image that was closer to the target more frequently than the distractor image that was further away (close vs. distal target comparison)? It should be random at the beginning of learning but might become more biased towards the close target.

      Thanks, this is an excellent suggestion. Our analysis indeed shows that people take the near lure more often than the far lure in later blocks, while it is random in the first block.

      Nevertheless, we have decided to put these data into the supplement and reference it in the text. This is because analysis of the learning blocks is challenging and biased in general. Each participant had a different number of learning blocks based on their learning rate, and this makes it difficult to compare learning across participants. We have tried our best to accommodate and explain these difficulties in the figure legend. Nevertheless, we thank the referee for guidance here and this analysis indeed provides further evidence that participants learned the actual graph structure.

      The added section reads

      “Additionally, we have included an analysis showing how wrong answers participants provided were random in the first block and biased towards closer graph nodes in later blocks. This is consistent with participants actually learning the underlying graph structure as opposed to independent triplets (see figure and legend of Supplement 6 for details).”

      (5) Minor comments

      a) "Replay analysis relies on a successive detection of stimuli where the chance of detection exponentially decreases with each step (e.g., detecting two successive stimuli with a chance of 30% leaves a 9% chance of detecting the replay event). " Could you explain in more detail why 30% is a good threshold then?

      Thank you. We have further clarified the section. As we are working mainly with probabilities, it is useful to keep in mind that accuracy is a class metric that only provides a rough estimate of classifier ability. Alternatively, something like a Top-3-Accuracy would be preferable, but also slightly silly in the context of 10 classes.

      Nevertheless, subtle changes in probability estimates are present and can be picked up by the methods we employ. Therefore, the 30% is a rough lower bound and decided based on pilot data that showed that clean MEG data from attentive participants can usually reach this threshold. The section now reads:

      “(e.g., detecting two successive stimuli with a chance of 30% leaves a 9% chance of detecting a replay event). However, one needs to bear in mind that accuracy is a “winnertakes-all” metric indicating whether the top choice also has the highest probability, disregarding subtle, relative changes in assigned probability. As the methods used in this analysis are performed on probability estimates and not class labels, one can expect that the 30% are a rough lower bound and that the actual sensitivity within the analysis will be higher. Additionally, based on pilot data, we found that attentive participants were able to reach 30% decodability, allowing us to use decodability as a data quality check. “

      b) Could you make explicit how your decoders were designed? Especially given that you added null data, did you train individual decoders for one class vs. all other classes (n = 9 + null data) or one class vs. null data?

      We added detail to the decoder training. The section now reads

      “Decoders were trained using a one-vs-all approach, which means that for each class, a separate classifier was trained using positive examples (target class) and negative examples (all other classes) plus null examples (data from before stimulus presentation, see below). In detail, null data was.”

      c) Why did you choose a ratio of 1:2 for your null data?

      Our choice for using a higher ratio was based upon previous publications reporting better sensitivity of TDLM using higher ratios, as spatial sensor correlations are decreasing. Nevertheless, this choice was not well investigated beforehand. We have added more information to this to the manuscript

      d) You could think about putting the questionnaire results into the supplement if they are sanity checks.

      We have added the questionnaire results. However, due to the size of the tables, we have decided to add them as excel files into the supplementary files of the code repository. We have mentioned the existence file in the publication.

      e) Figure 2. There is a typo in D: It says "Precessor Image" instead of "Predecessor Image".

      Fixed typo in figure.

      f) You write "Trials for the localizer task were created from -0.1 to 0.5 seconds relative to visual stimulus onset to train the decoders and for the retrieval task, from 0 to 1.5 seconds after onset of the second visual cue image." But the Figure legend 3D starts at -0.1 seconds for the retrieval test.

      We have now clarified this. For the classifier cross-validation and transfer sanity check and clustered analysis we used trials from -0.1 to 0.5s, whereas for the sequenceness analysis of the retrieval, we used trials from 0 to 1.5 seconds

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all reviewers for their thorough assessment and constructive comments. We are glad that the reviewers appreciate that our findings are of interest to the nuclear transport field and that our extension of the use of the RITE methodology can be a valuable tool for the further characterization of NPCs that differ in composition and potentially function. In response to the reviewers’ comments, we have revised the text to incorporate their suggestions and improve overall readability and clarity. Furthermore, we propose to perform a set of additional experiments to address the reviewers’ most important critiques. Below we list our response with the reviewer comments reprinted in dark grey and our response in blue for easier orientation. We have added numbering of the comments for easier orientation.

      Many of the comments made by the reviewers have already been implemented, additional points will be addressed in a revised version of the manuscript as detailed below.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors extended the existing recombination-induced tag exchange (RITE) technology to show that they can image a subset of NPCs, improving signal-to-noise ratios for live cell imaging in yeast, and to track the stability or dynamics of specific nuclear pore proteins across multiple cell divisions. Further, the authors use this technology to show that the nuclear basket proteins Mlp1, Mlp2 and Pml39 are stably associated with "old NPCs" through multiple cell cycles. The authors show that the presence of Mlp1 in these "old NPCs" correlates with exclusion of Mlp1-positive NPCs from the nucleolar territory. A surprising result is that basket-less NPCs can be excluded from the non-nucleolar region, an observation that correlates with the presence of Nup2 on the NPC regardless of maturation state of the NPC. In support of the proposal that retention of NPCs via Mlp1 and Nup2 in non-nucleolar regions, simulation data is presented to suggest that basket-less NPCs diffuse faster in the plane of the nuclear envelope.

      However, there are some points that do need addressing:

      Major Points 1. Taking into account that the Nup2 result in Figure 4B forms the basis for one half of the proposed model in Figure 6 regarding the exclusion of NPCs from the nucleolar region of the NE, there is a relatively small amount of data in support of this finding and this proposed model. For example, the only data for Nup2 in the manuscript is a column chart in Figure 4B with no supporting fluorescence microscopy examples for any Nup2 deletion. Further, the Nup60 deletion mutant will have zero basket-containing NPCs, whereas the Nup2 deletion will be a mixture of basket-containing and basket-less NPCs. The only support for the localization of basket-containing NPCs in the Nup2 deletion mutant is through a reference "Since Mlp1-positive NPCs remain excluded from the nucleolar territory in nup2Δ cells (Galy et al., 2004), the homogenous distribution observed in this mutant must be caused predominantly by the redistribution of Mlp-negative NPCs into the nucleolar territory."

      We have already added fluorescent images of the nup2d strain to figure 4A in the preliminary revision.

      In addition, we will repeat the experiment from Galy et al. 2004 to test whether Mlp-positive NPCs are excluded from nucleoli in our hands as well.

      Furthermore, we propose to carry out more experiments to pinpoint which domains of Nup2 contribute to nucleolar exclusion, which will provide more insight into the mechanism behind this effect. We propose to do this by analyzing NPC localization in mutants expressing truncations of Nup2 with deletions for individual domains as their only copy of Nup2. Regardless of whether we find a single domain of Nup2 responsible of a combinatorial action, this experiment will indicate a potential molecular mechanism for nucleolar exclusion.

      1. The authors could consider utilizing this opportunity to discuss their technological innovations in the context of the prior work of Onischenko et al., 2020. This work is referenced for the statement "RITE can be used to distinguish between old and new NPCs" Page 2, Line 43. However, it is not referenced for the statement "We constructed a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark))" despite Onischenko et al., 2020 having already constructed a RITE-cassette for the GFP-to-dark transition. The authors could consider taking this opportunity to instead focus on their innovative approach to apply this technology to decrease the number of fluorescently-tagged NPCs by dilution across multiple cell divisions and to interpret this finding as a measure of the stability of nuclear pore proteins within the broader NPC.

      We apologize for this imprecise citation. We have modified the text to indicate that our RITE cassette was previously used in two publications. It now reads: “We used a RITE-cassette that allows the switch from a GFP-labelled protein to a new protein that is not fluorescently labelled (RITE(GFP-to-dark)) (Onischenko et al., 2020, Kralt et al., 2022). “

      1. The authors could also consider taking this opportunity to discuss their results in the context of the Saccharomyces cerevisiae nuclear pore complex structures published e.g. in Kim et al., 2018, Akey et al., 2022, Akey et al., 2023 in which the arrangement of proteins in the nuclear basket is presented, and also work from the Kohler lab (Mészáros et al., 2015) on how the basket proteins are anchored to the NPC. There is additional literature that also might help provide some perspective to the findings in the current manuscript, such as the observation that a lesser amount of Mlp2 to Mlp1 observed is consistent with prior work (e.g. Kim et al., 2018) and that intranuclear Mlp1 foci are also formed after Mlp1 overexpression (Strambio-de-Castillia et al., 1999).

      Following the reviewer’s suggestion, we extended our discussion of basket Nup stoichiometry and organization in the discussion section including several of the citations mentioned. At this point, we did not see a good way to incorporate discussion about the nuclear Mlp1 foci formed after Mlp1 overexpression. However, this observation is in line with the foci formed in cells lacking Nup60, suggesting that Mlp1 that cannot be incorporated into NPCs forms nuclear foci.

      Minor Points 1. What is the "lag time" of the doRITE switching? Do the authors believe that it is comparable to the approximate 1-hour timeframe following beta-estradiol induction as shown previously in Chen et al. Nucleic Acids Research, Volume 28, Issue 24, 15 December 2000, Page e108, https://doi.org/10.1093/nar/28.24.e108

      Our data (e.g. newRITE, Figure S3B) suggest that the switch occurs on a similar timeframe at

      1. The authors could consider a brief explanation of radial position (um) for the benefit of the reader, in Figures 1E (right panel) and 2B (right panel), perhaps using a diagram to make it easier to understand the X-axis (um).

      To address this, we have now included a diagram and refer to it in the figure legend.

      1. In Figure 1G, would the authors consider changing the vertical axis title and the figure legend wording from "mean number of NPCs per cell" to "mean labeled NPC # per cell" to reflect that what is being characterized are the remaining GFP-bearing NPCs over time?

      Thank you for spotting this inaccuracy. We have changed the label to “mean # of labeled NPCs per cell”.

      1. In Figure 2C, the magenta-labeled protein in the micrographs is not described in the figure or the legend.

      As requested, a description has been added in figure and legend.

      1. In Figure S2A, there is an arrow indicating a Nup159 focus, but this is not described in the figure legend, as is done in Figure 2C.

      A description has been added to the legend.

      1. In Figure S3C, the figure legend does not match the figure. Was this supposed to be designed like Figure 3C and is missing part of the figure? Or is the legend a typographical error?

      We apologize for this error and thank the reviewer for spotting it. The legend has been corrected.

      1. In Figure S4B, the spontaneously recombined RITE (GFP-to-dark) Nup133-V5 appears in the western blot as equally abundant to pre-recombined Nup133-V5-GFP. In the figure legend, this is explained as cells grown in synthetic media without selection to eliminate cells that have lost their resistance marker from the population. In Cheng et al. Nucleic Acids Res. 2000 Dec 15; 28(24): e108, Cre-EBD was not active in the absence of B-estradiol, despite galactose-induced Cre-EBD overexpression. Would the authors be able to comment further on the Cre-Lox RITE system in the manuscript?

      We note that also in the cited publication, cells are grown in the presence of selection to select (as stated in this publication) “against pre-excision events that occur because of low but measurable basal expression of the recombinase”. Although the authors report that spontaneous recombination is reduced with the b-estradiol inducible system (compared to pGAL expression control of the recombinase only), they show negligible spontaneous recombination only within a two-hour time window. Indeed, we also observe low levels of uninduced recombination on a short timeframe, but occasional events can become significant in longer incubation times (e.g. overnight growth) in the absence of selection. It should be noted that in our system, Cre expression is continuously high (TDH3-promoter) and not controlled by an inducible GAL promoter. We have added the information about the promoter controlling Cre-expression in the methods section.

      1. In Figure 6, the authors may want to consider inverting the flow of the cartoon model to start from the wild type condition and apply the deletion mutations at each step to "arrive" at the mutant conditions, rather than starting with mutant conditions and "adding back" proteins.

      Following the suggestions of the reviewer, we have modified our model to more clearly represent the contributions of the different basket components.

      Reviewer #1 (Significance (Required)):

      Recent work has drawn attention to the fact that not all NPCs are structurally or functionally the same, even within a single cell. In this light, the work here from Zsok et al. is an important demonstration of the kind of methodologies that can shed light on the stability and functions of different subpopulations of NPCs. Altogether, these data are used to support an interesting and topical model for Nup2 and nuclear-basket driven retention of NPCs in non-nucleolar regions of the nuclear envelope.

      We thank the reviewer for this positive assessment of our work.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study, Zsok et al. develop innovative methods to examine the dynamics of individual nuclear pore complexes (NPCs) at the nuclear envelope of budding yeast. The underlying premise is that with the emergence of biochemically distinct NPCs that co-exist in the same cell, there is a need to develop tools to functionally isolate and study them. For example, there is a pool of NPCs that lack the nuclear basket over the nucleolus. Although the nature of this exclusion has been investigated in the past, the authors take advantage of a modification of recombination induced tag exchange (RITE), the slow turnover of scaffold nups, the closed mitosis of budding yeast, and extensive high quality time lapse microscopy to ultimately monitor the dynamics of individual NPCs over the nucleolus. By leveraging genetic knockout approaches and auxin-induced degradation with sophisticated quantitative and rigorous analyses, the authors conclude that there may be two mechanisms dependent on nuclear basket proteins that impact nucleolar exclusion. They also incorporate some computational simulations to help support their conclusions. Overall, the data are of the highest quality and are rigorously quantified, the manuscript is well written, accessible, and scholarly - the conclusions are thus on solid footing.

      We thank the reviewer for this assessment.

      Reviewer #2 (Significance (Required)):

      I have no concerns about the data or the conclusions in this manuscript. However, the significance is not overly clear as there is no major conceptual advance put forward, nor is there any new function suggested for the NPCs over nucleoli. As NPCs are immobile in metazoans, the significance may also be limited to a specialized audience.

      We respectfully disagree with this assessment. It is becoming increasingly clear that NPC variants are also present in other model systems. We characterize the interaction between conserved nuclear components, the NPC, the nucleolus and chromatin. While the specific architecture of the nucleus varies between species, many of these interactions are conserved. For example, Nup50, the homologue of Nup2, interacts with chromatin also in other systems including mammalian cells and thus may contribute to regulating the interplay between the nuclear basket and adjoining chromatin. Furthermore, our work demonstrates the use of a novel approach in the application of RITE that can be useful for other researchers in the field of NPC biology and beyond. For example, doRITE could be applied to study the properties of aged NPCs in the context of young cells. In the revised manuscript, we attempt to better highlight and discuss the conceptual advances of our manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript of Zsok et al. describes the role of nuclear basket proteins in the distribution and mobility of nuclear pore complexes in budding yeast. In particular, the authors showed that the doRITE approach can be used for the analysis of stable and dynamically associated NUPs. Moreover, it can distinguish individual NUPs and follow the inheritance of individual NPCs from mother to daughter cells. The author's findings highlight that Mlp1, Mlp2, and Pml39 are stably associated with the nuclear pore; deletion of Mlp1-Mlp2 and Nup60 leads to the higher NPC density in the nucleolar territory; and NPCs exhibit increased mobility in the absence of the nuclear basket components.

      The manuscript contains most figures supporting the data, and data supports the conclusions. However, authors need to include better explanations for figures in the text and figure legends. Lack of detailed explanation can pose challenges for non-experts. In addition, the authors jump over figures and shuffle them through the manuscript, which disrupts the flow and coherence of the manuscript.

      We thank the reviewer for pointing this out. We have modified the figure legends throughout the manuscript in an attempt to make them more accessible to the reader. In addition, we will revise the figure order and text as suggested to improve the flow of the manuscript.

      Major comments: 1) The nuclear basket contains Nup1, Nup2, Nup60, Mlp1, and Mlp2 in yeast. Nup60 works as a seed for Mlp1/Mlp2 and Nup2 recruitment and plays a key role in the assembly of nuclear pore basket scaffold (PMID: 35148185). Logically, the authors focused primarily on Nup60 in the current manuscript. However, NUP153 has another ortholog of yeast - Nup1, which has not been studied in this work. I recommend adjusting the title of the manuscript to: Nup60 and Mlp1/Mlp2 regulate the distribution and mobility of nuclear pore complexes in budding yeast. I also suggest discussing why work on Nup1 was not included/performed in the manuscript.

      We have changed the title to “Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast”. We think that this better captures the essence of our manuscript than listing all four proteins (Mlp1/2, Nup60 and Nup2) in the title.

      We initially focused on the network that is involved in Mlp1/2 interaction at the NPC. However, we agree that it would be interesting to test, whether Nup1 plays a role in the analyzed processes as well. Since Nup1 is essential in our yeast background, we will use auxin-inducible degradation of Nup1 to test its involvement in NPC distribution.

      2) Figure 2B: I suggest choosing a more representative image for Pml39. It looks not like a stable component but rather dynamic as NUP60 or Gle1 based on figure showed in Figure 2B.

      Due to its lower copy number, Pml39 is much more difficult to visualize than the other Nups. To guide the reader, we have now added arrow heads to point to remaining Pml39 foci at the 14 hour timepoint. The 11 hour time point most clearly show that Pml39 is less dynamic than other Nups such as Nup116, Nup60 or Gle1. At this time point, clear dots for Pml39 can be detected, while e.g. Nup116 in the same figure exhibits a more distributed signal and the signal for Nup60 and Gle1 is no longer visible. We will describe this more clearly in our revised manuscript as well.

      3) Depletion of AID-tagged proteins needs to be supported by Western blot analysis with protein-specific antibodies, and PCR results should be included in supplementary data to demonstrate the homozygosity of the strains.

      The correct genomic tagging of the depleted proteins by AID was confirmed by PCR. We will include this PCR analysis in the supplemental data. Please note that we are working with haploid yeast cells. Therefore, all strains only carry a single copy of the genes. Unfortunately, we do not have protein-specific antibodies against the depleted proteins. However, the Mlp1-mislocalization phenotype demonstrates that depletion of Nup60 is successful and the depletion strain for PolII depletion was used and characterized previously (PMID: 31753862, PMID: 36220102).

      4) Figure 5B: Snapshots of images from the movie are required. There are no images, only quantifications.

      We have replaced the supplemental movie with a movie showing the detection by Trackmate as well as overlaid tracks. As requested, a snapshot of this movie was inserted in figure 5B. We have also moved the example tracks from the supplement to the main figure. Furthermore, we will deposit the tracking dataset in the ETH Research Collection to make it available to the community.

      5) Description of figure legends is more technical than supporting/explaining the figure. For example, below my suggestions for Figure 1D. Please, consider more detailed explanation for other figures. (D) Left: Schematic of the RITE cassette. NUP of interest is tagged with V5 tag and eGFP fluorescent protein where LoxP sites flank eGFP. Before the beta-estradiol-induced recombination, the old NPCs are marked with eGFP signal, whereas new NPCs lack an eGFP signal after the recombination. ORF: open reading frame; V5: V5-tag; loxP: loxP recombination site; eGFP: enhanced green fluorescent protein. Right: doRITE assay schematic of stable or dynamic Nup behavior over cell divisions in yeast after the recombination.

      We have modified the figure legends throughout the manuscript to make them more explanatory and helpful for the reader.

      In addition, I recommend highlighting the result in the title of the figures. Please, re-consider titles for Figure S3.

      We have revised the title for Figure S3 to state a result. It now reads: “Mlp1 truncations localize preferentially to non-nucleolar NPCs.”

      Minor: i) P.1 Line 31. Extra period symbol before the "(Figure 1A)".

      Fixed

      ii) P.2 Line 10. Inconsistent writing of PML39 and MLP1. Both genes are capitalized. The same for P.4 Line 16. In some cases all letters are capitalized in other only the first one.

      We are following the official yeast gene nomenclature by spelling gene names in italicized capitals and protein names with only the first letter capitalized. We are sorry that this can be confusing for readers more familiar with other model systems but we adhere to the accepted yeast nomenclature standards.

      iii) P.2 Line 18-22. The sentence is too long and hard to read. I recommend splitting it into two sentences.

      We agree and have fixed this.

      iv) P.2-3 Line 46-47. The sentence is unclear. Suggestion: We expected that successive cell divisions would dilute the signal of labelled and stably associated with the NPC nucleoporins. By contrast, ...

      We have modified the sentence to read: “When tagging a Nup that stably associates with the NPC, we expected that successive cell divisions would dilute labelled NPCs by inheritance to both mother and daughter cells leading to a low density of labelled NPCs. By contrast,…”

      v) P.4 Line 17-21. Please, consider adding extra information and clarifying lines 19-21. For example, in Line 19 Figure 2B you can add that the reader needs to compare row 1 and row 4.

      Thank you, we have fixed this as suggested.

      vi) P. 5 Line 15. When a number begins a sentence, that number should always be spelled out. You can pe-phrase the sentence to avoid it. Also, I recommend adding an explanation/hypothesis of why new NPCs are less frequently detected in nucleolar territory.

      We have formatted the text. Interestingly, new NPCs are more frequently detected in the nucleolar territory. We have reformulated this section to make it clearer, also in response to the next comment.

      vii) P.5 Line 17-22. I recommend re-phrasing these two sentences. Logically, it is clear that Mlp1/Mlp2 loss mimics "old NPCs" to look more like "new NPCs", and for that reason, they are more frequently included in the nucleolar territory, but it is not clear when you read these two sentences from the first time.

      We have reformulated this section to make it clearer.

      viii) P6. Line 16. No figure supporting data on graph (Figure 3B).

      We have added fluorescent images of the nup2d strain to figure 4A.

      ix) P.7 Line 10-13. The sentence is unclear.

      We have shortened the sentence and moved part of the content to the discussion in the next paragraph.

      x) P.13,14 etc. If 0h timepoint has been used for normalization, why is it present on the graph?

      The 0h timepoint is shown for comparison and to illustrate the standard deviation in the data.

      xi) P.15. Line 32-33. There is no image here. Potentially wrong description of the figure.

      Thank you for spotting this. This was fixed.

      xii) Figures: - Inconsistent labeling of figures. For example, Fig.1, Fig.1S, Figure 2 etc.

      Thank you, this has been corrected.

      • Inconsistent labeling of figures. For example, Fig.1 G "mean number of NPCs per cell" - no capitalization of the first letter. Fig.1S "Fraction in population" is capitalize d. In general, titles of axis should be capitalized.

      Thank you for spotting this. This was fixed.

      Suggestions for Figure 1D and Figure 6 are attached as a separate file.

      We thank the reviewer for their suggestions to improve these figures. We have taken their recommendation and revised the figures accordingly (see also response to reviewer 1, minor point 8).

      Reviewer #3 (Significance (Required)):

      Zsok et al. used the recombination-induced tag exchange (RITE) approach, which is an interesting and powerful method to follow individual NUPs over time with respect to their localization and abundance. This approach has been used before in PMID: 36515990 to distinguish pre-existing and newly synthesized Nup2 populations and has been extended to other basket NUPs in this work. Using this method, the authors support the earlier data on basket nucleoporins and highlight new insights on how basket nucleoporins regulate NPCs distribution and mobility. Overall, the manuscript provides new details on the stability of nucleoporins in yeast and how these data align with the mass spectrometry and FRAP data performed earlier in other studies. The limitation of this study is the absence of data on Nup1. It was unclear why these data were not present. Additional data can be included on the dynamics of Pml39, for example, using the FRAP method. The dynamic of Pml39 at the pore was shown only using the doRITE method.

      As suggested, we propose to test whether Nup1 influences NPC organization (see also above). Unfortunately, we are not able to provide orthologous data for the dynamics of Pml39. As we have discussed in the manuscript, FRAP is not suitable for the analysis of the dynamics of most nucleoporins in yeast due to the high lateral mobility of NPCs in the nuclear envelope and has previously generated misleading results for Mlp1. Furthermore, the low expression levels of Pml39 will make it difficult to obtain reliable FRAP curves for this protein. We therefore do not think that adding FRAP experiments with Pml39 will provide valuable insight.

      However, in addition to the Pml39 doRITE result itself, our observation that the Pml39-dependent pool of Mlp1 exhibits stable association with the NPC supports the interpretation of Pml39 as a stable protein as well.

      In general, this study represents a unique research study of basic research on nuclear pore proteins that will be of general interest to the nuclear transport field.

      Field of expertise: nuclear-cytoplasmic transport, nuclear pore, inducible protein degradation. I do not have sufficient expertise in ExTrack.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      We are grateful for the overall positive feedback from the reviewer.

      We agree with the reviewer that our data showing cellular co-localization between PRC1 and BIN1 requires further investigation in future studies, however, we are confident that in the current form, our manuscript already presents multiple evidences for the role of BIN1 in mitotic processes. We would like to emphasize that PRC1 is not the sole BIN1 partner that connects it to mitotic processes, but it is only one out of more than a dozen that we identified in our study. Furthermore, the mitotic connection with BIN1 is not absolutely novel as BIN1 levels are mildly fluctuating during the cell cycle, similar to other proteins involved in the regulation of the cell cycle (Santos et al., 2015) and because DNM2 is also a well-accepted actor during mitosis (Thompson et al., 2002).

      The less marked co-localization between BIN1 and PRC1 compared to the strong co-localization between BIN1 and DNM2 can be a consequence of their weaker affinity and their partial binding. Yet, this does not necessarily imply that stronger interactions have more biological significance. For example, weaker affinities can be compensated by local concentrations to achieve an even higher degree of cellular complexes than of strongly binding interactions that are separated within the cell. Furthermore, even the degree of complex formation cannot be used intuitively to estimate the biological significance of a complex because complexes can trigger very important biological processes even at very low abundances, e.g. by catalyzing enzymatic reactions. Deciding what is and what is not “biologically significant” among the identified interactions remains to be answered in the future, once we are able to overview complex biological processes in a holistic manner.

      In the revised version, we implemented minor changes to further clarify the raised points.

      Reviewer #2:

      We thank the reviewer for the careful assessment and we are pleased to see the positive enthusiasm regarding our affinity interactomic strategy.

      The reviewer points out that affinities were only measured with a single technique, which is relatively unproven. While it is true that our work uses two techniques building on the same holdup concept, we rather believe that this approach is well-proven. The original holdup method was described almost 20 years ago and since then, it has been used in more than 10 publications for quantitative interactomics. Over the years, at least five distinct generations of the assay were developed, all building on the expertise of the preceding one. In the past, we extensively proved that the resulting affinities show excellent agreement with affinities measured with other methods, such as fluorescence polarization, isothermal titration calorimetry, or surface plasmon resonance (for example in Vincentelli et al. Nat. Meth. 2015; Gogl et al. 2020 Structure; Gogl et al. 2022 Nat.Com.). However, it is true that the most recent variation of this method family, called native holdup, is a fairly new approach published just a bit more than a year ago and this is only the third work that utilizes this method. Yet, in our original work describing the method, we demonstrated good agreement with the results of previous holdup experiments, as well as with orthogonal affinity measurements (Zambo et al. 2022).

      Importantly, the reviewer raises concerns regarding the number of replicates used in our study, as well as the reliability of our methodology. We are glad for such a comment as it allows us to explain our motives behind experimental design which is most often left out from scientific works to save space and keep focus on results. The reason why we use technical replicates instead of the typical biological replicates lies in the nature of the holdup assay. In a typical interactomic assay, such as immunoprecipitation, a lot of variables can perturb the outcome of the measurement, such as bait immobilization, or captured prey leakage during washing steps. The output of such an experiment is a list of statistically significant partners and to minimize these variabilities, biological replicates are used. In the case of a native holdup approach, a panel of an equal amount of resins, all saturated with different baits or controls, is mixed with an equal amount of cell extract, taken from a single tube, and after a brief incubation, the supernatant of this mixture is analyzed. The output of such an experiment is a list of relative concentrations of prey and to maximize its accuracy, we use technical replicates. Using an ideal analytical method, such as fluorescence, it is not necessary to use technical replicates to reach accurate results. For example, the general accuracy of a holdup experiment coupled with a robust analytical approach can be seen clearly in our fragmentomic holdup data shown in Figure 7C where mutant domains that do not have any impact on the interactome show extreme agreement in affinities. Unfortunately, mass spectrometry is less accurate as an analytical method, hence we use technical triplicates to compensate for this. Finally, in the case of BIN1, an independent nHU measurement was also performed using a less capable mass spectrometer. Not counting the 117 detected partners of BIN1 that were only detected in only one of these proteomic measurements, 29 partners were identified as common significant partners in both of these measurements showing nearly identical affinities with a mean standard deviation between measured pKapp values of 0.18, meaning that the obtained dissociation constants are within a <2.5-fold range with >95% probability. There were also 61 BIN1 partners that were detected in both proteomic measurements but were only identified as a significant interaction partner in one of these experiments. Yet many of them show binding in both assays, albeit were found to be not significant in one of these assays. For example, CDC20 shows 66% depletion in one assay (significant binding) while it shows 54% depletion in the other (not significant binding), or CKAP2 shows 58% depletion in one assay (significant binding) while it shows 41% depletion in the other (not significant binding). We hope that these examples show that statistical significance in nHU experiments rather signifies how certain we are in a particular affinity measurement and not the accuracy of the affinity measurement itself. While there are true discrepancies between some of the affinity measurements between these experiments, that would be possible to clarify with more experimental replicates, the raw data presented in our work clearly demonstrate the strength and robustness of a fully quantitative interactomic assay.

      In the revised version, we clarified the number of replicates in the text, in the figure legends, and included some of this discussion in the method section.

      The reviewer had some very useful comments regarding affinity differences between short fragments and full-length proteins. In his comment, he possibly made a typo as we find that fulllength proteins typically interact with higher affinities compared to short PxxP motif fragments in isolation and not weaker. The reviewer also comments that we explain this difference with cooperativity. In a previous preprint version, which the reviewer may have seen, this was indeed the case, but since we realized that we did not have sufficient evidence supporting this model, therefore we did not discuss this in detail in the last version submitted to eLife. To clarify this, we included more discussion about the observed differences in the affinities between fragments and full-length proteins, but since we have limited data to make solid conclusions, we do not go into details about underlying models.

      Instead of cooperativity, the reviewer suggests that the observed differences may originate from additional residues that were not included in our peptides. Indeed, many similar experiments fail because of suboptimal peptide library design. Our peptide library was constructed as 15-mer, xxxxxxPxxPxxxxx motifs and we do not see a strong contribution of residues at the far end of these peptides. Specificity logo reconstructions are expected to identify all key residues that participate in SH3 domain binding, and based on this, all key residues of the identified motifs can be included in shorter 10-mer, xxxPxxPxxx motifs. Therefore, it is unlikely that residues outside our peptide regions will greatly contribute to the site-specific interactions of SH3 domains. It is however possible that other sites, that are sequentially far away from the studied PxxP motifs, are also capable of binding to SH3 through a different surface, but in light of the small size of an isolated SH3 domain, we believe it is very unlikely. It is also possible that BIN1 could also interact with other types of SH3 binding motifs that were not included in our peptide library. We think a more likely explanation is some sort of cooperativity. Cooperativity, or rather synergism between different sites can be easily explained in typical situations, such as in the case of a bimolecular interaction that is mediated by two independent sites. In such an event, once one site is bound, the second binding event will likely also occur because of the high effective local concentration of the binding sites. However, cooperativity can also form in atypical conditions and a molecular explanation for these events is rather elusive. As BIN1 contains a single SH3 domain, its binding to targets containing more binding sites can be challenging to interpret. If these sites are part of a greater Pro-rich region, such as in the case of DNM2, it is possible that the entire region adopts a fuzzy, malleable, yet PPII-like helical conformation. Once the SH3 domain is recruited to this helical region, it can freely trans-locate within this region via lateral diffusion and it will pause on optimal PxxP motifs. As an alternative to this sliding mechanism, a diffusion-limited cooperative binding can also occur. If the two motifs are not part of the same Pro-rich region, but are relatively close in space, such as in the case of ITCH or PRC1, once a BIN1 molecule dissociates from one site, it has a higher chance to rebind to the second site due to higher local concentrations. Such an event can more likely occur if a transient, but relatively stable encounter complex exists between the two molecules, from which complex formation can occur at both sites (A+B↔AB; AB↔ABsite1; AB*↔ABsite2). However, this large effective local concentration in this encounter complex is only temporary because diffusion rapidly diminishes it, although weak electrostatic interactions can increase the lifetime of such encounter complexes. In contrast, the large effective local concentration in conventional multivalent binding is time-independent and only determined by the geometry of the complex. Finally, it may also occur that our empirical bait concentration estimation for immobilized biotinylated proteins is less accurate than the concentration estimation of peptide baits because we approximate this value based on peptide baits. For this technical reason, which was discussed in detail in the original paper describing the nHU approach, we are carefully using apparent affinities for nHU experiments. Nevertheless, even without accurate bait concentrations, our nHU experiment provides precise relative affinities and, thus partner ranking. Either of the mechanisms underlying the interactions we study would be difficult to further explore experimentally, especially at the proteomic level.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      We greatly appreciate the comments from the editor and the reviewers, based on which we have made the revisions. We have responded to all the questions and summarized the revisions below. The changes are also highlighted in the manuscript.

      Additionally, we’ve noticed a few typos in the manuscript presented on the eLife website, which were not there in our originally submitted file.

      (1) In both the “Full text” presented on the eLife website and the pdf file generated after clicking “Download”: the last FC1000 in the second paragraph of the “Extensive induction curves fitting of TetR mutants” section should be FC1000WT .

      (2) In the pdf file generated after clicking “Download”: the brackets are all incorrectly formatted in the captions of Figure 4 and Figure 3—figure supplement 6.

      eLife assessment

      The fundamental study presents a two-domain thermodynamic model for TetR which accurately predicts in vivo phenotype changes brought about as a result of various mutations. The evidence provided is solid and features the first innovative observations with a computational model that captures the structural behavior, much more than the current single-domain models.

      We appreciate the supportive comments by the editor and reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors’ earlier deep mutational scanning work observed that allosteric mutations in TetR (the tetracycline repressor) and its homologous transcriptional factors are distributed across the structure instead of along the presumed allosteric pathways as commonly expected. Especially, in addition, the loss of the allosteric communications promoted by those mutations, was rescued by additional distributed mutations. Now the authors develop a two-domain thermodynamic model for TetR that explains these compelling data. The model is consistent with the in vivo phenotypes of the mutants with changes in parameters, which permits quantification. Taken together their work connects intra- and inter-domain allosteric regulation that correlate with structural features. This leads the authors to suggest broader applicability to other multidomain allosteric proteins. Here the authors follow their first innovative observations with a computational model that captures the structural behavior, aiming to make it broadly applicable to multidomain proteins. Altogether, an innovative and potentially useful contribution.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      None that I see, except that I hope that in the future, if possible, the authors would follow with additional proteins to further substantiate the model and show its broad applicability. I realize however the extensive work that this would entail.

      We thank the reviewer for the supportive comments and the suggestion to extend the model to other proteins, which we indeed plan to pursue in future studies.

      Reviewer #2 (Public Review):

      Summary:

      This combined experimental-theoretical paper introduces a novel two-domain statistical thermodynamic model (primarily Equation 1) to study allostery in generic systems but focusing here on the tetracycline repressor (TetR) family of transcription factors. This model, building on a function-centric approach, accurately captures induction data, maps mutants with precision, and reveals insights into epistasis between mutations.

      Strengths:

      The study contributes innovative modeling, successful data fitting, and valuable insights into the interconnectivity of allosteric networks, establishing a flexible and detailed framework for investigating TetR allostery. The manuscript is generally well-structured and communicates key findings effectively.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      The only minor weakness I found was that I still don’t have a better sense into (a) intuition and (b) mathematical derivation of Equation 1, which is so central to the work. I would recommend that the authors provide this early on in the main text.

      We thank the reviewer for the suggestion. The full mathematical derivation of Equation 1 is given in the first section of the supplementary file. Given the length of the derivation, we think it’s better to keep it in the supplementary file rather than the main text. In the main text, the first subsection (overview of the two-domain thermodynamic model of allostery) of the Results section and the paragraph right before Equation 1 are meant for providing intuitive understandings of the two-domain model and the derivation of Equation 1, respectively.

      We would also like to point the reviewer to Figure 2-figure supplement 2 and Equations (12) to (18) in the supplementary file for an alternative derivation. They show that the equilibria among all molecular species containing the operator are dictated by the binding free energies, the ligand concentration, and the allosteric parameters. The probability of an unbound operator (proportional to the probability that the promoter is bound by a RNA polymerase, or the gene expression level) can thus be calculated using Equation (12), which then leads to main text Equation 1 following the derivation given there.

      Additionally, we’ve added a paragraph to the main text (line 248-260) to aid an intuitive understanding of Equation 1.

      “The distinctive roles of the three biophysical parameter on the induction curve as stipulated in Equation 1 could be understood in an intuitive manner as well. First, the value of εD controls the intrinsic strength of binding of TetR to the operator, or the intrinsic difficulty for ligand to induce their separation. Therefore, it controls how tightly the downstream gene is regulated by TetR without ligands (reflected in leakiness) and affects the performance limit of ligands (reflected in saturation). Second, the value of εL controls how favorable ligand binding is in free energy. When εL increases, the binding of ligand at low concentrations become unfavorable, where the ligands cannot effectively bind to TetR to induce its separation from the operator. Therefore, the fold-change as a function of ligand concentration only starts to noticeably increase at higher ligand concentrations, resulting in larger EC50. Third, as discussed above, γ controls the level of anti-cooperativity between the ligand and operator binding of TetR, which is the basis of its allosteric regulation. In other words, γ controls how strongly ligand binding is incompatible with operator binding for TetR, hence it controls the performance limit of ligand (reflected in saturation).”

      We hope that the reviewer will find this explanation helpful.

      Reviewer #3 (Public Review):

      Summary:

      Allosteric regulations are complicated in multi-domain proteins and many large-scale mutational data cannot be explained by current theoretical models, especially for those that are neither in the functional/allosteric sites nor on the allosteric pathways. This work provides a statistical thermodynamic model for a two-domain protein, in which one domain contains an effector binding site and the other domain contains a functional site. The authors build the model to explain the mutational experimental data of TetR, a transcriptional repress protein that contains a ligand and a DNA-binding domain. They incorporate three basic parameters, the energy change of the ligand and DNA binding domains before and after binding, and the coupling between the two domains to explain the free energy landscape of TetR’s conformational and binding states. They go further to quantitatively explain the in vivo expression level of the TetR-regulated gene by fitting into the induction curves of TetR mutants. The effects of most of the mutants studied could be well explained by the model. This approach can be extended to understand the allosteric regulation of other two-domain proteins, especially to explain the effects of widespread mutants not on the allosteric pathways. Strengths: The effects of mutations that are neither in the functional or allosteric sites nor in the allosteric pathways are difficult to explain and quantify. This work develops a statistical thermodynamic model to explain these complicated effects. For simple two-domain proteins, the model is quite clean and theoretically solid. For the real TetR protein that forms a dimeric structure containing two chains with each of them composed of two domains, the model can explain many of the experimental observations. The model separates intra and inter-domain influences that provide a novel angle to analyse allosteric effects in multi-domain proteins.

      We thank the reviewer for the supportive comments.

      Weaknesses:

      As mentioned above, the TetR protein is not a simple two-main protein, but forms a dimeric structure in which the DNA binding domain in each chain forms contacts with the ligand-binding domain in the other chain. In addition, the two ligand-binding domains have strong interactions. Without considering these interactions, especially those mutants that are on these interfaces, the model may be oversimplified for TetR.

      We thank the reviewer for this valid concern and acknowledge that TetR is a homodimer. However, we’ve deliberately chosen to simplify this complexity in our model for the following reasons.

      (1) In this work, we aim to build a minimalist model for two-domain allostery withonly the most essential parameters for capturing experimental data. The simplicity of the model helps promote its mechanistic clarity and potential transferability to other allosteric systems.

      (2) Fewer parameters are needed in a simpler model. Our two-domain modelcurrently uses only three biophysical parameters, which are all demonstrated to have distinct influences on the induction curve (see the main text section “System-level ramifications of the two-domain model”). This enables the inference of parameters with high precision for the mutants, and the quantification of the most essential mechanistic effects of their mutations, provided that the model is shown to accurately recapitulate the comprehensive dataset. Thus, we found it was unnecessary to add another parameter for explicitly describing inter-chain coupling, which would likely incur uncertainty in the inference of parameters due to the redundancy of their effects on induction data, and prevent the model from making faithful predictions.

      (3) From a more biological point of view, TetR is an obligate dimer, meaning thatthe two chains must synchronize for function, supporting the two-domain simplification of TetR for binding concerns.

      Additionally, as shown in the subsection “Inclusion of single-ligand-bound state of repressor” of section 1 of the supplementary file, incorporating the dimeric nature of TetR in our model by allowing partial ligand binding does not change the functional form of main text equation 1 in any practical sense. Therefore, considering all the factors stated above, we think that increasing the complexity of the two-domain model will only be necessary if additional data emerge to suggest the limitation of our model.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This is an excellent work. I have only one suggestion for the authors. Interestingly, the authors also note that the epistatic interactions that they obtain are consistent with the structural features of the protein, which is not surprising. Within this framework, have the authors considered rescue mutations? Please see for example PMID: 18195360 and PMID: 15683227. If I understand right, this might further extend the applicability of their model. If so, the authors may want to add a comment to that effect.

      We thank the reviewer for the supportive comments and for pointing us to the useful references. We have added some comments to the main text regarding this point in line 332-336: “The diverse mechanistic origins of the rescuing mutations revealed here provide a rational basis for the broad distributions of such mutations. Integrating such thermodynamic analysis with structural and dynamic assessment of allosteric proteins for efficient and quantitative rescuing mutation design could present an interesting avenue for future research, particularly in the context of biomedical applications (PMID: 18195360, PMID: 15683227).”

      Reviewer #3 (Recommendations For The Authors):

      The authors should try to build a more realistic dimeric model for TetR to see if it could better explain experimental data. If it were too complicated for a revision, more discussions on the weakness of the current model should be given.

      We thank the reviewer for this valid concern and for the suggestion. The reasons for refraining from increasing the complexity of the model are fully discussed in our response to the reviewer’s public review given above. Primarily, we think that the value of a simple physical model is two-fold (e.g., the paradigm Ising model in statistical physics and the classic MWC model), first, its mechanistic clarity and potential transferability makes it a useful conceptual framework for understanding complex systems and establishing universal rules by comparing seemingly unrelated phenomena; second, it provides useful insights and design principles of specific systems if it can quantitatively capture the corresponding experimental data. Thus, given the current experimental data set, we believe it is justified to keep the two-domain model in its current form, while additional experimental data could necessitate a more complex model for TetR allostery in the future. Relevant discussions are added to the main text (line 443-446) and section 8 of the supplementary file.

      “It’s noted that the homodimeric nature of TetR is ignored in the current two-domain model to minimize the number of parameters, and additional experimental data could necessitate a more complex model for TetR allostery in the future (see supplementary file section 8 for more discussions).”

      Minor issues:

      (1) There is an error in Figure 3A, the 13th and 14th subgraphs are the same and should be corrected.

      We thank the reviewer for capturing this error, which has been corrected in the revised manuscript.

      (2) The criteria for the selection of mutants for analysis should be clearly given. Apart from deleting mutants that are in direct contact with the ligand of DNA, how many mutants are left, and how far are they are from the two sites? In line 257, what are the criteria for selecting these 15 mutants? Similarly, in line 332, what are the criteria for selecting these 8 mutants?

      We thank the reviewer for this comment. The data selection criteria are now added in section 7 of the supplementary file. The distances to the DNA operator and ligand of the 21 residues under mutational study are now added in Table 1 (Figure 3-figure supplement 9). The added materials are referenced in the main text where relevant.

      “7. Mutation selection for two-domain model analysis

      In this work, there are 24 mutants studied in total including the WT, and they contain mutations at 21 WT residues. We did not perform model parameter inference for the mutant G102D because of its flat induction curve (see the second subsection of section 2 and main text Figure 2—figure Supplement 3). Therefore, there are 23 mutants analyzed in main text Figure 5.

      Measuring the induction curve of a mutant involves a significant amount of experimental effort, which therefore is hard to be extended to a large number of mutants. Nonetheless, we aim to compose a set of comprehensive induction data here for validating our two-domain model for TetR allostery. To this end, we picked 15 individual mutants in the first round of induction curve measurements, which contains mutations spanning different regions in the sequence and structure of TetR (main text Figure 3—figure Supplement 1). Such broad distribution of mutations across LBD, DBD and the domain interface could potentially lead to diverse induction curve shapes and mutant phenotypes for validating the two-domain model. Indeed, as discussed in the main text section "Extensive induction curves fitting of TetR mutants", the diverse effects on induction curve from mutations perturbing different allosteric parameters predicted by the model, are successfully observed in these 15 experimental induction curves. Additionally, 5 of the 15 mutants contain a dead-rescue mutation pair, which helps us validate the model prediction that a dead mutation could be rescued by rescuing mutations that perturb the allosteric parameters in various ways.

      Eight mutation combinations were chosen for the second round of induction curve measurement for studying epistasis, where we paired up C203V and Y132A with mutations from different regions of the TetR structure. Such choice is largely based on two considerations. 1. As both C203V and Y132A greatly enhance the allosteric response of TetR, we want to probe why they cannot rescue a range of dead mutations as observed previously (PMID: 32999067). 2. C203V and Y132A are the only two mutants that show enhanced allosteric response in the first round of analysis. Combining detrimental mutations of allostery in a combined mutant could potentially lead to near flat induction curve, which is less useful for inference (see the second subsection of section 2).”

      Since the number of hotspots identified by DMS is not very large, why not analyze them all?

      We thank the reviewer for this comment. There are 41 hotspot residues in TetR (PMID: 36226916), which have 41*19=779 possible single mutations. It’s unfeasible to perform induction curve measurements for all of these 779 mutants in our current experiment. However, we agree that it would be helpful if we can obtain such a dataset in an efficient way.

      In line 257, there are 15 mutants mentioned, while in Figure 5, there are 23 mutants mentioned, in Figure 3-figure supplement 1, there are 21 mutants mentioned, and in line 226 of the supplementary file, there are 24 mutants mentioned, which is very confusing. Therefore, the data selection criteria used in this article should be given.

      We thank the reviewer for this comment. The data selection criteria are now given in section 7 of the supplementary file, which should clarify this confusion.

      (3) In Figure 4 of the Exploring epistasis between mutations section, the 6 weights of the additive models corresponding to each mutation combination are different. On one hand, it seems that there are no universal laws in these experimental data. On the other hand, unique parameters of a single mutation combination were not validated in other mutation combinations, which somewhat weakened the conclusions about the potential physical significance of these additive weights.

      We thank the reviewer for this comment. We admit that a quantitative universal law for tuning the 6 weights of the additive model does not manifest in our data, which indicates the mutation-specific nature of epistatic interactions in TetR as hinted in the different rescuing mutation distributions of different dead mutations (PMCID: PMC7568325). However, clear common trends in the weight tuning of combined mutants that contain common mutations do emerge, which comply with the structural features of the protein and provide explanations as to why C203V and Y132A don’t rescue a range of dead mutations (main text section “Exploring epistasis between mutations”). Additionally, the lack of a quantitative universal rule for tuning the 6 weights in our simple model doesn’t exclude the possibility of the existence of universal law for epistasis in TetR in another functional form, a point that could be explored in the future with more extensive joint experimental and computational investigations.

      In Eq. (27) of the supplementary file, the prior distribution of inter-domain coupling γ is given as a Gaussian distribution centered at 5 kBT. Since the absolute value of γ is important, can the authors explain why the prior distribution of γ is set to this value and what happens if other values are used?

      We thank the reviewer for the question. As explained in the corresponding discussions of Eq. (27) in the supplementary file, the prior of γ is chosen to serve as a soft constraint on its possible values based on the consideration that 1. inter-domain energetics for a TetR-like protein should be on the order of a few kBT; and 2. the prior distribution should reflect the experimental observation in the literature that γ has a small probability of adopting negative values upon mutations. Given our thorough validation of the statistical model and computational algorithm (see section 3 of the supplementary file), and the high precision in the parameter fitting results using experimental data (Figure 3 and Figure 4-figure supplement 2), we conclude that 1. the physical range of parameters encoded in their chosen prior distributions agrees well with the value reflected in the experimental data; 2. the inference results are predominantly informed by the data. Thus, changing the mean of the prior distribution of γ should not affect the inference results significantly given that it remains in the physical range.

      This point is explicitly shown in the added Table 2 (Figure 3-figure supplement 10), where we compare the current Bayesian inference results with those obtained after increasing the standard deviation of the Gaussian prior of γ from 2.5 to 5 kBT. As shown in the table, most inference results stay virtually unchanged at the use of this less informative prior, which confirms that they are predominantly informed by the data. The only exceptions are the slight increase of the inferred γ values for C203V, C203V-Y132A and C203V-G102D-L146A, reflecting the intrinsic difficulty of precise inference of large γ values with our model, as is already discussed in the second subsection of section 3 of the supplementary file. However, such observations comply with the common trend of epistatic interactions involving C203V presented in the main text and don’t compromise the ability of our model to accurately capture the induction curves of mutants. Relevant discussions are now added to the second subsection of section 3 of the supplementary file (line 368-385).

      “In our experimental dataset, such inference difficulty is only observed in the case of C203V, Y132A-C203V and C203V-G102D-L146A due to their large γ and γ + εL values (see main text Figure 3, Figure 3—figure Supplement 10 and Figure 4). As shown in main text Figure 3—figure Supplement 10, the inference results for the other 20 mutants stay highly precise and virtually unchanged after increasing the standard deviation of the Gaussian prior of γ (gstdγ ) from 2.5 to 5 kBT. This demonstrates that the inference results for these mutants are strongly informed by the induction data and there is no difficulty in the precise inference of the parameter values. On the other hand, the inferred γ values (especially the upper bound of the 95% credible region) for C203V, Y132A-C203V and C203V-G102D-L146A increased with gstdγ . This is because the induction curves in these cases are not sensitive to the value of γ given that it’s large enough as discussed above. Hence, when unphysically large γ values are permitted by the prior distribution, they could enter the posterior distribution as well. Such difficulty in the precise inference of γ values for these three mutants however, doesn’t compromise the ability of our model in accurately capturing the comprehensive set of induction data (see part iv below). Additionally, the increase of the inferred γ value of C203V at the use of larger gstdγ complies with the results presented in main text Figure 4, which show that the effect of C203V on γ tends to be compromised when combined with mutations closer to the domain interface."

    1. Reviewer #3 (Public Review):

      Summary:

      Lichtinger et al. have used an extensive set of molecular dynamics (MD) simulations to study the conformational dynamics and transport cycle of an important member of the proton-coupled oligopeptide transporters (POTs), namely SLC15A2 or PepT2. This protein is one of the most well-studied mammalian POT transporters that provides a good model with enough insight and structural information to be studied computationally using advanced enhanced sampling methods employed in this work. The authors have used microsecond-level MD simulations, constant-PH MD, and alchemical binding free energy calculations along with cell-based transport assay measurements; however, the most important part of this work is the use of enhanced sampling techniques to study the conformational dynamics of PepT2 under different conditions.

      The study attempts to identify links between conformational dynamics and chemical events such as proton binding, ligand-protein interactions, and intramolecular interactions. The ultimate goal is of course to understand the proton-coupled peptide and drug transport by PepT2 and homologous transporters in the solute carrier family.

      Some of the key results include<br /> (1) Protonation of H87 and D342 initiate the occluded (Occ) to the outward-facing (OF) state transition.

      (2) In the OF state, through engaging R57, substrate entry increases the pKa value of E56 and thermodynamically facilitates the movement of protons further down.

      (3) E622 is not only essential for peptide recognition but also its protonation facilitates substrate release and contributes to the intracellular gate opening. In addition, cell-based transport assays show that mutation of residues such as H87 and D342 significantly decreases transport activity as expected from simulations.

      Strengths:

      (1) This is an extensive MD-based study of PepT2, which is beyond the typical MD studies both in terms of the sheer volume of simulations as well as the advanced methodology used. The authors have not limited themselves to one approach and have appropriately combined equilibrium MD with alchemical free energy calculations, constant-pH MD, and geometry-based free energy calculations. Each of these 4 methods provides a unique insight regarding the transport mechanism of PepT2.

      (2) The authors have not limited themselves to computational work and have performed experiments as well. The cell-based transport assays clearly establish the importance of the residues that have been identified as significant contributors to the transport mechanism using simulations.

      (3) The conclusions made based on the simulations are mostly convincing and provide useful information regarding the proton pathway and the role of important residues in proton binding, protein-ligand interaction, and conformational changes.

      Weaknesses:

      (1) Some of the statements made in the manuscript are not convincing and do not abide by the standards that are mostly followed in the manuscript. For instance, on page 4, it is stated that "the K64-D317 interaction is formed in only ≈ 70% of MD frames and therefore is unlikely to contribute much to extracellular gate stability." I do not agree that 70% is negligible. Particularly, Figure S3 does not include the time series so it is not clear whether the 30% of the time where the salt bridge is broken is in the beginning or the end of simulations. For instance, it is likely that the salt bridge is not initially present and then it forms very strongly. Of course, this is just one possible scenario but the point is that Figure S3 does not rule out the possibility of a significant role for the K64-D317 salt bridge.

      (2) Similarly, on page 4, it is stated that "whether by protonation or mutation - the extracellular gate only opens spontaneously when both the H87 interaction network and D342-R206 are perturbed (Figure S5)." I do not agree with this assessment. The authors need to be aware of the limitations of this approach. Consider "WT H87-prot" and "D342A H87-prot": when D342 residue is mutated, in one out of 3 simulations, we see the opening of the gate within 1 us. When D342 residue is not mutated we do not see the opening in any of the 3 simulations within 1 us. It is quite likely that if rather than 3 we have 10 simulations or rather than 1 us we have 10 us simulations, the 0/3 to 1/3 changes significantly. I do not find this argument and conclusion compelling at all.

      (3) While the MEMENTO methodology is novel and interesting, the method is presented as flawless in the manuscript, which is not true at all. It is stated on Page 5 with regards to the path generated by MEMENTO that "These paths are then by definition non-hysteretic." I think this is too big of a claim to say the paths generated by MEMENTO are non-hysteretic by definition. This claim is not even mentioned in the original MEMENTO paper. What is mentioned is that linear interpolation generates a hysteresis-free path by definition. There are two important problems here: (a) MEMENTO uses the linear interpolation as an initial step but modifies the intermediates significantly later so they are no longer linearly interpolated structures and thus the path is no longer hysteresis-free; (b) a more serious problem is the attribution of by-definition hysteresis-free features to the linearly interpolated states. This is based on conflating the hysteresis-free and unique concepts. The hysteresis in MD-based enhanced sampling is related to the presence of barriers in orthogonal space. For instance, one may use a non-linear interpolation of any type and get a unique pathway, which could be substantially different from the one coming from the linear interpolation. None of these paths will be hysteresis-free necessarily once subjected to MD-based enhanced sampling techniques.

    1. We can’t master knowledge. It’s what we live in. This requires a radical shift of worldview from colonialist to ecological. The colonial approach to knowledge is to capture it in order to profit from it. The ecological approach is to live within it as within a garden to be tended. The two worldviews may well be mutually incompatible, though this matter is hardly resolved yet.

      Vgl [[Netwerkleren Connectivism 20100421081941]] / [[Context is netwerk van betekenis 20210418104314]] [[Observator geeft betekenis 20210417124703]] . I think K as stock is prone to collector's fallacy. My working def of K is agency along lines of Sveiby. Such K is always situated in the interaction with the world, networks of meaning as context. This as K isn't merely purified I (DIKW pyramid is bogus), it's weaving I, experience, context, skills into a meaningful whole, and it needs an agent to decide on what's meaningful.

    1. Author Response

      The following is the authors’ response to the current reviews.

      At this stage the referees had only minor comments. Referee #1 asked whether archerfish indeed generalize in egocentric rather than allocentric coordinates. It might be that the current results do not rule out the idea that archerfish are unaware of changes in body position, they continue with previously successful actions, that seems as egocentric generalization. We agree with referee #1 and updated lines 255-260 in the results and added lines 329-336 in the discussion text that mentions this possibility. Referee #2 mentioned that a portion of fish did not make it to the final test which raises the question whether all individuals are able to solve the task. We agree with referee #2 and added paragraph at the discussion section to mention this point (lines 384-388). We also added the salinity of the water in the water tanks (line 98) as per suggestion of the Referee #2. Referee #2 suggested using a different term than “washout” in the behavioral experiments. Since the term “washout” is standard in the field, we keep the term in the text.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This useful study explores how archerfish adapt their shooting behavior to environmental changes, particularly airflow perturbations. It will be of interest to experts interested in mechanisms for motor learning. While the evidence for an internal model for adaptation is solid, evidence for adaptation to light refraction, as initially hypothesized, is inconclusive. As such, the evidence supporting an egocentric representation might be caused by alternative mechanisms to airflow perturbations.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors examined whether archerfish have the capacity for motor adaptation in response to airflow perturbations. Through two experiments, they demonstrated that archerfish could adapt. Moreover, when the fish flipped its body position with the perturbation remaining constant, it did not instantaneously counteract the error. Instead, the archerfish initially persisted in correcting for the original perturbation before eventually adapting, consistent with the notion that the archerfish's internal model has been adapted in egocentric coordinates.

      Evaluation:

      The results of both experiments were convincing, given the observable learning curve and the clear aftereffect. The ability of these fish to correct their errors is also remarkable. Nonetheless, certain aspects of the experiment's motivation and conclusions temper my enthusiasm.

      (1) The authors motivated their experiments with two hypotheses, asking whether archerfish can adapt to light refractions using an innate look-up table as opposed to possessing a capacity to adapt. However, the present experiments are not designed to arbitrate between these ideas. That is, the current experiments do not rule out the look-up table hypothesis, which predicts, for example, that motor adaptation may not generalize to de novo situations with arbitrary actionoutcome associations. Such look-up table operations may also show set-size effects, whereas other mechanisms might not. Whether their capacity to adapt is innate or learned was also not directly tested, as noted by the authors in the discussion. Could the authors clarify how they see their results positioned in light of the two hypotheses noted in the Introduction?

      We agree with the referee that look up tables only confuse the issue. The question we tested is whether or not the fish uses adaptation mechanisms to correct its shooting. We have now changed the introduction both to eliminate the entire question of look up tables and also to clarify that both innate mechanisms and learning mechanisms can contribute to fish shooting, and that our research focuses on the question of whether the fish can adapt to a perturbation in its shooting caused by a change in its physical environment.

      (2) The authors claim that archerfish use egocentric coordinates rather than allocentric coordinates. However, the current experiments do not make clear whether the archerfish are "aware" that their position was flipped (as the authors noted, no visual cues were provided). As such, for example, if the fish were "unaware" of the switch, can the authors still assert that generalization occurs in egocentric coordinates? Or simply that, when archerfish are ostensibly unaware of changes in body position, they continue with previously successful actions.

      The fish has access to the body position switch: there are clues in a water tank that can help the fish orient inside the water tank. Additionally, there are no clues to the presence or direction of the air flow above the water tank. Moreover, previous experience has shown that the fish is sensitive to the visual cues and uses them to achieve consistent orientation within the tank when possible. These points have been added to the main text [lines 143-144, 254-257]

      (3) The experiments offer an opportunity to examine whether archerfish demonstrate any savings from one session to another. Savings are often attributed to a faster look-up table operation. As such, if archerfish do not exhibit savings, it might indicate a scenario where they do not possess a refined look-up table and must rely on implicit mechanisms to relearn each time.

      This is an important question. Indeed, we looked for the ‘saving’ effect in the data, but its noisy nature prevented us from drawing a concrete conclusion. We now mention this in lines 247-249.

      We have also eliminated the discussion of look up tables from the article.

      (4) The authors suggest that motor adaptation in response to wind may hint at mechanisms used to adapt to light refraction. However, how strong of a parallel can one draw between adapting to wind versus adapting to light refraction? This seems important given the claims in this paper regarding shared mechanisms between these processes. As a thought experiment, what would the authors predict if they provided a perturbation more akin to light refraction (e.g., a film that distorts light in a new direction, rather than airflow)?

      This is an important point. Indeed, our project started by looking for options to distort the refraction index or distort the light in a new direction. However, given the available ways of distorting the light to a new direction, it is hard to achieve that on the technical level. Initially, we tried using prism goggles, however the archerfish found it hard to shoot with the heavy load on the head. We have also explored oil on the water surface. However, given the available oils and the width of the film above water, it is hard to achieve considerable perturbation.

      Fish response to the perturbation matches the response to what would be expected for a change in light refraction. Light refraction perturbation does not change with the change in fish body position relative to the target. However, in response to (and in agreement with) the referees, we have generalized the context in which we see our results and discuss the results in terms of adaptation of the fish shooting behavior to changes in physical factors including light refraction, wind, fatigue, and others.

      (5) The number of fish excluded was greater than those included. This raises the question as to whether these fish are merely elite specimens or representative of the species in general.

      The filtering of the fish was in the training stage. The requirements were quite strict: the fish had to produce enough shots each day in the experimental setup. Very few fish succeeded. But all fish that got to the stage of perturbation exhibited the adaptation effect. We do not see a reason to think that the motivation to shoot will have a strong interaction with the shooting adaptation mechanisms.

      Reviewer #2 (Public Review):

      Summary:

      The work of Volotsky et al presented here shows that adult archerfish are able to adjust their shooting in response to their own visual feedback, taking consistent alterations of their shot, here by an air flow, into account. The evidence provided points to an internal mechanism of shooting adaptation that is independent of external cues, such as wind. The authors provide evidence for this by forcing the fish to shoot from 2 different orientations to the external alteration of their shots (the airflow). This paper thus provides behavioral evidence of an internal correction mechanism, that underlies adaptive motor control of this behavior. It does not provide direct evidence of refractory index-associated shoot adjustance.

      Strengths:

      The authors have used a high number of trials and strong statistical analysis to analyze their behavioral data.

      Weaknesses:

      While the introduction, the title, and the discussion are associated with the refraction index, the latter was not altered, and neither was the position of the target. The "shot" was altered, this is a simple motor adaptation task and not a question related to the refractory index. The title, abstract, and the introduction are thus misleading. The authors appear to deduce from their data that the wind is not taken into account and thus conclude that the fish perceive a different refractory index. This might be based on the assumption that fish always hit their target, which is not the case. The airflow does not alter the position of the target, thus the airflow does not alter the refractive index. The fish likely does not perceive the airflow, thus alteration of its shooting abilities is likely assumed to be an "internal problem" of shooting. I am sorry but I am not able to understand the conclusion they draw from their data.

      This is an important point. Indeed, our project started by looking for options to distort the refraction index or distort the light in a new direction. However, given the available ways of distorting the light to a new direction, it is hard to achieve that on the technical level. Initially, we tried using prism goggles, however the archerfish found it hard to shoot with the heavy load on the head. We have also explored oil on the water surface. However, given the available oils and the width of the film above water, it is hard to achieve considerable perturbation.

      Fish response to the perturbation matches the response to what would be expected for a change in light refraction. Light refraction perturbation does not change with the change in fish body position relative to the target. However, in response to (and in agreement with) the referees, we have generalized the context in which we see our results and discuss the results in terms of adaptation of the fish shooting behavior to changes in physical factors including light refraction, wind, fatigue, and others.

      Reviewer #2 (Recommendations For The Authors):

      I have had a hard time trying to understand how the authors concluded that the RI is important here as it is not altered. Thus I did not understand the conclusions drawn from this paper. The experiments are well described, but the conclusions are not to me. Maybe schematics would help to clarify. I am from outside the field and represent a naïve reader with an average intellect. The authors need to do a better job of explaining their results if they want others to understand their conclusions.

      See response to the public comments.

      Minor comments:

      Line 9: omit the "an".

      Done.

      Line 11: this sentence would fit way better if it followed the next one.<br /> Done.

      Line 15: and all the rest of the paper: washout is a strange term and for me associated with pharmacological manipulations - might only be me. I suggest using recovery instead throughout the manuscript.

      The term ‘washout’ is often used in the field of motor adaptation to describe the return to original condition. For example:

      Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ (2008) Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J Neurophysiol 100:1455-64. doi: 10.1152/jn.90334.2008

      Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D (2012) Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 107:134-47

      Line 19: the fish does not expect the flow, it expects that it shoots too short- no?

      Done.

      Line 35: fix the citation - in your reference manager.

      Done.

      Line 52: provide some examples of the mechanisms you think of or papers of it for naive readers. Otherwise, this sentence is not helpful for the reader.

      Done.

      Line 183: it's unclear which parameter you mean. Rephrase.

      Done.

      Line 197: should read to test "the" - same sentence: you repeat yourself- rephrase the sentence.

      Done.

      Figure 4: it was unclear to me why the figure was differentiating between fishes until I read the legend. Why not include direct information in the figure? A schematic maybe? Legend: you have a double "that" in C.

      We added the title for each column with the information about the direction of air.

      Figures: in all figures, perturbation is wrongly spelled! Change the term washout to recovery.

      Done. We kept the term ‘washout’

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      I have only a few comments that I think will improve the manuscript and help readers better appreciate the context of the reported results.

      We would like to thank the Reviewer for their time in reviewing our manuscript. We appreciate the helpful feedback and assistance in ensuring the highest quality publication possible.

      One paradox, that the authors point out, is that the drastic effects of TALK-1 L114P on plasma membrane potential do not result in a complete loss of insulin secretion. One important consideration is the role of intracellular stores in insulin secretion at physiological levels of hyperglycemia. This needs to be discussed more thoroughly, especially in the light of recent papers like Postic et al 2023 AJP and others. The authors do show an upregulation of IP3-induced Ca release. It is not clear whether they think this is a direct or indirect effect on the ER. Is there more IP3? More IP3R? Are the stores more full?

      The reviewer brings up an important point. Although we see a significant reduction in glucose-stimulated depolarization in most islets from TALK-1 L114P mice, some glucosestimulated calcium influx is still present (especially from female islets); this suggests that a subset of islet β-cells are still capable of depolarization. Because our original membrane potential recordings were done in whole islets without identification of the cell type being recorded, we have now repeated these electrical recordings in confirmed β-cells (see Supplemental figure 6). The new data shows that 33% of TALK-1 L114P β-cells show action potential firing in 11 mM glucose, which would be predicted to stimulate insulin secretion from a third of all TALK-1 L114P β-cells; this could be responsible for the remaining glucosestimulated insulin secretion observed from TALK-1 L114P islets. However, ER calcium store release could also allow for some of the calcium response in the TALK-1 L114P islets. We have now detailed this in the discussion; this now details the Postic et. al. study showing that glucose-stimulated beta-cell calcium increases involve ER calcium release as it occurs in the presence of voltage-dependent calcium channel inhibition. Future studies can assess this using SERCA inhibitors and determining if glucose-stimulated calcium influx in TALK-1 L114P islets is lost. We also find that muscarinic stimulated calcium influx from ER stores is greater in TALK-1 L114P mice. We currently do not have data to support the mechanism for this enhancement of muscarinic-induced islet calcium responses from islets expressing TALK1 L114P. Our hypothesis is that greater TALK-1 current on the ER membrane is enhancing ER calcium release in response to IP3R activation. There is an equivalent IP3R expression in control and TALK-1 L114P islets based on transcriptome analysis, which is now included in the manuscript. However, whether there is greater IP3 production, greater ER calcium storage, and/or greater ER calcium release requires further analysis. Because this finding was not directly related to the metabolic characterization of this TALK-1 L114P MODY mutation, we are planning to examine the ER functions of TALK-1L114P thoroughly in a future manuscript.

      The authors point to the possible roles of TALK-1 in alpha and delta cells. A limitation of the global knock-in approach is that the cell type specificity of the effects can't easily be determined. This should be more explicitly described as a limitation.

      We thank the reviewer for this suggestion and have added this to the discussion. This is now included in a paragraph at the end of the discussion detailing the limitations of this manuscript.

      The official gene name for TALK-1 is KCNK16. This reviewer wonders whether it wouldn't be better for this official name to be used throughout, instead of switching back and forth. The official name is used for Abcc8 for example.

      We thank the reviewer for this suggestion and have revised the manuscript to include Kcnk16 L114P. The instances of TALK-1 L114P that remain in the manuscript are in cases where the text specifically discusses TALK-1 channel function.

      There are several typos and mistakes in editing. For example, on page 5 it looks like "PMID:11263999" has not been inserted. I suggest an additional careful proofreading.

      We have revised this reference, thoroughly proofread the revised manuscript, and corrected typos.

      The difference in lethality between the strains is fascinating. Might be good to mention other examples of ion channel genes where strain alters the severe phenotypes? Additional speculation on the mechanism could be warranted. It also offers the opportunity to search for genetic modifiers. This could be discussed.

      We thank the reviewer for this suggestion and have added details on mutations where strain alters lethality.

      The sex differences are interesting. Of course, estrogen plays a role as mentioned at the bottom of page 16, but there have been more involved analyses of islet sex differences, including a recent paper from the Rideout group. Is there a sex difference in the islet expression of KCNK16 mRNA or protein, in mice or humans?

      We thank the reviewer for the important comments on the TALK-1 L114P sex differences. We have revised the manuscript to include greater discussion about female β cell resilience to stress, which may allow greater insulin secretion in the presence of the TALK-1 L114P channels; this is based on the Brownrigg et. al. study pointed out by the reviewer (PMID: 36690328). Because these sex differences in islet function were examined in mice, we looked at KCNK16 expression in mouse beta-cells. While there is a trend for greater KCNK16 expression in sorted male beta-cells (average RPKM 6296.25 +/-953.84) compared to sorted female beta-cells (5148.25 +/- 1013.22). Similarly, there was a trend toward greater KCNK16 expression in male HFD treated mouse beta-cells (average RPKM 8020.75 +/- 1944.41) compared to female HFD treated mouse beta-cells (average RPKM 7551 +/- 2952.70). We have now added this to the text.

      Page 15-16 "Indeed, it has been well established that insulin signaling is required for neonatal survival; for example, a similar neonatal lethality phenotype was observed in mice without insulin receptors (Insr-/-) where death results from hyperglycemia and diabetic ketoacidosis by P3 (40)." Formally, the authors are not examining insulin signaling. A better comparison is that of the Ins1/Ins2 double knockout model of complete hypoinsulinemia.

      We thank the reviewer for suggesting this as the appropriate comparison model and have now revised the manuscript to detail the 48-hour average life expectancy of Ins1/Ins2 double knockout mice (PMID: 9144203).

      There are probably too many abbreviations in the paper, making it harder to read by nonspecialists. I recommend writing out GOF, GSIS, WT, K2P, etc.

      We thank the reviewer for this suggestion and have revised the manuscript to reduce the use of most abbreviations.

      Reviewer #2:

      We would like to thank the Reviewer for their time in reviewing our manuscript. We appreciate the helpful feedback and assistance in ensuring the highest quality publication possible. We have thoroughly addressed all the reviewer’s comments and revised the manuscript accordingly. These changes have strengthened the manuscript and are summarized below.

      (1) The authors perform an RNA-sequencing showing that the cAMP amplifying pathway is upregulated. Is this also true in humans with this mutation? Other follow-up comments and questions from this observation:

      a) Will this mean that the treatment with incretins will improve glucose-stimulated insulin secretion and Ca2+ signalling and lower blood glucose? The authors should at least present data on glucose-stimulated insulin secretion and/or Ca2+ signalling in the presence of a compound increasing intracellular cAMP.

      b) Will an OGTT give different results than the IPGTT performed due to the fact that the cAMP pathway is upregulated?

      c) Is the increased glucagon area and glucagon secretion a compensatory mechanism that increases cAMP? What happens if glucagon receptors are blocked?

      We thank the reviewer for the suggestions. Although cAMP pathways were upregulated in the TALK-1 L114P islets, the changes in expression were only modest as examined by qRTPCR. Thus, we are not sure if this plays a role in secretion. For humans with this mutation, there have been such a small number of patients and no islets isolated from these patients. Therefore, we are unaware if the cAMP amplifying pathway is upregulated in humans with the MODY associated TALK-1 L114P mutation. We have performed the suggested experiment assessing calcium from TALK-1 L114P islets in response to liraglutide (see Supplemental figure 10); there was no liraglutide response in TALK-1 L114P islets. We have also performed the OGTT experiments as suggested and these have now been added to the manuscript (see Supplemental figure 3). We do not believe that the increased glucagon is a compensatory response, because: 1. TALK-1 deficient islets have less glucagon secretion due to reduced SST secretion (see PMID: 29402588); 2. There is no change in insulin secretion at 7mM glucose, however, glucagon secretion is significantly elevated from islets isolated from TALK-1 L114P mice; 3. TALK-1 is highly expressed in delta-cells, and in these cells TALK-1 L114P would be predicted to cause significant hyperpolarization and significant reductions in calcium entry as well as SST secretion. Thus, reduced SST secretion may be responsible for the elevation of glucagon secretion. We plan to investigate delta-cells within islets from TALK-1 L114P mice in future studies to determine if changes in SST secretion are responsible for the elevated glucagon secretion from TALK-1 L114P islets.

      (2) The performance of measurements in both male and female mice is praiseworthy. However, despite differences in the response, the authors do not investigate the potential reason for this. Are hormonal differences of importance?

      We thank the reviewer for this important point. It is indeed becoming clear that there are many differences between male and female islet function and responses to stress. Thus, we have revised the manuscript to include greater discussion about these differences such as female β cell resilience to stress, which may allow greater insulin secretion in the presence of the TALK-1 L114P channels; this is based on the Brownrigg et. al. study pointed out by reviewer 1 (PMID: 36690328). While the differences in islet function and GTT between male and female L114P mice are clear, they both show diminished islet calcium handling, defective hormone secretion, and development of glucose intolerance. This manuscript was intended to demonstrate how the MODY TALK-1 L114P causing mutation caused glucose dyshomeostasis, which we have determined in both male and female mice. The mechanistic determination for the differences between male and female mice and islets with TALK-1 L114P could be due to multiple potential causes (as detailed in PMID: 36690328), thus, we believe that comprehensive studies are required to thoroughly determine how the TALK-1 L114P mutation differently impacts male and female mice and islets, which we plan to complete in a future manuscript.

      (3) MINOR: Page 5 .." channels would be active at resting Vm PMID:11263999.." The actual reference has not been added using the reference system.

      We thank the reviewer for noticing this mistake, which has now been corrected.

      Reviewer #3:

      The manuscript is overall clearly presented and the experimental data largely support the conclusions. However, there are a number of issues that need to be addressed to improve the clarity of the paper.

      We would like to thank the Reviewer for their time in reviewing our manuscript. We appreciate the helpful feedback and assistance in ensuring the highest quality publication possible. We have thoroughly addressed all the reviewer’s comments and revised the manuscript accordingly. These changes have strengthened and improved the clarity of the manuscript.

      Specific comments:

      (1) Title: The terms "transient neonatal diabetes" and "glucose dyshomeostasis in adults" are used to describe the TALK-1 L114P mutant mice. Transient neonatal diabetes gives the impression that diabetes is resolved during the neonatal period. The authors should clarify the criteria used for transient neonatal diabetes, and the difference between glucose dyshomeostasis and MODY. Longitudinal plasma glucose and insulin data would be very informative and help readers to follow the authors' narrative.

      We appreciate the helpful comment and have added longitudinal plasma glucose from neonatal mice to address this (see Supplemental figure 2). The new data now shows the TALK-1 L114P mutant mice undergo transient hyperglycemia that resolves by p10 and then occurs again at week 15. Insulin secretion from P4 islets is also included that shows that male animals homozygous for the TALK-1 L114P mutation have the largest impairment in glucosestimulated insulin secretion, followed by male heterozygous TALK-1 L114P P4 islets that also have impaired insulin secretion (see Figure 1). The amount of hyperglycemia correlates with the defects in neonatal islet insulin secretion.

      (2) Another concern for the title is the term "α-cell overactivity." This could be taken to mean that individual α-cells are more active and/or that there are more α-cells to secrete glucagon. The study does not provide direct evidence that individual α-cells are more active. This should be clarified.

      We appreciate the helpful comment and have revised the manuscript title accordingly.

      (3) In the Introduction, it is stated that because TALK-1 activity is voltage-dependent, the GOF mutation is less likely to cause neonatal diabetes, yet the study shows the L114P TALK-1 mutation actually causes neonatal diabetes by completely abolishing glucose-stimulated Ca2+ entry. This seems to imply TALK-1 activity (either in the plasma membrane or ER membrane) has more impact on Vm or cytosolic Ca2+ in neonates than initially predicted. Some discussion on this point is warranted.

      These are important points and we have added details to the discussion about this. For example, the discussion now states that, “This suggests a greater impact of TALK-1 L114P in neonatal islets compared to adult islets. Future studies during β-cell maturation are required to determine if TALK-1 activity is greater on the plasma membrane and/or ER membrane compared with adult β-cells.” The introduction has also been revised to clarify the voltagedependence of TALK-1.

      (4) What is the relative contribution of defects in plasma membrane depolarization versus ER Ca2+ handling on defective insulin secretion response?

      We thank the reviewer for bringing up this important point. TALK-1 L114P islets show blunted glucose-stimulated depolarization and glucose-stimulated calcium entry, however, the L114P islets show equivalent Ca2+ entry as control islets in response high KCl (Figure 5GH). As the KCl stimulated Ca2+ influx is similar between control and TALK-1 L11P islets, this indicates that plasma membrane TALK-1 L114P has a hyperpolarizing role that significantly blunts glucose-stimulated depolarization and reduces activation of voltage-dependent calcium channels. We have further tested this by looking at glucose-stimulated β-cell membrane potential depolarization in TALK-1 L11P islets, which is significantly blunted (Figure4 A and B; Supplemental figure 6). However, 33% of TALK-1 L11P β-cells showed glucose-stimulated electrical excitability (Supplemental figure 6), which likely accounts for the modest GSIS from TALK-1 L11P islets. New data has also been included showing that KCl stimulation causes a significant depolarization of β-cells from TALK-1 L11P islets (Supplemental figure 6). Because plasma membrane TALK-1 L114P is largely responsible for the hyperpolarized membrane potential and blunted glucose-stimulated Ca2+ entry, this suggests that TALK-1 L11P on the plasma membrane is primarily responsible for the altered insulin secretion. The discussion has been revised to reflect this.

      (5) The Jacobson group has previously shown that another K2P channel TASK-1 is also involved in ER Ca2+ homeostasis and that TASK inhibitors restored ER Ca2+ in TASK-1 expressing cells. Is TASK-1 expressed in β-cell ER membrane? Can the mishandling of Ca2+ caused by TALK-1 L114P be reversed by TASK-1 inhibitors?

      We thank the reviewer for bringing up this important point in relation to ER calcium handling by K2P channels. We have found that TASK-1 channels expressed in alpha-cells enhance ER calcium release and that inhibitors or TASK-1 channels elevate alpha-cell ER calcium storage. We did not observe any significant changes in the gene (Kcnk3) encoding TASK-1 between islets from control or TALK-1 L11P mice, which has now been added to the manuscript. However, because the TALK-1 L11P-mediated reduction of glucose-stimulated depolarization and inhibition of calcium entry are both prevented in the presence of high KCl (see Figure X); this strongly suggests that TALK-1 L114P K+ flux at the membrane is hyperpolarizing the membrane potential and limiting depolarization and calcium entry. This suggests that TALK-1 L114P control of ER calcium handling is not the primary contributor to the blunted glucose-stimulate calcium handling. Furthermore, acetylcholine stimulation of islets from both control and TALK-1 L114P islets elicited ER calcium release, which indicates that for the most part ER calcium release is still responsive to cues that control release, but they are altered. Taken together this suggests that the TALK-1 L114P impact on ER calcium is not the primary mediator of blunted glucose-stimulated islet calcium entry and insulin secretion.

      (6) The electrical recording experiments were conducted using whole islets. The authors should comment on how the cells were identified as β-cells, especially in mutant islets in which there is an increased number of α-cells.

      The reviewer brings up an important point. As indicated, the original membrane potential recordings were conducted using whole islets. While the recorded cells could mostly be βcells based on mouse islets typically containing >80% β-cells, there is a possibility that some of the cells included in these recordings were α-cells or δ-cells (especially because of the noted α-cell hyperplasia in TALK-1 L114P islets). Thus, we have now included data from bcells that were identified with an adenoviral construct containing a rat insulin promoter driving a fluorescent reporter. This allowed the fluorescent β-cells to be monitored with electrophysiological membrane potential recordings. The new data (see Supplemental figure 6) shows a significant reduction in glucose-stimulated depolarization in 67% of β-cells with the L114P mutation compared to controls.

      Minor:

      (1) Some references need formatting.

      The references have been revised accordingly.

      (2) Please define glucose-stimulated phase 0 Ca2+ response for non-expert readers.

      This has been defined accordingly.

      (3) Page 14 bottom: The sentence "Unlike the only other MODY-associated.........., TALK-1 is not inhibited by sulfonylureas" seems out of place and lacks context.

      We thank the reviewer for this suggestion and have deleted this sentence.

      (4) Figure 6: It would be helpful to provide a protein name for the genes shown in panel D.

      The protein names for the genes have now been included in the discussion of these genes.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We appreciate the thoughtful review of our manuscript by the reviewers, along with their valuable suggestions for enhancing our work. In response to these suggestions, we conducted additional experiments and made significant revisions to both the text and figures. In the following sections, we first highlight the major changes made to the manuscript, and thereafter address each reviewer's comments point-by-point. We hope these additional data and revisions have improved the robustness and clarity of the study and manuscript. Please note that as part of a suggested revision we have changed the manuscript title to be: Bacterial vampirism mediated through taxis to serum.

      Major revisions and new data:

      (1) We conducted additional experiments testing taxis to serum using a swine ex vivo enterohemorrhagic lesion model in which we competed wildtype versus chemotaxis deficient strains (Fig. 8). We selected swine for these experiments due to their similarity in gastrointestinal physiology to humans. In these experiments we see that chemotaxis, and the chemoreceptor Tsr, mediate localization to, and migration into, the lesion. We also tested, and confirmed, taxis to serum from swine and serum from horse, that supporting that serum attraction is relevant in other host-pathogen systems.

      (2) We present additional experimental data and quantification of chemotaxis responses to human serum treated with serine-racemase (Fig. S3). This treatment reduces wildtype chemoattraction and the wildtype no longer possesses an advantage over the tsr strain, providing further evidence that L-serine is the specific chemoattractant responsible for Tsr-mediated attraction to serum.

      (3) We present additional data in the form of 17 videos of chemotaxis experiments with norepinephrine and DHMA showing null-responses under various conditions. These data provide additional support to the conclusion that these chemicals are not responsible for bacterial attraction to serum. We have included these raw data as a new supplementary file (Data S1) for those in the field that are interested in these chemicals.

      (4) Based on comments from Reviewer 2 regarding whether the position of the ligand and ligand-binding site residues in the previously-reported EcTsr LBD structure are incorrect, or whether these differences are due to the proteins being from different organisms, we performed paired crystallographic refinements to determine which positions result in model improvement (Fig. 7J). Altering the EcTsr structure to have the ligand and ligandbinding site positions from our new higher resolution and better-resolved structure of Salmonella Typhimurium Tsr results in a demonstrably better model, with both Rwork and Rfree lower by about 1% (Fig. 7J). These data support our conclusion that the correct positions for both structures are as we have modeled them in the S. Typhimurium Tsr structure. We also solved an additional crystal structure of SeTsr LBD captured at neutral pH (7-7.5) that confirms our structure captured with elevated pH (7.5-9.7) has no major changes in structure or ligand-binding interactions (Fig. S6, Table S2).

      (5) Based on comments from Reviewer 2 on the accuracy of the diffusion calculations, we present a new analysis (Fig. S2) comparing the experimentally-determined diffusion of A488 compared to its calculated diffusion. We found that:

      [line 111]: “As a test case of the accuracy of the microgradient modeling, we compared our calculated values for A488 diffusion to the normalized fluorescence intensity at time 120 s. We determined the concentration to be accurate within 5% over the distance range 70270 µm (Fig. S2). At smaller distances (<70 µm) the measured concentration is approximately 10% lower than that predicted by the computation. This could be due to advection effects near the injection site that would tend to enhance the effective local diffusion rate.”

      (6) Both reviewers asked us to better justify why we focused on the chemoreceptor Tsr, and had questions about why we did not investigate Tar. The low concentration of Asp in serum suggests Tar could have some effect, but less so than Trg or Tsr (see Fig. 4A). We have revised the text throughout to better convey that we agree multiple chemoreceptors are involved in the response and clarify our rationale for studying the role of Tsr:

      [line 178]: “We modeled the local concentration profile of these effectors based on their typical concentrations in human serum (Fig. 4B). Of these, by far the two most prevalent chemoattractants in serum are glucose (5 mM) and L-serine (100-300 µM) (Fig. 4B-F). This suggested to us that the chemoreceptors Trg and/or Tsr could play important roles in serum attraction.”

      [line 186]: “Since tsr mutation diminishes serum attraction but does not eliminate it, we conclude that multiple chemoattractant signals and chemoreceptors mediate taxis to serum. To further understand the mechanism of this behavior we chose to focus on Tsr as a representative chemoreceptor involved in the response, presuming that serum taxis involves one, or more, of the chemoattractants recognized by Tsr that is present in serum: L-serine, NE, or DHMA.”

      [line 468] “Serum taxis occurs through the cooperative action of multiple bacterial chemoreceptors that perceive several chemoattractant stimuli within serum, one of these being the chemoreceptor Tsr through recognition of L-serine (Fig. 4).”

      Point-by-point responses to reviewer comments:

      Reviewer #1:

      (1) Presumably in the stomach, any escaping serum will be removed/diluted/washed away quite promptly? This effect is not captured by the CIRA assay but perhaps it might be worth commenting on how this might influence the response in vivo. Perhaps this could explain why, even though the chemotaxis appears rapid and robust, cases of sepsis are thankfully relatively rare.

      To clarify, the Enterobacteriaceae species we have tested here are colonizers of the intestines, not the stomach, and cases of bacteremia from these species are presumably due to bloodstream entry through intestinal lesions. Whether or not intestinal flow acts as a barrier to bloodstream entry is not something we test here, and so we have not commented on this idea in the manuscript. We do demonstrate that attraction to serum occurs within seconds-to-minutes of exposure. We expect that the major protective effects against sepsis are the host antibacterial factors in serum, which are well-described in other work. We have been careful to state throughout the text that we see attraction responses, and growth benefits, to serum that is diluted in an aqueous media, which is different than bacterial growth in 100% serum or in the bloodstream.

      (2) The authors refer to human serum as a chemoattractant numerous times throughout the study (including in the title). As the authors acknowledge, human serum is a complex mixture and different components of it may act as chemoattractants, chemo-repellents (particularly those with bactericidal activities) or may elicit other changes in motility (e.g. chemokinesis). The authors present convincing evidence that cells are attracted to serine within human serum - which is already a well-known bacterial chemoattractant. Indeed, their ability to elucidate specific elements of serum that influence bacterial motility is a real strength of the study. However, human serum itself is not a chemoattractant and this claim should be re-phrased - bacteria migrate towards human serum, driven at least in part by chemotaxis towards serine.

      Throughout the text we have changed these statements, including in the title, to either be ‘taxis to serum’ or ‘serum attraction.’ On the timescales we tested our data support that chemotaxis, not chemokineses or other forms of direction motility, is what drives rapid serum attraction, since a motile but non-chemotactic cheY mutant cannot localize to serum (Fig. 4). We present evidence of one of these chemotactic interactions (L-Ser).

      (3) Linked to the previous point, several bacterial species (including E. coli - one of the bacterial species investigated here) are capable of osmotaxis (moving up or down gradients in osmolality). Whilst chemotaxis to serine is important here, could movement up the osmotic gradient generated by serum injection play a more general role? It could be interesting to measure the osmolality of the injected serum and test whether other solutions with similar osmolality elicit a similar migratory response. Another important control here would be to treat human serum with serine racemase and observe how this impacts bacterial migration.

      As addressed above, we have added additional experiments of serum taxis treated with serine racemase showing competition between WT and cheY, and WT and tsr (Fig. S3). These data support a role for L-serine as a chemoattractant driving attraction to serum. The idea of osmotaxis is interesting, but outside the scope of this work since we focus on chemoattraction to L-serine as one of the mechanisms driving serum attraction, and have multiple lines of evidence to support that.

      (4) The migratory response of E. coli looks striking when quantified (Fig. 6C) but is really unclear from looking at Panel B - it would be more convincing if an explanation was offered for why these images look so much less striking than analogous images for other species (E.g. Fig. 6A).

      We agree that the E. coli taxis to serum response is less obvious. We have brightened those panels to hopefully make it clearer to interpret (more cells in field of view over time). Also, as stated in the y-axes of these plots, this quantification was performed by enumerating the number of cells in the field of view, and the Citrobacter and Escherichia responses are shown on separate y-axes (now Fig. 8C). As indicated, the experiments have different numbers of starting motile cells, which we presume accounts for the difference in attraction magnitude. When investigating diverse bacterial systems we found there to be differences in motility under the culturing and experimental conditions we employed, for multiple reasons, and so for these data we thought it best to report raw cell numbers rather data normalized to the starting number of bacteria, as we do elsewhere. In the specific case of these E. coli responding to serum, please view Supplementary Movie S3, which both clearly shows the attraction response and that the bacteria grew in a longer, semi-filamentous form that seem to impair their swimming speed.

      (5) It is unclear why the fold-change in bacterial distribution shows an approximately Gaussian shape with a peak at a radial distance of between 50 -100 um from the source (see for example Fig. 2H). Initially, I thought that maybe this was due to the presence of the microcapillary needle at the source, but the CheY distribution looks completely flat (Fig. 3I). Is this an artifact of how the fold-change is being calculated? Certainly, it doesn't seem to support the authors' claim that cells increase in density to a point of saturation at the source. Furthermore, it also seems inappropriate to apply a linear fit to these non-linear distributions (as is done in Fig. 2H and in the many analogous figures throughout the manuscript).

      We have revised the text to address this point, and removed the comment about cells increasing in density to a point of saturation: [Line 138] “We noted that in some experiments the population peak is 50-75 µm from the source, possibly due to a compromise between achieving proximity to nutrients in the serum and avoidance of bactericidal serum elements, but this behavior was not consistent across all experiments. Overall, our data show S. enterica serovars that cause disease in humans are exquisitely sensitive to human serum, responding to femtoliter quantities as an attractant, and that distinct reorganization at the population level occurs within minutes of exposure (Fig. 3, Movie 2).”

      We can confirm that this is not an artifact of quantification. Please refer to the videos of these responses, which demonstrates this point (Movies 1-5).

      (6) The authors present several experiments where strains/ serovars competed against each other in these chemotaxis assays. As mentioned, these are a real strength of the study - however, their utility is not always clear. These experiments are useful for studying the effects of competition between bacteria with different abilities to climb gradients.

      However, to meaningfully interpret these effects, it is first necessary to understand how the different bacteria climb gradients in monoculture. As such, it would be instructive to provide monoculture data alongside these co-culture competition experiments.

      Thank you for this suggestion. We agree that the coculture experiments showing strains competing for the same source of effector give a different perspective than monoculture. These experiments allow us to confirm taxis deficiencies or advantages with greater sensitivity, and ensure that the bacteria in competition have experienced the same gradient. This type of competition experiment is often used in in vivo experimentation for the same advantages. We note that in the gut the bacteria are not in monoculture and chemotactic bacteria do have to compete against each other for access to nutrients. Repeating all of the experiments we present to show both the taxis responses in coculture and monoculture would be an extraordinary amount of work that we do not believe would meaningfully change the conclusions of this study.

      (7) Linked to the above point, it would be especially instructive to test a tsr mutant's response in monoculture. Comparing the bottom row of Fig. 3G to Fig. 3I suggests that when in co-culture with a cheY mutant, the tsr mutant shows a higher fold-change in radial distribution than the WT strain. Fig. 4G shows that a tsr mutant can chemotaxis towards aspartate at a similar, but reduced rate to WT. This could imply that (like the trg mutant), a tsr mutant has a more general motility defect (e.g. a speed defect), which could explain why it loses out when in competition with the WT in gradients of human serum, but actually seems to migrate strongly to human serum when in co-culture with a cheY mutant. This should be resolved by studying the response of a tsr mutant in monoculture.

      Addressed above.

      (8) In Fig. 4, the response of the three clinical serovars to serine gradients appears stronger than the lab serovar, whilst in Fig. 1, the response to human serum gradients shows the opposite trend with the lab serovar apparently showing the strongest response. Can the authors offer a possible explanation for these slightly confusing trends?

      We suspect this relates to the fact that pure L-serine is a chemoattractant, whereas treatment with serum exposes the bacteria both to chemoattractants and, likely, chemorepellents. Strains may navigate the landscape of these stimuli different for a variety of reasons that are not simple to tease apart. The final magnitude of change in bacterial localization depends on multiple factors including swimming speed, adaptation, sensitivity of chemoattraction, and cooperative signaling of the chemoreceptor nanoarray. Thus, we cannot state with certainty how and why these strains are different across all experiments, but we can state that they are attracted to both serum and L-serine.

      (9) In Fig. S2, it seems important to present quantification of the effect of serine racemase and the reported lack of response to NE and DHMA - the single time-point images shown here are not easy to interpret.

      As suggested, we present quantification of the serum racemase treated samples (now Fig. S3). To assist in the interpretation of this max projections Fig. S3 now noted the chemotactic response (chemoattraction for L-serine, null-response for NE/DHMA). Further, we revised the text to state: [line 209: “We observed robust chemoattraction responses to L-serine, evident by the accumulation of cells toward the treatment source (Fig. S3E, Movie 4), but no response to NE or DHMA, with the cells remaining randomly distributed even after 5 minutes of exposure (Fig. S3F-I, Movie 5, Movie S1).”

      (10) Importantly, the authors detail how they controlled for the effects of pH and fluid flow (Line 133-136). Did the authors carry out similar controls for the dual-species experiments where fluorescent imaging could have significantly heated the fluid droplet driving stronger flow forces?

      Most of our microfluidics experiments were performed in a temperature-controlled chamber (see Methods). Since the strains in the coculture experiments experienced the same experimental conditions we have no evidence of fluorescence-imaginginduced temperature changes that have impacted whether or not the bacteria are attracted to serum or the effectors we investigated.

      (11) The inference of the authors' genetic analysis combined with the migratory response of E. coli and C. koseri to human serum shown in Fig. 6 is that Tsr drives movement towards human serum across a range of Enterobacteriaceae species. The evidence for the importance of Tsr here is currently correlative - more causal evidence could be presented by either studying the response of tsr mutants in these two species (certainly these should be readily available for E. coli) or by studying the response of these two species to serine gradients.

      We have revised the text to state: [line 402] “Without further genetic analyses in these strain backgrounds, the evidence for Tsr mediating serum taxis for these bacteria remains circumstantial. Nevertheless, taxis to serum appears to be a behavior shared by diverse Enterobacteriaceae species and perhaps also Gammaproteobacteria priority pathogen genera that possess Tsr such as Serratia, Providencia, Morganella, and Proteus (Fig. 8B).”

      We note that other work has thoroughly investigated E. coli serine taxis.

      Figure Suggestions

      (1) Fig. 2 - The inset bar charts in panels H-J and the font size in their axes labels are too small - this suggestion also applies to all analogous figures throughout the manuscript.

      We have increased the size of the text for these inset plots. We have also broken up some of the larger figures.

      (2) Panel 2F - the cartoon bacterial cell and 'number of bacteria' are confusing and seem to contradict the y-axis label. This also applies to several other figures throughout the manuscript where the significance of this cartoon cell is quite hard to interpret.

      As suggested, we have removed this cartoon.

      (3) Panels G-I in Fig. 3 are currently tricky to interpret - it would be easier if the authors were to use three different colours for the three different strains shown across these panels.

      We have broken up Figure 2 (which also had these types of plots) so that hopefully these labels are more clear. For the Figure in question (now Fig. 4), due to the many figures and different types of data and comparisons it was difficult to find a color scheme for these strains that would be consistent across the manuscript. These colors also reflect the fluorescence markers. We note that not only do we use color to indicate the strain but also text labels.

      (4) Panels 3B-F would be best moved to a supplementary figure as this figure is currently very busy. Similarly, I would potentially consider presenting only the bottom row of panels in Panels G-I in the main figure (which would then be consistent with analogous data presented elsewhere).

      We have opted to keep these panels in the main text (now Fig. 4) as they are relevant to understanding (1) our justification for why to pursue certain chemoeffector-chemoreceptor interactions and not others, and (2) how the chemoattraction response can be understood both in terms of bacterial population distribution and relevant cells over time.

      (5) Fig. 4 and possibly elsewhere - perhaps best not to use Ser as an abbreviation for Serine here because it could potentially be confused with an abbreviation for serum.

      It is unfortunate that these two words are so similar. However, Ser is the canonical abbreviation for the amino acid serine. Serum does not have a canonical abbreviation.

      (6) Fig. 4 - I would move panels H - K to a separate supplementary figure - currently, they are too squished together and it is hard to make out the x-axis labels. I would also consider moving panels E-G to supplementary as well so that the microscopy images presented elsewhere in the figure can be presented at an appropriate size.

      Since we are allowed more figures, we could also break some of these figures up into multiple ones.

      (7) Similarly, I would move some panels from Fig. 5 to supplementary as the figure is currently quite busy.

      We have rearranged the figure (now Fig. 7) to move the bioinformatics data to Fig. 8 to allow more space for the panels.

      Other suggestions

      (8) Line 179 - how do the concentrations quote for serine and glucose compare to aspartate? This would be helpful to justify the authors' decision not to investigate Tar as a potential chemoreceptor.

      This is addressed in our comments above and in Fig. 4A and Fig. 4B-F. Human serum L-Asp is much lower concentration (about 20-fold).

      (9) Line 282 - Serine levels in serum are quantified at 241 uM, but this is only discussed in the context of serum growth effects. Could this information be better used to design/ inform the serine gradients that were tested in chemotaxis assays?

      We tested a wide range of serine concentrations and show even much lower sources of serine than is present in serum is sufficient for chemoattraction. Also, the K1/2 for serine is 105 uM (Fig. S4), which is surpassed by the concentration in serum (Fig. S5).

      (10) The word 'potent' in the title might be too vague, especially as the strength of the response varies between strains/species. It may perhaps be more useful to focus on the rapidity/sensitivity of the response. However, presumably the sensitivity of the response will be driven by the sensitivity of the response to serine (which is already known for E. coli at least). Also, as noted in the public review, human serum itself is not a chemoattractant so I would consider re-phasing this in the title and elsewhere.

      As suggested, and discussed above, we have implemented this change.

      (11) Typo line 59 'context of colonizing of a healthy gut'.

      Addressed.

      (12) Typo line 538 - there is an extra full stop here.

      Addressed.

      Reviewer #2:

      (1) This study is well executed and the experiments are clearly presented. These novel chemotaxis assays provide advantages in terms of temporal resolution and the ability to detect responses from small concentrations. That said, it is perhaps not surprising these bacteria respond to serum as it is known to contain high levels of known chemoattractants, serine certainly, but also aspartate. In fact, the bacteria are shown to respond to aspartate and the tsr mutant is still chemotactic. The authors do not adequately support their decision to focus exclusively on the Tsr receptor. Tsr is one of the chemoreceptors responsible for observed attraction to serum, but perhaps, not the receptor. Furthermore, the verification of chemotaxis to serum is a useful finding, but the work does not establish the physiological relevance of the behavior or associate it with any type of disease progression. I would expect that a majority of chemotactic bacteria would be attracted to it under some conditions. Hence the impact of this finding on the chemotaxis or medical fields is uncertain.

      We agree that the data we show are mostly mechanistic and further work is required to learn whether this bacterial behavior is relevant in vivo and during infections. We present new data using an ex vivo intestinal model which supports the feasibility of serum taxis mediating invasion of enterohemorrhagic lesions (Fig. 8).

      (2) The authors also state that "Our inability to substantiate a structure-function relationship for NE/DHMA signaling indicates these neurotransmitters are not ligands of Tsr." Both norepinephrine (NE) and DHMA have been shown previously by other groups to be strong chemoattractants for E. coli (Ec), and this behavior was mediated by Tsr (e.g. single residue changes in the Tsr binding pocket block the response). Given the 82% sequence identity between the Se and Ec Tsr, this finding is unexpected (and potentially quite interesting). To validate this contradictory result the authors should test E. coli chemotaxis to DHMA in their assay. It may be possible that Ec responds to NE and DHMA and Se doesn't. However, currently, the data is not strong enough to rule out Tsr as a receptor to these ligands in all cases. At the very least the supporting data for Tsr being a receptor for NE/DHMA needs to be discussed.

      Addressed above. The focus of this study is serum attraction and the mechanisms thereof. We never saw any evidence to support the idea that NE/DHMA drives attraction to serum, nor are chemoeffectors for Salmonella, and provide these null-results in Data S2.

      (3) The authors also determine a crystal structure of the Se Tsr periplasmic ligand binding domain bound to L-Ser and note that the orientation of the ligand is different than that modeled in a previously determined structure of lower resolution. I agree that the SeTsr ligand binding mode in the new structure is well-defined and unambiguous, but I think it is too strong to imply that the pose of the ligand in the previous structure is wrong. The two conformations are in fact quite similar to one another and the resolution of the older structure, is, in my view, insufficient to distinguish them. It is possible that there are real differences between the two structures. The domains do have different sequences and, moreover, the crystal forms and cryo-cooling conditions are different in each case. It's become increasingly apparent that temperature, as manifested in differential cooling conditions here, can affect ligand binding modes. It's also notable that full-length MCPs show negative cooperativity in binding ligands, which is typically lost in the isolated periplasmic domains. Hence ligand binding is sensitive to the environment of a given domain. In short, the current data is not convincing enough to say that a previous "misconception" is being corrected.

      Thank you for this comment, which spurred us to investigate this idea more rigorously. As described above we performed new refinements of the E. coli structure edited to have the positions of the ligand and ligand-binding site as modeled in our new Tsr structure from Salmonella (Fig. 7J). The best model is obtained with these poses. Along with the poor fit of the E. coli model to the density, the best interpretations for these positions, for both structures, are as we have modeled them in the Salmonella Tsr structures.

      Figure suggestions

      (1) Figure 2 looks busy and unorganized. Fig 2C could be condensed into one image where there are different colored rings coming from the source point that represent different time points.

      Addressed above. Fig. 2 has been broken apart to help improve clarity.

      (2) What is the second (bottom) graph of 2D? I think only the top graph is necessary.

      We have added an explanation to the figure legend that the top graph shows the means and the bottom shows SEM. The plots cannot easily be overlaid.

      (3) Similarly, Fig 2E doesn't need to have so many time points. Perhaps 4 at maximum.

      As the development of the response over time is a key take-home of the study, we do not wish to reduce the timepoints shown.

      (4) The legend for Figure 2F uses the unit 'µM' to mean micrometers but should use 'µm'.

      Corrected.

      (5) In Figures 2H-J, the lime green text is difficult to read. The word "serum" does not need to be at the top of each panel. I recommend shortening the y-axis titles on the graphs so you can make the graphs themselves larger.

      Addressed above.

      (6) In Figures 2H-J, I am confused about what is being shown in the inset graph. The legend says it's the AUC for the data shown. However, in the third panel (S. Typhimurium vs. S. Enteriditus) the data appears to be much more disparate than the inset indicates. I don't think that this inset is necessary either.

      The point of this inset graph is to quantify the response through integration of the curve, i.e., area under the curve, which is a common way to quantify complex curves and compare responses as single values. We are using this method to calculate statistical significant of the response compared to a null response. We have added further clarification to the figure legend regarding these plots: Inset plots show foldchange AUC of strains in the same experiment relative to an expected baseline of 1 (no change). p-values shown are calculated with an unpaired two-sided t-test comparing the means of the two strains, or one-sided t-test to assess statistical significance in terms of change from 1-fold (stars).

      (7) Line 154, change "relevant for" to "observed in".

      Changed.

      (8) Line 171, according to the Mist4 database, Salmonella enterica has seven chemoreceptors. Why are only Tar, Tsr, and Trg mentioned? Why were only Tsr and Trg tested?

      Addressed above.

      (9) Line 192, be clear that you are referring to genes and not proteins, as italics are used.

      Revised to make this distinction clear.

      (10) Line 193, have other studies found a Trg deletion strain to be non-chemotactic? If so, cite this source here.

      We state that the Trg deletion strain had deficiencies in motility, and also have revised the text to include the clarification that this was not noted in earlier work with this strain: [line 173]: We were surprised to find that the trg strain had deficiencies in swimming motility (data not shown). This was not noted in earlier work but could explain the severe infection disadvantage of this mutant 34. Because motility is a prerequisite for chemotaxis, we chose not to study the trg mutant further, and instead focused our investigations on Tsr.

      (11) Why wasn't a Tar deletion mutant also analyzed? The authors say that based on the known composition of serum, serine and glucose are the most abundant. However, the serum does have aspartate at 10s of micromolar concentrations.

      Addressed above.

      (12) “The Tsr deletion strain still exhibits an obvious chemoattraction to serum. There are other protein(s) involved in chemoattraction to serum but the text does not discuss this.”

      Addressed above.

      (13) “In Figure 3B-F, the text is very difficult to read even when zoomed in on.”

      We have increased the font size of these panels.

      (14) “All of the text in Figure 5 is extremely small and difficult to read.”

      Addressed above. We split this figure in two to help improve clarity.

      (15) “I wonder about the accuracy of the concentration modeling. It seems like there are a lot of variables that could affect the diffusion rates, including the accuracy of the delivery system. Could the concentrations be verified by the dye experiments?”

      Addressed above. We provide a new analysis comparing experimental diffusion of A488 dye compared to calculations (Fig. S2).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      (1) It is nice that the authors compared their model to the one "without lookahead" in Figure 4, but this comparison requires more evidence in my opinion, as I explain in this comment. The model without lookahead is closely related or possibly equivalent to the standard predictive coding. In predictive coding, one can make the network follow the stimulus rapidly by reducing the time constant tau. However, as the time constant decreases, the network would become unstable both in simulations (due to limited integration time step) and physical implementation (due to noise). Therefore I wonder if the proposed model has an advantage over standard predictive coding with an optimized time constant. Hence I suggest to also add a comparison between the proposed model, and the predictive coding with parameters (such as tau) optimized independently for each model. Of course, we know that the time-constant of biological neurons is fixed, but biological neurons might have had different time constants (by changing leak conductance) and such analysis could shed light on the question of why the neurons are organized the way they are.

      The comparison with a predictive network for which the neuronal time constants shrink towards 0 is in fact helpful. We added two news subsections in the SI that formally compares the NLA with other approaches, Equilibrium propagation and the Latent Equilibrium, with a version of Equilibrium Propagation also covering the standard predictive coding you describe (SI, Sect.C and D). The Subsection C concludes: “In the Equilibrium propagation we cannot simply take the limit t0 since then the dynamics either disappears (when tau remains on the left, t Du  0) or explodes (when t is moved to the right, dt/ t  ∞), leading to either too small or too big jumps.”

      We have also expanded the passage on the predictive coding in the main text, comparing our instantaneous network processing (up to a remaining time constant tin) with experimental data from humans (see page 10 of the revised ms). The new paragraph ends with:

      “Notice that, from a technical perspective, making the time constants of individual cortical neurons arbitrarily short leads to network instabilities and is unlikely the option chosen by the brain (see SI Sect. C, Comparison to the Equilibrium Propagation).”

      A new formal definition of the moving equilibrium in the Methods (Sect. F) helps to understand this notion of being in a balanced equilibrium state during the dynamics. This formal definition directly leads to the contraction analysis in the SI, Sect. D, showing why the Latent Equilibrium is always contractive, while the current form of the NLA may show jumps at the corner of a ReLu (since a second order derivative of the transfer function enters in the error propagation).

      The reviewer perhaps has additional simulations in mind that compare the robustness of the different models. However, as this paper is more about presenting a novel concept with a comprehensive theory (summing up to 45 pages), we prefer to not add more than the simulations necessary to check the statements of the theorems.

      (2) I found this paper difficult to follow, because the Results sections went straight into details, and various elements of the model were introduced without explaining why they are necessary. Furthermore, the neural implementation was introduced after the model simulations. I suggest reorganizing the manuscript, to describe the model following Marr's levels of description and then presenting the results of simulations. In particular, I suggest starting the Results section by explaining what computation the network is trying to achieve (describe the setup, function L, define its integral over time, and explain that the goal is to find a model minimizing this integral). Then, I suggest presenting the algorithm the neurons need to employ to minimize this integral, i.e. their dynamics and plasticity (I wonder if r=rho(u) + tau rho(u)' is a consequence of action minimization or a necessary assumption - please clarify it). Next please explain how the algorithms could be implemented in biological neurons. Afterward please present the results of the simulation.

      We are sorry to realize that we could not convey the main message clearly enough. After rewriting the paper and straightening the narrative, we hope it is simpler to understand now.

      The paper does not suggest a new model to solve a task, and writing down the function to be minimized is not enough. The point of the NLA is that the time integral of our Lagrangian is minimized with respect to the prospective coordinates, i.e. the discounted future voltage. It is about the question how dynamic equations in biology are derived. Of course, we also solve these equations, prove theorems and perform simulations. But the main point that biology seems to deal with time differently than physics deals with time. Biology “thinks” in terms of future quantities, physics “thinks” in terms of current quantities. We tried to explain this better now in the Introduction, the Results (e.g. after Eq. 5) and the Methods.

      (3) Understanding the paper requires background knowledge that most readers of eLife are unlikely to have, even if they are mathematically minded. For example, I am from the field of computational neuroscience, and I have never heard about Least Action principle from physics or the EulerLagrange equation. I felt lost after reading this paper, and to be able to write this review I needed to watch videos on the Euler-Lagrange equation. To help other readers, I have two suggestions: First, I feel that Eq 4-6 could be moved to the methods, because I found the concept of u~ difficult to understand, and it does not appear in the algorithm. Second, I advise to write in the Introduction, what knowledge is required to follow this paper, and point the readers to resources where they can find the required information. The authors may specify what background is required to follow the main text, and what is required to understand the methods.

      We hope that after explaining the rationale better, it becomes clear that we cannot skip the equations for the prospective coordinates. Likewise, the Euler-Lagrange equations need to be presented in the abstract form, since these are the equations that are eventually transformed into the “model”. We tried to give the basic intuition for this in the main text. As we explained above, the equations asked to be skipped represent the essence of the proposal. It is about how to derive a model equations.

      Moreover, we give more explanations in the Methods to understand the derivations, and we refer to the specifically sections in the SI for further details. We are aware that a full understanding of the theory requires some basic knowledge of the calculus of variation.

      We are hesitating to write in the Introduction what type of knowledge is required to understand the paper. An understanding can be on various levels. Moreover, the materials that are considered to be helpful depend on the background. While for some it is a Youtube, for some Wikipedia, and for others it is a textbook where specific ingredients can be extracted. But we do cite two textbooks in the Results and more in the SI, Sect. F, when referring to the principle of least action in physics and the mathematics, including weblinks.

      Minor comments

      Eq.3: The Authors refer to this equation as a Lagrangian. Could you please clarify why? Is the logic to minimize the energy subject to a constraint that Cost = 0?

      Thanks for asking. The cost is not really a constraint, it is globally minimized, in parallel steps. We are explaining this right after Eq. 3. “We `prospectively' minimize L locally across a voltage trajectory, so that, as a consequence, the local synaptic plasticity for W will globally reduce the cost along the trajectory (Theorem 1 below).”

      We were adding two sentence that explain why this function in Eq. 3 is called a Lagrangian: “While in classical energy-based approaches L is called the total energy, we call it the `Lagrangian' because it will be integrated along real and virtual voltage trajectories as done in variational calculus (leading to the Euler-Lagrange equations, see below and SI, Sect. F)”

      p.4, below Eq. 5 - Please explain the rationale behind NLA, i.e. why is it beneficial that "the trajectory u˜(t) keeps the action A stationary with respect to small variations δu˜"? I guess you wish to minimize L integrated over time, but this is not evident from the text.

      Hmm, yes and no. We wish to minimize the cost, and on the way there minimize the action. Since the global minimization of C is technically difficult, one looks for stationary trajectory as defined in the cited sentence, while minimizing L with respect to W, to eventually minimize the cost.

      In the text we now explain after Eq. 5:

      “The motivation to search for a trajectory that keeps the action stationary is borrowed from physics. The motivation to search for a stationary trajectory by varying the near-future voltages ũ instead of u is assigned to the evolutionary pressure in biology to 'think ahead of time'. To not react too late, internal delays involved in the integration of external feedback need to be considered and eventually need to be overcome. In fact, only for the 'prospective coordinates' defined by looking ahead into the future, even when only virtually, will a real-time learning from feedback errors become possible (as expressed by our Theorems below).”

      Bottom of page 8. The authors say that in the case of single equilibrium and strong nudging the model reduced to the Least Control Principle. Does it also reduce to Predictive coding for supervised learning? If so, it would be helpful to state so.

      Yes, in this case the prediction error in the apical dendrite becomes the one of predictive coding. We are stating this now right at the end of the cited sentence:

      “In the case of strong nudging and a single steady-state equilibrium, the NLA principle reduces to the Least-Control Principle (Meulemans et al., 2022) that minimizes the mismatch energy E^M for a constant input and a constant target, with the apical prediction error becoming the prediction error from standard predictive coding (Rao & Ballard, 1999).”

      In the Discussion we also added a further point (iv) to compare the NLA principle with predictive coding. Both “improve” the sensory representation, but the NLA does in favor of an output, and the predictive coding in favor of the sensory prediction itself (see Discussion).

      Whenever you refer to supplementary materials, please specify the section, so it is easier for the reader to find it.

      Done. Sorry to not have done it earlier. We are now also indicate specific sections when referring to the Methods.

      Reviewer #2 (Recommendations For The Authors):

      There are no major issues with this article, but I have several considerations that I think would greatly improve the impact, clarity, and validity of the claims.

      (1) Unifying the narrative. There are many many ideas put forward in what feels like a deluge. While I appreciate the enthusiasm, as a reader I found it hard to understand what it was that the authors thought was the main breakthrough. For instance, the abstract, results, introduction, and discussion all seem to provide different answers to that question. The abstract seems to focus on the motor error idea. The introduction seems to focus on the novel prospective+predictive setup of the energy function. The discussion lists the different perks of the theory (delay compensation, moving equilibrium, microcircuit) without referring to the prospective+predictive setup of the energy function.

      Thanks much for these helpful hints. Yes, the paper became an agglomerate of many ideas, also own to the fact that we wish to show how the NLA principle can be applied to explain various phenomenology in neurosicence. We now simplified the narrative to this one point of providing a novel theoretical framework for neuroscience, and explaining why this is novel and why it “suddenly works” (the prospective minimization of the energy).

      As you can see from the dominating red in the revised pdf, we did fully rewrite Abstract, Introduction and Discussion under the narrative of the NLA and prospective coding.

      (2) Laying out the organization of the notation clearly. There are quite a few subtle distinctions of what is meant by the different weight matrices (omnibus matrix then input vs recurrent then layered architecture), different temporal horizon formalisms (bar, not bar, tilde), different operators (L, curly L, derivative version, integral version). These different levels are introduced on the fly, which makes it harder to grasp. The fact that there are many duplicate notations for the same quantities does not help the reader. For instance u_0 becomes equal to u_N at one point (above Eq 25). Another example is the constant flipping between integrated and 'current input' pictures. So laying out the multiple layers early, making a table or a figure for the notation, or sticking with one level would help convey the idea to a wide readership.

      Thanks for the hints. We included the table you suggested, but put it to the SI as it became a full page itself. We banned the curly L abbreviating the look-ahead operator.

      The “change of notation” you are alluding to is tricky, though. In a recurrent layer, the index of the output neuron is called o. In a forward network with N layer, the index of the output neurons becomes the last layer N. One has to introduce the layer index l anway for the deeper layers l < N, and we found it more consistent to explain that, while switching from the recurrent to the forward network, the voltage of the output layer becomes now u_o = u_N. There are more of these examples, like the weight matrix W splitting into a intrinsic network part W_net across which errors backpropagate, and a part conveying the input, W_in, that has to be excluded when writing the backpropagation formula for general networks. Again, in the case of the feedforward networks, the notation reduces to W_l, with index l coding for the layer. Presenting the general approach and a specific example may appear as we would duplicate notations – we haven’t found a solution here.

      (3) Separate the algorithm from the implementation level. I particularly struggled with separating the ideas that belonged to the algorithm level (cost function, optimization objectives) and the biophysics. The two are interwoven in a way that does not have to be. Particularly, some of the normative elements may be implemented by other types of biophysics than the authors have in mind. It is for this reason that I think that separating more clearly what belongs to the implementation and algorithm levels would help make the ideas more widely understood. On this point, a trigger point for me was the definition of the 'prospective input rates' e_i, which comes in the second paragraph.

      We are very sorry to have made you thinking that the 'prospective input rates' would be e_i. The prospective input rates are r_i. The misunderstanding likely appeared by an unclear formulation from our side that is now corrected (see first and second paragraph of the Results where we introduce r_i and e_i).

      From a biophysical perspective, it is quite arbitrary to define the input to be the difference between the basal input and the somatic (prospective) potential. It sounds like it comes from some unclear normative picture at this point. But the authors seem to have in mind to use the fact that the somatic potential is the sum of apical and basal input, that's the biophysical picture.

      We hope to have disentangled the normative and biophysical view in the 2nd and 3rd paragraph of the Results, respectively. We introduce the prospective error ei as abstract notion in the first paragraph, while explaining that it will be interpreted as somato-dendritic mismatch error in neuron I in the next paragraph. The second paragraph contains the biophysical details with the apical and basal morphology.

      (4) Experts and non-expert would appreciate an explanation of why/how the choice of state variables matters in the NLA. The prospective coding state variables cannot be said to be the naïve guess. Why does the simple u, dot{u} not work as state variables applied on the same energy function, as would be a naïve application of the Lagrangian ideas?

      We are very glad for this hint to present an intuition behind the variation of the action with respect to a prospective state, instead of the state itself. The simple L(u, dot{u}) does not work because one does not obtain the first-order voltage dynamics compatible with the biophysics. We made an effort to explain the intuition to non-experts and experts in an additional paragraph right after presenting the voltage and error dynamics (Eq. 7 on page 4).

      Here is how the paragraph starts (not displaying the formulas here):

      “From the point of view of theoretical physics, where the laws of motion derived from the least-action principle contain an acceleration term (as in Newton's law of motion, like … for a harmonic oscillator), one may wonder why no second-order time derivative appears in the NLA dynamics. As an intuitive example, consider driving into a bend. Looking ahead in time helps us to reduce the lateral acceleration by braking early enough, as opposed to braking only when the lateral acceleration is already present. This intuition is captured by minimizing the neuronal action A with respect to the discounted future voltages ũi instead of the instantaneous voltages ui.

      Keeping up an internal equilibrium in the presence of a changing environment requires to look ahead and compensate early for the predicted perturbations.

      Technically, …”

      More details are given in the Methods after Eq. 20. Moreover, in the last part of the SI, Sect. F, we have made the link to the least-action principle in physics more explicitly. There we show how the voltage dynamics can be derived from the physical least-action principle by including the Rayleigh dissipation (Eq. 92 and 95).

      (5) Specify that the learning rules have not been observed. Though the learning rules are Hebbian, the details of the rules have not to my knowledge been observed. Would be worth mentioning as this is a sticking point of most related theories.

      We agree, and we do now explicitly write in the Discussion that the learning rule still awaits to be experimentally tested.

      6) Some relevant literature. Chalk et al. PNAS (2018) have explored the relationship between temporal predictive coding and Rao & Ballard predictive coding based on the parameters of the cost function. Harkin et al. eLife (2023) have shown that 'prospective coding' also takes place in the serotonergic system, while Kim ... Ma (2021) have put forward similar ideas for dopamine, both may participate in setting the cost function. Instantaneous voltage propagation is also a focus of Greedy et al. (2023). The authors cite Zenke et al. for spiking error propagation, but there are biological references to that end.

      Thanks much for these hints. We do now cite the book of Gerstner & Kistler on spiking neurons, and more specifically the spike-based approach for learning to represent signals (Brendel, .., Machens, Denève, PLoS CB, 2020). Otherwise, we had difficulties to incorporate the other literature that seems to us not directly related to our approach, even when related notions come up (like predictive coding and temporal processing in Chalk et al. (2018), where various temporal coding schemes coding efficiency is studied as a function of the signal-to-noise ratio), or the apical activities in Greedy et al. (2022), where bursting, multiplexing and synaptic facilitation arises). We found it would confuse more than it would help if we would cite these papers too (we do already cite 95 papers).

      (7) In the main text, theorem two is presented as proof without assumptions on the level of nudging, but the actual proof uses strong assumptions in that respect, relying on numerical ad hoc observations for the general case.

      Thanks for pointing this out. We agree it is a better style to state all the critical assumptions in Theorem itself, rather than deferring them to the Methods. We now state: “Then, for suitable top-down nudging, learning rates, and initial conditions, the ….weights …evolve such that…”.

      (8) In the discussion regarding error-backpropagation, it seems to me that it could be clarified that the current algorithm asks for a weight alignment between FF and FB matrices as well as between FB and interneuron circuit matrices. Whether all of these matrices can be learned together remains to be shown; neither Akrout, Kunin nor Max et al. have shown this explicitly. Particularly when there are other inputs to the apical dendrites from other areas.

      Yes, it is difficult to learn to align all in parallel. Nevertheless, our simulations in fact do align the lateral and vertical circuits, at is also claimed in Theorem 2. Yet, as specified in the theorem, “for suitable learning rates” (that were all the same, but were commonly reduced after some training time, as previously explained in the Methods, Details for Fig. 5).

      In the Discussion we now emphasis that, in general, simulating all the circuitries jointly from scratch in a single phase is tricky. We write:

      “A fundamental difficulty arises when the neuronal implementation of the Euler-Lagrange equations requires an additional microcircuit with its own dynamics. This is the case for the suggested microcircuit extracting the local errors. Formally, the representation of the apical feedback errors first needs to be learned before the errors can teach the feedforward synapses on the basal dendrites. We showed that this error learning can itself be formulated as minimizing an apical mismatch energy. What the lateral feedback through interneurons cannot explain away from the top-down feedback remains as apical prediction error.

      Ideally, while the network synapses targetting the basal tree are performing gradient descent on the global cost, the microcircuit synapses involved in the lateral feedback are performing gradient descent on local error functions, both at any moment in time.

      The simulations show that this intertwined system can in fact learn simultaneously with a common learning rate that is properly tuned. The cortical model network of inter- and pyramidal neurons learned to classify handwritten digits on the fly, with 10 digit samples presented per second. Yet, the overall learning is more robust if the error learning in the apical dendrites operates in phases without output teaching but with corresponding sensory activity, as may arise during sleep (see e.g. Deperrois et al., 2022 and 2023).”

      (9) The short-term depression model is assuming a slow type of short-term depression, not the fast types that are the focus of much recent experimental literature (like Campagnola et al. Science 2022).

      This assumption should be specified.

      Thanks for hinting to this literature that we were not aware of. We are now citing the releaseindependent plasticity (Campagnola et al. 2022) in the context of our synaptic depression model.

      (10) There seems to be a small notation issue: Eq 21 combines vectors of the size of the full network (bar{e}) and the size of the readout network (bar{e}star).

      Well, for notational convenience we set the target error to e*=0 for non-output neurons. This way we can write the total error for an arbitrary network neuron as the sum of the backpropagated error plus the putative target error (if the neuron is an output neuron). Otherwise we would always have to distinguish between network neuron that may be output neurons, and those that are not. We did say this in the main text, but are repeating it now again right after Eq. 21. -- Notations are often the result of a tradoff.

    1. What are the ways in which a parasocial relationship can be authentic or inauthentic?

      I think parasocial relationships can be authentic when such a figure or celebrity has a positive influence on the follower, encouraging them to grow and become a better person. I also believe that having a sense of mutual respect for one another is crucial. Though the celebrity might not know them, they can still have some level of respect, and for the follower, they can create respect by also not forming an unhealthy attachment to the figure. However, I also believe there are times when the relationship might not be authentic, as followers might misunderstand their relationship and assume that they have a deeper connection. As we see with Jessica, she believed that Mr. Rogers knew her and liked her. Although in Jessica's case it is quite an innocent misunderstanding, in some cases, it can lead to having unrealistic expectations of the figure as well as a lack of boundaries. Followers can presume the figure genuinely has a connection with them, and be devastatingly disappointed. Other times, followers may become obsessed with said figure and behave irrationally. As such, I think parasocial relationships can be authentic to a limit. I think it is important for the follower and even the figure to clarify the extent of their relationship.

    1. Author response:

      The following is the authors’ response to the original reviews.

      General comments

      All three experts have raised excellent ideas and made important suggestions to extend the scope of our study and provide additional information. While we fully acknowledge that these points are valid and would provide exciting new knowledge, we also should not lose track of the fact that a single study cannot cover all bases. Sulfated steroids, for example, are clearly essential components of mouse urine. Unfortunately, however, all chemical analysis approaches are limited and the one we opted for is not suitable for analysis of such signaling molecules. Future studies should certainly focus on these aspects. The same holds true for the fact that we do not know which of the identified compounds are actually VSN ligands. These are inherent limitations of the approach, and we are not claiming otherwise.

      Reviewer #1 (Public Review):

      (1) In this manuscript, Nagel et al. sought to comprehensively characterize the composition of urinary compounds, some of which are putative chemosignals. They used urines from adult males and females in three different strains, including one wild-derived strain. By performing mass spectrometry of two classes of compounds: volatile organic compounds and proteins, they found that urines from inbred strains are qualitatively similar to those of a wild strain. This finding is significant because there is a high degree of genetic diversity in wild mice, with chemosensory receptor genes harboring many polymorphisms.

      We agree and thank the Reviewer for his / her positive assessment.

      (2) In the second part of this work, the authors used calcium imaging to monitor the pattern of vomeronasal neuron responses to these urines. By performing pairwise comparisons, the authors found a large degree of strain-specific response and a relatively minor response to sex-specific urinary stimuli. This is a finding generally in agreement with previous calcium imaging work by Ron Yu and colleagues in 2008. The authors extend the previous work by using urines from wild mice. They further report that the concentration diversity of urinary compounds in different urine batches is largely uncorrelated with the activity profiles of these urines. In addition, the authors found that the patterns of vomeronasal neuron response to urinary cues are not identical when measured using different recipient strains. This fascinating finding, however, requires an additional control to exclude the possibility that this is not due to sampling error.

      We thank Reviewer 1 for pointing this out. We agree that this is truly a “fascinating finding.” Reviewer 1 emphasizes that we need to add an “additional control to exclude […] that this is not due to sampling error”, and he / she elaborates on the required control in his / her Recommendations For The Authors (see below). Reviewer 1 states that “for Fig. 5, in order to conclude that the same urine activates a different population of VSNs in two different strains, a critical control is needed to demonstrate that this is not due to the sampling variability - as compositions of V1Rs and V2Rs could vary between different slices, one preferred control is to use VNO slices from the same strain and compare the selectivity used here across the A-P axis.” Importantly, we believe that this is already controlled for. In fact, for each experiment, we routinely prepare VNO slices along the organ’s entire anterior-to-posterior axis (not including the most anterior tip, where the VNO lumen tapers into the vomeronasal duct, and the most posterior part, the lumen ‘‘twists’’ toward the ventral aspect and its volume decreases (see Figs. 7 & S7 in Hamacher et al., 2024, Current Biology)). This usually yields ~7 slices per individual experiment / session. Therefore, we routinely sample and average across the entire VNO anterior-to-posterior axis for each experiment. In Fig. 5, in which we analyzed whether the “same urine activates a different population of VSNs in two different strains”, individual independent experiments from each strain (C57BL/6 versus BALB/c) amounted to (a) n = 6 versus n = 8; (b) n = 10 versus n = 10; (c) n = 7 versus n = 9; (d) n = 9 versus n = 10; (e) n = 10 versus n = 9; and (f) n = 12 versus n = 10. Together, we conclude that it is very unlikely that the considerably different response profiles measured in different recipient strains result from a “sampling error.”

      To clarify this point in the revised manuscript, we now explain our sampling routine in more detail in the Materials and Methods. Moreover, we now also refer to this point in the Results.

      (3) There are several weaknesses in this manuscript, including the lack of analysis of the compositions of sulfated steroids and other steroids, which have been proposed to be the major constituents of vomeronasal ligands in urines and the indirect (correlational) nature of their mass spectrometry data and activity data.

      Reviewer 1 is correct to point out that our chemical profiling approach omits (sulfated) steroids. We are aware of this weakness. We deliberately decided to omit steroids as well as other nonvolatile small organic molecules for three main reasons: (i) as the reviewer points out, (sulfated) steroid composition has been the focus of analysis in several previous studies and there is ample published information available on their role as VSN stimuli; (ii) the analytical tools available to us do not allow comprehensive profiling of non-volatile small organic molecules; employing two-dimensional head-space GC-MS as well as LC-MS/MS is not suitable for steroid detection; and (iii) the relatively small sample volumes forced us to prioritize and focus on specific chemical classes (in our case, VOCs and proteins). We made an effort to use of the exact same stimuli as previously employed to investigate sensory representations in the accessory olfactory bulb (AOB) (Bansal et al., 2021), a feature that we consider a strength of the current study. However, this entailed that we had to effectively split our samples, further reducing the available sample volume.

      We acknowledge that we did not sufficiently describe our rationale for focusing on VOCs and proteins on the previous version of the manuscript (nor did we discuss the known role of (sulfated) steroids in VSN signaling in adequate detail). We have now made an effort to address these shortcomings in the revised manuscript. Specifically, we have added new text to the Introduction (“Prominent molecularly identified VSN stimuli include various sulfated steroids (Celsi et al., 2012; Fu et al., 2015; Haga-Yamanaka et al., 2015, 2014; Isogai et al., 2011; Nodari et al., 2008; Turaga and Holy, 2012), which could reflect the dynamic endocrine state of an individual.”) and the Discussion (“Notably, our chemical profiling approach omits (sulfated) steroids other non-volatile small organic molecules, which have previously been identified in mouse urine as VSN stimuli (Nodari et al., 2008). Caution should thus be exerted to not attempt to fully explain VSN response specificity based on VOC and protein content alone.” & “In line with the notion of highly selective vomeronasal sampling is our observation that the concentration differences between compounds shared among strains, which are often substantial, are not reflected by similarly pronounced differences in response strength among generalist VSNs. There are several, not necessarily mutually exclusive explanations for this finding: First, concentration could simply not be a read-out parameter for VSNs, which would support previous ideas of concentration-invariant VSN activity (Leinders-Zufall et al., 2000). Second, the concentrations in freshly released urine could just exceed the dynamic tuning range of VSNs since, particularly for VOCs, natural signals (e.g., in scent marks) must be accessible to a recipient for a prolonged amount of time (sometimes days). A similar rationale could explain the increased protein concentrations in male urine, since male mice use scent marking to establish and maintain their territories and urinary lipocalins serve as long-lasting reservoirs of VOCs (Hurst et al., 1998). Third, generalist VSNs might sample information only from a select subset of urinary compounds, which, given their role as biologically relevant chemosignals, might be released at tightly controlled (and thus similar) concentrations. In fact, in the most extreme scenario, several compounds that do display substantial strain- and/or sex-specific differences in concentration might not act as chemosignals at all. Forth, to some extent, different response profiles could be attributed to non-volatile small organic molecules such as steroids (Nodari et al., 2008), which were beyond the focus of our chemical analysis.”).

      (4) Overall, the major contribution of this work is the identification of specific molecules in mouse urines. This work is likely to be of significant interest to researchers in chemosensory signaling in mammals and provides a systematic avenue to exhaustively identify vomeronasal ligands in the future.

      We thank the Reviewer for his / her generally positive assessment.

      Reviewer #2 (Public Review):

      (1) This manuscript by Nagel et al provides a comprehensive examination of the chemical composition of mouse urine (an important source of semiochemicals) across strain and sex, and correlates these differences with functional responses of vomeronasal sensory neurons (an important sensory population for detecting chemical social cues). The strength of the work lies in the careful and comprehensive imaging and chemical analyses, the rigor of quantification of functional responses, and the insight into the relevance of olfactory work on lab-derived vs wild-derived mice.

      We thank the Reviewer for his / her generally positive assessment.

      (2) With regards to the chemical analysis, the reader should keep in mind that a difference in the concentration of a chemical across strain or sex does not necessarily mean that that chemical is used for chemical communication. In the most extreme case, the animals may be completely insensitive to the chemical. Thus, the fact that the repertoire of proteins and volatiles could potentially allow sex and/or strain discrimination, it is unclear to what degree both are used in different situations.

      Reviewer 2 is correct to point out that sex- and/or strain-dependent differences in urine molecular composition do not automatically attribute a signaling function to those molecules. We concur and, in fact, stress this point many times throughout the manuscript. In the Results, for example, we point out (i) that “in female urine, BALB/c-specific proteins are substantially underrepresented, a fact not reflected by VSN response profiles”, (ii) that “as observed in C57BL/6 neurons, the skewed distributions of protein concentration indices were not reflected by BALB/c generalist VSN profiles”, and (iii) that “VSN population response profiles do not reflect the global molecular content of urine, suggesting that the VNO functions as a rather selective molecular detector.” Moreover, in the Discussion, we state (i) that “caution should thus be exerted to not attempt to fully explain VSN response specificity based on VOC and protein content alone”; (ii) that, for several sex- and/or strain-specific molecules, none “has previously been attributed a chemosensory function. Challenging the mouse VNO with purified recombinant protein(s) will help elucidate whether such functions exist”; (iii) that “generalist VSNs might sample information only from a select subset of urinary compounds, which, given their role as biologically relevant chemosignals, might be released at tightly controlled (and thus similar) concentrations”; and (iv) that “to some extent, different response profiles could be attributed to non-volatile small organic molecules such as steroids (Nodari et al., 2008), which were beyond the focus of our chemical analysis.”

      In the revised manuscript, we now aim to even more strongly emphasize the point made by Reviewer 2. In the Discussion, we have deleted a sentence that read: “Sex- and strain-specific chemical profiles give rise to unique VSN activity patterns.” Moreover, we have added the following statement: “In fact, in the most extreme scenario, several compounds that do display substantial strain- and/or sex-specific differences in concentration might not act as chemosignals at all.”

      Reviewer #3 (Public Review):

      (1) One of the primary objectives in this study is to ascertain the extent to which the response profiles of VSNs are specific to sex and strain. The design of these Ca2+ imaging experiments uses a simple stimulus design, using two interleaved bouts of stimulation with pairs of urine (e.g. male versus female C57BL/6, male C57BL/6 versus male BALB/c) at a single dilution factor (1:100). This introduces two significant limitations: (1) the "generalist" versus "specialist" descriptors pertain only to the specific pairwise comparisons made and (2) there is no information about the sensitivity/concentration-dependence of the responses.

      Reviewer 3 points to two limitations of our VSN activity assay. He / she is correct to mention that characterizing a VSN as generalist or specialist based on a “pairwise comparison” should not be the basis of attributing such a “generalist” or “specialist” label in general (i.e., regarding the global stimulus space). We acknowledge this point, but we do not regard this as a limitation of our study since we are not investigating rather broad (i.e., multidimensional) questions of selectivity. All we are asking in the context of this study is whether VSNs - when being challenged with pairs of sex- or strain-specific urine samples - act as rather selective semiochemical detectors. Of course, one can always think of a study design that provides more information. However, we here opted for an assay that - in our hands - is robust, “low noise” (i.e., displays low intrinsic signal variability as evident form reliability index calculations), ensures recovery from VSN adaptation (Wong et al., 2018), and, importantly, answers the specific question we are asking.

      Regarding the second point (“there is no information about the sensitivity/concentrationdependence of the responses”), we would like to emphasize that this was not a focus of our study either. In fact, concentration-dependence of VSN activity has been a major focus of several previous studies referenced in our manuscript (e.g., Leinders-Zufall et al., 2000; He et al., 2008), albeit with contradictory results. In our study, we ask whether a pair of stimuli that we have shown to display, in part, strikingly different chemical composition (both absolute and relative) preferentially activates the same or different VSNs. With this question in mind, we believe that our assay (and its results) are highly informative.

      (2) The functional measurements of VSN tuning to various pairs of urine stimuli are consistently presented alongside mass spectrometry-based comparisons. Although it is clear from the manuscript text that the mass spectrometry-based analysis was separated from the VSN tuning experiments/analysis, the juxtaposition of VSN tuning measurements with independent molecular diversity measurements gives the appearance to readers that these experiments were integrated (i.e., that the diversity of ligands was underlying the diversity of physiological responses). This is a hypothesis raised by the parallel studies, not a supported conclusion of the work. This data presentation style risks confusing readers.

      As Reviewer 3 points out correctly “it is clear from the manuscript text that the mass spectrometry-based analysis was separated from the VSN tuning experiments/analysis.” In the figures, we try make the distinction between VSN response statistics and chemical profiling more obvious by gray shadows that link the plots depicting VSN response characteristics to the general pie charts.

      We now also made an extra effort to avoid “confusing readers” by stating in the Discussion (i) that “caution should thus be exerted to not attempt to fully explain VSN response specificity based on VOC and protein content alone”; (ii) that, for several sex- and/or strain-specific molecules, none “has previously been attributed a chemosensory function. Challenging the mouse VNO with purified recombinant protein(s) will help elucidate whether such functions exist”; (iii) that “generalist VSNs might sample information only from a select subset of urinary compounds, which, given their role as biologically relevant chemosignals, might be released at tightly controlled (and thus similar) concentrations”; and (iv) that “to some extent, different response profiles could be attributed to non-volatile small organic molecules such as steroids (Nodari et al., 2008), which were beyond the focus of our chemical analysis.” Moreover, we have deleted a sentence that read: “sex- and strain-specific chemical profiles give rise to unique VSN activity patterns”, and we have added the following statement: “In fact, in the most extreme scenario, several compounds that do display substantial strain- and/or sex-specific differences in concentration might not act as chemosignals at all.”

      However, we believe that there is value in presenting “VSN tuning measurements” next to “independent molecular diversity measurements.” While these are independent measurements, their similarity or, quite frequently, lack thereof are informative. We are sure that by taking the above “precautions” we have now mitigated the risk of “confusing readers.”

      (3) The impact of mass spectrometry findings is limited by the fact that none of these molecules (in bulk, fractions, or monomolecular candidate ligands) were tested on VSNs. It is possible that only a very small number of these ligands activate the VNO. The list of variably expressed proteins - especially several proteins that are preferentially found in female urine - is compelling, but, again, there is no evidence presented that indicates whether or not these candidate ligands drive VSN activity. It is noteworthy that the largest class of known natural ligands for VSNs are small nonvolatiles that are found at high levels in mouse urine. These molecules were almost certainly involved in driving VSN activity in the physiology assays (both "generalist" and "specialist"), but they are absent from the molecular analysis.

      Reviewer 3 is right, of course, that at this point we have not tested the identified molecules on VSNs. This is clearly beyond the scope of the present study. We believe that the data we present will be the basis of (several full-length) future studies that aim to identify specific ligands and - best case scenario - receptor-ligand pairs. We find it hard to concur that our study, which provides the necessary basis for those future endeavors, is regarded as “incomplete”. By design, all studies are somewhat incomplete, i.e., there are always remaining questions and we are not contesting that.

      It is true, of course, that a class of “known natural ligands for VSNs are small nonvolatiles.” As we replied above, our chemical profiling approach omits (sulfated) steroids. We are aware of this weakness. We deliberately decided to omit steroids as well as other non-volatile small organic molecules for three main reasons: (i) steroid composition has been the focus of analysis in several previous studies and there is ample published information available on their role as VSN stimuli; (ii) the analytical tools available to us do not allow comprehensive profiling of non-volatile small organic molecules; employing two-dimensional head-space GC-MS as well as LC-MS/MS is not suitable for steroid detection; and (iii) the relatively small sample volumes forced us to prioritize and focus on specific chemical classes (in our case, VOCs and proteins). We made an effort to use of the exact same stimuli as previously employed to investigate sensory representations in the accessory olfactory bulb (AOB) (Bansal et al., 2021), a fact that we consider a key strength of our current study. However, this entailed that we had to effectively split our samples, further reducing the available sample volume.

      We acknowledge that we did not sufficiently describe our rationale for focusing on VOCs and proteins on the previous version of the manuscript (nor did we discuss the known role of (sulfated) steroids in VSN signaling in adequate detail). We have now made an effort to address these shortcomings in the revised manuscript. Specifically, we have added new text to the Introduction (“Prominent molecularly identified VSN stimuli include various sulfated steroids (Celsi et al., 2012; Fu et al., 2015; Haga-Yamanaka et al., 2015, 2014; Isogai et al., 2011; Nodari et al., 2008; Turaga and Holy, 2012), which could reflect the dynamic endocrine state of an individual.”) and the Discussion (“Notably, our chemical profiling approach omits (sulfated) steroids other non-volatile small organic molecules, which have previously been identified in mouse urine as VSN stimuli (Nodari et al., 2008). Caution should thus be exerted to not attempt to fully explain VSN response specificity based on VOC and protein content alone.” & “In line with the notion of highly selective vomeronasal sampling is our observation that the concentration differences between compounds shared among strains, which are often substantial, are not reflected by similarly pronounced differences in response strength among generalist VSNs. There are several, not necessarily mutually exclusive explanations for this finding: First, concentration could simply not be a read-out parameter for VSNs, which would support previous ideas of concentration-invariant VSN activity (Leinders-Zufall et al., 2000). Second, the concentrations in freshly released urine could just exceed the dynamic tuning range of VSNs since, particularly for VOCs, natural signals (e.g., in scent marks) must be accessible to a recipient for a prolonged amount of time (sometimes days). A similar rationale could explain the increased protein concentrations in male urine, since male mice use scent marking to establish and maintain their territories and urinary lipocalins serve as long-lasting reservoirs of VOCs (Hurst et al., 1998). Third, generalist VSNs might sample information only from a select subset of urinary compounds, which, given their role as biologically relevant chemosignals, might be released at tightly controlled (and thus similar) concentrations. In fact, in the most extreme scenario, several compounds that do display substantial strain- and/or sex-specific differences in concentration might not act as chemosignals at all. Forth, to some extent, different response profiles could be attributed to non-volatile small organic molecules such as steroids (Nodari et al., 2008), which were beyond the focus of our chemical analysis.”).

      Reviewer #1 (Recommendations For The Authors):

      (1) I find that the study is highly valuable for researchers in this field. With the finding that wild mouse urines do not elicit significantly more variable responses from urines from inbred strains, researchers can now be reassured to use inbred strains to gain general insights on pheromone signaling.

      A major omission of this study is non-volatile small organic molecules such as steroids. These compounds are the only molecular class in urine that have been identified to stimulate specific vomeronasal receptors to date. It is unclear to me that the specificity of VOC and proteins can alone fully explain the response specificity of the VSNs that have been monitored in this study. The discussion of this topic is highly beneficial for the readers.

      Reviewer 1 is correct to point out that our chemical profiling approach omits (sulfated) steroids. We are aware of this weakness. We deliberately decided to omit steroids as well as other nonvolatile small organic molecules for three main reasons: (i) as the reviewer points out, (sulfated) steroid composition has been the focus of analysis in several previous studies and there is ample published information available on their role as VSN stimuli; (ii) the analytical tools available to us do not allow comprehensive profiling of non-volatile small organic molecules; employing two-dimensional head-space GC-MS as well as LC-MS/MS is not suitable for steroid detection; and (iii) the relatively small sample volumes forced us to prioritize and focus on specific chemical classes (in our case, VOCs and proteins). We made an effort to use of the exact same stimuli as previously employed to investigate sensory representations in the accessory olfactory bulb (AOB) (Bansal et al., 2021), a fact that we consider a key strength of our current study. However, this entailed that we had to effectively split our samples, further reducing the available sample volume.

      We acknowledge that we did not sufficiently describe our rationale for focusing on VOCs and proteins on the previous version of the manuscript (nor did we discuss the known role of (sulfated) steroids in VSN signaling in adequate detail). We have now made an effort to address these shortcomings in the revised manuscript. Specifically, we have added new text to the Introduction (“Prominent molecularly identified VSN stimuli include various sulfated steroids (Celsi et al., 2012; Fu et al., 2015; Haga-Yamanaka et al., 2015, 2014; Isogai et al., 2011; Nodari et al., 2008; Turaga and Holy, 2012), which could reflect the dynamic endocrine state of an individual.”) and the Discussion (“Notably, our chemical profiling approach omits (sulfated) steroids other non-volatile small organic molecules, which have previously been identified in mouse urine as VSN stimuli (Nodari et al., 2008). Caution should thus be exerted to not attempt to fully explain VSN response specificity based on VOC and protein content alone.” & “In line with the notion of highly selective vomeronasal sampling is our observation that the concentration differences between compounds shared among strains, which are often substantial, are not reflected by similarly pronounced differences in response strength among generalist VSNs. There are several, not necessarily mutually exclusive explanations for this finding: First, concentration could simply not be a read-out parameter for VSNs, which would support previous ideas of concentration-invariant VSN activity (Leinders-Zufall et al., 2000). Second, the concentrations in freshly released urine could just exceed the dynamic tuning range of VSNs since, particularly for VOCs, natural signals (e.g., in scent marks) must be accessible to a recipient for a prolonged amount of time (sometimes days). A similar rationale could explain the increased protein concentrations in male urine, since male mice use scent marking to establish and maintain their territories and urinary lipocalins serve as long-lasting reservoirs of VOCs (Hurst et al., 1998). Third, generalist VSNs might sample information only from a select subset of urinary compounds, which, given their role as biologically relevant chemosignals, might be released at tightly controlled (and thus similar) concentrations. Forth, to some extent, different response profiles could be attributed to non-volatile small organic molecules such as steroids (Nodari et al., 2008), which were beyond the focus of our chemical analysis.”).

      (2) How many different wild mouse urines were tested in this study? Is this sufficient to capture the diversity of wild M. musculus in local (Prague) habitats?

      We thank the reviewer for pointing this out. For the present study, 20 male (M) and 27 female (F) wild mice were caught at six different sites in the broader Prague area (i.e., Bohnice (50.13415N, 14.41421E; 2M+4F), Dolni Brezany (49.96321N, 14.4585E; 3M+4F), Hodkovice (49.97227N, 14.48039E; 5M+6F), Písnice (49.98988N, 14.46625E; 3M+6F), Lhota (49.95369N, 14.43087E; 1M+2F), and Zalepy (49.9532N, 14.40829E; 6M+5F). 18 of the 27 wild females were caught pregnant. The remaining 9 females were mated with males caught at the same site and produced offspring within a month. When selecting 10 male and 10 female individuals from first-generation offspring for urine collection, we ensured that all six capture sites were represented and that age-matched animals displayed similar weight (~17g). We believe that this capture / breeding strategy sufficiently represents “the diversity of wild M. musculus in local (Prague) habitats.” In the revised manuscript, we have now included these details in the Materials and Methods.

      (3) I found Figure 1e and figures in a similar format confusing - one panel describes the response statistics of VSNs, and other panels show the number of compounds found in different MS profiling, which is not immediately obvious from the figures. Is the y-axis legend correct (%)?

      We now try make the distinction between VSN “response statistics” and chemical profiling more obvious by gray shadows that link the plots depicting VSN response characteristics to the general pie charts. Moreover, we thank the Reviewer for pointing out the mislabeling of the y-axis. Accordingly, we have deleted “%” in all corresponding figures.

      (4) For Figure 5, in order to conclude that the same urine activates a different population of VSNs in two different strains, a critical control is needed to demonstrate that this is not due to the sampling variability - as compositions of V1Rs and V2Rs could vary between different slices, one preferred control is to use VNO slices from the same strain and compare the selectivity used here across the A-P axis.

      We thank Reviewer 1 for pointing this out. Importantly, we believe that this is already controlled for (see our response to the Public Review). In fact, for each experiment, we routinely prepare VNO slices along the entire anterior-to-posterior axis (not including the most anterior tip, where the VNO lumen tapers into the vomeronasal duct, and the most posterior part, the lumen ‘‘twists’’ toward the ventral aspect and its volume decreases (see Figs. 7 & S7 in Hamacher et al., 2024, Current Biology)). This usually yields ~7 slices per individual experiment / session. Therefore, we routinely sample and average across the entire VNO anterior-to-posterior axis for each experiment. In Fig. 5, individual independent experiments from each strain (C57BL/6 versus BALB/c) amounted to (a) n = 6 versus n = 8; (b) n = 10 versus n = 10; (c) n = 7 versus n = 9; (d) n = 9 versus n = 10; (e) n = 10 versus n = 9; and (f) n = 12 versus n = 10. Together, we can thus exclude that the considerably different response profiles that we measured using different recipient strains result from a “sampling error.”

      To clarify this point in the revised manuscript, we now explain our sampling routine in more detail in the Materials and Methods. Moreover, we now also mention this point in the Results.

      Reviewer #2 (Recommendations For The Authors):

      (1) Pg 5 Lines 3-16: This summary paragraph contains too much detail given that the reader has not read the paper yet, which makes it bewildering. This should be condensed.

      We agree and have substantially condensed this paragraph.

      (2) Pg 6 Line 5-8: This summary of the experimental design is obtuse and should be edited for clarity.

      We have edited the relevant passage for clarity.

      (3) Pg 6 Line 11: "VSNs were categorized..." Specialist vs generalist is defined as responding to one or both stimuli. This definition is placed right after saying that the cells were also tested with KCl. The reader might think that specialist vs generalist was defined in relation to KCl.

      We have edited this sentence, which now reads: “Dependent on their individual urine response profiles, VSNs were categorized as either specialists (selective response to one stimulus) or generalists (responsive to both stimuli).”

      (4) Pg 6 Line 13: "we recorded urine-dependent Ca2+ signals from a total of 16,715 VSNs". Is a "signal" a response? Did all 16,715 VSNs respond to urine? What was the total of KCl responsive cells recorded?

      We edited the corresponding passage for clarification. The text now reads: “Overall, we recorded >43,000 K+-sensitive neurons, of which a total of 16,715 VSNs (38.4%) responded to urine stimulation. Of these urine-sensitive neurons, 61.4% displayed generalist profiles, whereas 38.6% were categorized as specialists (Figure 1c,d).”

      (5) Pg 7 Line 6: The repeated use of the word "pooled" is confusing as it suggests a variation in the experiment. The authors should establish once in the Methods and maybe in the Results that stimuli were pooled across animals. Then they should just refer to the stimulus as male or female or BALB/c rather than "pooled" male etc.

      We acknowledge the reviewer’s argument. Accordingly, we now introduce the experimental use of pooled urine once in the Methods and in the introductory paragraph of the Results. All other references to “pooled” urine in the Results and Captions have been deleted.

      (6) Pg 7 Line 10: "...detected in >=3 out of 10 male..." For the chemical analysis, were these samples not pooled?

      Correct. We deliberately did not pool samples for chemical analysis, but instead analyzed all individual samples separately (i.e., 60 samples were subjected to both proteomic and metabolomic analyses). Thus, the criterion that a VOC or protein must be detected in at least 3 of the 10 individual samples from a given sex/strain combination for a ‘present’ call (and in at least 6 of the 10 samples to be called ‘enriched’) ensures that the molecular signatures we identify are not “contaminated” by unusual aberrations within single samples.<br /> For clarification, we now explicitly outline this procedure in the Methods (Experimental Design and Statistical Analysis – Proteomics and metabolomics).

      (7) Pg 7 Line 23: In line 7, the specialist rate was defined as 5% in reference to the total KCl responsive cells. Here the specialist rate is defined from responsive cells. This is confusing.

      We apologize for the confusion. In both cases, the numbers (%) refer to all K+-sensitive neurons. We have added this information to both relevant sentences (l. 7 as well as ll. 23-24). Note that the rate in ll. 23-24 refers to generalists.

      (8) Pg 7 Line 25: Concentration index should be defined before its use here.

      We have revised the corresponding sentence, which now reads: “By contrast, analogously calculated concentration indices (see Materials and Methods) that can reflect potential disparities are distributed more broadly and non-normally (Figure 1h).”

      (9) Pg 7 Line 29: change "trivially" to "simply".

      Done

      (10) Pg 7 Line 30: What is meant by a "generalist" ligand? The neurons are generalists. Probably should read "common ligands"

      We have changed the text accordingly.

      (11) Pg 7 Line 31: What is meant by "global observed concentration disparities" ?

      We have changed the text to “…represented by the observed general concentration disparities.”

      (12) Pg 8 Lines 7-11: This section needs to be edited for clarity as it is very difficult to follow. For example, the definition of "enriched" is buried in a parenthetical. Also, it is very difficult to figure out what a "sample" is in this paper. Is it a pooled stimulus, or is it urine from an individual animal?

      We apologize for the confusion. Throughout the paper a “sample” is a pooled stimulus (from all 10 individuals of a given sex/strain combination) for all physiological experiments. For chemical analysis a “sample” refers to urine from an individual animal.

      (13)Pg 8 Line 11: "abundant proteins" Does this mean absolute concentration or enriched in one sample vs another?

      We changed the term “abundant” to “enriched” as this descriptor has been defined (present in ≥6 of 10 individual samples) in the previous sentence.

      (14) Pg 8 Line 18: "While 32.9% of all..." Please edit for clarity. What is the point?

      The main point here is that, for VOCs, the vast majority of compounds (91.3%) are either generic mouse urinary molecules or are sex/strain-specific.

      (15) Pg 10 Line 18: "Increased VSN selectivity..." This title is misleading as it suggests a change in sensitivity with animal exposure. I think the authors are trying to say "VSNs are more selective for strain than for sex". The authors should avoid the term "exposure to" when they mean "stimulation with" as the former suggests chronic exposure prior to testing.

      We thank the reviewer for the advice and have changed the title accordingly. We also edited the text to avoid the term "exposure to" throughout the manuscript.

      (16) Pg 12 Line 10: "we recorded hardly any..." Hardly any in comparison to what? BALB/c?

      We apologize for the confusion. We have edited the text for clarity, which now reads: “In fact, (i) compared to an average specialist rate of 11.2% ± 6.6% (mean ± SD) calculated over all 13 binary stimulus pairs (n = 26 specialist types), we observed only few specialist responses upon stimulation with urine from wild females (2% and 3%, respectively), and…”

      Reviewer #3 (Recommendations For The Authors):

      (1) Related to the pairwise stimulus-response experimental design and analysis: there is precedent in the field for studies that explore the same topic (sex- and strain-selectivity), but measure VSN sensitivity across many urine stimuli, not just two at a time. This has been done both in the VNO (He et al, Science, 2008; Fu, et al, Cell, 2015) and in the AOB (Tolokh, et al, Journal of Neuroscience, 2013). The current manuscript does not cite these studies.

      Reviewer 3 is correct and we apologize for this oversight. We now cite the two VSN-related studies by He et al. and Fu et al. in the Introduction.

      (2) The findings of the mass spectrometry-based profiling of mouse urine - especially for volatiles - is only accessible through repositories, making it difficult to for readers to understand which molecules were found to be highly divergent between sexes/strains. There is value in the list of ligands to further investigate, but this information should be made more accessible to readers without having to comb through the repositories.

      We agree that there “is value in the list of ligands to further investigate” and, accordingly, we now provide a table (Table 1) that lists the top-5 VOCs that – according to sPLS-DA – display the most discriminative power to classify samples by sex (related to Figure 2c) or strain (related to Figure 2d). For ease of identification, all entries list internal mass spectrometry identifiers, identifiers extracted from MS analysis database, the sex or strain that drives separation, which two-dimensional component / x-variate represents the most discriminative variable, PubChem chemical formula, PubChem common or alternative names, Chemical Entities of Biological Interest or PubChem Compound Identification, and the VOC’s putative origin.

      (3) There is a long precedent for integrating molecular assessments and physiological recordings to identify specific ligands for the vomeronasal system: - nonvolatiles (e.g., Leinders-Zufall, et al., Nature, 2000)

      • peptides (e.g., Kimoto et al., Nature, 2005; Leinders-Zufall et al. Science, 2004; Riviere et al., Nature, 2009; Liberles, et al., PNAS, 2009)
      • proteins (e.g., Chamero et al., Nature, 2007; Roberts et al., BMC Biology, 2010)

      • excreted steroids and bile acids (Nodari et al., Journal of Neuroscience, 2008; Fu et al., Cell, 2015; Doyle, et al., Nature Communications, 2016)

      The Leinders-Zufall (2000), Roberts, and Nodari papers are referenced, but the broader efforts by the community to find specific drivers of vomeronasal activity are not fully represented in the manuscript. The focus of this paper is fully related to this broader effort, and it would be appropriate for this work to be placed in this context in the introduction and discussion.

      We now refer to all of the studies mentioned in the Introduction (except the article published by Liberles et al. in 2009, since the authors of that study do not identify vomeronasal ligands).

      (4) Throughout the manuscript (starting in Fig. 1h) the figure panels and captions use the term "response index" whereas the methods define a "preference index." It seems to be the case that these two terms are synonymous. If so, a single term should be consistently used. If not, this needs to be clarified.

      We now consistently use the term “response index” throughout the manuscript.

      (5) It would be useful to provide a table associated with Figure 2 - figure supplement 1 that lists the common names and/or chemical formulas for the volatiles that were found to be of high importance.

      We agree and, accordingly, we now provide a table (Table 2) that lists VOC, which – according to Random Forest classification and resulting Gini importance scores – display the most discriminative power to classify samples by sex (related to Figure 2 - figure supplement 1a) or strain (related to Figure 2 - figure supplement 1b). Notably, it is generally reassuring that several VOCs are listed in both Table 1 and Table 2, emphasizing that two different supervised machine learning algorithms (i.e., sPLS-DA (Table 1) and Random Forest (Table 2)) yield largely congruent results.

      (5) The use of the term "comprehensive" for the molecular analysis is a little bit misleading, as volatiles and proteins are just two of the many categories of molecules present in mouse urine.

      We have now deleted most mentions of the term "comprehensive" when referring to the molecular analysis.

      (7) Page 11, lines 24-27: The sentences starting "We conclude..." and ending in "semiochemical concentrations." These two sentences do not make sense. It is not known how many of the identified proteins are actual VSN ligands. Moreover, there is abundant evidence from other studies that individual VSN activity provides information about distinct semiochemical concentrations.

      We have substantially edited and rephrased this paragraph to better reflect that different scenarios / interpretations are possible. The relevant text now reads: “We conclude that VSN population response strength might not be so strongly affected by strain-dependent concentration differences among common urinary proteins. In that case, it would appear somewhat unlikely that individual VSN activity provides fine-tuned information about distinct semiochemical concentrations. Alternatively, as some (or even many) of the identified proteins could not serve as vomeronasal ligands at all, generalist VSNs might sample information from only a subset of compounds which, in fact, are secreted at roughly similar concentrations.”

      (8) The explanation of stimulus timing is mentioned several times but not defined clearly in methods. Page 19, lines 14-19 have information about the stimulus delivery device, but it would be helpful to have stimulus timing explicitly stated.

      In addition to the relevant captions, we now explicitly state stimulus timing (i.e., 10 s stimulations at 180 s inter-stimulus intervals) in the Results.

      (9) Typos: Page 10, line 7: "male biased" → "male-biased" for clarity

      Wilcoxon "signed-rank" test is often misspelled "Wilcoxon singed ranked test" or "Wilcoxon signed ranked test"

      In the Fig. 3 legend, the asterisk meaning is unspecified.

      "(im)balances" → imbalances (page 27, line 24; page 37, line 16; page 38, line 16)

      Figure 2 - figure supplement 1 and in Figure 2 - figure supplement 2, in the box-andwhisker plots the units are not specified in the graph or legend.”

      We have made all required corrections.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #4

      Evidence, reproducibility and clarity

      Summary:

      In this work, Zemlianski and colleagues exploit S. pombe mutations responsible for catastrophic mitoses, in particular those leading to a cut / cut-like phenotypes, whereby cytokinesis takes place without proper DNA segregation, trapping DNA molecules by septum formation in between the two separating cells. The work builds on the team's previous observation that these defects can be alleviated when cells are grown in a nitrogen-rich medium, and motivate their efforts to understand this better. The manuscript is written in a concise, neat and informative manner, and the results are presented clearly, with consistence in the format and the style all along. The analyses appear to have been, in general, conducted under the best standards. The findings are important and the data are of good quality. I have, however, important concerns that will be detailed below, and which, as I hope will be made clear, question the pertinence of including "TOR signaling" in the title, and making a distinction between "good" and "poor" nitrogen sources in the abstract.

      Major comments:

      Results

      The conclusion that the phenotype is suppressed by "good" but not "poor" nitrogen sources is not sufficiently supported. First, this interpretation is based on comparing only two or three sources of each type; Second, the "good" source glutamate needed to be raised for it to have a significant effect; 3) there is a strange datum, as Glu 100 mM in Graph 1D looks exactly the same as Glu 50 mM in Graph 1E, I guess there is a mistake in the plotting; 4) and, more important, the fact that the authors had the nice initiative of reproducing their YES medium experiments for every graph led to the inevitable fact that slightly different values were obtained every time, which is normal. While the values yield very similar data for panels 1B, 1C and even 1D, the frequency of catastrophic mitoses for the cbf11 mutant in YES in panel 1E is much lower than in panel Figure 1B, for example. This has the consequence of making the suppression obtained when adding 'poor' sources, such as proline or uracil, non-significantly different. Thus, the authors conclude that 'poor' nitrogen sources are not good at suppressing the phenotype. I suggest that the authors pool all their YES data (they will have 12 repeats of their experiment) and plot, in a single graph, all the other treatments. By performing the analyses again, using the appropriate statistical test for that, perhaps they will have a surprise. After which, the question is, is it so important to put the emphasis on whether the source is good or poor? The incontestable observation is that, in general, there is clear trend of suppression of the phenotype.

      In Figure 2, images should be shown as an example of what was seen, what was quantified, how the "decrease in nuclear cross-section area" looked like indeed.

      Also, important for Figure 2, the authors used the nuclear cross-section area as a readout for nuclear envelope expansion versus shrinkage. For that, they did not use a fluorescent marker for the nuclear envelope that is continuous, but a nucleoporin (Cut11-GFP). In my experience, nucleoporins being discontinuously distributed throughout the nuclear envelope, the area encompassed by the signal may be underestimated in the event of a strong nuclear envelope deformation, as I have tried to illustrate in the scheme below: I WILL SEND THE SCHEME BY MAIL TO THE EDITOR, AS I CANNOT COPY-PASTE IT IN THE SYSTEM BOX Given that the photos from which the data were retrieved have not been shown, I cannot at present judge whether the use of a nuclear envelope marker providing continuous signals is absolutely necessary or not, and whether this consideration will affect (or not at all) the conclusions.

      The authors do not seem to comment or pay any attention to a very crucial result they obtain: the addition of ammonium to the WT strain has the effect of also restricting the nuclear cross-section area. They indeed say in their text "we did not observe any differences between cultures grown with or without ammonium supplementation (Fig.2)". I guess they refer here to the cbf11 mutant, in which case the sentence is true (although unfair to the WT). But by neglecting that the supplementation with ammonium had the power of reducing the cross-section area of WT nuclei, they are misled (or misleading) in their interpretation. The same, although milder, is true for Figure 5C, where the addition of ammonium to the WT culture does not alter the median value of prophase + metaphase duration, however has the virtue of very much rendering sharp (less scattered) the population of values, suggesting that the accuracy / control of the process is enhanced. What does this mean? I think it should be carefully thought about and considered as a whole.

      In the same line as above, the authors omit the RNA-seq analysis concerning the treatment of the WT with ammonium (Figure 3). This is very important to understand the standpoint of what this treatment elicits. It would also help unravel the observations I mentioned above that the authors did not assess in their descriptions. Also regarding Figure 3, it is completely obscure why the authors decided to show the genes on the right axis, and not others. Knowing how vast the lipid pathways are, there are likely many other hits that could be relevant. A particular thought goes for the proteins in charge of filling lipid droplets, such as sterol- and fatty acid-esterifying enzymes. Unless a very justified reason is provided, the choice at present seems arbitrary and it would be better to show a more unbiased data representation.

      In the same vein, related to the effect of ammonium onto the WT, in Figure S1 (I want to congratulate the authors for showing their 3 experimental replicates), the results very neatly show that ammonium supplementation to the WT leads to a neat and reproducible increase in TAG, a fact on which the authors do not comment. In the mutant, irrespective of ammonium presence or absence, a huge increase in squalene and steryl esters (SE) are seen. I think the work would benefit from actually quantifying the intensity of these bands and thus materializing this in the form of values. TAG, squalene and SE are all neutral lipids, and are all stored within LD to prevent lipotoxicity if accumulated in the endoplasmic reticulum. While ammonium elicits strong TAG accumulation in the WT, this is not the case in the mutant, likely because the massive occupation of LD storage capacity is overwhelmed with squalene and SE. Could this have something to do with the suppression they are studying?

      In the section of results where the authors comment the TLC analysis, they write "suggesting failed coordination between sterol and TAG lipid metabolism pathway". As it stands, the sentence is rather devoid of real meaning and may be even misleading, when considering what I wrote before.

      My biggest concern has to do with the very last part, when they explore the implications of TOR:

      • First, all the data presented in the two concerned panels of Figure 7 (B and C) and of Figure S3 lack the values obtained for the single mutants with which cbf11 was combined. This is not acceptable from a genetic point of view, and may prevent us from having important information. For example: if the authors were right that Tor2/TORC1 is ensuring successful progression through closed mitosis (last sentence of results), then one would predict that the tor2-S allele leads to an increase, already per se, of the frequency of catastrophic mitoses. However, at present, I cannot check that.
      • the authors turn to use a ∆ssp2 mutant to "increase Tor2 activity". However, this is a pleiotropic strategy, as AMP-kinase is the major sensor and responder to energy depletion, frequently triggered by glucose shortage, thus I am not sure the effects associated to its absence can be unequivocally be ascribed to a Tor2 raise.
      • there is a counterintuitive observation: rapamycin, which mimics nitrogen shortage, has the same effect than ammonium supplementation. This is strangely bypassed in the discussion, where the authors wrote "we showed increased mitotic fidelity in cbf11 cells when the stress-response branch of the TOR network was suppressed, either by ablation of Tor1/TORC2 or by boosting the activity of the pro-growth Tor2/TORC1 branch. These data are in agreement with previous findings that Tor2/TORC1 inhibition mimics nitrogen starvation".
      • last, and irrespective of what was said above, the authors conclude that the phenotype suppression is due to "a role for Tor2/TORC1 in ensuring successful progression through mitosis". If, as stated by the authors, Tor1/TORC2 absence not only abrogates Tor1/TORC2 activity, but it simultaneously raises Tor2/TORC1 activity, and if reciprocally Tor2/TORC1 increased activity concurs with Tor1/TORC2 attenuation, it cannot therefore be discerned if the suppression is due to Tor2/TORC1 raise or to Tor1/TORC2 dampening.

      Discussion

      The authors invoke that TOR controls lipin, despite what they go on to dismiss the link between TOR and lipids by saying "we did not observe any major changes in phospholipid composition when cells were grown in ammonium-supplemented YES medium compared to plain YES (Figure S2)", with this reinforcing their conclusion that ammonium does not suppress lipid-related cut mutants through directly correcting lipid metabolism defects. While I agree with that reasoning, I invoke again that they nevertheless neglected the clear change observed in their three replicates (Figure S2) that ammonium addition to WT cells strongly increases the amount of TAG (esterified fatty acids). Since lipin activity promotes DAG formation, which then leads to TAG accumulation, this aspect should not be neglected.

      The emphasis on TOR, which expands several paragraphs of the Discussion, should be revisited if the evidence provided for this part of the data is not reinforced.

      To finish, if I may provide some personal thoughts that may be useful for the authors, I would first remind that TAG storage prevents the channeling of phosphatidic acid towards novel phospholipid synthesis thus antagonizes NE expansion, which agrees with their neglected observation for the WT in Figure 2A. The antagonization of NE expansion can be achieved through autophagy (DOI 10.1038/s41467-023-39172-3; DOI 10.1177/25152564231157706), and indeed rapamycin addition (a very potent inducer of autophagy) also suppressed the cut phenotype (Figure 7A). What is more, in S. cerevisiae, autophagy has been shown as important to transition through mitosis conveniently and to prevent mitotic aberrations (DOI 10.1371/journal.pgen.1003245), and to impose a "genome instability" intolerance threshold by restricting NE expansion (DOI 10.1177/25152564231157706). In the first mentioned work, the authors proposed that autophagy may help raising aminoacid levels, which could assist cell cycle progression. This would have the virtue of reconciling the otherwise counterintuitive observation of the authors that rapamycin, which mimics nitrogen shortage, has the same effect than ammonium supplementation. It could be that ammonium supplementation mimics the downstream signal of a complex cascade initiated by actual aminoacid shortage, known to elicit autophagy-like processes (thus explaining why TAG raise, why the NE does not expand), and may culminate with launching a program for more accurate mitosis and genome segregation. In further support, TORC1 inhibition (as elicited by +rapamycin) is a central node that integrates multiple cues, not only nitrogen availability, but also carbon shortage (DOI 10.1016/j.molcel.2017.05.027), and even genetic instability cues (DOI 10.1016/j.celrep.2014.08.053), perhaps helping unravel why ammonium (via TOR) suppresses very diverse cut mutants, irrespective of whether they stem from lipid or chromatid cohesion deficiencies. These previous works should be considered by the authors.

      Minor

      There was no speculation about why the suppressions are partial.

      Reference 15, cited in the text, is absent from the references list.

      An explanation of which statistical tests were chosen and why they were chosen would be necessary.

      In particular, for the analyses performed for Figure 5, one-way ANOVA should be applied instead of several t-tests.

      A small section in M&M about how data in general was acquired, quantified, plotted and analyzed would be appropriate.

      In the discussion, the sentence "this could mean that the signaling of availability of a good nitrogen source is by itself more important for mitotic fidelity than the actual physical presence of the nutrients" is a rather void sentence. Because, from the point of view of how a cell "works", the signal is important for the basic reason that it is supposed to represent the actual real cue eliciting it.

      In the second part of Results, when the phenotype of cbf11 mutants concerning LD is mentioned, the authors said "aberrant LD content". It would be good if they can mention already at this stage which type of aberration this was: more LD? less LD? bigger? smaller?

      What is the difference between the two SE bands in Figure S2? What exactly does SE-1 and SE-2 mean?

      In Figure 2, the two graphs, presented side by side, would be more easily comparable if they could be plotted with the same y-axis scale.

      In Figure 1A, it would be useful for non-specialists of this phenotype and non-pombe readers to show a control of how it looks to be "normal".

      Referees cross-commenting

      Overall, there is a striking consensus on the need to either address experimentally or remove the emphasis put on the TOR/mitotic fidelity connection, and of clarifying the counter-intuitive notions associated to the results obtained with rapamycin. Also, the need for revisiting / improving / justifying the means by which nuclear envelope deformation is assessed has been raised at least twice. I therefore guess that the common guidelines for improving this manuscript are clearly established.

      Significance

      In view of all of the above, my feeling is that the authors have put the accent on the TOR message, which is weak, while they have less put the accent on very strong and elegant findings they do: The authors discover that the suppression of cut(-like) mutant phenotype by addition of NH4 is not due to a correction in lipid metabolism defects, suggesting that the effect is indirect. In support, cut-like mutants whose molecular defect stems from lipid-unrelated defects are also suppressed by ammonium addition. What is more, the authors refine the type of cut-like mutants susceptible of being "corrected" by ammonium addition, finding a "novel definition of cuts" that invoke a temporal rule. This important observation has relevant implications:

      • the long-standing interpretation (commented by the authors) that lipid-related cut mutants are defective because of insufficient synthesis of lipids to be able to grow their nuclear envelope membranes seems now inappropriate in light of their data;
      • this has the immediate implication that perhaps the importance of nitrogen supplementation for accurate mitosis is no longer a fact that may apply only to (yeast) organisms performing closed mitosis, which may broaden the implications of their finding substantially;
      • the nature of the temporal ruler they discover that makes defects appearing early susceptible of being suppressed by nitrogen supplementation deserves analysis in further works, thus opening an immediate perspective.
    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study utilizes a virus-mediated short hairpin RNA (shRNA) approach to investigate in a novel way the role of the wild-type PHOX2B transcription factor in critical chemosensory neurons in the brainstem retrotrapezoid nucleus (RTN) region for maintaining normal CO2 chemoreflex control of breathing in adult rats. The solid results presented show blunted ventilation during elevated inhaled CO2 (hypercapnia) with knockdown of PHOX2B, accompanied by a reduction in expression of Gpr4 and Task2 mRNA for the proposed RTN neuron proton sensor proteins GPR4 and TASK2. These results suggest that maintained expression of wild-type PHOX2B affects respiratory control in adult animals, which complements previous studies showing that PHOX2B-expressing RTN neurons may be critical for chemosensory control throughout the lifespan and with implications for neurological disorders involving the RTN. When some methodological, data interpretation, and prior literature reference issues further highlighting novelty are adequately addressed, this study will be of interest to neuroscientists studying respiratory neurobiology as well as the neurodevelopmental control of motor behavior.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This important study investigated the role of the PHOX2B transcription factor in neurons in the key brainstem chemosensory structure, the retrotrapezoid nucleus (RTN), for maintaining proper CO2 chemoreflex responses of breathing in the adult rat in vivo. PHOX2B has an important transcriptional role in neuronal survival and/or function, and mutations of PHOX2B severely impair the development and function of the autonomic nervous system and RTN, resulting in the developmental genetic disease congenital central hypoventilation syndrome (CCHS) in neonates, where the RTN may not form and is functionally impaired. The function of the wild-type PHOX2B protein in adult RTN neurons that continue to express PHOX2B is not fully understood. By utilizing a viral PHOX2B-shRNA approach for knockdown of PHOX2B specifically in RTN neurons, the authors' solid results show impaired ventilatory responses to elevated inspired CO2, measured by whole-body plethysmography in freely behaving adult rats, that develop progressively over a four-week period in vivo, indicating effects on RTN neuron transcriptional activity and associated blunting of the CO2 ventilatory response. The RTN neuronal mRNA expression data presented suggests the impaired hypercapnic ventilatory response is possibly due to the decreased expression of key proton sensors in the RTN. This study will be of interest to neuroscientists studying respiratory neurobiology as well as the neurodevelopmental control of motor behavior.

      Strengths:

      (1) The authors used a shRNA viral approach to progressively knock down the PHOX2B protein, specifically in RTN neurons to determine whether PHOX2B is necessary for the survival and/or chemosensory function of adult RTN neurons in vivo.

      (2) To determine the extent of PHOX2B knockdown in RTN neurons, the authors combined RNAScope® and immunohistochemistry assays to quantify the subpopulation of RTN neurons expressing PHOX2B and neuromedin B (Nmb), which has been proposed to be key chemosensory neurons in the RTN.

      (3) The authors demonstrate that knockdown efficiency is time-dependent, with a progressive decrease in the number of Nmb-expressing RTN neurons that co-express PHOX2B over a four-week period.

      (4) Their results convincingly show hypoventilation particularly in 7.2% CO2 only for PHOX2B-shRNA RTN-injected rats after four weeks as compared to naïve and non-PHOX2B-shRNA targeted (NT-shRNA) RTN injected rats, suggesting a specific impairment of chemosensitive properties in RTN neurons with PHOX2B knockdown.

      (5) Analysis of the association between PHOX2B knockdown in RTN neurons and the attenuation of the hypercapnic ventilatory response (HCVR), by evaluating the correlation between the number of Nmb+/PHOX2B+ or Nmb+/PHOX2B- cells in the RTN and the resulting HCVR, showed a significant correlation between HCVR and number of Nmb+/PHOX2B+ and Nmb+/PHOX2B- cells, suggesting that the number of PHOX2B-expressing cells in the RTN is a predictor of the chemoreflex response and the reduction of PHOX2B protein impairs the CO2-chemoreflex.

      (6) The data presented indicate that PHOX2B knockdown not only causes a reduction in the HCVR but also a reduction in the expression of Gpr4 and Task2 mRNAs, suggesting that PHOX2B knockdown affects RTN neurons transcriptional activity and decreases the CO2 response, possibly by reducing the expression of key proton sensors in the RTN.

      (7) Results of this study show that independent of the role of PHOX2B during development, PHOX2B is still required to maintain proper CO2 chemoreflex responses in the adult brain, and its reduction in CCHS may contribute to the respiratory impairment in this disorder.

      Weaknesses:

      (1) The authors found a significant decrease in the total number of Nmb+ RTN neurons (i.e., Nmb+/PHOX2B+ plus Nmb+/ PHOX2B-) in NT-shRNA rats at two weeks post viral injection, and also at the four-week period where the impairment of the chemosensory function of the RTN became significant, suggesting some inherent cell death possibly due to off-target toxic effects associated with shRNA procedures that may affect the experimental results.

      (2) The tissue sampling procedures for quantifying numbers of cells expressing proteins/mRNAs throughout the extended RTN region bilaterally have not been completely validated to accurately represent the full expression patterns in the RTN under experimental conditions.

      (3) The inferences about RTN neuronal expression of NMB, GPR4, or TASK2 are based on changes in mRNA levels, so it remains speculation that the observed reduction in Gpr4 and Task2 mRNA translates to a reduction in the protein levels and associated reduction of RTN neuronal chemosensitive properties.

      Thank you for sharing the excitement for our study showing novel findings on the contribution of PHOX2B to the chemoreflex response and activity of adult RTN neurons. We believe that reporting the results on cell death following shRNA viral injections, potentially due to some off-target effects, are important to share with the scientific community to help plan experiments of similar kind in various fields of neuroscience.

      Thanks for pointing out your concerns about cell quantification, we have edited the methods and results section to add clarity about our analytical procedure.

      As we discussed in the manuscript, we were only able to assess mRNA levels of Nmb, Gpr4, Task2 as current available antibodies for the 3 targets are still unreliable. Future studies will benefit from the analysis of changes at protein levels and possibly electrophysiological recordings to verify that chemosensitive properties of RTN neurons are impaired due to reduction of PHOX2B expression. We discuss these limitations in the discussion.

      Reviewer #2 (Public Review):

      Summary:

      The authors used a short hairpin RNA technique strategy to elucidate the functional activity of neurons in the retrotrapezoid nucleus (RTN), a critical brainstem region for central chemoreception. Dysfunction in this area is associated with the neuropathology of congenital central hypoventilation syndrome (CCHS). The subsequent examination of these rats aimed to shed light on the intricate aspects of RTN and its implications for central chemoreception and disorders like CCHS in adults. They found that using the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of Phox2b expression was observed in Nmb neurons. In addition, Phox2b knockdown did not affect breathing in room air or under hypoxia, but the hypercapnia ventilatory response was significantly impaired. They concluded that Phox2b in the adult brain has an important role in CO2 chemoreception. They thought that their findings provided new evidence for mechanisms related to CCHS neuropathology. The conclusions of this paper are well supported by data, but careful discussion seems to be required for comparison with the results of various previous studies performed by different genetic strategies for the RTN neurons.

      Strengths:

      The most exciting aspect of this work is the modelling of the Phox2b knockdown in one element of the central neuronal circuit mediating respiratory reflexes, that is in the RTN. To date, mutations in the PHOX2B gene are commonly associated with most patients diagnosed with CCHS, a disease characterized by hypoventilation and absence of chemoreflexes, in the neonatal period, which in severe cases can lead to respiratory arrest during sleep. In the present study, the authors demonstrated that the role of Phox2b extends beyond the developmental period, and its reduction in CCHS may contribute to the respiratory impairment observed in this disorder.

      Weaknesses:

      Whereas the most exciting part of this work is the knockdown of the Phox2b in the RTN in adult rodents, the weakness of this study is the lack of a clear physiological, developmental, and anatomical distinction between this approach and similar studies already reported elsewhere (Ruffault et al., 2015, DOI: 10.7554/eLife.07051; Ramanantsoa et al., 2011, DOI: 10.1523/JNEUROSCI.1721-11.2011; Huang et al., 2017, DOI: 10.1016/j.neuron.2012.06.027; Hernandez-Miranda et al., 2018, DOI: 10.1073/pnas.1813520115; Ferreira et al., 2022 DOI: 10.7554/eLife.73130; Takakura et al., 2008 DOI: 10.1113/jphysiol.2008.153163; Basting et al., 2015 DOI: 10.1523/JNEUROSCI.2923-14.2015; Marina et al., 2010 DOI: 10.1523/JNEUROSCI.3141-10.2010). In addition, several conclusions presented in this work are not directly supported by the provided data.

      Thanks for the feedback on or manuscript. We have further highlighted in our discussion the previous developmental work aimed at determining the role of PHOX2B in embryonic development. Our study was triggered by the fascinating observations that despite its important role in development of the central and peripheral nervous system, PHOX2B is still present in the adult brain and its function in adult neurons is unknown, thus we aimed to investigate its role in the adult RTN by knocking down its expression with a shRNA approach. Therefore, in our model knockdown of PHOX2B does not affect development of the RTN. Previous studies (mentioned by the reviewer, as well as cited in the manuscript) have focused on investigating 1) the role of PHOX2B in the developmental period, 2) the physiological changes associated with the transgenic expression of mutant forms of PHOX2B in relation to CCHS, 3) the killing or the acute silencing/excitation of neuronal activity of PHOX2B+ RTN neurons. Our study had a different aim: to test whether the transcription factor PHOX2B had a physiologically relevant role in adult RTN neurons. In this experimental approach PHOX2B is not altered throughout embryonic or postnatal development. By knocking down PHOX2B in the Nmb+ cells of the RTN our results show a reduction in chemoreflex response and mRNA expression of protein sensors. Hence, we conclude that PHOX2B alters the function of Nmb+ RTN neurons, possibly through transcriptional changes including the reduction in Gpr4 and Task2 mRNA expression.

      Reviewer #3 (Public Review):

      A brain region called the retrotrapezoid nucleus (RTN) regulates breathing in response to changes in CO2/H+, a process termed central chemoreception. A transcription factor called PHOX2B is important for RTN development and mutations in the PHOX2B gene result in a severe type of sleep apnea called Congenital Central Hypoventilation Syndrome. PHOX2B is also expressed throughout life, but its postmitotic functions remain unknown. This study shows that knockdown of PHOX2B in the RTN region in adult rats decreased expression of Task2 and Gpr4 in Nmb-expressing RTN chemoreceptors and this corresponded with a diminished ventilatory response to CO2 but did not impact baseline breathing or the hypoxic ventilatory response. These results provide novel insight regarding the postmitotic functions of PHOX2B in RTN neurons.

      Main issues:

      (1) The experimental approach was not targeted to Nmb+ neurons and since other cells in the area also express Phox2b, conclusions should be tempered to focus on Phox2b expressing parafacial neurons NOT specifically RTN neurons.

      (2) It is not clear whether PHOX2B is important for the transcription of pH sensing machinery, cell health, or both. If knockdown of PHOX2B knockdown results in loss of RTN neurons this is also expected to decrease Task2 and Gpr4 levels, albeit by a transcription-independent mechanism.

      Although we did not specifically target Nmb+ neurons, we performed viral injections within the area where neurons expressing PHOX2B and Nmb are localized (i.e., the RTN region). We carefully quantified the impact of PHOX2B knockdown on Nmb expressing neurons, as well as the effects on the adjacent TH expressing C1 population and FN neurons (figure 5). As reported in the results section, significant changes in the numbers of PHOX2B expressing neurons was only observed at the site of injection in PHOX2B+/Nmb+ neurons. We did not observe changes in the total number of C1 cells (TH+/PHOX2B+), in the number of TH cells coexpressing PHOX2B, or in the hypoxic ventilatory response (which is dependent on the health status of C1 neuron). We have updated figure 5 to show representative expression of PHOX2B in TH+ neurons in the ventral medulla to complement our cell count analysis. To address potential effects on other cell populations we have edited our discussion as follows:

      “PHOX2B knockdown was also restricted to RTN neurons, as adjacent C1 TH+ neurons did not show any change in number of TH+/PHOX2B+ expressing cells, although we cannot exclude that some C1 cells may have been infected and their relative PHOX2B expression levels were reduced. To support the lack of significant alterations associated with the possible loss of C1 function was the absence of significant changes in the hypoxic response that has been shown to be dependent on C1 neurons (Malheiros-Lima et al., 2017).”

      Where appropriate, we have substituted “RTN” with “Nmb expressing neurons of the RTN” throughout the manuscript.

      We have clarified in the methods and results section how we quantified Task2 and Gpr4 mRNA expression. The quantification was performed on a pool of single cells (200-250/rat) expressing Nmb. Hence, the overall reduction is not a result of general fluorescence loss in the RTN region, but specifically assessed in single cells expressing Nmb. This is therefore independent of the reduction of the total number of Nmb cells.

      We propose that cell death is not a direct effect of PHOX2B knockdown, but rather it is associated with the injection of the viral constructs that have been already reported to promote some off-target effects (as reported in the manuscript). While modest cell death is observed only in the first two weeks post-infection, it does not increase further between 2 and 4 weeks post infection, when the reduction in PHOX2B (not associated with a further reduction in Nmb+ cells, hence no further cell death in RTN) is evident and the respiratory chemoreflex is impaired. These results suggest that 1) reduction of PHOX2B is not responsible for cell death; 2) it is the reduction of PHOX2B levels that promotes chemoreflex impairment. Given the observation that Nmb cells with no detectable PHOX2B protein show reduced expression of Task2 and Gpr4 mRNA, we propose that one of the possible mechanisms of chemoreflex impairment in PHOX2B shRNA rats is the reduction of Task2 and Gpr4. In the discussion we also suggest possible additional mechanisms that can be investigated in further studies.

      Recommendations for the authors:.

      In revising this manuscript, the authors should carefully address the issues raised by the reviewers to substantially improve the manuscript and solidify the reviewers' general assessment of the potential importance of this work.

      Reviewer #1 (Recommendations For The Authors):

      Major concerns:

      (1) The cell counts for Nmb+/PHOX2B+ and Nmb+/PHOX2B- RTN neurons are a critical component of the study, and it is unclear how the tissue sampling procedures (eight sections per animal) for quantifying numbers of cells expressing proteins/mRNAs throughout the extended RTN region bilaterally has been validated to accurately represent the full expression patterns in the RTN under the experimental conditions. It is possible that the sampling/quantification procedures used may be adequate, but validation is important. Also, quantification of the CTCF signal for Nmb, Gpr4, and Task2 mRNA is an important component of this study, but only four sections/rats were used.

      Thank you for pointing out your concern on our quantification method. We have clarified in the methods section the procedure for cell counting and quantification of the CTCF signal. We have sampled the area of the RTN in order to identify Nmb cells of RTN.

      We have edited the methods section as follows:

      “To quantify Nmb+/PHOX2B- and Nmb+/PHOX2B+ neurons within the RTN region, we analysed one in every seven sections (210 µm interval; 8 sections/rat in total) along the rostrocaudal distribution of the RTN on the ventral surface of the brainstem and compared total bilateral cell counts of PHOX2B-shRNA rats with non-target control (NT-shRNA) and naïve rats. Cells that expressed Nmb and Phox2b mRNAs but did not show co-localization with PHOX2B protein were considered Nmb+/PHOX2B-.

      The Corrected Total Cell Fluorescence (CTCF) signal for Nmb, Gpr4 and Task2 mRNAs was quantified as previously described (Cardani et al., 2022; McCloy et al., 2014). Briefly, a Leica TCS SP5 (B-120G) Laser Scanning Confocal microscope was used to acquire images of the tissue. Exposure time and acquisition parameters were set for the naïve group and kept unchanged for the entire dataset acquisition. The collected images were then analysed by selecting a single cell at a time and measuring the area, integrated density and mean grey value (McCloy et al., 2014). For each image, three background areas were used to normalize against autofluorescence. We used 4 sections/rat (210 µm interval) to count Nmb, Gpr4 and Task2 mRNA CTCF in the core of the RTN area where several Nmb cells could be identified. For each section two images were acquired with a 20× objective, so that at least fifty cells per tissue sample were obtained for the mRNA quantification analysis. To evaluate changes in Nmb mRNA expression levels following PHOX2B knockdown at the level of the RTN, we compared, the fluorescence intensity of each RTN Nmb+ cell (223.2 ± 37.1 cells/animal) with the average fluorescent signal of Nmb+ cells located dorsally in the NTS (4.3 ± 1.2 cells/animal) (Nmb CTCF ratio RTN/NTS) as we reasoned that the latter would not be affected by the shRNA infection and knockdown.

      To quantify Gpr4 and Task2 mRNA expression in Nmb cells of the RTN, we first quantified single cell CTCF for either Gpr4 (200.7 ± 13.2 cells/animal) or Task2 (169.6 ± 10.3 cells/animal) mRNA in Nmb+ RTN neurons in the 3 experimental groups (naïve, NT shRNA and PHOX2B shRNA) independent of their PHOX2B expression. We then compared CTCF values of Gpr4 and Task2 mRNA between Nmb+/PHOX2B+ and Nmb+/PHOX2B- RTN neurons in PHOX2B-shRNA rats to address changes in their mRNA expression induced by PHOX2B knockdown.

      (2) Furthermore, to evaluate changes in Nmb mRNA expression following PHOX2B knockdown at the level of the RTN, it is stated in Materials and Methods "we compared, on the same tissue section, the fluorescence intensity of RTN Nmb+ cells with the signal of Nmb+ cells in the NTS (Nmb CTCF ratio RTN/NTS)". How this was accomplished is unclear, considering the non-overlapping locations of the RTN and rostral NTS. Providing images would be helpful.

      The first sections containing Nmb cells in the ventral medulla also express few Nmb cells in the dorsal medulla. We used those cells as reference for fluorescence levels since they would not be affected by the viral infection. Similar cells are also present in the brains of mice and reported in the Allen Brain atlas (https://mouse.brain-map.org/experiment/show/71836874). We have clarified our procedure in the methods section (see above) and included a sample image of Nmb in both ventral and dorsal regions in Figure 5.

      (3) The staining for tyrosine hydroxylase (TH) to identify and quantify C1 cells (TH+/PHOX2B+) following shRNA injection provides important information, and it would be useful to show images of histological examples to accompany Fig. 5A.

      We included in figure 5A a sample image of C1 neurons used for our TH quantification.

      Minor:

      (1) Provide animal ns in the text of the Results section for the four weeks of PHOX2B knockdown.

      They have been included.

      (2) Please state in the legends for Figures 2 & 3, which images are superimposition images.

      We have in the figure information about merged images.

      Reviewer #2 (Recommendations For The Authors):

      This manuscript by Cardani and colleagues attempts to address whether a reduction in Phox2b expression in chemosensitive neuromedin-B (NMB)-expressing neurons in the RTN alters respiratory function. The authors used a short hairpin RNA technique to silence RTN chemosensor neurons. The present study is very interesting, but there are several major concerns that need to be addressed, including the main hypothesis.

      Major

      (1) Page 6, lines 119-121: I did not grasp the mechanistic property described by the authors in this passage, nor did I understand the experiments they conducted to establish a mechanistic link between Phox2b and the chemosensitive property. Could the authors provide further clarification on these points?

      We believe the reviewer refers to this paragraph: “In order to have a better understanding of the role of PHOX2B in the CO2 homeostatic processes we used a non-replicating lentivirus vector of two short-hairpin RNA (shRNA) clones targeting selectively Phox2b mRNA to knockdown the expression of PHOX2B in the RTN of adult rats and tested ventilation and chemoreflex responses. In parallel, we also determined whether knockdown of PHOX2B in adult RTN neurons negatively affected cell survival. Finally, we sought to provide a mechanistic link between PHOX2B expression and the chemosensitive properties of RTN neurons, which have been attributed to two proton sensors, the proton-activated G protein-coupled receptor (GPR4) and the proton-modulated potassium channel (TASK-2).”

      The rationale for running these experiments is based on the fact that it is well known in the literature that PHOX2B is an important transcription factor for the development of several neuronal populations. PHOX2B Knockout mice die before birth and heterozygous mice have some anatomical defects, but respiration is only impaired in the early post-natal period. While many developmental transcription factors are generally downregulated in the post-natal period, PHOX2B is still expressed in some neurons into adulthood. What is the function of PHOX2B in these fully developed neurons? We do not know as we do not yet know the entire set of target genes that PHOX2B regulates in the adult brain. Hence we decided to test what would happen if we knocked down the PHOX2B protein in the Nmb neurons of the RTN, an area that is critical for central chemoreception and involved in the presentation of CCHS. Our results show that reduction of PHOX2B blunts the CO2 chemoreflex response and reduces mRNA expression of Task2 and Gpr4, two pH sensors that have been shown to be key for RTN chemosensitive properties. We also show that the Nmb mRNA and cell survival are not affected by PHOX2B knockdown and we propose that the reduced CO2 chemoreflex may be attributed to a reduction of chemosensory function of Nmb neurons of the RTN due to partial loss of Gpr4 and Task2.

      (2) It is imperative for the authors to enhance the description of their hypothesis, as, from my perspective, the contribution of the data to the field is not clearly articulated. Numerous more selectively designed experiments were conducted to investigate the role of Phoxb-expressing neurons at the RTN level and their involvement in respiratory activity. In summary, the current study appears to lack novelty.

      We respectfully disagree with this statement. We believe we have adequately summarized previous work, although we realize we can’t reference every single publication on this topic. As described above, the developmental role of PHOX2B has been elegantly investigated in mouse embryonic studies (extensively cited in the manuscript). Furthermore, very interesting studies have shown that when the CCHS defining mutant PHOX2B protein (+7Ala PHOX2B) and other mutations linked to CCHS have been transgenically expressed in mice through development, severe anatomical defects are observed and respiratory function is impaired (extensively cited in the manuscript). We have also cited papers relevant to this study that describe the role of PHOX2B/Nmb RTN neurons and the pH protein sensors in the CO2 chemoreflex. If we missed some papers that the reviewer deems essential in the context of this study we will be happy to include them.

      We are not aware of other studies that have investigated the specific role of the PHOX2B protein in the adult RTN in the absence of confounding developmental pathogenesis (i.e. in an otherwise ‘healthy’ animal), and of no other studies that looked at the effects on the RTN proton sensors and Nmb expression following PHOX2B knockdown. Hence we believe that our results are novel and, in our opinion, very interesting.

      (3) On pages 13 and 14 (Results section), I am seeking clarity on the novelty of the findings. Doug Bayliss's prior work has already demonstrated the role of Gpr4 and Task2 on Phox2b neurons in regulating ventilation in conscious rodents.

      Bayliss’ group has elegantly demonstrated that Gpr4 and Task2 are the two proton sensors in the PHOX2B/Nmb neurons of the RTN that have a key role in chemoreception (cited in the manuscript). The novelty of our findings is that we show that a reduction in PHOX2B protein is associated with a reduction of mRNA levels of Gpr4 and Task2. This is a novel finding. Currently, we do not know what transcriptional activity PHOX2B has in adult RTN neurons (i.e., what gene targets PHOX2B has in this cell population and many others) and here we propose that Nmb is not a gene target of PHOX2B while Gpr4 and Task2 are.

      (4) The authors assert that the transcription factor Phox2b remains not fully understood. While I concur, the present study falls short of fully investigating the actual contribution of Phox2b to breathing regulation. In other words, the knockdown of Phox2b neurons did not add much to the knowledge of the field.

      We respectfully disagree with the reviewer. With the exception of very few target genes, the transcriptional role of PHOX2B beyond the embryonic development is poorly understood. No mechanistic connection has been made before between the transcriptional activity of PHOX2B with the expression of proton sensors in the RTN. Other groups have investigated the role of stimulating or depressing the neuronal activity of PHOX2B/NMB neurons in the RTN showing a key role of RTN on respiratory control, but these prior studies did not test whether changing the expression of the PHOX2B protein in these neurons had a role on respiratory control and the central chemoreflex. No other study has investigated the role of the PHOX2B protein within the RTN cells, with the exception of PHOX2B knockout mice or transgenic expression of the mutated PHOX2B that are relevant for CCHS. Again, these previous studies were done on a background of developmental impairment and to the best of our knowledge did not seek to show any association between PHOX2B expression and expression of Gpr4 or Task2.

      (5) I recommend removing the entire section entitled "The role of Phox2b in development and in the adult brain." The authors merely describe Phox2b expression without contextualizing it within the obtained data.

      Because reviewers raised the issue about not including important information about the role of PHOX2B in development and respiratory control we prefer to keep the section.

      (6) Are the authors aware of whether the shRNA in Phox2b/Nmb neurons truly induced cell death or solely depleted the expression of the transcription factor protein? Do the chemosensitive neurons persist?

      This is an excellent question that we tried to address with our study. As we report in figures 2 and 3, we propose that some cell death is occurring as an off-target effect within the first 2 weeks post-infection, likely due to off-target action of the shRNA approach and not dependent on the reduction of PHOX2B expression (discussed in the manuscript). This is further evidenced by our Fig.S1 data in which higher concentrations of shRNA led to more cell death, indicative of off-target effects. We do not believe it is a consequence of our surgical procedure as we do not see similar cell loss when injecting vehicle or other control solutions (unpublished work; Janes et al., 2024).

      During the first 2 weeks post-surgery the proportion of Nmb+/PHOX2B- cells does not change compared to control rats or non-target shRNA (knockdown is not yet visible at protein level). Four weeks post-injection, there is no further cell death (assessed by the total number of NMB cells), whereas the fraction of NMB cells that express PHOX2B is reduced (and the fraction of NMB not expressing PHOX2B is increased), suggesting that the reduction of PHOX2B protein in Nmb cells is not correlated with cell loss/survival whereas the impairment that we observe in terms of central chemoreception is possibly due to the progressive decrease of PHOX2B expression in these neurons.

      (7) In Figures 2 and 3, it is noteworthy that the authors observe peak expression at a very caudal level. In rats, the RTN initiates at the caudal end of the facial, approximately 11.6 mm, and should exhibit a rostral direction of about 2 mm.

      In our experience the Nmb cells on the ventral surface of the medulla peak in number around the caudal tip of the facial nucleus in adult SD rats (Janes et al., 2024). To add clarity to the figure we reported cell count distribution data in relation to the distance from caudal tip of the facial.

      Minor

      (1) I would like to suggest that the authors correct the recurring statement throughout the manuscript that Phox2b is essential only for the development of the autonomic nervous system. In my view, it also plays a crucial role in certain sensory and respiratory systems.

      We have addressed this in the manuscript.

      (2) Page 4, lines 59-60: Out of curiosity, do the data include information from different countries?

      This data refers to information from France and Japan. Currently it is estimated that there are 1000-2000 CCHS patients worldwide.

      (3) Page 7, lines 129-131: In my understanding, the sentence is quite clear; if we knock down the PHOX2B gene, we are expected to reduce or even eliminate the expression of Gpr4 or Task2. Am I right?

      This is what we propose from the results of this study. We would like to point out that the transcriptional activity of PHOX2B (i.e., what genes PHOX2B regulate) in adult neurons has not yet been fully investigated. With the exception of few target genes (e.g., TH, DBH) the transcriptional activity of PHOX2B in neurons is not yet known. Here we report novel findings that suggest that Gpr4 and Task2 are potential target genes of PHOX2B in RTN neurons.

      (4) The authors mentioned that NT-shRNA also impacts CO2 chemosensitivity. Could this effect be attributed to mechanical damage of the tissue resulting from the injection?

      Just to clarify, we observe some impairment in chemosensitivity when NT-shRNA was injected in “larger” (2x 200ul/side) volume. No impairment was observed in NT-shRNA when we injected smaller volumes (2x 100ul/side). Physical damage could be a possibility although in our experience (unpublished work; Janes et al, 2024, Acta Physiologica) injections of similar volume of solution performed by the same investigator in the same brain area and experimental settings did not produce a physical lesion associated with respiratory impairment. Hence we attribute the unexpected results with larger volumes to toxic effects associated with the shRNA viral constructs.

      (5) In the reference section, the authors should review and correct some entries. For instance, Janes, T. A., Cardani, S., Saini, J. K., & Pagliardini, S. (2024). Title: "Etonogestrel Promotes Respiratory Recovery in an In Vivo Rat Model of Central Chemoreflex Impairment." Running title: "Chemoreflex Recovery by Etonogestrel." Some references contain the journal, pages, and volume, while others lack this information entirely.

      We have updated references. Janes et al., 2024 has now been published in Acta Physiologica.

      (6) Why does the baseline have distribution points, whereas the other boxplots do not?

      We have clarified in the figure legend that, to be fair to the presentation of our results, the data points shown in some of the boxplot graphs do not refer to entire baseline data but only the ones that are outliers.

      In our Box-and Whisker-Plots, whiskers represent the 10th and 90th percentiles, showing the range of values for the middle 80% of the data. Individual data values that fall outside the 10th/90th percentile range are represented as single point (outliers).

      Reviewer #3 (Recommendations For The Authors):

      • What is the rationale behind dedicating the first paragraph of results to discussing an artifact?

      We think that it is important to report off target effects of shRNA viral constructs as concentration and volumes of viruses injected in various studies vary considerably and other investigators may attempt to use larger volumes of viruses to obtain more considerable or faster knockdown but would obtain erroneous conclusions if appropriate tests are not performed.

      Furthermore, because some readers could question whether we injected enough virus to knockdown the expression of PHOX2B, and may wonder if with a larger amount of virus we would increase knockdown efficiency, we wanted to show that, in our opinion, we used the maximum amount of virus to knockdown PHOX2B without causing toxic effects or physiological changes that are not dependent on PHOX2B knockdown.

      • All individual data points should be visible in floating bar graphs in Figures 1 and 4. For example, I don't see any dots for naïve animals in any of the panels in Figure 1.

      We have clarified in the figure legend that, to be fair to the presentation of our results, the data points shown in some of the boxplot graphs do not refer to entire baseline data but only the ones that are outliers.

      In our Box-and Whisker-Plots, whiskers represent the 10th and 90th percentiles, showing the range of values for the middle 80% of the data. Individual data values that fall outside the 10th/90th percentile range are represented as single point (outliers).

      • Please include specific F and T values along with DF.

      We have included a table with all the specific values in the supplementary section as Table 1.

      • The C1 and facial partly overlap with the RTN at this level of the medulla and these cells should appear as Phox2b+/Nmb- cells so it is not clear to me why these cells are not evident in the control tissue in Figures 2B and 3B. Also, some of the bregma levels shown in Figure 5A overlap with Figures 2-3 so again it is not clear to me how this non-cell type specific viral approach was targeted to Nmb cells but not nearby TH+ cells. Please clarify.

      In our experience, C1 TH cells are located slightly medial to the Nmb cells and they spread much more caudally than Nmb cells of the RTN. We focused our small volume injection in the core of the RTN to target Nmb cells but we also assessed PHOX2B knockdown in TH C1 cells by counting the PHOX2B/TH cells across treatment groups. Although we can’t exclude subtle changes in the C1 population, we did not observe changes in the total number of C1 cells (TH+/PHOX2B+), in the number of TH cells expressing PHOX2B, or in the hypoxic ventilatory response (which is dependent on the health status of C1 neuron). We have updated figure 5 to show representative expression of PHOX2B in TH+ neurons in the ventral medulla to complement our cell count analysis. To address potential effects on other cell populations we have edited our discussion as follows:

      “PHOX2B knockdown was also restricted to RTN neurons, as adjacent C1 TH+ neurons did not show any change in number of TH+/PHOX2B+ expressing cells, although we cannot exclude that some C1 cells may have been infected and their relative PHOX2B expression levels were reduced. To support the lack of significant alterations associated with the possible loss of C1 function was the absence of significant changes in the hypoxic response that has been shown to be dependent on C1 neurons (Malheiros-Lima et al., 2017).”

      • To confirm, Nmb is not expressed in the NTS, and this region was chosen as a background, right?

      In order to systematically analyze Nmb mRNA expression we decided to use measurement of fluorescence relative to Nmb neurons present in the dorsal brainstem. Here cells are sparse but we used them as reference fluorescence since they would not be affected by the ventral shRNA injection. Similar cells are also present in the brains of mice and reported by the Allen Brain atlas (https://mouse.brain-map.org/experiment/show/71836874). We have clarified our procedure in the methods section (see above) and included a sample image of Nmb in both ventral and dorsal in Figure 5.

      • How do you get a loss of Nmb+ neurons (Figs 2-3) with no change in Nmb fluorescence (Fig. 5B)? In the absence of representative images these results are not compelling and should be substantiated by more readily quantifiable approaches like qPCR.

      We have clarified in the methods and results section our analytical procedure to assess PHOX2B and Nmb expression. Figure 2 and 3 display the results of counting numbers of Nmb+ cells in the RTN. Figure 5B reports the average of total cell fluorescence measured inside Nmb+ cells, not an average fluorescence measurement of the area of the ventral medulla. Basically, our results show that we have less Nmb cells that express PHOX2B but the overall Nmb mRNA fluorescence (expression) in Nmb cells relative to Nmb fluorescence in cells of the dorsal brainstem is the same.

      We have edited the methods as follows:

      “The Corrected Total Cell Fluorescence (CTCF) signal for Nmb, Gpr4 and Task2 mRNAs was quantified as previously described (Cardani et al., 2022; McCloy et al., 2014). Briefly, a Leica TCS SP5 (B-120G) Laser Scanning Confocal microscope was used to acquire images of the tissue. Exposure time and acquisition parameters were set for the naïve group and kept unchanged for the entire dataset acquisition. The collected images were then analysed by selecting a single cell at a time and measuring the area, integrated density and mean grey value (McCloy et al., 2014). For each image, three background areas were used to normalize against autofluorescence. We used 4 sections/rat (210 µm interval) to count Nmb, Gpr4 and Task2 mRNA CTCF in the core of the RTN area where several Nmb cells could be identified. For each section two images were acquired with a 20× objective, so that at least fifty cells per tissue sample were obtained for the mRNA quantification analysis. To evaluate changes in Nmb mRNA expression levels following PHOX2B knockdown at the level of the RTN, we compared the fluorescence intensity of each RTN Nmb+ cell (223.2 ± 37.1 cells/animal) with the average fluorescent signal of Nmb+ cells located dorsally in the NTS ( 4.3 ± 1.2 cells/animal) (Nmb CTCF ratio RTN/NTS) as we reasoned that the latter would not be affected by the shRNA infection and knockdown. “

      A single cell qPCR analysis would be definitely ideal but a qPCR from dissected tissue would not help us determine whether within a cell there was a reduction in Nmb mRNA levels.

      • The boxed RTN region in these examples is all over the place. It the RTN should be consistently placed along the ventral surface under the facial and pprox.. equal distance from the trigeminal and pyramids.

      We have update the figures to consistently present the areas of interest where Nmb cells are located and images are taken.

      • Fluorescent in situ typically appears as discrete puncta so it is not clear to me why that is not the case here.

      Our images are taken at low magnification (20X) where it is difficult to distinguish the single mRNA molecules. However, is it possible to appreciate the differences between the grainy fluorescent signal in the in situ hybridization assay (RNAScope) and the smoother signal of protein detection in the immunofluorescence assay.

      • Can TUNEL staining be done to confirm loss of Nmb neurons is due to death and not re-localization?

      Does the reviewer mean “cell migration” with relocalization? We do not expect that this would occur in our experiments. Although TUNEL in the first week post-infection could be useful to determine cell death in our tissue, we do not expect a cell migration of neurons within the brain as our viral shRNA injections are performed in adult rats when developmental processes are already concluded.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __ Summary In this manuscript the authors address the largely unexplored role of micro RNAs (miRNAS) in Drosophila melanogaster brain development, in particular in neural stem cell lineages. The authors for the first time adapt the Ago protein Affinity Purification by Peptides (AGO-APP) technology for Drosophila. They show that this technique works efficiently in neural stem cell lineages and identify several cell type specific active miRNAs. Through a series of bioinformatic analysis the authors identify candidate mRNA targets for these miRNAs. The authors then functionally analyse the role of some of the identified miRNAs, focusing on miRNAs significantly over-represented in neuroblasts.

      By overexpressing Mir-1, the authors demonstrate that this miRNA effectively targets the UTR of Prospero, resulting in the overproliferation of neuroblasts. In a parallel experiment, overexpression of Mir-9c causes neuroblast differentiation defects, similar to the phenotype caused by nerfin-1 mutants, a previously validated target. Loss of function analyses show that knock down of single miRNAs has little functional effects in neuroblast size, showing that the individual effect caused by miRNAs knock down is likely compensated. In contrast, a sponge against a selected group of miRNAs leads to a reduction in poxn positive neuroblasts. Overall these results validate the approach and support the theory that miRNAs cooperate in functional modules during stem cell differentiation.

      We thank Reviewer 1 for its overall positive review. We are grateful for the useful suggestions and we believe the additional experiments we have performed and added strongly improve the quality of the study and will hopefully satisfy the reviewer's concerns.

      Comments

      Title: As the authors do not really explore exit from neural stem cell state this should be altered. The authors do not assess for the levels of any temporal genes, nor other markers of neural stem cell state exit (e.g. nuclear Pros).

      We now have further evidence that the identified microRNA module preserves neuroblasts, in particular in the optic lobe. We have modified the title accordingly: "In vivo AGO-APP identifies a module of microRNAs cooperatively preserving neural progenitors"

      The observed effects, with the available experiments, rather say that neural stem cell state is not maintained in general, not being clear what mechanistically happens to these cells expressing Cluster 2 sponges. The described phenotype caused by the expression of sponges against individual miRNAs also rather shows a blockage in differentiation.

      -The miRNAs analysed were found in Ago-APP to be predominantly active in neuroblasts, but was there any phenotypes of OE or KD in neurons or glial cells?

      Since the analyzed miRNAs were either not or poorly expressed in neurons or glia overall, it seemed less essential to investigate potential phenotypes in these cells. However, we did mis-expressed miR-cluster1sponge and miR-cluster2sponge in neurons and in glial cells (using elav-GAL4 and Repo-GAL4, respectively) throughout development, and did not observe any major impact on viability. All pupae were able to hatch.

      In addition, we show now that mis-expression of the miR-cluster2sponge (that induces strong phenotypes in neuroblasts) specifically in the wing pouch throughout development did not lead to any phenotype in the adult (e.g. wing size (tissue growth), patterning defects (cell differentiation)) (Fig6K,L). Importantly, this experiment rules out unspecific effects of the sponge construct on cell fitness, and highlight the tissue-specificity of the phenotype.

      • The authors obtained a phenotype when using a sponge against Cluster 2 in poxn neuroblasts. Is this specific for these 6 neuroblasts? What happens if this sponge is expressed with a pan-neuroblast driver in central brain/VNC/optic lobe? These experiments should be included as they would show if these are conserved effects for all neuroblasts.

      We already showed in Fig.4B of the first version of the manuscript (using a flip-out approach in clones) that miR-cluster1sponge or miR-cluster2sponge expression leads to an overall reduction in the neuroblast size in the VNC and CB.

      We have now added four more experiments, all suggesting that these sponges specifically affect type I neuroblasts:

      • using the pan-neuroblast driver nab-GAL4, we show that neuroblasts in the VNC and CB expressing these sponges are significantly smaller in late L3. Also, their number is reduced, indicated that some neuroblasts are eliminated (Fig.4C-G).
      • Using pox-GAL4 (already in first version) and eagle-GAL4, we show that different subset of type I neuroblasts in the VNC exhibit different sensitivities to the sponges (from light/medium - neuroblast shrinkage, to high - neuroblast elimination) (Fig.4H-J, S6C-E)
      • using the dpnOL-GAL4 driver, that is specific and strongly active in medulla neuroblasts in the optic lobe, we demonstrate that both, miR-cluster1sponge and miR-cluster2sponge, induce neuroblast shrinking. In addition, we find that the width of the medulla neuroblast stripe is strongly reduced when using the miR-cluster2sponge, providing further evidence for precocious neuroblast elimination (6C,D). Importantly, this leads to a smaller medulla in late L3 (Fig 6F), implying that in these conditions, medulla neuroblasts produce fewer neuronal progeny. Because medulla neuroblasts generate GMCs that undergo a single division, they are also considered as type I neuroblasts
      • using a worniu-GAL4, ase-GAL80 driver, that is specifically active in type II neuroblasts, we show that expression of miR-cluster1sponge and miR-cluster2sponge does not affect neuroblast size and the number of intermediate progenitors (Fig 6H-J). Together, these additional experiments in different types of neuroblasts and in non-neural tissue (the wing pouch, see above) demonstrate a type I neuroblast-specific effect. Our new results also imply that the microRNA module is active in most, if not all type I neuroblasts. In contrast, it is not present or not affecting differentiation genes in type II neuroblasts. Importantly, in Type II lineages, intermediate progenitors produced by neuroblasts undergo themselves a few rounds of divisions before differentiating, unlike GMCs that give rise to two differentiated progeny after a single division. Therefore, the dynamics of differentiation is different in the two lineages, involving a distinct sequential expression of differentiation factors, and possibly different miRNAs.

      The authors do different analyses in different brain regions, making also a hard to conclude if all brain regions behave the same way. As authors show that some miRNAs are only expressed in sub-sets of cells, this becomes particularly relevant.

      The new set of experiments in different types of type I neuroblasts and in type II neuroblasts, presented above, addresses the points on the specificity of the microRNA module.

      Could sponge of cluster 1 cause a phenotype if it had been expressed in other neuroblast lineages?

      Yes, it can. See our new experiments discussed above.

      __ __In addition, a discussion of the results obtained from sponge 1 should be included and put in context with miRNA function, technical limitations, levels/cell, targets, pitfalls of analyses, sponges, etc.

      We have more carefully acknowledge that sponge mediated knock-down is not very efficient and dose-dependent. We also clarified that other approaches will be required in the future to rigorously assess the specificity of each miRNA/mRNA interaction as well as their cooperativity.

      For example: "In contrast to genetic miR-1KO (Fig. 3O), we found that sponge mediated knock-down of this miRNA, or of other individual miRNAs in the module, had never a significant effect on neuroblast size (Fig. 4B), likely because the inhibition induced by sponges is incomplete. However, expression of either multi-sponge 1 or multi-sponge 2 significantly reduced neuroblast size in a dose dependent manner - two copies of the transgene exacerbate the phenotype (Fig. 4B)."

      We also state at the end of the discussion: "In the future, the combination of Ago-APP with complementary genetic strategies will be required to rigorously assess the specificity of each miRNA/mRNA interaction as well as their cooperativity."

      It would also be interesting to further explore the phenotypes caused by Mir-1 sp expression - are there any milder lineage defects?

      We observed an increase in Prospero expression and a decrease of the neuroblast size in miR-1null mutant neuroblast clones (Fig.3L-O). These phenotypes are not observed when miR-1sponge is mis-expressed. This is probably due to the fact that miR-1sponge expression leads to only a partial knock -down of miR-1. Moreover, we have added data about the expression of miR-1sponge in medulla neuroblasts in the optic lobe, showing an absence of obvious phenotype when assessing neuroblast size and neuroblast maintenance. This contrasts with expression of miR-cluster1sponge and miR-cluster2sponge (Fig. 4F,G). This new data is in line with our hypothesis that the knockdown of miRNAs of a common module synergize/cooperate to produce the phenotype expected from the deregulation of their common target mRNAs.

      Any defects in other brain regions/lineages, like in type 2 neuroblasts that usually do not express Pros?

      As suggested by the reviewer, and discussed above, we tested expression of miR-cluster1sponge and miR-cluster2sponge in type-II neuroblasts using the worniu-GAL4, asense-GAL80 driver (Neumüller et al., 2011). Interestingly, in contrast to type I neuroblasts in VNC, CB and OL regions, we did not observe neuroblast shrinking or changes in INP numbers. This suggests that either the self-renewing state is more robust in Type II than in Type I neuroblasts, or that that the uncovered miRNA module is more specific to type I neuroblasts than to type II. We have added and discussed these important data in Fig 6H-J in the revised version.

      Ago-APP identifies cell type specific miRNAs in larval neurogenesis section: - "...29oC... allows Gal4-dependent expression (Fig.1B,C)" - this description of Gal80ts/Gal4 works is not correct, expression is not prevented.

      Gal80 directly binds to Gal4 carboxy terminus and prevents Gal4-mediated transcriptional activation.

      We have tried to clarify this point in the revised version.

      "Thus, when x-GAL4, tub-GAL80ts, UAS-T6B animals are maintained at 18{degree sign}C (restrictive temperature), GAL80 binds to Gal4 and inhibits its activity. *Switching to 29{degree sign}C (permissive temperature) for 24 hours inactivates GAL80, allowing for GAL4-mediated transcriptional activation of UAS-T6B" *

      • Fig S1 - nab-Gal4 also drives expression in GMCs and neurons, rephrase text. Is nab-Gal4 expressed in optic lobe, VNC and central brain neuroblasts?

      nab-GAL4 drives UAS-T6B expression in neuroblasts (in the VNC and in the CB), but also at lower levels in the medulla neuroblasts of the OL.

      We now describe this expression more precisely in the text and in Fig.S1C:

      "nab-GAL4 was used for T6B expression in all neuroblasts. However, because GAL4 is inherited by neuroblast progeny, T6B will also be present in GMCs and a few immature neurons (Fig.S1A,C)24. Of note, nab-GAL4 is highly expressed in the neuroblasts of the ventral nerve cord (VNC) and of the central brain (CB), and weaker in the neuroblasts of the optic lobe (OL) (Fig. S1C)".

      • "20 late larval CNS" - mention the exact stage

      We mention now the precise stage: the wandering stage.

      • Providing a more detailed and interpretive description of Figures 1D and 1E would greatly enhance their clarity. Currently, the descriptions of these pannels resemble typical figure legends.

      We now provide a more detailed description of the data, emphasizing that they are consistent with previous studies on specific miRNAs.

      • Fig. 1F,G,H - It is not clear why the authors sometimes use the optic lobe, other ventral nerve cord as both regions have both neuroblasts, neurons and glia. Are the drivers used for Ago-APP not expressed in all brain regions?

      We now document the activity of the GAL4 drivers used for AGO-APP throughout the entire larval central nervous system in Fig.S1B-D. We also show images of the entire larval central nervous system for the different reporter lines (Fig S1E-K) and focus on regions of interest in the main Fig 1F-M with quantitative measurement of reporter gene expression.

      • Show "data not shown" for 1H.

      It is now shown in Fig. 1M'.

      • Fig. 1F, G, H - Please quantify intensity levels in the different cell types to facilitate comparison with Ago-APP graphs. Include in figure legend what is "cpm".

      Quantification of intensity levels is now represented in Fig. 1F,I and L. Cpm means "counts per millions". We added this in the figure legend.

      A regulatory module controlling neuroblast-to-neuron transition section: - Fig. 2C - A more detailed explanation in text is required in addition to what is mentioned in the figure legend. Including a brief summary/conclusion of the results would be helpful. If possible, add in X-axis 1, 2, 3.

      We clarified this point in the text:

      "We used the Targetscan algorithm1 to determine the predicted target genes of each neuroblast-enriched miRNA. Next, we investigated the correlation between the identified miRNAs and the presence of their targets, based on independently generated mRNA expression data44.

      *This analysis showed that neuroblast-enriched miRNAs predominantly target mRNAs that are normally highly expressed in neurons (Fig. 2C), consistent with a differentiation inhibiting function." *

      • Figure S2B - as mentioned in the text elav is expressed from the neuroblast, although this is not represented in the figure.

      I In this scheme, we depict the expression of proteins, not the presence of mRNAs. elav mRNA is indeed present at low levels in neuroblasts but the protein is absent from both neuroblasts and GMCs (as shown by all our immunostainings against Elav). This fact strongly suggests post-transcriptional repression of elav mRNA (possibly by miRNAs). This likely explains why the elav-GAL4 is also active in neuroblasts. It also suggests some post-transcriptional mechanisms to silence elav in the neuroblasts/GMCs (miRNAs?)

      It is hard to tell what are young vs maturing neurons in the cartoon, pls add a label/legend.

      We added new labels in Fig S2B to uncouple neuronal maturation from temporal identity. We hope it is clearer now.

      • Fig.3I - please shown a control brain. The merge images are not easy to see. I think it would be nicer to change the figures to be color-blind friendly.

      We added the control brain in Fig 3I for VNC clones, and Fig S3A for OL clones.

      We also changed all the figures to be color-blind friendly.

      • Fig. 3K,L - why is this now done in the VNC?

      We now focus on the VNC in the main Figure 3 (Fig.3I,J,K,L,N), and show similar phenotypes in the OL in the Supplemental Figure S3 (Fig.S3A-C).

      • Are there any lineage defects when Mir-1 sp is expressed?

      See previous comment on miR-1sponge.

      • Based on which parameters/variables of the predicted targets was the Hierarchical clustering done? A brief explanation would help the interpretation of the results and of the choice of the clusters that were further analysed.

      Hierarchical clustering is now explained in the "Bioinformatics analysis" section of the Material & Methods section with an additional matrix available in Table S1.

      • "revealed the presence of three main groups" - this should be rephrased as this "grouping" was done arbitrarily by the authors and not by hclust. Hclust is set to merge individual clusters/sub-trees up to 1. Furthermore, a more detailed explanation that supported this decision of choosing this 3 large clusters should be included.

      See previous question.

      • Fig. 4B, S4B - please include in legend how were these clones generated. S4B - scale bars missing.

      We included the missing information and added the missing scale bars.

      • Fig. 4H - was the ratio of UAS/Gal4 kept in both experimental conditions? Increasing the number of UAS/Gal4 leads to weaker expression of UAS and thus could lead to a weaker phenotype. Including in legends genotype details would help.

      This is a very good point as the number of copies of the UAS and/or GAL4 can influence transgene expression and consequently the phenotype observed. We indeed kept the ratio of UAS/GAL4 in both experimental conditions. The exact genotypes for the experiments are:

      Hs-FLP/+; act>stop>Gal4, UAS-GFP/+; UAS-RFP/UAS-miR-1

      Hs-FLP/+; act>stop>Gal4, UAS-GFP/UAS-cluster2sp; UAS-miR-1/+.

      To address this important issue in the manuscript, we added a table (Table S3) listing the precise genotypes for each experiment.

      Minor - Abstract: "a defined group of miRNAs that are predicted to redundantly target all..." This is only predicted, not experimentally shown, this should be modified accordingly.

      Although the request here is not clear to us, we made a few minor changes to the abstract that we hope will satisfy the reviewer.

      • Intro: "Elav, an RNA binding protein, is expressed as soon as post-mitotic neurons..." - Elav is expressed already in neuroblasts, as also mentioned by the authors in the result section. Correct, add references.

      elav is indeed already transcribed in neuroblasts and GMCs. However, the protein is absent in the two cell types (as shown by all our immunostainings), and only present in neurons. Thus, there is a level of post-transcriptional regulation that prevents elav mRNA translation in neuroblasts and GMCs (likely at least partly mediated by miRNAs). This also explains why in elav-GAL4; UAS-T6B brains T6B is expressed in neuroblasts and GMCs, as the GAL4 mRNA transgene is not submitted to the same post-transcriptional regulation.

      • Last paragraph of Intro (Bioinformatic analyses...) - it is not easy to understand the content of this paragraph. Rewrite to improve clarity.

      The paragraph has been rewritten for more clarity with the addition of Table S1

      • All legends: Please mention which developmental stage is being analysed in each panel (i.e. wandering 3IL, hours After Larval Hatching, hours After Puparium Formation, or other), in which brain region the analyses/images are being done.

      The CNS regions are now systematically annotated in the figures. All experiments have been done in wandering L3 (except for the new Fig.6 K,L, where the experiment is done in the adult wing). We now systematically mention in the text and legend the developmental stage at which the experiment is performed.

      Please include more detailed information about the genetics in figure legends.

      We added Table S3 that describes the exact genotype of all crosses done in this study.

      • Please include brief explanation of the genetics of miR-10KOGal4 line.

      This is now also explained in the new Table S3.

      • Why are miRNAs sometimes referred as (e.g.) "miR-1" and others "miR-1-3p"?

      The miRNA found enriched (and thus active) in the neuroblast is the miR-1-3p strand. The UAS-miR-1-sponge has been designed to be complementary to the miR-1-3p strand, and is then referred as miR-1-3psp in the text and figure legend. The miR-1 null clones have been made using the miR-1KO allele, which inactivates the entire locus and therefore both, the miR-1-3p and miR-1-5p strands. This is referred to as miR-1KO or miR-1 in the text. Finally, constructions used to mis-expressed miR-1 and other miRNAs are made with the pre-miRNA, meaning that both strands of the miRNA are mis-expressed. This is then referred as miR-1 in the text.

      • Fig. 3I-M - stage of the animal? 3M - in which brain region is this?

      We have systematically mentioned the brain region on panels on all figures.

      • Fig. 3N - can actual sizes be additionally shown, or at least averages mentioned in text?

      Average sizes are indicated in the legend of new Fig. 4F.

      • If non differentially expressed miRNAs, or miRNA with other expression patterns, had been analysed to determine their targets in the sub-set of genes expressed in neuroblasts (from the transcriptome) would different targets been found? Meaning, how specific are these binding patterns for the selected miRNA?

      This is an interesting and important point. To answer, we added a new analysis (Fig.S2C), where the total number of target sites in the 3'UTR of the pro-differentiation/temporal network genes are shown for different categories of miRNAs: neuroblast-enriched miRNAs (analysed in this study), neuron-enriched miRNAs, glia-enriched miRNAs, and random miRNAs not expressed in the brain. This analysis shows that neuroblast-enriched miRNAs exhibits a higher level of promiscuity with the iconic pro-differentiation/temporal genes than other identified or random miRNAs, arguing for functional relevance.

      **Referees cross-commenting**

      *think this study is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. Although the authors do not explore deeply the biological effect of these miRNAs in neural lineages, I think that the technical contribution and the identification of some miRNA targets is relevant on its own. The authors use Prospero as an example, which is very interesting, as this gene is required to be lowly expressed in Neuroblasts and then upregulated during differentiation. Which the authors propose can be regulated by miRNAs, identifying a novel player in this differentiation mechanism. I do not feel the authors need to perform additional experiments to corroborate their findings, as they are well supported by the experiments presented. I do agree that the authors did not explore deeply the biological effect in neural lineages, and the claims regarding premature terminal differentiation, nerfin, etc need to be toned down accordingly.

      * Reviewer #1 (Significance (Required)):

      This study is both a technical and conceptual advance. It is very interesting as it optimizes a novel technique in Drosophila for the investigation of cell-specific active miRNAs, and it globally addresses the role of miRNAs in neural stem cell lineages. However, the text, especially in the results section, could benefit from increased detail to enhance the comprehension of the experiments, results, and conclusions. Given that the functional analyses were not conducted at a very detailed level, there exist certain instances of over-interpretation, which could be easily addressed either by revising the text or by incorporating additional experiments, as elaborated upon below. This manuscript will be interesting for research fields interested in stem cell differentiation, brain development, micro RNAs, both for Drosophilists and scientists working with other animal models. I am an expert in Drosophila brain development.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ Summary MicroRNAs (miRNAs) have a well-established role in fine-tuning gene expression. Because the mechanisms by which miRNAs recognize specific target transcripts are poorly understood, their functionally relevant targets in the physiological context are mostly poorly defined. Studies in vertebrates have suggested that miRNAs play a prominent role in regulating cell type specification during brain development. Insight into miRNA regulation of target selection will improve our understanding of neural development. Cell type-specific gene expression patterns and functions in the neural stem cell (neuroblast) lineage in the fly larval brain are well characterized. The fly genome is compact, and gene redundancy including miRNAs is significantly less than vertebrates. For these reasons, the authors chose to investigate how miRNAs regulate cell-state transitions by first establishing a comprehensive miRNA expression profile for major cell types in the fly larval brain. They combined the AGO-APP strategy and the GAL4-UAS inducible expression system to pull-down cell type-specific miRNAs from fly larval brain. The authors focused on miRNAs that are enriched in neuroblasts and examine how multi-miRNA modules regulate the maintenance of an undifferentiated state in neuroblasts. The cell type-specific inducible AGO-APP system introduced in this study is innovative and allows for systematic identification of miRNAs that most standard RNA-sequencing techniques missed in previously published datasets. The technological note sets high promise for this study, but the findings appear tame. It is my opinion that there are a number of shortcomings that can improve the rigor of this study. For example, strategies used to determine spatial expression patterns of miRNAs as well as to validate miRNA target genes are indirect with high likelihood of caveats. The choices of candidate target genes to assess the function of miRNAs in the cell state transition appear counterintuitive.

      We thank the reviewer for qualifying our study as "technologically excellent" and for emphasizing the "innovative character of AGO-APP" and the potential of such studies to "be hugely significant to the general audience".

      We are aware that there could be ways to more rigorously and systematically investigate the interactions between miRNAs and their targets and assess their cooperativity. Beyond in vitro luciferase assays (an approach we have used in this study), this would ideally involve multiple new transgenic assays, with point mutations in various miRNA sites in the 3'UTR of predicted target genes as proposed by Reviewer 2. Also, measuring the direct effect of miRNA knockdown on its target is notoriously difficult as it can be modest (and only be revealed through the cooperative action with other miRNAs, as proposed in this study), and sometimes not detected by measuring mRNA levels (e.g. by transcriptomic approaches or FISH).

      One of our aims in the future is to develop such non-trivial approaches, which will take a considerable amount of time and work. At this stage we believe that it would go beyond the scope of the present study which aims at illustrating how introducing a new technology for miRNA isolation (AGO-APP) can help to reassess important questions on miRNA biology and function (e.g. miRNA cooperation within in the context of developmental transitions). We discuss this point now in the last paragraph of the discussion in the revised version.

      Our unbiased AGO-APP results reveal a group of neuroblast enriched miRNAs that are predicted to target multiple times pro-differentiation genes (prospero, elav, nerfin-1, brat) while not targeting stemness genes such as miranda, worniu, inscuteable, deadpan, grainyhead. Mutation in pro-differentiation genes are known to either promote neuroblast tumors (prospero, nerfin-1, brat ) (https://doi.org/10.1016/j.cell.2006.01.03; 10.1101/gad.250282.114) or perturb neuronal differentiation (elav) (https://doi.org/10.1002/neu.480240604). On the other hand, mis-expression of these genes in neuroblasts often promotes shrinkage, precocious differentiation and /or cell cycle-exit (10.1016/j.cell.2008.03.034 ; 10.7554/eLife.03363 ; 10.1101/gad.250282.114). Therefore, bioinformatic prediction and previous studies made it likely that GOF of the neuroblast-enriched miRNAs would lead to neuroblast expansion or differentiation defects, and that LOF would lead to neuroblast shrinkage, cell cycle exit or differentiation. All these predictions are experimentally validated in our study. To reinforce our data, we have performed a number of additional experiments that are described below.

      Furthermore, the authors provided no rationale as to why they chose cell types that are not in the brain (such as wing cells and cells in the optic lobe) to assess the phenotypic effect of manipulating miRNAs.

      All our analysis were done either in the different types of neuroblasts found in the central nervous system (CNS) composed of the ventral nerve cord (VNC) (equivalent to vertebrate spinal cord) and brain (comprising the central brain (CB) and the optic lobes (OL) (10.1016/j.neuron.2013.12.017) - not to be confused with eye imaginal discs that produce the retina but do not contain neuroblasts. We tested the role of the neuroblast-enriched miRNAs in all neuroblasts of the CNS based on the pan-neuroblast activity of the nab-GAL4 driver used for the AGO-APP experiment. We then focused on different types of neuroblasts using lineage specific GAL4 drivers (poxn-GAL4, eagle-GAL4, dpnOL-GAL4, type II-GAL4). This is shown in the entirely revisited last paragraph of the results (Fig 4, 5, 6, S6 and S7). These experiments demonstrate that sponges simultaneously targeting several miRNAs of the module only affect type I neuroblasts but not type II neuroblasts.

      To investigate whether miR-1 directly regulates prospero mRNA in vivo, we used a tissue where prospero is not normally expressed (the wing pouch of the wing imaginal disc in late l3 larvae), allowing us to test how over-expressing miR-1 post-transcriptionally affects versions of prospero mRNAs that either possess or not its endogenous 3'UTR. The obtained results are consistent with in vitro luciferase assays, and miR-1 gain-of function in neuroblasts and GMCs, supporting the hypothesis that prospero mRNA is a direct target of miR-1 via its 3'UTR. We have clarified these points in the revised version of the manuscript.

      Using solely a reduced cell size as the functional readout for "precocious differentiation" is not rigorous and should be complemented with additional measures.

      Reduced neuroblast size always precedes neuroblast differentiation and has been widely used as functional readout of precocious differentiation (this is more clearly emphasized and referenced in the revised version). We have now also observed this phenotype in the neuroblasts of the optic lobe (Fig 6), together with precocious "plunging" of old neuroblasts in the deep layer of the medulla (Fig S7G), another sign of differentiation. These experiments show that the shrinkage phenotype is robust to all type I neuroblasts (medulla neuroblasts of the optic lobe can also be considered as type I neuroblasts because they generate GMCs that undergo a single division).

      Moreover, opposite to precocious differentiation induced by the simultaneous knockdown of multiple miRNAs of the neuroblast module, we now show that mis-expression of many of the miRNAs of the module prevents proper neuronal differentiation (miR-1, miR-9, miR-92a, miR-8) (Fig S5). Taken together, these experiments strongly suggest that the miRNAs of the module have the ability to block neuronal differentiation and that they represent a functional module in type I neuroblasts.

      Major concern: 1. The authors should use a direct method to confirm the expression pattern of identified miRNAs such as miRNA scope (ACD) in the whole mount brain instead of indirect methods such as reporters.

      Such techniques are not trivial and do not represent a standard in Drosophila. Instead, the reporter genes we have used in our study have been already validated in other studies to reflect the expression of particular miRNAs in different tissues. We thus have taken advantages of these available lines to correlate expression patterns as reflected by transgenics with our AGO-APP experiment. All reporter lines tested quantitatively support the AGO-APP data as now shown in the revised Fig 1F,I,L.

      The entire figure 3 aims to provide evidence to support that prospero mRNA is a direct target of miR-1-3p. These convoluted experiments with significant caveats should be replaced with mutating the endogenous miR-1-3p binding sites in the 3'UTR of the prospero reading frame, and demonstrate that the endogenous prospero transcript level is increased by sm-FISH. The authors could also use this novel allele to assess the phenotypic effect of "unregulated prospero" in the larval brain.

      It would indeed be an interesting experiment to perform to show that miR-1 directly regulates pros RNA in vivo. However, our miR-1 mutant clones suggests that miR-1 on its own has only a small contribution to prospero mRNA regulation during the neuroblast-to-neuron transition. This could be due to the low physiological levels of miR-1-3p in neuroblasts and to the fact that several miRNAs of the module may act partly redundantly and collaboratively to maintain the correct level of prospero mRNA. Thus, in this case, it is well possible that changes in the endogenous prospero mRNA transcript may not be significant and detected by smFISH, unless more miRNA sites are mutated. Such an experiment would involve the generation of several new transgenic lines using the CRISPR technology, which represents a long-term project.

      Again, these approaches are powerful and we agree that they would represent a more rigorous assessment of miRNA cooperation. But we feel that it goes beyond the scope of this article, as mentioned above.

      The effect of overexpressing mir-1 on the prospero transgene with its 3'UTR vs without 3'UTR cannot easily compared since the UTR might be regulated by other regulatory mechanisms in addition to mir-1.

      To minimize the potential effect of other regulators, we only compare conditions where the only difference is the presence or absence of miR-1. We do not directly compare levels of Prospero with its 3'UTR vs without 3'UTR. However, there is indeed still the possibility that miR-1 overexpression would change the expression of a protein that regulates prospero mRNA via its 3'UTR.

      Considering this we have tuned-down our conclusion concerning this part in the revised version of the manuscript and now used the sentence:

      "These experiments performed in two different cellular contexts strongly suggest that prospero mRNA is a direct target of miR-1-3p."

      How could the author use evidence-based strategy to demonstrate that massive amplification of Mira-expressing cells induced by overexpressing mir-1 in the optic lobe is indeed due to mis-regulation of prospero instead of mimicking the prospero-mutant phenotype?

      First, we noted that miR-1 overexpression in neuroblast clones causes neuroblast amplification in all regions of the CNS (not only in the optic lobe) at the expense of neuronal differentiation. This is now shown in Fig 3 and S3.

      Second, multiple chemical or genome-wide RNAi screens have been performed (Gould lab, Chia lab, Knoblich lab, etc) to identify genes whose downregulation causes efficient neuroblast amplification (10.1186/1471-2156-7-33 ; 10.1016/j.stem.2011.02.022). In VNC type I neuroblasts, only inactivation of prospero or miranda can lead to efficient neuroblast amplification in late larvae, generating tumour-like structures devoid of neurons. We find that while Miranda is highly expressed in neuroblast clones overexpressing miR-1 (Fig 3J), Prospero is completely absent, suggesting that it is efficiently silenced by miR-1 overexpression, and therefore responsible for the observed phenotype. This new result is now added in Fig.S3D. It is very unlikely that the down-regulation of another gene is responsible for this phenotype. However, we cannot exclude that other genes are deregulated that contribute to this phenotype in addition to prospero knockdown.


      Similarly, what is the evidence that the phenotype associated with mir-9a knockout is due to mis-regulation of nerfin-1?

      In contrast to prosperoKD clones that are devoid of neurons, nerfin-1 mutant clones are known to be composed of a mix of neuroblasts and neurons (Fig S4E,G) (10.1101/gad.250282.114 ). When over-expressing miR-9 in neuroblast clones in the VNC, we observed a strong downregulation of nerfin-1 (Fig S4A, C) showing that nerfin-1 is a likely target of miR-9. However, downregulation is not complete which could explain why we do not see neuroblast amplification in the VNC (Fig 4F). Together with the significant up-regulation of nerfin-1 upon miR-9sponge expression, and the results of our luciferase assays, these data are consistent with nerfin-1 being a direct target of miR-9. Finally, the fact that overexpression of miR-9 in the optic lobes triggers phenotypes very similar to loss of function of nerfin-1 (but different from loss of function of prospero which is upstream of Nerfin-1 in epistatic tests) suggests that down-regulation of nerfin-1 is at least partially responsible for the phenotype (Fig S4D,E).

      Again, we cannot exclude that other deregulated targets contribute to the phenotype.

      Most of look-alike mutant phenotypes presented by the authors appear to occur in the OL. Is there any reason why cells in the visual center, which is not a part of the brain, appears to be more suspectable to loss of function of miRNAs? This is particularly important when manipulating the same miRNAs appear to have very subtle effects on VNC neuroblasts.

      Optic lobes (OL) are a part of the brain (10.1016/j.neuron.2013.12.017). Indeed, each OL constitutes a large region located on both sides of the central brain that integrates signals from retinal photoreceptors coming from the retina in the eyes. Moreover, medulla neuroblasts in the OL can be considered as type I neuroblasts because they generate GMCs that undergo a single division, in contrast to intermediate progenitors (INPs) produced by type II neuroblasts.

      In the original version of our manuscript, we mainly showed gain-of-function in the OL , as for some of the miRNAs the phenotypes were more striking than elsewhere. We have now more systematically tested our gain-of-function and loss-of-function in both the VNC (type-I neuroblasts) (Fig 3, 4, 5, S3, S4, S6) and in the OL (medulla neuroblasts) (Fig 6, S4, S5, S7).

      Results in the VNC are presented generally in the main figures, while results in the OL are presented mainly in supplemental figures; but phenotypes obtained in both parts are now clearly described in the text of the revised version.

      How do the authors know that multi-sponge 2 expression leads to loss of stemness potential in neuroblasts? Any additional evidence that supports precocious differentiation but not death or cell cycle exit?

      This is indeed an important point which we have investigated further in the new version. We now show that inhibiting apoptosis partially rescues neuroblast elimination but not shrinkage when miR-cluster2sponge is expressed in the poxn lineage in the VNC (Fig.4L,M). This shows that VNC neuroblast can disappear by apoptosis upon miR-cluster2sponge, but that shrinkage precedes apoptosis. We also show that optic lobe neuroblasts also shrink upon miR-cluster2sponge and are precociously eliminated as indicated by the thinner neuroblast stripe, by a mechanism independent of apoptosis (Fig 6C,D, S7F). Indeed, the neuroblast stripe in the optic lobe remains free of anti-activated caspase 1 (Dcp1), a widely used label of apoptotic cells, upon miR-cluster2sponge (Fig S7F). Finally, we also show precocious "plunging" of the old OL neuroblasts deep in the medulla, another sign of precocious differentiation (Fig S7G).

      Therefore, these experiments reinforce the conclusion that the neuroblast-enriched miRNA module is involved in neuroblast maintenance and that down-regulation of this module leads to the progressive loss of the neuroblast state.

      Lastly, we show that miR-cluster2sponge has no effect on type II neuroblasts or wing imaginal discs arguing for a specific type I neuroblast effect (including VNC, CB and medulla neuroblasts).

      Again, how do the authors know that mir-1 overexpression efficiently silenced prospero mRNA in neuroblasts and GMCs in Fig. 4F?

      This relevant question is addressed in our response to questions 2 and 3.

      Have the authors considered other targets to better assess the function of these miRNAs enriched in neuroblasts. For example, could these miRNAs function to dampen the expression of genes that are required for maintaining these cells in an undifferentiated state? Several studies using the neuroblast model suggest that the expression of these genes needs to be downregulated at the transcriptional and post-transcriptional levels. Perhaps, these miRNAs might target these "stemness" transcripts instead of "differentiation" transcripts. Is there evidence for or against this possibility?

      This is definitely a good point that we have now discussed in the revised version. We found that neuroblast identity genes (e.g. Mira, Dpn, Insc, etc) are not targeted by the miRNA module. However, the module of miRNA in late L3 neuroblasts also appears to target the early temporal genes (Chinmo, Imp), that are strongly oncogenic and stemness promoting. These need to be silenced in late L3 to ensure that neuroblasts stop dividing during metamorphosis ( 10.7554/eLife.13463). Therefore, there is indeed a strong possibility that the miRNA module we have identified in late L3 both maintains stemness by inhibiting differentiation genes and dampens stemness by silencing early temporal genes ensuring timely elimination in pupal stage. We are actively working on the regulation of temporal genes by microRNAs along development and will describe this in details in another study.

      This point was clarified in the discussion as followed:

      "In this context it is interesting to note that, in addition to differentiation factors, the early temporal factors Chinmo and Imp are predicted to be highly targeted by the neuroblast-enriched miRNA module. Given the strong oncogenic potential of these genes30*, it possible that the microRNA module not only protects neuroblasts against precocious differentiation but also protects against uncontrolled self-renewal. Therefore, in principle the same miRNA module could control neuroblast activity through the control of both self-renewal and differentiation, two seemingly opposing biological activities." *

      Minor point 1. There are a number of mis-leading statements throughout the manuscript. -In the abstract, the authors indicated "isolate actively inhibiting miRNAs from different neural cell populations in the larval Drosophila central nervous system". For example, the expression patterns of Nub-Gal4 an Elav-Gal4 drivers appear to be partially overlapping in multiple cell types and might be active in the visual center (optic lobe). If true, it was unclear to me what neural cell types were actually used in their analyses and how they could confidently indicate that cell types in the central nervous system were used in their study. Aren't there more specific Gal4 drivers or more sophisticated genetic tools available to increase the purity of cell types? If not, the alternative could be a much more precise secondary screening step to directly determine where these miRNAs are actually detected instead of relying on indirect readouts of where they might be expressed.

      The expression patterns with additional figures are now more clearly described in the main text and in Fig.S1C,D.

      We are in the process of using other GAL4 drivers that target more specific populations of neurons. But this is beyond the scope of this first study and will be published later.

      -The statement "GMCs lacking Prospero, Nerfin-1 or Brat fail to differentiate and reacquire a neuroblast identity" is very problematic. Nerfin-1 does not appear to be expressed in GMCs according to Fig. S2B. Furthermore, Froldi et al., 2015 suggested that Nerfin-1 appears to prevent activated Notch from reverting neurons to ectopic neuroblasts.

      Indeed, Nerfin-1 is not expressed in GMCs but in immature neurons to stabilize neuronal identity and prevent reversion as shown by Froldi et al. and other studies (DOI: 10.1101/gad.250282.114 ; https://doi.org/10.1242/dev.141341). We have now clarified this point in the introduction: "This process involves the sequential activity of key cell fate determinants such as the transcription factor Prospero and the RNA-binding protein Brat in the GMCs followed by the transcription factor Nerfin-1 and the RNA-binding protein Elav in the maturing neurons20-23. GMCs lacking Prospero, or immature post-mitotic progeny lacking Nerfin-1, fail to initiate or maintain differentiation respectively, and progressively reacquire a neuroblast identity, leading to neuroblast amplification 21,23-25."

      -The statement on page 6 "Strikingly, the group of genes ... contained all iconic genes known to induce neuron differentiation after neuroblast asymmetric division, including nerfin-1, prospero, elav and brat" is problematic. Again, Nerfin-1 probably functions to maintain a neuronal state rather to induce differentiation. Is there evidence that Elav induces neuron differentiation after neuroblast asymmetric division? Brat seems to downregulate Notch signaling in neuroblast progeny rather than instructing neuron differentiation. Furthermore, previous studies suggested that loss of brat function does not affect identity of GMCs and their symmetric division to generate neurons. A similar statement is used at the end of this same paragraph to reiterates mis-leading messages.

      Prospero and Nerfin-1 are sequentially expressed in maturing neurons. Nerfin-1 shares many similar targets as Prospero. It has been proposed that Nerfin-1 prolonged the action of Prospero, allowing stabilisation/maintenance of the differentiated neuronal state (10.1101/gad.250282.114 ; 10.1016/j.celrep.2018.10.038)

      Brat is also involved in the sequence of events needed to produce neurons upon neuroblast asymmetric division. However, the mode of action of Brat in GMCs from type-I neuroblasts and in INPs from type-II neuroblasts is unclear. It was shown that Brat is an RNA-binding protein that has multiple targets. For example, it can bind and silence Myc, Zelda and Deadpan, and promote neuroblast-to-INP differentiation. It may also inhibit Notch signaling which is required for neuroblast-to-INP differentiation (https://doi.org/10.1016/j.devcel.2006.01.017; 10.1016/j.devcel.2008.03.004 ; https://doi.org/10.15252/embr.201744188; https://doi.org/10.1158/0008-5472.CAN-15-2299)

      We have clarified the difference between Type I and Type II neuroblasts in the introduction: "A sparse subset of neuroblasts (Type II) generate intermediate progenitors (INPs) that can undergo a few more asymmetric divisions, allowing for larger lineages to be produced. The neuroblast-to-neuron process in Type II lineages involves a slightly different sequential expression of differentiation factors21,24."

      We have also added a new reference describing that neuronal differentiation and maintenance are severely affected upon elav loss of function:

      Yao, K.-M., Samson, M.-L., Reeves, R. & White, K. Gene elav of Drosophila melanogaster: A prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J. Neurobiol. 24, 723-739 (1993).

      **Referees cross-commenting**

      My main concern about data in this study remains direct vs. indirect effects of manipulating miRNA functions and the corresponding phenotype in various cell types in flies. The authors focused most of their effort on using genes that promote GMC differentiation in order to establish the role of neuroblast-specific miRNAs. Most of the experiments were not rigorously performed to the level that eliminates obvious caveats and suggests their interpretation is the most likely possibility. It is a technologically excellent study but lacks in-depth analyses in biological effects.

      Reviewer #2 (Significance (Required)):

      I believe there is a strong general interest in better appreciating how miRNAs regulate precise gene expression. Deriving some sort of rules such as the specificity of target selection or the efficiency of downregulating gene expression will be hugely significant to the general audience

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      Dormancy/diapause/hibernation (depending on how the terms are defined) is a key life history strategy that allows the temporal escape from unfavorable conditions. Although environmental conditions do play a major role in inducing and terminating dormancy (authors call this energy limitation hypothesis), the authors test a mutually non-exclusive hypothesis (life-history hypothesis) that sex-specific selection pressures, at least to some extent, would further shape the timing of these life-history events. Authors use a metanalytic approach to collect data (mainly on rodents) on various life-history traits to test trade-offs among these traits between sexes and how they affect entry and termination of dormancy.

      Strengths:

      I found the theoretical background in the Introduction quite interesting, to the point and the arguments were well-placed. How sex-specific selection pressures would drive entry and termination of diapause in insects (e.g. protandry), especially in temperate butterflies, is very well investigated. Authors attempt to extend these ideas to endotherms and trying to find general patterns across ectotherms and endotherms is particularly exciting. This work and similar evidence could make a great contribution to the life-history theory, specifically understanding factors that drive the regulation of life cycle timing.

      Weaknesses:

      (1) I felt that including 'ectotherms' in the title is a bit misleading as there is hardly (in fact any?) any data presented on ectotherms. Also, most of the focus of the discussion is heavily mammal (rodent) focussed. I believe saying endotherms in the title as well is a bit misleading as the data is mammalfocused.

      We change the title to : "Evolutionnary trade-offs in dormancy phenology". This is a hybrid article comprising both a meta-analysis and a literature review. Each of these parts brings new elements to the hypotheses presented. The statistical analyses only concern mammals and especially rodent species. But the literature review highlighted links between the evolution of dormancy in ectotherms and endotherms that have not been linked in previous studies. We feel it is important for readers to know that much of the discussion will focus on the comparison of these two groups. But we understand that placing the term ectotherms in the title might suggest a meta-analysis including these two groups.

      In addition, we indicated more specifically in the abstract and at the end of the introduction that the article includes two approaches associated with different groups of animals.

      We also specified in the section « review criteria » that:

      Only one bird species is considered to be a hibernator, and no information is available on sex differences in hibernation phenology (Woods and Brigham 2004, Woods et al. 2019).

      We have also added a "study limitations" section, which explains that although the meta-analysis is limited by the data available in the literature, the information available for the species groups not studied seems to support our results.

      (2) I think more information needs to be provided early on to make readers aware of the diversity of animals included in the study and their geographic distribution. Are they mostly temperate or tropical? What is the span of the latitude as day length can have a major influence on dormancy timings? I think it is important to point out that data is more rodent-centric. Along the line of this point, is there a reason why the extensively studied species like the Red Deer or Soay Sheep and other well-studied temperate mammals did not make it into the list?

      We specified in the abstract and at the end of the introduction that the species studied in the metaanalysis are mainly Holarctic species. We have also added a map showing all the study sites used in the meta-analysis. Finally, we've noted in the methods and added a "study limitation" section at the end of the discussion an explanation for those species that were not studied in the meta-analysis and the consequences for the interpretation of results

      The hypotheses developed in this article are based on the survival benefits of seasonal dormancy thanks to a period of complete inactivity lasting several months. The Red Deer or Soay Sheep remain active above ground throughout the year.

      The effect of photoperiod on phenology is one of the mechanisms that has evolved to match an activity with the favorable condition. In this study, we are not interested in the mechanisms but in the evolutionary pressures that explain the observed phenology. Interspecific variation in the effect of photoperiod results from different evolutionary pressures, which we are trying to highlight. It is therefore not necessary to review mechanisms and effects of photoperiod, themselves requiring a lengthy review.

      We also tested the “physiological constraint hypothesis” on several variables. Temperature and precipitation are factors correlated with sex differences in phenology of hibernation. These factors allow consideration of the geographical differences that influence hibernation phenology.

      (3) Isn't the term 'energy limitation hypothesis' which is used throughout the manuscript a bit endotherm-centric? Especially if the goal is to draw generalities across ectotherms and endotherms. Moreover, climate (e.g. interaction of photoperiod and temperature in temperatures) most often induces or terminates diapause/dormancy in ectotherms so I am not sure if saying 'energy limitation hypothesis' is general enough.

      We renamed this hypothesis the "physiological constraint hypothesis" and we have made appropriate changes in the text so as not to focus physiological constraints solely on energy aspects.

      (4) Since for some species, the data is averaged across studies to get species-level trait estimates, is there a scope to examine within population differences (e.g. across latitudes)? This may further strengthen the evidence and rule out the possibility of the environment, especially the length of the breeding season, affecting the timing of emergence and immergence.

      For a given species, data on hibernation phenology are averaged for different populations, but also for the same population when measurements are taken over several years. To test these hypotheses on a population scale, precise data on reproductive effort would be needed for each population tested, but this concerns very few species (less than 5).

      Testing the effects of temperature and precipitation allows us to take into account the effects of climate on phenology.

      (5) Although the authors are looking at the broader patterns, I felt like the overall ecology of the species (habitat, tropical or temperate, number of broods, etc.) is overlooked and could act as confounding factors.

      Yes, that's why we also tested the physiological constraints hypothesis, including the effect of temperature and precipitation. For the life-history hypothesis, we also tested reproductive effort, which takes into account the number of offspring per year.

      (6) I strongly think the data analysis part needs more clarity. As of now, it is difficult for me to visualize all the fitted models (despite Table 1), and the large number of life-history traits adds to this complexity. I would recommend explicitly writing down all the models in the text. Also, the Table doesn't make it clear whether interaction was allowed between the predictors or not. More information on how PGLS were fitted needs to be provided in the main text which is in the supplementary right now. I kept wondering if the authors have fit multiple models, for example, with different correlation structures or by choosing different values of lambda parameter. And, in addition to PGLS, authors are also fitting linear regressions. Can you explain clearly in the text why was this done?

      To simplify the results, we reduced the number of models to just three: one for emergence and two for immergence. In place of Table 1, we have written the structure of the models used. We have added a sentence to the statistics section: “each PGLS model produces a λ parameter representing the effect of phylogeny ranging between 0 (no phylogeny effect) and 1 (covariance entirely explained by co-ancestry)”. We have tested only three PGLS models and the estimated lambda value for these models is 0.

      (7) Figure 2 is unclear, and I do not understand how these three regression lines were computed. Please provide more details.

      We tested new models and modified existing figures.

      Reviewer #2 (Public Review):

      Summary:

      An article with lots of interesting ideas and questions regarding the evolution of timing of dormancy, emphasizing mammalian hibernation but also including ectotherms. The authors compare selective forces of constraints due to energy availability versus predator avoidance and requirements and consequences of reproduction in a review of between and within species (sex) differences in the seasonal timing of entry and exit from dormancy.

      Strengths:

      The multispecies approach including endotherms and ectotherms is ambitious. This review is rich with ideas if not in convincing conclusions.

      Weaknesses:

      The differences between physiological requirements for gameatogenesis between sexes that affect the timing of heterothermy and the need for euthermy during mammalian hibernator are significant issues that underlie but are under-discussed, in this contrast of selective pressures that determine seasonal timing of dormancy. Some additional discussion of the effects of rapid climate change on between and within species phenologies of dormancy would have been interesting.

      Reviewer #2 (Recommendations For The Authors):

      This review provides a very interesting and ambitious among and within-species comparison of the seasonal timing of entry and exit from dormancy, emphasizing literature from hibernating mammals (sans bats and bears) and with attention to ectotherms. The authors test hypotheses related to the timing of food availability (energy) versus life history considerations (requirements for reproduction, avoiding predation) while acknowledging that these are not mutually exclusive. I offer advice for clarifications and description of the limitations of the data (accuracy of emergence and immergence times), but mainly seek more emphasis for small mammalian hibernators on the contrast for requirements for significant periods of euthermy prior to the emergence in males versus females, a contrast that has energetic and timing consequences in both the active and hibernation seasons.

      A consideration alluded to but not fully explained or discussed is the differences in mammals between species and sexes in the timing of what can be called ecological hibernation, which is the seasonal duration that an animal remains sequestered in its burrow or den, and heterothermic hibernation, between the beginning and end of the use of torpor. The two are not synonymous. When "emergence" is the first appearance above ground, there is a significant missing observation key to the energetic contrasts discussed in this review, that of this costly pre-emergence behavior.

      To explain the difference between heterothermic hibernation and ecological hibernation, we've added a section in review Criteria from materials and methods :

      “In this study, we addressed what can be called ecological hibernation, i.e. the seasonal duration that an animal remains sequestered in its burrow or den, which is assumed to be directly linked to the reduced risk of predation. In contrast, we did not consider heterothermic hibernation, which corresponds to the time between the beginning and end of the use of torpor. So when we mention hibernation, emergence or immergence, the specific reference is to ecological hibernation.”

      In arctic and other ground squirrel species, males remain at high body temperatures after immerging and remaining in their burrows in the fall for several days to a week, and more consistently and importantly, males that will attempt to breed in the spring end torpor but remain constantly in their burrows for as much as one month at great expense whilst undergoing testicular growth, spermatogenesis, spemiation, and sperm capacitation, processes that require continuous euthermy. Female arctic ground squirrels and non-breeding males do not and typically enter their first torpor bout 1-2 days after immergence and first appear above ground 1-3 days after their last arousal in spring.

      The weeks spent euthermic in a cold burrow in spring by males while undergoing reproductive maturation require a significant energetic investment (can equate to the cost of the previous heterothermic period) that contrasts profoundly with the pre-mating energetic investment by females.

      Males cache food in their hibernacula and extend their active season in late summer/fall in order to do so and feed from these caches in spring after resuming euthermy, often emerging at body weights similar to that at immergence. Similar between-sex differences in the timing of hibernation and heterothermy occur in golden-mantled and Columbian ground squirrels and likely most other Urocitellus spp., though less well described in other species. These differences are related to life histories and requirements for male vs. female gameatogenesis and, at the same time, energetic considerations in the costs to males for remaining euthermic while undergoing spermatogenesis and the cost related to whether males undergo gonadal development being dependent on individual body mass and cache size. These issues should be better discussed in this review.

      It is the time required to complete spermatogenesis, spermiation, and maturation of sperm not the time for growth of different sizes of testes that drives the preparation time for males. This is relatively constant among rodents. I challenge the assumption that larger testes take longer to grow than smaller ones.

      We took this comment into account. As we found little evidence of an increase in testicular maturation time with relative testicular size (apart from table 4 in Kenagy and Trombulak, 1986), we no longer tested the effect of relative testicular size on protandry.

      We examined whether the ability to store food before hibernation might reduce protandry. Although food storage in the burrow may be favored for overcoming harsh environments or predation, model selection did not retain the food-storing factor. Thus, the ability to accumulate food in the burrow was not by itself likely to keep males of some species from emerging earlier (e.g. Cricetus cricetus, protandry : 20 day, Siutz et al., 2016). Early emerging males may benefit from consuming higher quality food or in competition with other males (e.g., dominance assertion or territory establishment, Manno and Dobson 2008).

      We developed these aspects in the discussion

      While it is admirable to include ectotherms in such a broad review and modelling, I can't tell what data from how many ectothermic species contributed to the models and summary data included in the figures.

      Too few data on ectotherms were available to include ectotherms in the meta-analysis

      Some consideration should be made to the limitations of the data extracted from the literature of the accuracy of emergence and immergence dates when derived from only observations or trapping data. The most accurate results come from the use of telemetry for location and data logging reporting below vs. above ground positioning and body temperature.

      We added a "study limits" section to the discussion to address all the limits in this commentary.

      L64 "favor reproduction", better to say "allow reproduction", since there is strong evolutionary pressure to initiate reproduction early, often anticipating favorable conditions for reproduction, to maximize the time available for young to grow and prepare for overwintering themselves.

      Also, generally, it is not how "harsh" an environment is but rather how short the growing season is.

      We took this comment into account.

      L80 More simply, individuals that have amassed sufficient energy reserves as fat and caches to survive through winter may opt to initiate dormancy. This may decrease but not obviate predation, since hibernating animals are dug from their burrows and eaten by predators such as bears and ermine.

      In this sentence, we indicated a gap between dormancy phenology and the growing season, which suggests survival benefits of dormancy other than from a physiological point of view. We've changed the sentence to make it clearer : “However, some animals immerge in dormancy while environnemental conditions would allow them (from a physiological point of view) to continue their activity, suggesting other survival benefits than coping with a short growing season”

      L88 other physiological or ecological factors.... (gameatogenesis).

      In this study, we examine possible evolutionary pressures and therefore the environmental factors that may influence hibernation phenology. We focus on reproductive effort because, assuming predation pressure, we would expect a trade-off between survival and reproduction.

      L113 beginning early to afford long active seasons to offspring while not compromising the survival of parents.

      We added to the sentence:

      “For females, emergence phenology may promote breeding and/or care of offspring during the most favorable annual period (e.g., a match of the peak in lactational energy demand and maximum food availability, Fig. 1) or beginning early to afford long active seasons to offspring while not compromising the survival of parents.”

      L117 based on adequate preparation for overwintering and enter dormancy....

      We modified the sentence as follows :

      recovering from reproduction, and after acquiring adequate energy stores for overwintering”

      L123 given that males outwardly invest the least time in reproduction yet generally have shorter hibernation seasons would seem to reject this hypothesis. This changes if you overtly include the time and energy that males expend while remaining euthermic preparing for hibernation, a cost that can be similar to energy expended during heterothermy.

      Males invest a lot of time in reproduction before females emerge (whether for competition or physiological maturation) and some males seem to be subject to long-term negative effects linked to reproductive stress (see Millesi, E., Huber, S., Dittami, J., Hoffmann, I., & Daan, S. (1998). Parameters of mating effort and success in male European ground squirrels, Spermophilus citellus. Ethology, 104(4), 298-313). Both processes may contribute to reducing the duration of male hibernation.

      L125 again, costs to support euthermy in males undergoing reproductive development is an investment in reproduction.

      You're right, but it's difficult to quantify. We tested a model that takes into account the reproductive effort during reproduction and prior to reproduction. We also considered the hypothesis that species living in a cold climate might have a low protandry while having a high reproductive effort due to their ability to feed in the burrow (interaction effect between reproductive effort and temperature). We think these changes answer your comment.

      L134 It isn't growing large testes that takes time, but instead completing spermatogenesis and maturation of sperm in the epdidymides.

      We removed this part.

      L140 Later immergence in male ground squirrels is related to accumulation and defense of cached food, activities that are related to reproduction the next spring. An experimental analysis that would be revealing is to compare immergence times in females that completed lactation to the independence of their litters vs. females that did not breed or lost their litters. Who immerges first?

      Body mass variation from emergence to the end of mating in males seems to explain the delayed immergence of males in species that don't hide food in their burrows for hibernation. For example, in spermophilus citellus, males immege on average more than 3 weeks after females, yet they do not hide food in their burrows for the winter.

      Such a study already exists and shows that non-breeding females immerge earlier than breeding females. We refer to it

      L386: “In mammals, males and females that invest little or not at all in reproduction exhibit advances in energy reserve accumulation and earlier immergence for up to several weeks, while reproductive congeners continue activity (Neuhaus 2000, Millesi et al. 2008a).”

      L164 So you examined literature from 152 species but included data from only 29 species? Did you include data from social hibernators (marmots) that mate before emergence?

      With current models, we have 28 different species. We have few species because very few have data on both sex difference data and information on reproductive effort data (especially for males).

      Data on sex differences in hibernation were not available for social hibernating species.

      L169 Were these data from trapping or observation results? How reliable are these versus the use of information from implanted data loggers or collars that definitively document when euthermy is resumed and/or when immergence and first emergence occurs (through light loggers)?

      We did not focus heterothermic hibernation, but in ecological hibernation. We have no idea of the margin of error for these types of data, but we have discussed these limitations in the "Study limitations" section.

      L180, again, it is the time required to complete spermatogenesis and spermiation not the time for the growth of different sizes of testes that drives the preparation time for males. This is relatively constant among rodents. I challenge the assumption that larger testes take longer to grow than smaller ones.

      We removed this part.

      L200 Males that accumulate caches in fall and then feed from those during the spring pre-emergence euthermic interval and after will often be at their seasonal maximum in body mass. Declining from that peak may not be stressful.

      It has been suggested that reproductive effort in Spermophilus citellus might induce long-term negative effects that delay male immergence.

      Millesi, E., Huber, S., Dittami, J., Hoffmann, I., & Daan, S. (1998). Parameters of mating effort and success in male European ground squirrels, Spermophilus citellus. Ethology, 104(4), 298-313.

      L210 How about altitude, which affects the length of the growing season at similar latitudes?

      We extracted the location of each study site to determine the temperature and precipitation at that precise location (based on interpolated climate surface). We therefore take into account differences in growing season (based on temperature) in altitude between sites.

      L267 How did whether males cache food or not figure into these comparisons? Refeeding before mating occurs during the pre-emergence euthermic interval.

      We removed this part.

      L332, 344 not a "proxy" but functionally related to advantages in mating systems with multiple mating males.

      We removed this part.

      L353 The need for a pre-emergence euthermic interval in male ground squirrels requires costs in the previous active season in accumulating and defending a cache and the proximal costs in spring while remaining at high body temperatures prior to emergence with resulting loss in body mass or devouring of the cache.

      You're right, but in this section, we quickly explain the benefits of food catching compared with other species that don't do so.

      L385 This review should discuss why females are not known to cache and contrast as "income breeders" from "capital breeder" males. What advantages of caches are females indifferent to (no need for a prolonged pre-emergence period) and what costs of accumulating caches do they avoid (prolonged activity period and defense of caches).

      We clarified the case of female emergence.

      L321 : “Thus, an early emergence of males may have evolved in response to sexual selection to accumulate energy reserve in anticipation of reproductive effort. Females, on the contrary, are not subject to intraspecific competition for reproduction and may have sufficient time before (generally one week after emergence) and during the breeding period to improve their body condition.”

      L388 I don't understand the logic of the conclusion that "did not ...adequately explain the late male immergence" in this section. The greater mass loss in males over the mating period is afforded by the presence of a cache that requires later immergence.

      We removed this part.

      L412 Not just congeners that invest less in reproduction, but within species individuals that do not attempt to breed in one or more years and thus have no reproductive costs should be an interesting comparison for differences in phenology from individuals that do breed. Non-breeders are often yearlings but can be a significant overall proportion of males that fail to fatten or cache enough to afford a pre-emergence euthermic period.

      L385: “In mammals, males and females that invest little or not at all in reproduction exhibit advances in energy reserve accumulation and earlier immergence for up to several weeks, while reproductive congeners continue activity (Neuhaus 2000, Millesi et al. 2008a).”

      The sentence refers to individuals who reproduce little or not at all.

      L445 Males that gain weight between emergence and mating may do so by feeding from a cache regardless of how "harsh" an environment is.

      We observe this phenomenon even in species that are not known to hoard food

      “Gains in body mass observed for some individuals, even in species not known to hoard food, may indicate that the environment allows a positive energy balance for other individuals with comparable energy demands.”

      L492 Some insects retreat to refugia in mid-summer to avoid parasitism (Gynaephora).

      Escape from parasites is also a benefit of dormancy.

      Fig 1 - It is difficult to see the differences in black and green colors, esp if color blind.<br /> Maternal effort is front-loaded within the active season (line for "optimal period" shown in midseason).

      Add "energy" underneath c) Prediction (H1) and "reproduction" underneath d) "Prediction (H2). Explain the orange vs black, green colors of triangles.

      We made the necessary changes

      Fig 2 - I don't buy the regression lines as significant in this figure. The red line, cannot have a regression with two sample points and without the left-hand most dot, nothing is significant.

      We deleted this graph.

      Fig 3 - females only?

      We deleted this graph.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We are grateful to the Editors for overseeing the review of our manuscript, and to the two reviewers for their thoughtful comments and suggestions for how it can be improved.

      I submit at this time a revision, as well as a detailed response (below) to each of the points raised in the first round of review.

      We feel the manuscript has been significantly improved by taking the reviewers' comments to heart. In a nutshell, we added new key pieces of data (impact of WIN site inhibition on global translation, rRNA production, as well as the requested cell biology analyses showing nucleolar stress), new analyses of the proteomics to counter potential concerns with normalization, and expanded/revised verbiage in key areas to clarify parts of the text that were confusing or problematic. The main figures have not changed; all new material is included in supplements to figures 2 and 3.

      Public Reviews

      Reviewer #1 (Public Review):

      Building on previous work from the Tansey lab, here Howard et al. characterize transcriptional and translational changes upon WIN site inhibition of WDR5 in MLL-rearranged cancer cells. They first analyze whether C16, a newer generation compound, has the same cellular effects as C6, an early generation compound. Both compounds reduce the expression of WDR5-bound RPGs in addition to the unbound RPG RPL22L1. They then investigate differential translation by ribo-seq and observe that WIN site inhibition reduces the translational RPGs and other proteins related to biomass accumulation (spliceosome, proteasome, mitochondrial ribosome). Interestingly, this reduction adds to the transcriptional changes and is not limited to RPGs whose promoters are bound by WDR5. Quantitative proteomics at two-time points confirmed the downregulation of RPGs. Interestingly, the overall effects are modest, but RPL22LA is strongly affected. Unexpectedly, most differentially abundant proteins seem to be upregulated 24 h after C6 (see below). A genetic screen showed that loss of p53 rescues the effect of C6 and C16 and helped the authors to identify pathways that can be targeted by compounds together with WIN site inhibitors in a synergistic way. Finally, the authors elucidated the underlying mechanisms and analyzed the functional relevance of the RPL22, RPL22L1, p53, and MDM4 axis.

      While this work is not conceptually new, it is an important extension of the observations of Aho et al. The results are clearly described and, in my view, very meaningful overall.

      Major points:

      (1) The authors make statements about the globality/selectivity of the responses in RNA-seq, ribo-seq, and quantitative proteomics. However, as far as I can see, none of these analyses have spike-in controls. I recommend either repeating the experiments with a spike-in control or carefully measuring transcription and translation rates upon WIN site inhibition and normalizing the omics experiments with this factor.

      The reviewer is correct that we did not include spike-in controls in our omics experiments. We would like to emphasize that none of the omics data in this manuscript have been processed in unorthodox ways, and that the major conclusions each have independent corroborating data.

      The selectivity in RPG suppression observed in RNA-Seq, for example, is supported by results from our target engagement (QuantiGene) assays; suppression of RPL22L1 mRNA levels is supported by quantitative and semi-quantitative RT-PCR, by western blotting, and by the results of our proteomic profiling; alternative splicing (and expression) of MDM4—and its dependency on RPL22—is also backed up by similar RT-PCR and western blotting data. The same applies for alternative splicing of RPL22L1.

      That said, we do appreciate the point the reviewer is making here, and have done our best to respond. We do not think it is a prudent investment in resources to repeat the numerous omics assays in the manuscript. We also considered normalizing for bulk transcription and translation rates as suggested, but it is not clear in practice how this would be done, and it could introduce additional variables and uncertainties that may skew the interpretation of results. Instead, to respond to this comment, we made the following changes to the manuscript:

      (1) We now explicitly state, for all omics assays, that spike-in controls were not included. These statements will prompt the reader to make their own assessment of the robustness of each of our findings and interpretations.

      (2) We have added new data to the manuscript (Figure 2—figure supplement 1A–B) measuring the impact of C6 and C16 on bulk translation using the OPP labeling method. These new data demonstrate that WIN site inhibitors induce a progressive yet modest decline in protein synthesis capacity. At 24 hours, there is no significant effect of either agent on protein synthesis levels. By 48 hours, a small but significant effect is observed, and by 96 hours translation levels are ~60% of what they are in vehicle-treated control cells. These new data are important because they support the idea that normalization has not blunted the responses we observe—the magnitude of the effects are consistent between the different assays and tend to cap out at two-fold in terms of RPG suppression, translation efficiency, ribosomal protein levels, and protein synthesis capacity.

      (3) We have included additional analysis regarding the LFQMS, as described below, that specifically addresses the issue of normalization in our proteomics experiments.

      (2) Why are the majority of proteins upregulated in the proteomics experiment after 24 h in C6 (if really true after normalization with general protein amount per cell)? This is surprising and needs further explanation.

      The reviewer is correct in noting that (by LFQMS) ~700 proteins are induced after 24 hours of treatment of MV4:11 cells with C16 (not C6, as stated). The reviewer would like us to examine whether this apparent increase in proteins is a normalization artifact. In response to this comment, we have made the following changes to the manuscript:

      (1) Our new OPP labeling experiments (Figure 2—figure supplement 1A–B) show that there is no significant reduction in overall protein synthesis following 24 hours of C16 treatment. In light of this finding, it is unlikely that normalization artifacts, resulting from diminution of the pool of highly abundant proteins, create the appearance of these 700 proteins being induced. We now explicitly make this point in the text.

      (2) We now clarify in the methods how we seeded identical numbers of cells for DMSO and C16-treated cultures in these experiments, and—consistent with our finding that WIN site inhibitors have little if any effect on protein synthesis or proliferation at the 24 hour timepoint— extracted comparable amounts of proteins from these two treatment conditions (DMSO: 344.75 ± 21.7 µg; C16: 366.50 ± 15.8 µg; [Mean ± SEM]).

      (3) We now include in Figure 3—figure supplement 1A a plot showing the distribution of peptide intensities for each protein detected in each run of LFQMS before and after equal median normalization. This new analysis reveals that the distribution of intensities is not appreciably changed via normalization. Specifically, there is not a reduction in peptide intensities in the unnormalized data from 24 hours of C16 treatment that is reversed or tempered by normalization. This analysis provides further support for the notion that the increase we observe is not a normalization artifact.

      (4) We now include in Figure 3—figure supplement 1B–D a set of new analyses examining the relationship between the initial intensity of proteins in DMSO control samples (a crude proxy for abundance) versus the fold change in response to WIN site inhibitor. This analysis shows that we have as many "highly abundant" (10th decile) proteins increasing as we do decreasing in response to WINi. Thus, it appears as though the wholesale clearance of highly abundant proteins from the cell is not occurring at this early treatment timepoint. In addition, this analysis also shows that ribosomal proteins (RP) are generally the most abundant, most suppressed, proteins and that their fold-change at the protein level at 24 hours is less than two-fold, consistent again with the magnitude of transcriptional effects of C16, as measured by RNA-Seq and QuantiGene. The fact that the drop in RP levels is consistent with expectations based on other analyses provides further empirical support for the notion that protein levels inferred from LFQMS are authentic and not skewed by global changes in the proteome.

      The increase in proteins at this time point, we argue, is thus most likely genuine. It is not surprising that—at a timepoint at which protein synthesis is unaffected—several hundred proteins are induced by a factor of two. How this occurs, we do not know. It may be a transient compensatory mechanism, or it may be an early part of the active response to WIN site inhibitors. Lest the reader be confused by this finding, we have now added text to this section of the manuscript discussing and explaining the phenomenon in more detail.

      (3) The description of the two CRISPR screens (GECKO and targeted) is a bit confusing. Do I understand correctly that in the GECKO screen, the treated cells are not compared with nontreated cells of the same time point, but with a time point 0? If so, this screen is not very meaningful and perhaps should be omitted. Also, it is unclear to me what the advantages of the targeted screen are since the targets were not covered with more sgRNAs (data contradictory: 4 or 10 sgRNAs per target?) than in Gecko. Also, genome-wide screens are feasible in culture for multiple conditions. Overall, I find the presentation of the screening results not favorable.

      In essence, this is a single screen performed in two tiers. In Tier 1, we screened a complete GECKO library (six sgRNA/gene) with the earliest generation (less potent) inhibitor C6, and compared sgRNA representation against the time zero population. This screen would reveal sgRNAs that are specifically associated with response to C6, as well as those that are associated with general cell fitness and viability. We then identified genes connected to these sgRNAs, removed those that are pan essential, and built a custom library for the second tier using sgRNAs from the Brunello library (four sgRNA/gene). We then screened this custom library with both C6 and the more potent inhibitor C16, this time against DMSO-treated cells from the same timepoint.

      We acknowledge that this is not the most streamlined setup for a screen. But our intention was to compare two inhibitors (C6 and C16) and identify high confidence 'hits' that are disconnected from general cell viability, rather than generate an exhaustive list of all genes that, when disrupted, skew the response to WIN site inhibitor. The final result of this screen (Figure 4E) is a gene list that has been validated with two chemically distinct WIN site inhibitors and up to 10 unique sgRNAs per gene. We may not have captured every gene that can modulate response to WIN site inhibitor, but those appearing in Figure 4E are highly validated.

      To answer the reviewer's specific questions: (i) we cannot omit the Tier 1 screen because then there would be no rationale for what was screened in the second Tier; and (ii) the advantage of the custom Tier 2 library is that it allowed us to screen hits from the Tier 1 screen with four completely independent sgRNAs. Although there are not more sgRNAs for each gene in the Tier 2 versus the Tier 1 library, these sgRNAs are different and thus, for C6 at least, hits surviving both screens were validated with up to 10 unique sgRNAs.

      We apologize that the description of the CRISPR screens was not clearer, and have reworked this section of the manuscript to make our intent and our actions clearer.

      (4) Can Re-expression of RPL22 rescue the growth arrest of C6?.

      We have not attempted to complement the RPL22 knock out. But we do note that evidence supporting the idea that loss of RPL22 confers resistance to WIN site inhibitor is strong—six (out of six) sgRNAs against RPL22 were significantly enriched in the Tier 1 screen, and independent knock out of RPL22 with the Synthego multi-guide system in MV4;11 and MOLM13 cells increases the GI50 for C16.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Howard et al reports the development of high-affinity WDR5-interaction site inhibitors (WINi) that engage the protein to block the arginine-dependent engagement with its partners. Treatment of MLL-rearranged leukemia cells with high-affinity WINi (C16) decreases the expression of genes encoding most ribosomal proteins and other proteins required for translation. Notably, although these targets are enriched for WDR5-ChIP-seq peaks, such peaks are not universally present in the target genes. High concordance was found between the alterations in gene expression due to C16 treatment and the changes resulting from treatment with an earlier, lower affinity WINi (C6). Besides protein synthesis, genes involved in DNA replication or MYC responses are downregulated, while p53 targets and apoptosis genes are upregulated. Ribosome profiling reveals a global decrease in translational efficiency due to WINi with overall ribosome occupancies of mRNAs ~50% of control samples. The magnitude of the decrements of translation for most individual mRNAs exceeds the respective changes in mRNA levels genome-wide. From these results and other considerations, the authors hypothesize that WINi results in ribosome depletion. Quantitative mass spec documents the decrement in ribosomal proteins following WINi treatment along with increases in p53 targets and proteins involved in apoptosis occurring over 3 days. Notably, RPL22L1 is essentially completely lost upon WINi treatment. The investigators next conduct a CRISPR screen to find moderators and cooperators with WINi. They identify components of p53 and DNA repair pathways as mediators of WINi-inflicted cell death (so gRNAs against these genes permit cell survival). Next, WINi are tested in combination with a variety of other agents to explore synergistic killing to improve their expected therapeutic efficacy. The authors document the loss of the p53 antagonist MDM4 (in combination with splicing alterations of RPL22L1), an observation that supports the notion that WINi killing is p53-mediated.

      Strengths:

      This is a scientifically very strong and well-written manuscript that applies a variety of state-ofthe art molecular approaches to interrogate the role of the WDR5 interaction site and WINi. They reveal that the effects of WINi seem to be focused on the overall synthesis of protein components of the translation apparatus, especially ribosomal proteins-even those that do not bind WDR5 by ChIP (a question left unanswered is how much the WDR5-less genes are nevertheless WINi targeted). They convincingly show that disruption of the synthesis of these proteins is accompanied by DNA damage inferred by H2AX-activation, activation of the p53pathway, and apoptosis. Pathways of possible WINi resistance and synergies with other antineoplastic approaches are explored. These experiments are all well-executed and strongly invite more extensive pre-clinical and translational studies of WINi in animal studies. The studies also may anticipate the use of WINi as probes of nucleolar function and ribosome synthesis though this was not really explored in the current manuscript.

      Weaknesses:

      A mild deficiency in the current manuscript is the absence of cell biological methods to complement the molecular biological and biochemical approaches so ably employed. Some microscopic observations and confirmation of nucleolar dysfunction and DNA damage would be reassuring.

      We thank the reviewer for their comments. We agree that an absence of cell biological methods was a deficiency in the original manuscript. In response to this comment, we have now added immunofluorescence (IF) analyses, examining the impact of C16 on nucleolar integrity and nucleophosmin (NPM1) distribution (Figure 3—figure supplement 4). These new data clearly show that C16 induces nucleolar stress at 72 hours—as measured by the redistribution of NPM1 from the nucleolus to the nucleoplasm. These new data fill an important gap in the story, and we are grateful to the reviewer for prompting us to perform these experiments.

      As part of the above study, we also probed for gamma-H2AX, expecting that we may see some signs of accumulation in the nucleoli (see comment #4 from Reviewer #2, below). We did not observe this response. Importantly, however, we did see that gamma-H2AX staining occurs only in what are overtly apoptotic cells. This is an important finding, because we had previously speculated that the induction of gamma-H2AX observed by Western blotting reflected part of a bona-fide response to DNA damage elicited by WIN site inhibitors. Instead, the IF data now leads us to conclude that this signal simply reflects the established fact that WIN site inhibitors induce apoptosis in this cell line (Aho et al., 2019). In response to this new finding, we have added additional discussion to the text and have removed or de-emphasized the potential contribution of DNA damage to the mechanism of action of WDR5 WIN site inhibitors. Again, we are grateful for this comment as it has prevented us from continuing to report/pursue erroneous observations.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      There is a typo in "but are are linked to mRNA instability when translation is inhibited".

      Thank you for catching this typo. It has now been corrected.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors report that WINi initially (at 24 hrs) increases the expression of most proteins while decreasing ribosomal proteins, but at 72 hours all proteins are depressed. The transient bump-up of non-translation-related proteins seems odd. A simple resolution to this somewhat strange observation is that there is no real increase in the other proteins, but because of the loss of a large fraction of the most abundant cellular proteins (the ribosomal proteins), the relative fraction of all other proteins is increased; that is, the increase of non-ribosomal proteins may be an artifact of normalization to a lower total protein content. Can this be explored?

      We are grateful to the reviewer for this comment. We have tried our best to respond, as detailed above in response to Reviewer #1 Public Comment #2.

      (2) It would be really nice to assess nucleolar status microscopically. Do nucleoli get bigger? Smaller? Do they have abnormal morphology? Is there nucleolar stress? What happens to rRNA synthesis and processing?

      We agree and thank the reviewer for raising this point. As noted in our response to Reviewer #2, above, we have included new IF that shows: (i) no obvious effect on nucleolar integrity, (ii) redistribution of NPM1 to the nucleoplasm (indicative of nucleolar stress), and (iii) induction of gamma-H2AX staining in apoptotic cells (indicative of apoptosis).

      Additionally, in response to this comment, we also looked at the impact of WIN site inhibitors on rRNA synthesis, using AzCyd labeling. These new data appear in Figure 3—figure supplement 3. Interestingly, these new data show that there is a progressive decline in rRNA synthesis, and that by 96 hours of treatment levels of both 18S and 28S rRNAs are reduced— again by about a factor of two. Our interpretation of this finding is that in response to the progressive decline in RPG transcription there is a secondary decrease in rRNA synthesis. This result is perhaps not surprising, but it does again add an important missing piece to our characterization of WIN site inhibitors and is further support for the concept that inhibition of ribosome production is a dominant part of the response to these agents.

      (3) The WINi elicited DNA damage is incompletely characterized, rather it is inferred from H2AX activation. Comet assays would help to confirm such damage.

      As noted in our response to Reviewer #2, our original inference of DNA damage, prompted by gamma-H2AX activation, is erroneous, and due instead to the ability of WIN site inhibitors to induce apoptosis. We thus did not pursue comet assays, etc., and removed discussion of potential DNA damage from the manuscript.

      (4) Staining and microscopic observation of H2AX would be very useful. Is the WINi provoked DNA damage nucleolar-localized? Does the deficiency of ribosomal proteins lead to localized genotoxic nucleolar stress - or alternatively does the paucity of ribosomes and decreased translation lead to imbalances in other cellular pathways, perhaps including some involved in overall genome maintenance which would provoke more global DNA damage and H2AX staining, not limited to the nucleolus.

      Again, please see our response to the Public Comment from Reviewer #2.

      (5) It would be important to assess the influence and effects of WINi on some p53 mutant, p53-/- and p53 wild-type cell lines. Given their prevalence, p53 status may be expected to alter WINi efficacy.

      The issue of how p53 status impacts the response to WINi is interesting and important, but we feel this is beyond the scope of the current manuscript. It is likely that many factors contribute to the response of cancer cells to these agents, and thus simply surveying some cancer lines for their response and linking this to their p53 status is unlikely to be very informative. Making definitive statements about the contribution of p53, and the differences between wild-type, lossof-function mutants, gain of function mutants, and null mutants will require more extensive analyses and is fertile territory for future studies, in our opinion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Line 144, after eq. (1). Vectors d_i need to be defined. Are these the mapping of vectors e_i due to the active deformation? It would be useful to state then that d_3 is aligned with r'.

      Thank you for your suggestion, and the definition has been added to lines 146-149 for a better understanding of the model.

      • Line 144.Authors state a_i(0,0,Z)=0. Shouldn't this be true also for any angle, i.e., a_i(0,Theta, Z)=0?

      Thank you, we have revised it in line 144.

      • Line 156. G_0 is defined as Diag(1,g_0(t), 1), which seems to be using cylindrical coordinates. Previously, in line 147, vector argument X of \chi is defined with Cartesian coordinates (X,Y,Z). Shouldn't these be also cylindrical?

      We are very sorry for this error, our initial configuration is defined with cylindrical coordinates, we have revised it in the manuscript line 151.

      • Line 162. "where alpha and beta lie in the range [-pi/2, pi/2]" has already been indicated.

      Thank you for your mention, we have deleted duplicate information in line 166.

      • Line 171. W is defined as the strain energy density, while in equation (2), symbol W is the total energy (which depends on the previous W). Letters for total elastic and strain energy must be distinguished.

      Thank you, we have changed the letter for total energy in Eq.(2).

      • Line 176. "we take advantage of the weakness of" -> "we take advantage of the small value of".

      We have revised it in line 179.

      • Line 177. Why is there a subscript i in p_i? If these do not correspond to penalty p, but to parameters in eqn (3), the latter should have been introduced before this line.

      We have revised this error in line 180.

      • Line 186. "as the overall elongation \zeta". This parameter, axial extension, has not been defined yet.

      Thank you for your mention, the definition of \zeta is now given in line 146.

      • Figure 4. Why are the values of g_0 from the elastic model and equations (30)-(32) so non-smooth? Clarify what is being fit and what is the input in the latter equations. Final external radius R_3? Final internal radius R_1'?

      (1) To mimic the embryo, we consider a multi-layered cylindrical body so that the shear modulus of each layer is different. The continuity of both deformations and stresses is imposed (see Eq.(26)-Eq.(30). This is the usual treatment for complex morpho-elastic systems. Obviously, $g_0$ originates from the actomyosin cortex so it appears only in the corresponding layer. Finally, all physical quantities such as deformations and stresses must be continuous.

      (2) The final outer radius is R_3, which represents the outer radius of C. elegans embryos. In addition to R_3, what we need to consider in this model are R_1’=0.7, R_1’=0.768, R_2=0.8 and R_2’=0.96, these definitions have been added in the caption of Appendix 2—figure 1.

      • Line 663, equation (19). Parameter mu is multiplying penalisation term with p, while in equation (2) mu is only affecting the elastic part.

      These two different ways of expressing the energy function will ultimately affect the value of p, but the two p are not the same quantities, so they will not affect our results. To avoid misunderstandings, we will replace p in equation (19) with q.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in my public summary, I find the writing really not adequate. I provide here a list of specific points that the authors should in my opinion address. As a general comment, I would delete many instances of 'the'.

      First, here are figures and whole paragraphs that do not seem to bring anything to the understanding of the phenomenon of C. elegans elongation, notably, Figs. 2, 3C-H, 5m, and 6. Figures 6G and 7 are the only figures containing results it seems. Some elements of the figures are repeated, for example, the illustration of the system's cross-section in Figs 3 and 5.

      Thank you for your suggestion, we have made some adjustments to our images to remove some of the duplicate information.

      Second, and this is my most important criticism: the mechanism of elongation by releasing elastic stress introduced by muscle contraction is not explained in clear terms anywhere in the text. At least, I was unable to understand it. On p 10 you write "This energy exchange causes the torsion-bending energy to convert into elongation energy, (...)" How this is done is not explained. I assume that the reference state is somehow changed through muscle contraction. The new reference state probably has a longer axis than the one before, but this would then be a plastic deformation and not purely elastic as claimed by the authors (ll 76: "This work aims to answer this paradox within the framework of finite elasticity without invoking cell plasticity (...)"). Is torsion important for this process or is it 'just' another way to store elastic energy in the system?

      We perfectly explain most of the exchange of energy between bending, torsion and elongation: indeed, we quantify all aspects of this transformation as the elastic elongation energy, and the dissipation processes which will cost energy. The dissipation evaluated here concerns the rotation of the worm due to the muscle geometry and the viscous friction at the inner surface of the egg. Torsion seems to appear in the late stages and only in some cases. As we show, it comes from a torque induced by the muscles which are not vertical. vertical. Finally, our quantitative predictions of the modelling which recovers most of the experimental published results.

      Third, there are a number of strange phrasings and the notation is not helpful in places.

      We feel sorry for that, the manuscript is now more precise.

      Fourth, the title promises to explain how cyclic muscle contractions reinforce acto-myosin motors. I can't see this done in this work.

      The fact that the acto-myosin is reorganized between two sequences of contraction justifies the title. The complete reorganization of the actomyosin network would require a chemico-mechanical model that is not achieved here, perhaps in future work as data become available.

      In addition:

      We have chosen to respond globally rather than point by point to the referee’s recommendations.

      Typographic errors and vocabulary

      All English corrections and typos are now included in the main text.

      Figures and captions:

      Figures and captions have been improved.

      • Figure 1: Make the caption and the illustration more coherent. For example, only two cell types are distinguished; in the caption, you mention lateral cells, in the sketch seam cells. What is the difference between acto-myosin and muscle contraction? Muscle contraction is also auto-myosin-based.

      (1) The caption for Fig.1 is revised.

      (2) From a mechanical point of view, actomyosin bundles in C elegans are orthoradial, whereas muscles are essentially parallel to the main axis of the body are essentially parallel to the main axis of the body, so the geometry is completely different and of extreme importance for deformation. Muscle contractions are quasi-periodic, we do not know the dynamics of the attached molecular motor of myosin. So of course, both contain actin and myosin (not exactly the same proteins), but our model is sensitive to more macroscopic properties.

      • Figure 2: I do not find this figure helpful. I might expect such a figure in a grant proposal, but much less in an article.

      Figure 2 shows the strategy of our work, we hope that readers can see at a glance what kind of analysis has been done through this figure: since our work is divided into several parts, readers can also unravel the logic through this scheme after reading the whole manuscript. So, this diagram is a guide, and it may be helpful and necessary.

      • Figure 3: Figure 3 A, right: What is the dashed line? B You indicate fibers, but your model does not contain fibers, does it? How do I get from the cube to the deformed object? What is the relation of C-H with the rest of the work? Furthermore, you mention seam cells in Fig. 1, but they are absent here. Why can you neglect them? Why introduce them in the first place? E What is a plant vine? F-H What rods are you referring to? Plants do not have muscles, right?

      We have modified this figure, and the original Figure 3 now corresponds to Figures 3 and 4.

      (1) The dashed line is the centerline after deformation.

      (2) The referee is wrong: our model represents the fibers by a higher shear modulus for the actomyosin cortex and for the muscles (see Table Appendix 1) and G_1 reflects the activities of the muscle and actin fibers.

      (3) The cube in Figure 3 is a mathematical 3D volume element that is subjected to stresses. Hyperelasticity modelling is based on such a representation.

      (4) C-H(new version: Fig.4 A-F): These images show similar deformations: bending and torsion as our C. elegans study. These figures indicate that such deformations are quite common in nature, even if the underlying mechanism is different.

      (5) This is a point we have already mentioned: we ignore the difference between the different types of epidermal cells and average their role in the early and second stages of elongation.

      (6) The plant vine is the 'botanical vine', see Goriely's article and book.

      (7) F-H(new version: Fig.4 D-F) do not have fixed rods, we set a curvature and torsion to fit the actual biological behavior.

      (8) Plants do not have muscles, but they grow, and our formalism for growth, pre-strain and material plasticity is very similar to the hyper-elasticity formalism.

      • Figure 4: Fig .4 A: "The central or inner part (0 < 𝑅 < 𝑅2, shear modulus 𝜇𝑖) except the muscles which are stiffer." I do not understand.

      In the new version, this figure corresponds to Fig.5. The shear modulus of the intrinsic part is very small, but the muscles are harder so we have to consider them separately, we have revised this sentence to avoid misunderstanding.

      • Figure 5: Fig 5 A and D: The schematic of the cross-section has appeared already in the previous figure. No need to repeat it here. The same holds for the schematic of the cylindrical embryo. Caption: "But, the yellow region is not an actual tissue layer and it is simply to define the position of muscles." Why do you introduce the yellow region at all? I do not think that it clarifies anything. "Deformation diagram, when left side muscles M_1 and M_2." Something seems to be missing here. Similarly in the next sentence. "the actin fiber orientation changes from the 'loop' to the 'slope'" Do the rings break up and form a helix?

      In the new version, this figure corresponds to Fig.6.

      (1) We have made revisions to these figures.

      (2) The yellow part can show the accurate location of four muscles, which is important for our model and further calculations.

      (3) We have revised this sentence in the caption of Fig. 6.

      (4) Actin rings do not change to a helix pattern, they will be only sloping.

      • Figure 6: Fig 6 A-C These panels do not go beyond Fig 5B. Fig 6D: what are these images supposed to show? They are not really graphs, but microscopy images. The caption is not helpful to understand, what the reader is supposed to see here. Fig 6F: do you really want to plot a linear curve?

      In the new version, Fig.5 and Fig.6 respectively correspond to Fig.6 and Fig.7.

      (1) Fig.6 shows the simulated images, and Fig.7 A-C is the real calculation results, they are different.

      (2) Fig.7 D can show the real condition during C. elegans late elongation, here, we would like to show the torsion of the C. elegans.

      (3) Yes, it is our result.

      Discussions concerning the biological referee questions:

      Ll 75: “how the muscle contractions couple to the acto-myosin activity" Again I find this misleading because muscle contraction relies on auto-myosin activity. Probably, you can find a better expression to refer to the activity of the actomyosin network in the epidermis. Do you propose any mechanism for how muscle contraction increases epidermal contractility? This does not seem to be the mechanism that you propose for elongation, is it?

      The actomyosin activity will not stop because of the muscle contraction. Obviously, these two processes cannot be independent. The energy released by a muscle contraction event can and must contribute to the reorganization of the actomyosin network that occurs during the elongation process. Indeed, despite the fact that the embryo elongates, the density of actin cables appears to be maintained, which automatically requires a redistribution of actin monomers. We propose a scenario in which muscle contraction increases actomyosin contractility via energy conversion. We show that after unilateral contraction there is an energy release for this once all dissipation factors are eliminated. We invite the reviewer to re-examine Figure 2 and invite biologists to seriously evaluate the density of molecular motors attached to the circumferential actin cable throughout the stretch process.

      Ll 133: "we decide to simplify the geometrical aspect because of the mechanical complexity" This is hardly a justification. Why is it appropriate?

      Yes, we would like to offer the reader the simplest modelling with a limiting technicity and a limited number of unknown parameters.

      L 135: "active strains" Why not active stress?

      The two are equivalent, the choice is dictated by the simplicity of deriving quantitative results for comparison with experiments.

      L 170: "hyperelastic" Please, explain this term.

      It is the elasticity of very soft samples subjected to large deformations. For classic references, see the books of Ogden, Holzapfel and Goriely, all of which are mentioned in our paper.

      Major criticism

      Eq. 3 and Ll 227: "𝑝1 is the ratio between the free available myosin population and the attached ones divided by the time of recruitment" Why is the time of recruitment the same for all motors? "inverse of the debonding time" Is it the same as the unbinding rate? Why use the symbol p_2 for it? What is p_3?

      The model proposed to justify the increase in the activity of the actomyosin motors during the first phase is a mean-field model: thus all quantities are averaged: we are not considering the theory of a single molecular motor, but a collection in a dynamic environment, so we do not need stochasticity here. Equation (3) concerns the compressive pre-strain, which by definition is a quantity varying between $0$ and $1$ and $X_g=1-G$. ... The debonding time is not the same as the debonding rate. The term $p_3$ indicates saturation and is derived from the law of mass action. The good agreement with the experimental data is shown in Fig.5 (A) and (B). An equivalent model has been developed by (M. Serra et al.).

      Serra M, Serrano Nájera G, Chuai M, et al. A mechanochemical model recapitulates distinct vertebrate gastrulation modes[J]. Science Advances, 2023, 9(49)

      Ll 275: "This energy exchange causes the torsion-bending energy to convert into elongation energy, leading to a length increase during the relaxation phase, as shown in Fig.1 of Appendix 5." You have posed the puzzle of how contraction leads to elongation, and now that you resolve the puzzle, you simply say that torsion and bending energy are converted into elongation. How? Usually, if I deform an elastic object, it will return to its original configuration after releasing the external forces. Why is this not the case here?

      Furthermore, the central result of your work is presented in an Appendix!?

      We agree with the referee that an elastic object will return to its initial configuration by releasing stress, i.e. by giving up its accumulated elastic energy to the environment. But the elastic energy has to go somewhere, such as heat. We do not dare to say that the temperature of the worm increases during the muscle contractions.

      In fact, the referee's comment also assumes that full relaxation of the stresses is possible, so the object is not a multi-layered specimen and/or it is not enclosed in a box. Most living species are under stress, usually called residual stress. Our skin is under stress. Our fingerprints result from an elastic instability of the epidermis, occurring on foetal life as our brain circumvolutions or our vili. . So, it is obvious that stresses are maintained in multilayered living systems. Closer to the case of C. elegans, the existence of stresses has been demonstrated by experiments with laser ablation fractures in the first stage. The fact that the fractures open proves the existence of stress: if not, there is no opening and only a straight line.

      Ll 379: "Although a special focus is made on late elongation, its quantitative treatment cannot avoid the influence of the first stage of elongation due to the acto-myosin network, which is responsible for a prestrain of the embryo." This statement is made repeatedly through the manuscript, but I do not understand, why you could not use an initial state without pre-strain.

      This is the basic concept of hyperelasticity. The reference state must be free of stress, so we cannot evaluate the first muscle contraction without treating the first elongation stage.

      Grammar, vocabulary and writing errors

      ll 31: "the influence of mechanical stresses (...) becomes more complex to be identified and quantified" Is the influence of mechanical stress too complex or too difficult to be identified/quantified?

      We have revised it in line 31, “The superposition of mechanical stresses, cellular processes (e.g., division, migration), and tissue organization is often too complex to identify and quantify.”

      Ll 41: "The embryonic elongation of C. elegans represents an attractive model of matter reorganization without a mass increase before hatching." Maybe "Embryonic elongation of C. elegans before hatching represents an attractive model of matter reorganization in the absence of growth.".

      We have revised it in line 41.

      L 42: "It happens after the ventral enclosure (...)" Maybe "It happens after ventral enclosure (...)".

      We have revised it in line 42.

      Ll 52: "The transition is well defined since the muscle participation makes the embryo rather motile impeding any physical experiments such as laser ablation (...)" Ablation of what?

      We have revised it in line 53:The transition is well defined, because the muscle involvement makes the embryo rather motile, and any physical experiments such as laser fracture ablation of the epidermis, which could be performed and achieved in the first period (\cite{vuong2017interplay}), become difficult,.

      Ll 59: "a hollow cylinder composed of four parts (seam and dorso-ventral cells)" It is not clear, what the four parts are - in the parenthesis, two are mentioned.

      We have revised it in line 59. Fig.1 shows the whole structure, dorsal, ventral and seam cells form four parts of the epidermis.

      L 78: "several important issues at this stage remain unsettled" At which stage?

      It means the late elongation stage, we have added this information in line 78.

      Ll 85: "but how it works at small scales remains a challenge." Maybe "but how it works at small scales remains to be understood.".

      We have revised it in line 86.

      Ll 99: "the osmolarity of the interstitial fluid" The comes out of the blue. Before you only talked about mechanics, why now osmolarity? Also, the interstitial fluid is only mentioned now. It is important for the dissipative effects that you discuss later, right? If yes, then you should probably introduce it earlier.

      For a better understanding, we have change osmolarity into viscosity in line 99.

      l 120: "The cortex is composed of three distinct cells" Maybe "distinct cell types".

      Thank you, and we have revised it in line 120.

      L 121: "cytoskeleton organization and actin network configurations" What is the difference between cytoskeleton organization and actin network configuration? Also, either both should be plural or both singular, I guess.

      (1) Cytoskeleton (which involves microtubules) forms the epidermis of C. elegans embryos, and the actin network surrounds the epidermis.

      (2) Thank you for your suggestion, we have revised it in line 121.

      L 130: "which will be introduced hereafter" Maybe "which will be used hereafter".

      We have revised it in line 130.

      Ll 148: "The geometric deformation gradient" You usually denote vectors in bold face, so \chi should be bold, right? Define d_i in Eq.(1).

      Yes, we have added this information in line 147.

      L 172: "auxiliary energy density" Please, explain this term.

      We have changed "auxiliary energy density" into "associated energy density" in line 175. Energy density is the amount of energy stored in a given system or region of space per unit volume, the associated energy density in our manuscript can help us to do some calculations.

      Ll 188: "Similar active matter can be found in biological systems, from animals to plants as illustrated in Fig.3(C)-(E), they have a structure that generates internal stress/strain when growing or activity. (...)" Why such a general statement during the presentation of the results? The second part of the sentence seems to be incomplete.

      Answers: We would like to show our method is general, and can be used in many situations. We have revised the wrong sentence in line 192.

      Ll 243: "a bending deformation occurs on the left for active muscles localized on left" Maybe "bending to the left occurs if muscles on the left are activated".

      Thank you, we have revised it in line 247.

      L 250: "we assume them are perfectly synchronous" Maybe "we assume them to contract simultaneously". We have revised it in line 252.

      L 258: "the muscle and acto-myosin activities are assumed to work almost simultaneously." Before it was simultaneously, now only almost!? What does almost mean?

      Sorry, we would like to express the same meaning in theses two sentences, we have deleted the word ‘almost’ in line 261.

      Ll 294: "one can hypothesize several scenarios" After that, only one scenario is described it seems.

      Thank you, we have revised this sentence in line 299.

      L 341: "and then is more viscous than water" Maybe "and that is more viscous than water".

      We have revised it in line 345.

      L 373: "before the egg hatch" Maybe "before the embryo (or larva) hatches"?

      We have revised the sentence in line 367.

      L 409: "elephant trunk elongated" maybe "elephant trunk elongation".

      We have revised it in line 412.

      Ll 417: "As one imagines, it is far from triviality (...)" Does this remake help in any way to understand better C. elegans elongation? Also maybe "it is far from trivial".

      We have revised it in line 423.

      Ll 428: "can map the initial stress-free state B_0 to a state B_1, which reflects early elongation process" Maybe: "maps the initial stress-free state B_0 to a state B_1, which describes early elongation".

      We have revised it in line 428.

      L 429: "After in the residually stressed (...)" Maybe "Subsequently, we impose an incremental strain filed G_1 that maps the state B_1 to the state B_2, which represents late elongation".

      We have revised it in line 429.

      l 763: "Modelling details of without pre-strain case" Maybe "Case without pre-strain" or "Modelling in the absence of pre-strain" Similarly for l 784.

      We have revised them in line 763 and line 784.

      Some questions of definition and understanding

      Ll 71: "We can imagine that once the muscle is activated on one side, it can only contract, and then the contraction forces will be transmitted to the epidermis on this side." I do not understand the sentence. Muscle activation leads to contraction, there is nothing to imagine here. Maybe you hypothesize that the muscles are attached to the epidermis such that muscle contraction leads to epidermis deformation?

      Yes, four muscle bands are attached to the epidermis, as shown in Fig.1. The deformation does not concern only the epidermis but the whole embryo during the bending events. We have modified the sentence to avoid misunderstanding, the sentence change to “Once the muscle is activated on one side, it can only contract, and then the contraction forces will be transmitted to the epidermis on this side.” in line 71.

      Ll 110: "However, it is less widely known that its internal striated muscles share similarities with skeletal muscles found in vertebrates in terms of both function and structure" Is it important for what you report, whether this fact is widely known?

      Yes, it is our opinion.

      Ll 112: "the role of the four axial muscles (...) is nearly contra-intuitive" Is it or is it not? If yes, why?

      Yes it is. Muscles exert contractions, so compressive deformations. Their localization are along the axis of symmetry (up to a small deviation) so they cannot mechanically realize the expected elongation, contrary to the orthoradial actomyosin network.

      However, elongation of the C. elegans is observed experimentally, so yes, we think the result contraintuitive.

      L 116: "fully heterogeneous cylinder" What is this?

      It means that the C. elegans embryo does not have the same elastic properties in different parts (or layers).

      L 129: "will collaborate to facilitate further elongation" To facilitate or to drive? If the former, what drives elongation?

      Contraction of muscles and actin bundles together drive elongation

      Ll 141: "the deformation in each section can be quantified since the circular geometry is lost with the contractions" The deformation could also be quantified if the sections remained circular, right?

      Yes. However, circularity is lost during each bending event.

      Ll 151: "we need to evaluate the influence of the C. elegans actin network during the early elongation before studying the deformation at the late stage. So, the deformation gradient can be decomposed into: (...) where (...) is the muscle-actomyosin supplementary active strain in the late period" I thought you were now studying the early stage?

      In this part, we are outlining how we can study the whole elongation (early and late), not just the early elongation stage. To evaluate the deformation induced by the first contraction of the muscles, we need to know the state of stress of the worm prior to this event, so we also need to recover the early period using the same formalism for the same structure.

      L 160: "When considering a filamentary structure with different fiber directions" Which filamentary structure are you talking about?

      Fig.3 B shows this model and the filamentary structure, which contains the actin and muscle fibers.

      Ll 174: "When the cylinder involves several layers with different shear modulus 𝜇 and different active strains, the integral over 𝑆 covers each layer" I do not understand this sentence. Also, you should probably write 'moduli' instead of modulus.

      This implies that when integrating over the whole cross-section S, we need to take into account each layer independently with its own shear modulus and sum the results.

      L 176: "weakness of 𝜀" Do you mean \epsilon << 1?

      Yes

      Ll 178: "Given that the Euler-Lagrange equations and the boundary conditions are satisfied at each order, we can obtain solutions for the elastic strains at zero order 𝐚(𝟎) and at first order 𝐚(𝟏)." Are you thinking about different orders in an \epsilon expansion or the early and the late stages of elongation?

      Answers: Different orders are considered only for the late elongation study, the early elongation is treated exactly so do not need a correction in \epsilon.

      L 197: "fracture ablation" Please, define.

      This is an experiment in which a laser is used to make a cut in a small-scale object of study and then the internal stresses are obtained based on the morphology of the cut, please see the Ref ‘Assessing the contribution of active and passive stresses in C. elegans elongation’. We have added this definition in line 200.

      Ll 203: What motivated your choice of notations for the radii R_2'? The inner part of the cylinder is fluid? But above you wrote about a solid cylinder. Why should the inner part be compressible?

      (1) We need to define the location of actin cables, which concentrate at the outer periphery.

      (2) Our model is a hollow cylinder, and the inner part of the cylinder contains internal organs, tissues, fluids, and so on, so we consider it to be a compressible extremely soft material (Line 213).

      Ll 212: "𝑟(𝑅) is the radius after early elongation." And during?

      R is variable, r(R) depends on R but also on time t, it represents the radius of C. elegans embryos after the onset of elongation, i.e., after acto-myosin and muscle activities begin.

      L 232: \tau_p is probably t_p?

      Yes.

      L 240: "quite simultaneously" Please, be precise.

      In practice, it is difficult to define the concept of simultaneous occurrence unless there is rigorous experimental data to show it, but all we can get in the Ref ‘Remodelage des jonctions sous stress mécanique’, is that it occurs almost simultaneously, which we define as quite simultaneously.

      Ll 246: "a short period" What does short mean? Why is it relevant?

      From the experimental observations and data, we know that each contraction occurs very rapidly: a few seconds so we define a short period for one contraction.

      L 263: "the bending of the model will be increased" Is it really the model that is bent?

      Yes, the bending deformation predicted by the model, we have revised in line 266.

      Ll 265: "we observed a consistent torsional deformation (Fig.6(E)) that agrees with the patterns seen in the video" In which sense do these configurations agree? I do not see any similarity between panels D and E.

      Both show a torsion deformation.

      L 267: "torsion as the default of symmetry of the muscle axis" I do not understand.

      We discuss two cases in this research, one where the muscle follows the axis of the C. elegans in the initial configuration, and the other where the muscle has a slight angle of deflection, and we have added more information in the manuscript (line 270).

      Ll 274: "Each contraction of a pair increases the energy of the system under investigation, which is then rapidly released to the body." Do you mean the elastic energy stored in the epidermis and central part of the embryo?

      Yes, the whole body.

      Ll 284: "The activation of actin fibers 𝑔𝑎1 after muscle relaxation can be calculated and determined by our model." Have you done it?

      Yes, we can obtain the value of g_a1, and then calculate the elongation.

      Ll 286 I do not understand, why you write about mutants at this place. Am I supposed to have already understood the basic mechanism of elongation? Why do you now write about the first stage?

      I would like to show our formalism can model wild-type and mutant C.elegans, and the comparison results are good.

      L 302: "The result is significantly higher than our actual size 210𝜇𝑚." How was significance assessed? Your actual size is probably more than 210µm.

      Here, we have considered two situations, one is that the accumulated energy is totally applied to the elongation so that the length will be much larger than the experimental result of 210 µm, the length value that we have obtained by calculation. In the other case, we have considered the energy dissipation, which leads to 210 µm.

      L 433: "where 𝜆 is the axial extension due to the pre-strained" Maybe ""where 𝜆 is the axial extension due to the pre-stress".

      In our manuscript, we define the pre-strain, not the pre-stress.

      L 438: "active filamentary tensor" Please, define.

      Active filamentary tensor defines the tensor representing the activities of a cylindrical model composed of different orientations fibers.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We would like to express our gratitude to the reviewers for their comments, which helped us to improve the quality of our manuscript. Below are the responses to each comment. We hope that these responses will satisfy the reviewers.

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary: The nonsense-mediated mRNA decay (NMD) is and RNA quality pathway that eliminates mRNAs containing premature termination codons. Its mechanism has been studied for several decades but despite enormous progress we still don't have a satisfactory model that would explain most of the published observations. In particular, the mechanism has been proposed to differ substantially between yeast and metazoa. Yeast Nmd4 protein was previously shown to be involved in NMD, to interact with UPF1 and exhibit similarities with metazoan SMG6 and SMG5/7, that are normally believed to be specific for metazoan NMD (Dehecq et al., EMBO J, 2018). Barbarin-Bocahu et al now describe the crystal structure of the complex between the yeast UPF1 RNA helicase and Nmd4. Importantly, the authors show that interaction is required for NMD activity and increases the ATPase activity of UPF1. Barbarin-Bocahu et al equally show that this interaction and its role in NMD is conserved in the human UPF1-SMG6 complex, thus providing additional novel evidence for universal conservation of the NMD mechanism in eukaryotes. The manuscript carefully combines biochemistry, biophysics with functional in vivo studies. In my opinion, all the experiments are very well executed, generally convincing and interpretations appear correct, so the manuscript is certainly suitable for publication. I have included some suggestions below that I believe could strengthen the manuscript and enhance our confidence in the findings.

      We are grateful for the useful suggestions that have enabled us to improve our manuscript.

      Major comments:*

      *Page 7 - "Since the D1353A mutation completely abolishes the enzymatic activity of SMG6 (34), this strongly suggests that the PIN domain of Nmd4 is not endowed with endonucleolytic activity. " Could/was the endonucleolytic activity of NMD4 be tested?

      We agree with this important point. Our statement is based on previous site directed mutagenesis experiments on the PIN domain of human SMG6 (Galvan et al; 2006; EMBO Journal; PMID : 17053788 / Eberle et al; 2008; Nat. Struct. Mol. Biol.; PMID : 19060897), which showed that D1353 is the critical residue of SMG6 active site involved in the endonuclease enzymatic activity. Given that in yeast Nmd4 proteins, the corresponding residue is hydrophobic (Leu112 in S. cerevisiae Nmd4 and Phe114 in Kluyveromyces lactis Nmd4) and therefore cannot participate directly in catalysis, we assume that yeast Nmd4 proteins have no endonucleolytic activity.

      Furthermore, despite decades of research in this field, no endonucleolytic activity has been described as being involved in the NMD pathway of S. cerevisiae (the model system in which the NMD mechanism was discovered in the 1970's), whereas it has been well characterized in the NMD pathway of metazoans for more than twenty years (Gatfield and Izaurralde; Nature; 2004; PMID : 15175755 / Huntzinger et al; RNA; 2008; PMID : 18974281 / Eberle et al; Nat. Struct. Mol. Biol.; 2009; PMID : 19060897 / Lykke-Andersen et al; Genes Dev.; 2014; PMID : 25403180). Our attempts to demonstrate an endonucleolytic activity of purified Nmd4 in vitro were not successful. This negative result could be due to many reasons, including loss of enzymatic activity in the tested buffer, the absence of an important cofactor or the choice of the tested RNA. For these reasons, we prefer not to include this type of negative result in the current manuscript.

      We hope that, on the basis of the above informations, the reviewer will agree that further substantial efforts to demonstrate a hypothetical endonucleolytic activity of Nmd4 are unlikely to be fruitful. Moreover, we believe that even if yeast Nmd4 turns out to behave as an endonuclease, this fact does not change the main message of the manuscript.

      Page 10 - The two proteins bind RNA with reasonable affinity. The complex binds polyU RNA with Kd of 0.44 μM . The authors suggest, based on structure superpositions, that RNA fragments bound to the PIN domain and Upf1-HD have opposite orientations. But since they have the complex ready to crystallize, did they attempt to determine the structure with of the complex with RNA? The complex is quite small (~100 kDa with RNA) but it could be even visible by cryo-EM. I don't insist that such a structure needs to be included but it might perhaps be easy to do and would surely strengthen the story. If it is too difficult, it could at least be mentioned that it was tried?

      We agree that it would be interesting to determine the crystal structure of the complex with a short RNA fragment. Unfortunately, despite extensive efforts, we could not obtain crystals of the complex in the presence of RNA. This is probably due to the large movements of the RecA2 and 1B domains relative to the RecA1 domain observed in former studies upon RNA binding to Upf1. We have mentioned that we tried to crystallize this complex in the absence or the presence of a short oligonucleotide in our revised manuscript.

      As far as single-particle cryo-EM is concerned, we are aware that recent advances in this field should make it possible to determine the structure of the Nmd4-Upf1-RNA complex, but we do not yet have the necessary expertise in this technique. Despite the interesting information that such a structure could provide, we therefore consider that this would require a very significant investment and that it is beyond the scope of this manuscript.

      I think it is important to demonstrate that the structure-based mutants don't significantly impact the overall structure of the proteins (e.g. glycine residues are mutated within helices). At least gel filtration profiles with gels of the WT and mutated proteins should be shown in SI.

      Thank you very much for highlighting this point. We fully agree that it is important to demonstrate that the Upf1 and Nmd4 mutants used in the in vitro experiments (pull-down and ATPase assays) are not affected in their overall folding. As suggested by the reviewer, we have included gel filtration chromatograms for WT and mutant proteins (Figures S2A for Upf1-HD proteins and S2B for His6-ZZ-Nmd4 proteins). These chromatograms clearly show that the different mutants behave very similarly to the WT proteins during purification, demonstrating that the overall structures of the mutants are very similar to those of the wild-type proteins. We have also included the Coomassie blue stained SDS-PAGE analysis of the proteins present in the main peak to show the purity of the final proteins.

      Perhaps the main finding of this manuscript is the conservation of the UPF1-Nmd4 interaction in human UPF1-SMG6. But the interaction is only demonstrated by co-IP with ectopically expressed human proteins in human cells that contain all the other human proteins as well. It would probably be more convincing to demonstrated the interaction in pull-downs with purified proteins as done for the yeast complex.

      Thank you for highlighting what we consider to be one of the most interesting findings presented in our manuscript. We agree that pull-down experiments using pure protein fragments expressed in E. coli would have been ideal to further confirm our co-IP results and to validate that mutations do not affect the overall structure of SMG6. Unfortunately, despite considerable efforts, we were unable to express sufficient quantities of the SMG6-[207-580] fragment or shorter versions as soluble proteins in E. coli. Indeed, Elena Conti's laboratory had the same experience according to a statement in a paper on SMG6 (Chakrabarti et al; 2014 Nucleic Acids Research; PMID: 25013172), indicating that this region protein is very difficult to work with. As we have not yet set up protein over-expression techniques in human cells or baculovirus-infected insect cells in our laboratory, we have not been able to try these expression systems to express these SMG6 domains. These are the reasons why we decided to demonstrate this interaction by co-IP experiment using ectopically expressed tagged proteins in human cells and all appropriate controls.

      In addition, using purified proteins would enable testing whether the mutations in SMG6 don't affect the overall structure of the mutants compared to the WT.

      We agree that this is an important issue. Several bioinformatics tools, including AlphaFold2 (identifier: AF-Q86US8-F1), predict that the human SMG6-[207-580] fragment is largely unstructured (see panel A of figure below). Furthermore, the pLDDT values or confidence scores for this region in the AlphaFold2 model are very low (below 50), indicating that the structure of this region is poorly predicted (see panel B of figure below). Therefore, biophysical techniques to assess that the overall structure of this fragment is not affected by the introduced mutations are very limited. However, we did not observe reduced levels of SMG6 mutants compared with WT in human cells expressing these variants (Fig. 4B and S4), so we believe that these mutants behave similarly to the wild-type fragment, as is often postulated by scientists for in cellulo studies. Furthermore, if these mutants drastically affect the overall structure of SMG6, we would expect NMD to be strongly affected, resulting in a notable accumulation of NMD RNA substrates in our in cellulo experiments when the effect of the double mutant (M2) is compared to that of the SMG6 WT protein (Fig. 4C). This was not the case. On the basis of all these elements, we assume that the overall structure of the SMG6 protein is not affected by these mutations.

      Figure for reviewing purpose : Model of the three-dimensional structure of human SMG6 protein generated by AlphaFold2.

      A. Model of human SMG6 protein (green) with the region 207-580 used in our study colored in red.

      B. Model of human SMG6 protein (green) colored according to the pLDDT values. Orange : pLDDT 90.

      Since the detected similarity to Nmd4 is only in a region covering residues 440-470, why is the tested construct much larger (207-580) including extra, large disordered regions.

      For in cellulo studies, it has previously been shown that the SMG6-[207-580] fragment is expressed as a stable protein in human cells and is responsible for the phospho-independent interaction between UPF1 and SMG6 (Chakrabarti et al; 2014; Nucleic Acids Research; PMID: 25013172). As our aim was not to reduce this SMG6 region to a shorter peptide but to conduct an amino acid-level analysis by site-directed mutagenesis, we decided to perform our experiments using the same SMG6 domain as Conti's laboratory and to mutate conserved residues on this fragment.

      Finally, the most convincing way to show and characterize the human UPF1-SMG6 interaction would be an X-ray structure. It might be feasible to crystallize human UPF1 HD domain with a SMG6 peptide. Or at least an Alphafold model could be included? I had a quick try just with the Colabfold and using the HD domain and the SMG6 peptide, Alphafold can predict convincingly the binding of the region around W456 and in some models even around R448. I think that this would strengthen the conclusions in this part of the manuscript.

      We agree that determination of the crystal structure of human UPF1 HD linked to this region of SMG6 protein interaction would have further supported our conclusions on the conservation of UPF1-Nmd4 interaction in human UPF1-SMG6. However, due to the SMG6 expression problems mentioned above, we were unable to reconstitute the human complex in vitro, which precluded crystallization assays.

      Based on this suggestion, we generated a model of human UPF1-HD bound to the 421-480 region of human SMG6 using AlphaFold2 Colabfold. Of the various models proposed (25 in total), most are very similar and show that the side chains of R448 and W456 of SMG6 bind to regions of human UPF1 corresponding to the region of the yeast protein that interacts with R210 and W216 of Nmd4. This model is consistent with our hypothesis and we have decided to include it in the revised manuscript as suggested (Fig. EV6). We thank the reviewer for this constructive comment.

      We have added the following text to mention this model : « Based on this observation, we generated a model of the complex between human UPF1-HD and the region 421-480 of SMG6 using AlphaFold2 software (1,2). In this model, the SMG6 fragment binds to the same region of UPF1-HD as the Nmd4 « arm » (Fig. EV6). In particular, the R448 and W456 side chains of SMG6 match almost perfectly with R210 and W216 side chains of S. cerevisiae Nmd4, suggesting that this conserved region from SMG6 is involved in the interaction between the SMG6 and UPF1-HD proteins. »

      Does the SMG6 addition also increases the ATPase activity of UPF1?

      This is a very good point and we agree that the results of such an experiment may have further supported our conclusions about the conservation of the Upf1-Nmd4 interaction in human UPF1-SMG6. Unfortunately, due to the SMG6 protein expression problems mentioned above, we could not perform these in vitro experiments.

      Minor comments: Examples of electron density omit maps of the key interaction interfaces should be shown in Supplementary Information for the reader to be able to judge the crystallography data quality.

      Following this suggestion, we have added two panels showing electron density omit maps of residues at the interface in Fig. S1. We hope that this will convince the reader of the quality of our crystallographic data. We have also added the following sentence to the main text : « The overall quality of the electron density map allowed us to unambiguously identify the residues of the two proteins involved in the formation of the complex (Fig. S1A-B). »

      I suggest to add the Kd values to ITC panels for clarity in main and EV figures.

      We have taken this suggestion into account for figures 2A and EV5.

      On page 10: What experiment is this referring to : "This is in agreement with our ITC experiments (carried out in the absence of a non-hydrolyzable ATP analog), which revealed no major synergistic effect between the two proteins for RNA binding." Results in EV4A? Or some other not shown data? The results in EV4A do show an increase in RNA binding when both proteins are in a complex.

      Thank you for your comment. We realize that this sentence was not clear. We refer to the ITC data for the interaction of Upf1-HD, Nmd4 or the complex with RNA (Fig. EV5A). These data show a 2.3-fold increase in the affinity of Upf1 for RNA in the presence of Nmd4, which we consider to be a notable effect but not a major one. Based on the second reviewer's comments that our comparison between Nob1 and the PIN domain of Nmd4 is not convincing, we have decided to delete this speculative section, which did not address an important point in our current study. We will address this point using more direct and sophisticated methods in future work.

      On page 16, "organsms" should be" organisms"

      Typo corrected.

      In certain figure legends the panel labels (A,B,C..) are missing (e.g. Fig 3, EV1, EV5).

      We apologize for this problem ,which was due to a conversion problem when preparing the PDF file of the submitted article. This problem has now been corrected.

      The PIN domain structure was solved only to determine the structure of the complex? I only found it mentioned in the methods and no other mention of this structure in the main text. Maybe one sentence could be added to the results to explain why this structure was solved and how it compares to the complex structure.

      We agree that we forgot to explain why we solved the structure of the PIN domain of Nmd4. The point was to help in the determination of the structure of the complex. We have added the following sentence to the main text to explain this point: « We also determined the 1.8 Å resolution crystal structure of the PIN domain of Nmd4 (residues 1 to 167) to help us determine the structure of the Nmd4/Upf1-HD complex. As this structure is virtually identical to the structure of the PIN domain of Nmd4 in the complex (rmsd of 0.5 Å over 163 C𝛼 atoms between the two structures), we will only describe the structure of this domain in the Upf1-Nmd4 complex. »

      Significance

      This is a important study, providing detailed insight into the function on Nmd4, SMG6 and UPF1 NMD. The results also point towards a conserved mechanism on NMD between yeast and human. I would like to highlight the quality of the experiments. This study will be of great interest to people working on NMD but also more broadly to scientists working on RNA, helicases and structural biologists.

      We are very grateful for the reviewer's comments about the broad interest and overall quality of our work.

      Reviewer #2

      Evidence, reproducibility and clarity

      In this study, the authors solved the crystal structure of the UPF1 helicase domain in complex with Nmd4. Through the structure and biochemical studies, they uncovered a region responsible for Nmd4 binding to UPF1, also important for their function in NMD. In the end, the authors also extended their findings to the human SMG6, proposing a conserved mechanism for Nmd4 and SMG6.

      The mechanism of UPF1 functioning during NMD is a long-existing question. For decades, people have been trying to find out the roles of all the NMD factors during this process. This study visualized the first direct connection between UPF1 and the putative SMG6 homolog, Nmd4. Undoubtedly, it will aid our understanding of how the whole process works.

      One of the limitations of this study is the conservation between Nmd4 and SMG6. Although they both have a PIN domain, Nmd4 is inactive while SMG6 is active. During NMD, SMG6 is thought to work to cut the mRNA, thus promoting the degradation of the non-functional mRNA. Therefore, Nmd4 and SMG6 may only share a similar binding mode with UPF1, however, they do not share similar functions. This study might only apply to yeast study.

      We respectfully disagree with this comment. The role of SMG6 in NMD cannot be attributed solely to the endonuclease activity of the SMG6 PIN domain alone. Indeed, recruitment of the SMG6 PIN domain alone to an mRNA is not sufficient to destabilize it (Nicholson et al; 2014; Nucleic Acids Research; PMID: 25053839). This clearly indicates that other regions of SMG6 are critical for NMD. In our manuscript, we unveil the conservation of the Upf1-Nmd4 interaction in human UPF1-SMG6 (and probably more generally in metazoans) and show that this interaction plays a role in the optimal removal of NMD substrates. We strongly believe that our results are not only applicable to the study of yeast, but will fuel future studies in human cells aimed at describing the mechanistic details of the human NMD pathway.

      comments: the study write in a very clear way, and most of the experiments are clear and sound. I do not have any major comments. I only have a few minor comments, listed below:

      We are very grateful for the reviewer's comments about the overall quality of our manuscript and of the experimental work.

      1:The authors also solved the PIN domain of the SMG6. This is a result worth showing in the main figure.

      In our study, we did not solve the structure of the human SMG6 PIN domain. This was done by Dr. Conti's group in 2006 (Galvan et al; 2006; EMBO Journal; PMID : 17053788). This is the reason why we do not include this in the main figure. However, we have solved the crystal structure of Nmd4 PIN domain alone to help us determine the structure of the complex. Since it is very similar to the structure of the Nmd4 PIN domain in the complex with Upf1, we do not describe this structure in details. Following up the suggestion from another reviewer, we have included the following sentence mentioning that we have also determined the structure of Nmd4 PIN domain in the main text : « We also determined the 1.8 Å resolution crystal structure of the PIN domain of Nmd4 (residues 1 to 167) to help us determine the structure of the Nmd4/Upf1-HD complex. As this structure is virtually identical to the structure of the PIN domain of Nmd4 in the complex (rmsd of 0.5 Å over 163 C𝛼 atoms between the two structures), we will only describe the structure of this domain in the Upf1-Nmd4 complex. »

      2:It would be easier to read if the authors could add all the binding constants directly into the ITC panels.

      We have taken this suggestion into account for figures 2A and EV5.

      3:I am confused with His6-ZZ. Is ZZ a protein tag?

      The ZZ protein is a tag consisting of a tandem of the Z-domain from Staphylococcus aureus protein A. This domain binds to the Fc region of IgG and has been shown to improve expression levels and stability of recombinant proteins. In our case, it proved crucial to obtain mg amounts of the yeast Nmd4 protein and to enhance considerably its stability. We have added the following sentence in the « Materials and methods » section of the manuscript : « The ZZ-tag consists in a tandem of the Z-domain from Staphylococcus aureus protein A and was used as an enhancer of protein expression and stability. »

      4:The comparison between Nob1 and the PIN domain of Nmd4 is not convincing for me. Since the PIN domain is not required for the binding between Nmd4 and UPF1, the conformation of the PIN domain could be a result of the crystal packing. Thus, it is still possible that Nmd4 and UPF1 bind to the same RNA. To this end, I challenge the conclusion the authors have made on the mRNA binding part.

      We agree with your comment. Since this comparison is purely speculative and is not a major focus of our study, we decided to remove this section. We will address this point using more direct and sophisticated methods in future work aimed at elucidating this aspect.

      5: "Showing that Nmd4 stabilizes Upf1-HD on RNA in the absence of ATP and that Upf1 is the main RNA binding factor in the Nmd4/Upf1-HD complex." As mentioned above, I don't think one can make the conclusion UPF1 is the main RNA binding factor; there shouldn't be a main and minor. Meanwhile, what will happen if you add ATP in? Or AMPPNP? Or ADP?

      We agree with your comment that our current data do not allow to conclude precisely about the role of Upf1 as major RNA binding factor. We have replaced this sentence by the following one : « Whether this increase in affinity is due to a synergistic effect between both proteins or to an allosteric stimulation of one partner on the RNA binding property of the second partner remains to be clarified. ».

      Regarding the role of the nucleotides on RNA binding properties of the Upf1 helicase domain or the complex, we faced precipitation problems when mixing high concentrations Upf1 and nucleotides for ITC experiments, making difficult to determine Kd values for the interaction between Upf1 and RNA in the presence of nucleotides. However, in a previous study (Dehecq et al; 2018; EMBO J; PMID : 30275269), we observed that AMPPNP did not affect the amount of Nmd4 and Upf1-HD co-precipitated by an RNA oligonucleotide, indicating that nucleotide does not significantly affect the interaction of the complex with RNA.

      6: "But also that a physical interaction between Upf1-HD and the PIN domain exists in vitro, although we were unable to detect it using our various interaction assays." This also confused me, since one cannot detect the interaction in any assay, how could you be so confident there is a physical interaction? Have you tested assays which are good for weak binding?

      We understand that this sentence may be confusing. The tests we have used to determine whether there is a physical interaction between the PIN domain of Nmd4 and Upf1-HD are ITC and pull-down. These are excellent methods for detecting stable interactions with dissociation constants (Kd) in the nanomolar to tens of micromolar range. These two methods did not indicate any direct interaction between the PIN domain of Nmd4 and Upf1-HD. However, we observed that the PIN domain of Nmd4 stimulates the ATPase activity of Upf1-HD to the same extent as the « arm » of Nmd4. This is an indirect indication that the Nmd4 PIN may interact with Upf1-HD, otherwise a stimulatory effect would not be expected. Our radioactivity-based ATPase assay is very sensitive, allowing the detection of a stimulatory effect due to a transient interaction between the PIN domain of Nmd4 and Upf1-HD, which, as indicated above, could not be detected with the interaction assays used. We would also like to point out that in our ATPase conditions, Upf1-HD (0.156 µM) is incubated with a 20-fold molar excess (3.12 µM) of its partners (Nmd4-FL, Nmd4 « arm » or Nmd4 PIN). Such an excess cannot be used in our interaction tests. This could explain the stimulatory effect detected for the PIN domain of Nmd4 in our ATPase assay.

      We have clarified this section by adding the following sentences: « We were unable to detect such an interaction using our different interaction assays (pull-down and ITC), which are optimal for studying interactions with dissociation constants (Kd) in the nanoM to tens of microM range. We therefore assume that a transient low-affinity interaction (high Kd value not detected by our binding assays) exists between Upf1-HD and PIN Nmd4 and can only be detected by highly sensitive assays such as our radioactivity-based ATPase assay, which was performed with a 20-fold molar excess of PIN Nmd4 domain over Upf1-HD. »

      7: Figure 4B should be done in the context of the full length of SMG6 and UPF1.

      **Referees cross-commenting**

      *This session contains comments from both Rev1 and Rev2*

      Rev1:

      There seems to be a contradiction in comments on Figure 4B. I agree with Reviewer 2 that using FL proteins will be informative to see whether the FL proteins indeed interact (or not in the case of the mutants).

      If one wants to use this experiment to map the interacting regions, then I think that the UPF1 HD domain and the short conserved region of SMG6 should be used. The long fragment SMG6 207-580 is not ideal for either. The short constructs would be more suited for a pull-down experiments (like done for the yeast proteins).

      Rev2

      Response to reviewer #1, It is necessary to use the full-length protein (FL protein) to map the interface unless they have pre-existing information to support mapping down to short fragments.

      In addition, performing further structural work would be beyond the scope of this study. Given the additional time and effort required, I do not recommend doing so for this study.

      Rev1:

      As I said, I agree with using the FL proteins. The pre-existing information supporting the mapping comes from sequence alignments with the yeast structure and the mutagenesis. This is further confirmed by Alphafold modeling which in my opinion should be included. As I mentioned in my review, I don't insist on further structural work

      Thank you very much for this comment and the discussions between reviewers, which show that we didn't explain our experimental strategy clearly. Human UPF1 has been shown to interact with SMG6 in both phospho-dependent and phospho-independent modes. In our manuscript, we focus on characterizing the phospho-independent interaction. For this reason, we cannot perform this experiment using the full-length version of SMG6 and UPF1, otherwise the effects of our point mutants on the UPF1-SMG6 interaction could be masked by the phospho-dependent interaction occurring between domain 14.3.3 of SMG6 and the C-terminus of Upf1. To circumvent this problem, we were inspired by former in cellulo studies, which have shown that the SMG6-[207-580] fragment is expressed as a stable protein in human cells and is responsible for the phospho-independent interaction between UPF1 and SMG6 (Chakrabarti et al; 2014; Nucleic Acids Research; PMID: 25013172). Similarly, the helicase domain of UPF1 was found to be sufficient for this phospho-independent interaction with human SMG6 (Nicholson et al; 2014; Nucleic Acids Research; PMID: 25053839). These are the reasons why we decided to use this protein domains in our in cellulo studies to test the effect of our point mutants on the interaction. As indicated above in an answer to one comment to reviewer #1, as our aim was not to reduce this SMG6 region to a shorter peptide but to conduct an amino acid-level analysis by site-directed mutagenesis, this is also why we decided to perform our experiments using the same SMG6 domain as Conti's laboratory and to mutate conserved residues on this fragment. We have also included the AlphaFold2 model of the complex between human UPF1 and SMG6 in our revised version.

      To clarify this point, we have amended the relevant section as follows: « To determine whether this motif might be involved in the interaction between SMG6 and UPF1-HD proteins, we ectopically expressed the region comprising residues 207-580 of human SMG6 fused to a C-terminal HA tag (SMG6-[207-580]-HA) and human UPF1-HD (residues 295-921 fused to a C-terminal Flag tag; UPF1-HD-Flag) in human HEK293T cells, as these regions have previously been shown to be responsible for the phosphorylation-independent interaction between these two proteins. Compared to the full-length UPF1 and SMG6 proteins, these constructs also preclude our findings of any interference from the phosphorylation-dependent interaction occurring between the C-terminus of UPF1 and the 14-3-3 domain of SMG6. »

      8: "The NMD mechanism not only targets mRNAs but also small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) harboring bona fide stop codons but in a specific context such as short upstream open reading frame (uORF), long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon." "First, for mRNAs with long 3'-UTRs, the 3'-faux UTR model posits that a long 3 spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates by preventing the interaction between the eRF1-eRF3 translation termination complex bound to the A- site of a ribosome recognizing a stop codon and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively)." These are difficult to read.

      Thank you for this suggestion to improve the clarity of our manuscript. We have tried to make these sentences easier to read as follow:

      « The NMD mechanism also targets mRNAs, small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) carrying normal stop codons located in a specific context (short upstream open reading frame or uORF, long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon (3-11)). »

      « The first model, the 3'-faux UTR model posits that for mRNAs with long 3'-UTRs, a long spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates. Indeed, it would prevent the physical interaction between the eRF1-eRF3 translation termination complex recognizing a stop codon in the A-site of the ribosome and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively) bound to the 3' poly(A) tail (12-14). »

      9: please add the Ramachandran plot values.

      Thank you for pointing out this omission. These values have been included in Table EV1.

      __Significance __

      NMD is one of the major topics in the field of gene translational regulation research. this study will be of interest to a broad audience. i am an expert in the structure study in translation. However, I have limited experience in the in vivo study of NMD substrates.

      We are very grateful for the reviewer's comments about the broad interest and the overall quality of our work.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this study, the authors solved the crystal structure of the UPF1 helicase domain in complex with Nmd4. Through the structure and biochemical studies, they uncovered a region responsible for Nmd4 binding to UPF1, also important for their function in NMD. In the end, the authors also extended their findings to the human SMG6, proposing a conserved mechanism for Nmd4 and SMG6.

      The mechanism of UPF1 functioning during NMD is a long-existing question. For decades, people have been trying to find out the roles of all the NMD factors during this process. This study visualized the first direct connection between UPF1 and the putative SMG6 homolog, Nmd4. Undoubtedly, it will aid our understanding of how the whole process works.

      One of the limitations of this study is the conservation between Nmd4 and SMG6. Although they both have a PIN domain, Nmd4 is inactive while SMG6 is active. During NMD, SMG6 is thought to work to cut the mRNA, thus promoting the degradation of the non-functional mRNA. Therefore, Nmd4 and SMG6 may only share a similar binding mode with UPF1, however, they do not share similar functions. This study might only apply to yeast study.

      comments: the study write in a very clear way, and most of the experiments are clear and sound. I do not have any major comments. I only have a few minor comments, listed below:

      1:The authors also solved the PIN domain of the SMG6. This is a result worth showing in the main figure.

      2:It would be easier to read if the authors could add all the binding constants directly into the ITC panels.

      3:I am confused with His6-ZZ. Is ZZ a protein tag?

      4:The comparison between Nob1 and the PIN domain of Nmd4 is not convincing for me. Since the PIN domain is not required for the binding between Nmd4 and UPF1, the conformation of the PIN domain could be a result of the crystal packing. Thus, it is still possible that Nmd4 and UPF1 bind to the same RNA. To this end, I challenge the conclusion the authors have made on the mRNA binding part.

      5: "Showing that Nmd4 stabilizes Upf1-HD on RNA in the absence of ATP and that Upf1 is the main RNA binding factor in the Nmd4/Upf1-HD complex." As mentioned above, I don't think one can make the conclusion UPF1 is the main RNA binding factor; there shouldn't be a main and minor. Meanwhile, what will happen if you add ATP in? Or AMPPNP? Or ADP?

      6: "But also that a physical interaction between Upf1-HD and the PIN domain exists in vitro, although we were unable to detect it using our various interaction assays." This also confused me, since one cannot detect the interaction in any assay, how could you be so confident there is a physical interaction? Have you tested assays which are good for weak binding?

      7: Figure 4B should be done in the context of the full length of SMG6 and UPF1.

      8: "The NMD mechanism not only targets mRNAs but also small nucleolar RNAs (snoRNAs) and long noncoding RNAs (lncRNAs) harboring bona fide stop codons but in a specific context such as short upstream open reading frame (uORF), long 3'-UTRs, low translational efficiency or exon-exon junction located downstream of a stop codon." "First, for mRNAs with long 3'-UTRs, the 3'-faux UTR model posits that a long 3 spatial distance between a stop codon and the mRNA poly(A) tail destabilizes NMD substrates by preventing the interaction between the eRF1-eRF3 translation termination complex bound to the A- site of a ribosome recognizing a stop codon and the poly(A)-binding protein (Pab1 or PABP in S. cerevisiae and human, respectively)." These are difficult to read.

      9: please add the Ramachandran plot values.

      Significance

      NMD is one of the major topics in the field of gene translational regulation research. this study will be of interest to a broad audience. i am an expert in the structure study in translation. However, I have limited experience in the in vivo study of NMD substrates.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on the roles of the axon growth regulator Sema7a in the formation of peripheral sensory circuits in the lateral line system of zebrafish. The evidence supporting the claims of the authors is solid, although further work directly testing the roles of different sema7a isoforms would strengthen the analysis. The work will be of interest to developmental neuroscientists studying circuit formation.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Dasguta et al. have dissected the role of Sema7a in fine tuning of a sensory microcircuit in the posterior lateral line organ of zebrafish. They attempt to also outline the different roles of a secreted verses membrane-bound form of Sema7a in this process. Using genetic perturbations and axonal network analysis, the authors show that loss of both Sema7a isoforms causes abnormal axon terminal structure with more bare terminals and fewer loops in contact with presynaptic sensory hair cells. Further, they show that loss of Sema7a causes decreased number and size of both the pre- and post-synapse. Finally, they show that overexpression of the secreted form of Sema7a specifically can elicit axon terminal outgrowth to an ectopic Sema7a expressing cell. Together, the analysis of Sema7a loss of function and overexpression on axon arbor structure is fairly thorough and revealed a novel role for Sema7a in axon terminal structure. However, the connection between different isoforms of Sema7a and the axon arborization needs to be substantiated. Furthermore, an autocrine role for Sema7a on the presynaptic cell is not ruled out as a contributing factor to the synaptic and axon structure phenotypes.

      Finally, critical controls are absent from the overexpression paradigm.

      Comments: Thank you for your valuable comments. We have analyzed the hair cell scRNA transcriptome data of zebrafish neuromasts from published works and have not identified known expression of receptors of the Sema7A protein, particularly PlexinC1 and Integrin β1 molecules (reference 4 and 15) in hair cells. This result suggests that the Sema7A protein molecule, either secreted or membrane-bound, does not possess its cognate receptor to elicit an autocrine function on the hair cells. Moreover, the GPI-anchored Sema7A lacks a cytosolic domain. So it is unlikely that Sema7A signaling directly induces the formation of presynaptic ribbons. We propose that the decrease in average number and area of synaptic aggregates likely reflects decreased stability of the synaptic structures owing to lack of contact between the sensory axons and the hair cells, which has been identified in zebrafish neuromasts (reference 38).

      Thank you for pointing missing critical control experiments. Additional control experiments (lines 333-346) with a new figure (Figure 5) have been added.

      These issues weaken the claims made by the authors including the statement that they have identified differential roles for the GPI-anchored verses secreted forms of Sema7a on synapse formation and as a chemoattractant for axon arborization respectively.

      Comments: We have rephrased our statement and argue in lines 428-430 that our experiments “suggest a potential mechanism for hair cell innervation in which a local Sema7Asec diffusive cue likely consolidates the sensory arbors at the hair cell cluster and the membrane-anchored Sema7A-GPI molecule guides microcircuit topology and synapse assembly.”

      The manuscript itself would benefit from the inclusion of details in the text to help the reader interpret the figures, tools, data, and analysis.

      Comments: We have made significant revisions to the text and figures to improve clarity and consistency of the manuscript.

      Reviewer #2 (Public Review):

      In this work, Dasgupta et al. investigates the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals. I think some results are overinterpreted though. The authors state: "Our findings demonstrate that Sema7A functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development." However, they have not actually demonstrated which isoform functions in HCs (also see comments below).

      Comments: Thank you for making this point. To investigate the presence of both sema7a transcripts in the hair cells of the lateral-line neuromasts, we used the Tg(myo6b:actb1EGFP) transgenic fish to capture the labeled hair cells by fluorescence-activated cell sorting (FACS) and isolated total RNA. Using transcript specific DNA oligonucleotide primers, we have identified the presence of both sema7a transcript variants in the hair cell of the neuromast. Even though we have not developed transcript specific knockout animals, we speculate that the presence of both transcript variants in the hair cell implies that they function in distinct fashion. We have changed our interpretation in lines 32-34 to “Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.”

      In future we will utilize the CRISPR/Cas9 technique to target the unique C-terminal domain of the GPI-anchored sema7a transcript variant. We believe that this will only perturb the formation of the full-length Sema7A protein and help us determine the role of the membrane-bound Sema7AGPI molecule as well as the Sema7Asec in sensory arborization and synaptic assembly.

      In addition, they have to be careful in interpreting their topology analysis, as they cannot separate individual axons. Thus, such analysis can generate artifacts. They can perform additional experiments to address these issues or adjust their interpretations.

      Comments: Thank you for this insightful comment. In a previous eLife publication from our laboratory, we utilized the serial blockface scanning electron micrograph (SBFSEM) technique to characterize the connectome of the neuromast microcircuit where patterns of innervation of all the individual axons can be delineated in five-days-old larvae (reference 8). However, the collective behavior of all the sensory axons that build the innervation network remained enigmatic, especially in a living animal during development. In this paper we addressed how the sensory-axon collective behaves around the clustered hair cells and build the innervation network in living animals during diverse developmental stages. Our analyses have not only identified how the axons associates with the hair cell cluster as the organ matures, but also discovered distinct topological features in the arbor network that emerges during organ maturation, which may influence assembly of postsynaptic aggregates (lines 384-403, Figure 6G-I). We believe that our quantitative approach to capture collective axonal behaviors and their topological attributes during circuit formation have highlighted the importance of understanding network assembly during sensory organ development.

      Reviewer #3 (Public Review):

      Summary:

      This study demonstrates that the axon guidance molecule Sema7a patterns the innervation of hair cells in the neuromasts of the zebrafish lateral line, as revealed by quantifying gain- and loss-of function effects on the three-dimensional topology of sensory axon arbors over developmental time. Alternative splicing can produce either a diffusible or membrane-bound form of Sema7a, which is increasingly localized to the basolateral pole of hair cells as they develop (Figure 1). In sema7a mutant zebrafish, sensory axon arbors still grow to the neuromast, but they do not form the same arborization patterns as in controls, with many arbors overextending, curving less, and forming fewer loops even as they lengthen (Figure 2,3). These phenotypes only become significant later in development, indicating that Sema7a functions to pattern local microcircuitry, not the gross wiring pattern. Further, upon ectopic expression of the diffusible form of Sema7a, sensory axons grow towards the Sema7a source (Figure 4). The data also show changes in the synapses that form when mutant terminals contact hair cells, evidenced by significantly smaller pre- and post-synaptic punctae (Figure 5). Finally, by replotting single cell RNA-sequencing data (Figure 6), the authors show that several other potential cues are also produced by hair cells and might explain why the sema7a phenotype does not reflect a change in growth towards the neuromast. In summary, the data strongly indicate that Sema7a plays a role in shaping connectivity within the neuromast.

      Strengths:

      The main strength of this study is the sophisticated analysis that was used to demonstrate fine-level effects on connectivity. Rather than asking "did the axon reach its target?", the authors asked "how does the axon behave within the target?". This type of deep analysis is much more powerful than what is typical for the field and should be done more often. The breadth of analysis is also impressive, in that axon arborization patterns and synaptic connectivity were examined at 3 stages of development and in three-dimensions.

      Weaknesses:

      The main weakness is that the data do not cleanly distinguish between activities for the secreted and membrane-bound forms of Sema7a, which the authors speculate may influence axon growth and synapse formation respectively. The authors do not overstate the claims, but it would have been nice to see some additional experimentation along these lines, such as the effects of overexpressing the membrane-bound form,

      Comments: We have accepted this useful suggestion. In lines 333-346 and in Figure 5 we have demonstrated the impact of overexpressing the membrane-bound transcript variant on arborization pattern of the sensory axons.

      Some analysis of the distance over which the "diffusible" form of Sema7a might act (many secreted ligands are not in fact all that diffusible), or

      Comments: We have reported this in lines 311-317 and in Figure 4F,G.

      Some live-imaging of axons before they reach the target (predicted to be the same in control and mutants) and then within the target (predicted to be different).

      Comments: We have accepted this useful suggestion. We demonstrate the dynamics of the sensory arbors that are attracted to an ectopic Sema7Asec source in lines 325-332, Figure 4I,J; Figure 4—figure supplement 2A, and Videos 13-16.

      Clearly, although the gain-of-function studies show that Sema7a can act at a distance, other cues are sufficient. Although the lack of a phenotype could be due to compensation, it is also possible that Sema7a does not actually act in a diffusible manner within its natural context. Overall, the data support the authors' carefully worded conclusions. While certain ideas are put forward as possibilities, the authors recognize that more work is needed. The main shortcoming is that the study does not actually distinguish between the effects of the two forms of Sema7a, which are predicted but not actually shown to be either diffusible or membrane linked (the membrane linkage can be cleaved). Although the study starts by presenting the splice forms, there is no description of when and where each splice form is transcribed.

      Comments: We have utilized the HCR™ RNA-FISH Technology to generate transcript specific probes. To generate transcript-specific HCR probes to distinctly detect the sema7aGPI (NM_001328508) and the sema7asec (NM_001114885) transcripts, Molecular Instruments could design only 11 probes against the sema7aGPI transcript and only one probe against the sema7asec transcript (personal correspondence with Mike Liu, PhD, Head of Operations and Product Development Lead Molecular Instruments, Inc.). The HCR probe against the sema7aGPI transcript showed a very faint signal. Unfortunately, the HCR probe against the sema7asec transcript failed to detect the presence of any transcript. For robust detection of transcripts, the protocol demands a minimum of 20 probes. We believe that the very low number of probes against our transcripts is the primary reason for the absence of a signal.

      We therefore utilized fluorescence-activated cell sorting (FACS) to capture the labeled hair cells and isolated total RNA to perform RT-PCR using transcript specific DNA oligonucleotide primers. We identified the presence of both the secreted and the membrane-bound transcripts at four-days-old neuromasts (lines 80-84, Figure 1B-D).

      Additionally, since the mutants are predicted to disrupt both forms, it is a bit difficult to disentangle the synaptic phenotype from the earlier changes in circuit topology - perhaps the change at the level of the synapse is secondary to the change in topology.

      Comments: Thank you for the insightful suggestion. We have analyzed the relationship between the sensory arbor network topology and the distribution of postsynaptic structures (lines 384-403, Figure 6G-I). We identified that the distribution of the postsynaptic aggregates is closely associated with the topological attributes of the sensory circuit. We further clarify the potential origin of disrupted synaptic assemblies in sema7a-/- mutants in lines 380-382 and lines 417-420.

      Further, the authors do not provide any data supporting the idea that the membrane bound form of Sema7a acts only locally. Without these kinds of data, the authors are unable to attribute activities to either form.

      Comments: We have accepted this useful suggestion and have prepared the Figure 5 with the necessary details.

      The main impact on the field will be the nature of the analysis. The field of axon guidance benefits from this kind of robust quantification of growing axon trajectories, versus their ability to actually reach a target. This study highlights the value of more careful analysis and as a result, makes the point that circuit assembly is not just a matter of painting out paths using chemoattractants and repellants, but is also about how axons respond to local cues. The study also points to the likely importance of alternative splice forms and to the complex functions that can be achieved using different forms of the same ligand.

      Reviewer #4 (Public Review):

      Summary:

      The work by Dasgupta et al identifies Sema7a as a novel guidance molecule in hair cell sensory systems. The authors use the both genetic and imaging power of the zebrafish lateralline system for their research. Based on expression data and immunohistochemistry experiments, the authors demonstrate that Sema7a is present in lateral line hair cells. The authors then examine a sema7a mutant. In this mutant, Sema7a proteins levels are nearly eliminated. Importantly, the authors show that when Sema7a is absent, afferent terminals show aberrant projections and fewer contacts with hair cells. Lastly the authors show that ectopic expression of the secreted form of Sema7a is sufficient to recruit aberrant terminals to non-hair cell targets. The sema7a innervation defects are well quantified. Overall, the paper is extremely well written and easy to follow.

      Strengths:

      (1) The axon guidance phenotypes in sema7a mutants are novel, striking and thoroughly quantified.

      (2) By combining both loss of function sema7a mutants and ectopic expression of the secreted form of Sema7a the authors demonstrate the Sema7a is both necessary and sufficient to guide sensory axons

      Weaknesses:

      (1) Control. There should be an uninjected heatshock control to ensure that heatshock itself does not cause sensory afferents to form aberrant arbors. This control would help support the hypothesis that exogenously expressed Sema7a (via a heatshock driven promoter) is sufficient to attract afferent arbors.

      Comments: Thank you for the suggestion. We have added the uninjected heatshock control experiment in Figure 5 and described experimental details in the text, lines 343-345.

      (2) Synapse labeling. The numbers obtained for postsynaptic labeling in controls do not match up with the published literature - they are quite low. Although there are clear differences in postsynaptic counts between sema7a mutants and controls, it is worrying that the numbers are so low in controls. In addition, the authors do not stain for complete synapses (pre- and post-synapses together). This staining is critical to understand how Sema7a impacts synapse formation.

      Comments: Thank you for raising this issue. We believe the low average numbers of the postsynaptic punctae in control neuromasts arise from lack of formation of postsynaptic aggregates beneath the immature hair cells, which are abundant in early stages of neuromast maturation. We have performed exhaustive analysis on the formation of pre- and postsynaptic structures and have identified how their distribution changes along neuromast development in control larvae. We have further analyzed how such distribution is perturbed in the sema7a-/- mutants. We do not think analyzing the complete synapse structure will add much to our understanding of how Sema7A influence synapse formation and maintenance.

      (3) Hair cell counts. The authors need to provide quantification of hair cell counts per neuromast in mutant and control animals. If the counts are different, certain quantification may need to be normalized.

      Comments: We have added the raw data with the hair cell counts in both control and sema7a-/- mutants across developmental stages. The homozygous sema7a-/- mutants have slightly less hair cells and we have normalized all our topological analyses by the corresponding hair cell numbers for each neuromast in each experiment (lines 669-675).

      (4) Developmental delay. It is possible that loss of Sema7a simply delays development. The latest stage examined was 4 dpf, an age that is not quite mature in control animals. The authors could look at a later age, such as 6 dpf to see if the phenotypes persist or recover.

      Comments: The homozygous sema7a-/- mutants are unviable and die at 6 dpf. We therefore restricted our analysis till 4 dpf. The association of the sensory arbors with the clustered hair cells gradually decreases as the neuromasts mature from 2 dpf to 4dpf in the sema7a-/- mutants (lines 174-176, Figure 2I). Moreover, in the sema7a-/- mutants the sensory axons throw long projections that keep getting farther away from the clustered hair cells as the neuromast matures from 2 dpf to 4 dpf (lines 166-168, Figure 2H; Figure 2—figure supplement 1K,L). These observations suggest that if the phenotypes in the sema7a-/- mutants were due to developmental delays, then we should have seen a recovery of disrupted arborization patterns over time. But instead, we observe a further deterioration of the arborization patterns and other architectural assemblies. These findings confirm that the observed phenotypes in the sema7a-/- mutants are not due to delayed development of the larvae, but a specific outcome for the loss of Sema7A protein.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major concerns:

      Issue 1: One of the most interesting conclusions in this manuscript is the function of the GPIanchored vs. secreted form of Sema7a in axon structure and synapse formation. In lines 357360 of the discussion (for example) the authors state that they have shown that the GPIanchored form of Sema7a is responsible for contact-mediated synapse formation while the secreted form functions as a chemoattractant for axon arbor structure. "We have discovered dual modes of Sema7A function in vivo: the chemoattractive diffusible form is sufficient to guide the sensory arbors toward their target, whereas the membrane-attached form likely participates in sculpting accurate neural circuitry to facilitate contact-mediated formation and maintenance of synapses." However, the data do not support this conclusion. Specifically, no analysis is done showing unique expression of either isoform in hair cells and no functional analysis is done to conclusively determine which isoform is important for either phenotype.

      Comments: We have shown that both sema7a transcripts are expressed in the hair cells of four-day-old neuromasts (lines 78-84, Figure 1C,D). Ectopic expression of the sema7asec transcript variant robustly attracts the lateral-line sensory arbors toward itself, whereas ectopic expression of the sema7aGPI variant fails to impart sensory guidance from a distance, suggesting that the membrane-bound form likely participates in contact-mediated neural guidance. These experiments decisively show, for the first time in zebrafish, the dual modes of Sema7A function in vivo. However, we agree that the sema7aGPI transcript-specific knockout animal would be essential to conclusively prove that the membrane-attached form is primarily involved in forming accurate neural circuitry and contact-mediated formation and maintenance of synapses. Hence, we have very carefully stated in lines 427-428 that “the membrane-attached form likely participates in sculpting accurate neural circuitry to facilitate contact-mediated formation and maintenance of synapses”. We will follow up on this suggestion in our upcoming manuscript that will incorporate transcript-specific genetic ablations.

      Though the authors present RT-PCR analysis of sema7a isoforms, it is not interpretable. The second reverse primer will also recognize the full-length transcript (from what I can gather) so it does not simply show the presence of the secreted form. Is there a unique 3'UTR for the short transcript that can be used? Additionally, for the GPI-anchored version can you use a forward primer that is not present in the short isoform? This would shed some light on the respective levels of both transcripts.

      Comments: The C-termini of the two transcript variants are distinct and we have designed distinct primers that will selectively bind to each transcript (lines 503-511). Since, we have not performed quantitative polymerase chain reaction (qPCR), relative levels of each transcript are hard to determine.

      Alternatively, and perhaps of more use, in situ hybridization using unique probes for each isoform would allow you to determine which are actually present in hair cells.

      Comments: We have tried this approach and explained the point earlier (refer to lines 203212 of this response letter).

      To decisively state that these isoforms have unique functions in axon terminal structure and synapse formation, other experiments are also essential. For example, RNA-mediated rescue analyses using both isoforms would tell you which can rescue the axonal structure and synapse size/number phenotypes. Overexpression of the GPI-anchored form, like the secreted form in Figure 4, would allow you to determine if only the secreted form can cause abnormal axon extension phenotypes. Expression of both forms in hair cells (using a myo6b promotor for example) would allow assessment of their role in presynapse formation.

      Comments: We have ectopically expressed the sema7aGPI transcript variant near the sensory arbor network and observed that Sema7A-GPI fails to impart sensory axon guidance from a distance.

      Thank you for suggesting the rescue experiments. We are in the process of generating CRISPR/Cas9-mediated transcript-specific knockout animals. We are currently preparing another manuscript that incorporates the above-mentioned rescue experiments to dissect the role of each transcript in regulating arbor topology and synapse formation.

      For the overexpression experiments, expression of mKate alone (with and without heat shock) is also a critical control to include.

      Comments: We have incorporated two control experiments: (1) larvae injected with hsp70:sema7asec-mKate2 plasmid that were not heat shocked and (2) Uninjected larvae that were heatshocked. We think these two controls are sufficient to demonstrate that the abnormal arborization patterns are not artifacts generated due to plasmid injection and heatshocking.

      Issue 2: A second concern is the lack of data showing support cell and hair cell formation and function is unaffected. Analysis of support and hair cell number with loss of Sema7a as well as simple analyses of mechanotransduction (FM4-64) would help alleviate concerns that phenotypes are due to disrupted neuromast formation and basic hair cell function rather than a specific role for Sema7a in this process.

      Comments: We have measured the hair cell numbers in both control and sema7a-/- mutants across developmental stages. We have added this to our submitted raw data.

      We have utilized the styryl fluorophore FM4-64 to test the mechanotransduction function of the hair cells in sema7a-/- mutants. We have detailed our finding in lines 137141 and in Figure 2—figure supplement 1C,D.

      Expression analysis of Sema7a receptors would also help strengthen the argument for a specific effect on lateral line afferent axons.

      Comments: Thank you for this suggestion. Currently, we do not possess an RNA transcriptome dataset for the lateral line ganglion. This deficit limits a systematic screen for lateral-line sensory neuronal gene expressions either through antibody stains or via HCRmediated in situ techniques. In future we plan to develop an RNA transcriptome for the lateral-line ganglion and identify potential binding partners for Sema7A.

      Issue 3: The manuscript could also be improved to include more detail in some areas and less in others. In general, each section has a fairly long lead up but lacks important experimental details that would help the reader interpret the data. For example:

      Figure 1: What is the label for the lateral line axons? Is it a specific transgenic? The legend states that 3 asterisks indicate p<0.0001. What about the other asterisk combinations?

      Comments: We have clarified these issues in lines 118-121 and in lines 906-907.

      Figure 2: For the network analysis, are the traces for all axons that branch to innervate the neuromast?

      Comments: Yes, we have traced the entire arbor containing all the axons that branched from the lateral line nerve and extended toward the clustered hair cells. The three-dimensional traces depict a skeletonized representation of the arbor network.

      Can the tracing method distinguish individual axons?

      Comments: No, our goal is to understand how the axon-collective behave around the clustered hair cells during development.

      How do you know where an end is versus continued looping?

      Comments: We have categorically defined the topological attributes in lines 187-191 and in Figure 3A.

      Also, are all neuromasts similarly affected or is there a divergence based on which organ you are imaging? What neuromast was imaged in this and other figures?

      Comments: Yes, all the neuromasts in the trunk and tail regions were affected similarly by the sema7a mutation. We did not observe any region-specific phenotypic outcome. We consistently imaged the trunk neuromasts, particularly the second, third, and fourth neuromasts.

      Discussion: The short discussion failed to put these findings into context or to discuss how this unique topological arrangement of axon terminals impacts function.

      Comments: We have added a new segment, lines 432-448, in the discussion section which mentions the potential role of the topological features in arranging the distribution pattern of the postsynaptic densities and thereby potentially influencing the network’s ability to gather sensory inputs through properly placed postsynaptic aggregates.

      Can you speculate on how the looping structure may alter number of synaptic contacts per axon for instance? For this, it would be useful to know if normally the synapses form on loops versus bare terminals.

      Comments: Thank you for this insightful suggestion. We have performed detailed analysis, as mentioned in lines 384-397, to characterize the distribution of the postsynaptic densities between the two topological attributes.

      Does this looping facilitate single axons contacting more hair cells of the same polarity? Would that be beneficial?

      Comments: Looping behaviors indeed facilitate the contact between the axons and the hair cells. As we have observed, the primary topological attribute that the sensory arbor network underneath the clustered hair cells adopts is a loop. The bare terminals are predominantly projected transverse to the clustered hair cells and lack contact with them. Whether a single axon, being part of a loop, preferentially contacts hair cells of same polarity is yet to be determined. We can address this question by mosaic labeling a single axon in the arbor network and determine its association with the hair cells. We intend to do these experiments in our upcoming manuscript.

      Minor concerns:

      (1) For the stacked charts quantifying topological features, I found interpreting them challenging. Is it possible to put these into overlapping histograms or line graphs to better compare wild type to mutant directly?

      Comments: Thank you for your suggestion. We tried several ways to represent our data and found that the stacked charts optimally signify our analysis and depict the characteristic phenological differences between the control and the sema7a-/- mutants.

      (2) There are numerous strong statements throughout not directly supported by the data, e.g. lines 110-113; 206-208; 357-360 and others. These should be tempered.

      Comments: For lines 110-113, we have updated this section with new experiments and the new segment is represented in lines 115-126.

      For lines 206-208, we have updated the statement to “This result suggests that the stereotypical circuit topology observed in the mature organ may emerge through transition of individual arbors from forming bare terminals to forming closed loops encircling topological holes” in lines 225-227.

      Reviewer #2 (Recommendations For The Authors):

      The authors should be careful about making any assumptions which form of sema7a is active in NMs. Their RT-PCR demonstrates presence of both isoforms in a whole animal; however, whether they are similarly present in HCs is not investigated here.

      Comments: We have addressed this concern and have updated the manuscript with new experiments, detailed in lines 78-84.

      Also, there is an issue of translation and trafficking to the membrane with subsequent secretion. An important experiment that would address this question is expressing two sema7a isoforms in mutant HCs and asking whether this can suppress the mutant phenotype.

      Comments: Thank you for suggesting the rescue experiments. We are in the process of generating CRISPR/Cas9-mediated transcript-specific knockout animals. We are currently preparing another manuscript that incorporates the above-mentioned rescue experiments to dissect the role of each transcript in regulating arbor topology and synapse formation.

      Presumably, sema7a is trafficked to the membrane during HC maturation. This is consistent with the authors' observation that sema7a localization is changing as NM mature. However, actin-sema7a co-labeling does not actually show whether sema7a is on the membrane. Labeling HCs with a membrane marker (transgene) would be much more convincing. Alternatively, can the authors show sema7a localization actually correlates with the presence of sensory axon terminals? They already have immunos that label both. Thus, this should be pretty straightforward.

      Comments: Thank you for these suggestions. We have addressed these issues in lines 112114, and in lines 119-126.

      Figure 2 should have a control panel, so the reduced sema7a staining can be compared to the control side-by-side.

      Comments: We have depicted Sema7A staining in control neuromasts in multiple images, including Figure 1E, Figure 1H, and in Figure 2—figure supplement 1B. We have kept the control panel in the supplementary figure due to space restrictions in Figure 2.

      Arborization topology: While I appreciate the very careful characterization of the topology for wild-type and mutant NMs, I think it would be much more informative to mark individual axons and then analyze their topology. The main reason is that the authors cannot really distinguish whether some aspects of topology they describe are really due to the densely packed overlapping terminals of multiple axons or these are really characteristic, higher order organization of individual axons. Because of this, they cannot be certain what is really happening with sema7a mutant terminals. Related to the point above. While it is clear that the overall topology is abnormal in the mutant, the authors should be careful in concluding that sema7a regulates specific aspects of it. The overall structure is probably highly interconnected perturbing one parameter would likely affect all the others.

      Comments: Thank you for this comment. In a previous eLife publication from our laboratory, we utilized the serial blockface scanning electron micrograph (SBFSEM) technique to characterize the connectome of the neuromast microcircuit where patterns of innervation of all the individual axons can be delineated in five-days-old larvae (reference number 8). However, the collective behavior of all the sensory axons that build the innervation network remained enigmatic, especially in a living animal during development. In this paper we addressed how the sensory axon-collective behave around the clustered hair cells and build the innervation network in living animals during diverse developmental stages. Our analyses have not only identified how the axon-collective associates itself with the hair cell cluster as the organ matures, but also discovered distinct topological features in the arbor network that emerges during organ maturation, which may influence assembly of postsynaptic aggregates (lines 384-403, Figure 6G-I). We believe that our quantitative approach to capture collective axonal behaviors and their topological attributes during circuit formation have highlighted the importance of understanding network assembly during sensory organ development.

      Experiments with the secreted sema7a isoform would be much more informative if they were compared/contrasted to the GPI anchored isoform.

      Comments: We added a new section, lines 338-351, and a new Figure 5 to address this issue.

      The phenotype of ectopic projections in sema7a overexpression experiments is pretty dramatic, especially given the fact that these were performed in wild-type animals. Does this mean that the phenotype would be even more dramatic in sema7a mutants, as they have more bare axon terminals according to the authors' analysis. Have the authors attempted this type of experiments?

      Comments: That is an interesting suggestion. We have not tested that yet. Our guess is that in the sema7a-/- mutants, the abundant bare terminals will be far more sensitive to an ectopic source of Sema7A. But even in the sema7a-/- mutants, other chemotropic cues are still functional, which may impart certain restrictions on how many bare terminals are allowed to leave the neuromast region.

      Reviewer #3 (Recommendations For The Authors):

      (1) No raw data are shown, such that it is difficult to assess variability across animals or within animals, just the overall trends within the whole dataset. Raw data need to be shown for every measurement, at least in supplemental figures. It would also be useful to reliably show control next to mutant in the same plot, as it is a bit hard to compare across panels, which occurs in several figures.

      Comments: We have uploaded all the raw data related to each experiment.

      (2) Given the focus on the two possible forms of Sema7a, the authors should use HCR or another form of reliable in situ hybridization to show the spatiotemporal pattern of expression of each isoform.

      Comments: We have utilized the HCR™ RNA-FISH Technology to generate transcript specific probes. To generate transcript-specific HCR probes to distinctly detect the sema7aGPI (NM_001328508) and the sema7asec (NM_001114885) transcripts, Molecular Instruments could design only 11 probes against the sema7aGPI transcript and only one probe against the sema7asec transcript (personal correspondence with Mike Liu, PhD, Head of Operations and Product Development Lead Molecular Instruments, Inc.). The HCR probe against the sema7aGPI transcript showed a very faint signal. Unfortunately, the HCR probe against the sema7asec transcript failed to detect the presence of any transcript. For robust detection of transcripts, the protocol demands a minimum of 20 probes. We believe that the very low number of probes against our transcripts is the primary reason for the lack of a signal.

      (3) The authors should explain the criteria used to select the 22 embryos used to analyze the effects of expressing diffusible Sema7a.

      Comments: We have explained this in lines 291-292. We identified 22 mosaic sema7asecmKate2 integration events, in which a single mosaic ectopic integration had occurred near the network of sensory arbors, from a total of almost 100 integrations. We rejected events where the sema7asec-mKate2 integration occurred either farther away from the sensory arbor network or had happened in multiple neighboring cells.

      (4) Although arbors were imaged in live embryos, time is never presented as a variable, so I cannot tell whether axon topology was changing as the images were collected. This needs to be clarified.

      Comments: We imaged the trunk neuromasts of both control and sema7a-/- mutant live zebrsfish larvae at 2, 3, and 4 dpf. We imaged the control and the sema7a-/- mutants of each developmental stage in parallel, within a span of two hours, and repeated these experiments multiple times to gather almost a hundred larvae from each genotype. Even though the sensory arbor network is dynamic, we believe imaging both the genotypes in parallel and within a span of two hours, and averaging almost a hundred larvae from each genotype minimize the temporal variability observed in the arbor architecture.

      (5) Ideally, the authors should use CRISPR/cas-9 to create a mutation in the C-terminus that would prevent production of the GPI-anchored form and not of the diffusible form. I understand if this is too much work to do in a short time, and would be satisfied with another experiment that could distinguish roles for at least one isoform more clearly. For instance, it would be interesting to see an analysis of how far an axon can be from a source to detect diffusible Sema7a (live imaging would be ideal for this) and then to show that the effect is different when the membrane bound form is expressed.

      Comments: Thank you for this comment. We are currently working in generating transcript specific knockout animals.

      We have added live timelapse video microscopy data in lines 330-337, Figure 4H-J, Figure 4—figure supplement 2, Video15,16.

      We have added a new segment analyzing the membrane-bound transcript variant in lines 338-351.

      Reviewer #4 (Recommendations For The Authors):

      Feedback to authors

      Overall, this is a very important and novel study. Currently the manuscript does need revision.

      Major concerns:

      (1) Controls. For the ectoptic expression of Sema7a, injection of a construct expressing Sema7a under a heatshock promoter is used to drive ectopic expression. No heatshock (injected) animal are used as a control. In many systems heatshock can impact neuron morphology. And heatshock proteins are required for normal neurite and synapse formation. Please examine sensory axons in uninjected wildtype animals with heatshock.

      Comments: We have added this control experiment in a new segment, explained in detail in lines 348-350 and Figure 5.

      (2) Synapse staining - regarding Figure 5 and related supplement

      Understanding whether guidance defects ultimately impact synapse formation is an important aspect of this paper. Therefore, is necessary to have accurate measurements of the number of complete synapses, and the overall numbers of pre- and postsynaptic components. Currently the data plotted in Figure 5 is extensive, but the way the data is laid out, the relevant comparisons are challenging to make. Perhaps include this quantification in the supplement, and move the data from the supplement to the main figure? The quantifications in the supplement are easier to follow and easier to compare between genotypes.

      Comments: We have performed exhaustive analysis on the formation of pre- and postsynaptic structures and have identified how their distribution changes along neuromast development in control larvae. We have further analyzed how such distribution is perturbed in the sema7a-/- mutants. We believe that showing only the average numbers will not reveal the changes in the distribution of the synaptic structures during development and across genotypes.

      Looking at the data itself, there seems to be some discrepancies with the synaptic counts compared to published work. While the CTBP numbers seem in order, the Maguk numbers do not. In both mutant and control there are many hair cells without any Maguk puncta/aggregates-leading to 0.75-1 postsynapses per hair cell (Figure 5 supplement H-I). Typically, the numbers should be more comparable to what was obtained for CTBP, 3-4 puncta per cells (Figure 5 supplement B-C), especially by 3-4 dpf. 3-4 CTPB or Maguk puncta per cell is based on previously published immunostaining and EM work.

      The Maguk immunostaining, especially at early stages (2-3 dpf) is challenging. To compound a challenging immunostain, around 2019 Neuromab began to outsource the purification of their Maguk antibody. After this outsourcing our lab was no longer able to get reliable label with the Maguk antibody from Neuromab.

      Millipore sells the same monoclonal antibody and it works well: https://www.emdmillipore.com/US/en/product/Anti-pan-MAGUK-Antibody-clone-K2886,MM_NF-MABN72

      I would recommend this source.

      Comments: Thank you for suggesting the new MAGUK antibody. We have utilized this new MAGUK antibody from Millipore and added a new segment in lines 389-408. In future publication we will utilize this antibody to capture the postsynaptic densities in the sensory arbors.

      The discrepancies in the postsynaptic punctae number in our control larvae may arise due to the reliability of the Neuromab MAGUK antibody. We have utilized this same antibody to stain the sema7a-/- mutants and have observed a significant decrease in MAGUK punctae number and area. On grounds of keeping parity between the control and the sema7a-/- mutants, we have decided to keep our experimental results in the manuscript.

      In addition to a more accurate Maguk label, a combined pre- and post-synaptic label is essential to understand whether synapses pair properly in the sema7a mutants. This can be accomplished using subtype specific antibodies using goat anti-mouse IgG1/Maguk and goat anti-mouse IgG2a/CTBP secondaries.

      Comments: Thank you for suggesting this. We are preparing another manuscript in which we will utilize this technique along with other suggestions to tease apart the role of distinct transcript variants in regulating neural guidance and synapse formation.

      (3) Does sema7a lesion impact the number of hair cells per neuromast? If hair cell numbers are reduced several of the quantifications could be impacted.

      Comments: We have added the raw data with the hair cell counts in both control and sema7a-/- mutants across developmental stages. The homozygous sema7a-/- mutants have slightly less hair cells and we have normalized all our topological analyses by the corresponding hair cell numbers for each neuromast in each experiment (lines 669-675).

      (4) Could innervation just be developmentally delayed in sema7a mutants? At 4 dpf the sensory system is just starting to come online and could still be in the process of refinement. Did you look at slightly older ages, after the sensory system is functional behaviorally, for example, 6 dpf? Do the cores phenotypes (synapse defects and excess arbors) persist at 6 dpf in the sema7a mutants?

      Comments: The homozygous sema7a-/- mutants are unviable and start to die at 6 dpf. We therefore restricted our analysis until 4 dpf. The association of the sensory arbors with the clustered hair cells gradually decreases as the neuromasts mature from 2 dpf to 4dpf in the sema7a-/- mutants (lines 174-176, Figure 2I). Moreover, in the sema7a-/- mutants the sensory axons throw long projections that keep getting farther away from the clustered hair cells as the neuromast matures from 2 dpf to 4 dpf (lines 166-168, Figure 2H; Figure 2—figure supplement 1K,L). These observations suggests that if the phenotypes in the sema7a-/- mutants were due to developmental delays, then we should have seen a recovery of disrupted arborization patterns over time. But instead, we observe a further deterioration of the arborization patterns and other architectural assemblies. These findings confirm that the observed phenotypes in the sema7a-/- mutants are not due to delayed development of the larvae, but a specific outcome for the loss of Sema7A protein.

      Minor comments to address:

      Results

      Page 4 lines 89-91. For the readers, explain why you examined levels in Sema7a in rostral and caudal hair cells. Also, this sentence is, in general, a little bit misleading-initially reading that there is no difference in Sema7a at 1.5-4 dpf.

      Comments: In lines 44-48, we explain that the hair cells in the neuromast contain mechanoreceptive hair cells of opposing polarities that help them detect water currents from opposing directions. In lines 93-106, we tested whether the Sema7A level varies between the two polarities. We observed that the Sema7A level is similar between the two polarities of hair cells, but the average Sema7A intensity increases significantly over the developmental period of 2 dpf to 4 dpf in both rostrally and caudally polarized hair cells.

      Page 10-11 Lines 263-270. What was the frequency of these 2 outcomes- out of the 22 cases with ectopic expression?

      Comments: We have explained this in lines 291-292. We identified 22 mosaic sema7asecmKate2 integration events, in which a single mosaic ectopic integration had occurred near the network of sensory arbors, from a total of almost 100 integrations. We rejected events where the sema7asec-mKate2 integration occurred either farther away from the sensory arbor network or had happened in multiple neighboring cells.

      Discussion

      Page 14 Lines 359-360. There is not enough evidence provided in this work to suggest that the membrane attached form of Sema7a is playing a role. Both the secreted and membrane form are gone in the sema7a mutants. If the membrane attached form was specifically lesioned, and resulted in a phenotype, then there would be sufficient evidence. Currently there is strong evidence for a distinct role for the secreted form. Although the authors qualify the outlined statement with the word 'likely', stating this possibility in the discussion take-home is misleading.

      Comments: In future we will utilize the CRISPR/Cas9 technique to target the unique Cterminal domain of the GPI-anchored sema7a transcript variant. We believe that this will only perturb the formation of the full-length Sema7A protein and help us differentiate between the roles of the membrane-bound Sema7AGPI molecule and the secreted Sema7Asec in sensory arborization and synaptic assembly.

      It might be interesting in either the intro or discussion to reference the role Sema3F in axon guidance in the mouse auditory epithelium. https://elifesciences.org/articles/07830

      Comments: We have added this reference in lines 61-64.

      Figures

      Please indicate on one of your Figures where the mutation is (roughly) in the sema7a mutant (in addition to stating it in the results).

      Comments: We have added this information in Figure 2—figure supplement 1A.

      Either state or indicate in a Figure where the epitope used to make the Sema7a antibody-to show that the antibody is predicted to recognize both isoforms.

      Comments: We have stated the details of the epitope in lines 528-529.

      Figure 2-S1 what is the scale in panel A, is it different between mutant and wildtype?

      Comments: We have updated the images. New images are depicted in Figure 2—figure supplement 1A.

      Methods

      What were the methods used to quantify synapse number and area?

      Comments: We have added a new section in lines 702-708 to explain the measurement techniques.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript by Chen et al. entitled, "The retina uncouples glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle", the authors look to provide insight on retinal metabolism and substrate utilization by using a murine explant model with various pharmacological treatments in conjunction with metabolomics. The authors conclude that photoreceptors, a specific cell within the explant, which also includes retinal pigment epithelium (RPE) and many other types of cells, are able to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: 1) the mini-Krebs-cycle, fueled by glutamine and branched-chain amino acids; 2) the alanine-generating Cahill-cycle; and 3) the lactate-releasing Cori-cycle. While intriguing if determined to be true, these cell-specific conclusions are called into question due to the ex vivo experimental setup with the inclusion of RPE, the fact that the treatments were not cell-specific nor targeted at an enzyme specific to a certain cell within the retina, and no stable isotope tracing nor mitochondrial function assays were performed. Hence, without significant cell-specific methods and future experimentation, the primary claims are not supported.

      Strengths:

      This study attempts to improve on the issues that have limited the results obtained from previous ex vivo retinal explant studies by culturing in the presence of the RPE, which is a major player in the outer retinal metabolic microenvironment. Additionally, the study utilizes multiple pharmacologic methods to define retinal metabolism and substrate utilization.

      Weaknesses:

      A major weakness of this study is the lack of in vivo supporting data. Explant cultures remove the retina from its dual blood supply. Typically, retinal explant cultures are done without RPE. However, the authors included RPE in the majority of experimental conditions herein. However, it is unclear if the metabolomics samples included the RPE or not. The inclusion of the RPE, which is metabolically active and can be altered by the treatments investigated herein, further confounds the claims made regarding the neuroretina. Considering the pharmacologic treatments utilized with the explant cultures are not cell-specific and/or have significant off-target effects, it is difficult to ascertain that the metabolic changes are secondary to the effects on photoreceptors alone, which the authors claim. Additionally, the explants are taken at a very early age when photoreceptors are known to still be maturing. No mention or data is presented on how these metabolic changes are altered in retinal explants after photoreceptors have fully matured. Likewise, significant assumptions are made based on a single metabolomics experiment with no stable isotope tracing to support the pathways suggested. While the authors use immunofluorescence to support their claims at multiple points, demonstrating the presence of certain enzymes in the photoreceptors, many of these enzymes are present throughout the retina and likely the RPE. Finally, the claims presented here are in direction contradiction to recent in vivo studies that used cell-specific methods when examining retinal metabolism. No discussion of this difference in results is attempted. Response: We agree with the reviewer that in vivo studies could be very interesting indeed. However, technologically it will be extremely difficult to (repeatedly/continuously) sample the retina of an experimental animal and to combine this with an interventional study, with a subsequent metabolomic analysis. We do not currently have access to such technology nor are we aware of any other lab in the world capable of doing such studies. Moreover, virtually all prior studies on retinal metabolism have been done on explanted retina without RPE. This includes the seminal studies by Otto Warburg in the 1920s. As opposed to this, our retinal samples for also all the metabolomic analyses included the RPE, except for the no RPE condition that was used as a comparator for the earlier investigations.

      We note that our metabolomic analysis was done for all five experimental conditions where each condition included at least five independent samples (each derived from different animals).

      The reviewer is correct to say that our organotypic explant cultures are early post-natal, with explantation performed at post-natal day 9 and culturing until day 15. Since our retinal explant system has been validated extremely well over more than three decades of pertinent research (see for instance: Caffe et al., Curr Eye Res. 8:1083-92, 1989), we are confident that photoreceptors mature in vitro in ways that are very similar to the in vivo situation. As far as studies in adult retina (i.e. three months or older) are concerned, this is indeed an important question that will be addressed in future studies. Studies employing stable isotope labelling may also be very informative and are planned for the future, also in order to properly determine fluxes. This will likely require an extension to our NMR hardware with an 15N channel probe, something that we plan on implementing in the future.

      We are aware that a number of questions relating to retinal metabolism are controversial and that the use of other methodology or experimental systems may lead to alternative interpretations. We have now included citations of other studies that use, for example, conditional and/or inducible knock-outs or in vivo blood sampling (e.g. Wang et al., IOVS 38:48-55, 1997; Yu et al., Invest Ophthalmol Vis Sci. 46:4728-33, 2005; Swarup et al., Am J Physiol Cell Physiol. 316:C121-C133, 2019; Daniele et al., FASEB Journal 36:e22428, 2022) and discuss the pros and cons of such approaches (e.g. in Lines 376-384; 454-472).

      Reviewer #2 (Public Review):

      Summary:

      The authors aim to learn about retinal cell-specific metabolic pathways, which could substantially improve the way retinal diseases are understood and treated. They culture ex vivo mouse retinas for 6 days with 2 - 4 days of various drug treatments targeting different metabolic pathways or by removing the RPE/choroid tissue from the neural retina. They then look at photoreceptor survival, stain for various metabolic enzymes, and quantify a broad panel of metabolites. While this is an important question to address, the results are not sufficient to support the conclusions.

      Strengths:

      The questions the authors are exploring at extremely valuable and I commend the authors and working to learn more about retina metabolism. The different sensitivity of the cones to various drugs is interesting and may suggest key differences between rods and cones. The authors also provide a thoughtful discussion of various metabolic pathways in the context of previous publications.

      Weaknesses:

      As the authors point out, ex vivo culture models allow for control over multiple aspects of the environment (such as drug delivery) not available in vivo. Ex vivo cultures can provide good hints as to what pathways are available between interacting tissues. However, there are many limitations to ex vivo cultures, including shifting to a very artificial culture media condition that is extremely different than the native environment of the retina. It is well appreciated that cells have flexible metabolism and will adapt to the conditions provided. Therefore, observations of metabolic responses obtained under culture conditions need to be interpreted with caution, they indicate what the tissue is doing under those specific conditions (which include cells adapting and dying).

      Chen et al use pharmacological interventions to the impact of various metabolic pathways on photoreceptor survival and "long term" metabolic changes. The dose and timing of these drug treatments are not examined though. It is also hard to know how these drugs penetrate the tissue and it needs to be validated that the intended targets are being accurately hit. These relatively long-term treatments should be causing numerous downstream changes to metabolism, cell function, and survival, which makes looking at a snapshot of metabolite levels hard to interpret. It would be more valuable to look at multiple time points after drug treatment, especially easy time points (closer to 1 hr). The authors use metabolite ratios to make conclusions about pathway activity. It would be more valuable to directly measure pathway activity by looking a metabolite production rates in the media and/or with metabolic tracers again in time scales closer to minutes and hours instead of days.

      It is not clear from the text if the ex vivo samples with RPE/choroid intact are analyzed for metabolomics with the RPE/choroid still intact or if this is removed. If it is not removed, the comparison to the retina without RPE/choroid needs to be re-interpreted for the contribution of metabolites from the added tissue. The composition of the tissue is different and cannot be disentangled from the changes to the neural retina specifically.

      While the data is interesting and may give insights into some rod and cone-specific metabolic susceptibility, more work is needed to validate these conclusions. Given the limitations of the model the authors have over-interpreted their findings and the conclusions are not supported by the results. They need to either dramatically limit the scope of their conclusions or validate these hypotheses with additional models and tools.

      Response: We thank the reviewer for the insightful comments and agree that some of our interpretations may have been phrased too determinedly. We have therefore rephrased and toned down our conclusions in many instances in the text, and changed the manuscript title to now read “Retinal metabolism: Evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle”.

      Nevertheless, when considering the major known metabolic pathways and their possible impact on metabolite patterns after the experimental manipulations used here, we believe our interpretations to be consistent with the data obtained. Conversely, the previously suggested retinal aerobic glycolysis cannot explain most of the data we have obtained. Even further, also a predominant use of the classical “full” Krebs-cycle/OXPHOS would not explain the metabolite patterns found (e.g. alanine, N-acetylaspartate (NAA)). While this does not in itself mean that our interpretations are all correct, they seem plausible in view of the data at hand and will hopefully stimulate further research on retinal energy metabolism using complementary technologies that were not available to us for the purpose of this study.

      We comment that our organotypic retinal explant cultures, while they do contain their very own, native RPE, do not comprise the choroidal vasculature (in our explantation procedure the RPE readily detaches from the choroid).

      As far as the drugs used on retinal explants are concerned, we note that:

      (1) all three compounds used are extremely well validated, with literally thousands of studies and decades of research to their credit (i.e., 1,9-dideoxyforskolin: >270 publications since 1984; Shikonin: >1000 publications since 1977; FCCP: >2800 publications since 1967),

      (2) all experimental conditions show clear and differential drug effects, as shown, for instance, by the principal component analysis in Figure1I and the cluster analysis in Figure2A,

      (3) the response patterns observed for key metabolites match the anticipated drug effects (e.g. decreased glucose consumption with 1,9-dideoxyforskolin; decreased lactate levels with Shikonin; lactate accumulation with FCCP).

      One can therefore be reasonably certain that these drugs did penetrate the explanted retina and that their respective drug targets were hit. Assessing dose-responses would certainly be interesting, however, the aim of this initial study was not pharmacodynamics but a general manipulation of energy metabolism. Moreover, given the extensive validation of these drugs, off-target effects seem not very likely at the concentrations used.

      We agree with the reviewer that using a longitudinal, time-series type of analysis could give additional insights. We note that each additional time-point will require retinae from 25 animals and a very resource-intensive and time-consuming metabolomic analysis, together with a significantly more complex multivariate analysis (metabolite, experimental condition, time). This is a completely new undertaking that is simply not feasible as an extension of the present study.

      To look at pathway activity in more direct ways is very good idea, to this end we aim to implement in the future an idea put forward by the reviewers, namely 13C-labeling and additionally 15N-labeling and tracing for specific metabolic fuels (e.g. glucose, lactate and anaplerotic amino acids such as glutamate and branched chain amino acids).

      The reviewer is of course correct to say that the culture condition is somewhat artificial and that this may have introduced changes in the metabolism. However, as noted above in the first response to reviewer #1, the organotypic retinal culture system, using a defined medium, free of serum and antibiotics, has been extremely well studied and validated for decades (cf. Caffé et al., Curr Eye Res. 8:1083-92, 1989). Importantly, this system allows to maintain retinal viability, histotypic organization, and function over many weeks in culture. Moreover, most previous studies on retinal metabolism have also used explanted retina – acute or cultured – i.e. experimental approaches that are similar to what we have used and that may be liable to their own artefactual changes in metabolism. This includes the seminal, 1920s studies by Otto Warburg, or the 1980s studies by Barry Winkler, the results of which the reviewers do not seem to doubt.

      We further agree that studying retinal metabolism in a situation closer to in vivo conditions would be thrilling, however to our knowledge to date there is no retina model that fully mimics the complex interplay of the blood metabolome with metabolic tissue activity. This likely means that for each metabolic condition to study (e.g. hyperglycemia, cachexia, etc.), a fairly large number of animals will need to be sacrificed for the molecular investigation of ex vivo retinal biopsies, which would mean a tremendous animal burden.

      We hope the reviewer will appreciate that the revised manuscript now includes numerous improvements, along with new, additional datasets and figures, references to further relevant literature, and – as mentioned above – a more cautious phrasing of our interpretations and conclusions, including a more careful wording for the manuscript title.

      Reviewer #3 (Public Review):

      Summary:

      The neural retina is one of the most energetically active tissues in the body and research into retinal metabolism has a rich history. Prevailing dogma in the field is that the photoreceptors of the neural retina (rods and cones) are heavily reliant on glycolysis, and as oxygen tension at the level of photoreceptors is very low, these specialized sensory neurons carry out aerobic glycolysis, akin to the Warburg effect in cancer cells. It has been found that this unique metabolism changes in many retinal diseases, and targeting retinal metabolism may be a viable treatment strategy. The neural retina is composed of 11 different cell types, and many research groups over the past century have contributed to our current understanding of cell-specific metabolism of retinal cells. More recently, it has been shown in mouse models and co-culture of the mouse neural retina with human RPE cultures that photoreceptors are reliant on the underlying retinal pigment epithelium for supplying nutrients. Chen and colleagues add to this body of work by studying an ex vivo culture of the developing mouse retina that maintained contact with the retinal pigment epithelium. They exposed such ex vivo cultures to small molecule inhibitors of specific metabolic pathways, performing targeted metabolomics on the tissue and staining the tissue with key metabolic enzymes to lay the groundwork for what metabolic pathways may be active in particular cell types of the retina. The authors conclude that rod and cone photoreceptors are reliant on different metabolic pathways to maintain their cell viability - in particular, that rods rely on oxidative phosphorylation and cones rely on glycolysis. Further, their data support multiple mechanisms whereby glycolysis may occur simultaneously with anapleurosis to provide abundant energy to photoreceptors. The data from metabolomics revealed several novel findings in retinal metabolism, including the use of glutamine to fuel the mini-Krebs cycle, the utilization of the Cahill cycle in photoreceptors, and a taurine/hypotaurine shuttle between the underlying retinal pigment epithelium and photoreceptors to transfer reducing equivalents from the RPE to photoreceptors. In addition, this study provides robust quantitative metabolomics datasets that can be compared across experiments and groups. The use of this platform will allow for rapid testing of novel hypotheses regarding the metabolic ecosystem in the neural retina.

      Strengths:

      The data on differences in the susceptibility of rods and cones to mitochondrial dysfunction versus glycolysis provides novel hypothesis-generating conjectures that can be tested in animal models. The multiple mechanisms that allow anapleurosis and glycolysis to run side-by-side add significant novelty to the field of retinal metabolism, setting the stage for further testing of these hypotheses as well.

      Weaknesses:

      Almost all of the conclusions from the paper are preliminary, based on data showing enzymes necessary for a metabolic process are present and the metabolites for that process are also present. However, to truly prove whether these processes are happening, C13 labeling or knock-out or over-expression experiments are necessary. Further, while there is good data that RPE cultures in vitro strongly recapitulate RPE phenotypes in vivo, ex vivo neural retina cultures undergo rapid death. Thus, conclusions about metabolism from explants should either be well correlated with existing literature or lead to targeted in vivo studies. This paper currently lacks both.

      Response: As mentioned above in the first answers to reviewers #1 and #2, we think of our study as a starting point that may provide novel directions for a whole series of investigations into retinal energy metabolism. Especially the use of novel technologies may in the future allow to decipher the different metabolic phenotypes of the 100+ distinct retinal cell types by in situ spatial metabolomics and lipidomics. Currently, we still have to limit the scope of our studies to only certain aspects of this topic. We thus agree that some of our interpretations need to be formulated more carefully and we have done so in the revised version of our manuscript. We also agree with the reviewer that carbon (13C) labelling and tracing studies will be very informative and will engage in such studies in the future. Besides 13C, we aim to further employ 15N labelled substrates, which is especially suitable to study the destiny of amino acids.

      As far as our organotypic retinal explant system is concerned, it is arguably one of the best validated such systems available (see responses to reviewers #1 and #2). While the reviewer is correct to say that the neuroretina without RPE degenerates relatively quickly in vitro, in our system, with the neuroretina and its native RPE cultured together, we can routinely culture the retina for four weeks or more, without major cell loss (Söderpalm et al., IOVS 35:3910-21, 1994; Belhadj et al., JoVE 165, 2020). Thus, our retinal cultures with RPE do not undergo rapid death. Within the time-frame of the present study (6 days in vitro) culturing-induced cell death is minimal and unlikely to influence our analyses. For further, more detailed answers to the reviewers’ questions please see our detailed point-to-point response below.

      We agree with the reviewer that eventually in vivo studies will be important to confirm our interpretations. As mentioned in our initial response to reviewer #1, such studies will be very challenging and new technologies may need to be developed before in vivo investigations can deliver the answers to the questions at hand (see answer to question Rev#3.17 below), especially if the cross-play between substrate availability from the blood metabolome and the retinal metabolic pathway activity shall be studied.

      Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      Rev#1.1. The animals should be screened for and lack rd8.

      Response: This is a pertinent question from the reviewer. Ever since we first became aware of the presence of rd8 mutations in certain mouse lines from major vendors (e.g. Charles River, Jackson Labs) in around 2010, we have setup regular screening of all our mouse lines for this Crb1 mutation. Accordingly, the mouse lines used in this study were confirmed to be free of the rd8 / Crb1 mutation. A corresponding remark has now been inserted into the SI materials and methods section (Lines 37-38).

      Rev#1.2. GLUT1 looks significantly different from in vivo to in vitro. Recommend co-staining with RHO and cone markers (PNA or CAR) to further delineate where it is being expressed. The in vitro cultures appear to have much shorter outer segments (OS). Considering OS biosynthesis is thought to drive a good deal of metabolic adaptations, how relevant is the in vitro model system to what is truly occurring in vivo?

      Response: The GLUT1 staining shown in Figure 1 displays the in vivo situation. Since may not have been entirely clear from the previous figure legend, we have now labelled this as “in vivo retina” and distinguish it from “in vitro” samples in the legend to Figure 1 (Lines 774-778). As far as the comparison of GLUT1 staining in vivo (Figure 1A3) vs. in vitro (Figure S1C3) is concerned, in both situations a strong RPE labelling is clearly visible, with essentially no GLUT1 label within the neuroretina.

      Nevertheless, to better delineate the expression of GLUT1 in the outer retina, we have now performed an additional co-staining with rhodopsin (RHO) as rod marker and peanut agglutinin (PNA) as cone marker, as suggested by the reviewer (new supplemental Figure S1). In brief, this co-staining confirms the strong expression of GLUT1 in the RPE, while there is essentially no GLUT1 detectable in rod or cone photoreceptors.

      Retinal explants in long-term cultures do indeed have somewhat shorter outer segments compared to same age in vivo counterparts (Caffe et al., Curr Eye Res. 8:1083-1092, 1989). However, in the short-term cultures (6 DIV) and at the age studied here (P15) outer segments have only just started to grow out and are around 10 - 12 µm long, both in vitro and in vivo (cf. LaVail, JCB 58:650-661, 1978). Thus, the metabolism required for outer segment synthesis should be equivalent when in vitro and in vivo situations are compared. For considerations on outer segments in retinal explant cultures see also Rev#3.2 and Rev#3.29.

      Rev#1.3. Also, recent publications have shown that GLUT1 is expressed in the neuroretina including rods, cones, and muller glia. Was GLUT1 not appreciated in these cells in your ex vivo samples and if so, why? Likewise, these same studies previously demonstrated GLUT1 resulted in rod degeneration but not cone. The results presented here differ significantly. Why the difference in results and is it secondary to the in vitro vs. in vivo setting? Furthermore, the authors state that they thought the no RPE situation would be similar to the GLUT1 inhibitor experimental condition but instead, they were vastly different. Is this secondary to the fact that GLUT1 is expressed outside the RPE.

      Response: We are aware that there is a controversy regarding GLUT1 expression in the neuroretina, please see also our response to question Rev#3.1 below. As far as our immunostaining for GLUT1 on in vivo retina is concerned, we find an unambiguous and very marked expression of GLUT1 in RPE cells, at both basal and apical sides. Compared to the RPE, the neuroretina appears devoid of GLUT1 staining. However, at very high gamma values a faint staining in the neuroretina becomes visible, a staining which from its appearance – processes spanning the entire width of the retina – is most compatible with Müller glia cells. Under normal circumstances we would have dismissed such a faint staining as background and false positive. Given the sometimes very contradicting reports in the literature, we cannot fully exclude a weak expression of GLUT1 also in cells other than the RPE, with Müller glial cells perhaps being the most likely candidate. At any rate, GLUT1 expression in the neuroretina can only be much weaker than in the RPE, making its relevance for overall retinal metabolism unclear.

      As far as recent publications studying GLUT1 in the retina are concerned, we know of the study by Daniele et al. (FASEB Journal 36:e22428, 2022), which used a rod-specific, conditional knock-out of GLUT1 and found a relatively slow rod degeneration. We are not aware of a selective GLUT1 knock-out in cones, nor are we aware of conditional GLUT3 knock-outs in the retina. For further discussion of the Daniele et al. study please see Rev#3.13.

      The reviewer is right, initially we were thinking that, since GLUT1 was expressed only (predominantly) in RPE, the metabolic response to GLUT1 inhibition should look similar to the no RPE situation. However, this initial hypothesis did not consider a key fact: The RPE builds the blood retinal barrier and the tight-junction coupled RPE cells are a barrier to any larger molecule, including glucose. Removing the barrier by removing the RPE dramatically increases the availability of glucose to the retina, a phenomenon that is likely exacerbated by the expression of the high affinity/high capacity GLUT3 on photoreceptors (cf. Figure S1A). In other words, when the RPE is removed the outer retina is “flooded” with glucose and we believe that this is probably the main factor that explains why the metabolic response to GLUT1 inhibition (1,9-DDF group) is so different from the no RPE condition.

      We have now included an additional corresponding explanation in the discussion (Lines 422-429). Furthermore, we have added an entire new subchapter to the discussion to debate the expression of glucose transporters in the outer retina (Lines 454-472).

      Rev#1.4. Shikonin's mechanism of action via protein aggregation and lack of specificity for PKM2 vs PKM1 at 4uM is an experimental limitation that needs to be taken into account. All treatments utilized are not cell-specific.

      Response: While the reviewer is correct to say that Shikonin may have multiple cellular targets and a diverse range of possible applications as an anti-inflammatory, antimicrobial, or anticancer agent (cf. Guo et al., Pharmacol. Res. 149:104463, 2019), numerous studies support its specificity for PKM2 over PKM1, at concentrations ranging from 1 – 10 µM (Chen et al., Oncogene 30:4297-306, 2011; Zhao et al., Sci. Rep. 8:14517, 2018; Traxler et al., Cell Metab. 34:1248-1263, 2022). We settled for 4 μM as an intermediate concentration, considering its effectiveness and specificity in previous studies. We have now inserted references detailing the specificity and concentration range of Shikonin into the SI Materials and Methods section (Line 62).

      The concern that “all treatments” are not cell-specific is debatable. Certainly, any given compound may have off-target effects, yet, since the compounds we used in our study have all been studied for decades (see above, initial response to Reviewer #2), their off-target profile is well established and unlikely to play an important role here. Moreover, in our study the cell specificity does not come from the compounds used but from where their targets are expressed. As shown in Figure 1A and in Figure S1C, Shikonin´s target PKM2 is almost exclusively expressed in photoreceptor inner segments. Hence, it seems very reasonable to expect that the vast majority of the metabolomic changes observed by Shikonin treatment are related to photoreceptors. We note that this assertion would still be true even if there was a low-level expression of PKM2 in other retinal cell types and/or if Shikonin had moderate off-target effects on other enzymes since the bulk of the effect on the quantitative metabolomic dataset would still originate from PKM2 inhibition in photoreceptors.

      Rev#1.5. What was the method of cone counting in Figure 1?

      Response: Cones were counted per 100 µm of retinal circumference based on an arrestin-3 staining (cone arrestin, CAR).

      This information is now included in the SI Materials and Methods section under “Microscopy, cell counting, and statistical analysis” (Lines 99-100).

      Rev#1.6. How do you know that FCCP is not altering RPE ox phos, disrupting the outer retinal microenvironment and leading to cell death, and therefore, the effects seen are not photoreceptor-specific but rather downstream from the initial insult in RPE?

      Response: We propose that FCCP will be acting on both photoreceptors and RPE cells (and all other retinal cell types) at essentially the same time, over the experimental time-frame. Thus, OXPHOS should be inhibited in all cells simultaneously. However, FCCP will primarily affect cells that actually use OXPHOS to a large extent, while cells relying on other metabolic pathways (e.g. glycolysis) will hardly be affected.

      We believe the very strong effect of FCCP, seen exclusively in rod photoreceptors, to be a direct drug effect. While we cannot not fully exclude an indirect effect via the RPE – as proposed by the reviewer – we think this to be unlikely because:

      (1) RPE viability was not compromised by FCCP treatment.

      (2) If the reviewer´s hypothesis was correct, then also cone photoreceptors should have been affected (e.g. because now the RPE consumes all glucose, leaving nothing for cones). However, cones were essentially unaffected by the FCCP treatment, making a dependence on RPE OXPHOS unlikely. Especially so, because blocking GLUT1 and glucose import on the RPE with 1,9-DDF had only relatively minor effects on rod photoreceptor viability but strongly affected cones. This indicates that the RPE is mainly shuttling glucose through to photoreceptors, especially to cones, and this function does not seem to be impaired by FCCP treatment.

      (3) We found that enzymes required for Krebs-cycle and OXPHOS activity (i.e. citrate synthase, fumarase, ATP synthase γ) are predominantly expressed in photoreceptors but virtually absent from RPE (Figure 3D, see also answer to following question).

      (4) The density of mitochondria (i.e. the target for FCCP) is far lower in RPE than in photoreceptors, as evidenced also by the COX staining shown in Figure 1A. Hence, photoreceptors are far more likely to be hit by FCCP treatment than RPE cells.

      To accommodate the reviewer´s concern, we have now added a further comment into the discussion (Lines 440-442).

      Rev#1.7. While Figure 3D is interesting, it offers no significant insight into mechanisms as the enzyme levels are not being compared to control nor is mitochondrial fitness in these conditions being assessed, which would provide greater insight than just showing that these enzymes are present in the inner segments, which are known to be rich in mitochondria. Additionally, stating that the low ATP is secondary to decreased Krebs cycle activity and ox phos based on merely ATP levels is not supported by metabolite levels minus citrate nor ox phos enzyme levels or oxygen consumption. Also, citrate is purported to be decreased in the table in Figure 2 in the no RPE condition; however, Supplemental Figure 2 demonstrates this change is not significant then the same data is presented in Supplemental Figure 3 and it is statistically significant again. Why the difference in data and why is the same data being shown multiple times?

      Response: The immunostaining shown in Figure 3D shows the in vivo retina, or in other words the localization of enzymes in the native situation. Since this may not have been obvious in the previous manuscript version, we have added a corresponding comment to the legend of Figure 3 (Line 806). The localization of the Krebs-cycle/OXPHOS enzymes citrate synthase, fumarase, and ATP synthase mainly to photoreceptors, but not (or much less) to RPE, is another piece of evidence supporting the idea that OXPHOS is predominantly performed by photoreceptors (see also answer to previous question Rev#1.6).

      The decreased ATP levels (together with citrate, aspartate, NAA) shown in Figure 3 in the no RPE group, are an indication that photoreceptor Krebs-cycle activity may be decreased but not abolished in the absence of RPE. Importantly, GTP levels are not reduced in the no RPE group (Figure 2). Since large amounts of GTP can only by synthesized by either SUCLG-1 in the Krebs-cycle or by NDK-mediated exchange with ATP, the most plausible interpretation is that Krebs-cycle dependent ATP-synthesis was decreased in the no RPE situation, but that the (mini) Krebs-cycle or Cahill-cycle, notably the step from succinyl-CoA to succinate, was running. Since there is no RPE in this group, this strongly suggests important Krebs-cycle/OXPHOS activity in photoreceptors where the majority of the corresponding enzymes are located (see above).

      We thank the reviewer for pointing out that the information on group comparisons may not have been presented with sufficient clarity. In the figures mentioned by the reviewer the data is shown and compared in different contexts: the table in Figure 2B and the data in Figure S3 (now renumbered to Figure S5) refer to two-way comparisons of treatment condition to control, to elucidate individual treatment effects. Meanwhile Figure S2 (now supplementary Figure S3) refers to a 5-way comparison for a general overview that puts all five groups in context with each other. These differences in comparisons and normalization to the respective common standards entail the use of different statistical tools, resulting in different p-values. The statistical testing approaches and thresholds are now disclosed in the figure legends, and additionally in the SI Materials and Methods section (Lines 145-155).

      Rev#1.8. When were the ex vivo samples taken for metabolomics, and if taken when significant TUNEL staining and cell death have occurred, are the changes in metabolism due to cell death or a true indication of differential metabolism? Furthermore, it is unclear if the metabolomics samples included the RPE or not. Considering these treatments will affect most cells in the retina and the RPE, which is included in the ex vivo samples, it is difficult to ascertain that these changes are secondary to the effects on photoreceptors alone.

      Response: The samples for metabolomics included the RPE (except for the no RPE condition) and were taken at the same time as the tissues for histological preparations and TUNEL assays, i.e. they were all taken at post-natal day 15. This has now been clarified in the SI Materials and Methods section (Lines 108-110).

      We cannot entirely exclude an effect of ongoing cell death caused by the different drug treatments on the retinal metabolome. However, since in the experimental treatments cell death was still comparatively low (even in the FCCP condition, overall cell death was only around 10% of the total retina), and the metabolomic analysis considered the entire tissue, the impact of cell death per se on the total metabolome will be comparatively minor (≤ 10%, i.e. within the typical error margin of the metabolomic analysis).

      As mentioned above, the drug treatments should in principle affect all retinal cells at the same time. However, only cells that express the drug targets (i.e. 1,9-DDF targets GLUT1 in RPE cells, Shikonin targets PKM2 in photoreceptors; cf. Figure 1A) should react to the treatment. Even FCCP, in the paradigm employed, will only affect those cells that rely heavily on OXPHOS. Our data indicates that while this is almost certainly the case for rods; cones, RPE cells, and essentially all of the inner retina, are not affected by FCCP treatment, strongly suggesting that OXPHOS is of minor importance for these cell populations.

      Rev#1.9. Why were the FCCP and no RPE groups compared? If they have similar metabolite patterns as noted in Figure 2, would that suggest that FCCP's greatest effect is on the ox phos of RPE and the metabolite patterns are secondary to alterations in RPE metabolism? Also, the increase in citrate and decrease in NAD may be related to effects on RPE mitochondrial metabolism when comparing these groups, and the disruption of RPE metabolism may then result in PARP staining of photoreceptors.

      Response: The reason for the pair-wise comparison of the no RPE and FCCP groups initially was indeed the similarity in metabolite patterns. This was now rephrased accordingly in the results section “Photoreceptors use the Krebs-cycle to produce GTP” (Lines 218-219). The interpretation that the reviewer proposed here is interesting, but does not conform with the data analysis of this and other group comparisons.

      Instead, the similarity between the metabolic patterns found in the no RPE and FCCP groups further supports the idea that a lack of RPE decreases retinal OXPHOS and increases glycolysis. This interpretation is based on the following observations:

      (1) Mitochondrial density in the RPE is far lower than in photoreceptors (see COX staining in Figure 1A), thus quantitatively the metabolite pattern caused by a disruption of OXPHOS (via FCCP treatment) will be dominated by metabolites generated by photoreceptors. For the same reason the depletion of retinal NAD+, and the concomitant increase in photoreceptor PAR accumulation after FCCP treatment, is unlikely to be due to changes in RPE.

      (2) Similarly, citrate synthase (CS) was found to be almost exclusively expressed in photoreceptor inner segments, with little expression in RPE (Figure 3D). Hence, the quantitative increase of citrate levels after FCCP treatment can only originate in photoreceptors.

      (3) The comparison of the control (with RPE) against the no RPE group suggested an increase in (aerobic) glycolysis in the absence of RPE, evidenced notably by a retinal accumulation of lactate, BCAAs, and glutamate (Figure 3A). The very same metabolite pattern is seen for the FCCP treatment (Figure 1B) indicating a marked upregulation of glycolysis (Figure 6C). The latter observation suggests that photoreceptors, after disruption of OXPHOS switch to an exclusively glycolytic metabolism, which, however, rods cannot sustain (Figure 1C, D).

      (4) Glucose consumption and lactate release is increased in the no RPE group vs. control (new Supplementary Figure 4). A similar increase in glucose consumption and lactate production is seen in the FCCP group suggesting that also the no RPE situation disrupts OXPHOS in photoreceptors.

      Rev#1.10. The conclusions being reached are difficult to interpret secondary to the experimental procedures and the fact that the treatments are not cell-specific and RPE is included with the neuroretina as well. Likewise, stating FCCP is altering the Krebs cycle in the neuroretina is difficult to believe as there are no changes in the Krebs cycle when compared to the control, which also has RPE.

      Response: We agree with the reviewer, that some of the conclusions may have been somewhat speculative. Accordingly, we have toned down our conclusions in several instances in the text, notably in abstract, introduction, and discussion.

      When it comes to Krebs cycle intermediates a key limitation of our study is indeed the lack of carbon-tracing and metabolic flux analysis as noted by the reviewers, a limitation that we now highlight more strongly in the discussion of the revised manuscript (Lines 545-549). While it is highly probable that the flux of Krebs cycle intermediates is altered by FCCP, our steady-state data does not show significant changes in the metabolites citrate, fumarate, and succinate. However, our study does show a highly significant decrease in GTP levels, which as explained above, is a key indicator of Krebs cycle activity/inactivity. Moreover, while GTP levels were reduced also in the no RPE group, GTP was still significantly higher in the no RPE group compared to the FCCP treatment. Our interpretation of this finding is that there is Krebs-cycle/OXPHOS activity in the neuroretina, which is abolished by FCCP.

      Rev#1.11. Supplemental Figure 4C and D states that GAC inhibition affected only photoreceptors, but GAC is expressed throughout the retina and so the inhibition is altering glutamine-glutamate homeostasis throughout the retina. Clearly, based on histology, one can see that the architecture of the retina, especially at the highest dose, is lost likely because all cells are being affected. So it is not photoreceptor-specific and even at low doses one can see that the inner retina is edematous. Moreover, with such a high amount of TUNEL staining in the ONL, are rods more affected than cones?

      Response: In our hands the immunostaining for Glutaminase C (GAC) labelled predominantly cone inner segments, the OPL, and perhaps bipolar cells (Figure S1A). The deleterious effects mentioned by the reviewer are only seen at the highest concentration of the GAC inhibitor compound 968. This concentration (10 µM) is 100-fold higher than the dose that produces a significant loss of cones in the outer retina (0.1 µM). We therefore think that this data points to the extraordinary reliance of cones on glutamine and glutamate. As can be seen from the images (Figure S4C) illustrating the effects of 0.1 and 1 µM Compound 968 treatment, the ONL thickness is not significantly reduced by the GAC inhibitor. This strongly indicates that at these doses the rods are not affected by GAC inhibition.

      Rev#1.12. The no RPE vs 1,9 DDF data may be interpreted as preventing glucose transport in the RPE increases BCAA catabolism by the RPE, which has been shown to utilize BCAA in culture systems. To this end, when the RPE is not present, the BCAA is increased as compared to the control with RPE.

      Response: Our original interpretation of this data was that after GLUT1 inhibition and a correspondingly reduced retinal glucose uptake, the retina switched to an increasing use of anaplerotic substrates, including BCAAs. This is supported by the concomitant upregulation of the Cahill-cycle product alanine and the mini-Krebs-cycle product N-acetylaspartate (NAA). Yet, we agree with the reviewer that BCAAs could also be consumed by the RPE. We have now changed our conclusion at the end of the results chapter “Reduced retinal glucose uptake promotes anaplerotic metabolism“ to also highlight this possibility (Lines 261-262).

      Rev#1.13. It is unclear why so much effort is comparing the no RPE group to the treatment groups and not comparing the control group to the different treatment groups.

      Response: Previous studies – including the seminal studies of Otto Warburg from the early 1920s – had always used retina without RPE. This “no RPE” situation is therefore something of a reference for our entire study, which is why we dedicated more effort to its analysis. We have now inserted a corresponding remark into the manuscript (Lines 182-184).

      Rev#1.14. The conclusions are significantly overstated especially with regards to rods versus cones as these are not cell-specific treatments. For example, the control vs 1,9 DDF vs FCCP clearly shows that there is mitochondrial dysfunction due to decreased NAD, increased AMP/ATP ratio, decreased Asp but increased Gln, and a compensatory increase in lactate production.

      Response: We agree with the reviewer and have tried to phrase our statements in more measured fashion. Notably, we have toned down our statements in the title, abstract, results, discussion, and several of the subchapter headings.

      Rev#1.15. While metabolic conclusions are drawn on serine/lactate ratio, this ratio is driven by the drastic changes in lactate and not so much serine in the treatment conditions as it was rather stable. Likewise, substrates beyond glucose have the potential to fuel the TCA cycle and make GTP via SUCLG1, such as fatty acids, other AAs, etc. Therefore, this ratio may not tell the entire story about anaplerotic metabolism. Furthermore, knowing that RPE utilize BCAAs to fuel their TCA cycle, the no RPE condition may simply have increased BCAAs due to lack of metabolism by the RPE, which drives the GTP/BCAA ratio. To state that the neuroretina was utilizing BCAAs for anaplerosis is not well supported based on the current data. Similarly, what is to say that the GTP/lactate ratio in the no RPE situation is not driven by the fact that the RPE is no longer present to act as acceptor of retinal lactate production or that more glucose is reaching the retina since the RPE is not present to accept and utilize that produced. Glucose uptake was not assessed to further address these issues.

      Response: We agree with reviewer that metabolite ratios may not tell the full story underlying retinal metabolism however based on the robustness of using quantitative and highly reproducible NMR data, they are an important part of the metabolomics toolbox. The reviewer correctly observed that the changes in lactate levels are more dramatic than in serine. Still, also serine was significantly increased in the no RPE, 1,9-DDF, and Shikonin groups. Together with the lactate changes (same or opposite direction) the resulting serine/lactate ratios display marked alterations.

      When it comes to the supply of other potential energy substrates mentioned by the reviewer, i.e. fatty acids or amino acids other than BCAAs, these are only supplied in minimal amounts in the defined, serum free R16 medium (Romijn, Biology of the Cell, 63, 263-268, 1988) and – if used to any important extent – would be rapidly depleted by the retina. Thus, for a culture period of 2 days in vitro between medium changes these energy sources are not available and thus cannot be used by the retina.

      Our conclusion that the retina is using anaplerosis is based not only on the observations made in the no RPE group but also on, for instance, the metabolite ratios seen in the 1,9-DDF treatment group. In this group decreased glycolytic activity may correspond to increased serine synthesis and anaplerosis.

      As far as glucose uptake is concerned, we have analysed the medium samples at P15 (equivalent to the retina tissue collection time point) and now present data that addresses this question more directly via the consumption of glucose from and release of lactate to the culture medium (New Supplementary Figure 4C, D). This new dataset provides another independent observation showing that:

      (1) Glucose consumption/lactate release (i.e. aerobic glycolysis) is high in the no RPE situation but low in the control situation. In other words, retinal aerobic glycolysis is most likely stimulated by the absence of RPE.

      (2) 1,9-DDF treatment decreases glucose consumption/lactate release as would be expected from a GLUT1 blocker. Since ATP and GTP production are high nonetheless, this indicates that other substrates (i.e. anaplerosis) were used for retinal energy production, in agreement with the analysis shown in Figure 6C.

      (3) The FCCP treatment, which disrupts oxidative ATP-production, increases glucose consumption/lactate release in way similar to the no RPE situation. Yet, the no RPE retina can still generate sizeable amounts of GTP but not ATP. Together, this provides further evidence that neuroretinal OXPHOS is decreased in the absence of RPE.

      Rev#1.16. The evidence for the mini-Krebs cycle is intriguing but weak considering it is based on certain enzymes being expressed in the photoreceptors, which had already been shown to be present in other publications, and a single ratio of metabolites that is increased in FCCP. One would expect this ratio to be increased under FCCP regardless. There is no stable isotope tracing with certain fuels to confirm the existence of the mini-Krebs cycle.

      Response: We thank the reviewer for this suggestion. We agree that our evidence for the mini-Krebs-cycle (and the Cahill-cycle) may be to some extent circumstantial and additional technologies would help to obtain further supportive data. Still, here we would like to invite the reviewer to a thought experiment where he/she could try and interpret our data without considering the Cahill- or the mini-Krebs-cycle. At least we ourselves, when we engaged into such thought experiments, were unable to explain the data observed without these alternative energy-producing cycles. Most notably, we were unable to explain the strong accumulation of either alanine or N-acetyl-aspartate (NAA) when only considering glycolysis and (full) Krebs-cycle metabolism. Of course, this may still be considered “weak” evidence, and we expect that future studies including complementary technologies will either confirm or expand our interpretation of the existing data set.

      The suggestion to perform stable isotope-labelled tracing with potential alternative fuels (e.g. glutamate, glutamine, pyruvate, etc.) is very attractive indeed. While such studies are likely to shed further light on the metabolic pathways proposed, this will entail very extensive experimental work, with multiple different conditions and concentrations and variety of analysis methods that is currently not feasible (e.g. a 1.7 mm NMR probe equipped with a 15N channel) as an extension of the present manuscript. Nevertheless, we will certainly consider this approach for future follow-up studies once such techniques are available and will screen for suited collaboration partners. A corresponding comment on such future possibilities has now been inserted into the discussion (Lines 545-549).

      Rev#1.17. The discussion does not mention how this data contradicts a recent in vivo study looking at Glut1 knockout in the retina (Daniele et al. FASEB. 2022) or previous in vivo studies that suggest cones may be less sensitive to changes in glucose levels (Swarup et al. 2019). This is a key oversight.

      Response: We thank the reviewer for pointing this out. We now included these studies in the revised discussion in a new subchapter on the expression of glucose transporters in the outer retina (Lines 454-472). For a critical review of the Daniele et al., 2022 study please also see our more detailed response to question Rev#3.13 below.

      Rev#1.18. GAC is expressed in more than just cones so making cell-specific statements regarding fuel utilization is not well supported.

      Response: Our immunostaining for GAC revealed a strong expression in cone inner segments (Figure S1A3). While this does not exclude (relatively minor) expression in other retinal cell types, cones are likely to be more reliant on GAC activity than other cell types. See also answer above.

      Rev#1.19. Suggesting that rods utilize the mini-Krebs cycle based on AAT2 being seen in the inner segments without at least co-staining for RHO or PNA is weak evidence for such a cycle. AAT looks to be expressed in the inner segments of all photoreceptors.

      Response: We have taken up this suggestion from the reviewer and now provide an additional co-staining for AAT1 and AAT2 with rhodopsin. Note that in response to a pertinent comment from Reviewer #3 we have changed the abbreviation for aspartate aminotransferase from “AAT” to the more commonly used “AST” throughout the manuscript.

      New images showing a co-staining for AST1 and AST2 with rhodopsin now replace the former image set in Figure 7D. In brief, the new images show the expression of both AST1 and AST2 across the retina, with, notably an expression in the inner segments of photoreceptors but not in the outer segments, where rhodopsin is expressed.

      Reviewer #3 (Recommendations For The Authors):

      Rev#3.1. The staining for the glucose transporters GLUT1 and GLUT3 does not reflect what has previously been published by two different groups that were validated by cell-specific knockout mice. As mentioned by the author GLUT1 and GLUT3 have differences in transport kinetics, which would affect their metabolism. Therefore, the lack of GLUT1 in photoreceptors would suggest that photoreceptor metabolism is not faithfully replicated in this system. This difference from the previous literature should be discussed in the discussion.

      Response: As the reviewer pointed out, the expression of GLUT1 in the retina is somewhat controversial, with much older literature showing expression on the RPE, while some more recent studies claim GLUT1 expression in photoreceptors. For a brief discussion of our GLUT1 immunostaining please see also our answer to question Rev#1.3 above.

      Although the retinal expression of GLUT1 was besides the focus of our study, we feel we must address this point in more detail: In the brain the generally accepted setup for GLUT1 and GLUT3 expression is that low-affinity GLUT1 (Km = 6.9 mM) is expressed on glial cells, which contact blood vessels, while high-affinity GLUT3 (Km = 1.8 mM) is expressed on neurons (Burant & Bell, Biochemistry 31:10414-20, 1992; Koepsell, Pflügers Archiv 472, 1299–1343, 2020). This setup matches decreasing glucose concentration with increasing transporter affinity, for an efficient transport of glucose from blood vessels, to glial cells, to neurons. In the retina, the cells that contact the choroidal blood vessels are the tight-junction-coupled RPE cells. As shown by us and many others, RPE cells strongly express GLUT1 (cf. Figure 1A-3.). To warrant an efficient glucose transport from the RPE to photoreceptors, photoreceptors must express a glucose transporter with higher glucose affinity than GLUT1. We show that this is indeed the case with photoreceptors expressing GLUT3 (cf. Supplemental Figure 1-5.). While a part teleological explanation does not per se prove that our data is correct, at least our data is plausible. In contrast, the glucose transporter setup sometimes claimed in the literature is biochemically implausible, i.e. for the flow of metabolites (glucose) to go against a gradient of transporter affinities, and we are not aware of an example of such a setup occurring anywhere in nature.

      However, at this point we cannot exclude low levels of GLUT1 expression on Müller glia cells or even photoreceptors. This expression could, for instance, be relevant in cases where cells were shuttling excess glucose – perhaps produced through gluconeogenesis – onwards to other retinal cells. Still, GLUT1 expression can only be minor when compared to RPE since a major expression would destroy the glucose affinity gradient (see above) required for efficient glucose shuttling into the energy hungry photoreceptors.

      To address this request by the reviewer (and also reviewer #1) we now discuss the question of glucose transporter expression in the outer retina in a new subchapter of the discussion (Lines 454-472).

      Rev#3.2. Photoreceptor metabolism and aerobic glycolysis are tied to photoreceptor function, as demonstrated by Dr. Barry Winkler. The authors should provide data or mention (if previously published) about photoreceptor OS growth and function in this system.

      Response: The studies of Barry Winkler (e.g. Winkler, J Gen Physiol. 77, 667-692, 1981) confirmed the original work of Otto Warburg and expanded on the idea that the neuroretina was using aerobic glycolysis. Importantly, Winkler used a very similar experimental setup as Warburg has used, namely explanted rat retina without RPE. In light of our data where we compare metabolism of mouse retina with and without RPE – where retina cultured without RPE confirms the data of Warburg and Winkler – it appears most likely that the purported aerobic glycolysis occurs mostly in the absence of RPE but only to a lower extent in the native retina.

      Photoreceptor outer segment outgrowth is somewhat slower in the organotypic retinal explant cultures compared to the in vivo situation (cf. Caffe et al., Curr Eye Res. 8:1083-1092, 1989 with LaVail, JCB 58:650-661, 1978; see also answer to reviewer #1). Importantly, organotypic retinal explant cultures and their photoreceptors are fully functional and remain so for extended periods in culture (Haq et al., Bioengineering 10:725, 2023; Tolone et al., IJMS 24:15277, 2023). This information has now been added to the manuscript discussion section, into the new subchapter “The retina as an experimental system for studies into neuronal energy metabolism” (Lines 367-395).

      Rev#3.3. It is unclear from the description of the experiment in both the results and methods if 1,9DDF, Shikonin, and FCCP were added to both apical and basal media compartments or one or the other and should be specified. The details of what was on the apical compartment would be helpful, as the model is supposed to allow for only nutrients from the basal compartment (as indicated by the authors themselves). Is the apical compartment just exposed to air? How does this affect survival?

      Response: In organotypic retinal explant cultures the RPE rests on the permeable culturing membrane such that the basal side is contact with the membrane and the medium below (far schematic drawing see Figure S1B), while the apical side is covered by a thin film of medium created by the surface tension of water (Caffe et al., Curr Eye Res. 1989; Belhadj et al., JoVE, 2020). This thin liquid film ensures sufficient oxygenation and is an important factor that allows the retinal explant to remain viable for several weeks in culture. If the retinal cultures were submerged by the medium, their viability – especially that of the photoreceptors – would drop dramatically and would typically be below 3-5 days. Therefore, in the retinal organotypic explant cultures used here, the nutrients and the drugs applied do indeed reach the outer retina from the basal side, i.e. similar as they would in vivo.

      To address this question from the reviewer, corresponding clarifications have been inserted into the SI Materials and Methods section (Lines 64-66).

      Rev#3.4. As the metabolomic data obtained was quantitative, several metabolites discussed should be analyzed in terms of ratios, for example, Glutathione and glutathione disulfide should be reported as a ratio. In addition as ATP, ADP, and AMP were measured, they can used to calculate the energy charge of the tissue.

      Response: We thank the reviewer for these suggestions and have created corresponding graphs for GSH / GSSG ratio and energy charge. These new graphs have now been added to the SI datasets, to the new Supplementary Figure 4. To accommodate other requests from the Reviewers, this new Figure also contains additional new datasets on glucose and lactate concentrations (see further comments above and below). Please note that all later SI Figures have been renumbered accordingly.

      In brief, the ratios for GSH/GSSG show no significant changes between control and the different experimental groups. Meanwhile, the adenylate energy charge of the retinal tissues show a significant decrease in the energy charge for the Shikonin group and the FCCP group. Note that in the new Supplementary Figure 4A, the dotted lines indicate the energy charge window typical for most healthy cells (0.7 – 0.95).

      Rev#3.5. I think a missed opportunity when discussing the possible taurine/hypotaurine shuttle would be the impact on the osmosis of the subretinal space as taurine has been hypothesized as a major osmolyte.

      Response: This is another interesting recommendation from the reviewer. To address this point, we have now introduced a corresponding paragraph and references in the discussion of the manuscript (Lines 503-504; 512-514).

      Rev#3.6. In Figure 3, the distribution of these enzymes should also be studied under the no RPE condition as the culture treatment took several days for these metabolic changes to occur.

      Response: The images shown in Figure 3D are from the in vivo retina. Since this may not have been very clear in the previous manuscript version, we have now added a corresponding explanation to the legend of Figure 3. As far as we can tell, the expression and localization of neuroretinal enzymes does not change in cultured retina, during the culture period (compare Figure 1A with Supplementary Figure S1C). However, when it comes to the metabolite taurine its production (localization) changes dramatically in the no RPE situation where taurine is essentially undetectable by immunostaining (not shown but see metabolite data in Figure 2A, Figure 3A).

      Rev#3.7. In Figures 4 and 5, it is unclear why the experimental groups were not compared to the control and requires further explanation. Furthermore, the authors should justify the concentrations of drugs used as the cell death could have risen from toxicity to the drugs and not due to disruption of metabolism.

      Response: The reviewer is right, the rationale for these comparisons may not have been laid out with sufficient clarity. In Figure 4 the no RPE and FCCP groups are compared because both groups showed similar metabolite changes towards the control situation. The no RPE to FCCP comparison thus focussed on the details of the – at first seemingly minor – differences between these two groups. This has now been clarified in the corresponding part of the results (Lines 218-219).

      In Figure 5A, B we compare the no RPE and 1,9-DDF groups with each other, notably because the data obtained seemingly contradicted our initial expectation that these two groups should show similar metabolite patterns. Also here, we have now inserted an additional explanation for this choice of comparisons (Lines 252-253).

      In Figure 5C, D we compare the Shikonin and FCCP groups with each other. The idea behind this comparison was that in the 1st group glycolysis was blocked while in the 2nd group OXPHOS was inhibited, or in other words here were compared what happened when the two opposing ends of energy metabolism were manipulated in opposite directions. This reasoning is now given in the results section (Lines 265-268).

      As far as the choice of drugs and concentrations is concerned, we used only compounds that have been extremely well validated through up to five decades of scientific research (see initial response to Reviewer #2 above). We therefore are confident that at the concentrations employed the results obtained stem from drug effects on metabolism and not from generic, off-target toxicity. Then again, as we show, prolonged (i.e. 4 days) block of energy metabolism pathways does cause cell death.

      Rev#3.8. In line 203, the authors discuss GTP as being primarily a mitochondrial metabolite, however, photoreceptors would require a localized source of GTP synthesis in the outer segments as part of phototransduction, and therefore GTP in photoreceptors cannot be a mitochondrial-specific reaction in photoreceptors. Furthermore, the authors mentioned NDK as being a possible source of GTP, but they do not show NDK localization despite it being reported in the literature to be localized in the OS.

      Response: The question as to the source of GTP in photoreceptor outer segments is indeed highly relevant. For GTP production in mitochondria see the answer to the next question below (Rev#3.9). An early study showed nucleoside-diphosphate kinases (NDK) to be expressed on the rod outer segments of bovine retina (Abdulaev et al., Biochemistry 37:13958-13967, 1998). More recently NDK-A was shown to be strongly expressed in photoreceptor inner segments (Rueda et al., Molecular Vision 22:847-885, 2016). We now refer to both studies in the results section of the manuscript (Line 227-228).

      Rev#3.9. In the "Impact on glycolytic activity, serine synthesis pathway, and anaplerotic metabolism" section, the authors claim in the no RPE group glycolytic activity was higher due to a depressed GTP-to-lactate ratio. However, this reviewer is under the impression that GTP production in photoreceptors is not mitochondrial specific, so this ratio doesn't make sense (I could be mistaken, however). A better ratio would have been pyruvate/lactate or glucose/lactate when discussing increased glucose consumption.

      Response: We appreciate the reviewers’ comment, yet we do indeed believe we can show that GTP-production in our experimental context is mainly mitochondrial. As explained in the manuscript results section (“Photoreceptors use the Krebs-cycle to produce GTP”), there are essentially only two possibilities for a photoreceptor to produce sizeable amounts of GTP. In the mitochondria via SUCLG1 – i.e. an enzyme highly expressed in photoreceptor inner segments (Figure 5D) – and the cytoplasm via NDK from excess ATP. The claim about the depressed GTP-to-lactate ratio in the no RPE situation takes this into account. Importantly, since in the no RPE situation ATP-levels are significantly lower than GTP, here GTP can only be produced via SUCLG1 and OXPHOS. Moreover, this contrasts with the FCCP group where mitochondrial OXPHOS is disrupted and both ATP and GTP are depleted.

      As far as ratios with pyruvate and glucose are concerned, we agree that these could potentially be very interesting to analyse. Unfortunately, in our retinal tissue 1H-NMR spectroscopy- based metabolomics analysis the levels of both pyruvate and glucose were below the detection limits which likely reflects their rapid metabolic turnover (cf. table S1). While this might be attributable to the marked consumption of these metabolites within the tissue, it does not allow for us to calculate the suggested ratios to lactate. Then again, in the supernatant medium which was collected at the same time point as the retina tissue, we can readily detect glucose and lactate levels, for this data please see the new Supplementary Figure 4.

      Rev#3.10. Aspartate aminotransferase should be abbreviated as AST, as it is more commonly noted.

      Response: In response to this comment from the reviewer, we have changed the abbreviation for aspartate aminotransferase from AAT to AST throughout the manuscript.

      Rev#3.11. In the discussion the assumptions of the ex vivo culture systems should be clearly stated. One that was not mentioned, but affects the implications of the data, is that the retinas used in this study are from the developing mouse eye. Another important assumption that was made in this paper was that the changes in retinal metabolism were due to photoreceptors even though the whole neural retina was included.

      Response: The reviewer is correct; we have added these two points to the discussion section of the manuscript. Notably, we now included a new subchapter “The retina as an experimental system for studies into neuronal energy metabolism” (Lines 367-395) to present different in vitro and in vivo test systems.

      Rev#3.12. Starting at line 347: As the authors know, the RPE has been shown to be highly reliant on mitochondrial function, and disruption of RPE mitochondrial metabolism leads to photoreceptor degeneration (numerous papers have shown this). Furthermore, the lower levels of lactate detected in their explants when RPE was present suggests that lactate is actively transported out of the neural retina by the RPE.

      Response: The reviewer is right about lactate being exported from the retina to the blood stream in vivo, or, in our in vitro study, to the culture medium. In the new dataset showing glucose and lactate concentrations in the culture medium (new Supplementary Figure 4C, D), we show that without RPE (no RPE group) and the retina releases more significantly lactate into the medium than control retina with RPE. At the same time the no RPE retina consumes more glucose than control retina.

      Rev#3.13. Line 360: Again, in mouse photoreceptors (by bulk RNAseq and scRNAseq), there is no GLUT3 expression (encoded by slc2a3). It was also recently shown by Dr. Nancy Philp's lab that rod photoreceptors express GLUT1, encoded by slc2a1 (PMCID: PMC9438481). The differences reported in this study and previous studies should be discussed.

      Response: Although this comment may not make us very popular, we are somewhat sceptical of RNAseq data (especially single cell RNAseq) since the underlying methodology – at the current level of technological development – is notoriously unreliable when it comes to the assessment of low abundance transcripts and suffers from apoor batch reproducibility, compared to NMR based metabolomics. Due to methodological constraints RNAseq have a propensity to display erroneously high or low expression. Moreover, and perhaps even more important, dissociated cells in scRNAseq studies undergo rapid gene expression changes that can significantly falsify the image obtained (Rajala et al., PNAS Nexus 2:1-12, 2023). Finally, it cannot be emphasized enough that mRNA expression profiles DO NOT equate protein expression and there are numerous examples for divergent expression profiles when mRNA and protein is compared.

      The Daniele et al. study (FASEB Journal 36:e22428, 2022; PMCID: PMC9438481) used in situ hybridization to study the mRNA expression of GLUT1 (slc2a1) and GLUT3 (slc2a3). In line with our comment just above, the Daniele et al. study may provide for an example of divergence between mRNA and protein expression, since it seemingly showed only minor expression of GLUT1/slc2a1 in the RPE, i.e. precisely in the one cell type that is well-known for its very strong GLUT1 protein expression.

      Furthermore, Daniele et al. used a conditional GLUT1 knock-out in photoreceptors induced by repeated Tamoxifen injections. The photoreceptor GLUT1 knock-out led to a relatively mild phenotype with only about 45% of the outer nuclear layer lost over a 4-months time-course. This is in stark contrast with the FCCP or the 1,9-DDF treatment, which would ablate nearly all rod photoreceptors in under one or two weeks, respectively.

      As a side note, Tamoxifen is an oestrogen receptor antagonist (with partial agonistic behaviour) with a long history of causing retinal and photoreceptor damage. Notably, oestrogen receptor signalling is important for maintaining photoreceptor viability (Nixon & Simpkins, IOVS 53:4739-47, 2012; Xiong et al., Neuroscience 452:280-294, 2021). Therefore, the relatively minor effects of the conditional GLUT1 KO in photoreceptors found in Daniele et al. may have been confounded by direct tamoxifen photoreceptor toxicity. On a wider level, this possible confounding factor related to the use of Tamoxifen points to general problems associated with certain forms of genetic manipulations.

      We now mention the controversy around the expression of glucose transporters in the retina, including the Daniele et al. study in a new subchapter of the discussion on "Expression of glucose transporters in the outer retina” (Lines 454-472).

      Rev#3.14. Lines 370-372: FCCP caused a strong cell death phenotype in rods, however under stress rods upregulate the secretion of RdCVF, which leads to cone photoreceptor survival by the upregulation of aerobic glycolysis in cones. The data should be re-interpreted in the context of this previous literature.

      Response: We thank the reviewer for this comment; however, we could not find a reference that would state that “…under stress rods upregulate the secretion of RdCVF”. What we did find was a reference stating that similar factors such as thioredoxins (TRX80) are secreted from blood monocytes under stress (Sahaf & Rosén, Antioxid Redox Signal 2:717-26, 2000). However, we consider these cells to be too dissimilar to rod photoreceptors to warrant a corresponding comment. Moreover, the research group who discovered RdCVF originally showed that rod-secreted RdCVF cannot prevent cone degeneration if the corresponding Nxnl1 gene is knocked-out in cones, arguing for a cell-autonomous mechanism of RdCVF -dependent cone protection (Mei et al., Antioxid Redox Signal. 24:909-23, 2016).

      Since it is very possible that we may have missed the correct reference(s), we would welcome further guidance by the reviewer.

      Rev#3.15. Line 374: 1,9-DDF caused a 90% loss of cones, however, previous studies by Dr. Nancy Philp have shown glucose deprivation in the outer retina affects primarily rod photoreceptors. The differences should be discussed.

      Response: We thank the reviewer for directing us to these studies. As mentioned above (Rev#3.13.) the Daniele et al. 2022 study yielded only relatively mild effects for a rod-specific conditional GLUT1 KO on photoreceptor viability. Similarly, in an earlier study (Swarup et al., Am J Physiol Cell Physiol. 316: C121–C133, 2019) the Philp group found that also a GLUT1 KO in the RPE caused only a minor phenotype in the photoreceptor layer. We would argue that if glucose, and by extension aerobic glycolysis, were indeed of major importance for (rod) photoreceptor survival, the degenerative effect of these genetic GLUT1 ablations should have been devastating and should have destroyed most of the outer retina in a matter of days. The fact that this was not seen in both studies is another piece of independent evidence that rod photoreceptors do not rely to any major extent on glycolytic metabolism.

      The two studies from the Philp lab (Swarup et al., 2019; Daniele et al., 2022) are now cited in the discussion (Lines 417-419 and 458-460).

      Rev#3.16. Line 375: Yes Dr. Claudio Punzo and Dr. Leveillard Thierry along with other groups have shown glycolysis is required to maintain cone survival when under stress, however, the authors should emphasize that it is under stress that this is observed.

      Response: In response to this comment we have now specifically extended our corresponding remark in the discussion of the manuscript (Lines 446-447).

      Rev#3.17. The section "Cone photoreceptors use the Cahill-cycle". The presence of ALT in photoreceptors was surprising and suggests alternatives to the Cori reaction. However, previous measurements of glucose and lactate from localized in vivo cannulation of animal eyes suggest the majority of glucose taken up by the retina is released back to the blood as lactate. Again, this section should discuss this idea in terms of the previous literature.

      Response: Here, we believe the reviewer is referring to studies performed in the late 1990s where, in anaesthetized cats, the lactate concentration in blood samples obtained from choroidal vein cannulation was compared against that in blood samples obtained from femoral arteries (Wang et al., IOVS 38:48-55, 1997). We note that a more relevant in vivo measurement of retinal glucose consumption and lactate production would likely require the simultaneous cannulation of the central retinal artery (CRA) and the central retinal vein (CRV). This would need to be combined with repeated (online) blood sampling, drug applications, and subsequent metabolomic analysis. We are not aware of any in vivo studies where such procedures have been successfully performed and further miniaturization and increased sensitivity of metabolomic analytic equipment will likely be required before such an undertaking may become feasible. Even so, such studies may not be feasible in small rodents (mice, rats) and may instead require larger animal species (e.g. dog, monkey) to overcome limitations in eye and blood sample size.

      We have now extended the discussion of our manuscript with a new subchapter on “The retina as an experimental system for studies into neuronal energy metabolism”. Within this new subchapter we now present two different in vivo experimental approaches that addressed retinal energy metabolism (Lines 376-384). Moreover, we now present new data on retinal lactate release to the culture medium, showing, for instance, a strong increase in lactate release in the no RPE condition compared to control (new Supplementary Figure 4).

      Rev#3.18. Lines 431-433: The study cited suggested that the mitochondrial AST was detected in other cells, in agreement with the data shown. However, the authors' statements in this section are misleading as they do not take into consideration the contribution of AST from other cell types.

      Response: The reviewer is right, we found both AST1 and AST2 to be expressed not only in photoreceptor inner segments but also in the inner retina, especially in the inner plexiform layer (new Figure 6D). Since this might indicate mini-Krebs-cycle activity also in retinal synapses, we have added a corresponding comment to the discussion (Lines 540-543).

      Grammatical and wording fixes:

      Rev#3.19. Line 98 - "the recycling of the photopigment, retinal."

      Response: We have inserted a comma after “photopigment”.

      Rev#3.20. Results section and Figure 1 start without providing context for the model system where staining is being done.

      Response: We have added this information to the beginning of the results section (Lines 105-106).

      Rev#3.21. Supplementary Figure 2 is not mentioned in the main text - there is no context for this figure.

      Response: Supplementary Figure 2 was originally referenced in the legend to Figure 2. We now mention supplementary figure 2 (now renumbered to supplementary figure S3) also in the main text, in the results section under “Experimental retinal interventions produce characteristic metabolomic patterns” (Line 148).

      Rev#3.22. Volcano plot in Supplementary Figures 3, 5, 6, 7, and 8 don't indicate what Log2(FC) is in reference to.

      Response: The log2 fold change (FC) is calculated as follows: log2 (fold change) = log2 (mean metabolite concentration in condition A) - log2 (mean metabolite concentration in condition B) where condition A and condition B are two different experimental groups being compared. This is now explained in the SI Materials and Methods (Lines 145-147) and indicated in abbreviated form in the figure legends. Please note that supplemental figures have now been renumbered due to the insertion of an additional, new Figure.

      Rev#3.23. Line 331 - –a“d allowed to analyze the..." ”s incorrect phrasing.

      Response: This phrasing was changed.

      Rev#3.24. Line 343 "c“cled" ”

      Response: This phrasing was changed.

      Rev#3.25. Line 446 is misworded.

      Response: This phrasing was changed.

      Technical questions:

      Rev#3.26. At what point after explant was the IHC done in Supplemental Figure 1? If early, but experiments are done later, there's’a chance things are more disorganized at the end of the experiment.

      Response: Staining and metabolomics analysis were both done at the end of each experiment, at the same time, at P15. This is now mentioned in the SI materials and methods section (Lines 67, 108-110).

      Rev#3.27. FCCP affects plasma membrane permeability, which is particularly critical in neurons that undergo repolarization and depolarization - –ow do we know FCCP on cell death via metabolism? See: https://www.sciencedirect.com/science/article/pii/S2212877813001233

      Response: The reviewer is correct, a significant permeabilization of cell membranes in general would likely cause extensive neuronal cell death, unrelated to a disruption of OXPHOS. However, the FCCP concentration used here (5 µM) is at the lower end of what was used in the mentioned Kenwood et al. study (Mol Metab. 3:114-123, 2014) and the effect on cell membrane permeability in tissue culture is likely to be rather small, as opposed to what was seen by Kenwood et al. in cultures of individual cells. This view is supported by the fact that in our FCCP treatments, we did not observe any significant increases of cell death in any retinal cell type (including RPE) other than in rod photoreceptors. Together with the fact that only photoreceptors strongly express Krebs-cycle/OXPHOS related enzymes, this strongly suggests that the FCCP effects seen by us were due to disruption of OXPHOS.

      Rev#3.28. Numerous metabolite comparisons are being made throughout the manuscript – what type of multiple hypothesis testing corrections are utilized? Only certain figures mention multiple hypothesis testing (e.g. Figure 6).

      Response: In general, in this manuscript we used two different statistical methods: 1) For two-group comparisons, we used an unpaired, two-tailed t-test, which reports a p-value with 95% confidence interval without additional multiple hypothesis testing (e.g. in Figure 2, Suppl. Figures 4, 6, 7, 8). 2) For multiple group comparisons we used a one-way ANOVA analysis with Tukey’s multiple comparisons post-hoc test (except suppl. Figure 9 where Fisher´s LSD post-hoc test was used). The information on which statistical test was used for what dataset is now given in the figure legends and in the SI Material and Methods section.

      Rev#3.29. For Figure 3, how do we know that the removal of RPE is causing the metabolite changes due to RPE-PR coupling? How do you rule out the fact that it isn’t just: I – a thicker physical barrier between media and the neural retina that is causing the changes, or II – removal of RPE from PR causes OS shearing and a stress response that alters metabolism?

      Response: We believe these concerns can be ruled out: The RPE cells are linked by tight junctions and are not “just a thicker barrier” but a barrier that is almost impermeable for most metabolites unless they are carried by specific transporters. Outer segment shearing via RPE removal would indeed be a concern if we had used adult retina. However, we explanted that retina at P9 when it does not possess any sizeable outer segments yet. As a matter of fact, photoreceptors grow out outer segments only after P9.

      Rev#3.30. While 1,9-dideoxyforskolin blocks GLUT1, it is known to have other effects, including on potassium channels. How do we know the effects of 1,9-dideoxyforskolin are specific to GLUT1? Utilizing a GLUT1 KO and showing no additional effects when adding 1,9-dideoxyforskolin would be helpful as a control.

      Response: This is a good suggestion from the reviewer. We note that this is technically not easy to achieve as it would require an RPE-specific knock-out that should be inducible at a given experimental time-point, in a quantitative manner. The study by Swarup et al. (see above Rev#3.13.) used an RPE specific knock-out that was, however, not inducible. Moreover, if the corresponding inducible knock-out animals could be generated, then the stochastic nature of the inducing treatment would probably affect only a limited number of cells within a given cell population. In our experimental context, a less than quantitative knock-out would significantly complicate interpretation of results, even to the point that no additional insight might be gained.

      Rev#3.31. The analysis in Figure 6, even with attempts to control drug treatments, is highly speculative. One really needs animals with predominately cones vs. predominately rods to do this analysis (e.g. with NRL mice).

      Response: The reviewer is right, the analysis shown in Figure 6 was an explorative approach to try and deduce features of rod and cone metabolism. This is now mentioned in the results section (Lines 282-284). Since the experiments were not initially intended to address such questions, by necessity the interpretations remain speculative. The comparison of mouse mutants in which there are either no cones (e.g. cpfl1 mouse) or no rods (e.g. NRL knock-out mouse) may allow to disentangle the metabolic contributions of rods and cones. We appreciate the suggestion from the reviewer and have now inserted a relating suggestion for future studies into the discussion section (Lines 450-452).

      Rev#3.32. Overall, much of the paper suggests intriguing pathways, but without C13 tracing or relevant genetic knock-outs, the pathways would have to be speculative rather than definitive.

      Response: We agree with the reviewer that further research, including 13C and 15N-tracing studies, will be necessary to evaluate which pathway(s) are used by what retinal cell type under what condition. Still, the high robustness and quantitative nature of the NMR metabolomics data allows us to draw pathway conclusions based on metabolites that are unique to specific pathways/cell types or using ratios. We now relate to the advantages of such carbon-tracing studies in the discussion of the manuscript (Lines 545-549).

      Stylistic suggestions:

      Rev#3.33. This is a very dense paper to read. It would be helpful for each figure to have a summary diagram of the relevant metabolite changes and how they fit together. Further, for those not metabolism-inclined, defining the mini-Kreb’s, Cahill, and Cori cycles and their brief implications at some point early in the manuscript would be helpful.

      Response: We have been thinking a lot about how we could add in the suggested summary diagrams into each figure. Unfortunately, whatever idea we contemplated would have significantly increased the complexity of the figures, while the actual benefit in terms of improved understandability was unclear.

      However, we did include the suggestion from the reviewer to present the terms Cori, Cahill-, and mini-Krebs-cycle already in the introduction and we hope that this has improved the understandability of the manuscript overall (Lines 79-92).

      Rev#3.34. More discussion about the step-by-step ways that the mini-Kreb’s reaction “uncouples” glycolysis from the Kreb’s cycle would be helpful. What do you mean by “uncouple” in this context?

      Response: We thank the reviewer for this suggestion. Uncoupling in this context means that glycolysis and Krebs cycle are not metabolically coupled to each other via pyruvate. Instead both pathways can run independently from each other and in parallel, as long as the Krebs-cycle uses glutamate, BCAAs or other amino acids as fuels. We now also address this point already in the introduction of the manuscript (Lines 87-90).

      Conceptual questions:

      Rev#3.35. As the proposal that PR undergo heavy amounts of OXPHOS is controversial, it would be helpful for the authors to review the literature on lactate production by the retina and what studies have shown previously about retina use of lactate, specifically lactate making its way into TCA cycle intermediates, suggesting OXPHOS, in PRs.

      Response: In response to this question we have added several new references to the introduction and discussion of the manuscript. The question of lactate production (aerobic glycolysis) vs. the use of OXPHOS is now discussed in Lines 77-81, Lines 367-384.

      Rev#3.36. Why would cones die more in the no RPE condition? The authors suggest this has something to do with GLUT1 expression on RPE and the transport of glucose to cones. Even if we accept that cones are highly glycolytic, loss of RPE should expose the neural retina to even more glucose in your experimental set-up.

      Response: This is a very interesting question from the reviewer. Indeed, loss of the RPE and blood-retinal barrier function should increase photoreceptor access to glucose, even more so if they are expressing high affinity GLUT3. In the discussion (Lines 420-424), we speculate that this may trigger the Crabtree effect, shutting down OXPHOS and causing the cells to exclusively rely on glycolysis. This, however, will likely not yield sufficient ATP to maintain their viability, so that they “starve” to death even in the presence of ample glucose. Since cones require at least twice as much ATP as rods, they may be more sensitive to a Crabtree-dependent shut-down of OXPHOS. However, if this speculation was correct then the question remains why the FCCP treatment, which abolishes OXPHOS more directly, does not cause cone death. Here, we again can only speculate that high glucose may have additional toxic effects on cones that are independent of OXPHOS. We now try to present this reasoning in the discussion (Lines 426-429).

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editors for their comments, as well as for the time dedicated to make useful suggestions that have contributed to improve the manuscript. We have responded to the concerns raised by the reviewers, and after that, we have also responded to the different points highlighted in the Recommendations for the authors:

      Reviewer #1

      While in vivo injury was used to assess regeneration from subsets of PNS neurons, different in vitro neurite growth or explant assays were used for further assessments. However, the authors did not assess whether the differential "regenerative" responses in vivo could be recapitulated in vitro. Such results will be important in interpreting the results.

      We included a supplementary figure evaluating the neurite extension in vitro and updated the text accordingly.

      Intriguingly, even in individual groups of PNS neurons, not all neurons regenerate to the same extent. It is known that the distance between the cell body and the lesion site affects neuronal injury responses. It would be interesting to test this in the observed regeneration.

      Although it is true that the distance can affect the outcome, here we used a physiological model where all neurons are lesioned at the same point in the nerve. Not only distance is different for motoneurons, but also the microenvironment surrounding their somas and therefore the direct comparison of these neurons with sensory neurons is limited. We extended the discussion on this matter in the new manuscript.

      Fig 1: The authors quantified the number of regenerating axons at two different time points. However, the total numbers of neurons/axons in each subset are different. The authors should use these numbers to normalize their regenerative axons.

      Figure 1D shows the normalization of data from figure 1C (normalized against the number of control axons in each neuron type). This has been clarified in the text.

      Fig 2-5: In explaining differential regeneration of individual groups of neurons, there are at least two possibilities: (1). Each group of neurons has different injury/regenerative responses; (2). The same set of injury/regenerative responses are differentially activated. Some data in this manuscript suggested the latter possibility. But some other data point in the opposite direction. It would be informative for the authors to analyze/discuss this further.

      From our point of view, these two options can be considered differential response to injury and could be potentially used for the modulation of regeneration. However, if the second possibility is correct, the regenerative program could be more influenced by the time chosen to study the response. Given the importance of this, we added some discussion about this topic.

      Fig 6: Is it possible to assess the regenerative effects of knockdown Med12 after in vivo injury?

      It is possible, but it is out of the scope of this work. Here, we aimed to describe the regenerative response and validate our data by testing a potential target for specific regeneration. Future studies will focus on the modulation of this specific regeneration both in vitro and in vivo.

      Reviewer #2

      It seems that the most intriguing outcome of this paper revolves around the role of Med12 in nerve regeneration. The authors should prioritize this finding. Drawing a conclusion regarding Med12's role in proprioceptor regeneration based solely on this in vitro model may be insufficient. This noteworthy result requires further investigation using more animal models of nerve regeneration.

      The main goal of this work was to compare the regenerative responses of different neuron subpopulations. We modulated Med12 to validate our data and the potential of our findings. Unfortunately, investigating in depth the role of Med12 in regeneration is out of the scope of this paper. For this reason, we did not prioritise this finding here. As this finding was striking, we strongly agree that the next step should be studying how it modulates regeneration.

      One critique revolves around the authors' examination of only a single time point within the dynamic and continuously evolving process of regeneration/reinnervation. Given that this process is characterized by dynamic changes, some of which may not be directly associated with active axon growth during regeneration, and encompasses a wide range of molecular alterations throughout reinnervation, concentrating solely on a single time point could result in the omission of critical molecular events.

      We agree that this is probably the main limitation of this study, as we discussed in the text. We chose 7 days postinjury as a standard time point widely described in literature and to have a correlate with our histological data. Although the main aim was to compare populations, analyzing an additional time point after injury could add valuable information.

      Reviewer #3

      No concerns were expressed by that reviewer.

      Recommendations for the authors:

      The authors should assess whether the differential "regenerative" responses in vivo could be recapitulated in vitro.

      We included a supplementary figure evaluating the neurite extension in vitro and updated the text accordingly.

      Optional:

      It will be interesting to test if the distances between the cell body and the lesion site contribute to the observed differences in individual subsets of PNS neurons.

      Figure 1D shows the normalization of data from figure 1C (normalized against the number of control axons in each neuron type). This has been clarified in the text.

      Fig 2-5: In explaining differential regeneration of individual groups of neurons, there are at least two possibilities: (1). Each group of neurons has different injury/regenerative responses; (2). The same set of injury/regenerative responses are differentially activated. Some data in this manuscript suggested the latter possibility. But some other data point in the opposite direction. At least the authors should discuss these.

      From our point of view, these two options can be considered differential response to injury and could be potentially used for the modulation of regeneration. However, if the second possibility is correct, the regenerative program could be more influenced by the time chosen to study the response. Given the importance of this, we added some discussion about this topic.

      While the paper is technically well-executed, the conclusions and some of the findings appear to be incomplete and challenging to draw meaningful conclusions from. This manuscript presents some interesting findings, but the title is quite broad and may suggest that the authors have unveiled fundamental mechanisms explaining the varying regenerative abilities of peripheral axons. However, the results do not substantiate such a conclusion. Further comments and suggestions follow.

      We eliminated the word “regenerative (response)” from the title, as it could lead to think that all changes seen in these neurons are related only to regeneration. We think that “Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury” highlights the differences between neurons that we found without misleading towards thinking that we described regenerative mechanisms in all neurons.

      What's notably absent here is the validation of certain genes found with the ribosomes, especially those highlighted in the subsequent figures. The question arises as to whether the changes depicted in the figures align with changes in the DRGs in vivo. Is there concordance between the presence of these genes and their transcriptional changes? It would greatly enhance the study's value if the authors could show evidence of upregulation or downregulation of certain genes over time in tissue sections, utilizing techniques such as in situ hybridization or immunocytochemistry.

      We selected some factors that were specifically upregulated in subsets of neurons to corroborated by immunohistochemistry these findings. Changes in the immunofluorescence of P75 in motoneurons and ATF2 in cutaneous mechanoreceptors, were evaluated in controls and animals that received a nerve crush one week before. Supplementary figures with the images have been added.

      The authors discovered intriguing distinctions, such as the presence of specific signaling pathways unique to neurons projecting to muscle as opposed to those projecting to the skin. Among these pathways were those associated with receptor tyrosine kinases like VEGF, erbB, and neurotrophin signaling among others. The question now arises: do these pathways play a role in natural peripheral regeneration processes? To answer this, it is imperative to conduct in vivo studies. However, the authors employed an in vitro DRG neurite outgrowth assay to demonstrate that various types of neurons exhibit different responses to the presence of different neurotrophins. This does not reflect what actually happens in vivo. While neurotrophins indeed play a role in neuron survival and axon extension during development, their role in postnatal periods changes over time, and it remains unclear whether they play any role in the natural regenerative processes of the peripheral nerve. Therefore, this experiment may not be directly relevant in this case, especially during the early axon extension period of the regenerating axons. if the authors aim to establish a causal link with neurotrophin signaling, it becomes crucial to conduct in vivo experiments by manipulating the expression of key molecules like the receptors.

      It has been widely described that different types of peripheral neurons have a differential expression of Trk receptors, even in the adult, and that these respond differentially to neurotrophins. In our study, we do not stablish a causal relationship between the expression of Trk and neurite extension, but instead we show (as many others) that distinct neurons respond differentially to these neurotrophins. The fact that in vivo studies fail to show a clear effect does not necessarily mean that neurotrophins are not specific. It might mean that their effect is not strong enough to be a useful guide in the complex microenvironment found after an injury. For instance, NGF acts on TrkA (present in some neurons), but in vivo it has been shown to accelerate the clearance of myelin debris in Schwann cells (Li et al., 2020), which could facilitate regeneration of all type of axons, masking any potential specific effect on the subtypes of neurons expressing TrkA. In contrast, in an in vitro setting on neuronal cultures, the specific neuronal effect can be more evident.

      Additionally, it's worth noting that another paper utilizing the same methodology and experimental setup (PMID: 29756027, "Translatome Regulation in Neuronal Injury and Axon Regrowth" by Rozenbaum et al.) exists. Are there any significant differences or shared findings with that study?

      This study shows the transcriptomic response after an injury 4, 12 and 24 hours after an injury in a very similar experimental setup. They focus on comparing the neuronal vs the glial response to the injury, using a Ribotag line that tags ribosomes from all neurons in the DRG rather than specific neuron subtypes. As the time postinjury (24h vs 7 days) and the cell types studied are different, we could not directly compare our results. We did see an upregulation in both datasets of previously described growth-associated genes (Jun, Atf3, Sox11, Sprr1a, Gal…). We included the article in the references for its relevance in the topic.

      It would be helpful for readers to illustrate the finding of the fastest axon regeneration of nociceptors by showing fluorescence micrographs of the nerve samples in addition to the graphs shown in Fig. 1 C/D.

      In figure 1B, we show fluorescence micrographs of the nerves 7 days postinjury. As explained in the results, we counted the number of axons at 2 distances from the injury, we did not analyse the fastest axon. This is due to technical reasons: 7 days after the injury the fastest axon has surpassed our evaluation point, which was the further distance that we could assess in our experimental setting in a consistent manner. If the reviewer thinks that we need to include more images from our evaluations (from 9 dpi for example), we could prepare a new figure.

      The labeling in Fig. 2B is confusing. Is the CHAT immunoreactivity shown in the last panel illustrated by green or red signals? Is the red signal counterstaining with beta-tubulin?

      The labelling was changed in the figure to increase clarity.

      The references to the supplementary data throughout the manuscript are confusing. For example, where can the "Supp data 2" be found? (mention on p. 14 in the merged pdf file). Are they referring to the Excel spreadsheets?

      We divided the supplementary material in supplementary figures/table (found in the pdf) and supplementary data. Supplementary data refers to excel spreadsheets found outside the pdf file. We hope this will be clearer after the final formatting of the article.

      What does the following statement on p. 14 mean?: "The caveat in these analyses was that molecular classification by these approaches may be arbitrary, and not reflective of protein repurposing." This reviewer notes that these databases consider the fact that components participate in different pathways.

      Indeed, we aimed to explain that many proteins participate in different pathways, and this is a limitation of the enrichment analysis. We modified the sentence in the text.

      First paragraph on p. 15: The PPAR and AMPK pathways have much broader roles, and are not only "related to fatty acid metabolism". This factual inaccuracy should be corrected in the manuscript.

      The sentence has been corrected.

      The authors should consider showing increased TGF-beta signaling in their neurons after downregulation of Med12 given the previous implication of TGF-beta signaling in axon regeneration.

      We tried to demonstrate the effect of our knockdown in TGF-beta pathway by analyzing the expression of typical targets from this pathway by qPCR in our cultures. However, we could not detect any difference. We think that this can have two explanations: (1) as only a few cells upregulate Med12 whereas many cells downregulate it, the effect is masked (presumably only proprioceptors will have a significant difference in this pathway and, thus, it would be very difficult to see the effect), or (2) Med12 is not exerting its effect through this pathway. We added a supplementary figure with these data and discussed it in the manuscript.

      It would be helpful to eliminate typos and improve syntax/grammar/style.

      We revised the text to improve style.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In the present manuscript, the authors analyzed diel oscillations in the brain and olfactory organs' transcriptome of Aedes aegypti and Anopheles culicifacies. The analysis of their RNAseq results showed an effect of time of day on the expression of detoxification genes involved in oxidoreductase and monooxygenase activity. Next, they investigated the effect of time of day on the olfactory sensitivity of Ae. aegypti and An. gambiae and identified the role of CYP450 in odor detection in these species using RNAi. In the last part of the study, they used RNAi to knock down the expression of one of the serine protease genes and observed a reduction in olfactory sensitivity. Overall, the experiments are well-designed and mostly robust (see comment regarding the sample size and data analysis of the EAG experiments) but do not always support the claims of the authors. For example, since no experiments were conducted under constant conditions, the circadian (i.e., driven by the internal clocks) effects are not being quantified here. In addition, knocking down the expression of a gene showing daily variations in its expression and observing an effect on olfactory sensitivity is not sufficient to show its role in the daily olfactory rhythms. Knowledge gaps are not well supported by the literature, and overstatements are made throughout the manuscript. Our detailed comments are listed below.

      We sincerely thank the reviewer for their time and consideration, and appreciate the thorough review of our manuscript. Their insightful comments have greatly enriched our work. We also apologies for instances of overinterpreting the data. Your feedback has helped us recognize areas where clarity and caution are needed, and we are committed to addressing these concerns in our revisions. Thank you for your valuable input and guidance.

      Major comments

      Introduction

      1. Several statements made in the introduction are misleading and suggest that authors are trying to exaggerate the impact of their work. For example, "Furthermore, different species of mosquitoes exhibit plasticity and distinct rhythms in their daily activity pattern, including locomotion, feeding, mating, blood-feeding, and oviposition, facilitating their adaptation into separate time-niches (7, 8), but the underlying molecular mechanism for the heterogenous temporal activity remains to be explored." is not accurate since daily rhythms in mosquitoes' transcriptomes, behavior, and olfactory sensitivity have been the object of several publications. Even though some of them are listed later in the introduction, they contradict the claim made about the knowledge gap. See:

      Rund, S. S., Gentile, J. E., & Duffield, G. E. (2013). Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC genomics, 14(1), 1-19

      Rund, S. S., Hou, T. Y., Ward, S. M., Collins, F. H., & Duffield, G. E. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy of Sciences, 108(32), E421-E430

      Rund, S. S., Bonar, N. A., Champion, M. M., Ghazi, J. P., Houk, C. M., Leming, M. T., ... & Duffield, G. E. (2013). Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific reports, 3(1), 2494

      Rund, S. S., Lee, S. J., Bush, B. R., & Duffield, G. E. (2012). Strain-and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. Journal of insect physiology, 58(12), 1609-1619

      Leming, M. T., Rund, S. S., Behura, S. K., Duffield, G. E., & O'Tousa, J. E. (2014). A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC genomics, 15(1), 1-9

      Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147

      Rivas, G. B., Teles-de-Freitas, R., Pavan, M. G., Lima, J. B., Peixoto, A. A., & Bruno, R. V. (2018). Effects of light and temperature on daily activity and clock gene expression in two mosquito disease vectors. Journal of Biological Rhythms, 33(3), 272-288

      Response: We apologies for this oversight. In the revised manuscript, we have added these references and made changes to the text as suggested by the reviewer.

      The knowledge gap brought up in the next paragraph of the introduction doesn't reflect the questions asked by the experiments: "But, how the pacemaker differentially influences peripheral clock activity present in the olfactory system and modulates olfactory sensitivity has not been studied in detail." Specifically, the control of peripheral clocks by the central pacemaker has not been evaluated here.

      Response: This statement has been modified in the revised manuscript.

      "In vertebrates and invertebrates, it is well documented that circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" should also cite work on cockroaches and kissing bugs:

      Lubinski, A. J., & Page, T. L. (2016). The optic lobes regulate circadian rhythms of olfactory learning and memory in the cockroach. Journal of Biological Rhythms, 31(2), 161-169

      Page, T. L. (2009). Circadian regulation of olfaction and olfactory learning in the cockroach Leucophaea maderae. Sleep and Biological Rhythms, 7, 152-161

      Vinauger, C., & Lazzari, C. R. (2015). Circadian modulation of learning ability in a disease vector insect, Rhodnius prolixus. Journal of Experimental Biology, 218(19), 3110-3117

      Response: These references have been added in the revised manuscript as suggested by the reviewer.

      The sentence: "Previous studies showed that synaptic plasticity and memory are significantly influenced by the strength and number of synaptic connections (43, 44)." should be nuanced as the role of neuropeptides such as dopamine has also been showed to influence learning and memory in mosquitoes:

      Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., Parrish, J. Z., ... & Riffell, J. A. (2018). Modulation of host learning in Aedes aegypti mosquitoes. Current Biology, 28(3), 333-344 Wolff, G. H., Lahondère, C., Vinauger, C., Rylance, E., & Riffell, J. A. (2023). Neuromodulation and differential learning across mosquito species. Proceedings of the Royal Society B, 290(1990), 20222118

      Response: We agree with the reviewer. We have modified this statement and added the references in the revised manuscript.

      Overall, the paragraph dealing with the idea that "circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" is very confusing. This paragraph discusses mechanisms of learning-induced plasticity but seems to ignore the simplest (most parsimonious) explanations for the circadian regulation of learning (e.g., time-dependent expression of genes involved in memory consolidation). In addition, the sentence quoted above is circumvoluted to simply say that training at different times of the day affects memory acquisition and consolidation. Although the authors did look at one gene involved in neural function, learning, memory, or circadian effects were not analysed in this study. Please reconsider the relevance of the paragraph.

      Response: We have modified this paragraph as per the suggestions of the reviewer in the revised manuscript.

      The sentence: "But, how the brain of mosquitoes entrains circadian inputs and modulates transcriptional responses that consequently contribute to remodel plastic memory, is unknown." should be rephrased. First, it should be "entrains TO circadian inputs", and second, it suggests that the study will be investigating circadian modulation of learning and memory, which is not the case. Furthermore, the term "remodel plastic memory" is unclear and doesn't seem to relate to any specific cellular or neural processes.

      Response: This statement has been removed from the revised manuscript.

      Given the differences in mosquito chronobiology observed even between strains, why perform the RNAi and EAGs on a different species of Anopheles than the one used for the RNAseq (or vice versa)?

      Response: We agree with the reviewer that there are differences in mosquito chronobiology between different strains and therefore species variation may be challenging for data interpretation. Considering the strict nocturnal behavioral pattern of An. culicifacies and dirurnal behavior of Aedes aegypti, we performed RNA-Seq study with these respective species. However, 1) due to unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available), 2) challenges in rearing and adaptation of An. culicifacies in a new environment/laboratory, 3) to validate the proof-of-concept of CYP450 function in odorant detection and olfactory sensitivity, we opt for the current collaborative study. We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (68). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates, therefore, the arguments for species difference can be overruled.

      S. S. C. Rund, J. E. Gentile, G. E. Duffield, Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics. 14 (2013), doi:10.1186/1471-2164-14-218. S. S. C. Rund, T. Y. Hou, S. M. Ward, F. H. Collins, G. E. Duffield, Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), doi:10.1073/pnas.1100584108. S. S. C. Rund, N. A. Bonar, M. M. Champion, J. P. Ghazi, C. M. Houk, M. T. Leming, Z. Syed, G. E. Duffield, Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).

      Results

      1. "As reported earlier, a significant upregulation of period and timeless during ZT12-ZT18 was observed in both species (Figure 1C)." Please provide effect size and summary statistics.

      Response: The statistics are provided in the Figure S2 in the revised manuscript.

      "Next, the distribution of peak transcriptional changes in both An. culicifacies and Ae. aegypti was assessed through differential gene-expression analysis. Noticeably, An. culicifacies showed a higher abundance of differentially expressed olfactory genes (Figure 1D)" Please provide effect size and summary statistics.

      Response: The statistics are provided in the Table 1 in the revised manuscript.

      "Taken together, the data suggests that the nocturnal An. culicifacies may possess a more stringent circadian molecular rhythm in peripheral olfactory and brain tissues." What do the authors mean by "stringent"? At this point, this should be stated as a working hypothesis, as the statement is not backed up by the data. It is possible that the fewer differentially expressed genes of Aedes aegypti are more central to regulatory networks and cascade into more "stringent" rhythmic control of activities and rhythms.

      Response: We thank the reviewer for this suggestion. We have modified this statement as suggested by the reviewer.

      The section title: "Circadian cycle differentially and predominantly expresses olfaction-associated detoxification genes in Anopheles and Aedes" doesn't make sense. The expression of genes can be modulated by circadian rhythms, but cycles don't express genes. Please rephrase. In addition, this whole section deals with "circadian rhythms" while no experiment has been conducted under constant conditions. The observed daily variations are therefore diel rhythms until their persistence under constant conditions is established.

      Response: We agree with the reviewer and changed the statement accordingly.

      "The downregulated genes of Ae. aegypti did not show any functional categories probably due to the limited transcriptional change." Could the authors explain if this is actually the phenomenon or due to a lack of temporal resolution in the study design (i.e., 4 time points)?

      Response: We do not agree with the reviewer’s comments about the lack of temporal resolution in the current study. The functional categories of differentially expressed genes are deduced by gene set enrichment analysis, which identify the classes of genes that are overrepresented in a large set of genes. The statistical significance value is dependent on the abundance of query and background genes. In our experiments, as the number of queries (i.e. number of downregulated genes) is limited, the enrichment tool, i.e. shinyGo didn’t able to show significant enrichment of downregulated genes with FDR cut-off 0.05 and top 10 pathways were selected. Though we have selected 4 time points, previous study by Rund et al. (BMC Genomics 2013) also showed that compared to Aed. aegypti, An. gambiae possess higher number of rhythmic genes (2.6 fold higher). Therefore, it can be stated that the data that we received is not due to the pitfalls of study design, but probably the physiological difference between Anopheles and Aedes mosquitoes.

      "a GO-enrichment analysis was unable to track any change in the response-to-stimulus or odorant binding category of genes (including OBPs, CSPs, and olfactory receptors)." This finding doesn't corroborate the statements made previously and doesn't align with previously published studies. Is it due to pitfalls in the study design?

      Response: The functional categories of differentially expressed genes are deduced by gene set enrichment analysis, which identify the classes of genes that are overrepresented in a large set of genes. The statistical significance value is dependent on the abundance of query and background genes. Though, differential expression analysis revealed a significant upregulation of a subset of CSPs (~ 5-fold) and OBP6 (~3.3-fold) transcripts in An. culicifacies mosquitoes during ZT12, as the number of queries (i.e. number of chemosensory genes) is limited (i.e. 3), the enrichment tool, i.e. shinyGo didn’t able to show significant enrichment of these categories of genes when FDR cut-off 0.05 and top 10 pathways were selected.

      Moreover, we do not agree with the reviewer regarding the comment on pitfalls of study design because our previous experiments with An. culicifacies according to diel rhythm, considering more extended time points, also revealed similar expression pattern of chemosensory genes (Das De et.al., 2018).

      "In contrast, three different clusters of OBP genes in Ae. aegypti showed a time-of-day dependent distinct peak in expression starting from ZT0-ZT12 (Figure 2F)." Please provide summary statistics.

      Response: Please find the table for summary statistics in the supplemental file 1.

      "In the case of An. gambiae, the amplitudes of odor-evoked responses were significantly influenced by the doses of all the odorants tested (repeated measure ANOVA, p {less than or equal to} 2e-16) (Figure S4B)." Did the authors use a positive control for the EAGs? How did the authors normalize the responses across the two species? Given the way the data is presented, how were the data normalized to allow inter-species comparisons? In addition, It is highly unlikely that all the mosquito preps used in the EAG assay responded to all the odors tested. If that was the case, then the dataset includes missing data for certain odors and time points. We believe the authors have ensured there are at least a certain number of responses per odor and time point combinations. If this is true, repeated measures ANOVA is not suited for analyzing this data because this statistical technique requires all repeated measures within and across preps without missing values. Also, the authors need to correct the summary statistics for multiple comparisons within this framework to avoid inflating type-I errors. Has this been done?

      Response: In our study involving An. gambiae, we observed significant influences of odorant doses on the amplitudes of odor-evoked responses (repeated measure ANOVA, p ≤ 2e-16) (Figure S4B). It's important to note that we did not employ a separate positive control for the electroantennogram (EAG) assays, as the compounds utilized in our research are already known to be EAG active in at least one of the mosquito species under investigation (mentioned in supplementary file 3).

      Our primary objective for performing EAG studies is to correlate the diel-rhythmic molecular data with the diel-rhythmic electroantennographic response in nocturnal and diurnal mosquitoes. To address the normalization of responses across the two species, we opted to control for dose and time rather than normalizing using one of the EAG active compounds. Further, the EAG responses were measured in relation to solvent control. In our experimental design, we utilized different batches of mosquitoes from the same cohort to test each odorant at various time points. EAG responses were acquired using the same mosquito across different dilutions for a single odor or volatile compound, rather than across time points. Hence, we didn’t end up with missing values.

      For individual species analysis, we performed repeated measures ANOVA for each compound's EAG response, considering dose and time as variables. This enabled not only enabled us select compounds which where ‘Time’ or its interaction terms were found to be significant. Subsequently, for compounds showing significance, we conducted a basic one-way ANOVA using only time as a variable, segregating the data by each individual dose. Post-hoc Tukey tests were then carried out to compare between time points. When comparing between species, we generated a dataset by combining both species and adding species as a variable as well. Repeated measures ANOVA for each compound's EAG response, considering species, dose, and time as variables, was applied. This enabled us select compounds which where ‘Time’ or its interaction terms were found to be significant. For significant compounds, a two-way ANOVA was performed using time and species as variables. Data were segregated by each individual dose, and post-hoc Tukey tests were employed to compare between time points. It's worth mentioning that our analysis aims to account for repeated measures within and across preparations. Additionally, we have implemented post-hoc Tukey tests to correct for multiple comparisons within this framework, ensuring that we avoid inflating type-I errors in our statistical interpretations.

      "Ae. aegypti was found to be most sensitive to all the odorants (4-methylphenol, β-ocimine, E2-nonenal, benzaldehyde, nonanal, and 3-octanol) during ZT18-20 except sulcatone (Figure 3C - 3H)." Although some of these chemicals are associated with plants and Ae. aegypti is suspected to sugar feed at night, how do the authors explain that the peak olfactory sensitivity occurs at night for compounds such as nonanal? It would be interesting to discuss how these results compare to previous studies such as:

      Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147

      Response: The possible explanations have been added in the revised MS.

      "Additionally, our principal components analysis also illustrates that most loadings of relative EAG responses are higher towards the Anopheles observations (Figure S4C)." The meaning of this sentence is unclear? Please clarify.

      Response: Considering the limited clarity of the statement we have removed it from the revised manuscript.

      "Taken together these data indicate that An. gambiae may exhibit higher antennal sensitivity to at least five different odorants tested, as compared to Ae. aegypti." As mentioned above, how did the authors normalized across species to allow comparisons? If not normalized, how do you ensure that higher response magnitudes correlate with higher olfactory sensitivity, given potential differences in the morphology or size differences between the two species? Furthermore, An. gambiae has been exclusively used in the EAG assay. Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable. This, however, is a major caveat in the experiment design, given previous studies (indicated below) have reported species-specific variations in olfactory sensitivity. In its present form, the EAG data from An. gambiae is not a piece of appropriate evidence that the authors could use to complement or substantiate the findings from other aspects of this study on An. culicifacies.

      Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383(1), 75-90. Wooding, M., Naudé, Y., Rohwer, E., & Bouwer, M. (2020). Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors, 13, 1-20.

      iii. Gupta, A., Singh, S. S., Mittal, A. M., Singh, P., Goyal, S., Kannan, K. R., ... & Gupta, N. (2022). Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. Iscience, 25(3).

      Response: The data is normalized as described above in the point 15. Also, it is technical limitation that we had to use multiple species of the mosquito for this study (please refer to the point 7).

      The reviewer’s statement “Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable” is not true, as we never assume similar olfactory sensitivity between An. culicifacies and An. gambiae. We only consider nocturnal activity for both the mosquito species. Moreover, we are aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (no other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (68). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Furthermore, we would like to emphasize that the primary focus of the current manuscript is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validated this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.

      "Similar to An. gambiae, a comparatively high amplitude response was also observed in An. stephensi (Figure S4D)." This is interesting but what would be even more relevant to the present study is to discuss how the time-dependent responses compare between the two Anopheles species.

      Response: We agree that it will be interesting to compare time-dependent response between the two Anopheles species. However, it is not our primary interest and objectives, and is beyond the scope of the current manuscript. Thus, we remove the data from the revised MS.

      The paragraph titled "Daily temporal modulation of neuronal serine protease impacts mosquito's olfactory sensitivity" is confusing because the authors move on to test the effect of knocking down a serine protease gene (found to be differentially expressed throughout the day) on olfactory sensitivity. While this is interesting in and of itself, the link between the role of this gene in learning-induced plasticity, the circadian modulation of "brain functions" and olfactory sensitivity is 1) unclear and 2) not explicitly tested. We agree with the authors that what has been tested is "the effect of neuronal serine protease on circadian-dependent olfactory responses," but the two paragraphs leading to it seem to be extrapolating functional links that have yet to be determined. In this context, their conclusions that "Our finding highlights that daily temporal modulation of neuronal serine-protease may have important functions in the maintenance of brain homeostasis and olfactory odor responses." is misleading because although they used the hypothetical "may", the link between the temporal modulation of one serine protease gene and the maintenance of brain homeostasis is not explicitly tested here.

      Response: Though, we strongly believe that neuronal serine protease are involved in remodelling of extracellular matrix and the maintenance of brain homeostasis, the limitation of experimental validation by neuroimaging (out of the scope of the current manuscript), restricting us to draw the conclusion. Therefore, we have modified our conclusions based on the available data as suggested by the reviewer.

      Discussion

      1. The first sentence of the discussion: "In this study, we provide initial evidence that the daily rhythmic change in the olfactory sensitivity of mosquitoes is tuned with the temporal modulation of molecular factors involved in the initial biochemical process of odor detection i.e., peri-receptor events" is not true since studies from Rund and Duffield previously revealed the daily modulation of OBP gene expression. It also contradicts the next sentence: "The findings of circadian-dependent elevation of xenobiotic metabolizing enzymes in the olfactory system of both Ae. aegypti and An. culicifacies are consistent with previous literature (26, 31), and we postulate that these proteins may contribute to the regulation of odorant detection in mosquitoes."

      Response: This statement is modified in the revised manuscript.

      The use of "circadian" in the discussion of the results is also misleading as only diel rhythms were evaluated in the present study.

      Response: This is changed in the revised manuscript.

      "Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58)." This is not really what these references show.

      Response: The statement and the references have been changed in the revised manuscript.

      "Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58), it can be hypothesized that detection of any specific signal in such a noisy environment, mosquitoes may have evolved a sophisticated mechanism for rapid (i) odor mobilization and (ii) odorant clearance, to prevent anosmia (24)." One could argue that this is a requirement for all insects, regardless of the size of their olfactory repertoire.

      Response: We agree with the reviewer and modified the text accordingly.

      "Taken together, we hypothesize that circadian-dependent activation of the peri-receptor events may modulate olfactory sensitivity and are key for the onset of peak navigation time in each mosquito species." This is not entirely accurate since spontaneous locomotor activity rhythms are also observed in the absence of olfactory stimulation. While "navigation" does imply olfactory-guided behaviors, "peak navigation time" appears to be driven by other processes. See, for example, all studies testing mosquito activity rhythms in locomotor activity monitors. Response: Considering the concern of the reviewer, we have modified the text.

      "Due to technical limitations, and considering the substantial data on the circadian-dependent molecular rhythmicity" please clarify what the technical limitations were. Is this something that prevented the authors specifically, or something tied to mosquito biology and would prevent anybody from doing it? Also, why couldn't the transcriptomic analysis be performed on An. gambiae?

      Response: As previously mentioned, primarily, unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available) is the major challenge for us to proof our hypothesis. Secondly, transportation of An. culicifacies was not possible due to Govt. regulations and also adaptation and establishment of the colony of An. culicifacies take long time as it is not easily adapted (Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577) in a new environment/laboratory. Thirdly, An. culicifacies colony was not available at our collaborative laboratory. These are the major technical limitations.

      Therefore, to validate the hypothesis of CYP450 function in odorant detection and olfactory sensitivity, we opt for the current collaborative study. We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (68). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Performing another RNA-Seq study with An. gambiae would not be possible for the current MS. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.

      "In contrast to An. gambiae, the time-dose interactions had a higher significant impact on the antennal sensitivity of Ae. aegypti. An. gambiae showed a conserved pattern in the daily rhythm of olfactory sensitivity, peaking at ZT1-3 and ZT18-20." These two sentences are very confusing. Doesn't it simply mean that the co-variation is not linear or not the same across odors? In addition, what does it mean for a pattern to be more conserved? How can one conclude about the "conserved" nature of a pattern by looking at time-dependent variations in dose-response curves?

      Response: This section of discussion is re-written in the revised version of the manuscript.

      "Together these data, we interpret that mosquito's olfactory sensitivity possibly does not follow a fixed temporal trait" is unclear and suggests that the authors are discussing global versus odor-specific rhythms. Please rephrase.

      Response: This section of discussion is re-written in the revised version of the manuscript.

      "Moreover, we hypothesize that under standard insectary conditions, mosquitoes may not need to exhibit foraging flight activity either for nectar or blood, and during the time course, it may minimize their olfactory rhythm, which is obligately required for wild mosquitoes." This hypothesis is not supported by the results of the study and contradicts work by others (Rund et al., Eilerts et al., Gentile et., etc).

      Response: This section of discussion is re-written in the revised version of the manuscript.

      The same comment applies to "Therefore, it is reasonable to think that the mosquitoes used for EAG studies may have adapted well under insectary settings and, hence carry weak olfactory rhythm." as this statement is not supported by results of the present study or comparisons of the results to previous studies based on field-caught mosquitoes. Although it is an interesting question to ask in the future, it should be stated as a future research avenue rather than a working hypothesis that results from the present study.

      This section of discussion is re-written in the revised version of the manuscript.

      "Aedes aegypti displayed a peak in antennal sensitivity at ZT18-20 to the higher concentrations of plant and vertebrate host-associated odorants tested. Given the time-of-day dependent multiple peaks (at ZT6-8 and ZT18-20 for benzaldehyde and at ZT12-14 and ZT18-20 for nonanal) in antennal sensitivity to different odorants, our data supports the previous observation of bimodal activity pattern of Ae. aegypti (50)." Rephrase by saying that results are "aligned with the previous observations of bimodal activity". Olfactory rhythms don't "support" the activity patterns because olfactory processes and spontaneous locomotor activity are independent processes.

      Response: We have made these changes in the revised manuscript as per the suggestions of the reviewer.

      "our preliminary data indicate that Anopheles spp. may possess comparatively higher olfactory sensitivity to a substantial number of odorants as compared to Aedes spp." Consider removing this sentence unless the way the data has been normalized to allow for comparisons between species is clarified.

      Response: This statement is removed from the revised manuscript.

      In "A significant decrease in odorant sensitivity for all the volatile odors tested in the CYP450-silenced Ae. aegypti," please change "silenced" to "reduced" because RNAi doesn't silence (i.e. knockout) gene expression.

      Response: It has been modified as per the suggestions of the reviewer.

      The title "Neuronal serine protease consolidates brain function and olfactory detection" is extremely misleading. Do the authors refer to memory consolidation, which has not been tested here? What is brain function consolidation??

      Response: We agree with the reviewer. The title has been modified in the revised manuscript.

      The reference used in "Despite their tiny brain size, mosquitoes, like other insects, have an incredible power to process and memorize circadian-guided olfactory information (7)." is not appropriate. Also, "circadian-guided" is unclear. Consider replacing it with "circadian-gated".

      Response: It has been modified as per the suggestions of the reviewer.

      What is the "the homeostatic process of the brain"?

      Response: The process of maintaining a stable state can be defined as homeostasis. Here, the statement "the homeostatic process of the brain" is used to convey that after the active host-seeking/olfaction phase of mosquitoes during which the co-ordinated and integrated functions of both olfactory and neuronal system is required for crucial decision-making events, brain may undergo a homeostatic process (comes down from excitatory state to stable state) during the resting period. However, in view of reviewer’s concern we have modified the statement.

      "the temporal oscillation of the sleep-wake cycle of any organism is managed by the encoding of experience during wake, and consolidation of synaptic change during inactive (sleep) phases, respectively (70)." By experience, do the authors refer to learning? This seems out of topic as this process has not been evaluated here.

      Response: It has been modified as per the suggestions of the reviewer.

      "We speculate that after the commencement of the active phase (ZT6-ZT12), the serine peptidase family of proteins in the brain of Ae. aegypti mosquitoes may play an important function in consolidating brain actions (after ZT12) and aid circadian-dependent memory formation." The value of this statement is unclear. Circadian-dependent memory formation is not being evaluated here, and the results from the present study do not directly support this speculation, also because other processes involved in memory formation are not evaluated here. This seems at odds with the literature on learning and memory.

      Response: We have modified these statements in the revised manuscript and mentioned it as future research hypothesis.

      "Subsequent work on electrophysiological and neuro-imaging studies are needed to demonstrate the role of neuronal-serine proteases in the reorganization of perisynaptic structure." Sure. But the link between "the role of neuronal-serine proteases in the reorganization of perisynaptic structure" and rhythms in olfactory sensitivity is unclear.

      Response: It has been modified as per the suggestions of the reviewer.

      As a general comment, EAGs seem inappropriate to evaluate the effect of the central-brain processing in the regulation of peripheral olfactory processes. This is a critical comment that needs to be considered by the authors and clarified in the manuscript. If rhythms of central brain processes are important for olfactory-guided behaviors, these should be evaluated at the level of the central brain or via behavioral metrics. The effect of the RNAi knockdowns on peripheral sensitivity is interesting, but its link with central processes is unclear and doesn't support the speculations made by the authors about learning and memory.

      Response: We agree with the reviewer that EAG study is not enough/appropriate to comment on the effect of central-brain processing in the regulation of olfactory processes. Further validation by either neuroimaging or behavioral studies are needed to make any conclusion. We clearly mention in the manuscript that our data indirectly indicating this function of serine protease and further confirmatory studies are needed to prove this hypothesis.

      Methods

      1. No explanations are provided for how the EAG data are normalized to allow comparisons between species.

      Response: Please refer to the response of the point no. 15 of the reviewer 1.

      Figures 42. Figure 1: The daily rhythm depicted in A, are not representative of the actual profiles. See: Benoit, J. B., & Vinauger, C. (2022). Chapter 32: Chronobiology of blood-feeding arthropods: influences on their role as disease vectors. In Sensory ecology of disease vectors (pp. 815-849). Wageningen Academic Publishers. Or any other paper on mosquito activity rhythms.

      Response: Considering the reviewer’s concern we have revised the figure.

      Figure 3 and 4: The EAG results are plotted twice. This is redundant and misleading as it makes the reader think there is more data than actually presented.

      Response: Considering the reviewer’s comment we shifted figure 4 into the supplemental file.

      Figure 5: Please clarify the sample size for each panel. In C - F, what would be used as a reference? In other words, what is a Relative EAG Response of 1? And if it is "relative", are the units really mV? In E and F, it would be great to show how the Ethanol control compares to the no solvent condition. This could be placed in supplementary materials.

      Response: The sample size was mentioned in the figure legends. However, for the reviewer’s clarification, the odor response was tested with 40 individual mosquitoes of control and dsrRNA-treated groups. Therefore, sample size N=40 for Fig. 5C.

      Respective solvent control (hexane solvent) used as a reference to calculate the relative EAG response for both the dsrLacZ and dsrCYP450 group. As it is relative EAG amplitude we have removed the unit in the revised MS.

      Figures 5 and 6, given the dispersion in the EAG data, the treatments where N=40 appear robust, but the interpretation of results from treatments where N=6 may be limited due to the low sample size. This limitation is visible in Figure 5F, for example, where ABT-Aceto is different from Cont-Aceta but not PBO-Aceto because one individual shows a higher response.

      Response: We agree that probably, by increasing the sample size for inhibitor treatment experiment, may decrease these inter-individual differences and increase the overall significance value. However, our robust knock-down data showed significant results and simultaneously it complements the inhibitor study in Ae. aegypti, we do not think of any disparity in the data. Moreover, EAG response to human blend, nonanal and benzaldehyde showed similar significant results in both RNAi and inhibitor studies. Accounting, the different knock-down efficiency in dsRNA injected mosquitoes, the phenotypic assays (EAG recordings) were carried out with 40 control and 40 dsRNA-treated mosquitoes. And, we observed significant reduction in EAG response following inhibitor treatment in An. gambiae, when we tested for 6 ethanol and 6 inhibitor treated mosquitoes. Thus, we followed the similar protocol for Ae. aegypti also. However, inter-individual difference in response is affecting the significance value.

      Figure S6: how does this support that synaptic plasticity is influenced by "Time-of-day dependent modulation of serine protease genes in the brain"?

      Response: We agree with the reviewer’s concern that with only EAG data it is not possible to comment on synaptic plasticity. We apologize for it and revised the statement in the MS.


      Minor comments

      What do the authors mean by "consolidation of brain functions"? Memory consolidation? Please clarify.

      Response: The consolidation of brain function or memory consolidation means to the process of stabilizing the memory that an organism gains through the process of experience or training/learning phase. Memory consolidation initiates with rapid change in de-novo gene expression regulated by several transcription factors, effector genes and non-coding RNAs, known as molecular consolidation followed by cellular consolidation that involves cellular signal transmission within the neurons in the brain. The molecular and cellular consolidation are the basis for system level consolidation which is a slow process and involves communication among neurons located different regions of the brain. The system level consolidation is very important for the reorganization of the brain circuits to maintain long-term memory. The concept of system consolation is very much well evident in humans. Additionally, several studies in Drosophila also showed that fruit fly develop olfactory memories after classical conditioning or olfactory training through system consolidation process.

      Moreover, accumulating data from humans suggest that sleep helps in memory consolidation. Sleep is basic drive for all animals that help to build memories. There are two hypothesis and respective compelling evidences for that. First hypothesis and the supporting molecular and electrophysiological data convey that sleep facilitate the homeostatic processes of the brain involving loosening of synaptic connections between the overactive neurons, structural modification of synapse which consequently help in memory formation. The second hypothesis state the important contribution of sleep in system consolidation and long-term memory potentiation. Studying the electrical activity of the brain and the recent advancement of fMRI scan indicate reorganization of neural activity between brain regions during sleep-related memory consolidation.

      There are several experimental evidences in support of both the theory for humans as well as in fruit fry Drosophila melanogaster. In mosquitoes, the studies related to the function of brain are primarily restricted to the mechanism of odor coding and memory formation has been correlated with Dopamine neurotransmitter signalling. In view of the rapid adaptation potential, change in host-preference and evolution of temporal host-seeking behaviour, it can be hypothesized that mosquito brain also undergo the process of memory consolidation (either following any of the two hypothesized path or cumulatively apply the both) to learn new information in order to effectively shape future actions.

      Furthermore, according to the fundamental principle of modern neuroscience learning and memory are achieved either by the formation of new synaptic connections or changing in existing connections between neurons. The ability of synapses to either strengthen or weaken the communications is called plasticity which is influenced by learning and experience and facilitate organism’s adaptation and survival.

      Reference:

      1. Cervantes-Sandova, A. Martin-Peña, J. A. Berry, R. L. Davis, System-like consolidation of olfactory memories in Drosophila. J. Neurosci. 33, 9846–9854 (2013).
      2. In "Similar to previous studies (26), the expression of a limited number of rhythmic genes was visualized in Ae. aegypti" please replace "visualized" with "observed".
      3. Marshall, N. Cross, S. Binder, T. T. Dang-Vu, Brain rhythms during sleep and memory consolidation: Neurobiological insights. Physiology. 35, 4–15 (2020).
      4. Brendon O. Watson and György Buzsáki. Sleep, Memory & Brain Rhythms. Daedalus, 144(1): 67–82 (2015). doi:10.1162/DAED_a_00318

      Figure 2A, please clarify in the caption what FDR stands for.

      Response: FDR stands for “false discovery rate”. FDR is an adjusted p-value to trim false positive results.

      In "To further establish this proof-of-concept in An. gambiae, three potent CYP450 inhibitors, aminobenzotriazole(52), piperonyl butoxide(53), and schinandrin A (54), was applied topically on the head capsule of 5-6-day-old female mosquitoes" replace "was applied" with "were applied".

      Response: These changes are made in the revised manuscript.

      "Interestingly, our species-time interaction studies revealed that An. gambiae exhibits time-of-day dependent significantly high antennal sensitivity to at least four chemical odorants compared to Ae. aegypti, except phenol." is unclear. Please reword.

      Response: The statement has been revised in the MS.

      In "Similar observations were also noticed with An. stephensi." replace "noticed" with "made". Response: We have modified the statement in the revised version of the manuscript.



      Reviewer #1 (Significance (Required)):

      Such a study has the potential to be valuable for the field, but its value and significance are hindered by an accumulation of overstatements, the fact that prior work in the field has been minimized or omitted, and a lack of support for the stated conclusions.

      In this context, the advances are only slightly incremental compared to the work produced by Rund et al., and the mechanistic hypotheses emitted to link the genes selected for knockdown experiments and olfactory sensitivity are not clearly supported by the evidence presented here. The main strength of the paper is to show the role of CYP450 in olfactory sensitivity.

      The audience is fairly broad and includes insect neuro-ethologists, molecular biologists, and chronobiologists.

      Our field of expertise:

      • Mosquito chemosensation

      • Learning and memory

      • Chronobiology

      • Electrophysiology

      • Medical entomology









      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This report combines an examination of peripheral transcriptomes and general olfactory sensitivity in an effort to underscore the importance of peri-receptor components in circadian-directed modulation of olfaction across both Aedine and Anopheline mosquitoes. While the authors do a nice job of raising the importance of the often-underappreciated spectrum of insect olfactory peri-receptor proteins, the impact of their study is undercut by technical concerns regarding methods and data presentation. That several of these concerns (detailed below) are explicitly acknowledged by the authors as limitations of this study does not mitigate their impact in eroding confidence in these data and this study.

      All in all, as a result of these concerns, I am unconvinced as to the overall merits of this somewhat interesting but generally uneven study.

      We sincerely thank the reviewer for their time and consideration, and appreciate the thorough review of our manuscript. Their insightful comments have greatly enriched our work. We also apologies for instances of overinterpreting the data. Your feedback has helped us recognize areas where clarity and caution are needed, and we are committed to addressing these concerns in our revisions. Thank you for your valuable input and guidance.

      Major concerns:

      1. That the authors use An. culicifacies for their transcriptome studies and An. gambiae (G3) for the olfactory physiology does not work. The 'technical limitations' (read studies done at two different locations) make this report an unwelcome melding of what should perhaps be two distinct studies. In order to maintain this forced marriage as a single report I would suggest the authors utilize An. culicifacies for both components. Alternatively, they can do both parts with An. gambiae but here I would strongly urge them to use any strain other than G3 which as a result of its now decades-long laboratory residence has long since lost its relevance to natural populations of Anopheline vectors. Response: We agree with the reviewer that there is significant species-specific variation in olfactory sensitivity of mosquitoes. Considering the strict nocturnal behavioral pattern of An. culicifacies and dirurnal behavior of Aedes aegypti, we performed RNA-Seq study with these respective species. However, 1) due to unavailability of EAG facility at ICMR-National Institute of Malaria Research, India (only where An. culicifacies colony is available), 2) challenges in rearing and adaptation of An. culicifacies in a new environment/laboratory (An. culicifacies take long time as it is not easily adapted, Ref: Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577), 3) An. culicifacies colony was not available at our collaborative laboratory, 4) to validate our hypothesis of CYP450 function in odorant detection and olfactory sensitivity of mosquitoes, we opt for the current collaborative study.

      We are also aware that species variation of Anopheles for electroantennographic study would be difficult to correlate with the molecular data on An. culicifacies. Thus, we consider An. gambiae (not other Anopheles mosquitoes like An. stephensi, An. coluzzii etc.) because of the availability of diel rhythm associated molecular data for An. gambiae (68). For better interpretation we also compare expression profiling of CYP450 and OBP genes between An. culicifacies and An. gambiae (Supplemental file 3). Importantly, we found similar expression pattern of several CYP450 and OBP/CSP genes between An. culicifacies and An. gambiae. Performing another RNA-Seq study with An. gambiae would not be possible for the current MS. Furthermore, please note that the primary focus of the current MS is to highlight the role of peri-receptor proteins in olfactory sensitivity and odor detection. And, as a proof-of-concept, we validate this hypothesis both in An. gambiae and Aed. aegypti. We believe that the basic mechanism of odor detection and peri-receptor events are similar/conserved from insects to higher vertebrates.

      The 70-80% alignment rate reported to the An. culicifacies reference genome significantly erodes this reader's confidence in the integrity of their analyses. That low level of alignment can have dramatic impacts on the estimation of transcript abundance has been repeated demonstrated (see, Srivastava, A., Malik, L., Sarkar, H. et al.. Genome Biol 21, 239, 2020, https://doi.org/10.1186/s13059-020-02151-8). This may (in part) explain why olfactory receptors have been largely absent from this data set.

      Response: We agree with the reviewer that alignment rate could have been better but this should not affect the quantitative information we are referring to in this manuscript. The alignment rates could have impacted the qualitative information which can vary due to multiple reasons including the quality of the reference genome. As it is evident from the analysis that in Ae. aegypti 90% of the reads are aligned to the reference genome, still we did not observe any difference in the abundancy of olfactory receptor genes. Previous microarray analysis in An. gambiae by Rund et.al. 2013, also did not show diel rhythmic expression of any OR genes.

      The issue of species choice is further complicated by questions regarding the An. culicifacies species complex which contains 5 cryptic species. How did the authors confirm they are indeed working with An. culicifacies species A -there is no mention regarding the molecular identification.

      Response: The An. culcifacies species A colony has been colonized at NIMR since 1999, with routine checks performed to verify its purity of species by analyzing inversion genotypes on chromosomes for the presence of sibling species (see the references). But at that time, we had three sibling species--A, B, C; subsequently, we lost B and C. Giving old references will not serve the purpose. Later we verified sibling species A by inversion genotype on chromosome and molecular tools. However, we do not have any published reference for that verified data.

      The species can be identified by performing 28S rDNA-based PCR (Singh et al, 2004) and cytochrome oxidase II-based PCR (Goswami et al 2006). Sequencing can also serve the purpose.


      Singh OP, Goswami G, Nanda N, Raghavendra K, Chandra D, Subbarao SK. An allele-specific polymerase chain reaction assay for the identification of members of Anopheles culicifacies complex. J Biosci. 2004; 29: 275—280 10.1007/bf02702609

      Goswami G, Singh OP, Nanda N, Raghavendra K, Gakhar SK, Subbarao SK. Identification of all members of the Anopheles culicifacies complex using allele-specific polymerase chain reaction assays. Am J Trop Med Hyg. 2006; 75: 454-460. doi: 10.4269/ajtmh.2006.75.454

      Adak T, Kaur S, Singh OP. Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg. 1999;93:573–577

      The switch from dsRNAi studies in Aedes to protease inhibitor studies in Anopheles adds to the interspecies confusion.

      Response: Our main goal in this study was to evaluate the function of CYP450 in mosquito’s odor detection and olfactory sensitivity. Our data as well as previous data (Rund et.al. 2011, Rund et.al. 2013) suggesting that the basic mechanism of odor detection and peri-receptor events are similar for both An. gambiae, An. culicifacies and Ae. aegypti, and the role of detoxification genes are very much evidenced from these data. Based on our RNA-Seq data on Ae. aegypti, we shortlisted one CYP450 gene for functional knockdown assays. However, for Anopheles we used An. gambiae for functional validation. Thus, it was not possible for us to select appropriate CYP450 gene from An. gambiae. That is why, we plan for using CYP450 protein inhibitors which block the function of all the CYP450 expressing in the olfactory system of mosquitoes. Expectedly, we also observed much more pronounced reduction of olfactory sensitivity when inhibitors were applied compared to dsRNAi mediated knock-down the function of only one CYP450 protein. These data indicate that Anopheles also possess similar mechanism of perireceptor events for odor detection and CYP450 plays an important role in it.

      The olfactory shifts presented in Fig 3 are somewhat underwhelming. In An. gambiae this mostly seen at very high (to my eyes, non-biologically relevant) 10-1 dilutions. In Aedes, while statistically significant, the EAG values (especially for 4MePhenol) are very low and therefore suspect and unconvincing. It is also unclear how 'Relative EAG Responses' were derived?? Does this mean relative to solvent alone controls??

      Response: Yes, relative EAG response means relative to respective solvent control. We also make necessary changes in the text as well as in the figures for better understanding and representation.

      The same data set seems to have been presented in Figures 3 and 4, with the latter's absence of salient details e.g. haphazard odor concentrations which are seen only when legend is examined). These factors make the inclusion of Figure 4 less obvious.

      Response: Depending on the reviewer’s concern we shifted the Figure 4 into the supplemental data and we are sorry for the miscommunication.

      I am concerned that the data in Figure 5B is derived from only those samples with altered EAGs. I believe that all injected mosquitoes should be assayed in order to better understand the actual efficacy of the treatment. The cherry picking of samples is troubling.

      Response: We pooled five heads for each replicate and we performed the assay with three replicates. That mean we have taken heads from 15 mosquitoes for each experimental setup (control vs knock-down). It is true that we did not consider all the 40 mosquitoes that we used for EAG-recordings. However, we believe that 15 mosquitoes will be a good representation of the population. And the error bars among replicates of the knock-down mosquitoes, compared to the dsLacZ group, clearly indicates the disparity in knock-down efficiency among individuals.

      As is true for earlier figures, Figure 5c-f is lacking critical information about concentration (also not presented in figure legend) and should be done within the context of a multi-point dose response study. The data in its current form is not acceptable.

      Response: We apologize for the mistake for not mentioning the concentration of the inhibitors. Now, we added this information in the revised manuscript.

      The same data concerns apply to Figure 6d-g.

      Response: We apologize for the mistake for not mentioning the concentration of the inhibitors. Now, we added this information in the revised manuscript.

      The inclusion of An. stephensi data Figure S4D seems thrown in as an after-thought and without good reason.

      Response: Our RNA-Seq data on An. culicifacies and Aedes aegypti revealed similar abundance and expression pattern of rhythmic transcripts specifically for peri-receptor transcripts, as reported before by Rund et. al. 2011 & 2013 for Aedes aegypti and Anopheles gambiae. Moreover, we observed significant difference in EAG response between Aedes aegypti and Anopheles gambiae, we hypothesized that higher abundance of rhythmic peri-receptor transcripts possibly has correlation with high EAG response in Anopheles. Therefore, to get an idea about the EAG response for other Anopheles sp. we used An. stephensi, and observed similar difference in EAG response. Though, it will be interesting to compare time-dependent response between the two Anopheles species, it is not our primary interest and objectives, and is beyond the scope of the current MS and the objective can be elaborated further in future.

      I am unsure how shifts in CNS levels of P450 or serine proteases impact peripheral EAG recordings? This is especially so given that any effects on synaptic plasticity/efficacy that might occur are expected to be downstream of the peripheral antennae being recorded in EAGs. The authors do not do a great job explaining away that paradox even though that section in the discussion seems overly speculative.

      Response: We agree with the reviewer that EAG study is not enough/appropriate to comment on the effect of central-brain processing in the regulation of olfactory processes. Further validation by either neuroimaging or beavioral studies are needed to make any conclusion. And we clearly mention in the MS that our data indirectly indicating this function of serine protease and further confirmatory studies are needed to proof this hypothesis. However, it is not possible for us to perform all the experiments now, due to technical and infrastructural limitations. Thus, we hypothesized it as future research endeavour. Moreover, considering the reviewer’s concern we have modified the text and removed the overstatements and speculations.

      The authors discussion on peri-receptor protein oscillation seems premature given the data that is presented (regardless of the caveats discussed above) center on transcript abundance. There is no data on protein abundance, which while related, is an entirely different question/issue.

      Response: Yes, we agree that our hypothesis of peri-receptor protein oscillation is based on our RNA-Seq data. However, later we validated our hypothesis by knock-down studies in mosquitoes as well as we used CYP450 protein inhibitors, where also we observed significant results of decrease in olfactory sensitivity. It is true that we do not have any data on protein abundance, but several previous studies along with our data showed the similar expression profiling of peri-receptor genes, which clearly indicates that the rhythmic expression pattern of these genes are conserved among mosquitoes. None of the previous studies address the hypothesis regarding the peri-receptor events and possible function of XMEs in odorant detection, which is the uniqueness of our study. Therefore, we believe that after functional validation by dsRNAi and inhibitor study, we are able to validate our hypothesis for scientific acceptance. While, CYP450 has been reported to have crucial role in xenobiotic detoxification, its role in odor detection has not been explored yet. We agree that further biochemical validation is required to see the interaction between CYP450 and odor molecules, and how CYP450 is modifying the odorant chemicals either for its detection or for its inactivation. But, such study is out of the scope of the MS and will be our future research endeavour. However, our current data and the MS will have large impact for designing of strategies for application of insecticides, as overlapping the timing of application of insecticide and rhythmic expression/natural upregulation of XMEs could accelerate the inactivation of insecticides and rapid generation of resistant mosquitoes. Thus, we believe that the current revised MS have potential data and would be valuable for publication.

      Minor concerns:

      1. The authors routinely confuse transcript abundance derived from their RNAseq data with gene expression. The former reflects the steady-state snapshot levels of transcripts encompassing\ synthesis, use and decay while the latter is limited to the rate of transcription requiring nuclear run on or single-nucleus RNAseq approaches. Response: Thank you for your insightful comment. We appreciate your clarification regarding the distinction between transcript abundance and gene expression. In the revised manuscript, we have included a clarification stating that 'transcript abundance is referred to as gene expression, unless explicitly stated otherwise”.

      There are numerous typos, spelling errors and other grammatical mistakes-a copy editor is needed.

      Response: In the revised manuscript, we have carefully corrected the spelling errors and other grammatical mistakes.

      Many of the supplemental figures are error filled, lacking sufficient details and otherwise difficult to parse/understand. I recommend revisiting/removing many of these/

      Response: We have improvised on the supplementary figures in the revised manuscript as suggested by the reviewer.

      __ Reviewer #2 (Significance (Required)):__

      In light of the serious concerns described above there is limited significance to this study. Similarly these concerns erode almost all of any advance to the field this study might have offered. The audience of interest would be highly specialized

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In the present manuscript, the authors analyzed diel oscillations in the brain and olfactory organs' transcriptome of Aedes aegypti and Anopheles culicifacies. The analysis of their RNAseq results showed an effect of time of day on the expression of detoxification genes involved in oxidoreductase and monooxygenase activity. Next, they investigated the effect of time of day on the olfactory sensitivity of Ae. aegypti and An. gambiae and identified the role of CYP450 in odor detection in these species using RNAi. In the last part of the study, they used RNAi to knock down the expression of one of the serine protease genes and observed a reduction in olfactory sensitivity. Overall, the experiments are well-designed and mostly robust (see comment regarding the sample size and data analysis of the EAG experiments) but do not always support the claims of the authors. For example, since no experiments were conducted under constant conditions, the circadian (i.e., driven by the internal clocks) effects are not being quantified here. In addition, knocking down the expression of a gene showing daily variations in its expression and observing an effect on olfactory sensitivity is not sufficient to show its role in the daily olfactory rhythms. Knowledge gaps are not well supported by the literature, and overstatements are made throughout the manuscript. Our detailed comments are listed below.

      Major comments

      Introduction

      Several statements made in the introduction are misleading and suggest that authors are trying to exaggerate the impact of their work. For example, "Furthermore, different species of mosquitoes exhibit plasticity and distinct rhythms in their daily activity pattern, including locomotion, feeding, mating, blood-feeding, and oviposition, facilitating their adaptation into separate time-niches (7, 8), but the underlying molecular mechanism for the heterogenous temporal activity remains to be explored." is not accurate since daily rhythms in mosquitoes' transcriptomes, behavior, and olfactory sensitivity have been the object of several publications. Even though some of them are listed later in the introduction, they contradict the claim made about the knowledge gap. See:

      Rund, S. S., Gentile, J. E., & Duffield, G. E. (2013). Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC genomics, 14(1), 1-19

      Rund, S. S., Hou, T. Y., Ward, S. M., Collins, F. H., & Duffield, G. E. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy of Sciences, 108(32), E421-E430

      Rund, S. S., Bonar, N. A., Champion, M. M., Ghazi, J. P., Houk, C. M., Leming, M. T., ... & Duffield, G. E. (2013). Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific reports, 3(1), 2494

      Rund, S. S., Lee, S. J., Bush, B. R., & Duffield, G. E. (2012). Strain-and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. Journal of insect physiology, 58(12), 1609-1619

      Leming, M. T., Rund, S. S., Behura, S. K., Duffield, G. E., & O'Tousa, J. E. (2014). A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC genomics, 15(1), 1-9

      Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147

      Rivas, G. B., Teles-de-Freitas, R., Pavan, M. G., Lima, J. B., Peixoto, A. A., & Bruno, R. V. (2018). Effects of light and temperature on daily activity and clock gene expression in two mosquito disease vectors. Journal of Biological Rhythms, 33(3), 272-288

      The knowledge gap brought up in the next paragraph of the introduction doesn't reflect the questions asked by the experiments: "But, how the pacemaker differentially influences peripheral clock activity present in the olfactory system and modulates olfactory sensitivity has not been studied in detail." Specifically, the control of peripheral clocks by the central pacemaker has not been evaluated here.

      "In vertebrates and invertebrates, it is well documented that circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" should also cite work on cockroaches and kissing bugs:

      Lubinski, A. J., & Page, T. L. (2016). The optic lobes regulate circadian rhythms of olfactory learning and memory in the cockroach. Journal of Biological Rhythms, 31(2), 161-169

      Page, T. L. (2009). Circadian regulation of olfaction and olfactory learning in the cockroach Leucophaea maderae. Sleep and Biological Rhythms, 7, 152-161

      Vinauger, C., & Lazzari, C. R. (2015). Circadian modulation of learning ability in a disease vector insect, Rhodnius prolixus. Journal of Experimental Biology, 218(19), 3110-3117

      The sentence: "Previous studies showed that synaptic plasticity and memory are significantly influenced by the strength and number of synaptic connections (43, 44)." should be nuanced as the role of neuropeptides such as dopamine has also been showed to influence learning and memory in mosquitoes:

      Vinauger, C., Lahondère, C., Wolff, G. H., Locke, L. T., Liaw, J. E., Parrish, J. Z., ... & Riffell, J. A. (2018). Modulation of host learning in Aedes aegypti mosquitoes. Current Biology, 28(3), 333-344

      Wolff, G. H., Lahondère, C., Vinauger, C., Rylance, E., & Riffell, J. A. (2023). Neuromodulation and differential learning across mosquito species. Proceedings of the Royal Society B, 290(1990), 20222118

      Overall, the paragraph dealing with the idea that "circadian phase-dependent training can influence olfactory memory acquisition and consolidation of brain functions" is very confusing. This paragraph discusses mechanisms of learning-induced plasticity but seems to ignore the simplest (most parsimonious) explanations for the circadian regulation of learning (e.g., time-dependent expression of genes involved in memory consolidation). In addition, the sentence quoted above is circumvoluted to simply say that training at different times of the day affects memory acquisition and consolidation. Although the authors did look at one gene involved in neural function, learning, memory, or circadian effects were not analyzed in this study. Please reconsider the relevance of the paragraph.

      The sentence: "But, how the brain of mosquitoes entrains circadian inputs and modulates transcriptional responses that consequently contribute to remodel plastic memory, is unknown." should be rephrased. First, it should be "entrains TO circadian inputs", and second, it suggests that the study will be investigating circadian modulation of learning and memory, which is not the case. Furthermore, the term "remodel plastic memory" is unclear and doesn't seem to relate to any specific cellular or neural processes.

      Given the differences in mosquito chronobiology observed even between strains, why perform the RNAi and EAGs on a different species of Anopheles than the one used for the RNAseq (or vice versa)?

      Results

      "As reported earlier, a significant upregulation of period and timeless during ZT12-ZT18 was observed in both species (Figure 1C)." Please provide effect size and summary statistics.

      "Next, the distribution of peak transcriptional changes in both An. culicifacies and Ae. aegypti was assessed through differential gene-expression analysis. Noticeably, An. culicifacies showed a higher abundance of differentially expressed olfactory genes (Figure 1D)" Please provide effect size and summary statistics.

      "Taken together, the data suggests that the nocturnal An. culicifacies may possess a more stringent circadian molecular rhythm in peripheral olfactory and brain tissues." What do the authors mean by "stringent"? At this point, this should be stated as a working hypothesis, as the statement is not backed up by the data. It is possible that the fewer differentially expressed genes of Aedes aegypti are more central to regulatory networks and cascade into more "stringent" rhythmic control of activities and rhythms.

      The section title: "Circadian cycle differentially and predominantly expresses olfaction-associated detoxification genes in Anopheles and Aedes" doesn't make sense. The expression of genes can be modulated by circadian rhythms, but cycles don't express genes. Please rephrase. In addition, this whole section deals with "circadian rhythms" while no experiment has been conducted under constant conditions. The observed daily variations are therefore diel rhythms until their persistence under constant conditions is established.

      "The downregulated genes of Ae. aegypti did not show any functional categories probably due to the limited transcriptional change." Could the authors explain if this is actually the phenomenon or due to a lack of temporal resolution in the study design (i.e., 4 time points)?

      "a GO-enrichment analysis was unable to track any change in the response-to-stimulus or odorant binding category of genes (including OBPs, CSPs, and olfactory receptors)." This finding doesn't corroborate the statements made previously and doesn't align with previously published studies. Is it due to pitfalls in the study design?

      "In contrast, three different clusters of OBP genes in Ae. aegypti showed a time-of-day dependent distinct peak in expression starting from ZT0-ZT12 (Figure 2F)." Please provide summary statistics.

      "In the case of An. gambiae, the amplitudes of odor-evoked responses were significantly influenced by the doses of all the odorants tested (repeated measure ANOVA, p {less than or equal to} 2e-16) (Figure S4B)." Did the authors use a positive control for the EAGs? How did the authors normalize the responses across the two species? Given the way the data is presented, how were the data normalized to allow inter-species comparisons? In addition, It is highly unlikely that all the mosquito preps used in the EAG assay responded to all the odors tested. If that was the case, then the dataset includes missing data for certain odors and time points. We believe the authors have ensured there are at least a certain number of responses per odor and time point combinations. If this is true, repeated measures ANOVA is not suited for analyzing this data because this statistical technique requires all repeated measures within and across preps without missing values. Also, the authors need to correct the summary statistics for multiple comparisons within this framework to avoid inflating type-I errors. Has this been done?

      "Ae. aegypti was found to be most sensitive to all the odorants (4-methylphenol, β-ocimine, E2-nonenal, benzaldehyde, nonanal, and 3-octanol) during ZT18-20 except sulcatone (Figure 3C - 3H)." Although some of these chemicals are associated with plants and Ae. aegypti is suspected to sugar feed at night, how do the authors explain that the peak olfactory sensitivity occurs at night for compounds such as nonanal? It would be interesting to discuss how these results compare to previous studies such as:

      Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K., & Vinauger, C. (2018). Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects, 9(4), 147

      "Additionally, our principal components analysis also illustrates that most loadings of relative EAG responses are higher towards the Anopheles observations (Figure S4C)." The meaning of this sentence is unclear? Please clarify.

      "Taken together these data indicate that An. gambiae may exhibit higher antennal sensitivity to at least five different odorants tested, as compared to Ae. aegypti." As mentioned above, how did the authors normalized across species to allow comparisons? If not normalized, how do you ensure that higher response magnitudes correlate with higher olfactory sensitivity, given potential differences in the morphology or size differences between the two species? Furthermore, An. gambiae has been exclusively used in the EAG assay. Besides the lack of a justification for using a species other than An. culicifacies, the authors have interpreted the EAG results under the assumption that the olfactory sensitivities of An. gambiae and An. culicifacies are comparable. This, however, is a major caveat in the experiment design, given previous studies (indicated below) have reported species-specific variations in olfactory sensitivity. In its present form, the EAG data from An. gambiae is not a piece of appropriate evidence that the authors could use to complement or substantiate the findings from other aspects of this study on An. culicifacies.

      i. Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383(1), 75-90.

      ii. Wooding, M., Naudé, Y., Rohwer, E., & Bouwer, M. (2020). Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors, 13, 1-20.

      iii. Gupta, A., Singh, S. S., Mittal, A. M., Singh, P., Goyal, S., Kannan, K. R., ... & Gupta, N. (2022). Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. Iscience, 25(3).

      "Similar to An. gambiae, a comparatively high amplitude response was also observed in An. stephensi (Figure S4D)." This is interesting but what would be even more relevant to the present study is to discuss how the time-dependent responses compare between the two Anopheles species.

      The paragraph titled "Daily temporal modulation of neuronal serine protease impacts mosquito's olfactory sensitivity" is confusing because the authors move on to test the effect of knocking down a serine protease gene (found to be differentially expressed throughout the day) on olfactory sensitivity. While this is interesting in and of itself, the link between the role of this gene in learning-induced plasticity, the circadian modulation of "brain functions" and olfactory sensitivity is 1) unclear and 2) not explicitly tested. We agree with the authors that what has been tested is "the effect of neuronal serine protease on circadian-dependent olfactory responses," but the two paragraphs leading to it seem to be extrapolating functional links that have yet to be determined. In this context, their conclusions that "Our finding highlights that daily temporal modulation of neuronal serine-protease may have important functions in the maintenance of brain homeostasis and olfactory odor responses." is misleading because although they used the hypothetical "may", the link between the temporal modulation of one serine protease gene and the maintenance of brain homeostasis is not explicitly tested here.

      Discussion

      The first sentence of the discussion: "In this study, we provide initial evidence that the daily rhythmic change in the olfactory sensitivity of mosquitoes is tuned with the temporal modulation of molecular factors involved in the initial biochemical process of odor detection i.e., peri-receptor events" is not true since studies from Rund and Duffield previously revealed the daily modulation of OBP gene expression. It also contradicts the next sentence: "The findings of circadian-dependent elevation of xenobiotic metabolizing enzymes in the olfactory system of both Ae. aegypti and An. culicifacies are consistent with previous literature (26, 31), and we postulate that these proteins may contribute to the regulation of odorant detection in mosquitoes."

      The use of "circadian" in the discussion of the results is also misleading as only diel rhythms were evaluated in the present study.

      "Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58)." This is not really what these references show.

      "Given the potentially larger odor space in mosquitoes (like other hematophagous insects) (16, 58), it can be hypothesized that detection of any specific signal in such a noisy environment, mosquitoes may have evolved a sophisticated mechanism for rapid (i) odor mobilization and (ii) odorant clearance, to prevent anosmia (24)." One could argue that this is a requirement for all insects, regardless of the size of their olfactory repertoire.

      "Taken together, we hypothesize that circadian-dependent activation of the peri-receptor events may modulate olfactory sensitivity and are key for the onset of peak navigation time in each mosquito species." This is not entirely accurate since spontaneous locomotor activity rhythms are also observed in the absence of olfactory stimulation. While "navigation" does imply olfactory-guided behaviors, "peak navigation time" appears to be driven by other processes. See, for example, all studies testing mosquito activity rhythms in locomotor activity monitors.

      "Due to technical limitations, and considering the substantial data on the circadian-dependent molecular rhythmicity" please clarify what the technical limitations were. Is this something that prevented the authors specifically, or something tied to mosquito biology and would prevent anybody from doing it? Also, why couldn't the transcriptomic analysis be performed on An. gambiae?

      "In contrast to An. gambiae, the time-dose interactions had a higher significant impact on the antennal sensitivity of Ae. aegypti. An. gambiae showed a conserved pattern in the daily rhythm of olfactory sensitivity, peaking at ZT1-3 and ZT18-20." These two sentences are very confusing. Doesn't it simply mean that the co-variation is not linear or not the same across odors? In addition, what does it mean for a pattern to be more conserved? How can one conclude about the "conserved" nature of a pattern by looking at time-dependent variations in dose-response curves?

      "Together these data, we interpret that mosquito's olfactory sensitivity possibly does not follow a fixed temporal trait" is unclear and suggests that the authors are discussing global versus odor-specific rhythms. Please rephrase.

      "Moreover, we hypothesize that under standard insectary conditions, mosquitoes may not need to exhibit foraging flight activity either for nectar or blood, and during the time course, it may minimize their olfactory rhythm, which is obligately required for wild mosquitoes." This hypothesis is not supported by the results of the study and contradicts work by others (Rund et al., Eilerts et al., Gentile et., etc).

      The same comment applies to "Therefore, it is reasonable to think that the mosquitoes used for EAG studies may have adapted well under insectary settings and, hence carry weak olfactory rhythm." as this statement is not supported by results of the present study or comparisons of the results to previous studies based on field-caught mosquitoes. Although it is an interesting question to ask in the future, it should be stated as a future research avenue rather than a working hypothesis that results from the present study.

      "Aedes aegypti displayed a peak in antennal sensitivity at ZT18-20 to the higher concentrations of plant and vertebrate host-associated odorants tested. Given the time-of-day dependent multiple peaks (at ZT6-8 and ZT18-20 for benzaldehyde and at ZT12-14 and ZT18-20 for nonanal) in antennal sensitivity to different odorants, our data supports the previous observation of bimodal activity pattern of Ae. aegypti (50)." Rephrase by saying that results are "aligned with the previous observations of bimodal activity". Olfactory rhythms don't "support" the activity patterns because olfactory processes and spontaneous locomotor activity are independent processes.

      "our preliminary data indicate that Anopheles spp. may possess comparatively higher olfactory sensitivity to a substantial number of odorants as compared to Aedes spp." Consider removing this sentence unless the way the data has been normalized to allow for comparisons between species is clarified.

      In "A significant decrease in odorant sensitivity for all the volatile odors tested in the CYP450-silenced Ae. aegypti," please change "silenced" to "reduced" because RNAi doesn't silence (i.e. knockout) gene expression.

      The title "Neuronal serine protease consolidates brain function and olfactory detection" is extremely misleading. Do the authors refer to memory consolidation, which has not been tested here? What is brain function consolidation??

      The reference used in "Despite their tiny brain size, mosquitoes, like other insects, have an incredible power to process and memorize circadian-guided olfactory information (7)." is not appropriate. Also, "circadian-guided" is unclear. Consider replacing it with "circadian-gated".

      What is the "the homeostatic process of the brain"?

      "the temporal oscillation of the sleep-wake cycle of any organism is managed by the encoding of experience during wake, and consolidation of synaptic change during inactive (sleep) phases, respectively (70)." By experience, do the authors refer to learning? This seems out of topic as this process has not been evaluated here.

      "We speculate that after the commencement of the active phase (ZT6-ZT12), the serine peptidase family of proteins in the brain of Ae. aegypti mosquitoes may play an important function in consolidating brain actions (after ZT12) and aid circadian-dependent memory formation." The value of this statement is unclear. Circadian-dependent memory formation is not being evaluated here, and the results from the present study do not directly support this speculation, also because other processes involved in memory formation are not evaluated here. This seems at odds with the literature on learning and memory.

      "Subsequent work on electrophysiological and neuro-imaging studies are needed to demonstrate the role of neuronal-serine proteases in the reorganization of perisynaptic structure." Sure. But the link between "the role of neuronal-serine proteases in the reorganization of perisynaptic structure" and rhythms in olfactory sensitivity is unclear.

      As a general comment, EAGs seem inappropriate to evaluate the effect of the central-brain processing in the regulation of peripheral olfactory processes. This is a critical comment that needs to be considered by the authors and clarified in the manuscript. If rhythms of central brain processes are important for olfactory-guided behaviors, these should be evaluated at the level of the central brain or via behavioral metrics. The effect of the RNAi knockdowns on peripheral sensitivity is interesting, but its link with central processes is unclear and doesn't support the speculations made by the authors about learning and memory.

      Methods

      No explanations are provided for how the EAG data are normalized to allow comparisons between species.

      Figures

      Figure 1: The daily rhythm depicted in A, are not representative of the actual profiles. See: Benoit, J. B., & Vinauger, C. (2022). Chapter 32: Chronobiology of blood-feeding arthropods: influences on their role as disease vectors. In Sensory ecology of disease vectors (pp. 815-849). Wageningen Academic Publishers. Or any other paper on mosquito activity rhythms.

      Figure 3 and 4: The EAG results are plotted twice. This is redundant and misleading as it makes the reader think there is more data than actually presented.

      Figure 5: Please clarify the sample size for each panel. In C - F, what would be used as a reference? In other words, what is a Relative EAG Response of 1? And if it is "relative", are the units really mV? In E and F, it would be great to show how the Ethanol control compares to the no solvent condition. This could be placed in supplementary materials.

      Figures 5 and 6, given the dispersion in the EAG data, the treatments where N=40 appear robust, but the interpretation of results from treatments where N=6 may be limited due to the low sample size. This limitation is visible in Figure 5F, for example, where ABT-Aceto is different from Cont-Aceta but not PBO-Aceto because one individual shows a higher response.

      Figure S6: how does this support that synaptic plasticity is influenced by "Time-of-day dependent modulation of serine protease genes in the brain"?

      Minor comments

      What do the authors mean by "consolidation of brain functions"? Memory consolidation? Please clarify.

      In "Similar to previous studies (26), the expression of a limited number of rhythmic genes was visualized in Ae. aegypti" please replace "visualized" with "observed".

      Figure 2A, please clarify in the caption what FDR stands for.

      In "To further establish this proof-of-concept in An. gambiae, three potent CYP450 inhibitors, aminobenzotriazole(52), piperonyl butoxide(53), and schinandrin A (54), was applied topically on the head capsule of 5-6-day-old female mosquitoes" replace "was applied" with "were applied".

      "Interestingly, our species-time interaction studies revealed that An. gambiae exhibits time-of-day dependent significantly high antennal sensitivity to at least four chemical odorants compared to Ae. aegypti, except phenol." is unclear. Please reword.

      In "Similar observations were also noticed with An. stephensi." replace "noticed" with "made".

      Significance

      Such a study has the potential to be valuable for the field, but its value and significance are hindered by an accumulation of overstatements, the fact that prior work in the field has been minimized or omitted, and a lack of support for the stated conclusions.

      In this context, the advances are only slightly incremental compared to the work produced by Rund et al., and the mechanistic hypotheses emitted to link the genes selected for knockdown experiments and olfactory sensitivity are not clearly supported by the evidence presented here. The main strength of the paper is to show the role of CYP450 in olfactory sensitivity.

      The audience is fairly broad and includes insect neuro-ethologists, molecular biologists, and chronobiologists.

      Our field of expertise:

      • Mosquito chemosensation
      • Learning and memory
      • Chronobiology
      • Electrophysiology
      • Medical entomology
    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study provides an unprecedented understanding of the roles of different combinations of NaV channel isoforms in nociceptors' excitability, with relevance for the design of better strategies targeting NaV channels to treat pain. Although the experimental combination of electrophysiological, modeling, imaging, molecular biology, and behavioral data is convincing and supports the major claims of the work, some conclusions need to be strengthened by further evidence or discussion. The work may be of broad interest to scientists working on pain, drug development, neuronal excitability, and ion channels.

      Reviewer #1 (Public Review):

      Summary:

      In this work, Xie, Prescott, and colleagues have reevaluated the role of Nav1.7 in nociceptive sensory neuron excitability. They find that nociceptors can make use of different sodium channel subtypes to reach equivalent excitability. The existence of this degeneracy is critical to understanding neuronal physiology under normal and pathological conditions and could explain why Nav subtype-selective drugs have failed in clinical trials. More concretely, nociceptor repetitive spiking relies on Nav1.8 at DIV0 (and probably under normal conditions in vivo), but on Nav1.7 and Nav1.3 at DIV4-7 (and after inflammation in vivo).

      The conclusions of this paper are mostly well supported by data, and these findings should be of broad interest to scientists working on pain, drug development, neuronal excitability, and ion channels.

      Strengths:

      (1.1) The authors have employed elegant electrophysiology experiments (including specific pharmacology and dynamic clamp) and computational simulations to study the excitability of a subpopulation of DRGs that would very likely match with nociceptors (they take advantage of using transgenic mice to detect Nav1.8-expressing neurons). They make a strong point showing the degeneracy that occurs at the ion channel expression level in nociceptors, adding this new data to previous observations in other neuronal types. They also demonstrate that the different Nav subtypes functionally overlap and are able to interchange their "typical" roles in action potential generation. As Xie, Prescott, and colleagues argue, the functional implications of the degenerate character of nociceptive sensory neuron excitability need to be seriously taken into account regarding drug development and clinical trials with Nav subtype-selective inhibitors.

      Weaknesses:

      (1.2) The next comments are minor criticisms, as the major conclusions of the paper are well substantiated. Most of the results presented in the article have been obtained from experiments with DRG neuron cultures, and surely there is a greater degree of complexity and heterogeneity about the degeneracy of nociceptors excitability in the "in vivo" condition. Indeed, the authors show in Figures 7 and 8 data that support their hypothesis and an increased Nav1.7's influence on nociceptor excitability after inflammation, but also a higher variability in the nociceptors spiking responses. On the other hand, DRG neurons targeted in this study (YFP (+) after crossing with Nav1.8-Cre mice) are >90% nociceptors, but not all nociceptors express Nav1.8 in vivo. As shown by Li et al., 2016 ("Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity"), there is a high heterogeneity of neuron subtypes within sensory neurons. Therefore, some caution should be taken when translating the results obtained with the DRG neuron cultures to the more complex "in vivo" panorama.

      We agree that most but not all Nav1.8+ DRG cells are nociceptors and that not all nociceptors express Nav1.8. We targeted small neurons that also express (or at some point expressed) Nav1.8, thus excluding larger neurons that express Nav1.8. This allowed us to hone in on a relatively homogeneous set of neurons, which is crucial when testing different neurons to compare between conditions (as opposed to testing longitudinally in the same neuron, which is not feasible). We expect all neurons are degenerate but likely on the basis of different ion channel combinations. Indeed, even within small Nav1.8+ neurons, other channels that we did not consider likely contribute to the degenerate regulation (as now better reflected in the revised Discussion).

      That said, there are multiple sources of heterogeneity. We suspect that heterogeneity is more increased after inflammation than after axotomy because all DRG neurons experience axotomy when cultured whereas neurons experience inflammation differently in vivo depending on whether their axon innervates the inflamed area (now explained on lines 214-215). This is not so much about whether the insult occurs in vivo or in vitro, but about how homogeneously neurons are affected by the insult. Granted, neurons are indeed more likely to be heterogeneously affected in vivo since conditions are more complex. But our goal in testing PF-71 in behavioral tests (Fig. 8) was to show that changes observed in nociceptor excitability in Figure 7, despite heterogeneity, were predictive of changes in drug efficacy. In short, we establish Nav interchangeability by comparing neurons in culture (Figs 1-6), but we then show that similar Nav shifts can develop in vivo (Fig 7) with implications for drug efficacy (Fig 8). Such results should alert readers to the importance of degeneracy for drug efficacy (which is our main goal) even without a complete picture of nociceptor degeneracy or DRG neuron heterogeneity. Additions to the Discussion (lines 248-259, 304-308) are intended to highlight these considerations.

      (1.3) Although the authors have focused their attention on Nav channels, it should be noted that degeneracy concerning other ion channels (such as potassium ion channels) could also impact the nociceptor excitability. The action potential AHP in Figure 1, panel A is very different comparing the DIV0 (blue) and DIV4-7 examples. Indeed, the conductance density values for the AHP current are higher at DIV0 than at DIV7 in the computational model (supplementary table 5). The role of other ion channels in order to obtain equivalent excitability should not be underestimated.

      We completely agree. We focused on Nav channels because of our initial observation with TTX and because of industry’s efforts to develop Nav subtype-selective inhibitors, whose likelihood of success is affected by the changes we report. But other channels are presumably changing, especially given observed changes in the AHP shape (now mentioned on lines 304-308). Investigation should be expanded to include these other channels in future studies.

      Reviewer #2 (Public Review):

      Summary:

      The authors have noted in preliminary work that tetrodotoxin (TTX), which inhibits NaV1.7 and several other TTX-sensitive sodium channels, has differential effects on nociceptors, dramatically reducing their excitability under certain conditions but not under others. Partly because of this coincidental observation, the aim of the present work was to re-examine or characterize the role of NaV1.7 in nociceptor excitability and its effects on drug efficacy. The manuscript demonstrates that a NaV1.7-selective inhibitor produces analgesia only when nociceptor excitability is based on NaV1.7. More generally and comprehensively, the results show that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes (NaV 1.3/1.7 and 1.8). This can cause widespread changes in the role of a particular subtype over time. The degenerate nature of nociceptor excitability shows functional implications that make the assignment of pathological changes to a particular NaV subtype difficult or even impossible.

      Thus, the analgesic efficacy of NaV1.7- or NaV1.8-selective agents depends essentially on which NaV subtype controls excitability at a given time point. These results explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

      Strengths:

      (2.1) The above results are clearly and impressively supported by the experiments and data shown. All methods are described in detail, presumably allow good reproducibility, and were suitable to address the corresponding question. The only exception is the description of the computer model, which should be described in more detail.

      We failed to report basic information such as the software, integration method and time step in the original text. This information is now provided on lines 476-477. Notably, the full code is available on ModelDB plus all equations including the values for all gating parameters are provided in Supplementary Table 5 and values for maximal conductance densities for DIV0 and DIV7 models are provided in Supplementary Table 6. Changes in conductance densities to simulate different pharmacological conditions are reported in the relevant figure legends (now shown in red). We did not include model details in the main text to avoid disrupting the flow of the presentation, but all the model details are reported in the Methods, tables and/or figure legends.

      (2.2) The results showing that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and expression of different NaV subtypes are of great importance in the fields of basic and clinical pain research and sodium channel physiology and pharmacology, but also for a broad readership and community. The degenerate nature of nociceptor excitability, which is clearly shown and well supported by data has large functional implications. The results are of great importance because they may explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

      In summary, the authors achieved their overall aim to enlighten the role of NaV1.7 in nociceptor excitability and the effects on drug efficacy. The data support the conclusions, although the clinical implications could be highlighted in a more detailed manner.

      Weaknesses:

      As mentioned before, the results that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes are impressive. However, there is some "gap" between the DRG culture experiments and acutely dissociated DRGs from mice after CFA injection. In the extensive experiments with cultured DRG neurons, different time points after dissociation were compared. Although it would have been difficult for functional testing to examine additional time points (besides DIV0 and DIV47), at least mRNA and protein levels should have been determined at additional time points (DIV) to examine the time course or whether gene expression (mRNA) or membrane expression (protein) changes slowly and gradually or rapidly and more abruptly.

      Characterizing the time course of NaV expression changes is worthwhile but, insofar as such details are not necessary to establish that excitability is degenerate, it was not include in the current study. Furthermore, since mRNA levels do not parallel the functional changes in Nav1.7 (Figure 6A), we do not think it would be helpful to measure mRNA levels at intermediate time points. Measuring protein levels would be more informative, however, as now explained on lines 362-369, neurons were recorded at intermediate time points in initial experiments and showed a lot of variability. Methods that could track fluorescently-tagged NaV channels longitudinally (i.e. at different time points in the same cell) would be well suited for this sort of characterization, but will invariably lead to more questions about membrane trafficking, phosphorylation, etc. We agree that a thorough characterization would be interesting but we think it is best left for a future study.

      It would also be interesting to clarify whether the changes that occur in culture (DIV0 vs. DIV47) are accompanied by (pro-)inflammatory changes in gene and protein expression, such as those known for nociceptors after CFA injection. This would better link the following data demonstrating that in acutely dissociated nociceptors after CFA injection, the inflammationinduced increase in NaV1.7 membrane expression enhances the effect of (or more neurons respond to) the NaV1.7 inhibitor PF-71, whereas fewer CFA neurons respond to the NaV1.8 inhibitor PF-24.

      These are some of the many good questions that emerge from our results. We are not particularly keen to investigate what happens over several days in culture, since this is not so clinically relevant, but it would be interesting to compare changes induced by nerve injury in vivo (which usually involves neuroinflammatory changes) and changes induced by inflammation. Many previous studies have touched on such issues but we are cautious about interpreting transcriptional changes, and of course all of these changes need to be considered in the context of cellular heterogeneity. It would be interesting to decipher if changes in NaV1.7 and NaV1.8 are directly linked so that an increase in one triggers a decrease in the other, and vice versa. But of course many other channels are also likely to change (as discussed above), and they too warrant attention, which makes the problem quite difficult. We look forward to tackling this in future work.

      The results shown explain, at least in part, the poor clinical outcomes with the use of subtypeselective NaV inhibitors and therefore have important implications for the future development of Nav-selective analgesics. However, this point, which is also evident from the title of the manuscript, is discussed only superficially with respect to clinical outcomes. In particular, the promising role of NaV1.7, which plays a role in nociceptor hyperexcitability but not in "normal" neurons, should be discussed in light of clinical results and not just covered with a citation of a review. Which clinical results of NaV1.7-selective drugs can now be better explained and how?

      We wish to avoid speculating on which particular clinical results are better explained because our study was not designed for that. Instead, our take-home message (which is well supported; see Discussion on lines 309-321) is that NaV1.7-selective drugs may have a variable clinical effect because nociceptors’ reliance on NaV1.7 is itself variable – much more than past studies would have readers believe. At the end of the results (line 235), which is, we think, what prompted the reviewer’s comment, we point to the Discussion. The corollary is that accounting for degeneracy could help account for variability in drug efficacy, which would of course be beneficial. The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is difficult. We certainly don’t have all the answers, but we hope our results will point readers in a new direction to help answer such questions.

      Another point directly related to the previous one, which should at least be discussed, is that all the data are from rodents, or in this case from mice, and this should explain the clinical data in humans. Even if "impediment to translation" is briefly mentioned in a slightly different context, one could (as mentioned above) discuss in more detail which human clinical data support the existence of "equivalent excitability through different sodium channels" also in humans.

      We are not aware of human data that speak directly to nociceptor degeneracy but degeneracy has been observed in diverse species; if anything, human neurons are probably even more degenerate based on progressive expansion of ion channel types, splice variants, etc. over evolution. Of course species differences extend beyond degeneracy and are always a concern for translation, because of a species difference in the drug target itself or because preclinical pain testing fails to capture the most clinically important aspects of pain (which we mention on line 35). Line 39 now reiterates that these explanations for translational difficulties are not mutually exclusive, but that degeneracy deserves greater consideration that is has hitherto received. Indeed, throughout our paper we imply that degeneracy may contribute to the clinical failure of Nav subtype-specific drugs, but those failures are certainly not evidence of degeneracy. In the Discussion (line 320-321), we now cite a recent review article on degeneracy in the context of epilepsy, and point out how parallels might help inform pain research. We wish we had a more direct answer to the reviewer’s request; in the absence of this, we hope our results motivate readers to seek out these answers in future research.

      Although speculative, it would be interesting for readers to know whether a treatment regimen based on "time since injury" with NaV1.7 and NaV1.8 inhibitors might offer benefits. Based on the data, could one hypothesize that NaV1.7 inhibitors are more likely to benefit (albeit in the short term) in patients with neuropathic pain with better patient selection (e.g., defined interval between injury and treatment)?

      We like that our data prompt this sort of prediction. However, this is potentially complicated since the injury may be subtle, which is to say that the exact timing may not be known. There are scenarios (e.g. postoperative pain) where the timing of the insult is known, but in other cases (e.g. diabetic neuropathy) the disease process is quite insidious, and different neurons might have progressed through different stages depending on how they were exposed to the insult. Our own experiments with CFA are a case in point. Notwithstanding the potential difficulties about gauging the time course, any way of predicting which Nav subtype is dominant could help more strategically choose which drug to use.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors used patch-clamp to characterize the implication of various voltagegated Na+ channels in the firing properties of mouse nociceptive sensory neurons. They report that depending on the culture conditions NaV1.3, NaV1.7, and NaV1.8 have distinct contributions to action potential firing and that similar firing patterns can result from distinct relative roles of these channels. The findings may be relevant for the design of better strategies targeting NaV channels to treat pain.

      Strengths:

      The paper addresses the important issue of understanding, from an interesting perspective, the lack of success of therapeutic strategies targeting NaV channels in the context of pain. Specifically, the authors test the hypothesis that different NaV channels contribute in a plastic manner to action potential firing, which may be the reason why it is difficult to target pain by inhibiting these channels. The experiments seem to have been properly performed and most conclusions are justified. The paper is concisely written and easy to follow.

      Weaknesses:

      (1) The most critical issue I find in the manuscript is the claim that different combinations of NaV channels result in equivalent excitability. For example, in the Abstract it is stated that: "...we show that nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8". The gating properties of these channels are not identical, and therefore their contributions to excitability should not be the same. I think that the culprit of this issue is that the authors reach their conclusion from the comparison of the (average) firing rate determined over 1 s current stimulation in distinct conditions. However, this is not the only parameter that determines how sensory neurons convey information. For instance, the time dependence of the instantaneous frequency, the actual firing pattern, may be important too. Moreover, the use of 1 s of current stimulation might not be sufficient to characterize the firing pattern if one wants to obtain conclusions that could translate to clinical settings (i.e., sustained pain). A neuron in which NaV1.7 is the main contributor is expected to have a damping firing pattern due to cumulative channel inactivation, whereas another depending mainly on NaV1.8 is expected to display more sustained firing. This is actually seen in the results of the modelling.

      This concern seems to boil down to how equivalent is equivalent? The spike shape or the full inputoutput curve for a DIV0 neuron (Nav1.8-dominant) is never equivalent to what’s seen in a DIV47 neuron (Nav1.7-dominant), but nor are any two DIV0 neurons strictly equivalent, and likewise for any two DIV4-7 neurons. Our point is that DIV0 and DIV4-7 neurons are a far more similar (less discriminable) in their excitability than expected from the qualitative difference in their TTX sensitivity (and from repeated claims in the literature that Nav1.7 is necessary for spike generation in nociceptors). Nav isoforms need not be identical to operate similarly; for instance, Nav1.8 tends to activate at “suprathreshold” voltages, but this depends on the value of threshold; if threshold increases, Nav1.8 can activate at subthreshold voltages (see Fig 5). We have modified lines 155- 175 to help clarify this.

      We completely agree that firing rate is not the only way to convey sensory information, and of course injecting current directly into the cell body via a patch pipette is not a natural stimulus. These are all factors to keep in mind when interpreting our data. Nonetheless, our data show that excitability is similar between DIV0 and DIV 4-7, so much so that data from any one neuron (without pharmacological tests or capacitance measurements) would likely not reveal if that cell is DIV0 or DIV4-7; this “indiscriminability” qualifies as “equivalent” for our purposes, and is consistent with phrasing used by other authors studying degeneracy. Notably, not every DIV4-7 neuron exhibits spike height attenuation (see Fig. 1A), likely because of concomitant changes in the AHP that were not captured in our computer model or directly tested in our experiments. This highlights that other channel changes may also contribute to degeneracy and the maintenance of repetitive spiking.

      (2) In Fig. 1, is 100 nM TTX sufficient to inhibit all TTX-sensitive NaV currents? More common in literature values to fully inhibit these currents are between 300 to 500 nM. The currents shown as TTX-sensitive in Fig. 1D look very strange (not like the ones at Baseline DIV4-7). It seems that 100 nM TTX was not enough, leading to an underestimation of the amplitude of the TTXsensitive currents.

      As now summarized in Supplementary Table 3 (which is newly added), 100 nM TTX is >20x the EC50 for Nav1.3 and Nav1.7 (but is still far below the EC50 for Nav1.8). Based on this, TTXsensitive channels are definitely blocked in our TTX experiments.

      (3) Page 8, the authors conclude that "Inflammation caused nociceptors to become much more variable in their reliance of specific NaV subtypes". However, how did the authors ensure that all neurons tested were affected by the CFA model? It could be that the heterogeneity in neuron properties results from distinct levels of effects of CFA.

      We agree with the reviewer. We also believe that variable exposure to CFA is the most likely explanation for the heightened variability in TTX-sensitivity reported in Figure 7 (now more clearly explained on lines 214-215). One could try co-injecting a retrograde dye with the CFA to label cells innervating the injection site, but differential spread of the CFA and dye are liable to preclude any good concordance. Alternatively, a pain model involving more widespread (systemic) inflammation might cause a more homogeneous effect. But, our main goal with CFA injections was to show that a Nav1.8®Nav1.7 switch can occur in vivo (and is therefore not unique to culturing), and that demonstration is true even if some neurons do not switch. Subsequent testing in Figure 8 shows that enough neurons switch to have a meaningful effect in terms of the behavioral pharmacology. So, notwithstanding tangential concerns, we think our CFA experiments succeeded in showing that Nav channels can switch in vivo and that this impacts drug efficacy.

      Recommendations for the authors:

      All reviewers agreed that these results are solid and interesting. However, the reviewers also raised several concerns that should be addressed by the authors to improve the strength of the evidence presented. Revisions considered to be essential include:

      (1) Discuss how degeneracy concerning other ion channels (such as potassium ion channels) could also impact nociceptor excitability (reviewer #1). Additionally, the translation of results from DRG neuron cultures to "in vivo" nociceptors should be better discussed.

      We have added a new paragraph to the Discussion (line 248-259) to remind readers that despite our focus on Nav channels, other ion channels likely also change (and that these changes involve diverse regulatory mechanisms that require further investigation). Likewise, despite our focus on the changes caused by culturing neurons, we remind readers that subtler, more clinically relevant in vivo perturbations can likewise cause a multitude of changes. We end that paragraph by emphasizing that although accounting for all the contributing components is required to fully understand a degenerate system, meaningful progress can be made by studying a subset of the components. We want to emphasize this because there is some middle ground between focusing on one component at a time (which is the norm) vs. trying to account for everything (which is an infeasible ideal). Additional text on lines 304-308 also addresses related points.

      (2) Discuss how different combinations of NaV channels result in equivalent excitability, in the context of the experimental conditions used (see main comment by reviewer #3). It should also be discussed in more detail which human clinical data support the existence of "equivalent excitability through different sodium channels" also in humans (reviewer #2).

      Regarding the first part of this comment, reviewer 3 wrote in the public review that “The gating properties of these channels are not identical, and therefore their contributions to excitability should not be the same.” Differences in gating properties are commonly used to argue that different Nav subtypes mediate different phases of the spike, for example, that Nav1.7 initiates the spike whereas Nav1.8 mediates subsequent depolarization because Nav1.7 and Nav1.8 activate at perithreshold and suprathrehold voltages, respectively (see lines 134-135, now shown in red). But such comparison is overly simplistic insofar as it neglects the context in which ion channels operate. For instance, if Nav1.7 is not expressed or fully inactivates, voltage threshold will be less negative, enabling Nav1.8 to contribute to spike initiation; in other words, previously “suprathreshold” voltages become “perithreshold”. Figure 5 is dedicated to explaining this context-sensitivity; specifically, we demonstrate with simulations how Nav1.8 takes over responsibility for initiating a spike when Na1.7 is absent or inactivated. Text on lines 155- 184 has been edited to help clarify this. Regarding the second part of this comment, we are not aware of any direct evidence from human sensory neurons that different sodium channels produce equivalent excitability, but that is certainly what we expect. We suggest that failure of Nav subtype-specific drugs is, at least in part, because of degeneracy, but such failures do not demonstrate degeneracy unless other contributing factors can be excluded (which they can’t). Recognizing degeneracy is difficult, and so variability that might be explained by degeneracy will go unexplained or attributed to other factors unless, by design or serendipity, experiments quantify the effects of degeneracy (as we have attempted to do here). We now cite a recent review article on degeneracy and epilepsy (line 320), which addresses relevant themes that might help inform pain research; for instance, most existing antiseizure medications act on multiple targets whereas more recently developed single-target drugs have proven largely ineffective. This is similar to but better documented than for analgesics. With this in mind, we revised the text to emphasize the circumstantial nature of existing evidence and the need to test more directly for degeneracy (lines 320-323).

      (3) Extend the discussion about the poor clinical outcomes with the use of subtype-selective NaV inhibitors. In particular, the promising role of NaV1.7, which plays a role in nociceptor hyperexcitability but not in "normal" neurons, should be discussed in light of clinical results and not just covered with a citation of a review. Which clinical results of NaV1.7-selective drugs can now be better explained and how? (reviewer #2)

      As discussed above, we are cautious avoid speculating on which clinical results are attributable to degeneracy. Instead, our take-home message (see Discussion, lines 309-323) is that NaV1.7selective drugs may have a variable clinical effect because nociceptors’ reliance on NaV1.7 is itself variable – much more than past studies would have readers believe. The corollary is that accounting for degeneracy could help account for variability in drug efficacy, which would of course be beneficial. The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is not trivial. Interpreting clinical data is also complicated by the fact that we are either dealing with genetic mutations (with unclear compensatory changes) or pharmacological results (where NaV1.7-selective drugs have a multitude of problems that might contribute to their lack of efficacy, separate from effects of degeneracy). We have striven to contextualize our results (e.g. last paragraph of results, lines 222-235). We think this is the most we can reasonably say based on the limitations of existing clinical data.

      (4) Provide a clearer and more detailed description of the computational model (reviewers #2 and #3).

      We added important details on line 476-477 but, in our honest opinion, we think our computational model is thoroughly explained. The issue seems to boil down to whether details are included in the Results vs. being left for the Methods, tables and figure legends. We prefer the latter.

      (5) Better clarify the effects of the CFA model, to provide further evidence relating inflammation with nociceptors variability (reviewers #2 and #3)

      As explained in response to a specific point by reviewer #3, we believe that variable exposure to CFA explains the heightened variability in TTX-sensitivity reported in Figure 7 (now explained on lines 214-215). One could try co-injecting a retrograde dye with the CFA to label cells innervating the injection site, but differential spread of the inflammation and dye are liable to preclude any good concordance. Alternatively, a pain model involving more widespread (systemic) inflammation might cause a more homogeneous effect. But, our main goal with CFA injections was to show that a Nav1.8®Nav1.7 switch can occur in vivo (and is therefore not unique to culturing); that demonstration holds true even if some neurons do not switch. Subsequent testing (Fig 8) shows that enough neurons switch to drug efficacy assessed behaviorally. This is emphasized with new text on lines 225-227. Overall, we think our CFA experiments succeed in showing that Nav channels can switch in vivo and, despite variability, that this occurs in enough neurons to impact drug efficacy.

      (6) Revise the text according to all recommendations raised by the reviewers and listed in the individual reviews.

      Detailed responses are provided below for all feedback and changes to the text were made whenever necessary, as identified in our responses.

      Reviewer #1 (Recommendations For The Authors):

      Minor points/recommendations:

      Protein synthesis inhibition by cercosporamide could be the direct cause of a smaller-thanexpected increase in Nav1.7 levels at DIV5. But for Nav1.8, there is a mitigation in the increased levels at DIV5, that only could be explained by several indirect mechanisms, including membrane trafficking and posttranslational modifications (phosphorylation, SUMOylation, etc.) on Nav1.8 or protein regulators of Nav1.8 channels. The authors suggest that "translational regulation is crucial", but also insinuate that other processes (membrane trafficking, etc.) could contribute to the observed outcome. It is difficult to assess the relative importance of these different explanations without knowing the exact mechanisms that are acting here.

      We agree. We relied on electrophysiology (and pharmacology) to measure functional changes, but we wanted to verify those data with another method. We expected mRNA levels to parallel the functional changes but, when that did not pan out, we proceeded to look at protein levels. Perhaps we should have stopped there, but by blocking protein translation, we show that there is not enough Nav1.7 protein already available that can be trafficked to the membrane. That does not explain why Nav1.8 levels drop. Our immunohistochemistry could not tease apart membrane expression from overall expression, which limits interpretation. We have enhanced the text to discuss this (lines 200-204), but further experiments are needed. Though admittedly incomplete, our initial finding help set the stage for future experiments on this matter.

      Page 15, typo: "contamination from genomic RNA" -> "contamination from genomic DNA" (appears twice).

      This has been corrected on lines 420 and 421.

      Page 17: I could not find the computer code at ModelDB (http://modeldb.yale.edu/267560). It seems to be an old web link. It should be available at some web repository.

      We confirmed that the link works. Entry is password-protected (password = excitability; see line 476). Password protection will be removed once the paper is officially published.

      Page 19, reference 36, typo: "Inhibitio of" -> "Inhibition of".

      This has been corrected (line 557).

      Page 33, typo: "are significantly larger than differences at DIV1" -> "are significantly larger than differences at DIV0".

      This has been corrected (line 796).

      Page 35, figure 6 legend. The number of experiments (n) is not indicated for panel C data.

      N = 3 is now reported (line 828).

      Reviewer #2 (Recommendations For The Authors):

      p. 3/4 and Data of Fig. 6: It should be commented on why days 1-3 were not investigated. An investigation of the time course (by higher frequency testing) would certainly have an added value because it would be possible to deduce whether the changes develop slowly and gradually, or whether the excitability induced by different NaVs changes suddenly. At least mRNA and protein levels should be determined at additional time points to examine the time course or whether gene expression (mRNA) or membrane expression (protein) changes slowly and gradually or rapidly and more abruptly. It would also be interesting to clarify whether the changes that occur in culture (DIV0 vs. DIV4-7) are accompanied by (pro-)inflammatory changes in gene and protein expression, such as those known for nociceptors after CFA injection. Or is the latter question clear in the literature?

      We now explain (lines 362-369) that intermediate time points (DIV1-3) were tested in initial current clamp recordings. Those data showed that TTX-sensitivity stabilized by DIV4 and differed from the TTX-insensitivity observed at DIV0. TTX-sensitivity was mixed at DIV1-3 and crosscell variability complicated interpretation. Subsequent experiments were prioritized to clarify why NaV1.7 is not always critical for nociceptor excitability, contrary to past studies. Our efforts to measure mRNA and protein levels were primarily to validate our electrophysiological findings; we are also interested in deciphering the underlying regulatory processes but this is an entire study on its own. Unfortunately, the existing literature does not help or point to an explanation for the Nav1.7/1.8 shift we observed.

      Our evidence that mRNA levels do not parallel functional changes argues against pursuing transcriptional changes in Nav1.7, though transcriptional changes in other factors might be important. Interpretation of immuno quantification would be complicated by the high variability we observed with the physiology at intermediate time points and, furthermore, we cannot resolve surface expression from overall expression based on available antibodies. Methods conducive to longitudinal measurements would be more appropriate (as now mentioned on line 367-369). In short, a lot more work is required to understand the mechanisms involved in the switch, but we think the existing demonstration suffices to show that NaV1.7 and NaV1.8 protein levels vary, with crucial implications for which Nav subtype controls nociceptor excitability, and important implications for drug efficacy. Explaining why and how quickly those protein levels change will be no small feat is best left for a future study.

      p. 4 and following: In order to enable the interpretation of the used concentration of PF-24, PF71, and ICA, the respective IC50 should be indicated.

      A table (now Supplementary Table 3; line 861) has been added to report EC50 values for all drugs for blocking NaV1.7, NaV1.8 and NaV1.3. The concentrations we used are included on that table for easy comparison.

      p. 5, end of the middle paragraph: Here it should be briefly explained -for less familiar readers- why NaV1.1 cannot be causative (ICA inhibits NaV1.1 and 1.3).

      We now explain (lines 117-120) that NaV1.1 is expressed almost exclusively in medium-diameter (A-delta) neurons whereas NaV1.3 is known to be upregulated in small-diameter neurons, and so the effect we observe in small neurons is most likely via blockade NaV1.3.

      p. 6, lines 4/5: At least once it should read computer model instead of model.

      “Computer” has been added the first time we refer to DIV0 or DIV4-7 computer models (lines 138-139)

      p. 6: the difference between Fig. 4B and Fig. 4 - Figure suppl. 1 should be mentioned briefly.

      We now explain (lines 150-154) that Fig. 4B involves replacing a native channel with a different virtual channel (to demonstrate their interchangeability) whereas and Fig. 4 - Figure supplement 1 involves replacing a native channel with the equivalent virtual channel (as a positive control).

      p. 6/7: the text and the conclusions regarding Figure 5 are difficult to follow. Somewhat more detailed explanations of why which data demonstrate or prove something would be helpful.

      The text describing Figure 5 (lines 155-175) has been revised to provide more detail.

      p. 7, last sentence of the first paragraph: How is this supported by the data? Or should this sentence be better moved to the discussion?

      This sentence (now lines 182-184) is designed as a transition. The first half – “a subtype’s contribution shifts rapidly (because of channel inactivation)” – summarizes the immediately preceding data (Figure 5). The second half – “or slowly (because of [changes in conductance density])” – introduces the next section. The text show in square brackets has been revised. We hope this will be clearer based on revisions to the associated text.

      p. 7, second paragraph, line 3: Please delete one "at both".

      Corrected

      p. 7, second paragraph: Please explain why different time points (DIV4-7, DIV5, or DIV7) were used or studied.

      Initial electrophysiological experiments determined that TTX sensitivity stabilized by DIV 4 (see response to opening point) and we did not maintain neurons longer than 7 days, and so neurons recorded between DIV4 and 7 were pooled. If non-electrophysiological tests were conducted on a specific day within that range, we report the specific day, but any day within the DIV4-7 range is expected to give comparable results. This is now explained on lines 365-367.

      p. 8: the text regarding Fig. 7 should also include the important data (e.g. percentage of neurons showing repetitive spinking) mentioned in the legend.

      This text (lines 216-220) has been revised to include the proportion of neurons converted by PF71 and PF-24 and the associated statistical results.

      Fig. 1: third panel (TTX-sensitive current...) of D & Fig. 2 subpanel of A (Nav1.8 current...). These panels should be explained or mentioned in the text and/or legends.

      We now explain in the figure legends (lines 708-710; 714-715; 736-738) how those currents are found through subtraction.

      Fig. 2 - figure supplement 2. One might consider taking Panel A to Fig. 2 so that the comparison to DIV0 is apparent without switching to Suppl. Figs.

      We left this unchanged so that Figures 2 and 3 are equivalently organized, with negative control data left to the supplemental figures. Elife formatting makes it easy to reach the supplementary figure from the main figure, so we hope this won’t be an impediment to readers.

      Fig. 6 C, middle graph (graph of Nav1.7): Please re-check, whether DIV5 none vs. 24 h and none vs. 120 h are really significantly different with such a low p-value.

      We re-checked the statistics and the difference pointed out by the reviewer is significant at p=0.007. We mistakenly reported p<0.001 for all comparisons, and so this p value has been corrected; all the other p values are indeed <0.001. Notably, the data are summarized as median ± quartile because of their non-Gaussian distribution; this is now explained on line 827 (as a reminder to the statement on lines 461-462). Quartiles are more comparable to SD than to SEM (in that quartiles and SD represent the distribution rather than confidence in estimating the mean, like SEM), and so medians can differ very significantly even if quartiles overlap, as in this case.

      Reviewer #3 (Recommendations For The Authors):

      (1) A critical issue in the manuscript is the use of teleological language. It is likely that this is not the intention, but careful revision of the language should be done to avoid the use of expressions that confer purpose to a biological process. Please, find below a list of statements that I consider require correction.

      • In the Abstract, the first sentence: "Nociceptive sensory neurons convey pain signals to the CNS using action potentials". Neurons do not really "use" action potentials, they have no will or purpose to do so. Action potentials are not tools or means to be "used" by neurons. Other examples of misuse of the verb "use" are found in several other sentences:

      "...nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8"

      "Flexible use of different NaV subtypes - an example of degeneracy - compromises..."

      "Nociceptors can achieve equivalent excitability using different sodium channel subtypes" "...degeneracy - the ability of a biological system to achieve equivalent function using different components..."

      "...nociceptors can achieve equivalent excitability using different sodium channel subtypes..."

      "Our results show that nociceptors can achieve similar excitability using different NaV channels" "...the spinal dorsal horn circuit can achieve similar output using different synaptic weight combinations..."

      "Contrary to the view that certain ion channels are uniquely responsible for certain aspects of neuronal function, neurons use diverse ion channel combinations to achieve similar function" "In summary, our results show that nociceptors can achieve equivalent excitability using different NaV subtypes"

      “Use” can mean to put into action (without necessarily implying intention). Based on definitions of the word in various dictionaries, we feel we are well within the realm of normal usage of this term. In trying to achieve a clear and succinct writing style, we have stuck with our original word choice.

      • At the end of page 5 and in the legend of Fig. 7, the word "encourage" is not properly used in the sentence "The ability of NaV1.3, NaV1.7 and NaV1.8 to each encourage repetitive spiking is seemingly inconsistent with the common view...". Encouraging is really an action of humans or animals on other humans or animals.

      Like for “use”, we verified our usage in various dictionaries and we do not think that most readers will be confused or disturbed by our word choice. We use “encourage” to explain that increasing NaV1.3, NaV1.7 or NaV1.8 can increase the likelihood of repetitive spiking; we avoided “cause” because the probability of repetitive spiking is not raised to 100%, since other factors must always be considered.

      • In the Abstract and other places in the manuscript, the word "responsibility" seems to be wrongly employed. It is true that one can say, for instance, on page 4 last paragraph "we sought to identify the NaV subtype responsible for repetitive spiking at each time point". However, to confer channels with the human quality of having "responsibility" for something does not seem appropriate. See also page 8 last paragraph, the first paragraph of the Discussion, and the three paragraphs of page 11.

      Again, we must respectfully disagree with the reviewer. We appreciate that this reviewer does not like our writing style but we do not believe that our style violates English norms.

      (2) In the first sentence of the Abstract, nociceptive sensory neurons do not convey "pain signals". Pain is a sensation that is generated in the brain.

      “Pain” is used as an adjective for “signal” and is used to help identify the type of signal. Nonetheless, since the word count allowed for it, we now refer to “pain-related signals” (line 10).

      (3) I do not see the point of plotting the firing rate as a function of relative stimulus amplitude (normalized to the rheobase, e.g., Fig. 1A bottom panels, Fig. 2B, bottom-right, Fig. 2 Supp2A right, Fig. 3 B bottom panels, etc) instead of as a function of the actual stimulus amplitude. I have the impression that this maneuver hides information. This is equivalent to plotting the current amplitudes as a function of the voltage normalized by the voltage threshold for current activation, which is obviously not done.

      This is how the experiments were performed, so it would be impossible to perform the statistical analysis using the absolute amplitudes post-hoc; specifically, stimulus intensities were tested at increments defined relative to rheobase rather than in absolute terms. There are pros and cons to each approach, and both approaches are commonly used. Notably, we report the value of rheobase on the figures so that readers can, with minimal arithmetic, convert to absolute stimulus intensities. No information is hidden by our approach.

      (4) On page 4 it is stated that "We show later that similar changes develop in vivo following inflammation with consequences for drug efficacy assessed behaviourally (see Fig. 8), meaning the NaV channel reconfiguration described above is not a trivial epiphenomenon of culturing". However, what happens in culture may have nothing in common with what happens in vivo during inflammation. Thus, the latter data may not serve to answer whether the culture conditions induce artifacts or not. I suggest tuning down this statement by changing "meaning" to "suggesting".

      On line 97, we now write “suggesting”.

      (5) Page 5, first paragraph, I miss a clear description of the mathematical models. Having to skip to the Methods section to look for the details of the models as the artifices introduced to simulate different conditions is rather inconvenient.

      So as not to disrupt the flow of the presentation with methodological details, we only provide a short description of the model in the Results. We have slightly expanded this to point out that the conductance-based model is also single-compartment (line 111). We provide a very thorough description of our model in the Methods, especially considering all the details provided in Supplementary Tables 1, 5 and 6. We also report conductance densities and % changes in figure legends (lines 722, 747-748; now shown in red). This is also true for Figure 3-figure supplement 2 (lines 756-759). We tried very hard to find a good balance that we hope most readers will appreciate.

      (6) Page 6, second paragraph, simulations do not serve to "measure" currents.

      The sentence been revised to indicate that simulations were used to “infer” currents during different phases of the spike (line 155).

      (7) Page 7, regarding the tile of the subsection "Control of changes in NaV subtype expression between DIV0 and DIV4-7", the authors measured the levels of expression, but not really the mechanisms "controlling" them. I suggest writing "changes in NaV subtype expression between DIV0 and DIV4-7"

      We have removed “control of” from the section title (line 185)

      (8) What was the reason for adding a noise contribution in the model?

      We now explain that noise was added to reintroduce the voltage noise that is otherwise missing from simulations (line 474). For instance, in the absence of noise, membrane potential can approach voltage threshold very slowly without triggering a spike, which does not happen under realistically noisy conditions. Of course membrane potential fluctuates noisily because of stochastic channel opening and a multitude of other reasons. This is not a major issue for this study, and so we think our short explanation should suffice.

      (9) Please, define the concept of degeneracy upon first mention.

      Degeneracy is now succinctly defined in the abstract (line 20).

    1. And if someone is in the bathroom, they’re 10-100 (or 10-200 as the case may be), but they’re definitely not “in the can”, which is what you say when a scene is completed.

      In cinema, " In the can " doesn't mean what we think it does. However the people working on the set know the linguo, and understand it means the scene is complete.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Hats off to the authors for taking time to decipher the seemingly subtle but important differences between the Gnai2/3 double mutant and Ptx mutant phenotypes. These results further illustrate the dynamic requirement of Gnai/0 in hair bundle establishment. I have some minor suggestions for the authors to consider and it is up to the authors to decide whether to incorporate them:

      We decided to make the current (revised) version the version of record, and we explain why below. Please include these comments in the review+rebuttal material.

      (1) The abstract could be modified to reflect the revised interpretations of the results.

      Response: the abstract is high-level and the changes in interpretation in the revised manuscript do not modify the message there. Briefly, the abstract only states that Gnai2; Gnai3 double mutants recapitulate two defects previously only observed with pertussis toxin. There is no claim about the timing or dose of GNAI proteins involved.

      (2) The three rows of OHCs are like a different beast from each other. Mireille Montcouquiol's lab has demonstrated that there is a differential requirement for Gnai3 in hair bundle orientation among the three rows of OHCs. The results described in this manuscript support this notion as well.

      To clarify, Gnai3 inactivation does not affect OHC orientation. Only pertussis toxin, and in this work Gnai2; Gnai3 double mutants, do. The Montcouquiol lab showed different degree of OHC1, OHC2 and OHC3 misorientation upon use of pertussis toxin in vitro using cochlear explants (Ezan et al 2013). We showed the same thing in vivo using transgenic models (Tarchini et al 2013; Tarchini et al 2016). The different OHC responses by row and corresponding citations are mentioned in several locations in the manuscript, including first on line 112 in the Introduction and in Fig. 1C in a graphical summary.

      (3) I wonder if "compensate" or "redundancy" may be a better term to use than "rescue" in the Discussion and figure.

      Use of “rescue” in the Discussion is line 603 and 604. We think that “rescue” is appropriate to refer to the ability of GNAI2 to compensate for the loss of GNAI1 and GNAI3 in mutant context. We would argue that these different wordings are largely interchangeable and do not change the message.


      Author Response

      The following is the authors’ response to the original reviews.

      We really appreciate the time the reviewers spent reading and commenting on the original manuscript. Although they were positive already, we decided to spend some time to address the main comments with new experiments as thoroughly as possible in a new manuscript version. We also heavily edited some sections accordingly.: 1) we delayed pertussis toxin activation in hair cells with Atoh1-Cre to show that the resulting misorientation phenotype is delayed compared to FoxG1-Cre results, as also seen in Gnai2; Gnai3 double mutants. It follows that Gnai2; Gnai3 and pertussis mutants do share a similar misorientation profile, and that GNAI proteins are required to normally reverse OHC1-2 (from medial to lateral), but also to maintain the lateral orientation, at least transiently. 2) We experimentally verified that one of our GNAI antibodies can indeed detect GNAI1, and consequently that absence of signal in Gnai2; Gnai3 double mutants is evidence that GNAI1 is not involved in apical hair cell polarization. We believe these changes strengthen the manuscript and its conclusions.

      Reviewer #1 (Public Review):

      A subclass of inhibitory heterotrimeric guanine nucleotide-binding protein subunits, GNAI, has been implicated in sensory hair cell formation, namely the establishment of hair bundle (stereocilia) orientation and staircase formation. However, the former role of hair bundle orientation has only been demonstrated in mutants expressing pertussis toxin, which blocks all GNAI subunits, but not in mutants with a single knockout of any of the Gnai genes, suggesting that there is a redundancy among various GNAI proteins in this role. Using various conditional mutants, the authors concluded that GNAI3 is the primary GNAI proteins required for hair bundle morphogenesis, whereas hair bundle orientation requires both GNAI2 and GNAI3.

      Strength

      Various compound mutants were generated to decipher the contribution of individual GNAI1, GNAI2, GNAI3 and GNAIO in the establishment of hair bundle orientation and morphogenesis. The study is thorough with detailed quantification of hair bundle orientation and morphogenesis, as well as auditory functions.

      Weakness

      While the hair bundle orientation phenotype in the Foxg1-cre; Gnai2-/-; Gnai3 lox/lox (double mutants) appear more severe than those observed in Ptx cKO mutants, it may be an oversimplification to attribute the differences to more GNAI function in the Ptx cko mutants. The phenotypes between the double mutants and Ptx cko mutants appear qualitatively different. For example, assuming the milder phenotypes in the Ptx cKO is due to incomplete loss of GNAI function, one would expect the Ptx phenotype would be reproducible by some combination of compound mutants among various Gnai genes. Such information was not provided. Furthermore, of all the double mutant specimens analyzed for hair bundle orientation (Fig. 8), the hair bundle/kinocilium position started out normally in the lateral quadrant at E17.5 but failed to be maintained by P0. This does not appear to be the case for Ptx cKO, in which all affected hair cells showed inverted orientation by E17.5. It is not clear whether this is the end-stage of bundle orientation in Ptx cKO, and the kinocilium position started out normal, similar to the double mutants before the age of analysis at E17.5. Understanding these differences may reveal specific requirements of individual GNAI subunits or other factors are being affected in the Ptx mutants.

      This criticism was very useful and prompted new experiments as well as a change in data presentation and a fundamental rewrite regarding hair cell orientation. These changes are detailed below. Of note, however, please let us clarify that the original manuscript did show that the ptxA orientation phenotype is reproduced to some extent in Gnai2; Gnai3 double mutants (previously Fig. 8 and corresponding text line 505). We showed that OHC1-2 are also inverted in the double mutant, although at a later differentiation stage. We recognize that similarities in hair cell misorientation between ptxA and Gnai2; Gnai3 DKO were not explained and discussed well enough. This part of the manuscript has been re-worked extensively, and we hope that along with new results, comparisons between mutant models are easier to follow and understand. We notably fully adopted the idea that there are qualitative differences between ptxA and Gnai2; Gnai3 mutants, and not only a difference in the remaining “dose” of GNAI activity.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Comments related to clarification of the weakness:

      (1) In general, hair bundle orientation in the double mutants is established in the lateral quadrant of the cochlea before being inverted (Fig. 8). These results are intriguing because the lateral orientation is the correct position for these hair bundles normally and Gnai proteins are thought to be required to get the kinocilium to the lateral position. This process appears to proceed normally in the double mutants but the kinocilium reverted to the medial default position over time, which suggests that Gnai2 and Gnai3 are only required for the maintenance and not the establishment of the kinocilium in the lateral position. Is this phenotype qualitatively similar in the Ptx cKO?

      We addressed these issues with two types of modifications to the data:

      (1) We modified the eccentricity threshold used at E17.5 in Fig. 8 (orientation) to be more stringent, using 0.4 (instead of 0.25 previously) in both controls and mutants. This means that we now only graph the orientation of cells where eccentricity is more marked. The rationale is that at early stages, it is challenging to distinguish immature vs defective near-symmetrical cells. We kept a threshold of 0.25 at P0 when the hair cell apical surface is larger and better differentiated (Fig. 8C-D). Importantly, the dataset remains rigorously identical. This change usefully highlights that a large proportion of OHC1 is in fact inverted (oriented medially) at E17.5 in Gnai2; Gnai3 double mutants at the cochlear mid, as also seen in the ptxA model at the same stage and position (see new Fig. 8A). At the E17.5 base (Fig. 8B), a slightly more mature position, the outcome is unchanged (the majority of OHC1 are inverted using either a 0.25 or 0.4 threshold in double mutants and in ptxA).

      Interestingly however, the orientation trend is unchanged for OHC2: OHC2 remain oriented largely laterally (i.e. normally) at the E17.5 mid and base in Gnai2; Gnai3 double mutants even with a raised eccentricity thresholds, whereas by contrast OHC2 in ptxA are inverted at these stage and positions. In the double mutant, OHC2 only become inverted at the P0 base (Fig. 8D). This suggests that there are similarities (OHC1) but also differences (OHC2s) between the two mouse models, and that double mutants show a delay in adopting an inverted orientation compared to ptxA. Of note, OHC2 have been shown to differentiate later than OHC1 (for example, Anniko 1983 PMID:6869851).

      (2) To directly test the idea that the misorientation phenotype (inverted OHC1-2) is comparable between the two models but delayed in Gnai2; Gnai3 mutants, we performed a new experiment and added new results in the manuscript. We delayed ptxA action by using Atoh1-Cre (postmitotic hair cells) instead of FoxG1-Cre (otic progenitors). Remarkably, this produced a pattern of OHC1-2 misorientation more similar to Gnai2; Gnai3 mutants: at the E17.5 base and P0 apex, OHC2 were still largely oriented laterally (normally) in Atoh1-Cre; ptxA as in Gnai2; Gnai3 mutants whereas at the P0 base a large proportion of OHC2 were inverted (Fig. 8 Supp 1B). OHC1 were inverted at all stages and positions in the Atoh1-Cre as in the FoxG1-Cre; ptxA model. For Atoh1-Cre; ptxA, we only illustrated OHC1 and OHC2 and did not add E17.5 mid or P0 mid results because other cell types and stage/positions did not provide additional insight. In addition, we are well aware that the full FoxG1-Cre; ptxA and Gnai2; Gnai3 results for 4 cells types (IHC, OHC1-3) and 5 stages/positions is already a lot of data for cell orientation.

      These results suggest that:

      (a) The normal reversal of OHC1-2 to adopt a lateral orientation needs to be maintained, at least transiently, and that maintenance also relies on GNAI/O (Results starting line 529. Disussion line 621).

      (b) ptxA is more severe than Gnai2; Gnai3 when it comes to OHC1-2 orientation (Figure 9, role b). Oppositely, Gnai2; Gnai3 is obviously more severe when it comes to symmetry-breaking (Fig. 9, role a) and hair bundle morphogenesis (Fig. 9, c). It follows that the two early GNAI/O activities are qualitatively different and not just based on dose. This is essentially what this Reviewer correctly pointed out, and we have fully edited both Results and Discussion accordingly. We now speculate that the difference may lie in the identity of the necessary GNAI/O protein for each role. Any GNAI/O proteins acting as a switch downstream of the GPR156 receptor may relay orientation information (Fig. 9, role b), making ptxA a particularly effective disruption strategy since it downregulates all GNAI/O proteins. In contrast, symmetry-breaking may rely more specifically on GNAI2 and GNAI3, and ptxA is not expected to achieve a loss-of-function of GNAI2 and GNAI3 as extensive as a double targeted genetic inactivation of the corresponding genes. Please see new Results starting line 526 and Discussion starting line 603. We consequently abandoned the notion that increased doses of GNAI/O is required for each role, and we also clarify that symmetry-breaking (a) and orientation (b) occur at the same time (Fig. 9).

      (2) P0 may not be late enough a stage to access phenotype maturity in the double mutants. For example, it is not clear from the basal PO results whether the IHC will acquire an inverted phenotype or just misorientation in the lateral side.

      For context, the OHC1-2 misorientation pattern in the ptxA model at P0 does represent the end stage, as the same pattern is observed in adults (illustrated in Fig. 2A). In addition, OHC1-2 that express ptxA are inverted as soon as they break planar symmetry, and this was established at E16.5 in a previous publication where ptxA and Gpr156 misorientation patterns were compared and shown to be identical (Kindt et al., 2021 Supp. fig. 5C-D). However, we clearly failed to mention these important results in the original manuscript. We now cite Figure 2 for adult defects (line 522), and provide a citation for OHC1-2 inversion being observed from earliest stage of hair cell differentiation (Kindt et al., 2021) (line 519).

      The vast majority of Gnai2; Gnai3 double mutants die before weaning but the single specimen we managed to collect at P21 also showed inverted OHC1-2 (representative example in Fig. 2A). Again, we previously failed to point out this important result. We now do so line 214 and 555. This is another evidence that OHC1-2 misorientation is in fact similar in the ptxA and Gnai2; Gnai3 models (but milder and delayed in the latter).

      When it comes to IHCs and OHC3s however, the situation is less clear. These cell types are mildly misoriented in ptxA and Gpr156 mutants, but IHCs in particular appear severely misoriented in Gnai2; Gnai3 mutants based on the position of the basal body (Fig. 8). However, very dysmorphic hair bundles can pull on the basal body via the kinocilium and affect its position, which obscures hair cell orientation inferred from the basal body and subsequent interpretations. We do not delve on IHC and OHC3 and their orientation in Gnai2; Gnai3 mutants in the revision since we do not observe similar orientation defects in a different mouse model and lack sufficient adult data.

      Suggestions to improve upon the manuscript for readers:

      (1) Line 294, indicate on the figure the staining in bare zone and tips of stereocilia on row 1.

      Pertains to Figure 4. In A, we now point out the bare zone and stereocilia tips with arrow and arrowheads, respectively (as in other figures).

      (2) Fig.8 schematic diagram, the labels of the line and 90o side by side is misleading.

      We added black ticks for 0, 90, 180, 270 degree references. In contrast, the hair cell angle represented was switched to magenta.

      (3) Fig. 7 legend, redundancy towards the end of the paragraph.

      Thank you for catching this issue. A large portion of the legend was indeed accidentally repeated and is now deleted.

      (4) Line 490-493, Another plausible explanation is that other factors besides Gnai2 and Gnai3 are involved in breaking symmetry during bundle establishment.

      We now acknowledge that other proteins besides GNAI/O may be involved (Discussion line 614). That said, the notion that we do not achieve sufficient and/or early enough GNAI loss is supported for example by the Beer-Hammer 2018 study where no defects in symmetry-breaking or orientation were reported in their Gnai2 flox/flox; Gnai3 flox/flox model (Discussion new Line 637).

      (5) Line 518, the base were largely inverted (Figure 8B). Should Fig 8A be cited instead of 8B?

      Fig. 8B has graphs for the E17.5 cochlear base where OHC1-2 are inverted in both ptxA and Gnai2;3 DKO models. Fig. 8A has graphs of the E17.5 cochlear mid (less differentiated hair cells) where an inversion was not obvious previously, but is now clear although only partial in Gnai2; Gnai3 DKO (see above; raised eccentricity threshold). In the context of the previous text, this citation was thus correct. However, this section has been heavily modified to better compare Gnai2; Gnai3 DKO and ptxA and is hopefully less confusing in the revised version.

      Reviewer #2 (Public Review):

      Jarysta and colleagues set out to define how similar GNAI/O family members contribute to the shape and orientation of stereocilia bundles on auditory hair cells. Previous work demonstrated that loss of particular GNAI proteins, or inhibition of GNAIs by pertussis toxin, caused several defects in hair bundle morphogenesis, but open questions remained which the authors sought to address. Some of these questions include whether all phenotypes resulting from expression of pertussis toxin stemmed from GNAI inhibition; which GNAI family members are most critical for directing bundle development; whether GNAI proteins are needed for basal body movements that contribute to bundle patterning. These questions are important for understanding how tissue is patterned in response to planar cell polarity cues.

      To address questions related to the GNAI family in auditory hair cell development, the authors assembled an impressive and nearly comprehensive collection of mouse models. This approach allowed for each Gnai and Gnao gene to be knocked out individually or in combination with each other. Notably, a new floxed allele was generated for Gnai3 because loss of this gene in combination with Gnai2 deletion was known to be embryonic lethal. Besides these lines, a new knockin mouse was made to conditionally express untagged pertussis toxin following cre induction from a strong promoter. The breadth and complexity involved in generating and collecting these strains makes this study unique, and likely the authoritative last word on which GNAI proteins are needed for which aspect of auditory hair bundle development.

      Appropriate methods were employed by the authors to characterize auditory hair bundle morphology in each mouse line. Conclusions were carefully drawn from the data and largely based on excellent quantitative analysis. The main conclusions are that GNAI3 has the largest effect on hair bundle development. GNAI2 can compensate for GNAI3 loss in early development but incompletely in late development. The Gnai2 Gnai3 double mutant recapitulates nearly all the phenotypic effects associated with pertussis toxin expression and also reveals a role for GNAIs in early movement of the basal body. Although these results are not entirely unexpected based on earlier reports, the current results both uncover new functions and put putative functions on more solid ground.

      Based on this study, loss of GNAI1 and GNAO show a slight shortening of the tallest row of stereocilia but no other significant changes to bundle shape. Antibody staining shows no change in GNAI localization in the Gnai1 knockout, suggesting that little to no protein is found in hair cells. One caveat to this interpretation is that the antibody, while proposed to cross-react with GNAI1, is not clearly shown to immunolabel GNAI1. More than anything, this reservation mostly serves to illustrate how challenging it is to nail down every last detail. In turn, the comprehensive nature of the current study seems all the more impressive.

      (1) The original manuscript quantified stereocilia properties in Gnai1 and Gnai2 single mutants, and in Gnai1; Gnai2 double mutants using non-parametric t-tests (Mann-Whitney) for comparisons. This approach indeed suggested subtle reduction in row 1 height in IHCs in all 3 mutants. We did not quantify stereocilia features in Gnao1 mutants but could not observe defects (new Fig. 2 Supp. 1E-F). In fact, we could not observe defects in Gnai1 and Gnai2 single mutants, and in Gnai1; Gnai2 double mutants either. For this reason we have been ambivalent about reporting defects for Gnai1 and Gnai2 single and Gnai1; Gnai2 double mutants.

      In the revision, we applied a nested (hierarchical) t-test to avoid pseudo-replication (Eisner 2021; PMID: 33464305; https://pubmed.ncbi.nlm.nih.gov/33464305/). In our data, the nested t-tests structure measurements by animal instead of having all stereocilia or other cell measurements treated as independent values. This more stringent approach no longer finds row 1 height reduction significant in single Gnai1 or Gnai2 mutants, or in Gnai1; Gnai2 double mutants. We modified the text accordingly in Results and Discussion. Nested t-tests were applied uniformly across the manuscript and, besides IHC measurements in Fig. 2, now also apply to bare zone surface area in Fig. 6 and eccentricity in Fig. 7. For these experiments in contrast, previous conclusions are not changed. We think that this more careful statistical treatment is a closer representation of the data in term of the conclusions we can safely make.

      (2) The reviewer's criticism about antibody specificity is accurate and fair, and is fully addressed in the revised manuscript. First, we provide a phylogeny cartoon as Figure 1A to compare the GNAI/O proteins and highlight how closely related they are in sequence. To validate the assumption that our approach would detect GNAI1 if it were present in hair cells, we took a new dual experimental approach in the revision. First, we electroporated Gnai1, Gnai2 and Gnai3 expression constructs in the E13.5 inner ear and tested whether the two GNAI antibodies used in the study can detect ectopic GNAI1 in Kolliker organ. This revealed that “ptGNAI2” detects GNAI1 very well (in addition to GNAI2), but that “scbtGNAI3” does not detect GNAI1 efficiently (although it does detect GNAI3 very well). To verify in vivo that “ptGNAI2” can detect endogenous GNAI1, we immunolabeled the gallbladder epithelium in Gnai1 mutants and littermate controls using the “ptGNAI2” antibody. Based on IMPC consortium data* about the Gnai1 LacZ mouse strain, Gnai1 is specifically expressed in the adult gallbladder. We could verify that signals detected in the Gnai1 mutants were visually reduced in comparison to littermate controls. We now added this validation step in Results line 309 and the data in Fig. 4 Supp. 1A-B).

      *https://www.mousephenotype.org/data/genes/MGI:95771

      Reviewer #2 (Recommendations For The Authors):

      Minor comments that may marginally improve clarity.

      Abstract line 24: delete "nor polarized" because polarization cannot be assessed since the protein is undetectable.

      This is a fair point, now deleted.

      Consider revising: Lines 80-82; 188-202 (the order in which the mutants were presented was hard to follow for me); 239-240.

      Lines 80-82: Used to read as "Ptx recapitulates severe stereocilia stunting and immature-looking hair bundles observed when GPSM2 or both GNAI2 and GNAI3 are inactivated."

      Line 88: Was now changed to "Ptx provokes immature-looking hair bundles with severely stunted stereocilia, mimicking defects in Gpsm2 mutants and Gnai2; Gnai3 double mutants".

      Lines 188-202: This was the first paragraph describing adult stereocilia defects in the different Gnai/o mouse strains. We completely rewrote the entire section to reflect the order in which the strains appear in Figure 2, hopefully making the text easier to follow because it better matches panels in Fig. 2 . We also made several other modifications to streamline comparisons and better introduce the orientation defects that are later detailed at neonate stages.

      Lines 239-240: Used to read "GNAI2 makes a clear contribution since stereocilia defects increase in severity when GNAI loss extends from GNAI3 to both GNAI2 and GNAI3".

      Line 247: Was now changed for "GNAI2 makes a clear contribution since Gnai3neo stereocilia defects dramatically increase in severity when GNAI2 is absent as well in Gnai2; Gnai3 double mutants."

      Line 164: hardwired is unclear. Conserved?

      We modified this sentence as follows: Line 171: "We reasoned that apical HC development is probably highly constrained and less likely to be influenced by genetic heterogeneity compared to susceptibility to disease, for example."

      Line 299: It is not clear why GNAI1 is a better target than GNAI3. This phrase is repeated in line 303, I suspect inadvertently. Is there evidence that this antibody detects GNAI1, perhaps in another tissue? Line 308: GNAI1 may also not be detected by this antibody.

      Please see point 2 above. We removed these hypothetical statements entirely and we instead now experimentally show that one of the two commercial antibodies used can readily detect GNAI1 (yet does not detect signal in hair cells when GNAI2 and GNAI3 are absent in Fig. 4F).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study provides insights into the IDA peptide with dual functions in development and immunity. The approach used is solid and helps to define the role of IDA in a two-step process, cell separation followed by activation of innate defenses. The main limitation of the study is the lack of direct evidence linking signaling by IDA and its HAE receptors to immunity. As such the work remains descriptive but it will nevertheless be of interest to a wide range of plant cell biologists.

      We thank the reviewers for thoroughly reading our manuscript. We have used their comments and suggestions- to improve the manuscript. Below is a response to the reviewer's comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      The paper titled 'A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level' by Olsson Lalun et al., 2023 aims to understand how IDAHAE/HSL2 signalling modulates immunity, a pathway that has previously been implicated in development. This is a timely question to address as conflicting reports exist within the field. IDL6/7 have previously been shown to negatively regulate immune signalling, disease resistance and stress responses in leaf tissue, however IDA has been shown to positively regulate immunity through the shedding of infected tissues. Moreover, recently the related receptor NUT/HSL3 has been shown to positively regulate immune signalling and disease resistance. This work has the potential to bring clarity to this field, however the manuscript requires some additional work to address these questions. This is especially the case as it contracts some previous work with IDL peptides which are perceived by the same receptor complexes.

      Can IDA induce pathogen resistance? Does the infiltration of IDA into leaf tissue enhance or reduce pathogen growth? Previously it has been shown that IDL6 makes plants more susceptible. Is this also true for IDA? Currently cytoplasmic calcium influx and apoplastic ROS as overinterpreted as immune responses - these can also be induced by many developmental cue e.g. CLE40 induced calcium transients. Whilst gene expression is more specific is also true that treatment with synthetic peptides, which are recognised by LRR-RKs, can induce immune gene expression, especially in the short term, even when that is not there in vivo function e.g. doi.org/10.15252/embj.2019103894.

      We thank the reviewer for the concerns raised and agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and we plan for such experiments in future work. We have however, modified the discussion to include the possible role of IDA induced Ca2+ and ROS during development. We have recently published a preprint (accepted for publication in JXB) ( (Galindo-Trigo et al., 2023, https://doi.org/10.1101/2023.09.12.557497)) strengthening the link between IDA and defense by identifying WRKY transcription factors that regulate IDA expression through a Y1H assay.

      This paper shows that receptors other than hae/hsl2 are genetically required to induce defense gene expression, it would have been interesting to see what phenotype would be associated with higher order mutants of closely related haesa/haesa-like receptors. Indeed recently HSL1 has been shown to function as a receptor for IDA/IDL peptides. Could the triple mutant suppress all response? Could the different receptors have distinct outputs? For example for FRK1 gene expression the hae hsl2 mutant has an enhanced response. Could defence gene expression be primarily mediated by HSL1 with subfunctionalisation within this clade?

      We agree that it would be interesting to also include HSL1 in our studies. However, the focus of this study has been on HAE and HSL2 and we wanted to explore their role in IDA induced defense responses. Including HSL1 in these studies will require generation of multiple transgenic lines and repeating most of the experiments and are experiments we will consider in a follow up study together with pathogen assays (that would also address the main concern raised in the comment above). We have however, modified the text to include the known function of HSL1 and discuss the possibility of subfunctionalisation of this receptor clade.

      One striking finding of the study is the strong additive interaction between IDA and flg22 treatment on gene expression. Do the authors also see this for co-treatment of different peptides with flg22, or is this unique function of IDA? Is this receptor dependent (HAE/HSL1/HSL2)?

      This is a good question. Since our study focuses on the IDA signaling pathway we preferentially tested if the additive effect observed between flg22 and mIDA was also observed when mIDA was combined with another peptide involved in defense. The endogenous peptide PIP1, has previously been shown to amplify flg22 signaling (Hou et al 2014, doi:10.1371/journal.ppat.1004331 ). In this study it is shown that co-treatment with flg22 and PIP1 gives increased resistance to Pseudomonas PstDC3000 compared to when plants are treated with each peptide separately. In the same study, the authors also show reduced flg22 induce transcriptional activity of two defense related genes WRKY33 and PR in the receptor like kinase7 (rlk7) mutant (the receptor perceiving PIP1) (). To investigate whether PIP1 would give the same additive effect with mIDA as that observed between flg22 and mIDA, we co-treated seedlings with PIP1 and mIDA. We observed no enhanced transcriptional activity of FRK1, MYB51 and PEP3 in tissue from plants treated with both PIP1 and mIDA peptides compared to single exposure. These results are presented in supplementary figure 11. In conclusion we do not think mIDA acts as a general amplifier of all immune elicitors in plants.

      It is interesting how tissue specific calcium responses are in response to IDA and flg22, suggesting the cellular distribution of their cognate receptors. However, one striking observation made by the authors as well, is that the expression of promoter seems to be broader than the calcium response. Indicating that additional factors are required for the observed calcium response. Could diffusion of the peptide be a contributing factor, or are only some cells competent to induce a calcium response?

      It is interesting that the authors look for floral abscission phenotypes in cngc and rbohd/f mutants to conclude for genetic requirement of these in floral abscission. Do the authors have a hypothesis for why they failed to see a phenotype for the rbohd/f mutant as was published previously? Do you think there might be additional players redundantly mediating these processes?

      It is a possibility that diffusion of the peptide plays a role in the observed response. In a biological context we would assume that the local production of the peptides plays an important role in the cellular responses. In our experimental setup, we add the peptide externally and we can therefore assume that the overlaying cells get in contact with the peptide before cells in the inner tissues and this could be affecting the response recorded However, our results show that there is a differences between flg22 and mIDA induced responses even when the application of the peptides is performed in the same manner, indicating that the difference in the response is not primarily due to the diffusion rate of the peptides but is likely due to different factors being present in different cells. To acquire a better picture of the distribution of receptor expression in the root tissue and to investigate in which cells the receptors have an overlapping expression pattern, we have included results in figure 6 showing plant lines co-expressing transcriptional reporters of FLS2 and HAE or HSL2.

      Can you observe callose deposition in the cotyledons of the 35S::HAE line? Are the receptors expressed in native cotyledons? This is the only phenotype tested in the cotyledons.

      We thank the reviewer for this valuable comment. We have now conducted callose deposition assay on the 35S:HAE line. And Indeed, we observe callose depositions when cotyledons from a 35S:HAE line is treated with mIDA. We have included these results in figure 4 and have adjusted the text regarding the callose assay accordingly. In addition, we have analyzed the promoter activity of pHAE in cotelydons and we observe weak promoter activity. These results are included as supplementary figure 1d.

      Are flg22-induced calcium responses affected in hae hsl2?

      The experiment suggested by the reviewer is an important control to ensure that the hae hsl2-Aeq line can respond to a Ca2+ inducing peptide signaling through a different receptor than HAE or HSL2. One would expect to see a Ca2+ response in this line to the flg22 peptide. We performed this experiment and surprisingly we could not detect a flgg22 induced Ca2+ signal in the hae hsl2 mutnt. As it is unlikely that the Ca2+ response triggered by flg22 is dependent on HAE and HSL2 we have to assume that the lack of response is due to a malfunction of the Aeq sensor in this line. As a control to measure the amount of Aeq present in the cells we treat the Aeq seedlings with 2 M CaCl2 and measure the luminescence constantly for 180 seconds (Ranf et al., 2012, DOI10.1093/mp/ssr064). The CaCl2 treatment disrupts the cells and releases the Aeq sensor into the solution where it will react with Ca2+ and release the total possible response in the sample (Lmax) in form of a luminescent peak. When treating the hae hsl2-Aeq line with CaCl2we observe a luminescent peak, indicating the presence of the sensor, however, the response is reduced compared to WT seedlings expressing Aeq. Given the sensitivity of FLS2 to flg22 one would still expect to see a Ca2+ peak in the hae hsl2-Aeq line even if the amount of sensor is reduced. Given that this is not the case, we have to assume that localization or conformation of the sensor is somehow affected in this line or that there is another biological explanation that we cannot explain at the moment.

      We have therefore opted on omitting the results using the hae hsl2 Aeq lines from the manuscript and are in the process of mutating HAE and HSL2 by CRISPR-Cas9 in the Aeq background to verify that the mIDA triggered Ca2+ response is dependent on HAE and HSL2.

      Reviewer #2 (Public Review):

      Lalun and co-authors investigate the signalling outputs triggered by the perception of IDA, a plant peptide regulating organs abscission. The authors observed that IDA perception leads to a transient influx of Ca2+, to the production of reactive oxygen species in the apoplast, and to an increase accumulation of transcripts which are also responsive to an immunogenic epitope of bacterial flagellin, flg22. The authors show that IDA is transcriptionally upregulated in response to several biotic and abiotic stimuli. Finally, based on the similarities in the molecular responses triggered by IDA and elicitors (such as flg22) the authors proposed that IDA has a dual function in modulating abscission and immunity. The manuscript is rather descriptive and provide little information regarding IDA signalling per se. A potential functional link between IDA signalling and immune signalling remains speculative.

      We thank the reviewer for the concerns raised and agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and plan for such experiments in future work.

      Reviewer #3 (Public Review):

      Previously, it has been shown the essential role of IDA peptide and HAESA receptor families in driving various cell separation processes such as abscission of flowers as a natural developmental process, of leaves as a defense mechanism when plants are under pathogenic attack or at the lateral root emergence and root tip cell sloughing. In this work, Olsson et al. show for the first time the possible role of IDA peptide in triggering plant innate immunity after the cell separation process occurred. Such an event has been previously proposed to take place in order to seal open remaining tissue after cell separation to avoid creating an entry point for opportunistic pathogens.

      The elegant experiments in this work demonstrate that IDA peptide is triggering the defenseassociated marker genes together with immune specific responses including release of ROS and intracellular CA2+. Thus, the work highlights an intriguing direct link between endogenous cell wall remodeling and plant immunity. Moreover, the upregulation of IDA in response to abiotic and especially biotic stimuli are providing a valuable indication for potential involvement of HAE/IDA signalling in other processes than plant development.

      We are pleased that the reviewer finds our findings linking IDA to defense interesting and would like to thank the reviewer for this positive feedback.

      Strengths:

      The various methods and different approaches chosen by the authors consolidates the additional new role for a hormone-peptide such as IDA. The involvement of IDA in triggering of the immunity complex process represents a further step in understanding what happens after cell separation occurs. The Ca2+ and ROS imaging and measurements together with using the haehsl2 and haehsl2 p35S::HAE-YFP genotypes provide a robust quantification of defense responses activation. While Ca2+ and ROS can be detected after applying the IDA treatment after the occurrence of cell separation it is adequately shown that the enzymes responsible for ROS production, RBOHD and RBOHF, are not implicated in the floral abscission.

      Furthermore, IDA production is triggered by biotic and abiotic factors such as flg22, a bacterial elicitor, fungi, mannitol or salt, while the mature IDA is activating the production of FRK1, MYB51 and PEP3, genes known for being part of plant defense process.

      Thank you.

      Weaknesses:

      Even though there is shown a clear involvement of IDA in activating the after-cell separation immune system, the use of p35S:HAE-YFP line represent a weak point in the scientific demonstration. The mentioned line is driving the HAE receptor by a constitutive promoter, capable of loading the plant with HAE protein without discriminating on a specific tissue. Since it is known that IDA family consist of more members distributed in various tissues, it is very difficult to fully differentiate the effects of HAE present ubiquitously.

      We agree on this statement. Nevertheless, it is important to note that the responses we have observed are not detectable in WT plants that do not (over)express the HAE receptors. Suggesting that the ROS and callose deposition are induced by the addition of mIDA peptide and not the potential presence of the endogenous IDL peptides.

      The co-localization of HAE/HSL2 and FLS2 receptors is a valuable point to address since in the present work, the marker lines presented do not get activated in the same cell types of the root tissues which renders the idea of nanodomains co-localization (as hypothetically written in the discussion) rather unlikely.

      Thank you for raising an important aspect of our study. It is true that not all cells in the root which have promoter activity for FLS2 also exhibit promoter activity for either HAE or HSL2. However, we have observed that certain cells in the roots show promoter activity for both receptors. In the revised version of the manuscript, we have included plants expression a transcriptional promoter for both FLS2 and HAE or HSL2 using different fluorescent proteins. We have investigated overlapping promoter activity both at sites of lateral roots, in the tip of the primary root and in the abscission zone. Our results show overlapping expression of the transcriptional reporters in certain cells, indicating that FLS2 and HAE or HSL2 are likely to be found in some of the same cells during plant development. We also observe cells where only one or none of the promoters are active.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Supplementary Figure 3: re-labelling of y axis; 200 than 200,00 for clarity.

      This has been addressed.

      Supplementary Figure 2: It would be good to include the age of the seedlings used to study calcium influx in the legend.

      This has been addressed.

      Supplementary Figure 1: rephrase 'IDA induces ROS production in Arabidopsis'.

      This has been addressed.

      The use of chelating agents to establish the need of calcium from extracellular space is a clear experiment supporting the calcium response phenotype specific to IDA treatment in seedlings. Removing the last asparagine (N) and using it as a peptide that fails to elicit calcium response could simply be because of the peptide is smaller in length or different chemical properties. Therefore, a scrambled sequence would have been a better control.

      We thank the reviewer for the suggestion of using a scrambled peptide as a negative control, however we find it unlikely that mIDA∆N69 could induce any activity based on previous work. Results from crystal structure of mIDA bound to the HAE receptor and ligand-receptor interaction studies (10.7554/eLife.15075 ) show that the last asparagine in the mIDA peptide is essential for detectable binding to the HAE receptor and that a peptide lacking this amino acid does not have any activity. We will however, in future experiments also include a scrambled version of the peptide as an additional control.

      Reviewer #2 (Recommendations For The Authors):

      Please find below specific comments:

      (1) Most of the molecular outputs triggered by IDA can be considered as common molecular marks of plant peptides signalling, they do not represent strong evidences of a potential function of IDA in modulating immunity. For instance, perception of CIF peptides, which control the establishment of the Casparian strips, regulate the production of reactive oxygen species, and the transcription of genes associated with immune responses (Fujita et al., The EMBO Journal 2020). It should also be considered that FRK1, whose function remains unknown, may be involved in both immunity and abscission and that the upregulation of FRK1 upon IDA treatment is not indicative of active modulation of immune signalling by IDA.

      This is a fair point raised by the reviewer and we now address in the manuscript that ROS and Ca2+ are hallmarks of both plant development and defense. The function of FRK1 is not known however, it is unlikely that the upregulation of FRK1 in response to mIDA plays a role in the developmental progression of abscission as it is not temporally regulated during the abscission process, thus making it an unlikely candidate in the regulation of cell separation (Cai & Lashbrook, 2008, https://doi.org/10.1104/pp.107.110908). We do however agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and plan for such experiments in future work.

      (2) It remains unknown whether IDA modulate immunity. For instance, does IDA perception promote resistance to bacteria (bacterial proliferation, disease symptoms)? Is IDA genetically required for plant disease resistance immunity? Is the IDA signalling pathway genetically required for transcriptional changes induced by flg22, such as increase in FRK1 transcripts? In addition, the authors propose that the proposed function of IDA in modulating immune signalling prevents bacterial infection in tissue exposed to stress(es). Does loss of function of IDA or of its corresponding receptors leads to changes in the ability of bacteria to colonise plant root upon stress(es)?

      Please see the comment above regarding pathogen assays.

      (3) Several aspects of the work appear to correspond to preliminary investigation. For instance, the authors analyse loss of function mutant for genes encoding for Ca2+ permeable channels (CNGCs) which are transcriptionally active during the onset of abscission (Sup. Figure 5). None of the single mutants present an abscission defect. These observations provide no information regarding the identity of the channel(s) involved in IDA-induced calcium influx.

      We agree with the reviewer that we have not been able to identify the channels responsible for the IDA-induced calcium influx. Given the redundancy for many of the members of this multigenic family a future approach to identify proteins responsible for the IDA triggered calcium response could be to create multiple KO mutants by CRISPR Cas9.

      (4) Using H2DCF-DA, the authors observed a decrease in ROS accumulation in the abscission zone of rbohd/rbohf double KO line (Sup Figure 5c) but describe in the text that ROS production in this zone does not depend on RBOHD and RBOHF (L220). Please clarify.

      This has now been clarified in the text.

      (5) The authors describe that rbohd/rbohf double KO present a lower petal break-strength, which they describe as an indication of premature cell wall loosening, and that petals of rbohd/rbohf abscised one position earlier than in WT. Yet, the authors postulate that IDA-induced ROS production does not regulate abscission but may regulate additional responses. Instead the data seems to indicate that ROS production by RBOHD and RBOHF regulate the timing of abscission. In addition, it would have been interesting to test whether IDA signalling pathway regulate ROS production in the abscission zone.

      The rbohd and rbohf double mutants show several phenotypes associated to developmental stress, the mild phenotype observed with regards to premature abscission (by one position) could be caused by the phenotype of the double mutant rather than related to ROS production. Indeed, it has been suggested that the lignified brace in the AZ dependent on ROS production by the aforementioned RBOHs in necessary for the correct concentration of cell modifying enzymes (Lee et al., 2018, https://doi.org/10.1016/j.cell.2018.03.060). The precocious abscission in this double mutant clearly shows this not to be the case. We have tried to do a ROS burst assay on AZ tissue/flowers with the mIDA peptide but have not been successful with this approach. A ROS sensor expressed in AZ tissue would be a valuable tool to address whether IDA signalling regulates ROS production in AZs.

      (6) In Sup. Figure5a, it would be of interest to have a direct comparison of the transcript accumulation of the presented CNGCs and RBOHDs with other of these multigenic families.

      The CNGCs and RBOH gene expression profile shown in the figure are the family members expressed during the developmental progress of floral abscission in stamen AZs. Since there is no difference in the temporal expression of the other family members (and most are either not expressed or very weakly expressed in this tissue) it is not possible to do this comparison (Cai & Lashbrook, 2008, https://doi.org/10.1104/pp.107.110908).

      (7) L251-253, since IDAdeltaN69 cannot be perceived by its receptors, the absence of induction of pIDA::GUS by IDAdeltaN69 compared to flg22 cannot be seen as a sign of specificity in peptideinduced increase in IDA promotor activity.

      We have rephased this in the text

      (8) Please provide quantitative and statistical analysis of the calcium measurement presented in sup figure 3.

      This has been addressed.

      (9) L339-341; This sentence is unclear to me, please rephrase.

      We have rephased this in the text

      Reviewer #3 (Recommendations For The Authors):

      (1) In order to assess the role of CNGCs in abscission process, it would be more interesting to see the effect on the Ca2+ pattern and ROS signaling after application of mIDA on cngc and rbohf rbohd mutants.

      We agree in this statement and the studies on mIDA induced ROS and Ca2+ on these mutants will provide valuable information to the regulation of the response. We are in the process of making the lines needed to be able to perform these experiments. However, since it requires crossing of genetically encoded sensors into each mutant, and generation of higher order mutants this is a long process.

      (2) With regard to the ROS production (Sup Fig. 1), the application of mIDA can trigger ROS in p35S::HAE:YFP lines, but not in the wild-type plant, which is according to the text "most likely due to the absence of HAE expression" in leaves. The experiment on callose deposition is performed in wild-type cotyledons where no callose deposition could be observed after mIDA treatment (Fig. 4a,b). The conclusion from text is that IDA "is not involved in promoting deposition of callose as a long-term defence response". It appears more likely that neither ROS nor callose can be observed in wild-type plants due to the lack of HAE expression. Therefore, the callose experiment should include the p35S::HAE:YFP lines. The experiment as it is does not allow to draw any conclusion on HAE/IDA involvement in callose formation.

      We fully agree with this comment, thank you for pinpointing this out. We have now performed the callose experiment with the 35S:HAE lines. Please see our answer to reviewer #1.

      (3) Between Sup Fig. 3 and Sup Fig. 5 two different systems were used to asses the floral stage. An adjustment of the floral stages would be easier to convey the levels of HAE/HSL2 expression and hence potentially with the onset of cell-wall degradation.

      We now used the same system to assess floral stages throughout the whole manuscript.

      (4) For the Fig. 1 and 2, it will be helpful to mention the genotype used for imaging/quantification of Ca2+.

      This has been addressed.

      (5) Some of the abbreviations are not introduced as full-text at their first time use in the text, such as: mIDA (Line 68), Ef-Tu (line 85), NADPH (line 77).

      The abbreviations have now been introduced.

      (6) In the legend of Fig. 5 (lines 897 and 898)- in the figure description, the box plots are identified as light gray and dark gray, while in the panel a of the figure the box plots are colored in red and blue.

      Thank you for pointing this out, this has now been corrected.

      (7) In figure 1 and 2. the authors write that the number of replicates is 10 (n=10) but data represents a single analysis. Please provide the quantitative ROI analysis, demonstrating that the observed example is representative. This is particularly important since the authors claim very specific changes in pattern of Ca signaling between mIDA and FLG22 treatments (Line 148).

      (8) Figure 4: please use alternative scaling on the Y axis instead of breaks.

      This has now been fixed.

      (9) Figure 5: it is not clear what n=4 refers to when the authors state three independent replicates. In figure 6 they state 4 technical reps and 3 biological reps. Please ensure this is similar across all descriptions.

      We have now ensured the correct information in all descriptions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on Legionella pneumophila effector proteins that target host vesicle trafficking GTPases during infection and more specifically modulate ubiquitination of the host GTPase Rab10. The evidence supporting the claims of the authors is solid, although it remains unclear how modification of the GTPase Rab10 with ubiquitin supports Legionella virulence and the impact of ubiquitination during LCV formation. The work will be of interest to colleagues studying animal pathogens as well as cell biologists in general.

      We greatly appreciate the positive and valuable feedback from the editors and the reviewers. According to their suggestions, we added many new experimental data and implications of our findings in Legionella virulence in terms of the biological process of its replication niche. Please find our point-to-point responses below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Kubori and colleagues characterized the manipulation of the host cell GTPase Rab10 by several Legionella effector proteins, specifically members of the SidE and SidC family. They show that Rab10 undergoes both conventional ubiquitination and noncanonical phosphoribose-ubiquitination, and that this posttranslational modification contributes to the retention of Rab10 around Legionella vacuoles.

      Strengths

      Legionella is an emerging pathogen of increasing importance, and dissecting its virulence mechanisms allows us to better prevent and treat infections with this organism. How Legionella and related pathogens exploit the function of host cell vesicle transport GTPases of the Rab family is a topic of great interest to the microbial pathogenesis field. This manuscript investigates the molecular processes underlying Rab10 GTPase manipulation by several Legionella effector proteins, most notably members of the SidE and SidC families. The finding that MavC conjugates ubiquitin to SdcB to regulate its function is novel, and sheds further light into the complex network of ubiquitin-related effectors from Lp. The manuscript is well written, and the experiments were performed carefully and examined meticulously.

      Weaknesses

      Unfortunately, in its current form this manuscript offers only little additional insight into the role of effector-mediated ubiquitination during Lp infection beyond what has already been published. The enzymatic activities of the SidC and SidE family members were already known prior to this study, as was the importance of Rab10 for optimal Lp virulence. Likewise, it had previously been shown that SidE and SidC family members ubiquitinate various host Rab GTPases, like Rab33 and Rab1. The main contribution of this study is to show that Rab10 is also a substrate of the SidE and SidC family of effectors. What remains unclear is if Rab10 is indeed the main biological target of SdcB (not just 'a' target), and how exactly Rab10 modification with ubiquitin benefits Lp infection.

      Reviewer #1 (Recommendations for The Authors):

      Major points of concern

      (1) The authors show that SdcB increases Rab10 levels on LCVs at later times of infection and conclude that this is its main biological role. An alternative explanation may be that Rab10 is not 'the main' target of SdcB but merely 'a' target, which may explain why the effect of SdcB on Rab10 accumulation on LCV is only detectable after several hours of infection. An unbiased omics-based approach to identify the actual host target(s) of SdcB may be needed to confirm that Rab10 modification by SdcB is biologically relevant.

      We totally agree with your comment that SdcB should have multiple targets considering the abundance of ubiquitin observed on the LCVs when SdcB was expressed (Figure 3). However, the effect of SdcB on Rab10 accumulation at the later time point (7 h) (current Figure 4e) was well supported by the new data showing that the SdcB-mediated ubiquitin conjugation to Rab10 was highly detected at this time point (new Figure 4c). We have tried the comprehensive search of interaction partners of the ANK domain of SdcB. This analysis is planned to be included in our on-going study. We therefore decided not to add the data in this manuscript.

      (2) The authors show that Rab10 within cell lysate is ubiquitinated and conclude that ubiquitination of Rab10 is directly responsible for its retention on the LCV. What is the underlying molecular mechanism for this retention? Are GAP proteins prevented from binding and deactivating Rab10. This may be worth testing.

      It would be a fantastic hypothesis that a Rab10GAP is involved in the regulation of Rab10 localization on the LCV. However, as far as we know, GAP proteins against Rab10 have not been identified yet. It should be an important issue to be addressed when a Rab10GAP will be found.

      (3) Related to this, an alternative explanation would be that Rab10 retention is an indirect effect where inactivators of Rab10, such as host cell GAP proteins, are the main target of SidE/C family members and sent for degradation (see point #1). Can the authors show that Rab10 on the LCV is indeed ubiquitinated?

      The possible involvement of a putative Rab10GAP is currently untestable as it is not known. To address whether Rab10 located on the LCV is ubiquitinated nor not, we conducted the critical experiments using active Rab10 (QL) and inactive Rab10 (TN) (new Figure 4a, new Figure 4-figure supplement 1). As revealed for Rab1 (Murata et al., Nature Cell Biol. 2006; Ingmundson et al., Nature 2007), Rab10 is expected to be recruited to the LCV as a GDPbound inactive form and converted to a GTP-bound active form on the LCV. The new results clearly demonstrated that GTP-locked Rab10QL is preferentially ubiquitinated upon infection, strongly supporting the model; Rab10 is ubiquitinated “on the LCV” by the SidE and SidC family ligases.

      (4) Also, on what residue(s) is Rab10 ubiquitinated? Jeng et. al. (Cell Host Microbe, 2019, 26(4): 551-563)) suggested that K102, K136, and K154 of Rab10 are modified during Lp infection. How does substituting those residues affect the residency of Rab10 on LCVs? Addressing these questions may ultimately help to uncover if the growth defect of a sidE gene cluster deletion strain is due to its inability to ubiquitinate and retain Rab10 on the LCV.

      Thank you for the suggestion. We conducted mutagenesis of the three Lys residues of Rab10 and applied the derivative on the ubiquitination analysis (new Figure 1-figure supplement 1). The Lys substitution to Ala residues did not abrogate the ubiquitination upon Lp infection. This result indicates that ubiquitination sites are present in the other residue(s) including the PR-ubiquitination site(s), raising possibility that disruption of sidE genes would be detrimental for intracellular growth of L. pneumophila because of failure of Rab10 retention.

      (5) The authors proposed that "the SidE family primarily contributes towards ubiquitination of Rab10". In this case, what is the significance of SdcB-mediated ubiquitination of Rab10 during Lp infection?

      We found that the major contribution of SdcB is retention of Rab10 until the late stage of infection. This claim was supported by our new data (new Figure 4c) as mentioned above (response to comment #1).

      (6) The contribution of SdcB to ubiquitination of Rab10 relative to SidC and SdcA is unclear. SidC is shown to be unaffected by MavC. In this case, SidC can ubiquitinate Rab10 regardless of the regulatory mechanism of SdcB by MavC. This is not further being examined or discussed in the manuscript.

      The effect of intrinsic MavC is apparent at the later stage (9 h) of infection (Figure 7c) when SdcB gains its activity (see above). We therefore do not think that the contribution of MavC on the SidC/SdcA activities, which are effective in the early stage, would impact on Rab10 localization. However, without specific experiments addressing this issue, possible MavC effects on SidC/SdcA would be beyond the scope in this manuscript.

      (7) When is Rab10 required during Lp infection? The authors showed that Rab10 levels at LCV are rather stable from 1hr to 7hr post infection. If MavC regulates the activity of SdcB, when does this occur?

      While the Rab10 levels on the LCV (~40 %) are stable during 1-7 h post infection (Figure 2b), it reduced to ~20% at 9 h after infection (Figure 7c) (the description was added in lines 304-306). Rab10 seems to be required for optimal LCV biogenesis over the early to late stages, but may not be required at the maturation stage (9 h). We validated the effect of MavC on the Rab10 localization at this time point (Figure 7c). These observations allowed us to build the scheme described in Figure 7d. We revised the illustration in new Figure 7d according to the helpful suggestions from both the reviewers.

      (8) Previous analyses by MS showed that ubiquitination of Rab10 in Lp-infected cells decreases over time (from 1 hpi to 8 hpi - Cell Host Microbe, 2019, 26(4): 551-563). How does this align with the findings made here that Rab10 levels on the LCV and likely its ubiquitination levels increase over time?

      We carefully compared the Rab10 ubiquitination at 1 h and 7 h after infection (new Figure 1figure supplement 1b). This analysis showed that the level of its ubiquitination decreased over time in agreement with the previous report. Nevertheless, Rab10 was still significantly ubiquitinated at 7 h, which we believe to cause the sustained retention of Rab10 on the LCV at this time point. We added the observation in lines 146-148.

      (9) Polyubiquitination of Rab10 was not detected in cells ectopically producing SdcB and SdeA lacking its DUB domain (Figure 7 - figure supplement 2). Does SdcB actually ubiquitinate Rab10 (see also point #5)? Along the same line, it is curious to find that the ubiquitination pattern of Rab10 is not different for LpΔsidC/ΔsdcA compared to LpΔsidC/dsdcA/dsdcB (Figure 1C). The actual contribution of SdcB to ubiquitinating Rab10 compared to SidC/SdcA thus needs to be clarified.

      Thank you for the important point. We currently hypothesize that SidC/SdcA/SdcB-mediated ubiquitin conjugation can occur only in the presence of PR-ubiquitin on Rab10 (either directly on the PR-ubiquitin or on other residue(s) of Rab10). Failure to detect the polyubiquitination in the transfection condition (Figure 7-figure supplement 2) suggests that this specific ubiquitin conjugation can occur in the restricted condition, i.e. only “on the LCV”. We added this description in the discussion section (lines 334-335). No difference between the ΔsidCΔsdcA and ΔsidCΔsdcAΔsdcB strains (Figure 1C, 1h infection) can be explained by the result that SdcB gains activity at the later stages (see above).

      Minor comments In Figure 4b and 7b, the authors show a quantification of "Rab10-positive LCVs/SdcBpositive LCVs". Whys this distinction? It begs the question what the percentile of Rab10positive/SdcB-negative LCVs might be?

      We took this way of quantification as we just wanted to see the effect of SdcB on the Rab10 localization. To distinguish between SdcB-positive and negative LCVs, we would need to rely on the blue color signals of DAPI to visualize internal bacteria, which we thought to be technically difficult in this specific analysis.

      The band of FLAG-tagged SdcB was not detected by immunoblot using anti-FLAG antibody (Figure 5). The authors hypothesized that "disappearance of the SdcB band can be caused by auto-ubiquitination, as SdcB has an ability to catalyze auto-ubiquitination with a diverse repertoire of E2 enzymes. This can be easily confirmed by using MG-132 to inhibit proteasomal degradation of polyubiquitinated substrates.

      We conducted the experiment using MG-132 as suggested and found that proteasomal degradation is not the cause of the disappearance of the band (new Figure 5-figure supplement 2, added description in lines 228-233). SdcB is actually not degraded. Instead, its polyubiquitination causes its apparent loss by distributing the SdcB bands in the gel.

      In Figure 5F, the authors mentioned that "HA-UbAA did not conjugate to SdcB", whereas "shifted band detected by FLAG probing plausibly represents conjugation of cellular intrinsic Ub". The same argument was made in Figure 6B. These claims should be confirmed by immunoblot using anti-Ub antibody.

      Thank you. We added the data using anti-Ub antibody (P4D1) (Figure 6f, new third panel).

      Figure 7A: In cell producing MavC, SdcB is clearly present on LCV. However, in Figure 5A, SdcB was not detected by immunoblot in cells ectopically expressing MavC-C74A. What is the interpretation for these results?

      SdcB was not degraded in the cells, but just its apparent molecular weight shift occurred by polyubiquitination (see above). The detection of SdcB in the IF images (Figure 7a) supported this claim.

      Reviewer #2 (Public Review):

      This manuscript explores the interplay between Legionella Dot/Icm effectors that modulate ubiquitination of the host GTPase Rab10. Rab10 undergoes phosphoribosyl-ubiquitination (PR-Ub) by the SidE family of effectors which is required for its recruitment to the Legionella containing vacuole (LCV). Through a series of elegant experiments using effector gene knockouts, co-transfection studies and careful biochemistry, Kubori et al further demonstrate that:

      (1) The SidC family member SdcB contributes to the polyubiquitination (poly-Ub) of Rab10 and its retention at the LCV membrane.

      (2) The transglutaminase effector, MavC acts as an inhibitor of SdcB by crosslinking ubiquitin at Gln41 to lysine residues in SdcB.

      Some further comments and questions are provided below.

      (1) From the data in Figure 1, it appears that the PR-Ub of Rab10 precedes and in fact is a prerequisite for poly-Ub of Rab10. The authors imply this but there's no explicit statement but isn't this the case?

      Yes, we think that it is the case. We revised the description in the text accordingly (lines 326327).

      (2) The complex interplay of Legionella effectors and their meta-effectors targeting a single host protein (as shown previously for Rab1) suggests the timing and duration of Rab10 activity on the LCV is tightly regulated. How does the association of Rab10 with the LCV early during infection and then its loss from the LCV at later time points impact LCV biogenesis or stability? This could be clearer in the manuscript and the summary figure does not illustrate this aspect.

      Thank you for pointing the important issue. Association of Rab10 with the LCV is thought to be beneficial for L. pneumophila as it is the identified factor which supports bacterial growth in cells (Jeng et al., 2019). We speculate that its loss from the LCV at the later stage of infection would also be beneficial, since the LCV may need to move on to the maturation stage in which a different membrane-fusion process may proceed. As this is too speculative, we gave a simple modification on the part of discussion section (lines 356-358). We also modified the summary figure (revised Figure 7d) as illustrated with the time course.

      (3) How do the activities of the SidE and SidC effectors influence the amount of active Rab10 on the LCV (not just its localisation and ubiquitination)

      We agree that it is an important point. We tested the active Rab10 (QL) and inactive Rab10 (TN) for their ubiquitination and LCV-localization profiles (new Figure 4ab, new Figure 4figure supplement 1 and 2). These analyses led us to the unexpected finding that the active form of Rab10 is the preferential target of the effector-mediated manipulation. See also our response to Reviewer 1’s comment #3. Thank you very much for your insightful suggestion.

      (4) What is the fate of PR-Ub and then poly-Ub Rab10? How does poly-Ub of Rab10 result in its persistence at the LCV membrane rather than its degradation by the proteosome?

      We have not revealed the molecular mechanism in this study. We believe that it is an important question to be solved in future. We added the sentence in the discussion section (lines 376378).

      (5) Mutation of Lys518, the amino acid in SdcB identified by mass spec as modified by MavC, did not abrogate SdcB Ub-crosslinking, which leaves open the question of how MavC does inhibit SdcB. Is there any evidence of MavC mediated modification to the active site of SdcB?

      The active site of SdcB (C57) is required for the modification (Figure 5b), but it is not likely to be the target residue, as the MavC transglutaminase activity restricts the target residues to Lys. It would be expected that multiple Lys residues on SdcB can be modified by MavC to disturb the catalytic activity.

      (6) I found it difficult to understand the role of the ubiquitin glycine residues and the transglutaminase activity of MavC on the inhibition of SdcB function. Is structural modelling using Alphafold for example helpful to explain this?

      We conducted the Alphafold analysis of SdcB-Ub. Unfortunately, when the Glycine residues of Ub was placed to the catalytic pocket of SdcB, Q41 of Ub did not fit to the expected position of SdcB (K518). Probably, the ternary complex (MavC-Ub-SdcB) would cause the change of their entire conformation. A crystal structure analysis or more detailed molecular modeling would be required to resolve the issue.

      (7) Are the lys mutants of SdbB still active in poly-Ub of Rab10?

      We performed the experiment and found that K518R K891R mutant of SdcB still has the E3 ligase activity of similar level with the wild-type upon infection (new Figure 6-figure supplement 2) (lines 283-284). The level was actually slightly higher than that of the wildtype. This result may suggest that the blocking of the modification sites can rescue SdcB from MavC-mediated down regulation.

      Reviewer #2 (Recommendations For The Authors):

      see above

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study applies voltage clamp fluorometry to provide new information about the function of serotonin-gated ion channels 5-HT3AR. The authors convincingly investigate structural changes inside and outside the orthosteric site elicited by agonists, partial agonists, and antagonists, helping to annotate existing cryo-EM structures. This work confirms that the activation of 5-HT3 receptors is similar to other members of this well-studied receptor superfamily. The work will be of interest to scientists working on channel biophysics but also drug development targeting ligand-gated ion channels.

      Public Reviews:

      All reviewers agreed that these results are solid and interesting. However, reviewers also raised several concerns about the interpretation of the data and some other aspects related to data analysis and discussion that should be addressed by the authors. Essential revisions should include:

      (1) Please try to explicitly distinguish between a closed pore and a resting or desensitized state of the pore, to help in clarity.

      (2) Add quantification of VCF data (e.g. sensor current kinetics, as suggested by reviewer #2) or better clarify/discuss the VCF quantitative aspects that are taken into account to reach some conclusions (reviewer #3).

      (3) Review and add relevant foundational work relevant to this study that is not adequately cited.

      (4) Revise the text according to all recommendations raised by the reviewers and listed in the individual reviews below.

      We have revised the text to address all four points. See the answers to referees’ recommendations.

      Reviewer #1 (Public Review):

      Summary:

      This study brings new information about the function of serotonin-gated ion channels 5-HT3AR, by describing the conformational changes undergoing during ligands binding. These results can be potentially extrapolated to other members of the Cys-loop ligand-gated ion channels. By combining fluorescence microscopy with electrophysiological recordings, the authors investigate structural changes inside and outside the orthosteric site elicited by agonists, partial agonists, and antagonists. The results are convincing and correlate well with the observations from cryo-EM structures. The work will be of important significance and broad interest to scientists working on channel biophysics but also drug development targeting ligand-gated ion channels.

      Strengths:

      The authors present an elegant and well-designed study to investigate the conformational changes on 5-HT3AR where they combine electrophysiological and fluorometry recordings. They determined four positions suitable to act as sensors for the conformational changes of the receptor: two inside and two outside the agonist binding site. They make a strong point showing how antagonists produce conformational changes inside the orthosteric site similarly as agonists do but they failed to spread to the lower part of the ECD, in agreement with previous studies and Cryo-EM structures. They also show how some loss-of-function mutant receptors elicit conformational changes (changes in fluorescence) after partial agonist binding but failed to produce measurable ionic currents, pointing to intermediate states that are stabilized in these conditions. The four fluorescence sensors developed in this study may be good tools for further studies on characterizing drugs targeting the 5-HT3R.

      Weaknesses:

      Although the major conclusions of the manuscript seem well justified, some of the comparison with the structural data may be vague. The claim that monitoring these silent conformational changes can offer insights into the allosteric mechanisms contributing to signal transduction is not unique to this study and has been previously demonstrated by using similar techniques with other ion channels.

      The referee emphasizes that “some of the comparison with the structural data may be vague”. To better illustrate the structural reorganizations seen in the cryo-EM structures and that are used for VCF data interpretation, we added a new supplementary figure 3. It shows a superimposition of Apo, setron and 5-HT bond structures, with reorganization of loop C and Cys-loop consistent with VCF data.

      Reviewer #2 (Public Review):

      Summary:

      This study focuses on the 5-HT3 serotonin receptor, a pentameric ligand-gated ion channel important in chemical neurotransmission. There are many cryo-EM structures of this receptor with diverse ligands bound, however assignment of functional states to the structures remains incomplete. The team applies voltage-clamp fluorometry to measure, at once, both changes in ion channel activity, and changes in fluorescence. Four cysteine mutants were selected for fluorophore labeling, two near the neurotransmitter site, one in the ECD vestibule, and one at the ECD-TMD junction. Agonists, partial agonists, and antagonists were all found to yield similar changes in fluorescence, a proxy for conformational change, near the neurotransmitter site. The strength of the agonist correlated to a degree with propagation of this fluorescence change beyond the local site of neurotransmitter binding. Antagonists failed to elicit a change in fluorescence in the vestibular the ECD-TMD junction sites. The VCF results further turned up evidence supporting intermediate (likely pre-active) states.

      Strengths:

      The experiments appear rigorous, the problem the team tackles is timely and important, the writing and the figures are for the most part very clear. We sorely need approaches orthogonal to structural biology to annotate conformational states and observe conformational transitions in real membranes- this approach, and this study, get right to the heart of what is missing.

      Weaknesses:

      The weaknesses in the study itself are overall minor, I only suggest improvements geared toward clarity. What we are still missing is application of an approach like this to annotate the conformation of the part of the receptor buried in the membrane; there is important debate about which structure represents which state, and that is not addressed in the current study.

      Reviewer #3 (Public Review):

      Summary:

      The authors have examined the 5-HT3 receptor using voltage clamp fluorometry, which enables them to detect structural changes at the same time as the state of receptor activation. These are ensemble measurements, but they enable a picture of the action of different agonists and antagonists to be built up.

      Strengths:

      The combination of rigorously tested fluorescence reporters with oocyte electrophysiology is a solid development for this receptor class.

      Weaknesses:

      The interpretation of the data is solid but relevant foundational work is ignored. Although the data represent a new way of examining the 5-HT3 receptor, nothing that is found is original in the context of the superfamily. Quantitative information is discussed but not presented.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Here are some suggestions that may help to improve the manuscript: - Page 6, point 2), typo: "L131W is positioned more profound in each ECD, its side chain (...)"

      “profound” have been corrected into “profoundly”

      • Fig 1C: Why not compare 5-HT responses for the four sensors studied? If the reason is the low currents elicited by 5-HT on I160C/Y207W sensor, could you comment on this effect that is not observed for the other full agonist tested (mCPBG)?

      The point of this figure (Fig 1G) is to show currents that desensitize to follow the evolution of the fluorescence signal during desensitization, that’s why for the I160C/Y207W sensor where 5-HT become a partial agonist we have judge more appropriate to use mCPBG acting as a more potent agonist to elicit currents with clear desensitization component. We have added a sentence in the legend of the figure to explain this choice more clearly.

      • Page 9, paragraph 2: "However, concentration-response curves on V106C/L131W show a small yet visible decorrelation of fluorescence and current (...)" Statistical analysis on EC50c and EC50f will help to see this decorrelation.

      Statistical analysis (unpaired t test) has been added to figure 3 panel A.

      • Page 10, paragraph 1: the authors describe how "different antagonists promote different degrees of local conformational changes". Does it have any relation to the efficacy or potency of these antagonists? Is there any interpretation for this result?

      Since setrons are competitive antagonists, the concept of efficacy of these molecules is unclear. Concerning potency, no correlation between affinity and fluorescence variation is observed. For instance, ondansetron and alosetron bind with similar nanomolar affinity to the 5-HT3R (Thompson & Lummis Curr Pharm Des. 2006;12(28):3615-30) but elicit different fluorescence variations on both S204C and I160C/Y207W sensors.

      • Fig. 1 panel A, graph to far right: axis label is cut ("current (uA)/..."). Colors of graph A - right are not clearly distinguishable e.g. cyan from green.

      The fluorescent green color that describes the mutant has been changed into limon color which is more clearly distinguishable from cyan.

      • Why is R219C/F142W not selected in the study? Are the signals comparable to the chosen R219C/F142W?

      We have chosen not to select R219C/F142W because the current elicited by this construct was lower than the current elicited by the construct R219C/Y140W. Moreover, the residue F142 belongs to the FPF motif from Cys-loop that is essential for gating (Polovinkin et al, 2018, Nature).

      • Fig. 1 legend typo: "mutated in tryptophan”

      “in” has been changed by “into”

      • Fig. 2: yellow color (graphs in panel B) is very hard to read.

      Yellow color has been darkened to yellow/brown to allow easy reading.

      • Fig. 4 is too descriptive and undermines the information of the study. It could be improved e.g. by representing specific structures or partial structures involved. As an additional minor comment, some colors in the figure are hard to differentiate, e.g. magenta and purple.

      We have added relevant specific structures involved, namely loop C, the Cys-loop and pre-M1 loop to clarify. The intensity of magenta and purple has been increased to help differentiate the two sensor positions.

      • Fig S1C: it is confusing to see the same color pattern for the single mutants without the W. I would recommend to label each trace to make it clearer.

      Labelling of the traces corresponding to the single mutants has been added.

      • Fig S2: Indicating the statistical significance in the graph for the mutants with different desensitization properties compared to the WT receptor will help its interpretation.

      The statistical significance of the difference in the desensitization properties has been added to Figure S2.

      Reviewer #2 (Recommendations For The Authors):

      Overall comments for the authors:

      Selection of cysteine mutants and engineered Trp sites is clear and logical. VCF approach with controls for comparing the functionality of WT vs. mutants, and labeled with unlabeled receptor, is well explained and satisfying. The finding that desensitization involves little change in ECD conformation makes sense. It is somewhat surprising, at least superficially, to find that competitive antagonists promote changes in fluorescence in the same 'direction' and amplitude as strong agonists, however, this is indeed consistent with the structural biology, and with findings from other groups testing different labeling sites. Importantly, the team finds that antagonist-binding changes in deltaF do not spread beyond the region near the neurotransmitter site. The finding that most labeling sites in the ECD, in particular those not in/near the neurotransmitter site, fail to report measurable fluorescence changes, is noteworthy. It contrasts with findings in GlyR, as noted by the authors, and supports a mechanism where most of each subunit's ECD behaves as a rigid body.

      Specific questions/comments:

      I am confused about the sensor current kinetics. Results section 2) states that all sensors share the same current desensitization kinetics, while Results section 5) states that the ECD-TMD site and the vestibule site sensors exhibit faster desensitization. SF1C, right-most panel of R219C suggests the mutation and/or labeling here dramatically changes apparent activation and deactivation rates measured by TEVC. Both activation and deactivation upon washout appear faster in this one example. Data for desensitization are not shown here but are shown in aggregate in earlier panels. It is a bit surprising that activation and deactivation would both change but no effect on desensitization. Indeed, it looks like, in Fig. 1G, that desensitization rate is not consistent across all constructs. Can you please confirm/clarify?

      TEVC and VCF recordings in this study show a significant variability concerning both the apparent desensitization and desactivation kinetics. This is illustrated concerning desensitization in TEVC experiments in figure S2, where the remaining currents after 45 secondes of 5-HT perfusion and the rate constants of desensitization are measured on different oocytes from different batches. Therefore, the differences in desensitization kinetics shown in fig 1.G are not significant, the aim of the figure being solely to illustrate that no variation of fluorescence is observed during the desensitization phase. A sentence in the legend of fig 1.G has been added to precise this point. We also revised the first paragraph of result section 5, clearly stating that the slight tendency of faster desensitization of V106C/L131W and R219C/Y140W sensors is not significant.

      An alternative to the conclusion-like title of Results section 2) is that the ECD (and its labels) does not undergo notable conformational changes between activated and desensitized states.

      This is a good point and we have added a sentence at the end of results section 2 to present this idea.

      I find the discussion paragraph on partial agonist mechanisms, starting with "However," to be particularly important but at times hard to follow. Please try to revise for clarity. I am particularly excited to understand how we can understand/improve assignments of cryo-EM structures using the VCF (or other) approaches. As examples of where I struggled, near the top of p. 11, related to the partial agonist discussion, there is an assumption about the pore being either activated, or resting. Is it not also possible that partial agonists could stabilize a desensitized state of the pore? Strictly speaking, the labeling sites and current measurements do not distinguish between pre-active resting and desensitized channel conformations/states. However, the cryo-EM structures can likely help fill in the missing information there- with all the normal caveats. Please try to explicitly distinguish between a closed pore and a resting or desensitized state of the pore, to help in clarity.

      We have revised the section, and hope it is clearer now. We notably state more explicitly the argument for annotation of partial agonist bound closed structures as pre-active, mainly from kinetic consideration of VCF experiments. We also mention and cite a paper by the Chakrapani group published the 4th of January 2024 (Felt et al, Nature Communication), where they present the structures of the m5HT3AR bound to partial agonists, with a set of conformations fully consistent with our VCF data.

      This statement likely needs references: "...indirect experiments of substituted cysteine accessibility method (SCAM) and VCF experiments suggested that desensitization involves weak reorganizations of the upper part of the channel that holds the activation gate, arguing for the former hypothesis."

      Reference Polovinkin et al, Nature, 2018, has been added.

      I respectfully suggest toning down this language a little bit: "VCF allowed to characterize at an unprecedented resolution the mechanisms of action of allosteric effectors and allosteric mutations, to identify new intermediate conformations and to propose a structure-based functional annotation of known high-resolution structures." This VCF stands strongly without unclear claims about unprecedented resolution. What impresses me most are the findings distinguishing how agonists/partial agonists/antagonists share a conserved action in one area and not in another, the observations consistent with intermediate states, and the efforts to integrate these simultaneous current and conformation measurements with the intimidating array of EM structures.

      We thank the referee for his positive comments. We have removed “unprecedented resolution” and revised the sentences.

      It is beyond the scope of the current study, but I am curious what the authors think the hurdles will be to tracking conformation of the pore domain- an area where non-cryo-EM based conformational measurements are sorely needed to help annotate the EM structures.

      We fully agree with the referee that structures of the TMD are very divergent between the various conditions depending on the membrane surrogate. We are at the moment working on this region by VCF, incorporating the fluorescent unnatural amino acid ANAP.

      Minor:

      (1) P. 5, m5-HT3R: Please clarify that this refers to the mouse receptor, if that is correct.

      OK, “mouse” has been added.

      (2) Fig. 1D, I suggest moving the 180-degree arrow to the right so it is below but between the two exterior and vestibular views.

      Ok, it has been done.

      (3) Please add a standard 2D chemical structure of MTS-TAMRA, and TAMRA attached to a cysteine, to Fig 1.

      A standard chemical structure has been added for the two isomers of MTS-TAMRA.

      (4) Please label subpanels in Fig. 1G with the identity of the label site.

      The subpanels have been labelled.

      Reviewer #3 (Recommendations For The Authors):

      This is solid work but I mainly have suggestions about placing it in context.

      (1) Abstract "Data show that strong agonists promote a concerted motion of all sensors during activation, "

      The concept of sensors here is the fluorescent labels? I did not find this meaningful until I read the significance statement.

      We have specified “fluorescently-labelled” before sensors in the abstract.

      (2) p4 "each subunit in the 5-HT3A pentamer...." this description would be identical for any pentameric LGIC so the authors should beware of a misleading specificity. This goes for other phrases in this paragraph. However, the summary of the 5HT specific results is very good.

      About the description of the structure, we added “The 5-HT3AR displays a typical pLGIC structure, where….”.

      (3) This paper is very nicely put together and generally explains itself well. The work is rigorous and comprehensive. But the meaning of quenching (by local Trp) seems straightforward, but it is not made explicit in the paper. Why doesn't simple labelling (single Cys) at this site work? And can we have a more direct demonstration of the advantage of including the Trp (not in the supplementary figure?) All this information is condensed into the first part of figure 1 (the graph in Figure 1A). Figure 1 could be split and the principle of the introduced quenching could be more clearly shown

      detailed in a few more sentences the principle of the TrIQ approach. In addition, to be more explicit, the significative differences of fluorescence comparing sensors with and without tryptophan have been added in Figure 1, panel screening and a sentence have been added in the legend of this figure.

      (4) p10 "VCF measurements are also remarkably coherent with the atomic structures showing an open pore (so called F, State 2 and 5-HT asymmetric states), "

      This statement is intriguing. What do these names or concepts represent? Are they all the same thing? Where do the names come from? What is meant here? Three different concepts, all consistent? Or three names for the same concept?

      We have tried to clarify the statement by making reference to the PDB of the structures.

      (5) "Fluorescence and VCF studies identified similar intermediate conformations for nAChRs, ⍺1-GlyRs and the bacterial homolog GLIC(21,32-35). "

      Whilst this is true, the motivation for such ideas came from earlier work identifying intermediates from electrophysiology alone (such as the flip state (Burzomato et al 2004), the priming state (Mukhatsimova 2009) and the conformational wave in ACh channels grosman et al 2000). It would be appropriate to mention some of this earlier work.

      We have incorporated and described these references in the discussion. Of note, we fully quoted these references in our previous papers on the subject (Menny 2017, Lefebvre 2021, Shi 2023), but the referee is right in asking to quote them again.

      (6) "A key finding of the study is the identification of pre-active intermediates that are favored upon binding of partial agonists and/or in the presence of loss-of-function mutations. "

      Even more fundamental, the idea of a two-state equilibrium for neurotransmitter receptors was discarded in 1957 according to the action of partial agonists.

      DEL CASTILLO J, KATZ B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci

      So to discover this "intermediate" - that is, bound but minimal activity - in the present context seems a bit much. It is a big positive of this paper that the results are congruent with our expectations, but I cannot see value in posing the results as an extension of the 2-state equilibrium (for which there are anyway other objections).

      As for intermediates being favoured by loss of function mutations, this concept is already well established in glycine receptors (Plested et al 2007, Lape et al 2012) and doubtless in other cases too.

      I do get the point that the authors want to establish a basis in 5-HT3 receptors, but these previous works suggest the results are somewhat expected. This should be commented on.

      We also agree. We replace “key finding” by “key observation”, quote most of the references proposed, and explicitly conclude that “The present work thus extends this idea to the 5HT3AR, together with providing structural blueprints for cryo-EM structure annotation”.

      (7) "In addition, VCF data allow a quantitative estimate of the complex allosteric action of partial agonists, that do not exclusively stabilize the active state and document the detailed phenotypes of various allosteric mutations."

      Where is this provided? If the authors are not motivated to do this, I have some doubts that others will step in. If it is not worth doing, it's probably not worth mentioning either.

      Language has been toned down by “In addition, VCF data give insights in the action of partial agonists, that do not exclusively stabilize the active state and document the phenotypes of various allosteric mutations."

      (8) Figure 1G please mark which construct is which.

      This has been added into Figure 1G

    1. Metadata is information about some data. So we often think about a dataset as consisting of the main pieces of data (whatever those are in a specific situation), and whatever other information we have about that data (metadata).

      When you consider the quantity of information that can be obtained from a single post, it is mind-boggling. Metadata is a strong tool that may be used by a large number of individuals. I believe that it has the potential to do a great deal of damage if it is misused. The information obtained from the post may be used by criminals to commit crimes. One example of this is the singer and artist Pop Smoke, who passed away recently. During his stay in Los Angeles, Pop Smoke shared a photo on his Instagram account that included the time and location of his location. In less than forty-eight hours, a bunch of criminals were successful in locating him and tragically ended his life.

    1. Author Response

      eLife assessment

      In this study, the authors offer a theoretical explanation for the emergence of nematic bundles in the actin cortex, carrying implications for the assembly of actomyosin stress fibers. As such, the study is a valuable contribution to the field actomyosin organization in the actin cortex. While the theoretical work is solid, experimental evidence in support of the model assumptions remains incomplete. The presentation could be improved to enhance accessibility for readers without a strong background in hydrodynamic and nematic theories.

      To address the weaknesses identified in this assessment, we plan to expand the description of the theoretical model to make it more accessible to a broader spectrum of readers. We will discuss in more detail the relation between the different mathematical terms and physical processes at the molecular scale, as well as the experimental evidence supporting the model assumptions. We will also discuss more explicitly how our results are relevant to different systems exhibiting actomyosin nematic bundles beyond stress fibers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths:

      The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      We thank the referee for these comments.

      Weaknesses:

      This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative.

      We agree with the referee that the manuscript will benefit from a better description of the theoretical model and the results in relation with specific molecular and cellular mechanisms. We will further emphasize how a number of experimental observations in the literature support our model assumptions and can be explained by our results. A quantitative comparison is difficult for several reasons. First, many of the parameters in our theory have not been measured, and in fact estimates in the literature often rely on comparison with hydrodynamic models such as ours. Second, the effective physical properties of actomyosin gels can vary wildly between cells, which may explain the diversity of forms, dynamics and functions. For these reasons, we chose to delineate regimes leading to qualitatively different emerging architectures and dynamics. In the revised manuscript, we will make this point clearer and will further study the literature to seek quantitative comparison.

      It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination.

      We thank the referee for this comment. Our theory is applicable to actomyosin in living cells. To our knowledge, reconstituted actomyosin gels currently lack the ability to sustain the dynamical steady-states involved in the proposed self-organization mechanism, which balance actin flows with turnover. In addition to actomyosin gels in living cells, in vitro systems based on encapsulated cell extracts can also sustain such dynamical steady states [e.g. https://doi.org/10.1038/s41567-018-0413-4], and therefore our theory may be applicable to these systems as well. Of course, with advancements in the field of reconstituted systems, this may change in the near future. We will explicitly discuss this point in the revised manuscript.

      The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns.

      We agree and will avoid the term “sarcomeric”.

      Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim.

      We plan to clarify this point by representing in a main figure the stress profiles across dense nematic structures (currently in Supp Fig 2), along with a more detailed description. In short, depending on the parameter regime, the competition between active and viscous stresses in the actin gel determine whether the emergent structures are extensile or contractile. In our system tension is positive in all directions at all times. However, in “contractile” structures, tension is larger along the bundle, whereas in “extensile” structures, tension is larger perpendicular to the bundle. This is consistent with the common expression for active stress of incompressible nematic systems [see e.g. https://doi.org/10.1038/s41467-018-05666-8], that takes the form –zQ, where z is positive for an extensile system, showing that in this case active tension is negative along the nematic direction. This point, also been raised by another referee, will be clarified and connected to existing literature.

      Additionally, its unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase.

      In the present work, we focus on the self-organization of a periodic patch of actomyosin gel. However, in adherent cells boundary conditions play an essential role, e.g. with inflow at the cell edge as a result of polymerization and exclusion at the nucleus. In ongoing work, we are studying with the present model the dynamics of assembly and reconfiguration of dense nematic structures in domains with boundary conditions mimicking in adherent cells, as suggested by the referee. We would like to note, however, that the prominent stress fibers in cells adhered to stiff substrates, so abundantly reported in the literature, are not the only instance of dense nematic actin bundles, and may not be representative of physiologically relevant situations. In the present manuscript, we emphasize the relation of the predicted organizations with those found in different in vivo contexts not related to stress fibers, such as the aligned patterns of bundles in insects (trachea, scales in butterfly wings), in hydra, or in reproductive organs of C elegans; the highly dynamical network of bundles observed in C elegans early embryos; or the labyrinth patters of micro-ridges in the apical surface of epidermal cells in fish. We will further emphasize these points in the revised manuscript.

      Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

      We thank the referee for raising this question, which needs further clarification. The goal of the microscopic model is not to reproduce the self-organized patterns predicted by the active gel theory. The microscopic model lacks essential ingredients, notably a realistic description of hydrodynamics and turnover. Our goal with the agent-based simulations is to extract the relation between nematic order and active stresses for a small homogeneous sample of the network. This small domain is meant to represent the homogeneous active gel prior to pattern formation, and it allows us to substantiate key assumptions of the continuum model leading to pattern formation, notably the dependence of isotropic and deviatoric components of the active stress on density and nematic order (Eq. 7) and the active generalized stress promoting ordering.

      We should mention that reproducing the range of out-of-equilibrium mesoscale architectures predicted by our active gel model with agent-based simulations seems at present not possible, or at least significantly beyond the state-of-the-art. We note for instance that parameter regimes in which agent-based simulations of actin gels display extended contractile steady-states are non-generic, as these simulations often lead to irreversible clumping (as do many reconstituted contractile systems), see e.g. https://doi.org/10.1038/ncomms10323 or https://doi.org/10.1371/journal.pcbi.1005277. Very few references report sustained actin flows or the organization of a few bundles (https://doi.org/10.1371/journal.pcbi.1009506). While agent-based cytoskeletal simulations are very attractive because they directly connect with molecular mechanisms, active gel continuum models are better suited to describe out-ofequilibrium emergent hydrodynamics at a mesoscale. We believe that these two complementary modeling frameworks are rather disconnected in the literature, and for this reason, we have attempted substantiate our continuum modeling with discrete simulations. In the revised manuscript, we will better frame the relationship between them.

      Reviewer #2 (Public Review):

      Summary:

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article.

      We thank the referee for these comments. In the revised manuscript, we will highlight the novelty of the paper in terms of the theoretical model, the mechanism of patterning of dense nematic structures, the nature and dynamics of the resulting architectures, their relation with the experimental record, and the connection with microscopic models.

      We will emphasize the fact that nematic architectures in the actin cytoskeleton are characterized by a co-localization of order and density (and strong variations in each of these fields), that recent work shows that isotropic and nematic organizations coexist and are part of a single heterogeneous network, that the emergence and maintenance of nematic order requires active contraction, and that the assembly and maintenance of dense nematic bundles involves convergent flows. None of these key features can be described by the common incompressible models of active nematics. To address this, we develop here a compressible and density dependent model for an active nematic gel. We will carefully justify that the proposed model is meaningful for actomyosin gels, and we will highlight the commonalities and differences with previous models of active nematics.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      We agree with the referee that the manuscript requires a better contextualization of the work in relation with the very active field of active nematics. In the revised manuscript, we will clearly describe the relation of our model with existing ones.

      Reviewer #3 (Public Review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripelike patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the conclusions drawn from continuum simulations.

      The paper is well written, figures are mostly clear and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not yet stated this way by the authors, I would argue that combining these two is of the key ingredients that distinguishes this theoretical paper from similar ones. The diversity of patterning processes experimentally observed is nicely elaborated on in the introduction of the paper, though other closely related previous work could also have been included in these references (see below for examples).

      We thank the referee for these comments and for the suggestion to emphasize the interplay of isotropic and anisotropic active tension, which is possible only in a compressible gel. We thank the suggestions of the referee to better connect with existing literature.

      To introduce the continuum model, the authors exclusively cite their own, unpublished pre-print, even though the final equations take the same form as previously derived and used by other groups working in the field of active hydrodynamics (a certainly incomplete list: Marenduzzo et al (PRL, 2007), Salbreux et al (PRL, 2009, cited elsewhere in the paper), Jülicher et al (Rep Prog Phys, 2018), Giomi (PRX, 2015),...). To make better contact with the broad active liquid crystal community and to delineate the present work more compellingly from existing results, it would be helpful to include a more comprehensive discussion of the background of the existing theoretical understanding on active nematics. In fact, I found it often agrees nicely with the observations made in the present work, an opportunity to consolidate the results that is sometimes currently missed out on. For example, it is known that self-organised active isotropic fluids form in 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019), just as shown and discussed in Fig. 2. It is also known that extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis (the other way around for \kappa>0, see e.g. Doostmohammadi et al, Nat Comm, 2018 "Active Nematics" for a review that makes this point), consistent with all relative nematic director/flow orientations shown in Figs. 2 and 3 of the present work.

      We thank the referee for these suggestions. Indeed, in the original submission we had outsourced much of the justification of the model and the relevant literature to a related pre-print, but this is not reasonable. In the revised manuscript, we will discuss our model in the context of the state-of-the-art, emphasizing connections with existing results.

      The results of numerical simulations are well-presented. Large parts of the discussion of numerical observations - specifically around Fig. 3 - are qualitative and it is not clear why the analysis is restricted to \kappa<0. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (https://arxiv.org/abs/2309.04224). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      We thank the referee for these comments. We will expand the description of the results around Figure 3. We are reluctant to extend the detailed analysis of emergent architectures and dynamics to the case \kappa > 0 as it leads to architectures not observed, to our knowledge, in actin networks. We will expand the characterization of emergent contractile/extensile networks by describing the distribution of the different components of the stress tensor across the bundles and will place our results in the context of related recent work.

      I compliment the authors for trying to gain further mechanistic insights into this conclusion with microscopic filament simulations that are diligently performed. It is rightfully stated that these simulations only provide plausibility tests and, within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 (which is dropped ad-hoc from Fig. 3 onward) microscopically, in which the continuum theory does also predict the formation of stripe patterns - besides the short comment at the very end? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa?

      We thank the referee for this compliment. We think that the point raised by the referee is very interesting. It is reasonable to expect that the sign of \kappa will not be a constant but rather depend on S and \rho. Indeed, for a sparse network with low order, the progressive bundling by crosslinkers acting on nearby filaments is likely to produce a large active stress perpendicular to the nematic direction, whereas in a dense and highly ordered region, myosin motors are more likely to effectively contract along the nematic direction whereas there is little room for additional lateral contraction by additional bundling. In the revised manuscript, we envision to further deepen in this issue in two ways. First, we plan to perform additional agent-based simulations in a regime leading to kappa > 0. Second, we will modify the active gel model such that kappa < 0 for low density/order, so that a fibrillar pattern is assembled, and kappa > 0 for high density/order, so that the emergent fibers are highly contractile.

      Overall, the paper represents a valuable contribution to the field of active matter and, if strengthened further, might provide a fruitful basis to develop new hypothesis about the dynamic self-organisation of dense filamentous bundles in biological systems.

    1. Author Response

      We would like to thank the editorial board and the reviewers for their assessment of our manuscript and their constructive feedback that we believe will make our manuscript stronger and clearer. Please find below our provisional response to the public reviews; these responses outline our plan to address the concerns of the reviewers for a planned resubmission. Our responses are written in red.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Misic et al showed that white matter properties can be used to classify subacute back pain patients that will develop persisting pain.

      Strengths:

      Compared to most previous papers studying associations between white matter properties and chronic pain, the strength of the method is to perform a prediction in unseen data. Another strength of the paper is the use of three different cohorts. This is an interesting paper that provides a valuable contribution to the field.

      We thank the reviewer for emphasizing the strength of our paper and the importance of validation on multiple unseen cohorts.

      Weaknesses:

      The authors imply that their biomarker could outperform traditional questionnaires to predict pain: "While these models are of great value showing that few of these variables (e.g. work factors) might have significant prognostic power on the long-term outcome of back pain and provide easy-to-use brief questionnaires-based tools, (21, 25) parameters often explain no more than 30% of the variance (28-30) and their prognostic accuracy is limited.(31)". I don't think this is correct; questionnaire-based tools can achieve far greater prediction than their model in about half a million individuals from the UK Biobank (Tanguay-Sabourin et al., A prognostic risk score for the development and spread of chronic pain, Nature Medicine 2023).

      We agree with the reviewer that we might have under-estimated the prognostic accuracy of questionnaire-based tools, especially, the strong predictive accuracy shown by Tangay-Sabourin 2023. In the revised version, we will change both the introduction and the discussion to reflect the the questionnaires based prognostic accuracy reported in the seminal work by TangaySabourin. We do note here, however, that the latter paper while very novel is unique in showing the power of questionnaires. In addition, the questionnaires we have tested in our cohort did not show any baseline differences suggestive of prognostic accuracy.

      Moreover, the main weakness of this study is the sample size. It remains small despite having 3 cohorts. This is problematic because results are often overfitted in such a small sample size brain imaging study, especially when all the data are available to the authors at the time of training the model (Poldrack et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews in Neuroscience 2017). Thus, having access to all the data, the authors have a high degree of flexibility in data analysis, as they can retrain their model any number of times until it generalizes across all three cohorts. In this case, the testing set could easily become part of the training making it difficult to assess the real performance, especially for small sample size studies.

      The reviewer raises a very important point of limited sample size and of the methodology intrinsic of model development and testing. We acknowledge the small sample size in the “Limitations” section of the discussion. In the resubmission, we will acknowledge the degree of flexibility that is afforded by having access to all the data at once. However, we will also note that our SLF-FA based model is a simple cut-off approach that does not include any learning or hidden layers and that the data obtained from Open Pain were never part of the “training” set at any point at either the New Haven or the Mannheim site. Regarding our SVC approach we follow standard procedures for machine learning where we never mix the training and testing sets. The models are trained on the training data with parameters selected based on crossvalidation within the training data. Therefore, no models have ever seen the test data set. The model performances we reported reflect the prognostic accuracy of our model. Finally, as discussed by Spisak et al., 1 the key determinant of the required sample size in predictive modeling is the ” true effect size of the brain-phenotype relationship” which we think is the determinant of the replication we observe in this study. As such the effect size in the New Haven and Mannheim data is Cohen’s d >1.

      Even if the performance was properly assessed, their models show AUCs between 0.65-0.70, which is usually considered as poor, and most likely without potential clinical use. Despite this, their conclusion was: "This biomarker is easy to obtain (~10 min 18 of scanning time) and opens the door for translation into clinical practice." One may ask who is really willing to use an MRI signature with a relatively poor performance that can be outperformed by self-report questionnaires?

      The reviewer is correct, the model performance is poor to fair which limits its usefulness for clinical translation. We wanted to emphasize that obtaining diffusion images can be done in a short period of time and, hence, as such models predictive accuracy improves, clinical translation becomes closer to reality. In addition, our findings are based on old diffusion data and limited sample size coming from different sites and different acquisition sequences. This by itself would limit the accuracy especially that evidence shows that sample size affect also model performance (i.e. testing AUC)1. In the revision, we will re-word the sentence mentioned by the reviewer to reflect the points discussed here. This also motivates us to collect a more homogeneous and larger sample.

      Overall, these criticisms are more about the wording sometimes used and the inference they made. I think the strength of the evidence is incomplete to support the main claims of the paper.

      Despite these limitations, I still think this is a very relevant contribution to the field. Showing predictive performance through cross-validation and testing in multiple cohorts is not an easy task and this is a strong effort by the team. I strongly believe this approach is the right one and I believe the authors did a good job.

      We thank the reviewer for acknowledging that our effort and approach were the right ones.

      Minor points:

      Methods:

      I get the voxel-wise analysis, but I don't understand the methods for the structural connectivity analysis between the 88 ROIs. Have the authors run tractography or have they used a predetermined streamlined form of 'population-based connectome'? They report that models of AUC above 0.75 were considered and tested in the Chicago dataset, but we have no information about what the model actually learned (although this can be tricky for decision tree algorithms).

      We apologize for the lack of clarity; we did run tractography and we did not use a predetermined streamlined form of the connectome. We will clarify this point in the methods section.

      Finding which connections are important for the classification of SBPr and SBPp is difficult because of our choices during data preprocessing and SVC model development: (1) preprocessing steps which included TNPCA for dimensionality reduction, and regressing out the confounders (i.e., age, sex, and head motion); (2) the harmonization for effects of sites; and (3) the Support Vector Classifier which is a hard classification model2. Such models cannot tell us the features that are important in classifying the groups. Our model is considered a black-box predictive model like neural networks.

      Minor:

      What results are shown in Figure 7? It looks more descriptive than the actual results.

      The reviewer is correct; Figure 7 and supplementary Figure 4 are both qualitatively illustrating the shape of the SLF.

      Reviewer #2 (Public Review):

      The present study aims to investigate brain white matter predictors of back pain chronicity. To this end, a discovery cohort of 28 patients with subacute back pain (SBP) was studied using white matter diffusion imaging. The cohort was investigated at baseline and one-year follow-up when 16 patients had recovered (SBPr) and 12 had persistent back pain (SBPp). A comparison of baseline scans revealed that SBPr patients had higher fractional anisotropy values in the right superior longitudinal fasciculus SLF) than SBPp patients and that FA values predicted changes in pain severity. Moreover, the FA values of SBPr patients were larger than those of healthy participants, suggesting a role of FA of the SLF in resilience to chronic pain. These findings were replicated in two other independent datasets. The authors conclude that the right SLF might be a robust predictive biomarker of CBP development with the potential for clinical translation.

      Developing predictive biomarkers for pain chronicity is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are convincing, and the interpretation is adequate. A particular strength of the study is the discovery-replication approach with replications of the findings in two independent datasets.

      We thank reviewer 2 for pointing to the strength of our study.

      The following revisions might help to improve the manuscript further.

      Definition of recovery. In the New Haven and Chicago datasets, SBPr and SBPp patients are distinguished by reductions of >30% in pain intensity. In contrast, in the Mannheim dataset, both groups are distinguished by reductions of >20%. This should be harmonized. Moreover, as there is no established definition of recovery (reference 79 does not provide a clear criterion), it would be interesting to know whether the results hold for different definitions of recovery. Control analyses for different thresholds could strengthen the robustness of the findings.

      The reviewer raises an important point regarding the definition of recovery. To address the reviewers concern we will add a supplementary figure showing the results in the Mannheim data set if a 30% reduction is used as a recovery criterion. We would like to emphasize here several points that support the use of different recovery thresholds between New Haven and Mannheim. The New Haven primary pain ratings relied on visual analogue scale (VAS) while the Mannheim data relied on the German version of the West-Haven-Yale Multidimensional Pain Inventory. In addition, the Mannheim data was pre-registered with a definition of recovery at 20% and is part of a larger sub-acute to chronic pain study with prior publications from this cohort using the 20% cut-off3. Finally, a more recent consensus publication4 from IMMPACT indicates that a change of at least 30% is needed for a moderate improvement in pain on the 0-10 Numerical Rating Scale but that this percentage depends on baseline pain levels.

      Analysis of the Chicago dataset. The manuscript includes results on FA values and their association with pain severity for the New Haven and Mannheim datasets but not for the Chicago dataset. It would be straightforward to show figures like Figures 1 - 4 for the Chicago dataset, as well.

      We welcome the reviewer’s suggestion; we will therefore add these analyses to the results section of our manuscript upon resubmission

      Data sharing. The discovery-replication approach of the present study distinguishes the present from previous approaches. This approach enhances the belief in the robustness of the findings. This belief would be further enhanced by making the data openly available. It would be extremely valuable for the community if other researchers could reproduce and replicate the findings without restrictions. It is not clear why the fact that the studies are ongoing prevents the unrestricted sharing of the data used in the present study.

      Reviewer #3 (Public Review):

      Summary:

      Authors suggest a new biomarker of chronic back pain with the option to predict the result of treatment. The authors found a significant difference in a fractional anisotropy measure in superior longitudinal fasciculus for recovered patients with chronic back pain.

      Strengths:

      The results were reproduced in three different groups at different studies/sites.

      Weaknesses:

      The number of participants is still low.

      We have discussed this point in our replies to reviewer number 1.

      An explanation of microstructure changes was not given.

      The reviewer points to an important gap in our discussion. While we cannot do a direct study of actual tissue micro-structure, we will explore further the changes observed in the SLF by calculating diffusivity measures and discuss possible explanations of these changes.

      Some technical drawbacks are presented.

      We are uncertain if the reviewer is suggesting that we have acknowledged certain technical drawbacks and expects further elaboration on our part. We kindly request that the reviewer specify what particular issues they would like us to address so that we can respond appropriately.

      (1) Spisak T, Bingel U, Wager TD. Multivariate BWAS can be replicable with moderate sample sizes. Nature 2023;615:E4-E7.

      (2) Liu Y, Zhang HH, Wu Y. Hard or Soft Classification? Large-margin Unified Machines. J Am Stat Assoc 2011;106:166-177.

      (3) Loffler M, Levine SM, Usai K, et al. Corticostriatal circuits in the transition to chronic back pain: The predictive role of reward learning. Cell Rep Med 2022;3:100677.

      (4) Smith SM, Dworkin RH, Turk DC, et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020;161:2446-2461.

    2. Reviewer #1 (Public Review):

      Summary:

      In this paper, Misic et al showed that white matter properties can be used to classify subacute back pain patients that will develop persisting pain.

      Strengths:

      Compared to most previous papers studying associations between white matter properties and chronic pain, the strength of the method is to perform a prediction in unseen data. Another strength of the paper is the use of three different cohorts. This is an interesting paper that provides a valuable contribution to the field.

      Weaknesses:

      The authors imply that their biomarker could outperform traditional questionnaires to predict pain: "While these models are of great value showing that few of these variables (e.g. work factors) might have significant prognostic power on the long-term outcome of back pain and provide easy-to-use brief questionnaires-based tools, (21, 25) parameters often explain no more than 30% of the variance (28-30) and their prognostic accuracy is limited.(31)". I don't think this is correct; questionnaire-based tools can actually achieve far greater prediction than their model in about half a million individuals from the UK Biobank (Tanguay-Sabourin et al., A prognostic risk score for the development and spread of chronic pain, Nature Medicine 2023).

      Moreover, the main weakness of this study is the sample size. It remains small despite having 3 cohorts. This is problematic because results are often overfitted in such a small sample size brain imaging study, especially when all the data are available to the authors at the time of training the model (Poldrack et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews in Neuroscience 2017). Thus, having access to all the data, the authors have a high degree of flexibility in data analysis, as they can retrain their model any number of times until it generalizes across all three cohorts. In this case, the testing set could easily become part of the training making it difficult to assess the real performance, especially for small sample size studies.

      Even if the performance was properly assessed, their models show AUCs between 0.65-0.70, which is usually considered as poor, and most likely without potential clinical use. Despite this, their conclusion was: "This biomarker is easy to obtain (~10 min 18 of scanning time) and opens the door for translation into clinical practice." One may ask who is really willing to use an MRI signature with a relatively poor performance that can be outperformed by self-report questionnaires?

      Overall, these criticisms are more about the wording sometimes used and the inference they made. I think the strength of the evidence is incomplete to support the main claims of the paper.

      Despite these limitations, I still think this is a very relevant contribution to the field. Showing predictive performance through cross-validation and testing in multiple cohorts is not an easy task and this is a strong effort by the team. I strongly believe this approach is the right one and I believe the authors did a good job.

      Minor points:

      Methods:

      I get the voxel-wise analysis, but I don't understand the methods for the structural connectivity analysis between the 88 ROIs. Have the authors run tractography or have they used a predetermined streamlined form of 'population-based connectome'? They report that models of AUC above 0.75 were considered and tested in the Chicago dataset, but we have no information about what the model actually learned (although this can be tricky for decision tree algorithms).

      Minor:<br /> What results are shown in Figure 7? It looks more descriptive than the actual results.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) Methods, please state the sex of the mice.

      This has now been added to the methods section:

      “Three to nine month old Thy1-GCaMP6S mice (Strain GP4.3, Jax Labs), N=16 stroke (average age: 5.4 months; 13 male, 3 female), and 5 sham (average age: 6 months; 3 male, 2 female), were used in this study.”

      (2) The analysis in Fig 3B-D, 4B-C, and 6A, B highlights the loss of limb function, firing rate, or connections at 1 week but this phenomenon is clearly persisting longer in some datasets (Fig. 3 and 6). Was there not a statistical difference at weeks 2,3,4,8 relative to "Pre-stroke" or were comparisons only made to equivalent time points in the sham group? Personally, I think it is useful to compare to "pre-stroke" which should be more reflective of that sample of animals than comparing to a different set of animals in the Sham group. A 1 sample t-test could be used in Fig 4 and 6 normalized data.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for proper depiction of results, and all normalized datasets have been replaced with nonnormalized datasets. All within group statistics are now indicated within the manuscript.

      (3) Fig 4A shows a very striking change in activity that doesn't seem to be borne out with group comparisons. Since many neurons are quiet or show very little activity, did the authors ever consider subgrouping their analysis based on cells that show high activity levels (top 20 or 30% of cells) vs those that are inactive most of the time? Recent research has shown that the effects of stroke can have a disproportionate impact on these highly active cells versus the minimally active ones.

      A qualitative analysis supports a loss of cells with high activity at the 1-week post-stroke timepoint, and examination of average firing rates at 1-week shows reductions in the animals with the highest average rates. However, we have not tracked responses within individual neurons or quantitatively analyzed the data by subdividing cells into groups based on their prestroke activity levels. We have amended the discussion of the manuscript with the following to highlight the previous data as it relates to our study:

      “Recent research also indicates that stroke causes distinct patterns of disruption to the network topology of excitatory and inhibitory cells [73], and that stroke can disproportionately disrupt the function of high activity compared to low activity neurons in specific neuron sub-types [61]. Mouse models with genetically labelled neuronal sub-types (including different classes of inhibitory interneurons) could be used to track the function of those populations over time in awake animals.”

      (4) Fig 4 shows normalized firing rates when moving and at rest but it would be interesting to know what the true difference in activity was in these 2 states. My assumption is that stroke reduces movement therefore one normalizes the data. The authors could consider putting non-normalized data in a Supp figure, or at least provide a rationale for not showing this, such as stating that movement output was significantly suppressed, hence the need for normalization.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for proper depiction of results, and all normalized datasets have been replaced with nonnormalized datasets.

      (5) One thought for the discussion. The fact that the authors did not find any changes in "distant" cortex may be specific to the region they chose to sample (caudal FL cortex). It is possible that examining different "distant" regions could yield a different outcome. For example, one could argue that there may have been no reason for this area to "change" since it was responsive to FL stimuli before stroke. Further, since it was posterior to the stroke, thalamocortical projects should have been minimally disturbed.

      We would like to thank the reviewer for this comment. We have amended the discussion with the following:

      “Our results suggest a limited spatial distance over which the peri-infarct somatosensory cortex displays significant network functional deficits during movement and rest. Our results are consistent with a spatial gradient of plasticity mediating factors that are generally enhanced with closer proximity to the infarct core [84,88,90,91]. However, our analysis outside peri-infarct cortex is limited to a single distal area caudal to the pre-stroke cFL representation. Although somatosensory maps in the present study were defined by a statistical criterion for delineating highly responsive cortical regions from those with weak responses, the distal area in this study may have been a site of activity that did not meet the statistical criterion for inclusion in the baseline map. The lack of detectable changes in population correlations, functional connectivity, assembly architecture and assembly activations in the distal region may reflect minimal pressure for plastic change as networks in regions below the threshold for regional map inclusion prior to stroke may still be functional in the distal cortex. Thus, threshold-based assessment of remapping may further overestimate the neuroplasticity underlying functional reorganization suggested by anaesthetized preparations with strong stimulation. Future studies could examine distal areas medial and anterior to the cFL somatosensory area, such as the motor and pre-motor cortex, to further define the effect of FL targeted stroke on neuroplasticity within other functionally relevant regions. Moreover, the restriction of these network changes to peri-infarct cortex could also reflect the small penumbra associated with photothrombotic stroke, and future studies could make use of stroke models with larger penumbral regions, such as the middle cerebral artery occlusion model. Larger injuries induce more sustained sensorimotor impairment, and the relationship between neuronal firing, connectivity, and neuronal assemblies could be further probed relative to recovery or sustained impairment in these models.”

      Minor comments:

      Line 129, I don't necessarily think the infarct shows "hyper-fluorescence", it just absorbs less white light (or reflects more light) than blood-rich neighbouring regions.

      Sentence in the manuscript has been changed to:

      “Resulting infarcts lesioned this region, and borders could be defined by a region of decreased light absorption 1 week post-stroke (Fig 1D, Top).”

      Line 130-132: the authors refer to Fig 1D to show cellular changes but these cannot be seen from the images presented. Perhaps a supplementary zoomed-in image would be helpful.

      As changes to the morphology of neurons are not one of the primary objectives of this study, and sampled resolution was not sufficiently high to clearly delineate the processes of neurons necessary for morphological assessment, we have amended the text as follows:

      “Within the peri-infarct imaging region, cellular dysmorphia and swelling was visually apparent in some cells during two photon imaging 1-week after stroke, but recovered over the 2 month poststroke imaging timeframe (data not shown). These gross morphological changes were not visually apparent in the more distal imaging region lateral to the cHL.”

      Lines 541-543, was there a rationale for defining movement as >30mm/s? Based on a statistical estimate of noise?

      Text has been altered as follows:

      “Animal movement within the homecage during each Ca2+ imaging session was tracked to determine animal speed and position. Movement periods were manually annotated on a subset of timeseries by co-recording animal movement using both the Mobile Homecage tracker, as well as a webcam (Logitech C270) with infrared filter removed. Movement tracking data was low pass filtered to remove spurious movement artifacts lasting below 6 recording frames (240ms). Based on annotated times of animal movement from the webcam recordings and Homecage tracking, a threshold of 30mm/s from the tracking data was determined as frames of animal movement, whereas speeds below 30mm/s was taken as periods of rest.”

      Lines 191-195: Note that although the finding of reduced neural activity is in disagreement with a multi-unit recording study, it is consistent with other very recent single-cell Ca++ imaging data after stroke (PMID: 34172735 , 34671051).

      Text has been altered as follows:

      “These results indicate decreased neuronal spiking 1-week after stroke in regions immediately adjacent to the infarct, but not in distal regions, that is strongly related to sensorimotor impairment. This finding runs contrary to a previous report of increased spontaneous multi-unit activity as early as 3-7 days after focal photothrombotic stroke in the peri-infarct cortex [1], but is in agreement with recent single-cell calcium imaging data demonstrating reduced sensoryevoked activity in neurons within the peri-infarct cortex after stroke [60,61].”

      Fig 7. I don't understand what the color code represents. Are these neurons belonging to the same assembly (or membership?).

      That is correct, neurons with identical color code belong to the same assembly. The legend of Fig 7 has been modified as follows to make this more explicit:

      “Fig 7. Color coded neural assembly plots depict altered neural assembly architecture after stroke in the peri-infarct region. (A) Representative cellular Ca2+ fluorescence images with neural assemblies color coded and overlaid for each timepoint. Neurons belonging to the same assembly have been pseudocolored with identical color. A loss in the number of neural assemblies after stroke in the peri-infarct region is visually apparent, along with a concurrent increase in the number of neurons for each remaining assembly. (B) Representative sham animal displays no visible change in the number of assemblies or number of neurons per assembly.”

      Reviewer #2 (Recommendations For The Authors):

      Materials and methods

      Identification of forelimb and hindlimb somatosensory cortex representations [...] Cortical response areas are calculated using a threshold of 95% peak activity within the trial. The threshold is presumably used to discriminate between the sensory-evoked response and collateral activation / less "relevant" response (noise). Since the peak intensity is lower after stroke, the "response" area is larger - lower main signal results in less noise exclusion. Predictably, areas that show a higher response before stroke than after are excluded from the response area before stroke and included after. While it is expected that the remapped areas will exhibit a lower response than the original and considering the absence of neuronal activity, assembly architecture, or functional connectivity in the "remapped" regions, a minimal criterion for remapping should be to exhibit higher activation than before stroke. Please use a different criterion to map the cortical response area after stroke.

      We would like to thank the reviewer for this comment. We agree with the reviewer’s assessment of 95% of peak as an arbitrary criterion of mapped areas. To exclude noise from the analysis of mapped regions, a new statistical criterion of 5X the standard deviation of the baseline period was used to determine the threshold to use to define each response map. These maps were used to determine the peak intensity of the forelimb response. We also measured a separate ROI specifically overlapping the distal region, lateral to the hindlimb map, to determine specific changes to widefield Ca2+ responses within this distal region. We have amended the text as follows and have altered Figure 2 with new data generated from our new criterion for cortical mapping.

      “The trials for each limb were averaged in ImageJ software (NIH). 10 imaging frames (1s) after stimulus onset were averaged and divided by the 10 baseline frames 1s before stimulus onset to generate a response map for each limb. Response maps were thresholded at 5 times the standard deviation of the baseline period deltaFoF to determine limb associated response maps. These were merged and overlaid on an image of surface vasculature to delineate the cFL and cHL somatosensory representations and were also used to determine peak Ca2+ response amplitude from the timeseries recordings. For cFL stimulation trials, an additional ROI was placed over the region lateral to the cHL representation (denoted as “distal region” in Fig 2E) to measure the distal region cFL evoked Ca2+ response amplitude pre- and post-stroke. The dimensions and position of the distal ROI was held consistent relative to surface vasculature for each animal from pre- to post-stroke.”

      Animals

      Mice used have an age that goes from 3 to 9 months. This is a big difference given that literature on healthy aging reports changes in neurovascular coupling starting from 8-9 months old mice. Consider adding age as a covariate in the analysis.

      We do not have sufficient numbers of animals within this study to examine the effect of age on the results observed herein. We have amended the discussion with the following to address this point:

      “A potential limitation of our data is the undefined effect of age and sex on cortical dynamics in this cohort of mice (with ages ranging from 3-9 months) after stroke. Aging can impair neurovascular coupling [102–107] and reduce ischemic tolerance [108–111], and greater investigation of cortical activity changes after stroke in aged animals would more effectively model stroke in humans. Future research could replicate this study with mice in middle-age and aged mice (e.g. 9 months and 18+ months of age), and with sufficient quantities of both sexes, to better examine age and sex effects on measures of cortical function.”

      Statistics

      Please describe the "normalization" that was applied to the firing rate. Since a mixedeffects model was used, why wasn't baseline simply added as a covariate? With this type of data, normalization is useful for visualization purposes.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for the visualization of results, and all normalized datasets have been replaced with nonnormalized datasets. All within group comparisons are now indicated throughout the manuscript and in the figures.

      Introduction

      Line 93 awake, freely behaving but head-fixed. That's not freely. Should just say behaving.

      Sentence has been edited as follows:

      “We used awake, behaving but head-fixed mice in a mobile homecage to longitudinally measure cortical activity, then used computational methods to assess functional connectivity and neural assembly architecture at baseline and each week for 2 months following stroke.”

      110 - 112 The last part of this sentence is unjustified because these areas have been incorrectly identified as locations of representational remapping.

      We agree with the reviewer and have amended the manuscript as follows after re-analyzing the dataset on widefield Ca2+ imaging of sensory-evoked responses: “Surprisingly, we also show that significant alterations in neuronal activity (firing rate), functional connectivity, and neural assembly architecture are absent within more distal regions of cortex as little as 750 µm from the stroke border, even in areas identified by regional functional imaging (under anaesthesia) as ‘remapped’ locations of sensory-evoked FL activity 8-weeks post-stroke.”

      Results

      149-152 There is no observed increase in the evoked response area. There is an observed change in the criteria for what is considered a response.

      We agree with the reviewer. Text has been amended as follows:

      “Fig 2A shows representative montages from a stroke animal illustrating the cortical cFL and cHL Ca2+ responses to 1s, 100Hz limb stimulation of the contralateral limbs at the pre-stroke and 8week post-stroke timepoints. The location and magnitude of the cortical responses changes drastically between timepoints, with substantial loss of supra-threshold activity within the prestroke cFL representation located anterior to the cHL map, and an apparent shift of the remapped representation into regions lateral to the cHL representation at 8-weeks post-stroke. A significant decrease in the cFL evoked Ca2+ response amplitude was observed in the stroke group at 8-weeks post-stroke relative to pre-stroke (Fig 2B). This is in agreement with past studies [19–25], and suggests that cFL targeted stroke reduces forelimb evoked activity across the cFL somatosensory cortex in anaesthetized animals even after 2 months of recovery. There was no statistical change in the average size of cFL evoked representation 8-weeks after stroke (Fig 2C), but a significant posterior shift of the supra-threshold cFL map was detected (Fig 2D). Unmasking of previously sub-threshold cFL responsive cortex in areas posterior to the original cFL map at 8-weeks post-stroke could contribute to this apparent remapping. However, the amplitude of the cFL evoked widefield Ca2+ response in this distal region at 8-weeks post-stroke remains reduced relative to pre-stroke activation (Fig 2E). Previous studies suggest strong inhibition of cFL evoked activity during the first weeks after photothrombosis [25]. Without longitudinal measurement in this study to quantify this reduced activation prior to 8-weeks poststroke, we cannot differentiate potential remapping due to unmasking of the cFL representation that enhances the cFL-evoked widefield Ca2+ response from apparent remapping that simply reflects changes in the signal-to-noise ratio used to define the functional representations. There were no group differences between stroke and sham groups in cHL evoked intensity, area, or map position (data not shown).”

      A lot of the nonsignificant results are reported as "statistical trends towards..." While the term "trend" is problematic, it remains common in its use. However, assigning directionality to the trend, as if it is actively approaching a main effect, should be avoided. The results aren't moving towards or away from significance. Consider rewording the way in which these results are reported.

      We have amended the text to remove directionality from our mention of statistical trends.

      R squared and p values for significant results are reported in the "impaired performance on tapered beam..." and "firing rate of neurons in the peri-infarct cortex..." subsections of the results, but not the other sections. Please report the results in a consistent manner.

      R-squared and p-values have been removed from the results section and are now reported in figure captions consistently.

      Discussion

      288 Remapping is defined as "new sensory-evoked spiking". This should be the main criterion for remapping, but it is not operationalized correctly by the threshold method.

      With our new criterion for determining limb maps using a statistical threshold of 5X the standard deviation of baseline fluorescence, we have edited text throughout the manuscript to better emphasize that we may not be measuring new sensory-evoked spiking with the mesoscale mapping that was done. We have edited the discussion as follows:

      “Here, we used longitudinal two photon calcium imaging of awake, head-fixed mice in a mobile homecage to examine how focal photothrombotic stroke to the forelimb sensorimotor cortex alters the activity and connectivity of neurons adjacent and distal to the infarct. Consistent with previous studies using intrinsic optical signal imaging, mesoscale imaging of regional calcium responses (reflecting bulk neuronal spiking in that region) showed that targeted stroke to the cFL somatosensory area disrupts the sensory-evoked forelimb representation in the infarcted region. Consistent with previous studies, this functional representation exhibited a posterior shift 8-weeks after injury, with activation in a region lateral to the cHL representation. Notably, sensory-evoked cFL representations exhibited reduced amplitudes of activity relative to prestroke activation measured in the cFL representation and in the region lateral the cHL representation. Longitudinal two-photon calcium imaging in awake animals was used to probe single neuron and local network changes adjacent the infarct and in a distal region that corresponded to the shifted region of cFL activation. This imaging revealed a decrease in firing rate at 1-week post-stroke in the peri-infarct region that was significantly negatively correlated with the number of errors made with the stroke-affected limbs on the tapered beam task. Periinfarct cortical networks also exhibited a reduction in the number of functional connections per neuron and a sustained disruption in neural assembly structure, including a reduction in the number of assemblies and an increased recruitment of neurons into functional assemblies. Elevated correlation between assemblies within the peri-infarct region peaked 1-week after stroke and was sustained throughout recovery. Surprisingly, distal networks, even in the region associated with the shifted cFL functional map in anaesthetized preparations, were largely undisturbed.”

      “Cortical plasticity after stroke Plasticity within and between cortical regions contributes to partial recovery of function and is proportional to both the extent of damage, as well as the form and quantity of rehabilitative therapy post-stroke [80,81]. A critical period of highest plasticity begins shortly after the onset of stroke, is greatest during the first few weeks, and progressively diminishes over the weeks to months after stroke [19,82–86]. Functional recovery after stroke is thought to depend largely on the adaptive plasticity of surviving neurons that reinforce existing connections and/or replace the function of lost networks [25,52,87–89]. This neuronal plasticity is believed to lead to topographical shifts in somatosensory functional maps to adjacent areas of the cortex. The driver for this process has largely been ascribed to a complex cascade of intra- and extracellular signaling that ultimately leads to plastic re-organization of the microarchitecture and function of surviving peri-infarct tissue [52,80,84,88,90–92]. Likewise, structural and functional remodeling has previously been found to be dependent on the distance from the stroke core, with closer tissue undergoing greater re-organization than more distant tissue (for review, see [52]).”

      “Previous research examining the region at the border between the cFL and cHL somatosensory maps has shown this region to be a primary site for functional remapping after cFL directed photothrombotic stroke, resulting in a region of cFL and cHL map functional overlap [25]. Within this overlapping area, neurons have been shown to lose limb selectivity 1-month post-stroke [25]. This is followed by the acquisition of more selective responses 2-months post-stroke and is associated with reduced regional overlap between cFL and cHL functional maps [25]. Notably, this functional plasticity at the cellular level was assessed using strong vibrotactile stimulation of the limbs in anaesthetized animals. Our findings using longitudinal imaging in awake animals show an initial reduction in firing rate at 1-week post-stroke within the peri-infarct region that was predictive of functional impairment in the tapered beam task. This transient reduction may be associated with reduced or dysfunctional thalamic connectivity [93–95] and reduced transmission of signals from hypo-excitable thalamo-cortical projections [96]. Importantly, the strong negative correlation we observed between firing rate of the neural population within the peri-infarct cortex and the number of errors on the affected side, as well as the rapid recovery of firing rate and tapered beam performance, suggests that neuronal activity within the peri-infarct region contributes to the impairment and recovery. The common timescale of neuronal and functional recovery also coincides with angiogenesis and re-establishment of vascular support for peri-infarct tissue [83,97–100].”

      “Consistent with previous research using mechanical limb stimulation under anaesthesia [25], we show that at the 8-week timepoint after cFL photothrombotic stroke the cFL representation is shifted posterior from its pre-stroke location into the area lateral to the cHL map. Notably, our distal region for awake imaging was directly within this 8-week post-stroke cFL representation. Despite our prediction that this distal area would be a hotspot for plastic changes, there was no detectable alteration to the level of population correlation, functional connectivity, assembly architecture or assembly activations after stroke. Moreover, we found little change in the firing rate in either moving or resting states in this region. Contrary to our results, somatosensoryevoked activity assessed by two photon calcium imaging in anesthetized animals has demonstrated an increase in cFL responsive neurons within a region lateral to the cHL representation 1-2 months after focal cFL stroke [25]. Notably, this previous study measured sensory-evoked single cell activity using strong vibrotactile (1s 100Hz) limb stimulation under aneasthesia [25]. This frequency of limb stimulation has been shown to elicit near maximal neuronal responses within the limb-associated somatosensory cortex under anesthesia [101]. Thus, strong stimulation and anaesthesia may have unmasked non-physiological activity in neurons in the distal region that is not apparent during more naturalistic activation during awake locomotion or rest. Regional mapping defined using strong stimulation in anesthetized animals may therefore overestimate plasticity at the cellular level.”

      “Our results suggest a limited spatial distance over which the peri-infarct somatosensory cortex displays significant network functional deficits during movement and rest. Our results are consistent with a spatial gradient of plasticity mediating factors that are generally enhanced with closer proximity to the infarct core [84,88,90,91]. However, our analysis outside peri-infarct cortex is limited to a single distal area caudal to the pre-stroke cFL representation. Although somatosensory maps in the present study were defined by a statistical criterion for delineating highly responsive cortical regions from those with weak responses, the distal area in this study may have been a site of activity that did not meet the statistical criterion for inclusion in the baseline map. The lack of detectable changes in population correlations, functional connectivity, assembly architecture and assembly activations in the distal region may reflect minimal pressure for plastic change as networks in regions below the threshold for regional map inclusion prior to stroke may still be functional in the distal cortex. Thus, threshold-based assessment of remapping may further overestimate the neuroplasticity underlying functional reorganization suggested by anaesthetized preparations with strong stimulation. Future studies could examine distal areas medial and anterior to the cFL somatosensory area, such as the motor and pre-motor cortex, to further define the effect of FL targeted stroke on neuroplasticity within other functionally relevant regions. Moreover, the restriction of these network changes to peri-infarct cortex could also reflect the small penumbra associated with photothrombotic stroke, and future studies could make use of stroke models with larger penumbral regions, such as the middle cerebral artery occlusion model. Larger injuries induce more sustained sensorimotor impairment, and the relationship between neuronal firing, connectivity, and neuronal assemblies could be further probed relative to recovery or sustained impairment in these models. Recent research also indicates that stroke causes distinct patterns of disruption to the network topology of excitatory and inhibitory cells [73], and that stroke can disproportionately disrupt the function of high activity compared to low activity neurons in specific neuron sub-types [61]. Mouse models with genetically labelled neuronal sub-types (including different classes of inhibitory interneurons) could be used to track the function of those populations over time in awake animals. A potential limitation of our data is the undefined effect of age and sex on cortical dynamics in this cohort of mice (with ages ranging from 3-9 months) after stroke. Aging can impair neurovascular coupling [102–107] and reduce ischemic tolerance [108–111], and greater investigation of cortical activity changes after stroke in aged animals would more effectively model stroke in humans. Future research could replicate this study with mice in middle-age and aged mice (e.g. 9 months and 18+ months of age), and with sufficient quantities of both sexes, to better examine age and sex effects on measures of cortical function.”

      315 - 317 Remodelling is dependent on the distance from the stroke core, with closer tissue undergoing greater reorganization than more distant tissue. There is no evidence that the more distant tissue undergoes any reorganization at all.

      We agree with the reviewer that no remodelling is apparent in our distal area. We have removed reference to our study showing remodeling in the distal area, and have amended the text as follows:

      “Likewise, structural and functional remodeling has previously been found to be dependent on the distance from the stroke core, with closer tissue undergoing greater re-organization than more distant tissue (for review, see [52]).”

      412-414 The authors speculate that a strong stimulation under anaesthesia may unmask connectivity in distal regions. However, the motivation for this paper is that anaesthesia is a confounding factor. It appears to me that, given the results of this study, the authors should argue that the functional connectivity observed under anaesthesia may be spurious.

      The incorrect word was used here. We have corrected the paragraph of the discussion and amended it as follows:

      “Consistent with previous research using mechanical limb stimulation under anaesthesia [25], we show that at the 8-week timepoint after cFL photothrombotic stroke the cFL representation is shifted posterior from its pre-stroke location into the area lateral to the cHL map. Notably, our distal region for awake imaging was directly within this 8-week post-stroke cFL representation. Despite our prediction that this distal area would be a hotspot for plastic changes, there was no detectable alteration to the level of population correlation, functional connectivity, assembly architecture or assembly activations after stroke. Moreover, we found little change in the firing rate in either moving or resting states in this region. Contrary to our results, somatosensoryevoked activity assessed by two photon calcium imaging in anesthetized animals has demonstrated an increase in cFL responsive neurons within a region lateral to the cHL representation 1-2 months after focal cFL stroke [25]. Notably, this previous study measured sensory-evoked single cell activity using strong vibrotactile (1s 100Hz) limb stimulation under aneasthesia [25]. This frequency of limb stimulation has been shown to elicit near maximal neuronal responses within the limb-associated somatosensory cortex under anesthesia [101]. Thus, strong stimulation and anaesthesia may have unmasked non-physiological activity in neurons in the distal region that is not apparent during more naturalistic activation during awake locomotion or rest. Regional mapping defined using strong stimulation in anesthetized animals may therefore overestimate plasticity at the cellular level.”

      Figures

      Figure 1 and 2: Scale bar missing.

      Scale bars added to both figures.

      Figure 2: The representative image shows a drastic reduction of the forelimb response area, contrary to the general description of the findings. It would also be beneficial to see a graph with lines connecting the pre-stroke and 8-week datapoints.

      The data for Figure 2 has been re-analyzed using a new criterion of 5X the standard deviation of the baseline period for determining the threshold for limb mapping. Figure 2 and relevant manuscript and figure legend text has been amended. In agreement with the reviewers observation, there is no increase in forelimb response area, but instead a non-significant decrease in the average forelimb area.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Overall comments

      We are pleased by the reviewers' comments and appreciate their suggestions for improvements. In addition to correcting small typos throughout the manuscript, we have made the following additions or changes in response to reviewer comments and suggestions:

      1. New complementation experiments to verify the impacts of mgtA and PA4824 on bacterial fitness in fungal co-culture.
      2. New experiments to measure intracellular Mg2+ levels in corA or mgtE mutants to strengthen our conclusion that neither of these constitutive Mg2+ transporters is required for maintaining intracellular Mg2+ levels in co-culture.
      3. New experiments to confirm that the * cerevisiae mnr2D mutant does not have a fitness defect compared to WT in co-culture. This finding rules out the possibility that metabolic defects in the mnr2D mutant restore the fitness of bacterial mgtA* mutant in co-culture and strengthens our hypothesis that Mg2+ sequestration by fungal vacuole triggers Mg2+ nutritional competition with bacteria.
      4. Clarification of bacterial species we tested in our study as suggested by Reviewer #3.
      5. Revised discussion to highlight how our findings relate to any fungal-bacterial interaction both in ecological and infection contexts and any known role of mgtA in antibiotic susceptibility, as suggested by Reviewer #2. All changes in response to the reviewer's comments have been detailed in our point-by-point response (below).

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This manuscript investigates polymicrobial interactions between two clinically relevant species, Pseudomonas aeruginosa and Candida albicans. The findings that C. albicans mediates P. aeruginosa tolerance to antibiotics through sequestration of magnesium provides insight into a specific interaction at play between these two organisms, and the underlying mechanism. The manuscript is well composed and generally the claims throughout are supported by the provided evidence. As a result, most comments are either for clarification, or minor in nature.

      We thank the reviewer for their positive comments and their suggestions for improvement.

      Major comments:

      1) For their experiments, the authors frequently switch between 30C and 37C, but there is no rationale for why a specific temperature was used, or both were. E.g. some of the antibiotic survival assays, and fungal-bacterial co-culture assays were performed at both temperatures, while the colistin resistance, fitness competition and RNA sequencing were performed at 30C. Given the fact that the two organisms are both human pathogens and co-exist in human infections, it is not clear why 30C was used. The authors should provide clarity for why these two temperatures were used.

      We thank the reviewer for raising this point. Fungal-bacterial interactions occur in a range of temperatures in ecological contexts (e.g., in soil or on plants) or during infection in animal hosts. Both 30oC and 37oC degree temperatures are used in C. albicans studies whereas 37oC is most preferred for P. aeruginosa studies. By providing data from both temperatures for critical experiments, we demonstrate that our findings are not dependent on temperature. Our studies also allow for an easy comparison to previously published studies performed at both temperatures. We chose to screen initial co-culture conditions showing fungal antagonism at 30oC, as C. albicans cells can reach higher CFUs than at 37oC due to growth in the single-celled yeast form.

      We agree with the reviewer that 37oC is more physiologically relevant for conditions under which these two species coexist in animal hosts. Thus, we tested our findings of Mg2+ competition and antibiotic survival at 37oC.

      We now clarify our reasoning in the revised Materials and Methods section as follows: "We chose 30oC for the initial co-culture assays for two reasons. First, C. albicans cells reached higher CFU at 30oC than 37oC, which would impose a stronger competition with bacteria. Second, C. albicans cells form hyphae at 37oC, which can have multiple cells in one filament and thus confound CFU measurements. We further confirmed that our findings of Mg2+ competition are independent of temperatures by setting up co-culture assays at both 30oC and 37oC."

      2) Lines 184-191: It would be useful to measure intracellular Mg2+ (using the Mg sensor) in the corA and mgtB tn mutants in media as well as the fungal spent media, to provide stronger support for the claim that "MgtA is a key bacterial Mg2+ transporter that is highly induced under low Mg2+ conditions".

      We thank the reviewer for this suggestion. Based on our experiments, neither CorA or MgtE are induced (in RNA-seq analyses) nor required in co-culture (in Tn-seq analyses), suggesting neither is involved in Mg2+ competition with C. albicans. In contrast, MgtA is highly induced in co-culture. Loss of mgtA significantly reduces bacterial fitness in co-culture and intracellular Mg2+ levels only in C. albicans-spent BHI, but not fresh BHI. These results suggest that MgtA is the key Mg2+ transporter required for bacterial Mg2+ uptake and fitness in co-culture.

      Nevertheless, we agree with the reviewer that despite being constitutively expressed, CorA or MgtE might play an important role in importing Mg2+ in BHI and C. albicans-spent BHI. To test this possibility, we performed a new experiment suggested by the reviewer (now included in the revised manuscript) in which we measured intracellular Mg2+ levels in corA or mgtE loss-of-function mutants in BHI versus C. albicans-spent BHI, and compared them to intracellular Mg2+ levels in a mgtA loss-of-function mutant strain. We find that lack of either corA or mgtE does not significantly reduce bacterial Mg2+ levels in C. albicans-spent BHI compared to DmgtA mutant (Fig. S7C). Thus, our results strengthen our conclusion that MgtA is the key Mg2+ transporter that gram-negative bacteria use to overcome fungal-mediated Mg2+ sequestration.

      3) Line no. 276. Does the mnr2∆ S. cerevisiae mutant have a growth defect compared to the WT? This would test whether the effect of the mnr2 mutant on P. aeruginosa fitness is strictly due to Mg2 and not due to reduced growth or metabolism of the mutant.

      We agree with the possibility raised by the reviewer. In new experiments included with our revision as Figure S10, we find that the S. cerevisiae mnr2 deletion mutant exhibits similar CFU as WT in monoculture as well as co-culture. Thus, the rescuing effect of mnr2D is less likely due to reduced growth or metabolism.

      4) The authors use the term 'antibiotic resistance' throughout the manuscript. However, the assays they perform do not directly test for antibiotic resistance which is defined as the ability to grow at higher concentrations of antibiotics (e.g. as measured by MIC tests). The authors should rephrase their phenotype as antibiotic survival or antibiotic tolerance.

      We agree with the reviewer and thank them for raising this point. We replaced the phrase 'antibiotic resistance' with 'antibiotic survival' throughout the revised manuscript. We also accordingly changed our title to 'Widespread fungal-bacterial competition for magnesium lowers antibiotic susceptibility'

      5) Also, the authors have two different assays, both measuring survival in antibiotic, but one is called a colistin resistance assay (line 508) and the other a colistin survival assay (line 523). It's not obvious what is the difference between what is being assayed in the two experiments, except perhaps the growth phase of the cells when they are exposed to the antibiotic? The authors should explain the difference, and the rationale for using two different assays.

      We thank the reviewer for raising this point. In the revised manuscript, we explain the rationale of our two assays. The first assay measures the bacterial survival after colistin treatment in C. albicans-spent BHI, and the second measures the bacterial survival after colistin treatment in co-culture with C. albicans. We performed both assays because C. albicans-spent BHI mimics Mg2+-depleted conditions by C. albicans but might not represent all aspects of fungal presence in co-culture. To make sure our findings are consistent across these two experiments, we specify the difference in these two assays in the revised manuscript as the following: "Since fungal spent media cannot fully recapitulate fungal presence in co-culture conditions, we tested whether fungal co-culture also conferred increased colistin survival."

      Minor comments:

      • For almost all the figures, blue and orange dots are used for 'monoculture' and 'coculture' respectively, while orange and black dots are used for WT and the mgtA mutant. However, the black and blue dots are hard to tell apart, and for several figure sub-panels, the legends are not provided (e.g. figures 2D, 2F, S9H), making it a little confusing to figure out what is being shown. It would be best if the WT and mgtA symbols were in colors completely different from the monoculture/co-culture colors, making it easier to tell those apart.

      We have updated these figures as the reviewer suggested.

      Line no 122 and Figure 1A. The term "defense genes" in bacteria typically refers to genes conferring protection against phage infections. Perhaps the authors can use a different term (e.g. 'protective genes').

      We agree with the reviewer. We have changed "defense genes" to "fungal-defense genes" to disambiguate the terms.

      Line no 186. 'However, neither MgtA...' should be 'However, neither MgtE...'

      We thank the reviewer for pointing out this typo. We have fixed this in our revision.

      Line no 268. Does fungal-mediated Mg2+ competition extend to Gram positive bacteria?

      We thank the reviewer for raising this interesting point. MgtA is prevalent in diverse gram-negative bacteria but rare in gram-positive bacteria. Using the fitness effect of mgtA mutants in co-culture vs monoculture allowed us to infer Mg2+ competition easily for diverse gram-negative bacteria. Currently, we do not have the experimental tools to extend this finding to gram-positive bacteria. Co-culture growth kinetics for gram-positive bacteria are also likely to be different from gram-negative bacteria in a way that makes direct comparisons challenging. We have clarified our writing in the revised manuscript: "This mode of competition might be highly specific between fungi and diverse gram-negative g-proteobacteria we have tested.... Whether fungi can suppress gram-positive bacteria through the same mechanism of Mg2+ competition remains an open question."

      Line no 314. It is unclear whether the 'transient co-culture' is the same or a different assay as the colistin survival assay.

      We apologize for the confusion and have removed the word 'transient' for clarity. The assays is the same as the 'colistin survival assay in fungal co-culture,' where we co-cultured log-phase P. aeruginosa cells with C. albicans for 5 hours and treated them with colistin.

      Line no 316. For the bacterial survival assays shown in figures 3 and 4 (and other supplementary figures), please provide absolute numbers as cfu (as in figures 1 and 2), as opposed to a percentage, for cell counts. This will allow readers to appropriately interpret the data.

      We thank the reviewer for this suggestion. We now include the raw CFU counts of colistin survival assays in Fig 3 and 4 and other supplementary figures in new supplementary figures (Fig. S11, S13, S14, S15, and S17) in our revision.

      Line no 934-5: Italicize P. aeruginosa.

      This typo has been fixed in our revision.

      Reviewer #1 (Significance (Required)):

      This study identifies a novel interaction between two the co-infecting human pathogens Pseudomonas aeruginosa and Candida albicans, where C. albicans causes Mg2+ limitation for P. aeruginosa. Further, the authors show that this interaction affects levels of antibiotic resistance, as well as the adaptive mutations seen during the evolution of antibiotic resistance. This advances the field by delineating how microbial interactions can affect clinically relevant phenotypes, and potentially clinical outcomes. The study should be of interest to a broad audience of researchers studying microbial ecology, evolutionary biology, microbiology, and infectious diseases.

      We are grateful for the reviewer's positive appraisal.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This paper looks at the interaction between the fungus Candida albicans (Ca) and the bacterium Pseudomonas aeruginosa (Pa), which are found together in some environments. Co-culture experiments showed that Ca can inhibit the growth of Pa. The goal of this study is to determine the reason for this phenomenon and how widespread it is. This was performed by Tnseq analysis of Pa that identified 3 genes which showed significant decreases in the presence of Ca. Interestingly these were all in an operon that was recognized by the authors as being induced by RNAseq during co-culture. One of these genes, mgtA is a known Mg2+ transporter and therefore the remainder of the paper discusses the importance of competition for Mg2+.

      The experiments seem to be well carried out and appropriately controlled.

      We thank the reviewer's appreciation of our science and the rigor of our experiments.

      The use of the Mg2+ genetic sensor reporter in Pa is an interesting approach to determine the intracellular Mg2+ concentrations, however how these levels relate to one another between different experiments is not clear. In Fig. S5, the levels are 5 AU for growth in minimal media +low (10uM) Mg2+ and 38 AU for growth in minimal media+high (10mM) Mg2+. But the levels seen in Figure 1E are all much lower. With such low levels, it is difficult to determine if the impact of ∆PA4824 and ∆mgtA (while perhaps additive) are relevant. Would differences be seen with these various strains grown under different conditions?

      We thank the reviewer for this query. The reviewer is right in that we do not use absolute quantification of intracellular Mg2+ levels. While our Mg2+ genetic sensor assay does not facilitate comparison of absolute Mg2+ levels across experiments, it provides a robust comparative measurement of relative intracellular Mg2+ levels in mutants versus WT cells, or between two different media conditions.

      Using this Mg2+ genetic sensor assay, we tested intracellular Mg2+ levels of WT P. aeruginosa under various media conditions. We found that lower intracellular Mg2+ levels in P. aeruginosa cells and the requirement of mgtA in these media are well-correlated at lower total Mg2+ levels in media (Fig. S9A-E). In contrast, there are no significant differences in intracellular Mg2+ levels between DmgtA (or DPA4824) and WT cells in BHI media, which has higher total Mg2+ levels than fungal-spent BHI media. Our experiments reveal that the lack of mgtA or PA4824 only affects intracellular Mg2+ levels when P. aeruginosa is cultured in media below a threshold level of Mg2+ concentration in media.

      The experiments suggesting that the protein PA4824 is also a Mg2+ transporter seem to be related only to alpha fold predictions.

      We clarify that our speculation that PA4824 encodes a potential novel Mg2+ transporter was first motivated by finding that it is induced in low Mg2+ conditions, its genetic importance in Tn-seq experiments independent of mgtA, and our finding that cells with loss-of-function mutations in PA4824 experience lower intracellular Mg2+ than WT cells. However, the reviewer is correct that this statement is speculative based on the Alphafold prediction. In the revised manuscript, we have clarified this point as the following: "Based on our co-culture RNA-seq and Tn-seq experiments, results from the Mg2+ genetic sensor assay, and the Alphafold prediction of PA4824 protein structure, we speculate that PA4824 potentially acts as a novel Mg2+ transporter."* * Is the statement in line 186 a typo? It is stated that "neither MgtA nor CorA was implicated in competition". Do the authors actually mean "MgtE"?

      It is a typo. We thank the reviewer for pointing this out and have changed this to "MgtE".

      Reviewer #2 (Significance (Required)):

      Ca and Pa are known to inhabit the same niches and previous studies have shown both can have antagonist effects on one another. Nutritional competition is one mechanism of antagonism that has not been that well studied between these two genera. That makes the finding of some significance and relevant to those with an interest in either of these microbes and co-infections. The authors also found that it was not just Ca that had this effect, but other fungi as well. And this effect was not just reserved to effect Pa, but also other bacteria, suggesting a more global impact.

      We thank the reviewer for an accurate summary of our findings.

      However, diminishing the impact of this finding is the question as to whether this is simply a phenomena seen under the very specific laboratory conditions tested here. Furthermore how these findings exactly relate to any infection environment is not clear.

      Fungal-bacterial interactions occur in a variety of broad biological contexts, including during infection in animal hosts or in environmental-associated microbial communities. Our study is the first to identify nutritional competition for Mg2+ as one of the most important axes of competition between fungi and bacteria. Our study also identifies MgtA as one of the key bacterial genes that mediates this interaction. MgtA is only induced upon experiencing low Mg2+ conditions; the fact that most gram-negative bacteria encode MgtA implies they must encounter low Mg2+ conditions and face fitness consequences in those conditions. To address the reviewer's concerns, we also highlight three additional points in our revised Discussion:

      1. Fungal-bacterial competition for Mg2+ is not restricted only to BHI media alone. We also found the same phenomenon in TSB media medium. Indeed, we show (Fig. S9F) also that Mg2+ competition occurs whenever the environmental Mg2+ level is lower than 0.45mM, a critical threshold for fungi and bacteria to compete for this vital ion.
      2. During infection in cystic fibrosis airways, proteomic experiments and Mg2+ measurement in CF sputum both suggest that * aeruginosa* experiences Mg2+ restriction.
      3. Many previous studies have shown that many Gram-negative bacteria, including Salmonella Typhimurium, encounter reduced magnesium concentrations upon infection of hosts (PMID: 29118452). Our discovery that fungal co-culture may generally exacerbate fitness challenges associated with low magnesium levels is of high importance to all studies of gram-negative bacteria, not just to Pa.
      4. In addition to infections in animal hosts, low Mg2+ is associated with worse outcomes of infections in plants. Our study suggests the importance of studying the role of Mg2+ competition in various infection contexts and the strategies of manipulating Mg2+ levels or fungal-bacterial interactions to constrain polymicrobial infectious diseases in diverse eukaryotic hosts and ecological conditions. The authors also seem to vastly overinterpret the significance of their findings; the impact on Pa is only to slow growth, not necessarily effect fitness, per se. The final number of bacteria appears to be the same, it just takes slightly longer to get there.

      We are puzzled by this comment from the reviewer; slow growth IS a fitness effect! Although we agree with the reviewer's point that C. albicans is more likely to inhibit bacterial growth rate than viability (bacteriostatic, not bacteriocidal), there are many bacteriostatic antibiotic mechanisms.

      In our co-culture assay, bacterial CFUs after 40 hours in co-culture are 10-100 times lower than in monoculture (this is not a subtle effect!). After 40 hours, bacterial cultures have already reached the stationary phase, which is why even slower growing bacterial cells in co-culture can 'catch up' (they are still lower by nearly 10-fold), despite fungal inhibition. Moreover, the co-culture condition provided enough of a fitness challenge to allow us to identify bacterial protective genes even in a pooled assay.

      The authors speculate that that since Mg2+ supplementation did not totally restore growth to Pa during co-culture, that other Mg2+ independent "axes of antagonism" must exist. This also tends to diminish the significance of these finding.

      Again, we are puzzled by this comment from the reviewer. Fungal-bacterial competition, like all microbial competition, is a multifactorial process, so we should not be surprised that Mg2+ isn't the only axis of competition. Indeed, our study reinforces the importance of investigating all potential axes of competition to get a complete understanding of the mechanisms of fungal-bacterial competition.

      The importance of mgtA on antibiotic susceptibility has been well studied in a number of bacteria including Pa making these findings generally confirmatory.

      We would like to clarify this comment. To the best of our knowledge, mgtA in P. aeruginosa has not been reported in antibiotic susceptibility studies. Instead, P. aeruginosa mgtE is induced upon treatment with aminoglycoside antibiotics, but its expression does not change antibiotic resistance (PMID: 24162608).

      The reviewer may be referring to studies in S. Typhimurium, where the DmgtA mutant shows increased susceptibility to nitrooxidative stress (PMID: 29118452) and to cyclohexane (PMID: 18487336), suggesting Mg2+ homeostasis might be generally important for bacterial survival to antimicrobial treatments. Although this is not the main focus of our study, we now include these references in our revised discussion to provide readers with more background on the relevance of our work: "Mg2+ has been implicated in altering the susceptibility of gram-negative bacteria to antibiotics other than colistin. For instance, in S. Typhimurium, impaired mgtA or Mg2+ homeostasis increases susceptibility to cyclohexane or nitrooxidative stress. In line with these observations, our study also highlights the importance of studying how Mg2+ homeostasis broadly impacts antimicrobial resistance in gram-negative bacteria."

      The importance of different mutations that emerge in Pa during mono vs. co-culture in the presence of colistin is not clearly explained. Why should co-culture inhibit the emergence of hypermutator Pa strains?

      We thank the reviewer for the opportunity to clarify this important point. Previous studies have shown, both in Pa as well as other bacteria, that hypermutator strains often arise when bacteria adapt to strong and continuous antibiotic stress (PMID: 28630206) to maximize exploration of mutation space necessary to acquire beneficial resistance mutations even though hypermutation itself is inherently deleterious to bacterial fitness. We show that fungal co-culture protects P. aeruginosa from high concentrations of colistin by sequestering the Mg2+ co-factor required for colistin action (Fig. 4C). Thus, under co-culture conditions, bacteria experience lower levels of colistin than the levels administered and are subject to less severe fitness challenges, allowing them to eschew the deleterious route of acquiring adaptive mutations with hypermutation.

      Our discovery that bacteria have an entirely different means of enhancing colistin resistance under fungal co-culture (or low Mg2+) conditions is one of the highlights of our study. Understanding the biological basis of this novel model of colistin resistance will be an active area of investigation to pursue in the future.

      No additional experiments are likely needed but the authors should be encouraged to place their findings more clearly in what is already known in the field as well as articulate the limitations of their study.

      We thank the reviewer for their detailed comments and suggestions. We hope our revisions have both clarified the importance and limitations of our study and provided the right context sought by the reviewer.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this study, Hsieh et al. find a critical axis of competition between Pseudomonas aeruginosa and Candida albicans is Mg2+ sequestered by Candida. The authors find that use of BHI, which is has lower Mg2+ levels compared to other media, allowed this discovery. The authors further demonstrate critical genes for this axis in multiple gammaproteobacteria and fungal species. The authors further show that fungal Mg2+ sequestration promotes polymyxin resistance in multiple gammaproteobacteria and show that it alters the course of Pseudomonas aeruginosa evolution of polymyxin resistance. Finally, they show that for populations evolved polymyxin resistance in the presence of Candida, removal of Candida by antifungal treatment re-induces sensitivity to polymyxins.

      We thank the reviewer for a concise and accurate summary of our study.

      Major comments: -The claims and conclusions are generally supported; however, a key phenotype of the ∆mgtA and ∆PA4824 mutants should be complemented in trans or in a second site of the chromosome.

      We thank the reviewer for this comment and agree with the suggestion. In our revised manuscript, we now provide results of new complementation experiments recommended by the reviewer, which find that expression of PA4824 or mgtA in trans restore the fitness cost of either deletion mutant (Fig. S4C and S4D).

      -The authors note that "This mode of competition appears to be highly specific between fungi and gram-negative bacteria." However, it does not appear that gram-positive bacteria were tested in competition with fungi. Additionally, the only gram-negative tested were gammaproteobacteria (although do represent diverse gammaproteobacteria). This could be addressed by clarifying the text or OPTIONAL additional experimentation.

      We agree with the reviewer. We had intended to highlight that we had only tested this mode of competition between fungi and gram-negative bacteria, but inadvertently phrased this to suggest that gram-positive bacteria are not subject to this competition. As we highlight in our response to Reviewer 1, we are unable to test this (so far) for gram-positive bacteria. We clarify this in our revision: ""This mode of competition might be highly specific between fungi and diverse gram-negative g-proteobacteria we have tested.... Whether fungi can suppress gram-positive bacteria through the same mechanism of Mg2+ competition remains an open question."

      -Figure 3A: is this depiction of modifications on the O-antigen correct? PhoQ- and PmrB-activated enzymes seem to modify the lipid A portion of LPS (eg PMID: 31142822)

      We thank the reviewer for noting this error, which we have now fixed in the revision.

      • For many of the figures, multiple t-tests are used and it seems like perhaps an ANOVA with multiple comparisons would be more appropriate

      We thank the reviewer for this feedback. In our revision, we now use Dunnett's one-way ANOVA test for figures with multiple comparisons; our conclusions are unchanged.

      Minor comments: - The text and figures are clear and accurate

      We thank the reviewer for this feedback.

      -the cited nutritional immunity reviews are out of date (e.g. reference 37) and there are more recent reviews on the topic (e.g. PMID: 35641670)

      We have added the suggested reference in our revision.

      -Line 293: Unclear why polymyxin resistance would be "unexpected" following the explanation of why Mg2+ depletion might confer it

      We agree and have removed 'unexpected.'

      -Line 318: "antibitoics" typo

      We thank the reviewer for pointing out this typo, which we have now corrected.

      Reviewer #3 (Significance (Required)):

      The following aspects are important:

      • General assessment: This study is very mechanistic, identifying the role of Mg2+ sequestration by fungi that limit gram-negative bacterial growth in Mg2+ deplete environments. The strengths are that relevant Mg2+ acquisition genes are identified or tested in Pseudomonas aeruginosa, the main test organism, as well as Salmonella enterica and Escherichia coli. Additionally, the authors identify a relevant Mg2+ mechanism in fungal species tested, including showing the importance with a genetic knockout. The limitations are relatively minor, and include lack of complementation, potential issues in model figure depiction of LPS modifications, and potential minor issues in statistical tests used. Future directions discussed include expanding analysis to clinical isolates, which is outside the scope of this manuscript which already showed the same mechanism in diverse gammaproteobacterial.

      We thank the reviewer for their positive appraisal.

      • Advance: This study has two major advances: The first is uncovering this critical Mg2+ sequestration axis in competition between fungal species and gammaproteobacteria. The second is the finding that the Mg+ sequestration induces polymyxin resistance and alters the evolutionary path to further polymyxin resistance. While nutrient metals as an axis of competition is not a conceptual advance, the specific role of Mg2+ and its affect on evolution of polymyxin antibiotic resistance is a conceptual advance.
      • Audience: I think this study would be of interest to a relatively broad audience. The study itself touches on multiple fields including intermicrobial competition, nutritional immunity, antimicrobial resistance, and microbial evolution. Additionally, there are clinical implications for the potential to use antifungals to resensitize polymyxin-resistant P. aeruginosa to polymyxins.
      • My field of expertise is bacterial genetics and physiology, nutritional immunity, and bacterial cell envelope. I do not have expertise in fungus.

      We appreciate the reviewer's positive and constructive feedback on our study and for highlighting the relevance of our research to a broader audience in microbiology and evolution. We do hope our mechanistic understanding of fungal-bacterial competition will spark further conversation or collaboration between evolutionary microbiologists and physician-scientists.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. Point-by-point description of the revisions

      Reviewer #1:

      Evidence, reproducibility and clarity (Required):

      In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. First by studying available temperature-sensitive mutants and then by generating their own strain expressing ZYG-8 amenable to auxin-inducible degradation, they establish that defects in ZYG-8 lead to defects in spindle assembly, such as the formation of multipolar spindles, and spindle maintenance, in which spindles elongate, fall apart, and deform in meiosis. Based on these observations the authors conclude that ZYG-8 depletion leads to excessive outward force. As the lab had previously found that the motor protein KLP-18 generates outside directed forces in meiosis, Czajkowski et al initially speculate that ZYG-8 might regulate KLP-18. KLP-18 depletion generally leads to the formation of monopolar spindles in meiosis. Intriguingly, when the authors co-deplete ZYG-8 they find that in some cases bipolarity was reestablished. This led to the hypothesis that yet another kinesin, BMK-1, the homolog of the mammalian EG-5, could provide redundant outward directed forces to KLP-18. The authors then study the effect of ZYG-8 and KLP-18 co-depletion in a BMK-1 mutant background strain and observe that bipolarity is no longer reestablished under these conditions, suggesting that BMK-1 generates additional outward directed forces. The authors also conclude that ZYG-8 inhibits BMK-1. To follow up on this Czajkowski et al generate a ZYG-8 line that carries a mutation in the kinase domain, which should inhibit its kinase activity. This line shows similar effects in terms of spindle elongation but reduced impact on spindle integrity, reflected in minor effects on the number of spindle poles and spindle angle. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. Overall, the paper is well written, and the data is presented very clearly and reproducible. The experiments are adequately replicated, and statistical analysis are adequate. *The observations are very interesting. However, the authors could provide some additional insight into the function of ZYG-8. This paper is strongly focused on motor generated forces within the spindle and tries to place ZYG-8 within this context, but there is compelling evidence from other studies that ZYG-8 also affects microtubule dynamics, which would have implications for spindle assembly and structure. The paper would strongly benefit from the authors exploring this role of ZYG-8 in the context of meiosis further. If the authors feel that this would extend beyond the scope of this paper, I would suggest that the authors rephrase some of their introduction and discussion to reflect the possibility that changes in microtubule growth and nucleation rates could explain some of the phenotypes (think of katanin) and effects and that therefore it can not necessarily be concluded that BMK-1 is inhibited by ZYG-8. *

      We thank the reviewer for these positive comments on our manuscript and on the rigor of our data. We also thank them for the excellent suggestion to explore a potential role for microtubule dynamics. As detailed below in response to the specific points, we performed new experiments to explore this possibility, and found via FRAP analysis that there were substantial changes in microtubule dynamics upon ZYG-8 depletion. We have therefore added these new data and have re-written major parts of the manuscript to incorporate a discussion of microtubule dynamics throughout the paper (introduction, results, model, discussion). Our data now support two roles for ZYG-8 in regulating acentrosomal spindle assembly and stability - one in modulating microtubule dynamics and the other in tuning forces (either directly or indirectly). We are grateful to the reviewer for motivating us to do these experiments, as they have added a whole new angle to the manuscript and have greatly increased its impact, as we now have a fuller understanding of how ZYG-8 contributes to oocyte meiosis.

      Major points:

      *1.) Zyg-8, as well as the mammalian homolog DCLK-1, has been reported to play an important role for microtubule dynamics. While the introduction mentions its previously shown role in meiosis and mitosis, it is totally lacking any background on the effect on microtubule dynamics. The authors mention these findings in the discussion, but it would be helpful to incorporate this in the introduction as well. As an example, Goenczy et al 2001 demonstrated that ZYG-8 is involved in spindle positioning but also showed its ability to bind microtubules and promote microtubule assembly. Interestingly, like the authors here, Goenczy et al concluded that while the kinase domain contributes to, it is not essential ZYG-8's function. Also, Srayko et al 2005 (PMID 16054029) demonstrated that ZYG-8 depletion led to reduced microtubule growth rates and increased nucleation rates in C. elegans mitotic embryos. And in mammalian cells DCLK-1 was shown to increase microtubule nucleation rate and decrease catastrophe rate, leading to a net stabilization of microtubules (Moores et al 2006, PMID: 16957770). It would be great if the authors could add to the introduction that ZYG-8 has been suggested to affect microtubule dynamics. *

      We agree that this is a great idea. As the reviewer suggested, we decided to explore the possibility that ZYG-8 impacts microtubule dynamics within the oocyte spindle. We depleted ZYG-8 and performed FRAP experiments to determine if there were effects on microtubule turnover. We found that loss of ZYG-8 caused a dramatic decrease in the spindle's ability to recover tubulin, both at the spindle center and at the spindle poles (shown in a new Figure 7). We made substantial changes to the manuscript when adding these new data - the manuscript now discusses ZYG-8's role in modulating microtubule dynamics in the introduction, results, discussion, and model (Figure 9), and we added all of the references suggested by the reviewer. We think that the manuscript is greatly improved due to these additions and changes.

      *2a.) The authors initially study two different ts alleles, or484ts and b235ts. The experiments clearly show a significant increase in spindle length in both strains. However, the or484 strain had been previously studied (McNally et al 2016, PMID: 27335123), and only minor effects on spindle length were reported (8.5µm in wt metaphase and 10µm in zyg-8 (or484)). How do the authors explain these differences in ZYG-8 phenotype. Even though the ZYG-8 phenotype is consistent throughout this paper it would be good to explain why the authors observe spindle elongation, fragmentation and spindle bending in contrast to previous observations. *

      The reviewer is correct that McNally et.al. (2016) noted only minor effects on spindle length and did not report observing spindle bending or pole defects. However, the images presented in their paper of spindles in the zyg-8(or484) mutant (in Figure 8B) only showed spindles after they had already shrunk in preparation for anaphase; it is possible that these spindles had pole or midspindle defects prior to this shrinking, and that the authors did not note those phenotypes because their analysis focused on anaphase. In contrast, since the goal of our study focused on how ZYG-8 impacts spindle assembly and maintenance, we looked carefully at spindle morphology and quantified a larger number of metaphase spindles (in their study, only 12 metaphase spindles were measured, since metaphase was not the focus of their manuscript). Recently (after we submitted our manuscript), another study from the McNally lab was published, where they did note metaphase defects following ZYG-8 inhibition (though they did not describe the defects in detail or explore why they happened). We now mention and cite this new paper (Li et.al., 2023) in our manuscript, to show that our findings are consistent with the work of others in the field.

      *2b.) As a general note, it would be helpful if the authors could indicate if the spindles are in meiosis I or II. The only time where this is specifically mentioned is in Video 7, showing a Meiosis II spindle, which makes me assume all other data is in Meiosis I. Adding this to the figures would also help to distinguish if some of the images, i.e. Figure 1B, show multipolar spindles due to failed polar body extrusion. If this is the case then the quantification of number of poles should maybe reflect different possibilities, such as fragmented poles vs. multiple poles because two spindles form around dispersed chromatin masses. *

      We agree that it is a good idea to clarify this issue. For all of our experiments, we analyzed both MI and MII spindles. However, there were no noticeable differences in phenotype between MI and MII spindles for any of our mutant/depletion conditions - we observed bent spindles, elongated spindles, and extra poles in both MI and MII following ZYG-8 inhibition. Therefore, for the quantifications presented in the manuscript (spindle length, spindle angle, number of poles), we pooled our MI and MII data. We have now added this information to the manuscript for clarity (lines 97-99 and 139-141). In addition, we have added new images to Figure 1B that show examples of MII spindles (both at the permissive and restrictive temperature), to show that the phenotypes are indistinguishable between MI and MII.

      We agree with the reviewer that one of the spindles in the original Figure 1B looked like it could have resulted from failed polar body extrusion (the chromosomes appeared to be in two masses, something we did not originally notice, so theoretically each mass could have organized its own spindle). To determine if this was the case, we looked closely at the chromosomes in this image; we confirmed that there were only 6 chromosomes, and that all were bivalents (these can be distinguished from MII chromosomes based on size). Therefore, this spindle was not multipolar due to an issue with polar body extrusion. However, to prevent future confusion, we picked a different representative spindle (where the bivalents we not grouped into two masses), and we added a new column to the figure that shows the DNA channel in grayscale (so it is easier to see and count the chromosomes). We also now note in the materials and methods how we were able to distinguish between MI and MII in our experiments (chromosome count, size, presence of polar bodies), so that it is clear that none of our phenotypes result from failed polar body extrusion (lines 600-603).

      *3) The authors generate a line that carries a mutation leading to a kinase dead version of ZYG-8. It would be great if the authors could further test if this version is truly kinase dead. What is interesting is that the kinase dead version the authors create has less effect on the numbers of pole than the zyg-8 (b235)ts strain, which carries a mutation in a less conserved kinase region. Overall, it seems that the phenotypes are very similar, independent on mutations in the microtubule binding area, kinase area or after AID. This could of course be due to all regions being important, i.e. microtubule binding is required for localizing kinase-activity. Generating mutant versions of the target proteins, for example here BMK-1, that can not be phosphorylated or are constitutively active as well as assessment of changes in protein phosphorylation levels in the kinase dead strain would be helpful to provide deeper insight into potential regulation of proteins by ZYG-8. *

      We agree that it would be ideal to test whether the D604N mutant is truly kinase dead. However, in the interest of time, we ask to be allowed to skip that experiment. The analogous residue has been mutated in mammalian ZYG-8 (DCLK1), and has been shown to cause DCLK1 to be kinase dead in vitro; this is a highly conserved aspartic acid in the central part of the catalytic domain, so we infer that the mutation we made in ZYG-8 should be kinase dead as well. However, since we did not test this directly, we softened our language in the manuscript, explaining that we "infer" that it is kinase dead rather than stating definitively that it is. With regard to the zyg-8(b235)ts mutant having a stronger phenotype, we think that it is possible that this mutation destabilizes a larger portion of the protein (rather than just affecting the catalytic activity), since the phenotypes in this mutant are similar to depletion of the protein in the ZYG-8 AID strain. Therefore, we think that our D604N mutant reveals new information about the role of kinase activity, since it is a more specific mutation that should likely only affect catalytic activity and not the rest of the protein (based on the previous work on DCLK1).

      While we appreciate the suggestion from the reviewer to generate mutant versions of potential target proteins, we ask that this be considered beyond the scope of the study. Now that we know that ZYG-8 not only affects forces within the spindle (maybe BMK-1) but also microtubule dynamics, there are many potential targets - it would require a lot of work to figure out what the relevant targets are. Instead of exploring this experimentally in this manuscript, we added a new section to the discussion where we speculate on what some of these targets could be, to motivate future studies.

      *4a) The authors state that "BMK-1 provides redundant outward force to KLP18". Redundancy usually suggests that one protein can take over the function of another one when the other is not there. In these scenarios a phenotype is often only visible when both proteins are depleted as each can take over the function of the other one. Here however the situation seems slightly different, as depletion of BMK-1 has no phenotype while depletion of KLP-18 leads to monopolar spindles. If BMK-1 would normally provide outward directed forces, would this not be visible in KLP-18 depleted oocytes if they were truly redundant? I assume the authors hypothesize that ZYG-8 inhibits BMK-1 and thus it can not generate outward directed forces. In this case, do the authors envision that ZYG-8 inhibits BMK-1 prior to or in metaphase or only in anaphase or throughout meiosis? Do they speculate, that BMK-1 is inhibited in anaphase and only active in metaphase? *

      The reviewer makes an excellent point - we agree that we should not use the word "redundant" in this context, so we have removed this phrasing from the manuscript. We hypothesize that BMK-1 can provide outward forces during spindle assembly but is not capable of providing as much force as KLP-18 (the primary force-generating motor). We infer this based on our experiments where we co-deplete KLP-18 and ZYG-8 (using long-term depletion). Although BMK-1 is presumably activated under these conditions, it is not able to restore spindle bipolarity (there are outward forces generated, which results in minus ends being found at the periphery of the monopolar spindle, but spindles are not bipolar).

      Therefore, BMK-1 is not able to fully replace the function of KLP-18 during spindle assembly. Interestingly, our experiments imply that BMK-1 can better substitute for KLP-18 later on (when ZYG-8 is inhibited); when we remove ZYG-8 from formed monopolar spindles, bipolarity can be restored (an activity dependent on BMK-1). These findings suggest that ZYG-8 plays a more important role in suppressing BMK-1 activity after the spindle forms, to prevent spindle overelongation in metaphase. We have edited the manuscript to better explain these points.

      *4b) In addition, Figure S4 somewhat argues against a role for ZYG-8 in regulating BMK-1. ZYG-8 depletion supposedly leads to increased outward forces due to loss of BMK-1 inhibition, thus co-depletion of ZYG-8 with BMK-1 should rescue the increased spindle size at least to some extent, however neither increase in spindle length nor increase in additional spindle pole formation are prevented by co-depletion of BMK-1 suggesting that BMK-1 is not generating the forces leading to spindle length increase. Thus, arguing that after all ZYG-8 does not regulate BMK-1. This should be discussed further in the paper and the authors should consider changing the title. At this point the provided evidence that ZYG-8 is regulating motor activity is not strong enough to make this claim. *

      The reviewer is correct that Figure S4 shows that the effects of depleting ZYG-8 on bipolar spindles (spindle elongation and pole/midspindle defects) cannot solely be explained by a role for ZYG-8 in regulating BMK-1 - this was the point that we were trying to make when we included this data in the original manuscript. However, we previously did not know what this other role could be, and therefore we only speculated on other potential roles in the discussion. Now that we have done FRAP experiments and have found that ZYG-8 also affects microtubule dynamics in the oocyte spindle, we now have a better explanation for the data presented in Figure S4 - it makes sense that deleting BMK-1 would not rescue the effects of ZYG-8 depletion, since we have evidence that ZYG-8 also regulates microtubule dynamics. We now clearly explain this in the revised manuscript and we have changed the title to make it clear that ZYG-8 plays multiple roles in oocytes.

      *5) The authors are proposing that ZYG-8 regulates/ inhibits BMK-1, however convincing evidence for an inhibition is not provided in my opinion and the effect of ZYG-8 on BMK-1 could be indirect. To make a compelling argument for a regulation of BMK-1 the authors would have to investigate if ZYG-8 interacts and/ or phosphorylates BMK-1 (see 7) and if this affects its dynamics. In addition, given the reported role of ZYG-8 on microtubule dynamics it would be very important that the authors consider studying the effect of ZYG-8 degradation on microtubule dynamics. Tracking of EBP-2 would be good, however this is very difficult to do inside meiotic spindles due to their small size. In addition, the authors could maybe consider some FRAP experiments, which could provide insights into microtubule dynamics and motions, which could be indicative of outward directed forces/ sliding. *

      We thank the reviewer for these comments as they motivated us to explore a role for ZYG-8 in modulating microtubule dynamics. The reviewer is correct that tracking EBP-2 in the very small meiotic spindle is not possible due to technical limitations, so we took the suggestion to perform FRAP. These experiments revealed that microtubule turnover in the spindle is greatly slowed following ZYG-8 depletion, suggesting a global stabilization of microtubules (data presented in a new Figure 7). This change in dynamics could contribute to the observed spindle phenotypes, which we now explain in detail in the manuscript. Given these new findings, we also now note that the effects we see on BMK-1 activity could be indirect (i.e. maybe increasing the stability of microtubules allows motors to exert excess forces). We now clearly discuss these various possibilities in the discussion.

      Summary: Additional requested experiments:

      • Interaction/ phosphorylation of BMK-1 by ZYG-8, i.e. changes of BMK-1 phosphorylation in absence of ZYG-8, BMK-1 mutations that may prevent phosphorylation by ZYG-8.
      • Assessment of microtubule dynamics (EBP-2, FRAP, length in monopolar spindles...)
      • Kinase activity of the kinase dead ZYG-8 strain (OPTIONAL) We assessed the role of ZYG-8 in microtubule dynamics (bullet point #2). Because this new analysis revealed that ZYG-8 plays multiple roles in the spindle, we decided not to further investigate whether ZYG-8 phosphorylates BMK-1, since the manuscript now no longer argues that this is ZYG-8's major function. We also did not assess the kinase activity of the D604N mutant since this has been done previously for DCLK1, and instead we softened the language in manuscript when describing this mutant.

      Minor points:

      *1) In Figure 4C it seems that the ZYG-8 AID line as well as the zyg-8 (or848)ts already have a phenotype (increased ASPM-1 foci) in absence of auxin/ at the permissive temperature. Does this suggest that the ZYG-8 AID as well as the zyg-8 (or848) strains are after all slightly defective (even if Figure 1, S1 and S2 argue otherwise) and thus more responsive to the loss of KLP-18? *

      The reviewer is correct that the ZYG-8 AID strain (without auxin) and zyg-8(or848)ts strain (at the permissive temperature) are slightly defective in the klp-18(RNAi) monopolar spindle assay. To more rigorously determine whether these strains were also defective in other assays, we generated new graphs comparing the spindle lengths and angles of the two temperature sensitive strains at the permissive temperature to wild-type (N2) worms. These data are now shown in Figure S1 (new panels F and G). A comparison of our ZYG-8 AID strain to a control strain (both in the absence of auxin) are shown in Figure S2 (panels C and D). In this analysis, there wasn't a significant difference for either of these comparisons (i.e. the spindle lengths and angles were all equivalent). We do not know why these strains appear to be slightly defective in the monopolar spindle assay, though perhaps this assay is more sensitive and can detect very mild defects in protein function.

      *2) The authors observe that in preformed monopolar spindles degradation of ZYG-8 can sometimes restore bipolarity. This observation is very interesting but why do the authors not observe a similar phenotype in long-term ZYG-8 AID; klp-18 (RNAi) or zyg-8(or484)ts; klp-18(RNAi). In the latter conditions bipolarity does not seem to occur at all. Do the authors think this is due to differences in timing of events? *

      We thank the reviewer for highlighting this point. We do think that our data suggest that ZYG-8 plays a more important role maintaining the spindle that it does in spindle formation; we have now more clearly explained this in the manuscript (detailing the differences in phenotypes we observe when we deplete ZYG-8 prior to spindle assembly or after the spindle has already formed, lines 180-189 and 227-231). To emphasize this point further, we have also included a graph in Figure S3G that directly compares the number of poles per spindle in long-term auxin treated spindles to short-term auxin treated spindles (with and without metaphase arrest).

      *3) Based on the Cavin-Meza 2022 paper it looks like depletion of KLP-18 in a BMK-1 mutant background does not look different from klp-18 (RNAi) alone. However, looking at Video 8, it looks like spindles "shrink" in absence of KLP-18 and BMK-1. Or is this due to any effects from the ZYG-8 AID strain? This can also be seen in Video 9. *

      The reviewer highlights a fair point that was not clearly explained in our manuscript. In normal monopolar anaphase, chromosomes move in towards the center pole as the spindle gets smaller (C. elegans oocyte spindles shrink in both bipolar and monopolar anaphase); this was previously described in Muscat et.al. 2015, and, as the reviewer noted, in Cavin-Meza et.al. 2022 (in a strain with the bmk-1 mutation). We see this same monopolar anaphase behavior in the ZYG-8 AID strain (Figure 6). We have now better explained normal monopolar anaphase progression and we have cited the Muscat et.al. paper in the relevant sections of the manuscript (lines 221-223 and 714-717).

      *4) Line 311: " ZYG-8 loads onto the spindle along with BMK-1, and functions to inhibit BMK-1 from over elongating microtubules during metaphase." Maybe this sentence could be re-phrased as it currently sounds like BMK-1 elongates (polymerizes) microtubules. *

      In re-writing the manuscript and emphasizing that there are multiple for ZYG-8 (in addition to regulating forces within the spindle), we removed this sentence.

      *5) Line 313: "Intriguingly, in C. elegans oocytes and mitotically-dividing embryos, BMK-1 inhibition causes faster spindle elongation during anaphase, suggesting that BMK-1 normally functions as a brake to slow spindle elongation (Saunders et al., 2007; Laband et al., 2017). Further, ZYG-8 has been shown to be required for spindle elongation during anaphase B (McNally et al., 2016). Our findings may provide an explanation for this phenotype, since if ZYG-8 inhibits BMK-1 as we propose, then following ZYG-8 depletion, BMK-1 could be hyperactive, slowing anaphase B spindle elongation." This paragraph could be modified for better clarity. It is not clear how the findings of the authors, BMK-1 provides outward force but is normally inhibited by ZYG-8, align with the last sentence saying "following zyg-8 depletion, BMK-1 could be hyperactive slowing anaphase B spindle elongation", should it not increase elongation according to the authors observations? *

      In re-writing the manuscript to incorporate our new data showing that ZYG-8 plays a role in modulating microtubule dynamics, we also re-wrote this discussion so that there would be less emphasis on the potential connection between ZYG-8 and BMK-1. In making these edits to expand the focus of the manuscript, we removed this section of the discussion.

      Reviewer #1 (Significance (Required)): *In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. The authors conclude that BMK-1 generates outward directed force, redundant to forces generated by KLP-18, and that ZYG-8 inhibits BMK-1. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. This research is interesting and provides some novel insight into the role of ZYG-8. In particular the observed spindle elongation and subsequent spindle fragmentation are novel and had not yet been reported. Also, the observation that degradation of ZYG-8 in monopolar klp-18(RNAi) spindles can restore bipolarity is novel and interesting, as well as the observation that this is somewhat dependent on the presence of BMK-1. This will be of interest to a broad audience and provides some new insight into the role of importance of ZYG-8 and BMK-1. The limitation of the study is the interpretation of the results and the lack of solid evidence that the observed phenotypes are due to ZYG-8 regulation motor activity, as the title claims. To support this some more experiments would be required. In addition, ZYG-8 has been reported to affect microtubule dynamics, which can certainly affect the action of motors on microtubules. This line of research is not explored in the paper but would certainly add to its value.

      Field of expertise: Research in cell division *

      We thank the reviewer for their positive comments on the impact and novelty of our findings. We hope that the additional experiments we performed and the revisions we made to the text thoroughly address the reviewer's concerns and that they deem the revised manuscript ready for publication.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)): *In this manuscript, the authors explore the requirement for doublecortin kinase Zyg8 in C elegans oocytes. Oocytes build meiotic spindles in the absence of centrosomes, and therefore unique regulation occurs during this process. Therefore, how spindles are built and its later stability are an area of active investigation in the field. Using mutant alleles of Zyg8 and auxin-induced degron alleles, the authors demonstrate that this kinase is required to negatively regulate outward pole forces through BMK1 kinesin and that it has other functions to still explore. Overall, I find that this study takes an elegant genetic approach to tackling this important question in oocyte biology. I have some comments to consider for making the MS clear to a reader. *

      We thank the reviewer for these positive comments on our approach and the importance of our research question. We have attempted to address all of the reviewer's suggestions and we think that they increase the clarity of the manuscript.

      Major Comments:

      *1.) Although I like the graphs describing the altered angles of the spindles, it falls short in fully assessing the phenotype in a meaningful statistical way. Could the authors also graph the data to show statistical significance in the angles between conditions? Perhaps by grouping them into angle ranges and performing an Anova test? This is important in Figure 2E where it is not obvious that there is a difference. *

      The reviewer makes a good point - we have now addressed this concern by performing ANOVA tests to compare conditions on each of the angle graphs. Results of these tests have been reported in the corresponding figure legends. This analysis has confirmed all of the statements we made in the original manuscript. In Figure 1D and S1D, spindle angles were significantly different in the zyg-8 temperature sensitive mutants at the restrictive temperature, and in Figure 2, the angles were significantly different between the "minus auxin" and "plus auxin" conditions. This differs from Figure 7, where there was no significant difference in spindle angle between control spindles and kinase dead mutant spindles (p-value >0.1).

      *2.) The authors do not discuss the significance of the altered spindle angles which I think is an interesting phenotype. Would this be a problem upon Anaphase onset? What is known about spindle angle and aneuploidy or cell viability? Has this phenotype been described before in oocytes or somatic cells? Does depletion of other kinesin motors cause this? *

      The reviewer brings up a good point that warrants more discussion in the manuscript. We agree that the angled spindles are an interesting phenotype; we believe that they could be a result of the spindle elongating to a point where the spindle center becomes weakened, suggesting that the severity of the angle is representative of the severity of spindle elongation. Alternatively, the angled spindles could be a result of the loss of spindle stability factors, such as the doublecortin domain of ZYG-8. This domain is known to have microtubule binding activity; this could be required to maintain stable crosslinked microtubules in the spindle center, such that when ZYG-8 is depleted, the spindle more easily comes apart as the spindle elongates. We now discuss these possibilities in the revised manuscript.

      To the reviewer's second point, we did not examine anaphase outcomes in our manuscript. However, this was recently explored by another lab (in a study that was published after we submitted our manuscript). This study showed that spindles lacking ZYG-8 were able to initiate anaphase and segregate chromosomes (McNally et.al., 2023, https://doi.org/10.1371/journal.pgen.1011090). Perhaps when the spindle shrinks at anaphase onset, the spindle is able to reorganize and largely correct the angle defect, enabling bi-directional chromosome segregation. Interestingly, however, McNally et.al. did report conditions under which spindle bending in anaphase resulted in polar body extrusion errors. The authors reported that BMK-1, which is known to act as a brake to prevent spindle oveelongation in anaphase, is required to prevent bent spindles during anaphase by resisting the forces of cortical myosin on the spindle. Thus, there is precedence for the idea that spindle needs to remain straight throughout anaphase, to ensure proper chromosome segregation.

      *3.) How is embryo spindle positioning determined? It is not clear from the images that there is a defect so I'm not sure what to look for. Is there a way to quantify this? *

      In the original manuscript, spindle positioning within the embryo was determined qualitatively by eye, which we agree was not a precise measure. To address the reviewer's comment, we re-analyzed our images and assessed the position of the spindle within each embryo quantitatively - these data are now shown in Figure 8H and Figure S2B. Spindle position was quantified by analyzing images using Imaris software. The center of the spindle was set by creating a Surface of the DNA signal, and finding the center of that signal. The cell center was determined by measuring the length of the embryo along the long axis and the width of the embryo along the short axis, and setting the center as the halfway point of the total length and width of the embryo. Distance from spindle center to cell center was then measured and graphed. This quantification confirmed the claims we made in our original manuscript - both auxin-treated ZYG-8 AID spindles and ZYG-8 kinase-dead mitotic spindles were significantly mispositioned. The details of how we performed this quantification have been added to the materials and methods.

      *4.) In Figure 1, it appears that there are 2 spindles. Are these MI and MII spindles or ectopic spindles? How do the authors know which one to measure? *

      We thank the reviewer for pointing this out. Reviewer 1 had a similar comment, and we now understand that using that image was misleading, as it looked like as if were two separate MII spindles formed following a failed polar body extrusion event. We have gone through all of our images to stage the oocytes by looking at their chromosome morphology (i.e., to distinguish MI and MII) - the image in question had 6 bivalents and was therefore in Meiosis I; we think that this was a single spindle where the chromosomes happened to cluster into two masses. However, to prevent further confusion, we have replaced this image with a different representative image. In spindles like this with multiple poles, we measure the dominant axis of the spindle (if there are multiple poles, we pick the most prominent ones for the angle measurement). For additional details please see our response to Reviewer 1 major point #2b.

      *5.) The authors show depletion of Zyg8 by western (long) and loss of Gfp (long and short), but don't do so for the acute treatment. I'm guessing this is because the Gfp tag is taken by the spindle marker. The authors should either demonstrate or explain how they know that the acute depletion is effective in removing Zyg8 protein. *

      The reviewer makes a valid point. However, we are unable to see ZYG-8 depletion via acute auxin treatment using live imaging, as ZYG-8 localization is too dim and diffuse to see on the spindle using our typical live imaging parameters (we attempted to do this in a version of the ZYG-8 AID strain that has mCherry::tubulin and GFP::ZYG-8, so that there was no other spindle protein tagged with GFP). To see any GFP::ZYG-8 signal, we had to increase the laser power and exposure time well above what we typically use for live imaging - in doing this, we noticed that there was a limit to how high we could go before the cell began dying during the imaging time course, evident by a lack of chromosome movement, lack of tubulin turnover, and a general increase in tubulin signal throughout the cytoplasm. We do believe that ZYG-8 is being depleted using acute auxin treatment, however, as we see spindle defects very quickly upon dissection of the oocytes into auxin - we just unfortunately don't have a good way of quantifying this given these technical limitations. We have now added information to the materials and methods noting that we cannot see GFP::ZYG-8 under our live imaging conditions (lines 552-561), so that the reader better understands this caveat.

      *6.) In video 2, the chromosome signal is dimmer in the auxin treatment compared to video 1. Why is this? Is it just an experimental artifact or is there something significant about this? If it is because of video choice, consider replacing this one. *

      We thank the reviewer for their keen observations. The chromosome signal being dimmer in the auxin treatment is an experimental artifact - the brightness of the signal can vary depending on how far the spindle is from the slide (this can vary from video to video, and can also change over the time course of one video if the spindle moves during filming). Because of this, movies taken at the same intensity and exposure conditions may appear to have varying levels of brightness. So that readers of the manuscript can better see the chromosomes in this video, we have brightened the chromosome channel in this movie and noted this in the materials and methods (lines 549-551).

      7.) Please consider color palette changes for color-blind readership.

      We agree that it is important to present data in a way that can be appreciated by color-blind readers. Although we would prefer not to have to alter every image in our paper at this point, we have provided all important individual channels in grey scale. We are also planning to adopt a change in color palette for future papers.

      Reviewer #2 (Significance (Required)):

      *The strengths of this manuscript include use of multiple genetic approaches to establish temporal requirements of ZYG8 and which pathway it is acting through. Additionally, the videos and images make the phenotypes clear to evaluate. A minor limitation is that we don't know if the ZYG8 and BMK1 genetic interaction is a direct phosphorylation or not. This MS is an advancement to the field of spindle building and stability, and is particularly relevant to human oocyte quality and fertility. Previous work has shown that human oocyte spindles are highly unstable, but it is challenging to dissect genetic interactions and to conduct mechanistic studies in human oocytes. Therefore, the work here, although conducted in a nematode, can shed light on mechanism as to why human oocyte spindles are unstable and associated with high aneuploidy rates. Based on my expertise in mammalian oocyte biology, I am confident that work presented here will be of high interest to people in the field of meiotic spindle building, aneuploidy and fertility. It also will have broader interest to folks in the areas of kinesin biology, general microtubule and spindle biology. *

      We thank the reviewer for these positive comments on the strength of our data and the significance of our findings reported in our original manuscript. We think that the improvements that we have made in response to suggestions from all three reviewers has further increased this impact.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *Summary: The focus of this paper is the function of a relatively understudied (at least in meiosis) kinase in acentrosomal spindle assembly (Zyg-8, or DCLK1 in mammals) in C. elegans oocytes. The authors use existing ts alleles and a newly generated GFP-Auxin fusion protein, and find that the ts alleles and auxin degron have similar phenotypes. They also examine the interaction with two related kinesins, KLP-18 and BMK-1 in order to investigate the mechanism behind the zyg-8 mutant phenotype. One can probably debate the significance and focus of their conclusions (force balance on the spindle). However, this is an important study because its the first on the meiotic function of a ZYG-8 kinase, and it may open the way to further studies of this kinase and how it regulates multiple kinesins and meiotic spindle assembly. *

      We thank the reviewer for these positive comments and for pointing out the potential future impacts of our work. In revising the manuscript, we have broadened the focus of the manuscript - we no longer solely focus on force balance within the spindle. Thus, our revisions have substantially increased the significance and impact of our work, since the manuscript is no longer narrowly focused.

      Major points:

      *1.) The main concern is the focus that the main defect in zyg-8 depleted oocytes is on outward forces (eg line 134, 277, but many other places in Results and Discussion). The arguments in favor (eg line 269-271) are reasonable. However, these data are not conclusive, and do not rule out regulation of other motor activities, such as bundling, depolymerization or chromosome movement. These are complex phenotypes, and a kinase could have multiple targets and there are often multiple interpretations. This is briefly alluded to in line 372-373 but the authors could do more. Spindle length changes could be caused by different rates of depolymerization or polymerization at the poles or chromosomes. Its not clear how poleward force regulation explains the multiple pole phenotype, although a lack of central spindle integrity could do that. In most of the Results and Discussion, it is not clearly stated on what structures these outward forces are acting. Are these forces effecting kinetochore associated microtubules, or antiparallel overlap microtubules? What do the authors mean by proper force balance? Figure 8 suggests the defect is associated with the amount of overlap and force among antiparallel microtubules - that the forces effected are from the sliding of these microtubules. *

      We agree that our original manuscript was too narrowly focused on the idea of force balance and that we did not discuss other potential roles for ZYG-8 in enough detail (except for briefly in our discussion). In response to both this comment and to a suggestion by Reviewer #1, we decided to investigate a potential role for ZYG-8 in modulating microtubule dynamics (which could be another explanation for some of the phenotypes we observed). We performed FRAP to measure the rate of tubulin turnover within the spindle near the center and at the poles. Interestingly, these experiments revealed that loss of ZYG-8 slows the rate of tubulin turnover, suggesting a general stabilization of microtubules. Thus, we have re-written our manuscript to clearly explain that ZYG-8 plays multiple roles in oocyte spindles - with these changes throughout the manuscript (in the introduction, results, and discussion), the paper is now no longer focused primarily on forces. We hypothesize in the discussion that the phenotypes we observe could be a combination of the effects on microtubule dynamics and spindle forces; if microtubules become more stable and motors produce excess outward forces, this may cause stress on the spindle structure that could cause the midspindle to bend and the poles to split (lines 379-382). We also now more clearly explain that the effect ZYG-8 has on spindle forces could be either direct or indirect (e.g., ZYG-8 could directly regulate motors or, by affecting the microtubule tracks themselves, it could affect their ability to exert forces). As for which population of microtubules are affected, we hypothesize that the excess forces act primarily on overlapping antiparallel microtubules (these microtubules run laterally alongside chromosomes in this system), as is represented in the model figure (Figure 9); we attempted to more clearly explain this in the re-written manuscript.

      *2.) Based on differences between the long term and short term knockdown phenotypes, the authors suggest ZYG-8 is more important for spindle maintenance. For example, in line 299 the authors note that there is a more severe phenotypes with zyg-8 removed from pre-formed spindles. The authors could improve the presentation of this to allow the reader to appreciate this observation. The data is spread between Figures 2 and 3 without a direct comparison of the data. One solution would be to graph the data (eg # of poles) together in one graph and indicate if there is statistical significance. In the Discussion, the authors could refer to specific figure panels. *

      The reviewer is correct that our data suggests that ZYG-8 is more important for spindle maintenance than it is for assembly. As suggested, we made a graph that includes all the pole data from Figures 2 and 3 (long-term auxin, short-term auxin, and metaphase-arrested short-term auxin) - this is now shown in Figure S3D. This makes it easier for the reader to compare these data and appreciate this point. In addition, we added text to the results section, to more clearly explain our rationale for thinking that ZYG-8 plays a more prominent role in spindle maintenance than in assembly (lines 180-189 and 227-231).

      *3.) What is the practical difference between acute and short term depletion. Does acute show weaker phenotypes because there is more residual protein? Unfortunately, the effectiveness of Auxin treatment does not appear to be measured for acute or short term. If the acute depletion adds little to Figure 3, or is not much different than long term, then its not clear what it adds to the paper. Later, in Figure 6, why is only short term and acute analyzed. In general, the authors need to provide better rationale for the different auxin conditions, particularly acute and short term (eg. line 135). If they don't add anything, they should consider not presenting them because readers may get confused by the different conditions, why they were done, and what is learned from each one. *

      The reviewer brings up a fair point that we agree requires clarification. Descriptions of the different types of auxin experiments is provided in Figure 1A. Long-term AID depletes proteins overnight, so the protein of interest is already missing from the oocyte when the spindle begins to form - this allows us to assess whether the protein is required for spindle assembly. However, to determine if a protein is required to stabilize pre-formed spindles, we need to remove the protein quickly after the spindle forms (using either acute or short-term AID). Acute AID is performed by dissecting oocytes directly into auxin-containing media; this allows us to watch what happens to the spindle live, as the protein is being depleted. However, one limitation is that we can only film for a short time before the oocytes begin to die (oocytes become unhappy with extended light exposure, so we cut off the videos after 15 minutes or so, to ensure that we are not filming past the point where they begin to arrest or die). Therefore, to assess what happens to spindles beyond this point, we perform short-term auxin treatment, where whole worms are soaked in auxin containing solution for 30-45 minutes and then the oocytes are dissected for immunofluorescence; this technique allows us to look at what happens to the spindle after more extended protein depletion (since we are not limited to the 10-15 minute window of filming). We have now clarified this in the manuscript by adding these details to the materials and methods. Unfortunately, it is not technically possible to quantify the extent of protein depletion in acute AID via western blotting since we would not be able to easily collect enough dissected oocytes to make a protein sample. (It is also technically challenging to quantify this via imaging; see our response to Reviewer #2, point #5). However, we assume that we are depleting ZYG-8 since we see dramatic spindle defects immediately upon dissection into auxin.

      Minor points:

      *3.) I am a little confused about imaging for GFP::tubulin in auxin experiments. Doesn't the ZYG-8 protein also have GFP? Should this be visible in controls? Is it measurable in the experiments? *

      The reviewer is correct that the ZYG-8 protein is also tagged with GFP in the GFP::tubulin; mCherry::histone live imaging experiments. However, we found that the GFP::ZYG-8 signal is undetectable using the live imaging conditions we are using. We determined this by analyzing a version of the ZYG-8 AID strain in which tubulin was tagged with mCherry (and thus the only GFP-tagged protein was ZYG-8). Using the same live imaging parameters we use for our movies of GFP::tubulin (same exposure time, laser power, etc), we did not detect any GFP::ZYG-8. We have now added this information to the materials and methods (lines 552-561) to clarify these points for the reader, to prevent further confusion.

      *4.) It is nice that the authors validated the results in an emb-30 background with unarrested oocytes. The authors note that the wild-type oocytes undergo anaphase (line 150). The images seem to suggest the auxin treated oocytes do not. Can the authors comment on anaphase in the depletion experiments. Even better, would be to comment on the accuracy of chromosome alignment and segregation. If zyg-8 mutant oocytes complete meiosis, is there any aneuploidy? These are important questions because otherwise the defects in zyg-8 mutants have less significance. *

      We thank the reviewer for their comment. Previous work on ZYG-8 in C. elegans examined a role for ZYG-8 in anaphase and showed that this protein is required for anaphase B spindle elongation (McNally et.al. 2016); because this was known when we launched our study, we purposely did not extensively study ZYG-8 in anaphase and instead focused on understanding how ZYG-8 contributes to spindle formation and stability. Our fixed imaging long-term AID experiments revealed that spindles were able to go through anaphase and segregate chromosomes bidirectionally despite the metaphase spindle phenotypes, consistent with this previous work (McNally et.al. 2016) and with another recent paper from the same lab (McNally et.al. 2023). However, we did not examine whether there were chromosome segregation errors. Given that anaphase is not the focus of our paper, we ask that this be deemed beyond the scope of our study.

      5.) Later, in line 184, the authors indicate that zyg-8 bipolar spindles "segregate chromosomes". Which images show anaphase I? As noted above, a limitation of these studies is not knowing the outcome of meiosis in these Zyg-8 depletions.

      We agree that in the original manuscript it was difficult to see that chromosomes were segregating bidirectionally in our movies and in the still timepoint images presented in Figure 5. Therefore, we brightened the chromosome channel in the relevant videos to make it easier to see the segregating chromosomes. Video 6 shows an oocyte in Meiosis II, as the first polar body can be seen near the spindle in this movie. At 2 minutes, the monopolar spindle becomes bipolar and begins to shrink as it goes into anaphase. Chromosomes begin to move apart and then the spindle elongates. At 11 minutes, you can see that the chromosomes have segregated bidirectionally. Thus, when monopolar spindles reorganize into bipolar spindles under these conditions, they can drive bidirectional chromosome segregation. We did not assess the fidelity of chromosome segregation under these conditions (i.e., whether chromosomes segregated accurately), as the question we were trying to answer in this experiment was whether outward forces sufficient to re-establish bipolarity could be activated upon ZYG-8 depletion (as explained above in response to point #4, we focused our study on trying to understand the effects of ZYG-8 depletion on the spindle, rather than on anaphase). We agree that analyzing anaphase outcomes would be interesting, but we ask that it be considered beyond the scope of this study.

      *6.) Line 206 suggests that ZYG-8 inhibits BMK-1. Is a simple explanation that BMK-1 is required for the bipolar spindles observed in the klp-18 zyg-8 AID oocytes? *

      Yes, the reviewer is correct that BMK-1 is required for the generation of bipolar spindles in the klp-18(RNAi) ZYG-8 AID conditions. In the original manuscript we extrapolated this result to propose that ZYG-8 regulates BMK-1. However, this comment, as well as feedback from the other reviewers and our new experiments (showing that ZYG-8 also modulates microtubule dynamics) has made us re-think the way we discuss this result, as we now agree that it does not prove this regulation (it is only suggestive). Therefore, in the revised manuscript, we no longer definitely claim that ZYG-8 regulates BMK-1 - we have switched to softer language (stating that ZYG-8 "may regulate" BMK-1, etc.). In the results section we now describe our conclusions as follows: "These data demonstrate that BMK-1 produces the outward forces that are activated upon ZYG-8 and KLP-18 co-depletion and raise the possibility that ZYG-8 regulates BMK-1 either directly or indirectly" (lines 250-252).

      *7.) Given that many mitotic and meiotic kinases are localized to specific regions or domains of the spindle, there is only limited discussion of the ZYG-8 localization pattern. Does the ZYG-8 localization pattern provide any insights into its mechanism of promoting spindle assembly? *

      The reviewer makes a good point - while we did report ZYG-8 localization, the discussion on the importance of its localization pattern was limited. To address this, we now remind readers in the discussion that ZYG-8 and BMK-1 co-localize throughout meiosis, consistent with the possibility that ZYG-8 could regulate BMK-1. Notably, this localization pattern is also consistent with the observation that ZYG-8 modulates microtubule dynamics across the spindle; this is now also noted in the discussion (lines 358-361).

      *8.) Line 96-97 - how much is the ZYG-8 depletion? *

      To address this question, we have quantified the amount of ZYG-8 protein in our ZYG-8 AID strain in control, long-term, and short-term auxin treated conditions. The western blot was quantified by comparing the raw intensity of the bands and subtracting the background signal. Short-term auxin depletion resulted in an ~63% reduction in ZYG-8 GFP signal, and long-term depletion resulted in an ~93% reduction in ZYG-8 GFP signal. This has now been reported in the manuscript on lines 785-786.

      *9.) Line 140: the authors say spindle length could not be measured, but perhaps it makes more sense to measure half spindle (chromosome to spindle pole). The images do give the impression that the chromosome to pole distance is shorter. *

      While we liked this idea and tried to perform these measurements, it turned out to be difficult in practice, since the spindle length measurements are obtained by finding the distance from pole (center of the ASPM-1 staining) to center of the chromosome signal. If you look carefully at our images you will notice that the chromosomes lose alignment following short-term AID; therefore, the chromosomes do not form one mass, which made it very difficult to determine an accurate "center" of the DNA signal. Additionally, in most cases the poles are disrupted such that ASPM-1 is found in many separate masses and/or is diffusely localized around the periphery of the spindle. Because of this, we unfortunately felt that these measurements would not be very accurate and would be hard to interpret.

      *10.) Don't see the point of lines 323-330. Could be deleted? *

      In revising our manuscript, we have rephrased these lines in an attempt to provide more context. Because DCLK1 has been shown to be upregulated in a wide variety of cancers, there are ongoing efforts to find chemical inhibitors that specifically block the kinase activity of this protein to be used as cancer therapeutics. However, no one has previously shown that the kinase activity of DCLK1 is important for its in vivo function (in any organism). Therefore, we were trying to make the point that, since we demonstrated that kinase activity is important for the functions of a DCLK1 family member in vivo, this suggests that these kinase inhibitors may in fact be beneficial in knocking down DCLK1 activity.

      11.) Figure 1: Because ts alleles could have a defective phenotype at "permissive" temperature, a wild-type control should be included. This data does appear in a later figure.

      The reviewer is correct that this data does appear in a later figure, but we agree this direct comparison would provide clarity to the reader. To address this comment, we compared the spindle lengths and angles of the two temperature-sensitive (TS) strains (at both the permissive and restrictive temperatures) to wild-type (N2) worms - these data have been added to Figure S1 (new panels F and G). The spindle lengths of both TS strains at the permissive temperature did not significantly differ from wild-type spindle lengths (p>0.1), while both TS strains at the restrictive temperature were significantly different than wild-type (p0.1), but there was a significant difference between wild-type spindles and the TS mutants at the restrictive temperature (doublecortin domain mutant (p Reviewer #3 (Significance (Required)): The strengths of this paper are the novelty of studying Zyg-8. It also addresses important questions regarding acentrosmal spindle assembly in oocytes. The weakness is mostly in the limited interpretation of results and not enough consideration of alternative interpretations. Related to this, the authors only test the force balance hypothesis with the knockout of two related kinesins. They don't experimentally investigate other mechanisms for the zyg-8 phenotype. This research should be of broad interest to anyone interested in oocyte spindle assembly, and also in a more specialized way to those who study kinases or Zyg-8 homologs in other cell types or organisms.

      We thank the reviewer for these positive comments on the strengths and novelty of our manuscript. We also appreciate the constructive suggestions of all three reviewers, which motivated us to perform new experiments that revealed additional functions for ZYG-8 - these revisions have greatly improved the manuscript and have broadened its impact.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. First by studying available temperature-sensitive mutants and then by generating their own strain expressing ZYG-8 amenable to auxin-inducible degradation, they establish that defects in ZYG-8 lead to defects in spindle assembly, such as the formation of multipolar spindles, and spindle maintenance, in which spindles elongate, fall apart, and deform in meiosis. Based on these observations the authors conclude that ZYG-8 depletion leads to excessive outward force. As the lab had previously found that the motor protein KLP-18 generates outside directed forces in meiosis, Czajkowski et al initially speculate that ZYG-8 might regulate KLP-18. KLP-18 depletion generally leads to the formation of monopolar spindles in meiosis. Intriguingly, when the authors co-deplete ZYG-8 they find that in some cases bipolarity was reestablished. This led to the hypothesis that yet another kinesin, BMK-1, the homolog of the mammalian EG-5, could provide redundant outward directed forces to KLP-18. The authors then study the effect of ZYG-8 and KLP-18 co-depletion in a BMK-1 mutant background strain and observe that bipolarity is no longer reestablished under these conditions, suggesting that BMK-1 generates additional outward directed forces. The authors also conclude that ZYG-8 inhibits BMK-1. To follow up on this Czajkowski et al generate a ZYG-8 line that carries a mutation in the kinase domain, which should inhibit its kinase activity. This line shows similar effects in terms of spindle elongation but reduced impact on spindle integrity, reflected in minor effects on the number of spindle poles and spindle angle. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis.

      • Overall, the paper is well written, and the data is presented very clearly and reproducible. The experiments are adequately replicated, and statistical analysis are adequate. The observations are very interesting. However, the authors could provide some additional insight into the function of ZYG-8. This paper is strongly focused on motor generated forces within the spindle and tries to place ZYG-8 within this context, but there is compelling evidence from other studies that ZYG-8 also affects microtubule dynamics, which would have implications for spindle assembly and structure. The paper would strongly benefit from the authors exploring this role of ZYG-8 in the context of meiosis further. If the authors feel that this would extend beyond the scope of this paper, I would suggest that the authors rephrase some of their introduction and discussion to reflect the possibility that changes in microtubule growth and nucleation rates could explain some of the phenotypes (think of katanin) and effects and that therefore it can not necessarily be concluded that BMK-1 is inhibited by ZYG-8.

      Major comments:

      1) Zyg-8, as well as the mammalian homolog DCLK-1, has been reported to play an important role for microtubule dynamics. While the introduction mentions its previously shown role in meiosis and mitosis, it is totally lacking any background on the effect on microtubule dynamics. The authors mention these findings in the discussion, but it would be helpful to incorporate this in the introduction as well. As an example, Goenczy et al 2001 demonstrated that ZYG-8 is involved in spindle positioning but also showed its ability to bind microtubules and promote microtubule assembly. Interestingly, like the authors here, Goenczy et al concluded that while the kinase domain contributes to, it is not essential ZYG-8's function. Also, Srayko et al 2005 (PMID 16054029) demonstrated that ZYG-8 depletion led to reduced microtubule growth rates and increased nucleation rates in C. elegans mitotic embryos. And in mammalian cells DCLK-1 was shown to increase microtubule nucleation rate and decrease catastrophe rate, leading to a net stabilization of microtubules (Moores et al 2006, PMID: 16957770).

      It would be great if the authors could add to the introduction that ZYG-8 has been suggested to affect microtubule dynamics.

      2) The authors initially study two different ts alleles, or484ts and b235ts. The experiments clearly show a significant increase in spindle length in both strains. However, the or484 strain had been previously studied (McNally et al 2016, PMID: 27335123), and only minor effects on spindle length were reported (8.5µm in wt metaphase and 10µm in zyg-8 (or484)). How do the authors explain these differences in ZYG-8 phenotype. Even though the ZYG-8 phenotype is consistent throughout this paper it would be good to explain why the authors observe spindle elongation, fragmentation and spindle bending in contrast to previous observations.

      As a general note, it would be helpful if the authors could indicate if the spindles are in meiosis I or II. The only time where this is specifically mentioned is in Video 7, showing a Meiosis II spindle, which makes me assume all other data is in Meiosis I. Adding this to the figures would also help to distinguish if some of the images, i.e. Figure 1B, show multipolar spindles due to failed polar body extrusion. If this is the case then the quantification of number of poles should maybe reflect different possibilities, such as fragmented poles vs. multiple poles because two spindles form around dispersed chromatin masses.

      3) The authors generate a line that carries a mutation leading to a kinase dead version of ZYG-8. It would be great if the authors could further test if this version is truly kinase dead. What is interesting is that the kinase dead version the authors create has less effect on the numbers of pole than the zyg-8 (b235)ts strain, which carries a mutation in a less conserved kinase region. Overall, it seems that the phenotypes are very similar, independent on mutations in the microtubule binding area, kinase area or after AID. This could of course be due to all regions being important, i.e. microtubule binding is required for localizing kinase-activity. Generating mutant versions of the target proteins, for example here BMK-1, that can not be phosphorylated or are constitutively active as well as assessment of changes in protein phosphorylation levels in the kinase dead strain would be helpful to provide deeper insight into potential regulation of proteins by ZYG-8.

      4) The authors state that "BMK-1 provides redundant outward force to KLP18". Redundancy usually suggests that one protein can take over the function of another one when the other is not there. In these scenarios a phenotype is often only visible when both proteins are depleted as each can take over the function of the other one. Here however the situation seems slightly different, as depletion of BMK-1 has no phenotype while depletion of KLP-18 leads to monopolar spindles. If BMK-1 would normally provide outward directed forces, would this not be visible in KLP-18 depleted oocytes if they were truly redundant? I assume the authors hypothesize that ZYG-8 inhibits BMK-1 and thus it can not generate outward directed forces. In this case, do the authors envision that ZYG-8 inhibits BMK-1 prior to or in metaphase or only in anaphase or throughout meiosis? Do they speculate, that BMK-1 is inhibited in anaphase and only active in metaphase? In addition, Figure S4 somewhat argues against a role for ZYG-8 in regulating BMK-1. ZYG-8 depletion supposedly leads to increased outward forces due to loss of BMK-1 inhibition, thus co-depletion of ZYG-8 with BMK-1 should rescue the increased spindle size at least to some extent, however neither increase in spindle length nor increase in additional spindle pole formation are prevented by co-depletion of BMK-1 suggesting that BMK-1 is not generating the forces leading to spindle length increase. Thus, arguing that after all ZYG-8 does not regulate BMK-1. This should be discussed further in the paper and the authors should consider changing the title. At this point the provided evidence that ZYG-8 is regulating motor activity is not strong enough to make this claim.

      5) The authors are proposing that ZYG-8 regulates/ inhibits BMK-1, however convincing evidence for an inhibition is not provided in my opinion and the effect of ZYG-8 on BMK-1 could be indirect. To make a compelling argument for a regulation of BMK-1 the authors would have to investigate if ZYG-8 interacts and/ or phosphorylates BMK-1 (see 7) and if this affects its dynamics. In addition, given the reported role of ZYG-8 on microtubule dynamics it would be very important that the authors consider studying the effect of ZYG-8 degradation on microtubule dynamics. Tracking of EBP-2 would be good, however this is very difficult to do inside meiotic spindles due to their small size. In addition, the authors could maybe consider some FRAP experiments, which could provide insights into microtubule dynamics and motions, which could be indicative of outward directed forces/ sliding.

      Summary:

      Additional requested experiments:

      • Interaction/ phosphorylation of BMK-1 by ZYG-8, i.e. changes of BMK-1 phosphorylation in absence of ZYG-8, BMK-1 mutations that may prevent phosphorylation by ZYG-8. -Assessment of microtubule dynamics (EBP-2, FRAP, length in monopolar spindles...) -Kinase activity of the kinase dead ZYG-8 strain (OPTIONAL)

      Minor comments:

      1) In Figure 4C it seems that the ZYG-8 AID line as well as the zyg-8 (or848)ts already have a phenotype (increased ASPM-1 foci) in absence of auxin/ at the permissive temperature. Does this suggest that the ZYG-8 AID as well as the zyg-8 (or848) strains are after all slightly defective (even if Figure 1, S1 and S2 argue otherwise) and thus more responsive to the loss of KLP-18?

      2) The authors observe that in preformed monopolar spindles degradation of ZYG-8 can sometimes restore bipolarity. This observation is very interesting but why do the authors not observe a similar phenotype in long-term ZYG-8 AID; klp-18 (RNAi) or zyg-8(or484)ts; klp-18(RNAi). In the latter conditions bipolarity does not seem to occur at all. Do the authors think this is due to differences in timing of events?

      3) Based on the Cavin-Meza 2022 paper it looks like depletion of KLP-18 in a BMK-1 mutant background does not look different from klp-18 (RNAi) alone. However, looking at Video 8, it looks like spindles "shrink" in absence of KLP-18 and BMK-1. Or is this due to any effects from the ZYG-8 AID strain? This can also be seen in Video 9.

      4) Line 311: " ZYG-8 loads onto the spindle along with BMK-1, and functions to inhibit BMK-1 from over elongating microtubules during metaphase." Maybe this sentence could be re-phrased as it currently sounds like BMK-1 elongates (polymerizes) microtubules.

      5) Line 313: "Intriguingly, in C. elegans oocytes and mitotically-dividing embryos, BMK-1 inhibition causes faster spindle elongation during anaphase, suggesting that BMK-1 normally functions as a brake to slow spindle elongation (Saunders et al., 2007; Laband et al., 2017). Further, ZYG-8 has been shown to be required for spindle elongation during anaphase B (McNally et al., 2016). Our findings may provide an explanation for this phenotype, since if ZYG-8 inhibits BMK-1 as we propose, then following ZYG-8 depletion, BMK-1 could be hyperactive, slowing anaphase B spindle elongation." This paragraph could be modified for better clarity. It is not clear how the findings of the authors, BMK-1 provides outward force but is normally inhibited by ZYG-8, align with the last sentence saying "following zyg-8 depletion, BMK-1 could be hyperactive slowing anaphase B spindle elongation", should it not increase elongation according to the authors observations?

      Significance

      In this manuscript Czajkowski et al explore the role of the doublecortin-family kinase ZYG-8 during meiosis in C. elegans Oocytes. The authors conclude that BMK-1 generates outward directed force, redundant to forces generated by KLP-18, and that ZYG-8 inhibits BMK-1. The authors conclude that ZYG-8's kinase activity is required for the function of ZYG-8 in meiosis and mitosis. This research is interesting and provides some novel insight into the role of ZYG-8. Inm particular the observed spindle elongation and subsequent spindle fragmentation are novel and had not yet been reported. Also, the observation that degradation of ZYG-8 in monopolar klp-18(RNAi) spindles can restore bipolarity is novel and interesting, as well as the observation that this is somewhat dependent on the presence of BMK-1. This will be of interest to a broad audience and provides some new insight into the role of importance of ZYG-8 and BMK-1. The limitation of the study is the interpretation of the results and the lack of solid evidence that the observed phenotypes are due to ZYG-8 regulation motor activity, as the title claims. To support this some more experiments would be required. In addition, ZYG-8 has been reported to affect microtubule dynamics, which can certainly affect the action of motors on microtubules. This line of research is not explored in the paper but would certainly add to its value.

      Field of expertise: Research in cell division

    1. Bots, on the other hand, will do actions through social media accounts and can appear to be like any other user. The bot might be the only thing posting to the account, or human users might sometimes use a bot to post for them.

      On social media, many accounts do appear to be run by real people, but in reality, they may be run by bots. As far as I know, these bots can automatically post relevant topics and content, and may also be used by some users to help them post or edit content. Most of these bots are designed to help people manage their accounts or simplify their tasks, but some are used to spread negative information and cultivate negative opinions. Therefore, I think we need to improve our ability to distinguish real users from bots so that we can better ensure the fairness and authenticity of social media.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      The authors sincerely appreciate the editors’ and the reviewers’ dedication in providing constructive and insightful comments aimed at enhancing the quality of the manuscript. In response to the valuable feedback received, we have implemented significant revisions to the manuscript, including the addition of key experiments, reorganization of the figures as well as providing detailed point-to-point responses to address the reviewers’ concerns. With these changes, we are confident that we have effectively addressed the comments raised by all three reviewers and have strengthened the overall quality of the manuscript.

      Below are the major improvements we have made in the revised manuscript:

      1. Figure 4  new figure with polysome profiling assay to strengthen the link between translational regulation and mitochondrial defects.
      2. Figure 7  added confocal images showing the transfer of mitochondria into recipient cells.
      3. Figure S2  added RER data further supporting a shift of metabolism to favor fatty acid oxidation as shown by proteomics data.
      4. Figure S4  added WB data showing that protein degradation was not affected, strengthening a protein synthesis defect due to Fam210a KO.
      5. Figure S5B, S6C  added quantification to the staining and blots.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In the manuscript entitled "FAM210A mediates an inter-organelle crosstalk essential for protein synthesis and muscle growth in mouse", Chen et al, found that knocking out of FAM210A specifically in muscle using Myl Cre resulted in abnormal mitochondria, hyperacetylation of cytosolic proteins, and translation defects. The manuscript uncovered the new functions of FAM210A in regulating metabolism and translation. I have the following the concerns about the manuscript.

      Comments

      One of the major phenotypes of FAM210A is the decrease of muscle mass after 6 weeks after birth. Is this phenotype caused by the accumulation of progressive loss of muscle mass from birth? Are the body weight and muscle mass reduced in FAM210A knocking out new-born mice? Is the muscle mass growth curve the same in FAM210A and WT mice from birth to 6 weeks after birth? These results will reveal more mechanism of FAM210A mediated muscle mass control. Answer: Indeed, the phenotype of the Fam210aMKO was caused by the progressive loss of muscle mass. The body weight of the mice was not different before 3-weeks of age (Figure 2B). We reasoned that myonuclei accretion occurred before Myl1Cre induced knockout of Fam210a, accounting for the relative normal muscle development and nuclei accretion prior to 21 days after birth (refer to Response Figure 2). However, due to the small muscle mass, it is hard to accurately evaluate whether the muscle mass in very young mice. Regardless, we believe that body weight and muscle weight closely mimic each other and exhibit similar slopes in WT and KO mice (Response Figure 1).

      Beyond 21 days, muscle growth is mainly attributed to hypertrophy of myofibers, a process that relies on protein synthesis. Yet the Fam210aMKO myofibers has defects in protein synthesis, explaining why the muscles cannot gain weight after 3 weeks and started to lose weight. We have shown that at 4 weeks the TA muscle weight was 13 mg in Fam210aMKO compared to 25 mg in WT control. At 6-weeks, the TA weight in the Fam210aMKO mouse was 10 mg compared to 28 mg in the WT control. Furthermore, the TA weight of the Fam210aMKO mouse was 8.7 mg compared to 36mg in the WT control. These results provide compelling evidence that the Fam210aMKO muscles are progressively wasted.

      Response Figure 1. Changes of body weights and TA muscle weights during postnatal growth. The muscle weights increased (in wildtype mice) or decreased (in KO mice) with body weights at similar trends.

      Does the muscle mass continue to decrease after 8 weeks?

      Answer: Based on the trend (see Response Figure 1), we believe the answer is “yes”. However, we were not allowed to monitor the Fam210aMKO mice after 8 weeks of age, as they were severely lethargic and can barely move, reaching the humane endpoint determined by the IACUC guidelines.

      FAM210A knockout mice displayed high lethal rate. Is there any potential mechanism for the high lethality?

      Answer: We performed extensive necropsy and could not identify a direct cause. The potential cause for the lethality could be the difficulty of breathing as the diaphragm muscle was very thin in the Fam210aMKO mouse compared to the WT control. Besides, the diminished muscle contraction force (Figure 3) might have prohibited normal activities (including eating), leading to exhaustive death.

      In Figure 2, the muscle mass decreased significantly, while the fat mass only decreased slightly in FAM210A knockout mice. However, the ratio of the lean mass and fat mass to body mass did not change in FAM210A knockout mice compared to WT mice. How do the authors reconcile this?

      Answer: Just to clarify, Figure 2D-E shows that fat mass was significantly reduced at 4-week old but not reduced at 6-week old. We interpret the significant reduction of the mass but not the ratio (to body weight) as the result of the concomitant reduction of the body weight in the Fam210aMKO mice.

      Are there changes of the number of nuclei per myotube? Is the muscle atrophy in FAM210A knockout mice caused by the defects of fusion, or the degradation of protein, or both?

      Answer: We thank the reviewer for this question. To answer this question, we isolated myofibers from WT and Fam210aMKO mouse at 4-week-old and quantify the myonuclei number. We did not observe a significant reduction of myonuclei number per myofiber in the Fam210aMKO mouse, suggesting that the myoblast fusion into myofibers was not affected in the Fam210aMKO model. (Response Figure 2)

      Response Figure 2. DAPI staining and quantification in the single myofiber isolated from WT and Fam210aMKO mice.

      The number of myonuclei in the WT and Fam210aMKO was not different, suggesting normal fusion of satellite cells in Fam210aMKO mice.

      We also did western blot to check the atrophy related protein expression in WT and Fam210aMKO mouse at different ages. Interestingly, we did not observe a significant induction of these proteins (Atrogin-1, MuRF1) in the Fam210aMKOmuscle. Therefore, we conclude that the muscle atrophy was due to protein translation defects in the Fam210aMKO, independent of myoblast fusion and protein degradation (Figure S4C).

      Are the growth curves of muscle mass growth in EDL and SOL the same in FAM210A knockout mice?

      Answer: We thank the reviewer for the question. In the Myl1Cre mediated Fam210a KO model, Fam210a was deleted in both fast (EDL) and slow (SOL) muscles (see response to Reviewer 3, second point). We think that the “growth curve” of the EDL and SOL muscle should be same (stagnant and even reduced) upon Fam210a KO as the mouse grows from 4-week to 8-week.

      The oxygen consumption and carbon dioxide production are higher in FAM210A knockout mice, suggesting a high metabolism rate. In contrast, the heat production of FAM210A knockout mice is lower, suggesting a low metabolism rate. Any explanation?

      Answer: The VCO2 and VO2 values were normalized to the body weight, and the KO value appeared high because their body weights were much lower at the time of test. While for heat production (unit: Kcal/hr), body weight was not a factor in the calculation. The seemingly contradicting/surprising result that a weak KO mouse could have higher VCO2 and VO2could be recapitulated in other mouse models (for example PMID: 22307625).

      Given the high glucose consumption in FAM210A, why is the clearance rate of blood glucose low?

      Answer: We believe there is a misunderstanding here. A smaller AUC (as seen in the KO) suggest faster blood glucose clearance. The circulating glucose level after fasting is lower in the KO mice, which suggests that the Fam210aMKO mice were consuming more glucose compared to the WT mice. In the GTT test, the Fam210aMKO mice showed a lower AUC after the injection of glucose, implying that the Fam210aMKO mice cleared the injected glucose at a faster rate, probably due to a pseudo-fasting state which would promote the uptake of circulating glucose when available.

      Are there any changes of the abilities for the FAM210A knockout mice in running endurance?

      Answer: Indeed, the Fam210aMKO mice ran less distance, shorter time, and at a lower speed when tested on a treadmill endurance running program (Figure 3)

      In page 5, the last sentence of the 2nd paragraph, the authors concluded "There results suggest that Fam210aMKO induces a metabolic switch to a more oxidative state." It is better to describe it as muscle metabolic since the whole-body metabolism has not been carefully examined.

      Answer: We thank the reviewer for pointing this out, we will change the wording to better reflect the changes observed in the Fam210aMKO mouse regarding the metabolism.

      In Fig. 6, what is the link between increased transcription level of Fgf21 and the elevated level of aberrant acetylation of proteins?

      Answer: We thank the reviewer for this interesting question! However, we did not pursue a direct causal relationship between Fgf21 level and aberrant protein acetylation. In our model, we are proposing that mitochondrial defects in the Fam210aMKO model can trigger the integrated stress response which leads to a higher Fgf21 transcript level in the muscle. This is coinciding with the acetylation increase in the muscle due to the excessive production of acetyl-CoA. A potential relationship between Fgf21 and protein acetylation warrant examination in a future study.

      After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.

      Is there any link between the increased acetylation level of rebolsome proteins and the translation defects?

      Answer: Indeed, there are ample studies showing that ribosomal proteins can be acetylated, and that the acetylation of ribosomal proteins can affect the protein synthesis process, for example in PMID: 35604121 and PMID: 37742082. Here in this paper, we showed by ribosome profiling assay that the muscle has defects in the polysome formation (at 4-week and 6-week), when the protein acetylation was significantly increased in the Fam210aMKO mice (Figure 4D-4G).

      How do the abnormal mitochondria lead to increased protein acetylation? And how do these defects further cause translation problem?

      Answer: As elaborated in the discussion, we propose that upon Fam210a KO in mature myofiber, the TCA cycle in the mitochondria was disrupted, blocking utilization of acetyl-CoA and resulting in the accumulation of acetyl-CoA in the muscle. The excess acetyl-CoA lead to increased protein acetylation in the cytosol. We identified that ribosomal proteins are hyperacetylated in the muscle. We also observed that the polysome formation in the muscle was impaired, which exacerbates the translation efficiency.

      Consistently, when we treated C2C12 during in vitro culture with sodium acetate to mimic the increase of acetylation of proteins, we showed that excessive levels of acetyl-CoA can block the differentiation of C2C12 cells (Response Figure 3).

      Response Figure 3. The effect of sodium acetate on the differentiation of C2C12 myoblasts.

      The differentiation of C2C12 myoblasts into myotubes were probed by the protein abundance of Myog and MF20, which showed a decrease in the expression level when sodium acetate was added in increasing amounts.

      The defects in translation will cause general problems besides mitochondria defects. Are there any phenotypes related to the overall translation inhibition observed? If not, why?

      Answer: Just to clarify, our model suggests that mitochondrial defects in the Fam210a KO causes cytosolic translation defects, not the other way around. We showed by SUnSET experiment that the global translation was indeed reduced in the Fam210aMKO muscle at 4-week. We also observed that the p-S6 level which indicates the global protein translation was decreased. It is also true that the global translational arrest can exacerbate the mitochondrial defects and fewer mitochondrial proteins can be synthesized. This feed forward loop can explain the aggravating phenotype in the Fam210aMKO mouse as the mouse gets older.

      Are the abnormal mitochondria, increased protein acetylation, and translation inhibition observed in 2-6 weeks old mice? When were these defects first found? Are they correlated with muscle atrophy?

      Answer: At 2-week-old, the protein synthesis or degradation was not changed between WT and Fam210aMKO mice (Figure S4C). The mitochondria abnormality was first observed at 4 weeks of age, concomitant with the decrease of protein translation (decreased p-S6), polysome formation, and protein hyperacetylation. The acetylation increase was apparent at 6-week together with decreased p-S6 level, polysome assembly and mitochondrial defects. Decreased protein translation has been shown to cause muscle atrophy (PMID: 19046572).

      Reviewer #1 (Significance (Required)):

      This manuscript described many interesting phenotypes of Fam210a knockout mice. However, the links between these phenotypes are obscure. The logic of the manuscript will be greatly improved if the authors could provide explanations to logically link the phenotypes.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: In this manuscript, Chen et al., investigate the functions of FAM210A in skeletal muscle physiology and metabolism. FAM210A is a mitochondria-localized protein in which mutations have been associated with sarcopenia and osteoporosis. Using publicly available gene expression datasets from human skeletal muscle biopsies the authors first demonstrate that the expression of FAM210 is reduced in muscle atrophy-associated diseases and increased in muscle hypertrophy conditions. Based on this, they show that a muscle specific Fam210a deletion leads to muscle atrophy/weakness, systemic metabolic defects, and premature lethality in mouse. Further examination of the knockout myofibers reveals impaired mitochondrial respiration and translation program. Additionally, the authors demonstrate that the flow of TCA cycle is disrupted in the FAM210A-deleted myofibers, which causes abnormal accumulation of acetyl-coA and hyperacetylation of a subset of proteins. The authors claim that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins that leads to ribosomal disassembly and translational deficiency. However, this conclusion is not supported by adequate experimentation and rigorous analysis of ribosomal proteins acetylation and ribosome assembly.

      Major comments:

      -In general, figure legends are lacking information regarding number of biological replicates used and details about statistical analysis. What does three * vs. one * mean in terms of p-value? Exact p-values should be indicated.

      Answer: We thank the reviewer for pointing this out, we have added the information to the revised figure legends.

      -The mechanistic studies linking muscle phenotypes with ribosomal protein hyperacetylation and mRNA translation defects are underdeveloped and not rigorously carried.

      Answer: We agree with the reviewer and have added new data in the revised manuscript to strengthen this link. For example, we have now provided direct evidence on the defective polysome assembly in the Fam210a KO muscles (Figure 4D-4G), which should profoundly impact mRNA translation. In addition, other groups have also shown that ribosomal protein acetylation can impact mRNA translation and polysome formation (PMID: 35604121).

      We also explored the effect of acetylation on differentiation (a process accompanied by extensive protein synthesis) related to our mouse model. We used sodium acetate to elevate acetylation during C2C12 differentiation. We found that increased acetylation indeed impaired the differentiation as can be seen by the reduced expression of MF20 (myosin protein) by WB and IF. The differentiation marker Myogenin was also reduced (Response Figure 3, 4).

      Response Figure 4. Immunofluorescence staining of Myog and MF20 in the differentiated C2C12 myotubes treated with different amounts of sodium acetate.

      The number of MF20 (green) positive myotubes and Myog (red) positive nuclei was significantly reduced in the cells treated with 15mM and 30mM sodium acetate.

      -Fig S1: The validation WB of FAM210A KO is not the most convincing. Why are the FAM210A levels so low in TA compared to other tissues?

      Answer: This is due to the insufficient proteins loaded as it was obvious from the Tubulin marker. We have replaced the WB blot with more convincing blots as requested (Figure S1C).

      -Fig 2G: The authors state "Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210a KO mice up to 8 weeks". However there seems to be a progressive increase in nuclei up to 8-weeks in the KO. What is the significance of this?

      Answer: Thank you for pointing this out. We have now changed the wording and quantified the myonuclei number per myofiber. The increase of myonuclei in the H&E images is likely due to the smaller myofiber size in the Fam210aMKOmouse compared to the WT (Response Figure 5).

      Response Figure 5. Quantification of the myonuclei number in the H&E images.

      -IP-MS analysis for FAM210A interacting proteins requires validation with IP and reverse IP + WB experiment.

      Answer: We did perform the co-IP with SUCLG2 and FAM210A antibodies to try to confirm the interaction. To be more specific, we transduced C2C12 myoblasts cells with an Fam210a overexpression virus and differentiated the cells for 3 days. The myotubes were used to test the interaction by pulling down Fam210a with a myc antibody (FAM210A has a myc tag) and blot with SUCLG2 antibody. Unfortunately, the results were not promising (Response Figure 6). We reasoned that the interaction might be indirect or too transient to be reliably detected.

      Response Figure 6. co-IP of SUCLG2 and FAM210A.

      • Figure 4A requires quantification of the SDH signals from multiple samples.

      Answer: We thank the reviewer for this suggestion. We have added the quantification of the staining (Figure S5B).

      • Figure 6F: To clearly demonstrate an increase in protein acetylation in the FAM210 MKO, the authors must provide quantification data generated with more then N=1. Please add the molecular weights markings on the side of the blots.

      Answer: We thank the reviewer for this suggestion, we have provided the quantification of the Acetylated-lysine blots, and added the molecular weight markers (Figure 6F, Figure S6C).

      • Figure 6H and S5: The mitochondria transfer experiment appears to be quite efficient compared to previously published studies. It would be important to control that the signal observed in the recipient cells is not due to the leakage of the MitoTracker dye from the donor mitochondria.

      Answer: This is an interesting point though MitoTracker dye is not supposed to leak as it covalently binds to mitochondrial proteins. Even though the dye may leak to mark the endogenous mitochondrial, it does not affect our goal to demonstrate that transfer of Fam210aMKO mitochondria into healthy cells can induce protein hyperacetylation. Additional evidence argues against the leakiness of Mitotracker dye to subsequently mark other mitochondria in the recipient cells: 1) mtDNA and MitoTracker signal both increase linearly with the increasing amounts of mitochondria transferred (Figure S7A); 2) We have now also included confocal images to show the presence of both MitoTracker labeled and non-labeled mitochondria in the recipient cells. We reason that if MitoTracker leaks within a cell then it would have labeled all mitochondrial in that cell (Figure 7C).

      • Figure 6J: The increase in Fgf21 is modest. Although the difference is statistically significant, is it biologically important?

      Answer: We thank the reviewer for this question; indeed, the increase is modest. We think the reason of the modest increase compared to the drastic increase seen in vivo was because when we transplanted the WT and Fam210aMKOmitochondria to the recipient cell, the original mitochondria in the recipient were not depleted, which could explain the milder effect. However, we were able to show that the recipient cells readily increase the acetylation of proteins after receiving the Fam210aMKO mitochondria, recapitulating the phenotype we saw in the Fam210aMKO muscle.

      After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.

      • Figure 6C: How significant is the difference in acetylation of RPL30 in WT vs. KO. RPS13 was not found in the WT MS? Was this normalized to Input?

      Answer: the MS was performed with same loading. The mass spectrometry results for protein identification after AcK-IP were from pooled samples from 3 independent replicates (as the KO muscles are very scarce). Therefore, there was not a significance test.

      • Figure 7D: What are the MW of the bands shown on this blot? This experiment is by no means sufficient to demonstrate and confirm that ribosomal proteins are acetylated. An increase in RPL30 and RPS13 acetylation must be directly assessed.

      Answer: We thank the reviewer for suggesting the more direct assays to look at RPL30 and RPS13 acetylation. We have shown that the ribosome fractions were indeed hyperacetylated in the Fam210aMKO mouse compared to the WT control (Figure S6D). We agree that this result cannot lead to the conclusion that the RPL30 and RPS13 are specifically hyperacetylated. Indeed, we have tried to use Acetylated lysine antibody pull down and RPS13/RPL30 blot to show the increase in the acetylated RPS13/RPL30 protein. However, we cannot show a robust increase in the acetylation, potentially due to the low number of acetylation sites on RPS13 and RPL30 protein. We therefore have reworded the conclusion in the revised manuscript to better reflect the results.

      • Fig7E: This experiment is not properly executed and in its current state does not rigorously support that "hyper-acetylation of several small ribosomal proteins leads to ribosomal disassembly". A) UV profiles of the fractionation must be provided to assess the quality of the profile. B) Provide MW markers. Which band is RPL30? The Input and free fraction bands are not at the same size. RPL30 should at least be visible on the 60S and polysomes from the WT. C) These results do not match the acetylation MS data, which seem to show that the increase in acetylation is much greater for RPS13. However, RPS13 presence on polysomes (assuming they are polysomes) is not affected in the KO. D) This type of experiment must be done for three independent biological replicates, blots from single lanes must be quantified and normalized to total signal (from all the lanes) for the same antibody.

      Answer: we appreciate the great advice on improving the experiment. As suggested, we have now added proper experimentation (UV profile, and better WB), with the help of Dr. Kotaro Fujii (included as co-author in the revised manuscript). The following results showed that in the 4-week sample, there was a decrease in the 80S monosome and polysome in the Fam210aMKO mice compared to the WT. The change was more drastic at 6-week (Figure 4D-4G). Similarly, due to the scarce amount of muscle in the KO mice, we need to pool samples from the 6-week-old mice for the experiment, and hope the reviewer can understand the situation. With the clear peaks shown in the UV profile as well as the WB results, we provide more convincing evidence that the polysome assembly was indeed impaired in the Fam210aMKO (Figure 4D-4G).

      • Fig 7F: Global translation rates are assessed by puro incorporation at week 4, a time point when differences in protein acetylation were not observed. This does not support the hypothesis that increased acetylation of ribosomal proteins causes defect in protein translation. (Referencing the authors statement p.7 lines 321-24.).

      Answer: We thank the reviewer for this question. When we quantified the protein acetylation increase in the muscle at 4-weeks, we showed that there was a significant increase. But like the reviewer said, the ribosomal fractions were not significantly acetylated by WB at 4-week. We reasoned that, at early stages (4-weeks), the ISR signaling can lead to the translational arrest, along with the polysome formation defects, leading to the decreased protein translation. These are included in the discussion.

      • Other studies have implicated Fam210A in the regulation of mitochondrial protein synthesis through an interaction with EF-Tu. The authors also identified EF-Tu as an interactor in their LC-MS analysis (FigS4). A role for this interaction accounting for mitochondrial and translation defects seems to be underestimated and unexplored here.

      Answer: We agree with this point and believe the cytoplasmic translation defects are in addition to the mitochondrial translational defects. We have shown that FAM210A KO leads to the decrease of the MTCO1 which is encoded by the mitochondrial genome. Besides, we also showed by mitochondrial proteomics that TUFM was reduced in the KO, which also contributed to translational arrest in the mitochondria (Figure 5J). To answer whether mitochondrial encoded proteins are decreased in upon Fam210a KO, we blotted the protein lysates at different stages with antibodies for a few mitochondrial encoded proteins and showed that they decreased with ages (Response Figure 7).

      Response Figure 7. WB analysis and quantification of mitochondrial encoded proteins in WT and Fam210aMKO muscle at different ages.

      The mitochondrial proteins were indeed decreased in Fam210aMKO starting from 6-weeks of age compared to the WT.

      Minor comments:

      -What is known about FAM210A, other studies assessing its role, and the rational for studying its function should be better introduced.

      Answer: We thank the reviewer for the suggestion to have more information of FAM210A functions/mechanisms in the introduction. We have added more background to the introduction.

      -In the discussion the authors states: "Moreover, when the proportion of ribosomal protein phosphorylation buildup in the Fam210aMKO, the assembly of the translational machinery is impaired therefore further dampen the cellular translation". Do they mean acetylation and not phosphorylation?

      Answer: We are sorry about the typo and have changed it. We thank the reviewer for catching this.

      • Please use the term "mRNA translation" or "protein synthesis" instead of "protein translation" in the text.

      Answer: We thank the reviewer for the suggestion to properly refer to these processes. We have changed the terms in the manuscript.

      -The methods section for RT-qPCR: It should ne M-MLV RT and not M-MLC. If the qPCR data was normalized with 18S, please provide the sequence of the primers in the table. Information on how primer efficiency was tested must be included in the method section.

      Answer: We thank the reviewer for pointing this out. We have changed the texts. We also have provided 18S sequence and provide texts about how primer efficiency was tested.

      Reviewer #2 (Significance (Required)):

      General assessment: Previous genome-wide association studies have found that mutations in FAM210A were associated with sarcopenia and osteoporosis. Because FAM210A is not expressed in the bone and highly expressed in skeletal muscle, it suggests that FAM210A likely plays an important role in muscle, which could also affect bone regulation. The authors here provide further evidence of an important role for FAM210A in diseases affecting muscle function by demonstrating that the expression of FAM210A decreases with age and in patients affected by Pompe disease, Duchenne muscular dystrophy and hereditary recessive myopathy. FAM210A is a mitochondria-localized protein and given the crucial role of mitochondria in supporting muscle metabolism, elucidating the molecular function of FAM210A may provide important insights into diseases biology that could lead to the development of therapeutic approaches. Thus, a significant protein and regulatory pathway are explored in this study that can potentially impact human health. In this manuscript, the authors provide compelling evidence of the importance of Fam210a in muscle homeostasis with their newly generate mouse model. The experiments looking at muscle physiology, function and metabolism are well-executed and for the most part rigorous, which are the strengths of this manuscript. However, the conclusion that Fam210a deletion in skeletal muscle induces the hyper-acetylation of several small ribosomal proteins, which leads to ribosomal disassembly and translational deficiency is not supported by the data presented here. As noted in the comments above, these experiments need major improvement. Additionally, there are other concerns about general scientific rigor and conclusions inconsistent with the data presented as also noted in the comments section.

      Advance: Although a previous study explored the role of FAM210A using a skeletal muscle-specific KO induced at postnatal 28 days under a HSA promoter, the model used by the authors here provide a cleaner approach and more insights into the molecular functions of FAM210A in muscle physiology. The findings that Fam210a MKO disrupts the flow of TCA cycle, which leads to an abnormal accumulation of acetyl-CoA is interesting and provide new conceptual advance on the roles of FAM210A in mitochondria function in muscle. Acetyl-CoA production is an important source of acetyl-group that can be transferred to proteins and regulate gene expression programs. Thus, this is an important finding. However, molecular mechanism by which FAM210A regulates this process through an interaction with SUCLG2 is not provided and the nature this interaction is superficially explored.

      Audience: Findings from this manuscript are likely to interest both basic research and translational/clinical audiences as it explores the physiological and molecular function of a disease-linked protein. The findings are also likely to impact the fields of metabolism, mitochondria function and regulation of gene expression by protein acetylation (if concerns raised regarding these experiments are addressed).

      The fields of expertise of this reviewer are protein and RNA modifications, ribosome biogenesis and mRNA translation.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The authors state that in their manuscript "the role of mitochondria in regulating cytosolic protein translation in skeletal muscle cells (myofibers)" has been explored (Line 19-20). As experimental model, they used mice expressing Cre recombinase under the control of the myosin light chain 1 promoter. The first conclusion was that "FAM210A is positively associated with muscle mass in mice and humans". The authors say that the presented data "reveal a novel crosstalk between the mitochondrion and ribosome mediated by FAM210A".

      I recognize the potential of this work since the role of FAM210a has been more deeply investigated in skeletal muscle. In fact, the study by Tanaka et al, 2018 presented only a preliminary characterization of the role of FAM210a in muscle. However, I think that this work is not complete and each aspect that has been investigated is not well connected with each other. In particular, it is not clear whether the disrupted ribosomal assembly by hyperacetylation causes muscle atrophy or it is altered under catabolic states during atrophy (primary cause or consequence of?).

      Answer: We thank the reviewer for recognizing the importance of the study that characterizes the effect of FAM210A in muscle mass maintenance. In this study, we have shown that polysome formation was impaired at 4-week and therefore the translational efficiency was reduced in the muscle. This translational decrease coincides with the acetylation increase. Moreover, we showed by mitochondrial transfer experiment that the mitochondria from the Fam210aMKO mice can carry the phenotype and lead to acetylation increase in the recipient cells. Since muscle protein synthesis defects have been known to lead to muscle dystrophy, and we have shown that in the Fam210aMKO model, protein synthesis was indeed defective while there was not an induction of atrophy. Therefore, we conclude that the in the KO model, the protein synthesis defects lead to muscle atrophy.

      The other major point is represented by the fact that the Myl1-CRE expressing model provides selectivity in fast muscle fibers (see for example Barton PJR, Harris AJ, Buckingham M. Myosin light chain gene expression in developing and denervated fetal muscle in the mouse. Development. 1989;107: 819-824). Then the authors knocked out FAM210a only in fast fibers and they never take in consideration this key point! This is crucial since fast and slow muscles have different content of mitochondria with different size, shape, and metabolism! The muscle fibers can be classified based on the mitochondrial metabolism (see for example Chemello et al., 2019; PMID: 30917329).

      Regarding this point, they simply wrote at Line 75-76 "using a skeletal muscle specific Myl1 (myosin, light polypeptide 1) driven Cre recombinase specifically expressed in post-differentiation myocytes and multinucleated myofibers,...". It would be more correct to write multinucleated type 2 myofibers showing the reduction of FAM210a in different fiber types.

      I think that the authors must solve these aspect and then organize the findings accordingly. The data are in general interesting for broad type of audience.

      Answer:

      We appreciate the reviewer’s comment on the Myl1 knock-in Cre (Myl1Cre) model, which prompted us to more explicitly clarify some of the confusions around this model. We fully respect the validity of the 1989 study by Dr. Buckingham and other studies showing fast muscle specific expression of Myl1. However, we and others have shown that Myl1 not only mark the fast but also the slow myofibers (elaborated below). The discrepancy can be explained by the fact that using the Myl1Cre as a lineage marker is different from directly examining Myl1 expression at static timepoints by in situ hybridization (ISH). This is because Cre recombinase can accumulate and diffuse to all the myonuclei in a multinucleated myofiber, subsequently leading to deletion of LoxP-flanked DNA in all nuclei. Also, in the Cre/LoxP system, only a small amount of Cre recombinase is needed to induce the recombination of the target loxP sites and lead to gene KO. Another example of the discrepancy between the static mRNA pattern and the dynamic gene expression during development is the Hox gene expression. When the corresponding author (SK) of this manuscript was trained with Dr. Joshua R Sanes, he developed 3 Cre lines driven by three different Hox genes– that have been shown by ISH to be expressed in a specific rostral to caudal domain in the spinal cord during development. However, each of these Cre model ended up marking all the spinal cord without any domain specificity. In the case of Myl1Cre mouse model, we have previously published a paper on the lineage-tracing results using the Myl1Cre and showed that Myl1Cre marked all fast AND slow myofibers in mice (Wang et al, 2015, PMID: 25794679). In another lineage tracing study using nuclear GFP reporter, we report that Myl1Cre marks 96% nuclei in myofibers regardless of fiber types (Bi et al., 2016, PMID: 27644105), the remainder 4% non-marked nuclei potentially represent satellite cells. Other groups have also used the Myl1Cre model to induce KO in both fast and slow muscles (Pereira et al, 2020, PMID: 31916679). Therefore, we believe that the Myl1Cre mouse model allows us to efficiently knockout the Fam210a gene in both slow and fast muscle.

      To directly confirm that Fam210a was efficiently knocked out in both slow and fast muscles using the Myl1Cre mouse model, we isolated different muscle groups (Soleus and diaphragm that contains a large fraction of slow myofibers, TA and EDL that contain predominantly fast myofibers) and checked the expression level and the KO efficiency of Fam210a by WB. We have shown that even in slow muscles like diaphragm and SOL, the KO was very efficient, as there were no visible FAM210A bands in the WB (Figure S1C).

      In more detail:

      The data must be analyzed and discussed based on the fact that FAM210a has been deleted specifically in fast fibers. First the authors must show the protein levels of FAM210a in both fast, slow and mixed fast-slow muscles. Then for example in Figure S1C EDL, GAS and SOL muscles must be included.

      Answer: This is related to the misunderstanding of the Myl1Cre model. We understand the reviewer’s concern and therefore isolated proteins from different muscles in WT and Fam210aMKO mice at 4-weeks and checked the expression level of FAM210A. We have shown that regardless of fast or slow muscles, FAM210A was deleted.

      The blot in general must be repeated since it has poor quality (continuum of FAM210a band in the samples).

      Answer: We thank the reviewer for this suggestion and increase the data quality. We have changed the original blot with the following blots showing that FAM210A was not deleted in other non-muscle tissues (Figure S1C).

      Please provide staining of TA, GAS and SOL muscles to show how Myl1CRE-directed deletion of FAM210a affect the different myofibers.

      Answer: This point is also related to assumption that Myl1Cre only induce deletion in fast myofibers. We have done staining in both EDL and SOL muscle to show the relative changes in myofiber compositions. We found that the myofibers in EDL and SOL muscle have shifted to a more oxidative type upon Fam210a KO (Figure S3).

      In Figure 2F where decreased TA muscle weight was showed in the Fam210aMKO mice, the authors must include also the other muscles (EDL, GAS and SOL).

      Answer: We thank the reviewer for helping us be more rigorous on the phenotype examination. We understand that the reviewer initially raised this question because of the concern on Myl1Cre model. Now that we have shown the MylCremarks both the fast and slow muscles, we believe this question is no longer a concern. Besides, to indirectly answer the question, we would like for the reviewer to appreciate the size difference of the EDL as well as the SOL muscle in Figure S3 in the manuscript. As can be seen from the images, the size of the SOL muscles in the KO was significantly reduced compared to the WT, speaking in favor of the KO effect on slow muscles.

      In general, since the HSA-CRE model is generally used for gene manipulation in skeletal muscles the authors must characterize their model considering that the myosin light chain 1 promoter Myl1-Cre is mainly active in postmitotic type II myofibers. The last model can also give advantage for mosaic gene manipulation in muscles with mixed fiber types.

      Answer: We thank the reviewer for bringing this point up. We hope by the multiple lines of evidence that we provided in the previous questions, we can convince the reviewer that the KO model using the Myl1Cre does not lead to a mosaic gene manipulation in the muscle. On the contrary, the KO model is a homogeneous KO in both fast and slow muscles.

      Line 118-119 Fam210a level is positively corelated with muscle mass, as it is reduced in muscle atrophy conditions and increased in muscle hypertrophy conditions. Fig 1: I don't like since there are many different models in which the muscle mass reduction is associated with different mechanisms. Then independently of mechanisms associated with changes in muscle mass Fam210a is always linked to? Which common mechanism can explain this?

      Answer: We understand that the reviewer would like to pursue a conserved mechanism governing muscle mass maintenance, however, we by no means wanted to make a direct causal relationship between FAM210A level and different muscle disease/atrophy conditions. Indeed, the atrophic conditions presented have different mechanisms leading to muscle mass reduction, yet we wanted to present the possible connection that Fam210a level and muscle mass are co-regulated, and we later confirmed by KO mouse model that FAM210A KO indeed reduces muscle mass.

      Line 144-146 Hematoxylin and eosin (H&E) staining did not reveal any obvious myofiber pathology in the Fam210aMKO mice up to 8 weeks (Figure 2G). I totally disagree! It seems that there is more inflammation upon deletion of Fam210aMKO. Please check it.

      Answer: We thank the reviewer for pointing this out to help us more rigorously describe our results. We have changed the wording to better reflect the changes observed with H&E images.

      Fig3E-L there is a huge difference between EDL and SOL. The authors can't avoid to discuss their data considering the real expression of CRE upon Myl promoter: specific deletion in fast fibers. I think that the data in FIGS3 are very important and must be linked to data in Fig3. Organize in a different way all the presented data to really describe what is happening upon deletion of Fam210a.

      Again, the authors MUST organize better their data in the manuscript: to each paragraph must correspond data in the main figures. For example: at Line 189 Fam210aMKO mice exhibit systemic metabolic defects and at Line 208 Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers. These two paragraphs discuss data showed only in supplementary figures.

      Answer: We thank the reviewer for this suggestion. As shown in the previous responses, the Myl1Cre indeed induce efficient deletion of Fam210a in slow muscles. Therefore, we did not consider this to be a myofiber-specific deletion model. We consider these two results as the effect of a mitochondrial protein (FAM210A) on the myofiber metabolism (independent of myofiber type specific deletion), and that the deletion of Fam210a results in mitochondrial stress, which can lead to myofiber switch (Figure S3).

      Physical activity mast be monitored. Show respiratory exchange ratio (RER = VCO2/VO2) and discuss the results.

      Answer: We thank the reviewer for this suggestion. By these results, we would like to demonstrate that muscle homeostasis is important for the systemic metabolism, disruption of muscle mass maintenance in the Fam210aMKO mice leads to defects in the whole-body metabolism. We have now included the RER results (Figure S2F, S2G). The results show that the Fam210aMKO mice had significantly lower RER (VCO2/VO2) value at daytime, indicating that the mice rely more on utilizing fat as the fuel source. This is consistent with the proteomics results (Figure 5K) that the Fam210aMKOmice have increased FAO pathway. Unfortunately, our metabolic chamber does not have the capacity to monitor activity. We instead include data on heat production (Figure S2E).

      "Fam210aMKO increases oxidative myofibers and decreases glycolytic myofibers". The data mast be associated with the evaluation of the expression levels of FAM210 in different fiber type to really understand what is happening upon FAM210a loss.

      Answer: We understand the reviewer’s concern on the different expression level of Fam210a as well as the KO efficiency using the Myl1Cre model. We have shown that Fam210a is knocked out in fast and slow muscles, therefore, we did not consider the effects on fast and slow myofibers separately.

      As SDH activity in type 1 fibers is higher than type 2 the and since the authors are using a model in which Fam210a is deleted only in type 2 fiber they should understand what is happening: fiber 1

      Answer: We agree with the reviewer that the SDH activity is different in different myofibers. We have shown by western blot that FAM210A was similarly KO in both fast and slow muscles. When we performed fiber type staining in EDL and SOL muscle, we saw that there was a shift towards the slower myofiber types both in the EDL and SOL muscle, due to mitochondrial defects.

      Associate a cox assay with the sdh assay

      Answer: We thank the reviewer for this suggestion. We have shown by SDH staining as well as seahorse experiments using isolated mitochondria that the complex II activity was impaired in the muscle. We understand the reviewer would like to see a COX assay to show the defects of the mitochondrial function. Though we were not able to perform the COX assay, we showed from other aspects that the mitochondrial function was impaired by running WB of the mitochondrial encoded proteins (ATP6, MTCO2, mtCYB) and showed these proteins were decreased with ages. Along with the morphological changes of the mitochondria shown by electron microscope (Figure 5 and Figure S5), we conclude that these changes must have impacted mitochondrial function.

      Figure 4b blot tubulin and FAM210a look strange. Look especially at first and second and fourth form the left side.

      Answer: We are sorry about the mistake in the images, we have changed the Tubulin blot in the Oxphos blots.

      Figure 4B OXPHOS protein levels look similar between wt and KO. Include the quantification with the significance (min 3-5 mice per genotype).

      Answer: we have quantified the change between WT and KO on different proteins (Reponse Figure 8).

      Response Figure 8. Quantification of the OxPHOS proteins in WT and Fam210aMKO muscle at different ages.

      Quantification of the blots showed that indeed the mitochondrial proteins were decreased in the Fam210aMKO. The change of mitochondrial encoded protein MTCO1 was earlier detected in the Fam210aMKO.

      Provide TEM analysis for SOL muscle. I would understand whether mitochondria are differently affected in fast and slow muscles.

      Answer: We understand the reviewer was originally concerned about the KO efficiency of Fam210a in fast and slow muscles, based on the assumption about the MylCre model. We have shown that the FAM210A protein was similarly depleted in both fast and slow muscles by western blot. In this case, we would speculate that the mitochondrial change in fast and slow muscles would be similar because the mitochondrial changes were due to the inherent defects in the mitochondria.

      In all experiments must be clear which muscle type or types was/were used:

      Line 268: "isolated from WT and Fam210aMKO muscles at 6 weeks of age".

      Line 587 "Muscle lysate acetyl-CoA contents"

      For Seahorse Mitochondrial Respiration Analysis at Line 599 "isolated mitochondria from muscle"

      For TCA cycle metabolomics at Line 615 "muscle tissue was weighed and homogenized"

      For SCS activity assay at Line 632 "mitochondria from muscles were isolated"

      For LC-MS/MS at Line 647 "Mitochondria were purified from skeletal muscles and subjected to proteomics analysis".

      For Ribosome isolation at Line 676 "Skeletal muscle from mice"

      For Polysome profiling experiment at Line 696 "muscle tissues from mice were dissected"

      It is important to know which muscles were used since confounding effects of the specific deletion of FAM210a in type 2 fibers must be identified and discussed.

      Answer: We thank the reviewer for considering the different muscle groups in our mouse model. For experiments requiring a large amount of muscle tissue, such as ribosome isolation, mitochondrial isolation and polysome profiling, we used all the muscles from the mouse. For WB experiments, we used the TA muscle. We have included this information in the method section in the manuscript. Since we have shown that FAM210A was similarly depleted in different muscles (see previous responses), we think it is justified to pool muscles from the same mouse.

      Line 296-297 The authors wrote "Consistently, the mRNA levels of Atf4, Fgf21 and the associated transcripts were highly induced in the Fam210aMKO 296 both in the 4-week and 6-week-old muscle samples". Is Fgf21 responsible for the reduction of body weight? (see for example PMID: 28552492, PMID: 28607005 and PMID: 33944779). Measure the circulating Fgf21 protein in Ko and wt mice.

      Answer: We thank the reviewer for this great suggestion. Indeed, Fgf21 can potentially lead to body weight reduction, and this can explain the smaller body weight in our mouse model as well. However, we are more concerned about the muscle changes in our mouse model, therefore we did not further validate the changes of Fgf21 in the circulation.

      After careful considerations on the mechanism proposed in the study, we decided to remove qPCR data showing the modest increase of Fgf21 mRNA level. The removal of this data will not change the conclusions we draw nor lessen the significance of the mitochondria transfer experiment.

      Moreover the authors must check Opa1 total protein level and also the ratio between long and short isoforms. Is Fam210a interacting with Opa1?

      Answer: We thank the reviewer for this interesting question. Another publication from our lab has shown that Fam210a can modulate the cleavage of OPA1 in brown adipose tissue and influence the cold-induced thermogenesis (PMID: 37816711). Indeed, OPA1 deletion in muscle can lead to muscle atrophy and postnatal death at about day 10 (PMID: 28552492) through the induction of UPR (ISR) and the induction of Fgf21. We did not check the interaction between FAM210A and OPA1 in the muscle context, and FAM210A was not found to be interacting with OPA1 in brown adipose tissue (PMID: 37816711). However, the focus of this study was the acetylation change and the FAM210A effect on muscle mass maintenance. Therefore, we did not pursue the OPA1 related mechanism in skeletal muscle.

      The final part of the paper is really interesting but need to be discussed knowing exactly the used experimental model. Then check in which fiber types FAM210a is loss.

      Answer: We thank the reviewer for the stringency on the model used. Indeed, the mitochondria can be different from different muscle groups. However, since the muscle isolated from WT and KO mice was properly controlled and therefore can balance the effects of different mitochondria. We have consistently observed the increased acetylation when mutant mitochondria were transferred.

      Regarding the mitochondrial transplantation I'm surprise to see that it happens in the direction of unhealthy mitochondria to healthy cells. Are you able to rescue the phenotype of Fam210a KO cells with healthy mitochondria?

      Answer: We thank the reviewer for bringing this interesting yet important question up! Our mitochondrial transfer results support a “gain-of-function” model where excessive Acetyl CoA produced by the Fam210a-KO mitochondrial induces hyperacetylation. Regarding the question to transfer healthy mitochondria to rescue the KO cells, we reason that even when we transfer the healthy mitochondria to the KO cells, the healthy mitochondria will not stop the mutant mitochondria from making excessive amounts of acetyl-CoA and thus protein acetylation. A clean transfer would require depletion of the mitochondria in the KO cells and concomitant restoring FAM210A level in the KO cells (as the lack of Fam210a gene in the KO cells will eventually convert the transferred mitochondrial into mutants with the normal turnover of FAM210A). This is technically highly challenging and nearly impossible to do. We hope that the reviewer can understand the difficulties.

      Reviewer #3 (Significance (Required)):

      In conclusion, the strength of the presented paper is the novelty: the authors explored the role of FAM210a in skeletal muscle. However, the major limitation is represented by the fact that they did not show in which fiber types Fam210a is knocked out. In fact, the used CRE recombinase expressing model is well-known to be specific for type 2 fibers. Then since mitochondria and metabolism are central in this manuscript and they are different in the fast and slow fiber types, the authors must dissect in details this point.

      Moreover, there are many data but they are not linked each other and discussed properly. The paper must be completely re-organized.

      This manuscript can be interesting for a broad type of audience.

      I'm an expert on mitochondria, metabolism and skeletal muscle.

  5. Mar 2024
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their comments on our manuscript. We have attempted to address all the points raised by the reviewers and are happy to note that the manuscript is significantly strengthened with the additional experiments that we have performed and from significant restructuring of the manuscript.

      Reviewer #1

      Major Comments

      1. The choice of cells looks confusing. Drosophila are indeed widely used in research of neurodegeneration mechanisms, since they well reflect the behavioral characteristics of a wide range of brain diseases, but why authors used insect immune cells to study the effect of mHTT on cellular processes? Huntington's disease has a well-established site of origin, in the spiny neurons of the striatum, and they certainly have a different protein context than in insect cells. __Author's response: __We thank the reviewer for this comment. Patients with Huntington's disorder display a variety of symptoms affecting peripheral, non-neuronal cells, including alterations in the function of immune cells. Hemocytes isolated from Drosophila expressing pathogenic forms of Huntingtin also display altered immune responses. Through our manuscript we explore the effect of Huntingtin aggregates on cellular functions of hemocytes. Additionally, we have now included data showing that we are able to observe similar phenotypes in mammalian cells such as neuronal SHSY5Y and HEK293T (Supp. Fig. 3). This is indicative of similar effects being exerted by Huntingtin aggregates across cell types and organisms. Finally, we demonstrate that we are able to rescue neurodegeneration in the fly eye upon overexpression of either Hip1 or components of the Arp2/3 complex (Fig. 4F), further solidifying our results that Huntingtin aggregates alter CME in an actin-dependent manner and that this largely is responsible for the toxicity. This validates our observations that effects on CME appear to be independent of cell type and that non-neuronal cells such as hemocytes can also be used to study the effects of pathogenic aggregates.

      The interrelationship between mutant huntingtin and actin cytoskeleton and clathrin-mediated endocytosis that are convincingly demonstrated in other earlier studies in the m/s are described in rather morphological level and there is no description of molecular interactions of proteins belonging to three systems considered, Htt (control vs mutant), actin cytoskeleton and CME. Lack of these data renders the morphological observations unsupported

      __Author's response: __Previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, is has also been observed that loss of Huntingtin results in altered organization of the actin cytoskeleton. We have now added points discussing this in the results section.

      Three last figures of total eight demonstrate the effect of proteins, responsible for the initiation of certain neurodegenerative pathologies, on the activity of clathrin-mediated endocytosis, and on the properties of actin cytoskeletal system, however neither in the abstract nor in the introduction there is no any word about these proteins; in the discussion only a few words are devoted to one of these proteins TDP-43. When starting the article, did the authors plan to enter this data into the manuscript?

      __Author's response: __We have now amended this by revising the abstract and the text.

      It is important to work on the style of the manuscript, the article is difficult to read, it is a collection of data that does not seem related to each other.

      __Author's response: __We have reorganized the manuscript and have improved on the flow to make it easier for the reader. We apologize for the rather tedious and confusing flow in the previous draft.

      Reviewer #2

      This manuscript endeavours to explore the link between mutant Huntingtin, clathrin-mediated membrane transport and the actin cytoskeleton: both its dynamics and overall mechanics. As I read it, it carries the interesting idea that pathogenic protein aggregates alter actin cytoskeletal dynamics by sequestering Arp2/3 nucleator. This has two consequences in the authors' experiments: disruption of clathrin-coated vesicle movement and an increase in cellular stiffness. An interesting question is whether these two effects are related: Is the disruption of vesicular movement due to the change in cytoplasmic stiffness? Or could they be features that both reflect the underlying change in actin dynamics. This may be hard to tease apart and beyond the purview of this manuscript.

      I have some suggestions that could strengthen the MS.

      Major Comments

      1. Further characterizing Arp2/3 sequestration. The notion seems to be that actin nucleators would be sequestered (and inactivated) by mutant protein aggregates, as supported by co-localization studies. In addition, could the authors:
      2. a) Test if the dynamics of Arp2/3 are altered, comparing e.g. Arp3-GFP FRAP in the aggregates vs that elsewhere. Author's response: We indeed attempted the FRAP experiment. However due to some technical difficulties we were not convinced by the extent of FRAP in the transgenic fly line. It appeared as an artifact and we were not comfortable including the data in the manuscript. We have instead provided example files for the reviewer to examine.

      3. b) Test more directly if actin nucleation is altered in cells that have pathogenic mutant aggregates. This could be done by barbed-end labelling (e.g. measuring incorporation of labelled actin in live cells that are lightly permeabilized with saponin). __Author's response: __We have performed barbed-end labeling for HTT Q15 and HTT Q138 expressing cells. Images and quantification have now been added to the revised manuscript as Figures 2H and 2I. While this was a challenging experiment, it was deeply satisfying to observe such dramatic changes indicating a change in the state of the actin cytoskeleton.

      Does manipulating actin nucleation alter cellular mechanics as it does for clathrin-coated vesicle transport? For example, does inhibition of Arp2/3 (e.g. with CK666) increase cellular stiffness and would stiffness be amelioriated in mutant cells if Arp3 is overexpressed?

      __Author's response: __We have used LatA to look at whether alteration in the actin cytoskeleton affects cellular stiffness. We found that disruption of the actin cytoskeleton leads to a decrease in cellular stiffness in WT as well as in HTT Q138 expressing cells (shown in Figure 5 and discussed in the results section). We have also now performed AFM on CK666 treated cells and showed that treatment of CK666 leads to a decrease in cellular stiffness similar to LatA treated cells. This further strengthens our hypothesis that a 'Goldilocks' state of actin remodeling and consequently cellular stiffness is required for CME to proceed. We have not performed AFM on cells overexpressing Arp2/3 in HTT Q138 background. However, we believe that it will rescue cellular stiffness as overexpression of Arp2/3 rescues filopodia formation in HTT Q138 expressing cells (Figure 4E) as well as neurodegeneration. AFM data obtained from CK666 treated cells is now added in Supplementary figure 8.

      Although it may be difficult to determine if the defect in vesicle transport is due to the change in rheology, I wonder if the authors could reinforce their analysis by showing the overall relationship between the two features. It would be interesting if they could plot CCV velocity against elasticity for all the various conditions that they have tested. Would this cumulative analysis be informative?

      __Author's response: __This data is already present across the manuscript as part of different figures. We are not sure whether we can reuse the same data to put it as part of a different figure which plots the relationship between elasticity and CCS velocity. We would be grateful for advice on whether this is allowed and how to mention that the data is also part of different figures.

      Focus of the MS. I think that the MS is a little longer and more discursive than it needs to be. I rather struggled to find the focus of the story (which could well be me). There is a deal of repetition that could be profitably cut (the reader may actually find it easier to follow). As well, some anticipation and summaries could be shortened. The final paragraph of the introduction largely summarizes the paper; it could be shortened quite considerably, so that the reader can get directly into the Results themselves. Similarly, the final paragraph of the results is a summary which could work better elsewhere - perhaps, e.g. at the beginning of the discussion.

      __Author's response: __We have now trimmed and rearranged the text in the manuscript. We have reorganized the manuscript and have improved on the flow to make it easier for the reader. We apologize for the rather tedious and confusing flow in the previous draft. We are open to further suggestions to improve the writing style.

      Specific points

      i) Fig 3E. The changes in F-actin flow revealed by PIV are quite dramatic. How reproducible are these changes. (The data presented were from single cells?) __Author's response: __ Changes in F- actin flow obtained from PIV analysis (now figure 2J, 7E in MS) were performed on atleast 5 cells of each type, and the results were observed to be consistent across all. The representative figure is a true representative of the data observed.

      1. ii) If TPD43, does it also affect Arp2/3? Author's response: __We thank the reviewer for this comment. Unfortunately, __we could not perform this experiment due to the unavailability of a fluorescently tagged TDP43 fly line which which would enable us to visualize whether Arp3 was sequestered within the aggregates.

      Minor points:

      1. a) Fig 5a, b - why change the order on the x-axis? __Author's response: __We have fixed this now. We have removed figure 5b, since, in the revised MS we are only talking about stiffness instead of viscoelastic properties of the cells.

      Reviewer #2

      Overall, I think that the significance of the MS lies in its evidence that sequestration of actin nucleators may be a key effect of mutant protein aggregation, with implications for cellular function. This would provide a useful conceptual framework to understand the cell biological consquences of creating pathogenic protein aggregates.

      __Reviewer #3 __

      Summary

      In the paper, the authors showed that huntingtin aggregates, which play a critical role in initiating neurodegenerative diseases, impair clathrin-mediated endocytosis (CME). Using live cell imaging and AFM, the authors demonstrated that CME is affected by the alteration in actin cytoskeletal organization and cellular viscosity. Further, the authors concluded that there was a strong link between dynamic actin organization and functional CME in the context of neurodegeneration. While the data is interesting and novel, the study in its current form needs major revision before it is accepted.

      Major comments:

      1) Figure 2: The authors should show the compromised actin cytoskeleton structure after Lat A and cytoD treatment to back up the findings.

      __Author's response: __We have included the representative micrographs of compromised cytoskeleton in terms of filopodia formation upon treatment of LatA and CytoD in Supplementary figure 3E.

      2) Figure 2g and 2h: Quantification data of filopodia must be supported with representative images.

      __Author's response: __Figure number has been changed to 2D and 2E. Representative image for the quantification of filopodia has been now included in supplementary figure 3D.

      3) RNAi studies must be performed using control siRNA to check off-target effects.

      __Author's response: __Luc VAL10 was used as a control for all the RNAi experiments. However, data for RNAi is not shown as the phenotype for Luc VAL10 was comparable to WT. We have included Luc VAL10 as a control for Profilin RNAi in the FRAP experiment (Supplementary figure 4C).

      4) The result section needs to be reorganized to maintain flow. In the current format, the results of a similar set of experiments are spread across different figures, making it a bit difficult to understand.

      __Author's response: __We apologize for the inconvenience. This issue has been addressed now.

      5) Figure 3d: The expression level and spatial distribution of HTTQ138 transfection were not convincing compared to the httQ15 expression level and the distribution.

      Author's response Figure 3D (Figure 3A in this MS) shows the data obtained from hemocytes isolated from third instar larva of the same age. These are not transfected cells and are obtained from Drosophila larvae using the same Gal4 driver, Cg-Gal4. Thus, the level of expression will be same. However, the distribution may show a change due to the aggregating nature of HTT Q138, while HTT Q15 is non-aggregating and therefore remains diffused.

      6) Suppl Fig 2a data must be supported using images showing myosin VI distribution in wild-type vs. HTTQ138 transfected cells.

      __Author's response: __This data (Supplementary figure 4D in present MS) has been obtained from genetic knockdown of myosin VI. The aim of the experiment was to show that we see similar effects on CCSs movement as we see upon disruption of the actin cytoskeleton.

      7) Suppl movie videos are not labeled correctly in the source. It is not possible to locate them and know which videos are referred to in the manuscript.

      __Author's response: __We apologize for the inconvenience. This issue has been fixed now.

      8) Page 8: How do HTT aggregates sequester the actin-binding proteins? An explanation should be provided in the result section.

      __Author's response: __Previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, the types of proteins involved in actin remodelling are diverse and do not represent specific types or classes. We have now added points discussing this in the results section.

      9) Page 10: The authors concluded that "increasing the availability of proteins involved in actin reorganization is capable of restoring CME even in the presence of pathogenic aggregates." Since several actin-associated proteins are involved in actin reorganization, which types/classes of proteins are involved in CME restoration? The authors should expand it in the discussion.

      __Author's response: __As we have only investigated the roles of Hip1 and the Arp2/3 complex, we are confident of only reporting their roles in the context of this manuscript. However, previous data shown in Hosp et al, 2017 indicates that a large number of proteins involved in both actin remodelling and clathrin mediated endocytosis are sequestered within Huntingtin aggregates. While the mechanism of sequestration remains unknown, the types of proteins involved in actin remodelling are diverse and do not represent specific types or classes. Therefore this indicates that modulation of actin, through the sequestration of proteins involved in this process is affected in the presence of Huntingtin aggregates. We have added points detailing this in the results and discussion sections.

      10) The schematic of the proposed model depicting critical steps by which pathogenic proteins inhibit CME is required. It will help readers to understand the molecular mechanism easily.

      Author's response: We have now included a model in the manuscript (Fig. 8B).

      Minor:

      1) Figure panel referencing in the text needs to be more consistent, for example, fig 3e is referred to before fig 3d., and fig 2 panels are referred to before fig. 3 panels.

      __Author's response: __We have reordered the figures and maintained a consistent order throughout.

      2) The authors should use similar phrasing throughout the manuscript to avoid confusion. For instance, either use 'HTTQ138' or 'htt Q138'.

      __Author's response: __We apologize for this. We have now maintained uniform nomenclature through the text.

      3) Page 10: AFM indentation experimental part and its discussion in the result section is unnecessary. Shift it to the 'Materials and Method' section.

      __Author's response: __We have now trimmed this portion and we are now only showing elasticity data and not viscoelasticity.

      4) This statement looks a bit exaggerated. There is not sufficient evidence to support the statement- "It can be said that the cells in general behave like a soft glass. The presence of aggregates lowers the effective temperature pushing it nearer to the glass transition, affecting transport."

      __Author's response: __We have now removed all figures resulting from an analysis that assumes glassy behaviour. Instead, we have now provided a more conventional and well-established analysis to obtain Young's modulus of cells exhibiting different transport properties.

      5) Page 12: What is the basis for selecting proteins Aβ-42, FUSR521C, αSynA30P, αSynA53T, and TDP-43 over other proteins? An explanatory sentence must be added to support the selection.

      __Author's response: __We have modified the text to clarify this point.

    1. The social media platform itself is run with computer programs, such as recommendation algorithms (chapter 12).

      As a student majoring in communication, I am very interested in recommendation algorithms. Because we will find that many times Tik Tok or other software will push us things we like to watch or what we have searched for will always push us relevant content. Sometimes after browsing some clothing, you will even find discounts on the same items in other software. I think this is a good marketing tool but it may have some drawbacks. I am looking forward to studying chapter 12.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to Reviewers

      We are grateful to the three reviewers for their careful and constructive critiques of our preprint. We will address all of their comments and suggestions, which help to make our paper more precise and understandable. In our replies, we use 'Patterson, eLife (2021)' as shorthand for Patterson, Basu, Rees & Nurse, eLife 2021:10.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)): Novák and Tyson present a model-based analysis of published data that had claimed to demonstrate bistable activation of CDK at the G2/M transition in fission yeast. They point out that the published data does not distinguish between ultra-sensitive (switch-like, but reversible) and bistable (switch-like, but irreversible) activation. They back up their intuition with robust quantitative modeling. They then point out that, with a simple experimental modification, the published experiments could be repeated in a way that would test between the ultra-sensitive and bistable possibilities.

      This is an accurate and concise summary of our paper.

      Therefore, this is a rare paper that makes a specific modeling-based prediction and proposes a straightforward way to test it. As such, it will be of interest to a broad range of workers involved in the fields cell cycle and regulatory modeling.

      We agree that our work will be of interest to a broad range of scientists studying cell cycle regulation and mathematical modeling of bistable control systems.

      Nonetheless, attention to the following points would improve the manuscript. The authors should be more careful about how they describe protein abundance. They often refer to protein level. I believe in every case they mean protein concentration, but this is not explicitly stated; it could be interpreted as number of protein molecules per cell. The authors should either explicitly state that level means concentration or, more simply, use concentration instead of level.

      A valid criticism that has been addressed in the revised version.

      The authors should explain why they include stoichiometric inhibition of CDK by Wee1 in their model. Is it required to make the model work in the wild-type case, or only in the CDK-AF case? My intuition is it should only be required in the AF case, but I would like to know for sure. Also, they should state if there is any experimental data for such regulation.

      Bistability of the Tyr-phosphorylation switch requires 'sufficient' nonlinearity, which may come from the phosphorylation and dephosphorylation reactions that interconvert Cdk1, Wee1 and Cdc25. The easiest way to model these interconversion reactions is to use Hill- or Goldbeter-Koshland functions for the phosphorylation and dephosphorylation of Wee1 and Cdc25, but this approach is not appropriate for Gillespie SSA, which assumes elementary reactions. Both Wee1 and Cdc25 are phosphorylated on multiple sites, which we approximate by double phosphorylation; but this level of nonlinearity is not sufficient to make the switch bistable. In addition, stochiometric inhibition is a well-known source of nonlinearity, and in the Wee1:Cdk1 enzyme:substrate complex, Cdk1 is inhibited because Wee1 binds to Cdk1 near its catalytic site. In our model, stoichiometric inhibition of Cdk1 by Wee1 is required for bistability even in the wild-type case because the regulations of Wee1 and Cdc25 by phosphorylation are not nonlinear enough. There is experimental evidence that stoichiometric inhibition of Cdk1 by Wee1 is significant: mik1D wee1ts double mutant cells at the restrictive temperature (Lundgren, Walworth et al. 1991) are less viable than AF-Cdk1 (Gould and Nurse 1989). Furthermore, Patterson (eLife, 2021) found weak 'bistability' when they used AF-Cdk1 to induce mitosis. This puzzling observation suggests a residual feedback mechanism in the absence of Tyr-phosphorylation. Our model accounts for this weak bistability by assuming that free CDK1 can phosphorylate and inactivate the Wee1 'enzyme' in the Wee1:Cdk1 complex, which makes CDK1 and Wee1 mutual antagonists. This reaction is based on formation of a trimer, Cdk1:Wee1:Cdk1, which is possible since CDK1 phosphorylation of Wee1 occurs in its N-terminal region, which lies outside the C-terminal catalytic domain of Wee1 (Tang, Coleman et al. 1993). These ideas have been incorporated into the text in the subsection describing the model (see lines120-125).

      The authors should explicitly state, on line 131, that the fact that "the rate of synthesis of C-CDK molecules is directly proportional to cell volume" results in a size-dependent increase in the concentration of C-CDK.

      The accumulation of C-CDK molecules in fission yeast cells is complicated. In general, we may assume that larger cells have more ribosomes and make all proteins faster than do smaller cells. Absent other regulatory effects, the number of protein molecules is proportional to cell volume, and the concentration is constant. But, in Patterson's experiments, the number of C-CDK molecules is zero at the start of induction and rises steeply thereafter (see lines 147-148), and the rate of increase (#molec/time) is proportional to the size of the growing cell.

      The authors should explain, on line 100, why they are "quite sure the bistable switch is the correct interpretation".

      Line 105-106: "Although we suspect that the mitotic switch is bistable,.."

      On line 166, include the units of volume.

      Done

      On lines 152 and 237, "smaller protein-fusion levels "should be replaced with "lower protein-fusion concentrations".

      Done

      **Referee cross-commenting** *I concur with the other two reviews. *

      Reviewer #1 (Significance (Required)): *The paper is significant in that it points out an alternative interpretation for an important result in an important paper. Specifically, it points out that the published data is consistent with activation of CDK at the G2/M transition in fission yeast could be ultra-sensitive (switch-like, but reversible) instead of bistable (switch-like, but irreversible). The distinction is important because it has been claimed, by the authors of the submitted manuscript among others, that bistability is required for robust cell-cycle directionality. *

      We agree with this assessment.

      However, activation of CDK at the G2/M transition in other species has been shown to be bistable and the authors state that they are "quite sure the bistable switch is the correct interpretation". So, the paper is more likely an exercise in rigor than an opportunity to overturn a paradigm.

      We were the first authors to predict that the G2/M switch is bistable (J. Cell Sci., 1993) and among the first to prove it experimentally in frog egg extracts (PNAS, 2004). Our models (Novak and Tyson 1995, Novak, Pataki et al. 2001, Tyson, Csikasz-Nagy et al. 2002, Gerard, Tyson et al. 2015) of fission yeast cell-cycle control rely on bistability of the G2/M transition; so, understandably, we believe that the transition in fission yeast is a bistable switch. But the 'bistable paradigm' has never been directly demonstrated by experimental observations in fission yeast cells. The Patterson paper (eLife, 2021) claims to provide experimental proof, but we demonstrate in our paper that Patterson's experiments are not conclusive evidence of bistability. Furthermore, we suggest that a simple change to Patterson's protocol could provide convincing evidence that the G2/M switch is either monostable or bistable. We are not proposing that the switch is monostable; we would be quite surprised if the experiment, correctly done, were to indicate a reversible switch. Our point is simply that the published experiments are inconclusive. The point we are making is neither a mere 'exercise in rigor' nor a suggestion to 'overturn a paradigm.' Rather it is a precise theoretical analysis of a central question of cell cycle regulation that should be of interest to both experimentalists and mathematical modelers.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)): Summary: The manuscript asks whether the data reported in Patterson et al. (2021) is consistent with a bistable switch controlling the G2/M transition in fission yeast. Patterson et al. (2021) use an engineered system to decouple a non-degradable version of Cyclin-dependent kinase (CDK) from cell growth and concomitantly measure CDK activity (by the nuclear localization of a downstream target, Cut3p). They observe cells with indistinguishable CDK levels but two distinct CDK activities, which they posit shows bistable behavior. In this study, the authors ask if other models can also explain this data. The authors use both deterministic and Gillespie based stochastic simulations to generate relationships between CDK activities and protein levels for various cell sizes. They conclude that the experiments performed in Patterson et al. are insufficient to distinguish between a bistable switch and a reversible ultrasensitive switch. They propose additional experiments involving the use a degradable CDK construct to also measure the inactivation kinetics.

      This is an accurate summary of our paper.

      They propose that a bistable switch will have different forward (OFF->ON) and backward (ON->OFF) switching rates. A reversible ultrasensitive switch will have indistinguishable switching rates.

      Our analysis of Patterson's (2021) experiments is based on the well-known fact that the threshold for turning a bistable switch on is significantly different from the threshold for turning it off (in Patterson's case, the 'threshold' is the level of fusion protein in the cell when CDK is activated), whereas for a reversible, ultrasensitive switch, the two thresholds are nearly indistinguishable. The 'rate' at which the switch is made is a different issue, which we do not address explicitly. In the experiments and in our model, the switching rates are fast, whether the switch is bistable or monostable. The results are interesting and worth publication in a computational biology specific journal, as they might only appeal to a limited audience.

      We think our results should also be brought to the attention of experimentalists studying cell cycle regulation, because Patterson's paper (eLife, 2021) presents a serious misunderstanding of the existence and implications of 'bistability' of the G2/M transition in fission yeast. Whereas Patterson's work is an elegant and creative application of genetics and molecular biology to an important problem, it is not backed up by quantitative mathematical modeling of the experimental results. In that sense, Patterson's work is incomplete, and its shortcomings need to be addressed in a highly respected journal, so that future cell-cycle experimentalists will not make the same-or similar-mistakes.

      Several ideas need to be clarified and additional information needs to be provided about the specific parameters used for the simulations: Major comments: #1 The parameters need to be made more accessible by means of a supplementary table and appropriate references need to be cited.

      Two new supplementary tables (S1 and S2) summarize the dynamic variables and parameter values.

      It is not clear why Michaelis Menten kinetics will not be applicable to this system. Has it been demonstrated that the Km s of the enzymes are much greater than the substrate concentrations for all the reactions? If yes, please cite.

      MM kinetics are not appropriate for such protein interaction networks because one protein may be both an enzyme and a substrate for a second protein (e.g., Wee1 and CDK, or Cdc25 and CDK). So, the condition for validity of MM kinetics (enzyme concen ≪ substrate concen) cannot be satisfied for both reactions. Indeed, enzyme concen ≈ substrate concen is probably true for most reactions in our network. Hence, it is advisable to stick with mass-action rate laws. Furthermore, MM kinetics are a poor choice for 'propensities' in Gillespie SSA calculations, as has been shown by many authors (Agarwal, Adams et al. 2012, Kim, Josic et al. 2014, Kim and Tyson 2020).

      It will not be surprising if the simulation with Michaelis Menten would alter the dynamics shown in this study. A reversible switch with two different enzymes (catalyzing the ON->OFF and OFF->ON transitions) having different kinetics can give asymmetric switching rates. This would directly contradict what has been shown in Figure 7A-D.

      We don't follow the reviewer's logic here. The two transitions, off → on and on → off, are already driven by different molecular processes (dephosphorylation of inactive CDK-P by Cdc25 and phosphorylation of active CDK by Wee1, respectively). Positive feedback of CDK activity on Cdc25 and Wee1 (++ and −−, respectively) causes bistability and asymmetric switching thresholds. Switching rates, which are determined by the kinetic rate constants of the up and down processes, are of secondary importance to the primary question of whether the switch is monostable or bistable.

      #2 Line 427: The authors use a half-time of 6 hours in their model as Patterson et al. used a non-degradable construct. It is not clear why dilution due to cell growth has not been considered. The net degradation rate of a protein is the sum of biochemical degradation rate and growth dilution rate. The growth dilution rate seems significant (140 mins doubling time or 0.3 h-1 dilution rate) relative to assumed degradation rate (0.12 h-1). Please clarify why was the effect of dilution neglected in the model or show by sensitivity analysis this does not change the predicted CDK activation thresholds.

      The reviewer highlights an important effect, but it is not relevant to our calculations. In the deterministic model used to calculate the bifurcation diagrams, both cell volume and the concentration of the non-degradable Cdc13:Cdk1 dimer are kept constant; therefore, there is no dilution effect. The stochastic model deals with changing numbers of molecules per cell; the dilution effect is taken into account by the appearance of cell volume, V(t), at appropriate places in the propensity functions. In other words: in the deterministic model, which is written for concentration changes, the dilution term, −(x/V)(dV/dt), is zero because V=constant; in the stochastic model, written in terms of numbers of molecules, dilution effects are implicit in the propensity functions.

      *#3 Line 402 The authors state that the production rate of the Cdk protein is 'assumed' proportional to the cell volume. The word 'assumed' is incorrect here as a simple conversion of concentration-based differential equation (with constant production rate) to molecular numbers would show that production rate is proportional to the volume. This is not an assumption. *

      Correct; we modified the text (see line 450-462). The role of cell volume in production rate is more relevant to the case of Cdc25, where we assume that its production rate, Δconcentration/Δt, is proportional to V, because the concentration of Cdc25 in the cell increases as the cell grows. We added two references (Keifenheim, Sun et al. 2017, Curran, Dey et al. 2022) to justify this assumption. In the stochastic code, the propensity for synthesis of Cdc25 molecules is proportional to V2.

      #4 Line 423 Please cite the appropriate literature that shows that fission yeast growth during cell division is exponential. If the dynamics are more complicated, involving multiple phases of growth during cell division, please state so.

      We now acknowledge that volume growth in fission yeast, rather than exponential, is bilinear with a brief non-growing phase at mitosis (Mitchison 2003). However, we suggest that our simplifying assumption of exponential growth is appropriate for the purposes of these calculations. See line 473-476: "In our stochastic simulations, we assume that cell volume is increasing exponentially, V(t) = V0eμt. Although fission yeast cells actually grow in a piecewise linear fashion (Mitchison 2003), the simpler exponential growth law (with doubling time @ 140 min) is perfectly adequate for our purposes in this paper.."

      *#5 Line 250 The authors convert the bistable version of the CDK switch to reversible sigmoidal by assuming that Wee1 and Cdc25 phosphorylation is proportional to the CDK level rather than activity, which seems biochemically unrealistic. This invokes an altered circuit architecture where inactive CDK has enough catalytic activity to phosphorylate the two modifying enzymes (Wee1/Cdc25) but not enough to drive mitosis. This might be possible if the Km of CDK for Wee1/Cdc25 is lower relative to other downstream substrates that drive mitosis. The authors can reframe this section of the paper to state this possibility, which might be interesting to experimentalists. *

      The reviewer is correct that the molecular biology underlying our 'reversible sigmoidal' model is biochemically unrealistic. But, in our opinion, this is the simplest way to convert our bistable model into a monostable, ultrasensitive switch while maintaining the basic network structure in Fig. 1. Our purpose is to show that a monostable model-only slightly changed from the bistable model-can account for Patterson's experimental data equally well. If Nurse's group modifies the experimental protocol as we suggest and their new results indicate that the G2/M transition in fission yeast is bistable, then our reversible sigmoidal model, having served its purpose, can be forgotten. If they show that the transition is not bistable, then both experimentalists and theoreticians will have to think about biochemically realistic mechanisms that can account for the new data...and everything else we already know about the G2/M transition in fission yeast.

      #6 It is difficult to phenomenologically understand a bistable switch just based on differences in activation and inactivation thresholds. For example, a reversible ultrasensitive switch also shows a difference in activation and inactivation thresholds (Figure 7D). How much of a difference should be expected of a bistable switch versus reversible switch?

      We show how much of a difference can be expected by contrasting Fig. 7 to Fig. 8. For the largest cells (panel D of both figures), the difference is small and probably undetectable experimentally. For medium-sized cells (panel C), the difference is larger but probably difficult to distinguish experimentally. Only the smallest cells (panel B) provide an opportunity for clearly distinguishing experimentally between monostable and bistable switching.

      *Moreover, as the authors clearly understand (line 275), time-delays in activation and inactivation reactions can inflate these differences. In the future, if the authors can convert the equations to potential energy space as done in Acar et al. 2005 (Nature 435:228) in Figure 3c-d, it will be useful. Also, predicting the distribution of switching rates from the Gillespie simulation might be informative and can be directly compared to experimental measurements in the future (if the Cut3p levels in nucleus and cytosol equilibrates fast enough or other CDK biosensors are developed). *

      The famous paper by Acar et al. (2005) is indeed an elegant experimental and theoretical study of bistability ('cellular memory') in the galactose-signalling network of budding yeast. We have included a comparison of Patterson et al. with Acar et al. in our Conclusions section (lines 353-368):

      "It is instructive, at this point, to compare the work of Patterson et al. (2021) to a study by Acar et al. (Acar, Becskei et al. 2005) of the galactose-signaling network of budding yeast. Combining elegant experiments with sophisticated modeling, Acar et al. provided convincing proof of bistability ('cellular memory') in this nutritional control system. They measured PGAL1-YFP expression (the response) as a function of galactose concentration in the growth medium (the signal), analogous to Patterson's measurements of CDK activity as a function of C-CDK concentration in fission yeast cells. In Acar's experiments, the endogenous GAL80 gene was replaced by PTET-GAL80 in order to maintain Gal80 protein concentration at a constant value determined by doxycycline concentration in the growth medium. The fixed Gal80p concentration in Acar's cells is analogous to cell volume in Patterson's experiments. In Fig.3b of Acar's paper, the team plotted the regions of monostable-off, monostable-on and bistable signaling in dependence on their two control parameters, external galactose concentration and intracellular Gal80p concentration, analogous to our Fig.4. Because Acar's experiments explored both the off → on and on → off transitions, they could show that their observed thresholds (the red circles) correspond closely to both saddle-node bifurcation curves predicted by their model. On the other hand, Patterson's experiments (as analyzed in our Fig.4) probe only the off → on transition."

      The purpose of our paper is to show that Patterson-type experiments can and should be done so as to probe both thresholds, as was done by van Oudenaarden's team. They went further to characterize their bistable switch in terms of 'the concept of energy landscapes'. We think it is premature to pursue this idea in the context of the G2/M transition in fission yeast until there is firm, quantitative data characterizing the nature of the 'presumptive' bistable switch in fission yeast.

      Minor comments: #1 Line 2: Please replace "In most situations" to "In favorable conditions"

      Done.

      **Referee cross-commenting** I agree with Reviewer 1 that this falls more under pointing out an alternative interpretation of a single experiment than challenging widely supported orthodoxy about how the eukaryotic cell cycle leaves mitosis.

      As we said earlier, our 1993 paper in J Cell Sci is the source of this orthodox view, and it is widely supported at present because there is convincing experimental evidence for bistability in frog egg extracts, budding yeast cells and mammalian cells. Patterson's paper is not sound evidence for bistability of the G2/M transition in fission yeast cells. It is important for experimentalists to know why the experiments fail to confirm bistability, and important for someone to do the experiment correctly in order to confirm (or, what would be really interesting, to refute) the expectation of bistability at the G2/M transition in fission yeast cells.

      Reviewer #2 (Significance (Required)): Suitable for specialist comp bio journal eg PLoS Comp Bio

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The paper by Novak and Tyson revisits a recent paper from Nurse group on the bistability of mitotic switch in fission yeast using mathematical modelling. The authors extend their older models of mitotic entry check point and implement both deterministic and stochastic version of new model. They show this model does indeed possess bistability and show that combined with stochastic fluctuations the model can show bimodality for the cyclin-CDK activity at a particular cell size consistent with the recent experimental data. However, the authors also show alternative model that has mono-stable ultrasensitivity can also explain the data and suggest experiments that can prove the existence of hysteresis and therefore bistability.

      Right on.

      While the biological implication of the study is well explained, the authors can improve the presentation of their model and the underlying assumptions. I have the following comments and suggestions for improvement of the paper.

        • The cartoon of the mathematical model is confusing at places, for example the wee1-CDK complex according to the equations either dissociates back to wee1 and CDK or gives rise to pCDK and wee1, the arrow below is confusing as it implies it can also give rise to wee1p, the CDK phosphorylation of wee1 is already included in the diagram. Also, the PP2A is put on the arrow for all reactions but for wee1p2 to wee1p its action shown with a dashed line. Also, I wondered if wee1p and wee1p2 can also bind CDK and sequester or phosphorylate CDK?* We are sorry for the confusion and have improved Fig. 1.
      1. The rates and variables in the ODEs are not fully described. Also sometimes unclear what is parameter and what is a variable, I had to look at the code.*

      We now include tables of variables and parameter values, with explanatory notes.

      • The model has quite a few parameters, but these are not at all discussed in the paper. How did the authors come up with these particular set of parameters, has there been some systematic fitting, or tuning by hand to produce a good fit to the data? I could only see the value of the parameters in the code, but perhaps a table with the parameters of the model, what they mean and their value (and perhaps how the values is obtained) is missing.*

      The parameters were tuned by hand to fit Patterson's data, based, of course, on our extensive experience fitting mathematical models to myriad data sets on the cell division cycles of fission yeast, budding yeast, and frog egg extracts. We now provide a table of parameter values.

      • The authors are using the Gillespie algorithm with time varying parameters (as some rates depend on volume and volume is not constant). Algorithm needs to be modified slightly to handle this (see for example Shahrezaei et al Molecular Systems Biology 2008). *

      A valid criticism, but the rate of cell volume increase is very slow compared to the propensities of the biochemical reactions. We write (lines 492-498):

      "In each step of the SSA, the volume of the cell is increasing according to an exponential function, and, consequently, the propensities of the volume-dependent steps are, in principle, changing with time; and this time-dependence could be taken into account explicitly in implementing Gillespie's SSA (Shahrezaei, Ollivier et al. 2008). However, the step-size between SSA updates is less than 1 s compared to the mass-doubling time (140 min) of cell growth. So, it is warranted to neglect the change in V(t) between steps of the SSA, as in our code."

      • The authors correctly point out, ignoring mRNA has resulted in underestimation of noise, however another point is that mRNA life times are short and that also affects the timescale of fluctuations and this may be relevant to the switching rates between the bistable states. *

      A valid point, but to include mRNA's would double the size of the model. Furthermore, we have little or no data about mRNA fluctuations in fission yeast cells, so it would be impossible to estimate the values of all the new parameters introduced into the model. Finally, the switching rates between bistable states (or across the ultrasensitive boundary) are not the primary focus of Patterson's experiments or our theoretical investigations. So, we propose to delay this improvement to the model until the relevant experimental data is available.

      • In the introduction add, "In this study" to "Intrigued by these results, we investigated their experimental observations with a model of bistability in the activation of cyclin-CDK in fission yeast." *

      Done

      Reviewer #3 (Significance (Required)): Overall, this is an interesting study that revisits an old question and some recent experimental data. The use of stochastic modelling in explaining variability and co-existence of cell populations in the context of cell cycle and comparison to experimental data is novel and of interest to the communities of cell cycle researchers, systems biologists and mathematical biologists.

      We agree. Thanks for the endorsement

      References

      Acar, M., A. Becskei and A. van Oudenaarden (2005). "Enhancement of cellular memory by reducing stochastic transitions." Nature 435(7039): 228-232.

      Agarwal, A., R. Adams, G. C. Castellani and H. Z. Shouval (2012). "On the precision of quasi steady state assumptions in stochastic dynamics." J Chem Phys 137(4): 044105.

      Curran, S., G. Dey, P. Rees and P. Nurse (2022). "A quantitative and spatial analysis of cell cycle regulators during the fission yeast cycle." Proc Natl Acad Sci U S A 119(36): e2206172119.

      Gerard, C., J. J. Tyson, D. Coudreuse and B. Novak (2015). "Cell cycle control by a minimal Cdk network." PLoS Comput Biol 11(2): e1004056.

      Gould, K. L. and P. Nurse (1989). "Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis." Nature 342(6245): 39-45.

      Keifenheim, D., X. M. Sun, E. D'Souza, M. J. Ohira, M. Magner, M. B. Mayhew, S. Marguerat and N. Rhind (2017). "Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast." Curr Biol 27(10): 1491-1497 e1494.

      Kim, J. K., K. Josic and M. R. Bennett (2014). "The validity of quasi-steady-state approximations in discrete stochastic simulations." Biophys J 107(3): 783-793.

      Kim, J. K. and J. J. Tyson (2020). "Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy." PLoS Comput Biol 16(10): e1008258.

      Lundgren, K., N. Walworth, R. Booher, M. Dembski, M. Kirschner and D. Beach (1991). "mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2." Cell 64(6): 1111-1122.

      Mitchison, J. M. (2003). "Growth during the cell cycle." Int Rev Cytol 226: 165-258.

      Novak, B., Z. Pataki, A. Ciliberto and J. J. Tyson (2001). "Mathematical model of the cell division cycle of fission yeast." Chaos 11(1): 277-286.

      Novak, B. and J. J. Tyson (1995). "Quantitative Analysis of a Molecular Model of Mitotic Control in Fission Yeast." J Theor Biol 173: 283-305.

      Patterson, J. O., S. Basu, P. Rees and P. Nurse (2021). "CDK control pathways integrate cell size and ploidy information to control cell division." Elife 10.

      Shahrezaei, V., J. F. Ollivier and P. S. Swain (2008). "Colored extrinsic fluctuations and stochastic gene expression." Mol Syst Biol 4: 196.

      Tang, Z., T. R. Coleman and W. G. Dunphy (1993). "Two distinct mechanisms for negative regulation of the Wee1 protein kinase." EMBO J 12(9): 3427-3436.

      Tyson, J. J., A. Csikasz-Nagy and B. Novak (2002). "The dynamics of cell cycle regulation." Bioessays 24(12): 1095-1109.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor,

      We have addressed the points and concerns raised by the reviewers and wish to thank them for their effort and time. We agree with all the comments and suggestions, which resulted in a significant improvement of the manuscript. Below, we provide a point-by-point response to all comments.

      Sincerely,

      Anders Hofer, corresponding author


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). The authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of the reaction mechanism, especially in the context of molecules which can be used as inhibitors of such a crucial enzyme (metabolic vulnerability for this parasite).

      This manuscript, in its current form does not require additional experiments but I would like to have a few aspects corrected/clarified, before it can be accepted for publication:

      Line 30: "whereas the affinities for deoxyguanosine, deoxyinosine and deoxycytidine were 400-2000 times lower." Better not to use term "affinity" when KM or kcat/KM are implied (unless ITC was used to measure true Kds).

      -This is a good point, and we are now using KM values in all instances were actual numbers are implied and only kept the word affinity in cases where it is discussed in more general terms.

      Line 31: "Deoxyadenosine analogues halogenated at the 2- and/or 2´-positions were also potent substrates, with comparable EC50 values as the main drug used today, metronidazole, but with the advantage of being usable on metronidazole-resistant parasites." Not sure this sentence is clear as written.

      -We have now rewritten the sentence as follows: "Deoxyadenosine analogues halogenated at the 2- and/or 2´-positions were also potent substrates with comparable EC50 values on cultured G. intestinalis cells as metronidazole, the first line treatment today, with the additional advantage of being effective against metronidazole-resistant parasites."

      Line 55: "..G. intestinalis (synonymous to G. lamblia and G. duodenalis)..". Very nice that authors provide this information as it is usually a point of confusion i.e. multiple names for the same organism.

      -Thanks a lot, we are happy that you liked it.

      Line 61 and above as well: "Treatment regimes are mainly based on metronidazole and to a lesser extent other 5-nitroimidazoles...". MT is introduced a bit sporadically, and not completely clear which enzyme it inhibits and its mode of action." Common knowledge is that MT is known for its action in aerobic parasites/bacteria and known as Flagyl, where it is mode of action was linked to "activation" due to microaerophilic conditions. Maybe MT can be introduced after text starting from Line 71?

      -The description of metronidazole is adjusted as following: "Metronidazole (Flagyl) is the most commonly used drug to treat giardiasis and selectively kills the parasite and other anaerobic organisms by forming free radicals under oxygen-limited conditions, but it has side effects such as nausea, abdominal pain, diarrhea, and in some cases neurotoxicity reactions."

      Line 70: what is "cyst-wall"?

      -It is a cell wall consisting of three major cyst wall proteins and N-acetylgalactosamine. We have adjusted the sentence to the following to make the term clearer: The trophozoites can also secrete material to form a cyst wall and go through two rounds of DNA replication to form cysts, which contain four nuclei and a 16N genome per cell (4N in each nucleus).

      Line 90: "The reaction is catalyzed by deoxyribonucleoside kinases (dNKs), which are.." I really do not like when in order to find a reaction which is catalyzed by an enzyme in a particular study one needs to dive into the literature, sometimes it requires a lot of time as in most of recent papers on the subject reactions catalyzed are not listed. Please add a Figure or a panel with reactions catalyzed by both dNKs families.

      -It is a good idea and we have now added a figure (Fig. 1), which compares the deoxyribonucleotide metabolism of G. intestinalis with mammalian cells. The different deoxyribonucleoside kinases in the parasite and mammalian cells are included in the figure.

      Line 96: "..was found to have a ~10-fold higher affinity to thymidine.." as I mentioned above I really do not like the usage of "affinity", when actually low KM is implied.

      -It is corrected now (see above).

      Line 113: "This does not match the current knowledge that there are three dNKs in total whereof one completely specific for thymidine. The lack of knowledge about these essential enzymes in the parasite has hampered the understanding of Giardia deoxyribonucleoside metabolism and hence its exploitation as a target for antiparasitic drugs." Very good rationale, as I mentioned above, I think a Figure needs to be introduced that depicts different enzymes involved in deoxyribonucleoside metabolism (both TK1 and non- TK1 members) in Giardia with clearly labeled all known paralogs and corresponding enzymatic reactions.

      -Thanks a lot for the suggestion. Information about the different dNKs in G. intestinalis with mammalian cells for comparison is included in the new figure (Fig. 1).

      Line 132: Odd designation of supplementary figures, usually it is "Fig. S1" etc. The legend for Fig. S1 is not adequate, please add description of species and name of enzymes for all sequences shown. Also each sequences in alignment should start with number (a.a. number) as it is not clear if a full sequence is shown or not. Overall comment about the multiple sequence alignment (relevant to Fig. S1): with such a small number of sequences it is very hard to make any substantial predictions about conserved regions etc.

      -Thanks for the suggestions. We have now included more sequences, sequence numbering, and description of species as well as enzyme names. Some other changes are also that we have now used the same G. intestinalis dAK sequence in the alignment as in the experiments (same strain and accession number), and that we have made a realignment using Clustal W instead of Clustal Omega (gives better alignment of the termini). The designation of supplementary figures is according to the style of PLoS journals.

      Fig. 1 and elsewhere: I will prefer that all bar graphs show individual values + the error bar (if possible);

      -We have now added individual values to the bar graphs.

      I do not have any issues with X-ray data and cryo-EM studies (refinement statistics, particles classification etc).

      **Referees cross-commenting**

      I also agree with all the comments provided by Reviewer 2 and very pleased to see that we were very similar in our evaluations.

      Reviewer #1 (Significance (Required)):

      In their paper Ranjbarian and colleagues provide a tour de force at characterizing dAK from G. intestinalis using both enzymology and structural biology. G. intestinalis does not have RNR and therefore this organism relies on dAK which catalyzes formation of dAMP and ADP from deoxyadenosine and ATP (among other substrate pairs). The authors performed a terrific job at testing this reaction in depth using a recombinant dAK and a battery of various co-substrates (both natural as well as synthetic ones, Table 1). Extensive structural information on dAK was obtained using a combination of X-ray crystallography and cryo-EM. Overall, this work will be paramount aid in better understanding of the reaction mechanism, especially in the context of molecules which can be used as inhibitors of such a crucial enzyme (metabolic vulnerability for this parasite).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Ranjbarian et al. investigated a non-TK1-Like deoxyribonucleoside kinase (dNK) found in the protozoan parasite Giardia intestinalis. They used enzyme kinetic assays on heterologously expressed Gi dNK in E. coli to determine which deoxyribonucleotides were most likely physiological substrates for the enzyme. Their characterization revealed that this Gi dNK has a strong affinity to deoxyadenosine. They further investigated the affinity and activity of the dNK on deoxyadenosine analogues, some of which have known pharmaceutical utility. Finally, using a combination of crystallography, cryo-EM, chromatography, and mass photometry, they reveal that unlike other dNKs, Gi dNK forms a tetramer. They characterize important regions required for tetramerization and postulate that this tetramerization evolved to provide Gi dNK with a heightened affinity for deoxyadenosine.

      Major comments and questions:

      • The claims in this manuscript are well-supported, and I found no major issues with experimental methods. • The authors provide a structure of tetrameric dNK and suggest that this tetramer leads to the increased affinity to substrate compared to non-giardia dNKs. They also show through mutations that removing the novel dimerization regions decreases substrate affinity by 100-fold. However, I was left unclear about why the tetramer would lead to such high affinity for substrate compared to two dimers. This is especially notable, since the authors state that there are no signs of cooperativity, which is a common way that oligomerization may lead to heightened affinity. If the authors have no current evidence explaining this, they can consider adding a short amount of discussion speculating on the mechanism and future directions of study. -Thanks for this suggestion. We have now added a section in the last paragraph of the discussion where we speculate on the subject.

      Minor comments and questions:

      • The authors state that dATP acts as a mixed inhibitor and not a simple competitive inhibitor, and that previous studies have shown that this is because the dNTP competes in two locations (line 163). Is it also possible that competitive inhibition + allosteric regulation could be causing this behavior instead? -It is true that this can be theoretically explained in many ways. In fact, many allosteric regulators affect both the Vmax and Km values. However, in all studied dNKs, the dNTP acts as a dual competitor and no proper allosteric regulation with a separate allosteric site has ever been observed so far. We have rephrased this part as following to make it clear: "Mixed inhibition is often the result of allosteric regulation but studies of other dNKs have shown that this is not the case [17]. Instead, the far-end dNTP product gives a dual inhibition where the deoxyribonucleoside moiety competes with the substrate and the phosphate groups mimic those of ATP but coming from the opposite direction."

      • In the introduction (line 93), non-TK1-like dNKs are described as "not structurally related to TK1-like". This left me unclear, are they still interrelated among themselves? -We have added the following sentence for clarification: "The non-TK1-like dNKs are further subdivided into a monophyletic group of canonical non-TK1-like dNKs and a second group with thymidine kinases from Herpesviridae, which are structurally related to the canonical group but share very little amino acid sequence homology."

      • I was left confused by lines 106-116 in the introduction, where the specificities of dNKs in giardia are discussed. This is touched upon again in the discussion, but it was not clear here that there are several deoxyribonucleotides unaccounted for. -We think this should be clear now with the added Fig. 1 where the dNKs are shown.

      • When describing enzyme assays (Line 145), the authors say there is no salt dependence, but there looks to be MgCl2 always included in the assays (presumably for the ATP). -This is a good point and something we have overlooked when the sentence was written (Mg2+ is required). We have now corrected the sentence as follows: "Based on initial enzyme activity studies, it was confirmed that the assay did not have any specific requirements regarding K+, Na+, NH4+, acetate or reducing agents, and that it was linear with respect to time (S2 Fig)."

      • I was confused by the y-axis of Fig 2. How is enzyme activity lower when dAdo is added? I think I read "enzyme activity" as total substrate depleted, when it is actually referring exclusively to the given non-dAdo substrate in each column. -This is a very good point that we seem to have overlooked. We have now adjusted the y-axis title to "Indicated enzyme activity" and added the following sentence to the figure legend: "The recorded enzyme activities are for the substrates indicated on the x-axis (excluding the activity with the competing substrate)."

      • Lines 239 - 255 and Figure 3 were a little unclear to me. Specifically, I was having trouble following in the text which dimer is in the ASU, which is symmetry related, and matching those terms with which are canonical and non-canonical. -We agree with the reviewer and thank them for their comment. In order to improve the presentation of these results, we chose to extensively rearrange the figures and accompanying text. We now present the initial X-ray data together with the cryo-EM data in a new Figure 4 that focuses on the overall architecture of the tetramer. We realize that some of the nomenclature previously used in that figure was, as the reviewer pointed out, confusing and superfluous, and we have now simplified and unified it. The structural details of how the extended N- and C-termini interact with the neighboring subunit have been moved to the new figure 6 in order to present them just before the functional analyses of the consequences of truncating the termini. As a consequence of these changes to the figure layout, we made substantial changes in the organization of the text surrounding these figures, which also led to a clearer presentation. Since the changes to the figures and text are quite substantial, we would like to point out that they are only changes to the presentation, not to the data shown.

      • The authors suggest that in the experiment shown in Figure S9 (Line 285), low activity may be caused by minor impurities. I'm not sure why impurities would lower activity significantly. Could there be other differences in experimental conditions that are at play instead? -The sentence refers to a side activity (dATP dephosphorylation) which is not the normal reaction of deoxyadenosine kinase. We have rephrased the sentence to make it clearer: "The dATP-dephosphorylating activity was several orders of magnitude lower than the regular dAK activity (to phosphorylate deoxyadenosine) and was possibly catalyzed by other enzymes present as minor impurities in the protein preparation."

      • (Optional) From looking at the crystallography stats, I think the authors can potentially push the resolution more. At higher resolutions, Rmerge may become high, but depending on the data collection strategy, Eiger detectors can lead to high Rmerge just out of sheer data redundancy. Cc 1/2 can be a more useful metric in these contexts. -This is a good point and well spotted by the reviewer. Indeed, a CC1/2 of 0.802 suggests that the resolution can be pushed further. However, due to contaminating spots at higher resolutions the statistics significantly worsen when trying to push the resolution beyond 2.1 A, which is why we did not process the data to a higher resolution.

      • For Figure S8, the Polder map feature in Phenix is another option for showing ligand occupancy in an unbiased way. Did the authors try this? -We want to thank the reviewer for suggesting this. We have calculated a polder map using the Polder map feature in Phenix and both the resulting map and correlation coefficients support the presence of a dADP in the active site of monomer I. We added a section to the relative paragraph to include these new findings: "To increase our confidence that dADP was correctly placed within active site I, we calculated a polder map for dADP to test whether the b-phosphate density is correctly attributed or if it rather belongs to the bulk solvent. The resulting polder map and statistics support the placement of dADP in active site I with correlation coefficients of CC1,2=0.7627, CC1,3=0.9424, and CC2,3=0.7423 suggesting that the density does belong to dADP as CC1,3 > CC1,2 and CC1,3 > CC2,3 (S8 Fig.)."

      • It's disappointing that the tetramers show so much preferred orientation in the cryo-EM. With that said, while the nominal resolution is 4.8 Å, I think that with the streakiness the EM structure looks to have worse resolution than that. -We agree that the streakiness of the map is substantial. This is simply a result of the severe anisotropy of the map, which means that the resolution is probably worse than 4.8 Å in the "bad directions" of the map. The supplementary material (S9 Fig) clearly shows the preferred orientations leading to this problem. In the course of this study, we tried several methods to lessen the preferred orientation problem such as using graphene oxide-coated grids and collecting tilted data. However, when we got the crystal structure we saw no point in continuing these efforts. To address the comment of the reviewer, we extended the description of the EM map in the main text to say:

      "Due to strong preferred orientations, it was not possible to get an isotropic, high-resolution 3D structure of dAK using cryo-EM. The resulting 3D map had a nominal resolution of 4.8 Å, but a clearly anisotropic appearance probably reflecting lower resolution in the poorly resolved direction (S9 Fig)."

      **Referees cross-commenting**

      Overall, I agree with Reviewer #1's evaluation, and don't have any further suggestions or thoughts at this time.

      Reviewer #2 (Significance (Required)):

      Medical relevance: G. intestinalis is a parasite that causes 190 million cases of giardiasis per year. While treatable, there is evidence that giardia are developing a resistance to the main treatment at the moment, metronidazole. Thus, the authors provide a compelling case for the medical relevance of their investigation of Gi dNK for further pharmaceutical development. They provide further evidence for this by showing that several deoxyadenosine analogs bind the dNK and inhibit giardia growth. This work represents a very useful first step into a potential avenue for medical development. It's important to note that clinical studies are not within the purview of this research. However, in the discussion, the authors provide several comments on the promise of this avenue for future research.

      Conceptual, technical, and mechanistic relevance: Through biochemical and structural study, the authors provide a compelling framework to understand an enzyme that is very important to the unique lifestyle of giardia parasites. From an evolutionary standpoint, the authors provide insight into how giardia can survive even without major components of de novo DNA synthesis. The authors principally use well-established tools and techniques of the enzymology field. but do so to characterize a unique and previously uncharacterized enzyme system. This enzyme proves to be notable not just for its medical significance, but because it is unique among its family (non-TK1-like deoxynucleotide kinases) in its strong affinity for substrate and tetrameric quaternary structure. One relatively novel technique used in the study is mass photometry, which is a relatively new and exciting way to characterize native proteins at very low concentrations. Using this technique helps the authors overcome a common criticism of structural studies in which the high concentrations or crowding conditions of techniques like crystallography and cryo-EM may be inducing non-physiological oligomers.

      In summary, this work represents a meaningful addition to the protein structure-function literature. While it will principally be of interest to basic/fundamental researchers who study the mechanistic detail of protein function and evolution, it also provides a foundation for future translational work and antiparasitic drug design.

      Reviewer's background: I received my PhD in chemistry studying the structure and function of another enzyme key to DNA metabolism (except in giardia), ribonucleotide reductase. My background is in structural biology and biochemistry. I do not have sufficient expertise to comment on studies performed on G. intestinalis growth and susceptibility to deoxyadenosine analogs.

      • *
    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Roget et al. build on their previous work developing a simple theoretical model to examine whether ageing can be under natural selection, challenging the mainstream view that ageing is merely a byproduct of other biological and evolutionary processes. The authors propose an agent-based model to evaluate the adaptive dynamics of a haploid asexual population with two independent traits: fertility timespan and mortality onset. Through computational simulations, their model demonstrates that ageing can give populations an evolutionary advantage. Notably, this observation arises from the model without invoking any explicit energy tradeoffs, commonly used to explain this relationship.

      The model’s results are based on both numerical simulations and formal mathematical analysis.

      Additionally, the theoretical model developed here indicates that mortality onset is generally selected to start before the loss of fertility, irrespective of the initial values in the population. The selected relationship between the fertility timespan and mortality onset depends on the strength of fertility and mortality effects, with larger effects resulting in the loss of fertility and mortality onset being closer together. By allowing for a trans-generational effect on ageing in the model, the authors show that this can be advantageous as well, lowering the risk of collapse in the population despite an apparent fitness disadvantage in individuals. Upon closer examination, the authors reveal that this unexpected outcome is a consequence of the trans-generational effect on ageing increasing the evolvability of the population (i.e., allowing a more effective exploration of the parameter landscape), reaching the optimum state faster.

      The simplicity of the proposed theoretical model represents both the major strength and weakness of this work. On one hand, with an original and rigorous methodology, the logic of their conclusions can be easily grasped and generalised, yielding surprising results. Using just a handful of parameters and relying on direct competition simulations, the model qualitatively recapitulates the negative correlation between lifespan and fertility without requiring energy tradeoffs. This alone makes this work an important milestone for the rapidly growing field of adaptive dynamics, opening many new avenues of research, both theoretically and empirically.

      We thank the reviewers and editor for highlighting the importance of the work presented here.

      On the other hand, the simplicity of the model also makes its relationship with living organisms difficult to gauge, leaving open questions about how much the model represents the reality of actual evolution in a natural context.

      We presented both in results and discussion how the mathematical trade-offs between fertility and survival time give rise to (xb, xd) configuration representative of existing aging modes.

      In particular, a more explicit discussion of how the specifics of the model can impact the results and their interpretation is needed. For example, the lack of mechanistic details on the trans-generational effect on ageing makes the results difficult to interpret.

      We discussed the role of the transgenerational Lansing effect played to its function, there is no need for a particular mechanism beyond that function of transgenerational negative effect. We reinforce this in the discussion by adding the following sentence “Regarding the nature of the transgenerational effect, our model is agnostic and the mere transmission of any negative effect would be sufficient to exert the function.“

      Even if analytical results are obtained, most of the observations appear derived from simulations as they are currently presented. Also, the choice of parameters for the simulations shown in the paper and how they relate to our biological knowledge are not fully addressed by the authors.

      The long time limit of the system with and without the Lansing effect is based on analytical results later confirmed using numerical simulations. The choice of parameters is explained in the introduction as being the minimum ones for defining a living organism. As for the parameters’ values, our numerical analysis gives a solution for any ib, id, xb and xd on R+, making the choice of initial value a mere random decision.

      Finally, the conclusions of evolvability are insufficiently supported, as the authors do not show if the wider genotypic variability in populations with the ageing trans-generational effect is, in fact, selected.

      We do not show nor claim that evolvability per se is selected for but that the apparent advantage given by this transgenerational effect seems to be mediated by an increased genotypic/phenotypic variability conferred to the lineage that we interpreted as evolvability.

      Recommendations for the authors

      (1) The authors could use the lineage tracing results for the evolvability aspect. Specifically, within subpopulations featuring the Lansing effect, it would be valuable to explore whether individuals with parental age greater than the mortality onset (a > x_d) demonstrate higher fitness compared to individuals with a < x_d. Additionally, an examination of how this variation evolves over time could provide further insights into the dynamics of the proposed model.

      We thank the reviewer for this suggestion. This is an ongoing work in the group, especially in the context of varying environmental conditions.

      (2) In all simulations, I_b = I_d = 1, resulting in total fertility (x_b * I_b) equating to x_b, while x_d is proportional to life expectancy. Considering an exploration of the implications of this parameter setting, the authors could frame x_d as a 'lifespan cost', potentially allowing for the model to be conceptualised in terms of energetic tradeoffs. This might offer additional perspectives on the dynamics of the model and its alignment with biological principles.

      We discuss how the apparent trade-offs given by the model depending on ib and id values can be related to the interpretation of such trade-offs that has been accepted for most of the past century. Our claim here in the discussion is that one does not need such energetic trade-off for the fertility/longevity trade-offs to appear. Such energetic trade-off is not a “biological principle” but merely an accepted interpretation of a fertility/longevity trade-off that is not even a general mechanism.

      (3) Considering the necessity of variation in x_d for the observed patterns, an exploration could be undertaken by the authors to examine a model where x_d is simply variable without inheritance. This could involve centring x_d at some value d with some variance σ_d for all individuals. In such a scenario, it may be observed whether the same convergence of x_b - x_d occurs without requiring x_d to be selected. Furthermore, similar consequences of the Lansing effect could potentially be identified.

      This was done early on during our work and did not show any major changes in the model’s behaviour beyond the time of convergence. We did not include it to the final manuscript because of the low added value to an already long and complex manuscript.

      (4) While it may not be necessary to alter the model itself, it is suggested that the authors consider acknowledging the potential consequences of certain modelling decisions that might be perceived as biologically unrealistic. Notable examples include assumptions such as fertility from birth and zero mortality prior to x_d. These assumptions, such as infertility from birth, could be viewed as distinctive features, and it might be worth mentioning that parental care of offspring could have co-evolved with such features. This is particularly relevant considering the energy tradeoff hypothesis that has been postulated.

      Although inspired from results obtained in Drosophila, mice, nematodes and zebrafish, the model is so far haploid and asexual, thus involving individuals likely more similar to unicellulars. In these conditions, infertility from birth did not seem relevant to us. However, the model and codes are accessible online and we hope that others will use it to address such questions. It is interesting though to notice that ageing appears here without such constraint.

      Additionally, the consideration that all organisms face a non-trivial mortality rate at every age, not solely from physiological causes, reflects the reality within which selection operates.

      We thought this was the best way to reflect, an environment with a limited carrying capacity. A more complex model is under construction to take into account the fact that older individuals might be more sensitive to it than younger ones.

      (5) While acknowledging the technical rigour applied by the authors, it is suggested that further attention be given to conducting a comprehensive 'reality check' associated with the chosen parameters, particularly regarding the biological relevance of the results. For instance, the authors argue that offspring of old organisms do not, on average, live similarly to their parents. However, it is noted that studies in the haploid asexual organism yeast, akin to what the authors model (albeit not necessarily yeast), revealed that the average lifespan of yeast progeny born from young or old mothers is very similar.

      We do not claim that progeny of old parents live less long than that of younger parents on average, we say that it happens in the progeny of physiologically old parents, representing at most 10% of the population in our numerical simulations.

      The authors cite experimental evolution in Drosophila progeny conceived later in the life of the parent, indicating that the onset of mortality in these progeny occurs late, sometimes even after the end of the fertility period (Burke et al., 2016; Rose et al., 2002). While the authors report their own previous studies with divergent results, independent experiments have suggested an increase of x_d following an artificial increase of x_b (Luckinbill and Clare, 1985; Sgro et al., 2000). A more in-depth consideration of these contrasting observations and their potential implications for the current model could enhance the overall robustness of the study.

      The increase of x_d following an artificial increase of x_b is predicted by our model as discussed. The divergence of observations between studies is alas hard to assess.

      (6) To enhance readability and maintain consistency, it is suggested that the authors homogenise the description of key parameters, specifically x_b and x_d, throughout the text. This could contribute to improved clarity and rigour. One recommendation is to refer to x_b consistently as the 'fertility span' and x_d as the 'mortality onset' for the sake of uniformity in terminology.

      We have modified the text accordingly.

      (7) At various points in the text, the assertion is made that observations have indicated a tradeoff between fertility and longevity. It is recommended that the authors provide references or data to substantiate this claim. This addition would contribute to the empirical grounding of the mentioned tradeoff and strengthen the overall support for the assertions made in the study.

      We added the following references to the discussion Lemaitre et al., 2015, Kirkwood, 2005 and Rodrigues and Flatt 2016.

      (8) The statement claiming that the model is 'able to describe all types of ageing observed in the wild' should be moderated. As the authors themselves acknowledge, the model is referred to as a 'toy model,' and it is made clear that it cannot capture, nor is intended to capture, the entire diversity observed in life. Adjusting this statement to reflect the limited scope and purpose of the model would enhance precision and accuracy in the presentation of its capabilities.

      Although a toy model, its possible configurations encompass all the possible configurations described so far across the diversity of ageing throughout the tree of life from negligible senescence with no loss of fertility (x_b and x_d >> 0) to menopause-like configurations (x_b >> x_d) through fast mortality increase post reproduction (x_b = x_d). Replacing our current square functions would allow age-dependant decrease or increase of fertility and/or risks of mortality onsets.

      (9) To bolster the biological relevance of the study, it is strongly recommended that the authors cross-check the results of their simulations with previously published experimental findings. This approach would serve to strengthen the alignment between the model outcomes and observed biological phenomena. Additionally, placing greater emphasis on the biological relevance aspects throughout the text would contribute to a more robust and comprehensive exploration of the study's implications.

      In the present manuscript we have tried to cite a certain number of results from artificial selection experiments on life history traits in order to strengthen the interpretations of our model’s behaviour. There are numerous other studies, going in the same direction or not, but we do not think that it would be relevant to add an exhaustive list of them. Nevertheless, we added Stearns et al., 2000 that adds extrinsic high mortality to the evolution of life history traits.

      (1) For enhanced clarity, it is suggested that the x-axis in Figure 1 be labelled as 'age.' Considering this adjustment could contribute to clearer visual communication of the data.

      We agree with the reviewer and modified the figure accordingly.

      (!!) The addition of graphical legends is recommended for Figures 3-5, as well as the supplementary figures. Including these legends would provide essential context and improve the interpretability of the figures for readers.

      We agree with the reviewer and modified the figure accordingly.

      (12) For improved distinction of the ranges indicated by quantiles in Figure 3, it is suggested that the authors consider enhancing visual clarity. One approach could involve making the middle quantile thicker or using a different line type. Additionally, it is recommended to explore the calculation of the highest density 90% intervals rather than the 1-9 deciles. This adjustment could contribute to a clearer representation of the data distribution in the figure.

      We named the different deciles directly on the figure to improve readability.

      (13) It is observed that the mathematical proofs in Annex 1 are not displaying properly in the PDF. Additionally, there seem to be missing and broken references for the Annex. This issue may be related to LaTeX formatting. The authors could consider revisiting the formatting of Annex 1 to ensure the correct display of mathematical proofs and address the referencing concerns, possibly by checking and rectifying any LaTeX-related issues.

      The latex file of the supplementary was not correctly compiled. It is now corrected.

      (14) There is inconsistency in the text regarding the reference to the Annex, with both 'Annex' and 'Annexe' being used interchangeably. To maintain uniformity, it is suggested that the authors consistently use either 'Annex' or 'Annexe' throughout the text. This adjustment would contribute to a more polished presentation of the supplementary material.

      We corrected them accordingly.

      (15)There appears to be a typographical error in the name of Supplementary Figure 3.

      We corrected it accordingly.

    1. Locke: Everyone has a right to life, liberty, and property Jefferson in the Declaration of Independence [b30]: “We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness.” Discussions of “human rights” fit in the Natural Rights ethics framework Key figures:

      I think the natural rights framework provide a view to understand human basic rights, but according on universal principles might not explain or solve complex ethical issues in a globalized context. Moreover, seeing everyone's rights as indivisible and equal seems unrealistic to me because it may overlook the impact of social and economic inequalities.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present study by Berger et al. analyzes to what extent memory formation is dependent on available energy reserves. This has been dealt with extensively in the case of aversive memory formation, but only very sparsely in the case of appetitive memory formation. It has long been known that an appetitive memory in flies can only be formed by starvation. However, the authors here additionally show that not only the duration of starvation plays a role, but also determines which form of memory (short- or long-term memory) is formed. The authors demonstrated that internal glycogen stores play a role in this process and that this is achieved through insulin-like signaling in octopaminergic reward neurons that integrates internal energy stores into memory formation. Here, the authors suggest that octopamine plays a role as a negative regulator of different forms of memory.

      The study sheds light on an old question, to what extent the octopaminergic neuronal system plays a role in the formation of appetitive memory, since in recent years only the dopaminergic system has been in focus. Furthermore, the data are an interesting contribution to the ongoing debate whether insulin receptors play a role in neurons themselves or in glial cells. The experiments are very well designed and the authors used a variety of behavioural experiments, genetic tools to manipulate neuronal activity and state-of-the-art imaging techniques. In addition, they not only clearly demonstrated that octopamine is a negative regulator of appetitive memory formation, but also proposed a mechanism by which the insulin receptor in octopaminergic neurons senses the internal energy status and then controls the activity of those neurons. The conclusions are mostly supported by the data, but some aspects related to the experimental design, some explanations and literature references need more clarification and revision.

      (1) Usually, long-term memory (LTM) is tested 24 hours after training. Here, the authors usually refer to LTM as a memory that is tested 6 hours after training. The addition of a control experiment to show that LTM that the authors observe here lasts longer would increase the power of this study immensely.

      We thank the reviewer for this comment, as it helped greatly to clarify the matter.

      We measured memory of control and mutant flies 24 h after the training and included the data into the manuscript (Figure 1B and summarized in a model in Figure 2C). We show that control flies develop an intermediate type of memory, that is depending on the length of starvation either anesthesia-sensitive or resistant. Mutants lacking octopamine develop either anesthesia-sensitive or resistant long-term memory.

      (2) The authors define here another consolidated memory component as ARM, when they applied a cold-shock 2 hours after training. However, some publications showed that LTM is formed after only one training cycle (Krashes et al 2008, Tempel et al 1983). This makes it difficult to determine, whether appetitive ARM can be formed. Furthermore, one study showed that appetitive ARM is absent after massed training (Colomb et al 2009). Therefore, the conclusion could be also, that different starvation protocols, would lead to different stabilities of LTM. Therefore, additional experiments could help to clarify this opposing explanation. From these results, it can then be concluded either that different stable forms of LTM are formed depending on the starvation state, or that two differently consolidated memory phases (LTM, ARM) are formed, as has already been shown for aversive memory. This is also important for other statements in the manuscript, and therefore the authors should address this. For example, the findings about the insulin receptor (is it two opposing memories or different stabilities of LTM).

      The flies indeed develop different types of memory depending on the length of starvation and the internal energy supply.

      Reviewer #2 (Public Review):

      How organism physiological state modulates establishment and perdurance of memories is a timely question that the authors aimed at addressing by studying the interplay between energy homeostasis and food-related conditioning in Drosophila. Specifically, they studied how starvation modulates the establishment of short-term vs long-term memories and clarified the role of the monoamine Octopamine in food-related conditioning, showing that it is not per se involved in formation of appetitive short-term memories but rather gates memory formation by suppressing LTM when energy levels are high. This work clarifies previously described phenotypes and provides insight about interconnections between energy levels, feeding and formation of short-term and long-term food-related memories. In the absence of population-specific manipulation of octopamine signaling, it however does not reach a circuit-level understanding of how these different processes are integrated.

      Strengths

      • Previous studies have documented the impact of Octopamine on different aspects of food-related behaviors (regulation of energy homeostasis, feeding, sugar sensing, appetitive memory...), but we currently lack a clear understanding of how these different functions are interconnected. The authors have used a variety of experimental approaches to systematically test the impact of internal energy levels in establishment of appetitive memory and the role of Octopamine in this process.

      • The authors have used a range of approaches, performed carefully controlled experiments and produced high quality data.

      Weaknesses

      (1) In the tbh mutant flies, Tyramine -to- Octopamine conversion is inhibited, resulting not only in a lack of Octopamine, but also in elevated levels of Tyramine. If and how elevated levels of Tyramine contributes to the described phenotypes is unclear. In the current version of the manuscript, only one set of experiments (Figure 2) has been performed using Octopamine agonist. This is particularly important in light of recent published data showing that starvation modifies Tyramine levels. (2) Octopamine (and its precursor Tyramine) have been implicated in numerous processes, complicating the analysis of the phenotypes resulting from a general inhibition of tbh.

      We thank the reviewer for raising these points. The observed memory defects of the Tbh mutants can be solely explained by loss of octopamine. We included models into the manuscript to illustrate this (Figure 2 C and Figure 7E).

      To address whether the elevated levels of tyramine observed in Tbh mutants interfere with food consumption, we analyzed the effect of increased levels of tyramine and octopamine on food consumption. We included the data (Figure S2). An increase in tyramine levels did not result in a change in food intake, rather the increase in octopamine levels reduced food intake. Our data show that the reduction of food intake observed in starved Tbh mutants is due to the increased internal energy supply.

      (3) The manuscript explores various aspects of the impact of energy levels on food-related behaviors and the underlying sensing and effector mechanism, both in wild-type and tbh mutants, making it difficult to follow the flow of the results.

      We included models illustrating the results to clarify the content of the manuscript.

      Reviewer #3 (Public Review):

      In this manuscript, Berger et al. study how internal energy storage influence learning and memory. Since in Drosophila melanogaster, octopamine (OA) is involved in the regulation of energy homeostasis they focus on the roles of OA. To do so they use the tyramine-β-hydroxylase (Tbh) mutant that is lacking the neurotransmitter OA and study short term memory (STM), long-term memory (LTM) and anesthesia-resistant memory (ARM). They show that the duration of starvation affects the magnitude of both short- and long-term memory. In addition, they show that OA has a suppressive effect on learning and memory. In terms of energy storage, they show that internal glycogen storage influences how long sucrose is remembered and high glycogen suppresses memory. Finally, they show that insulin-like signaling in octopaminergic neurons, which is also related to internal energy storage, suppresses learning and memory.

      This is an important study that extends our knowledge on OA activity in learning and memory and the effects the metabolic state has on learning and memory. The authors nicely use the genetic tools available in flies to try and unravel the complex circuitry of metabolic state level, OA activity and learning and memory.

      Nevertheless, I do have some comments that I think require attention:

      (1) The authors use RNAi to reduce the level of glycogen synthase or glycogen phosphorylase. These manipulations are expected to affect the level of glycogen. Using specific drivers the authors attempt to manipulate glycogen level at the muscles and fat bodies and examine how this affects learning and memory. The conclusions of the authors arise solely from the manipulation intended (i.e. the genetics). However, the authors also directly measured glycogen levels at these organs and those do not follow the manipulation intended, i.e. the RNAi had very limited effect on the glycogen level. Nevertheless, these results are ignored.

      We agreed with the reviewer and repeated the experiments. While we could not detect differences in whole animals, we detected differences in tissues enriched for muscles or fat, e.g. thorax or abdomen. We added the data.

      (2) The authors claim in the summary that OA is not required for STM. However, according to one experiment OA is required for STM as Tbh mutants cannot form STM. In another experiment OA is suppressive to STM as wt flies fed with OA cannot form STM. Therefore, it is very difficult to appreciate the actual role of OA on STM.

      During mild starvation, the internal energy supply is greater in Tbh mutants than in control flies. This information is integrated into the reward system via insulin receptor signaling. Therefore, the association between the odorant and sucrose is not meaningful to the mutants and no STM is formed. At the same time there is no release of octopamine and therefore no repression of LTM. In starved animals, octopamine suppresses food intake (we added the data). This is consistent with a function of Octopamine as a signal for the presence of food. Depending on when the signal comes, this might suppress the formation of STM or LTM.

      (3) The authors use t-test and ANOVA for most of the statistics, however, they did not perform normality tests. While I am quite sure that most datasets will pass normality test, nevertheless, this is required.

      Thanks for pointing this out. We have included a description in the “Materials and Methods” section that explains how we tested the data for normal distribution. We corrected the figure legends accordingly.

      “We used the Shapiro-Wilk test (significance level P < 0.05) followed by a QQ-Plot chart analysis to determine whether the data were normal distributed. “

      (4) While it is logical to assume that OA neurons are upstream to R15A04 DA neurons, I am not sure this really arises from the experiment that is presented here. It is well established that without activity in R15A04 DA neurons there is no LTM. Since OA acts to decrease LTM, can one really conclude anything about the location of OA effect when there is no learning?

      Normally control flies did not form memory 6 h after training, only Tbh mutants. We wanted to investigate what kind of memory develops in Tbh mutants. During the experiments of the manuscript, we kept the training procedure constant.

      (5) It is unclear how expression of a dominant negative form of insulin receptor (InR) in OA neurons can rescue the lack of OA due to the Tbh mutation. If OA neurons cannot release anything to the presumably downstream DA neurons, how can changing their internal signaling has any effect?

      The expression of the dominant negative form of the insulin receptor signals no food or low energy levels and activation of the insulin receptor that there is enough food. The reward is a source of food, but the energy content is not high enough to fill the energy stores. The insulin receptor activation can activate at least three different signaling cascades, one of which might regulate octopamine release.

      While I stressed some comments that need to be addressed, the overall take-home message of the manuscript is supported and the authors do show that the metabolic state of the animal affects learning and memory. I do think though, that some more caution is required for some of the conclusions.

      We added additional data to address the points raised.

      Recommendations for the authors:

      We addressed all points raised by the reviewers, clarified the content or added more data.

      Reviewer #1 (Recommendations For The Authors):

      (1) Throughout the manuscript, the full stop of a sentence is always placed before the references.

      We fixed this.

      (2) I find the English in the manuscript not yet sufficient for publication. I suggest that the authors carefully revise the manuscript. I think if the sentences are structured a little more clearly, this paper has enormous potential to be read by your broad community.

      We agree and revised the manuscript. We hope the manuscript is now clearer.

      (3) Sentences l114 to l117 are misleading. The authors imply that they tested the same flies for changes in odor perception or sucrose sensitivity. I assume that the authors meant that they analyzed different groups of animals.

      We clarified the sentence as follows:

      “To ensure that the observed differences in learning and memory were not due to changes in odorant perception, odorant evaluation or sucrose sensitivity, different fly populations of the same genotypes were tested for their odorant acuity, odorant preference and their sucrose responsiveness (Table S1).”

      (4) In the title as well as in the abstract the influence of octopamine on appetitive memory formation is described in more detail, this is also the main focus of this study. However, in the introduction, the influence of the insulin receptor on memory formation is discussed first. Personally, I would describe this later in the manuscript, ideally in the results section. At this point in the manuscript, this leads to an interruption in the flow of reading.

      Thanks for the suggestion. We changed the order in the introduction.

      (5) The authors could consider, since they only used Drosophila melanogaster, changing "Drosophila melanogaster" to "Drosophila" throughout the manuscript.

      We modified the text accordingly.

      (6) All evaluations and statistical tests are state of the art. However, I have one comment. For each statistical test, a correction should be made depending on the number of tests. However, I could not determine whether this was also done for the parametric or non-parametric one-sample t-test. From the results and the methods section, I would guess not. Here I would recommend a Bonferroni correction or even better a Sidak-Holm correction. Furthermore, the authors could also go into more detail about which non-parametric one-sample t-test they used.

      We described the statistic used in more detail in the material and method section.

      “We used the Shapiro-Wilk test (significance level P < 0.05) followed by a QQ-Plot chart analysis to determine whether the data were normal distributed. For normal distributed data, we used the Student’s t test to compare differences between two groups and the one-way ANOVA with Tukey’s post hoc HSD test for differences between more than two groups. For nonparametric data, we used the Mann-Whitney U test for differences between two groups and for more than two groups the Kruskal-Wallis test with post hoc Duenn analysis and Bonferroni correction. The nonparametric one-sample sign test was used to analyze whether behavior was not based on random choice and differed from zero (P < 0.5). The statistical data analysis was performed using statskingdom (https://www.statskingdom.com).”

      (7) In nearly all figure legends the sentence "The letter "a" marks a significant difference from random choice as determined by a one-sample sign test (P < 0.05; P< 0.01)" occur. This is correctly indexed in the figures. However, I do not understand here what then P < 0.05; P**< 0.01 means. The significance level should be described here. I would strongly recommend the authors to make the definition clearer.

      We corrected this in the figure legends (see also above).

      (8) In Fig. 1B the labelling is a bit confusing. I interpret the two right groups as the mutants for octopamine, but there is still w[1118] in front.

      We modified the Figure 1B.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions

      (1) Assessing the contribution of Tyramine in the observed phenotypes (for example by reducing the levels of Tyramine or its specific receptor) would help understand the contribution of Tyramine in the observed phenotypes.

      See comments above.

      We thank the reviewer for raising these points. The observed memory defects of the Tbh mutants can be solely explained by loss of octopamine. We included models into the manuscript to illustrate this (Figure 2 C and Figure 7E).

      To address whether the elevated levels of tyramine observed in Tbh mutants interfere with food consumption, we analyzed the effect of increased levels of tyramine and octopamine on food consumption. We included the data (Figure S2). An increase in tyramine levels did not result in a change in food intake, rather the increased octopamine levels reduced food intake. Our data show that the reduction of food intake observed in starved Tbh mutants is due to the increased internal energy supply.

      (2) Cell-specific inhibition of octopamine receptors should thus be performed to precisely interpret the observed phenotypes and dissect how interconnected the different phenotypes are, which is the object of this publication.

      We observed that the time point and duration of octopamine application changes the behavioral output. The behavior analyzed depends on pulses of octopamine and differences of the internal energy status. A cell-specific inhibition via RNAi knock down of octopamine receptors might not clarify the issue.

      (3) Defining of streamline and progressively integrating the different observations into a unifying model would improve the clarity and flow of the manuscript.

      We included models explaining the observed results (Figure 2C and Figure 7E).

      Minor comments

      Line 129: Figure 1B should be mentioned, not 2B.

      Figure 1 legend: E should be replaced by C (after A,B).

      Figure S5: what are the arrows pointing to? Why are the Inr foci visible in A not seen in B? It should be mCD8-GFP and not mCD on top of the images.

      We fixed this.

      Reviewer #3 (Recommendations For The Authors):

      Major:

      (1) Can one really conclude from Figure 2A that OA acts on R15A04 DA neurons? It is well established that without activity in these DA neurons there is no LTM. Since OA acts to decrease learning, how one can conclude anything about the location of OA effect when there is no learning? With STM the situation was opposite, OA supported learning and this was abolished when DA neurons were silenced. I think some supporting experiment are required, i.e. how OA affects DA neurons activity or, alternatively, tone down a bit the writing.

      Normally control flies did not form memory 6 h after training, only Tbh mutants. We wanted to investigate what kind of memory develops in Tbh mutants. During the experiments of the manuscript, we kept the training procedure constant. The inhibition of dopaminergic neurons blocks the memory of Tbh mutants. Taken together the duration of the memory, the cold-shock experiments and the inhibition of the dopaminergic neurons, Tbh develops LTM after training. This training does not evoke memory in controls.

      The loss of STM in mildly starved Tbh mutants depends on the integration of the high internal energy levels via InR signaling. Reducing the internal energy levels further by extension of starvation result in STM supporting that OA is not directly involved in the formation of STM.

      (2) Figure 4 requires some clarifications. In Supplementary Figure S2 the authors show that they could not manipulate glycogen levels in muscles. However, in Figure 4B they show that "Increasing glycogen levels in the muscles did not change short-term memory in 16 h starved flies, but the reduction in glycogen significantly improved memory strength (Figure 4B)" (lines 231-233). How can this be reconciled?

      While we could not detect differences in whole animals, we detected differences in glycogen content in body parts enriched with muscles or fat, e.g. thorax or abdomen when using UAS-GlyP-RNAi or UAS-GlyS-RNAi under the control of the respective Gal4 drivers.

      We added the data.

      Likewise, the authors write that "Increasing or decreasing glycogen levels in the fat bodies had no effect on memory performance (Figure 4C)" Line (233-234). However, in Figure S2 they show that they can only increase glycogen levels but not decrease them.

      As explained above the conclusion of Figure 4 "Thus, low levels of glycogen in the muscles upon starvation positively influence appetitive short-term memory, while high levels of glycogen in the muscles and fat body reduce short-term memory" lines 245-246, is not supported by the direct measurements of glycogen presented in Figure S2.

      We added the data showing that the reduction or increase can be measured when analyzing the specific body parts enriched in muscles tissue or fat tissue.

      (3) In cases where mutant flies do not display learning, a control should be done to see if they ate the sugar (with dye). Especially since the genetic manipulation affects metabolism.

      We analyzed how much sucrose the animals consumed in the behavioral test. Tbh and controls fed and there was no difference in feeding behavior between the mutants and the controls.

      “We next determined whether differences in preferences influence sucrose intake during training. Therefore, we measured the sucrose intake of starved flies in the behavioral set up. We used a food-colored sucrose solution and evaluated the presence of food in the abdomen of the fly after two 2 min (Table S1). Flies fed sucrose within 2 min and there was no difference between w1118 and TβhnM18 flies. “

      (4) The use of t-test requires the data to be normally distributed. If I am not mistaken this was not demonstrated for any of the datasets used. I did a quick check on one of the datasets provided in the excel sheet and it is normally distributed. Therefore, please add normality test for all data sets. If some do not pass normality, please use a suitable non-parametric test.

      We added normality test to all data sets and used non-parametric tests for non-normal distributed data. We clarify this in the material and method section and the figure legends.

      (5) The authors show that OA suppresses also STM. This result is in contradiction to previous published results. This by itself is not a problem. However, this result also seems to me in contradiction to the authors own results. According to Figure 1B, OA is required for STM as it absence in the tbh mutant results in loss of STM. According to Figure 2C, OA is reducing STM as wt flies fed with OA just prior to learning do not form STM. This appears in other places in the manuscript as well.

      In addition, in the text lines 178-180, the authors write "A short pulse of octopamine before the training inhibits the STM. Thus, octopamine is a negative regulator of appetitive dopaminergic neuron-dependent long-term memory and can block STM." But in the summary they write "Octopamine is not required for short-term memory, since octopamine deficient mutants form appetitive short-term memory to sucrose and to other nutrients depending on the internal energy status." So, the take-home message regarding OA and STM is unclear.

      The authors need to better clarify this point.

      We clarified these points. See comments above. The loss of memory in Tbh mutants is not due to loss of octopamine, but increased energy levels that changes the reward properties of sucrose.

      (6) The manuscript is very difficult to follow. The authors constantly change between 16 and 40 hours starvation, short term memory, 3 hour memory and 6 hour memory. I think it would have been better to have a more focused manuscript. However, if this is not possible, I recommend preparing a diagram with the different neurons or signaling pathways (i.e. insulin) and how they affect each other. Also, perhaps add to each figure a panel describing exactly the experimental conditions. I think also simplifying the text and adding more conclusions throughout the results section will help the readers to follow. Finally, I think that it would help understanding the conclusions if the authors can add a diagram of the flow that they think occurs. For example, the authors show that glycogen suppresses learning as its reduction increases learning. They also show that InR activity receptor suppresses learning as its KD also increases learning. If I am not mistaken the link between the two is not straight forward (but I may be wrong here). A diagram of the flow would be very helpful.

      We prepared diagrams summarizing and explaining the results.

      Minor

      (1) I may not have understood correctly as I am not sure that I found Table S1.

      Also, there was no legend for Table S1.

      Nevertheless, if I understood correctly, the authors write that "Before the experiments, flies were tested to determine whether they perceived the odorants, preferred one odorant over other and responded to the reward similarly to ensure that the observed differences in behavior were not due to changes in odorant perception or sucrose sensitivity (Table S1)." However, according to the Table that I found it seems that following 40h starvation wt flies show preference to OCT whereas this does not occur for the mutant. Also, it seems that at 16h the mutant has a much higher preference to the odors than after 40h. This is a bit odd. I am also not sure what the balance value refers to. Finally, the mutant shows really low 2M sucrose preference after 40h. In general, this set of experiments requires a bit more explanation.

      I think it is better to show these experiments using graphs and add this to the supplementary figures.

      We clarified the experiments in the result section as follows and added an explanation to the material and method section. We tested the odorant acuity and sucrose preference for all genotypes used in the manuscript and added the data to the Table S1.

      “The flies of the different genotypes sensed the odorants and evaluated them as similar salient in comparison. This is important to a avoid a bias in the situation where flies have to choose between the two odorants after training. They also sensed sucrose. We next determined whether differences in preferences influence sucrose intake during training. Therefore, we measured the sucrose intake of starved flies in the behavioral set up. We used a food-colored sucrose solution and evaluated the presence of food in the abdomen of the fly after two 2 min (Table S1). Flies fed sucrose within 2 min and there was no difference between w1118 and TβhnM18 flies.”

      (2) Line 129 should be Figure 1B

      Is corrected.

      (3) Line 133, Figure 1C, how can one explain the negative reinforcement? I can understand no reinforcement, but negative?

      The effect of glucose might be doses dependent. 0.15 M sucrose is a much closer to a realistic concentration found in fruits than 2 M sucrose and might therefore elicit aversion. When animals are starved enough they might find any food source attractive, even when the concentrations of sucrose is unrealistic.

      (4) Figure 1, why are the graphs different between panel B and C?

      Is corrected.

      (5) In Figure S1, are the TβhnM18 groups differ significantly from zero? I think they are, so better to state this somewhere. If not, the claims in lines 134-135 are not supported by the data.

      We added the significance and added the data to Figure 1.

      Figure S1 legend: there is no A panel. Also "below box blots" should be box plots.

      Thanks for pointing that out. We corrected it.

      (6) It is not clear what is the duration of starvation used in Figure 2A. I assume that 16h and sucrose 2M used were used, but I would state that explicitly.

      We added the information to the figure legends.

      (7) Figure 2A is missing a control of flies with both the driver and UAS shibirets at the permissive temperature.

      We added the controls to the supplement (Figure S1).

      (8) It seems to me that Figure 3B, in which the author state that "Only after 40 h of starvation did TβhnM18 mutants show a similar preference to control sucrose consumption" (line 198) is somewhat in contradiction to Table S1 in which I see Sucrose preference for wt 0.36 and for tbh 0.17. I think this comment arise because I did not understand Table S1 correctly, so please better explain.

      We rewrote this section.

      (9) In Figure 3C, consider not using std as this stands for standard deviation and may be confusing.

      We now use the term “food” instead of “std” and explained in the legend that food means standard fly food.

      We fixed this.

      (10) Please check the Supplementary Figures. I think Figures S2 and S3 are switched.

      We fixed this.

      (11) There is a mistake in Figure S3A. The right column should have another "+" sign.

      Thanks, we fixed this.

      (12) I am somewhat puzzled by Figures 4 and 5. If I understand correctly figure 4B w1118 mef2-G4 is exactly the same experiment as Figure 5A w1118 mef2-G4 and yet in Figure 4B performance index is 0.2 and in Figure 5A about 0.4. According to other comparisons it seems to me that these will be significantly different and yet it is the same experiment.

      They are two independent experiments done at different times. The controls were independently repeated.

      (13) Line 273 should be Figure 5C.

      Is corrected.

      (14) I don't think this is a correct sentence "Virgin females remembered sucrose significantly better than mated females." Line 274.

      Reads now:

      “Virgin females remembered the odorant paired with sucrose significantly better than mated females.”

      (15) Line 340 there is no Figure 1E

      Is fixed (1 C)

      (16) The data excel file is difficult to follow. In Figure 2 there are references to Figure 5. The graphs are pointing to other files. Text is not always in English. It is not clear what W stands for. I recommend making it more accessible.

      We corrected the data excel files.

      (17) The manuscript is difficult to follow. I recommend preparing a diagram with the different neurons or signaling pathways (i.e. insulin) and how they affect each other.

      We improved the data presentation by

      a) adding a model showing the kinetics of memory formation in controls and mutants (Figure 2C)

      b) a model explaining how the internal state is integrated into the formation of memory (Figure 7D).

    1. It is there-fore to be expected that the initial cost of the card system is nota fair criterion of its cost when in working order.

      Setting up and learning a note taking or card index system has a reasonably large up-front cost, but learning it well and being able to rely on it over long periods of time will eventually reap larger and cheaper long-term outcomes and benefits.

      Unless changing systems creates dramatically larger improvements, the cost of change will surely swamp the benefits making the switch useless. This advice given by Kaiser is still as true today as it was in 1908, we tend not to think about the efficiency as much now as he may have then however and fall trap to shiny object syndrome.

    1. Author Response

      The following is the authors’ response to the original reviews.

      This study reports important evidence that infants' internal factors guide children's attention and that caregivers respond to infants' attentional shifts during caregiver-infant interactions. The authors analyzed EEG data and multiple types of behaviors using solid methodologies that can guide future studies of neural responses during social interaction in infants. However, the analysis is incomplete, as several methodological choices need more adequate justification.

      Reviewer #1

      Public Review:

      The authors bring together multiple study methods (brain recordings with EEG and behavioral coding of infant and caregiver looking, and caregiver vocal changes) to understand social processes involved in infant attention. They test different hypotheses on whether caregivers scaffold attention by structuring a child's behavior, versus whether the child's attention is guided by internal factors and caregivers then respond to infants' attentional shifts. They conclude that internal processes (as measured by brain activation preceding looking) control infants' attention, and that caregivers rapidly modify their behaviors in response to changes in infant attention.

      The study is meticulously documented, with cutting-edge analytic approaches to testing alternative models; this type of work provides a careful and well-documented guide for how to conduct studies and process and analyze data for researchers in the relatively new area of neural response in infants in social contexts.

      We are very pleased that R1 considers our work an important contribution to this developing field, and we hope that we have now addressed their concerns below.

      Some concerns arise around the use of terms (for example, an infant may "look" at an object, but that does not mean the infant is actually "attending); collapsing of different types of looks (to people and objects), and the averaging of data across infants that may mask some of the individual patterns.

      We thank the reviewer for this feedback and their related comments below, and we feel that our manuscript is much stronger as a result of the changes we have made. Please see blow for a detailed description of our rationale for defining and analysing the attention data, as well as the textual changes made in response to the author’s comments.

      Recommendations For The Authors

      This paper is rigorous in method, theoretically grounded, and makes an important contribution to understanding processes of infant attention, brain activity, and the reciprocal temporal features of caregiver-infant interactions. The alternative hypothesis approach sets up the questions well (although authors should temper any wording that suggests attention processes are one or the other. That is, certain bouts of infant attention can be guided by exogenous factors such as social input, and others be endogenous; so averaging across all bouts can actually mask the variation in these patterns). I appreciated the focus on multiple types of behavior (e.g., gaze, vocal fluctuations in maternal speech); the emphasis on contingent responding; and the very clear summaries of takeaways after each section. Furthermore, methods and analyses are well described, details on data processing and so on are very thorough, and visualizations aptly facilitate data interpretation. However, I am not an expert on infant neural responses in EEG and assume that a reviewer with such expertise will weigh in on the treatment and quality of the data; therefore, my comments should be interpreted in light of this lack of knowledge.

      We thank R1 for these very positive and insightful comments on our analyses which are the result of a number of years of methodological and technical developmental work.

      We do agree with R1 that we should more carefully word parts of our argument in the Introduction to make clear the fact that shifts in infant attention could be driven by a combination of interactive and endogenous influences. As a result of this comment, we have made direct changes to parts of the Introduction; removing any wording that suggests that these processes are ‘alternative’ or ‘separate’, and our overall aim states: ‘Here, recording EEG from infants during naturalistic interactions with their caregiver, we examined the (inter)-dependent influences of infants’ endogenous oscillatory neural activity, and inter-dyadic behavioural contingencies in organising infant attention’.

      Examining variability between infant attention episodes in the factors that influence the length and timing of the attention episode is an important area for future investigation. We now include a discussion on this on page 38 of the Discussion section, with suggestions for how this could be examined. Investigating different subtypes of infant attention is methodologically challenging, given the number of infant behaviours that would need to inform such an analysis- all of which are time consuming to code. Developing automated methods for performing these kinds of analyses is an important avenue for future work.

      Here, I review various issues that require revision or elaboration based on my reading of what I consider to otherwise be a solid and important research paper.

      Problem in the use of the term attention scaffolding. Although there may be literature precedent in the use of this term, it is problematic to narrowly define scaffolding as mother-initiated guidance of attention. A mother who responds to infant behaviors, but expands on the topic or supports continued attention, and so on, is scaffolding learning to a higher level. I would think about a different term because it currently implies a caregiver as either scaffolding OR responding contingently. It is not an either-or situation in conceptual meaning. In fact, research on social contingency (or contingent responsiveness), often views the follow-in responding as a way to scaffold learning in an infant.

      Yes, we agree with R1 that the term ‘attention scaffolding’ could be confusing given the use of this term in previous work conducted with children and their caregivers in problem-solving tasks, that emphasise modulations in caregiver behaviour as a function of infant behaviour. As a result of this suggestion, we have made direct edits to the text throughout, replacing the term attentional scaffold with terms such as ‘organise’ and ‘structure’ in relation to the caregiver-leading or ‘didactic’ perspective, and terms such as ‘contingent responding’ and ‘dynamic modulation’ in relation to the caregiver-following perspective. We feel that this has much improved the clarity of the argument in the Introduction and Discussion sections.

      Do individual data support the group average trends? My concern with unobservable (by definition) is that EEG data averages may mask what's going on in individual brain response. Effects appear to be small as well, which occurs in such conditions of averaging across perhaps very variable response patterns. In the interest of full transparency and open science, how many infants show the type of pattern revealed by the average graph (e.g., do neural markers of infant engagement forward predict attention for all babies? Majority?). Non-parametric tests on how many babies show a claimed pattern would offer the litmus test of significance on whether the phenomenon is robust across infants or pulled by a few infants with certain patterns of data. Ditto for all data. This would bolster my confidence in the summaries of what is going on in the infant brain. (The same applies as I suggest to attention bouts. To what extent does the forward-predict or backward-predict pattern work for all bouts, only some bouts, etc.?). I recognize that to obtain power, summaries are needed across infants and bouts, but I want to know if what's being observed is systematic.

      We thank R1 for this comment and understand their concern that the overall pattern of findings reported in relation to the infants’ EEG data might obscure inter-individual variability in the associations between attention and theta power. Averaging across individual participant EEG responses is, however, the gold standard way to perform both event-locked (Jones et al., 2020) and continuous methods (Attaheri et al., 2020) of EEG analysis that are reported in the current manuscript. EEG data, and, in particular, naturalistic EEG data is inherently noisy, and averaging across participants increases the signal to noise ratio (i.e. inconsistent, and, therefore, non-task-related activity is averaged out of the response (Cohen, 2014; Noreika et al., 2020)). Examining individual EEG responses is unlikely to tell us anything meaningful, given that, if a response is not found for a particular participant, then it could be that the response is not present for that participant, or that it is present, but the EEG recording for that participant is too noisy to show the effect. Computing group-level effects, as is most common in all neuroimaging analyses, is, therefore, most optimal to examining our main research questions.

      The findings reported in this analysis also replicate previous work conducted by our lab which showed that infant attention to objects significantly forward-predicted increases in infant theta activity during joint table-top play with their caregiver, involving one toy object (compared to our paradigm which involved 3;Wass et al., 2018). More recent work conducted by our lab has also shown continuous and time-locked associations between infant look durations and infant theta activity when infants play with objects on their own (Perapoch Amadó et al., 2023). To reassure readers of the replicability of the current findings, we now reference the Wass et al. (2018) study at the beginning of the Discussion section.

      Could activity artifacts lead to certain reported trends? Babies typically look at an object before they touch or manipulate the object, and so longer bouts of attention likely involve a look and then a touch for lengthier time frames. If active involvement with an object (touching for example) amplifies theta activity, that may explain why attention duration forward predicts theta power. That is, baby looks, then touches, then theta activates, and coding would show visual gaze preceding the theta activation. Careful alignment of infants' touches and other such behaviors with the theta peak might help address this question, again to lend confidence to the robustness of the interpretation.

      Yes, again this is a very important point, and the removal of movement-related artifact is something we have given careful attention to in the analysis of our naturalistic EEG data (Georgieva et al., 2020; Marriott Haresign et al., 2021). As a result of this comment we have made direct changes to the Results section on page 18 to more clearly signal the reader to our EEG pre-processing section before presenting the results of the cross-correlation analyses.

      As we describe in the Methods section of the main text, movement-related artifacts are removed from the data with ICA decomposition, utilising an automatic-rejection algorithm, specially designed for work with our naturalistic EEG data (Marriott Haresign et al., 2021). Given that ICA rejection does not remove all artifact introduced to the EEG signal, additional analysis steps were taken to reduce the possibility that movement artifacts influenced the results of the reported analyses. As explained in the Methods section, rather than absolute theta power, relative theta was used in all EEG analyses, computed by dividing the power at each theta frequency by the summed power across all frequencies. Eye and head movement-related artifacts most often associate with broadband increases in power in the EEG signal (Cohen, 2014): computing relative theta activity therefore further reduces the potential influence of artifact on the EEG signal.

      It is also important to highlight that previous work examining movement artifacts in controlled paradigms with infants has shown that limb movements actually associate with a decrease in power at theta frequencies, compared to rest (Georgieva et al., 2020). It is therefore unlikely that limb movement artifacts explain the pattern of association observed between theta power and infant attention in the current study.

      That said, examining the association between body movements and fluctuations in EEG activity during naturalistic interactions is an important next step, and something our lab is currently working on. Given that touching an object is most often the end-state of a larger body movement, aligning the EEG signal to the onset of infant touch is not all that informative to understanding how body movements associate with increases and decreases in power in the EEG signal. Our lab is currently working on developing new methods using motion tracking software and arousal composites to understand how data-derived behavioural sub-types associate with differential patterns of EEG activity.

      The term attention may be misleading. The behavior being examined is infant gaze or looks, with the assumption that gaze is a marker of "attention". The authors are aware that gaze can be a blank stare that doesn't reflect underlying true "attention". I recommend substitution of a conservative, more precise term that captures the variable being measured (gaze); it would then be fine to state that in their interpretation, gaze taken as a marker for attention or something like that. At minimum, using term "visual attention" can be a solution if authors do not want to use the precise term gaze. As an example, the sentence "An attention episode was defined as a discrete period of attention towards one of the play objects on the table, or to the partner" should be modified to defined as looking at a play object or partner.

      We thank the reviewer for this comment, and we understand their concern with the use of the term ‘attention’ where we are referring to shifts in infant eye gaze. However, the use of this term to describe patterns of infant gaze, irrespective of whether they are ‘actually attending’ or not is used widely in the literature, in both interactive (e.g. Yu et al., 2021) and screen-based experiments examining infant attention (Richards, 2010). We therefore feel that its use in our current manuscript is acceptable and consistent with the reporting of similar interaction findings. On page 39 of the Discussion we now also include a discussion on how future research might further investigate differential subtypes of infant looks to distinguish between moments where infants are attending vs. just looking.

      Why collapse across gaze to object vs. other? Conceptually, it's unclear why the same hypotheses and research questions on neural-attention (i.e., gaze in actuality) links would apply to looks to a mom's face or to an object. Some rationale would be useful to the reader as to why these two distinct behaviors are taken as following the same principles in ordering of brain and behavior. Perhaps I missed something, however, because later in the Discussion the authors state that "fluctuations in neural markers of infants' engagement or interest forward-predict their attentiveness towards objects", which suggests there was an object-focused variable only? Please clarify. (Again, sorry if I missed something).

      This is a really important point, and we agree with R1 that it could have been more clearly expressed in our original submission – for which, we apologise. In the cross-correlation analyses conducted in parts 2 and 3 which examines forwards-predictive associations between infant attention durations and infant endogenous oscillatory activity (part two), and caregiver behaviour (part three), as R1 describes, we include all infant looks towards objects and their partner. Including all infant look types is necessary to produce a continuous variable to cross-correlate with the other continuous variables (e.g. theta activity, caregiver vocal behaviours), and, therefore, does not concentrate only on infant attention episodes towards objects.

      We take the reviewers’ point that different attention and neural mechanisms may be associated with looks towards objects vs. the partner, which we now acknowledge directly on page 10 of the Introduction. However, our focus here is on the endogenous and interactive mechanisms that drive fluctuations in infant engagement with the ongoing, free-flowing interaction. Indeed, previous work has shown increases in theta activity during sustained episodes of infant attention to a range of different stimuli, including cartoon videos (Xie et al., 2018), real-life screen-based interactions (Jones et al., 2020), as well as objects (Begus et al., 2016). In the second half of part 2, we go on to address the endogenous processes that support infant attention episodes specifically towards objects.

      As a result of this comment, we have made direct changes to the Introduction on page 10 to more clearly explain the looking behaviours included in the cross-correlation analysis, and the rationale behind the analysis being conducted in this way – which is different to the reactive analyses conducted in the second half of parts one and three, which examines infant object looks only. Direct edits to the text have also been made throughout the Results and Methods sections as a result of this comment, to more clearly specify the types of looks included in each analysis. Now, where we discuss the cross-correlation analyses we refer only to infant ‘attention durations’ or infant ‘attention’, whilst ‘object-directed attention’ and ‘looks towards objects’ is clearly specified in sections discussing the reactive analyses conducted in parts 2 and 3. We have also amended the Discussion on page 31so that the cross-correlation analyses is interpreted relative to infant overall attention, rather than their attention towards objects only.

      Why are mothers' gazes shorter than infants' gazes? This was the flip of what I'd expect, so some interpretation would be useful to understanding the data.

      This is a really interesting observation. Our findings of the looking behaviour of caregivers and infants in our joint play interactions actually correspond to much previous micro-dynamic analysis of caregiver and infant looking behaviour during early table-top interactions (Abney et al., 2017; Perapoch Amadó et al., 2023; Yu & Smith, 2013, 2016). The reason for the shorter look durations in the adult is due to the fact that the caregivers alternate their gaze between their infant and the objects (i.e. they spend a lot of the interaction time monitoring their infants’ behaviours). This can be seen in Figure 2 (see main text) which shows that caregiver looks are divided between looks to their infants and looks towards objects. In comparison, infants spend most of their time focussing on objects (see Figure 2, main text), with relatively infrequent looks to their caregiver. As a result, infant looks are, overall, longer in comparison to their caregivers’.

      Minor points

      Use the term association or relation (relationships is for interpersonal relationships, not in statistics).

      This has now been amended throughout.

      I'm unsure I'd call the interactions "naturalistic" when they occur at a table, with select toys, EEG caps on partners, and so on. The term seems more appropriate for studies with fewer constraints that occur (for example) in a home environment, etc.

      We understand R1s concern with our use of the term ‘naturalistic’ to refer to the joint play interactions that we analyse in the current study. However, we feel the term is appropriate, given that the interactions are unstructured: the only instruction given to caregivers at the beginning of the interaction is to play with their infants in the way that they might do at home. The interactions, therefore, measure free-flowing caregiver and infant behaviours, where modulations in each individual’s behaviour are the result of the intra- and inter-individual dynamics of the social exchange. This is in comparison to previous work on early infant attention development which has used more structured designs, and modulations in infant behaviour occur as a result of the parameters of the experimental task.

      Reviewer #2

      Public Review

      Summary:

      This paper acknowledges that most development occurs in social contexts, with other social partners. The authors put forth two main frameworks of how development occurs within a social interaction with a caregiver. The first is that although social interaction with mature partners is somewhat bi-directional, mature social partners exogenously influence infant behaviors and attention through "attentional scaffolding", and that in this case infant attention is reactive to caregiver behavior. The second framework posits that caregivers support and guide infant attention by contingently responding to reorientations in infant behavior, thus caregiver behaviors are reactive to infant behavior. The aim of this paper is to use moment-to-moment analysis techniques to understand the directionality of dyadic interaction. It is difficult to determine whether the authors prove their point as the results are not clearly explained as is the motivation for the chosen methods.

      Strengths

      The question driving this study is interesting and a genuine gap in the literature. Almost all development occurs in the presence of a mature social partner. While it is known that these interactions are critical for development, the directionality of how these interactions unfold in real-time is less known.

      The analyses largely seem to be appropriate for the question at hand, capturing small moment-to-moment dynamics in both infant and child behavior, and their relationships with themselves and each other. Autocorrelations and cross-correlations are powerful tools that can uncover small but meaningful patterns in data that may not be uncovered with other more discretized analyses (i.e. regression).

      We are pleased that R2 finds our work to be an interesting contribution to the field, which utilises appropriate analysis techniques.

      Weaknesses

      The major weakness of this paper is that the reader is assumed to understand why these results lead to their claimed findings. The authors need to describe more carefully their reasoning and justification for their analyses and what they hope to show. While a handful of experts would understand why autocorrelations and cross-correlations should be used, they are by no means basic analyses. It would also be helpful to use simulated data or even a simple figure to help the reader more easily understand what a significant result looks like versus an insignificant result.

      We thank the reviewer for this comment, and we agree that much more detail should be added to the Introduction section. As a result of this comment, we have made direct changes to the Introduction on pages 9-11 to more clearly detail these analysis methods, our rationale for using these methods; and how we expect the results to further our understanding of the drivers of infant attention in naturalistic social interactions.

      We also provide a figure in the SM (Fig. S6) to help the reader more clearly understand the permutation method used in our statistical analyses described in the Methods, on page 51, which depicts significant vs. insignificant patterns of results against their permutation distribution.

      While the overall question is interesting the introduction does not properly set up the rest of the paper. The authors spend a lot of time talking about oscillatory patterns in general but leave very little discussion to the fact they are using EEG to measure these patterns. The justification for using EEG is also not very well developed. Why did the authors single out fronto-temporal channels instead of using whole brain techniques, which are more standard in the field? This is idiosyncratic and not common.

      We very much agree with R2 that the rationale and justification for using EEG to understand the processes that influence infants’ attention patterns is under-developed in the current manuscript. As a result of this comment we have made direct edits to the Introduction section of the main text on pages 7-8 to more clearly describe the rationale for examining the relationship between infant EEG activity and their attention during the play interactions with their caregivers.

      As we describe in the Introduction section, previous behavioural work conducted with infants has suggested that endogenous cognitive processes (i.e. fluctuations in top-down cognitive control) might be important in explaining how infants allocate their attention during free-flowing, naturalistic interactions towards the end of the first year. Oscillatory neural activity occurring at theta frequencies (3-6Hz), which can be measured with EEG, has previously been associated with top-down intrinsically guided attentional processes in both adulthood and infancy (Jones et al., 2020; Orekhova, 1999; Xie et al., 2018). Measuring fluctuations in infant theta activity therefore provides a method to examine how endogenous cognitive processes structure infant attention in naturalistic social interactions which might be otherwise unobservable behaviourally.

      It is important to note that the Introduction distinguishes between two different oscillatory mechanisms that could possibly explain the organisation of infant attention over the course of the interaction. The first refers to oscillatory patterns of attention, that is, consistent attention durations produced by infants that likely reflect automatic, regulatory functions, related to fluctuations in infant arousal. The second mechanism is oscillatory neural activity occurring at theta frequencies, recorded with EEG, which, as mentioned above, is thought to reflect fluctuations in intrinsically guided attention in early infancy. We have amended the Introduction to make the distinction between the two more clear.

      A worrisome weakness is that the figures are not consistently formatted. The y-axes are not consistent within figures making the data difficult to compare and interpret. Labels are also not consistent and very often the text size is way too small making reading the axes difficult. This is a noticeable lack of attention to detail.

      This has now been adjusted throughout, where appropriate.

      No data is provided to reproduce the figures. This does not need to include the original videos but rather the processed and de-identified data used to generate the figures. Providing the data to support reproducibility is increasingly common in the field of developmental science and the authors are greatly encouraged to do so.

      This will be provided with the final manuscript.

      Minor Weaknesses

      Figure 4, how is the pattern in a not significant while in b a very similar pattern with the same magnitude of change is? This seems like a spurious result.

      The statistical analysis conducted for all cross-correlation analyses reported follows a rigorous and stringent permutation-based temporal clustering method which controls for family-wise error rate using a non-parametric Monte Carlo method (see Methods in the main text for more detail). Permutations are created by shuffling data sets between participants and, therefore, patterns of significance identified by the cluster-based permutation analysis will depend on the mean and standard deviation of the cross-correlations in the permutation distribution. Fig. S6 now depicts the cross-correlations against their permutation distributions which should help readers to understand the patterns of significance reported in the main text.

      The correlations appear very weak in Figures 3b, 5a, 7e. Despite a linear mixed effects model showing a relationship, it is difficult to believe looking at the data. Both the Spearman and Pearson correlations for these plots should be clearly included in the text, figure, or figure legend.

      We thank the reviewer for this comment, and agree that reporting the correlations for these plots would strengthen the findings of the linear mixed effects models reported in text. As a result, we have added both Spearman and Pearson correlations to the legends of Figures 3b, 5a and 7e, corresponding to the statistically significant relationships examined in the linear mixed effects models. The strength of the relationships are entirely consistent with those documented in other previous research that used similar methods (e.g. Piazza et al., 2018). How strong the relationship looks to the observer is entirely dependent on the graphical representation chosen to represent it. We have chosen to present the data in this way because we feel that it is the most honest way to represent the statistically significant, and very carefully analysed, effects that we have observed in our data.

      Linear mixed effects models need more detail. Why were they built the way they were built? I would have appreciated seeing multiple models in the supplementary methods and a reasoning to have landed on one. There are multiple ways I can see this model being built (especially with the addition of a random intercept). Also, there are methods to test significance between models and aid in selection. That being said, although participant identity is a very common random effect, its use should be clearly stated in the main text.

      We very much agree with R2 that the reporting of the linear mixed effects models needs more detail and this has now been added to the Method section (page 54). Whilst it is true that there are multiple ways in which this model could be built, given the specificity of our research questions, regarding the reactive changes in infant theta activity and caregiver behaviours that occur after infant look onsets towards objects (see pages 9-11 of the Introduction), we take a hypothesis driven approach to building the linear mixed effects models. As a result, random intercepts are specified for participants, as well as uncorrelated by-participant random slopes (Brown, 2021; Gelman & Hill, 2006; Suarez-Rivera et al., 2019). In this way, infant look durations are predicted from caregiver behaviours (or infant theta activity), controlling for between participant variability in look durations, as well as the strength of the effect of caregiver behaviours (or infant theta activity) on infant look durations.

      Some parentheses aren't closed, a more careful re-reading focusing on these minor textual issues is warranted.

      This has now been corrected.

      Analysis of F0 seems unnecessarily complex. Is there a reason for this?

      Computation of the continuous caregiver F0 variable may seem complex but we feel that all analysis steps are necessary to accurately and reliably compute this variable in our naturalistic, noisy and free-flowing interaction data. For example, we place the F0 only into segments of the interaction identified as the mum speaking so that background noises and infant vocalisations are not included in the continuous variable. We then interpolate through unvoiced segments (similar to Räsänen et al., 2018), and compute the derivative in 1000ms intervals as a measure of the rate of change. The steps taken to compute this variable have been both carefully and thoughtfully selected given the many ways in which this continuous rate of change variable could be computed (cf. Piazza et al., 2018; Räsänen et al., 2018).

      The choice of a 20hz filter seems odd when an example of toy clacks is given. Toy clacks are much higher than 20hz, and a 20hz filter probably wouldn't do anything against toy clacks given that the authors already set floor and ceiling parameters of 75-600Hz in their F0 extraction.

      We thank the reviewer for this comment and we can see that this part of the description of the F0 computation is confusing. A 20Hz low pass filter is applied to the data stream after extracting the F0 with floor and ceiling parameters set between 75-600Hz. The 20Hz filter therefore filters modulations in the caregivers’ F0 that occur at a modulation frequency greater than 20Hz. The 20Hz filter does not, therefore, refer to the spectral filtering of the speech signal. The description of this variable has been rephrased on page 48 of the main text.

      Linear interpolation is a choice I would not have made. Where there is no data, there is no data. It feels inappropriate to assume that the data in between is simply a linear interpolation of surrounding points.

      The choice to interpolate where there was no data was something we considered in a lot of detail, given the many options for dealing with missing data points in this analysis, and the difficulties involved with extracting a continuous F0 variable in our naturalistic data sets. As R2 points out, one option would be to set data points to NaN values where no F0 is detected and/ or the Mum is not vocalising. A second option, however, would be to set the continuous variable to 0s where no F0 is detected and/ or the Mum is not vocalising (where the mum is not producing sound there is no F0 so rather than setting the variable to missing data points, really it makes most objective sense to set to 0).

      Either of these options (setting parts where no F0 is detected to NaN or 0) makes it difficult to then meaningfully compute the rate of change in F0: where NaN values are inserted, this reduces the number of data points in each time window; where 0s are inserted this creates large and unreal changes in F0. Inserting NaN values into the continuous variable also reduces the number of data points included in the cross-correlation and event-locked analyses. It is important to note that, in our naturalistic interactions, caregivers’ vocal patterns are characterised by lots of short vocalisations interspersed by short pauses (Phillips et al., in prep), similar to previous findings in naturalistic settings (Gratier et al., 2015). Interpolation will, therefore, have largely interpolated through the small pauses in the caregiver’s vocalisations.

      The only limitation listed was related to the demographics of the sample, namely saying that middle class moms in east London. Given that the demographics of London, even east London are quite varied, it's disappointing their sample does not reflect the community they are in.

      Yes we very much agree with R2 that the lack of inclusion of caregivers from wider demographic backgrounds is disappointing, and something which is often a problem in developmental research. Our lab is currently working to collect similar data from infants with a family history of ADHD, as part of a longitudinal, ongoing project, involving families from across the UK, from much more varied demographic backgrounds. We hope that the findings reported here will feed directly into the work conducted as part of this new project.

      That said, demographic table of the subjects included in this study should be added.

      This is now included in the SM, and referenced in the main text.

      References

      Abney, D. H., Warlaumont, A. S., Oller, D. K., Wallot, S., & Kello, C. T. (2017). Multiple Coordination Patterns in Infant and Adult Vocalizations. Infancy, 22(4), 514–539. https://doi.org/10.1111/infa.12165

      Attaheri, A., Choisdealbha, Á. N., Di Liberto, G. M., Rocha, S., Brusini, P., Mead, N., Olawole-Scott, H., Boutris, P., Gibbon, S., Williams, I., Grey, C., Flanagan, S., & Goswami, U. (2020). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants [Preprint]. Neuroscience. https://doi.org/10.1101/2020.10.12.329326

      Begus, K., Gliga, T., & Southgate, V. (2016). Infants’ preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113(44), 12397–12402. https://doi.org/10.1073/pnas.1603261113

      Brown, V. A. (2021). An Introduction to Linear Mixed-Effects Modeling in R.

      Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. The MIT Press.

      Gelman, A., & Hill, J. (2006). In Data Analysis using Regression and mulilevel/Hierachical Models. Cambridge University Press.

      Georgieva, S., Lester, S., Noreika, V., Yilmaz, M. N., Wass, S., & Leong, V. (2020). Toward the Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic EEG. Frontiers in Neuroscience, 14, 352. https://doi.org/10.3389/fnins.2020.00352

      Gratier, M., Devouche, E., Guellai, B., Infanti, R., Yilmaz, E., & Parlato-Oliveira, E. (2015). Early development of turn-taking in vocal interaction between mothers and infants. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01167

      Jones, E. J. H., Goodwin, A., Orekhova, E., Charman, T., Dawson, G., Webb, S. J., & Johnson, M. H. (2020). Infant EEG theta modulation predicts childhood intelligence. Scientific Reports, 10(1), 11232. https://doi.org/10.1038/s41598-020-67687-y

      Marriott Haresign, I., Phillips, E., Whitehorn, M., Noreika, V., Jones, E. J. H., Leong, V., & Wass, S. V. (2021). Automatic classification of ICA components from infant EEG using MARA. Developmental Cognitive Neuroscience, 52, 101024. https://doi.org/10.1016/j.dcn.2021.101024

      Noreika, V., Georgieva, S., Wass, S., & Leong, V. (2020). 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants. Infant Behavior and Development, 58, 101393. https://doi.org/10.1016/j.infbeh.2019.101393

      Orekhova, E. (1999). Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. International Journal of Psychophysiology, 32(2), 151–172. https://doi.org/10.1016/S0167-8760(99)00011-2

      Perapoch Amadó, M., Greenwood, E., James, Labendzki, P., Haresign, I. M., Northrop, T., Phillips, E., Viswanathan, N., Whitehorn, M., Jones, E. J. H., & Wass, S. (2023). Naturalistic attention transitions from subcortical to cortical control during infancy. [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/6z27a

      Piazza, E. A., Hasenfratz, L., Hasson, U., & Lew-Williams, C. (2018). Infant and adult brains are coupled to the dynamics of natural communication [Preprint]. Neuroscience. https://doi.org/10.1101/359810

      Räsänen, O., Kakouros, S., & Soderstrom, M. (2018). Is infant-directed speech interesting because it is surprising? – Linking properties of IDS to statistical learning and attention at the prosodic level. Cognition, 178, 193–206. https://doi.org/10.1016/j.cognition.2018.05.015

      Richards, J. E. (2010). The development of attention to simple and complex visual stimuli in infants: Behavioral and psychophysiological measures. Developmental Review, 30(2), 203–219. https://doi.org/10.1016/j.dr.2010.03.005

      Suarez-Rivera, C., Smith, L. B., & Yu, C. (2019). Multimodal parent behaviors within joint attention support sustained attention in infants. Developmental Psychology, 55(1), 96–109. https://doi.org/10.1037/dev0000628

      Wass, S. V., Noreika, V., Georgieva, S., Clackson, K., Brightman, L., Nutbrown, R., Covarrubias, L. S., & Leong, V. (2018). Parental neural responsivity to infants’ visual attention: How mature brains influence immature brains during social interaction. PLOS Biology, 16(12), e2006328. https://doi.org/10.1371/journal.pbio.2006328

      Xie, W., Mallin, B. M., & Richards, J. E. (2018). Development of infant sustained attention and its relation to EEG oscillations: An EEG and cortical source analysis study. Developmental Science, 21(3), e12562. https://doi.org/10.1111/desc.12562

      Yu, C., & Smith, L. B. (2013). Joint Attention without Gaze Following: Human Infants and Their Parents Coordinate Visual Attention to Objects through Eye-Hand Coordination. PLoS ONE, 8(11), e79659. https://doi.org/10.1371/journal.pone.0079659

      Yu, C., & Smith, L. B. (2016). The Social Origins of Sustained Attention in One-Year-Old Human Infants. Current Biology, 26(9), 1235–1240. https://doi.org/10.1016/j.cub.2016.03.026

      Yu, C., Zhang, Y., Slone, L. K., & Smith, L. B. (2021). The infant’s view redefines the problem of referential uncertainty in early word learning. Proceedings of the National Academy of Sciences, 118(52), e2107019118. https://doi.org/10.1073/pnas.2107019118

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study combines a comparative approach in different synapses with experiments that show how synaptic vesicle endocytosis in nerve terminals regulates short-term plasticity. The data presented support the conclusions and make a convincing case for fast endocytosis as necessary for rapid vesicle recruitment to active zones. Some aspects of the description of the data and analysis are however incomplete and would benefit from a more rigorous approach. With more discussion of methods and analysis, this paper would be of great interest to neurobiologists and biophysicists working on synaptic vesicle recycling and short-term plasticity mechanisms.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study examines the role of release site clearance in synaptic transmission during repetitive activity under physiological conditions in two types of central synapses, calyx of Held and hippocampal CA1 synapses. After the acute block of endocytosis by pharmacology, deeper synaptic depression or less facilitation was observed in two types of synapses. Acute block of CDC42 and actin polymerization, which possibly inhibits the activity of Intersectin, affected synaptic depression at the calyx synapse, but not at CA1 synapses. The data suggest an unexpected, fast role of the site clearance in counteracting synaptic depression.

      Strengths:

      The study uses an acute block of the molecular targets with pharmacology together with precise electrophysiology. The experimental results are clear-cut and convincing. The study also examines the physiological roles of the site clearance using action potential-evoked transmission at physiological Ca and physiological temperature at mature animals. This condition has not been examined.

      Weaknesses:

      Pharmacology may have some off-target effects, though acute manipulation should be appreciated. Although this is a hard question and difficult to address experimentally, reagents may affect synaptic vesicle mobilization to the release sites directly in addition to blocking endocytosis.

      To acutely block vesicle endocytosis, we utilized two different pharmacological tools, Dynasore and Pitstop-2, after testing their blocking spectra and potencies at the calyx presynaptic terminals and collected data of their common effects on target functions. Since the recovery from STD was faster at the calyx synapses in the presence of both endocytic blockers in physiological 1.3 mM [Ca2+] (Figure 2B), but not in 2.0 mM [Ca2+] (Figure S4), they might facilitate vesicle mobilization in physiological condition.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Mahapatra and Takahashi report on the physiological consequences of pharmacologically blocking either clathrin and dynamin function during compensatory endocytosis or of the cortical actin scaffold both in the calyx of Held synapse and hippocampal boutons in acute slice preparations

      Strengths:

      Although many aspects of these pharmacological interventions have been studied in detail during the past decades, this is a nice comprehensive and comparative study, which reveals some interesting differences between a fast synapse (Calyx of Held) tuned to reliably transmit at several 100 Hz and a more slow hippocampal CA1 synapse. In particular, the authors find that acute disturbance of the synaptic actin network leads to a marked frequency-dependent enhancement of synaptic depression in the Calyx, but not in the hippocampal synapse. This striking difference between both preparations is the most interesting and novel finding.

      Weaknesses:

      Unfortunately, however, these findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee et al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

      The concept of FRP and SRP are derived from voltage-clamp step-depolarization experiments at calyces of Held in pre-hearing rodents at RT, which cannot be directly dissected in data of action-potential evoked EPSCs at post-hearing calyces at physiological conditions. However, we dissected as much by referring to related literatures in new paragraphs in Result section (p9-10), particularly on the different effects of Latrunculin application and experimental conditions by adding a new supplementary Figure (now S5). Regarding F-actin role in vesicle replenishment at cerebellar synapses, we added sentences in Discussion section (p14, last paragraph).

      Reviewer #3 (Public Review):

      General comments:

      (1) While Dynasore and Pitstop-2 may impede release site clearance due to an arrest of membrane retrieval, neither Latrunculin-B nor ML-141 specifically acts on AZ scaffold proteins. Interference with actin polymerization may have a number of consequences many of which may be unrelated to release site clearance. Therefore, neither Latrunculin-B nor ML-141 can be considered suitable tools for specifically identifying the role of AZ scaffold proteins (i.e. ELKS family proteins, Piccolo, Bassoon, α-liprin, Unc13, RIM, RBP, etc) in release site clearance which was defined as one of the principal aims of this study.

      In this study, we focused our analysis on the downstream activity of scaffold protein intersectin by comparing the common inhibitory effects of CDC42 and actin polymerization, by use of ML141 and Latrunculin B, respectively, on vesicle endocytosis and synaptic depression/ facilitation without addressing diverse individual drug effects. To avoid confusion we removed “AZ” from scaffold protein.

      (2) Initial EPSC amplitudes more than doubled in the presence of Dynasor at hippocampal SC->CA1 synapses (Figure S2). This unexpected result raises doubts about the specificity of Dynasor as a tool to selectively block SV endocytosis.

      It is possible that Dynasore might have unknown or off-target effects. However, the main conclusion is backed up by Pitstop-2.

      (3) In this study, the application of Dynasore and Pitstop-2 strongly decreases 100 Hz steady-state release at calyx synapses while - quite unexpectedly - strongly accelerates recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      The latrunculin effect on STD can vary according to the condition of application and external [Ca2+], which we show in a new supplemental Figure S5. The latrunculin effect on the recovery from STD also varies with temperature, [Ca2+], and animal age, which affect Ca2+-dependent fast recovery component from depression. We added paragraphs for this issue in Results section (p9-10).

      (4) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      We added methodological explanations and reworded sentences in the text to be clear for pharmacological data derived from non-sequential separate experiments.

      (5) The authors compare results obtained in calyx with those obtained in SC->CA1 synapses which they considered examples for 'fast' and 'slow' synapses, respectively. There is little information given to help readers understand why these two synapse types were chosen, what the attributes 'fast' and 'slow' refer to, and how that may matter for the questions studied here. I assume the authors refer to the maximum frequency these two synapse types are able to transmit rather than to EPSC kinetics?

      Yes, the “fast and slow” naming features maximum operating frequency these synapses can transmit. We reworded “fast and slow” to “fast-signaling and slow-plastic” and added explanation in the text.

      (6) Strong presynaptic stimuli such as those illustrated in Figures 1B and C induce massive exocytosis. The illustrated Cm increase of 2 to 2.5 pF represents a fusion of 25,000 to 30,000 SVs (assuming a single SV capacitance of 80 aF) corresponding to a 12 to 15% increase in whole terminal membrane surface (assuming a mean terminal capacitance of ~16 pF). Capacitance measurements can only be considered reliable in the absence of marked changes in series and membrane conductance. Since the data shown in Figs. 1 and 3 are central to the argumentation, illustration of the corresponding conductance traces is mandatory. Merely mentioning that the first 450 ms after stimulation were skipped during analysis is insufficient.

      Conductance trace is shown with a trace of capacitance change induced by a square pulse in our previous paper (Yamashita et al, 2005 Science).

      (7) It is essential for this study to preclude a contamination of the results with postsynaptic effects (AMPAR saturation and desensitization). AMPAR saturation limits the amplitudes of initial responses in EPSC trains and hastens the recovery from depression due to a 'ceiling effect'. AMPAR desensitization occludes paired-pulse facilitation and reduces steady-state responses during EPSC trains while accelerating the initial recovery from depression. The use of, for example, 1 mM kynurenic acid in the bath is a well-established strategy to attenuate postsynaptic effects at calyx synapses. All calyx EPSC recordings should have been performed under such conditions. Otherwise, recovery time courses and STP parameters are likely contaminated by postsynaptic effects. Since the effects of AMPAR saturation on EPSC_1 and desensitization on EPSC_ss may partially cancel each other, an unchanged relative STD in the presence of kynurenic acid is not necessarily a reliable indicator for the absence of postsynaptic effects. The use of kynurenic acid in the bath would have had the beneficial side effect of massively improving voltage-clamp conditions. For the typical values given in this MS (10 nA EPSC, 3 MOhm Rs) the expected voltage escape is ~30 mV corresponding to a change in driving force of 30 mV/80 mV=38%, i.e. initial EPSCs in trains are likely underestimated by 38%. Such large voltage escape usually results in unclamped INa(V) which was suppressed in this study by routinely including 2 mM QX-314 in the pipette solution. That approach does, however, not reduce the voltage escape.

      Glutamate released during AP-evoked EPSCs does not saturate or desensitize postsynaptic receptors at post-hearing calyces of Held (Ishikawa et al, 2002; Yamashita et al, 2003) although it does in pre-hearing calyces (Yamashita et al, 2009). In fact, as shown in Figure S3, our results are essentially the same with or without kynurenate.

      (8) In the Results section (pages 7 and 8), the authors analyze the time course into STD during 100 Hz trains in the absence and presence of drugs. In the presence of drugs, an additional fast component is observed which is absent from control recordings. Based on this observation, the authors conclude that '... the mechanisms operate predominantly at the beginning of synaptic depression'. However, the consequences of blocking or slowing site clearing are expected to be strongly release-dependent. Assuming a probability of <20% that a fusion event occurs at a given release site, >80% of the sites cannot be affected at the arrival of the second AP even by a total arrest of site clearance simply because no fusion has yet occurred. That number decreases during a train according to (1-0.2)^n, where n is the number of the AP, such that after 10 APs, ~90% of the sites have been used and may potentially be unavailable for new rounds of release after slowing site clearance. Perhaps, the faster time course into STD in the presence of the drugs isn't related to site clearance?

      Enhanced depression at the beginning of stimulation indicates the block of rapid SV replenishment mechanism, which includes endocytosis-dependent site-clearance and scaffold-dependent vesicle translocation to release sites.

      (9) In the Discussion (page 10), the authors present a calculation that is supposed to explain the reduced size of the second calyx EPSC in a 100 Hz train in the presence of Dynasore or Pitstop-2. Does this calculation assume that all endocytosed SVs are immediately available for release within 10 ms? Please elaborate.

      We do not assume rapid endocytosed vesicle reuse within 10 ms as it requires much longer time for glutamate refilling (7s at PT; Hori & Takahashi, 2012). Instead, already filled reserved vesicles can rapidly replenish release sites if sites are clean and scaffold works properly. Results shown in Figure S6 also indicate that block of vesicle transmitter refilling has no immediate effect on synaptic responses.

      (10) It is not clear, why the bafilomycin/folimycin data is presented in Fig. S5. The data is also not mentioned in the Discussion. Either explain the purpose of these experiments or remove the data.

      These v-ATPase blockers, which block vesicular transmitter refilling, are reported to enhance EPSC depression at hippocampal synapses at RT and 2 mM [Ca2+] presumably because of lack of filled vesicles undergoing rapid vesicle recycling (eg Kiss & Run). We thought it important to determine whether these data have physiological relevance since such a mechanism might also regulate synaptic strength during repetitive transmission. However, our results did not support its physiological relevance. Since these results are not within our main questions, the negative results are shown it in supplementary Figure 6 and explained in the last paragraph of Result section (p11), but were not discussed further in Discussion section.

      (11) The scheme in Figure 7 is not very helpful.

      We updated the scheme to summarize our conclusion that vesicle replenishment through endocytosis-dependent site-clearance and scaffold-dependent mechanism independently co-operate to strengthen synaptic efficacy during repetitive transmission at calyx fast-signaling synapses. However, endocytic site clearance is solely required to support facilitation at slow-plastic hippocampal SC-CA1 synapses.

      Recommendations for the authors:

      First, my deep apologies for the long delay in reviewing your paper. All reviewers are now in agreement that the paper has valuable new information, but some methods are not described well and some results appear to be incompatible with previous results in the literature. The discussion of previous literature is also incomplete and not well-balanced. With more discussion of methods and literature strengthened this paper would be of great interest to neurobiologists and biophysicists working on synaptic vesicle recycling and short-term plasticity mechanisms. We ask that you address the comments and revise your paper before we can fully recommend the paper as being an important contribution with compelling evidence and a strong data set that supports the conclusions.

      We explained methods more explicitly. Apparent incompatibility with previous results is now explained and discussed with new supplementary data.

      Major:

      (1) In this study, the application of Dynasore and Pitstop-2 strongly decreased 100 Hz steady-state release at calyx synapses while - quite unexpectedly - it strongly accelerated recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      Lack of change in the recovery from depression in dynamin-1 knockout mice by Mahapatra et al (2016) is consistent with results in Figure S4 in 2 mM [Ca2+], whereas accelerated recovery by Dynasore (Figure 2B2) is observed in 1.3 mM [Ca2+] suggesting that it is masked in 2 mM [Ca2+] but revealed in physiological [Ca2+] (p7, top paragraph). In both cases, however, recovery from STD is not prolonged unlike Hosoi et al (2009).

      The latrunculin issues are discussed in Results section with newly added Supplementary Figure S5 (p9-10).

      (2) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      We made these points clearer in Method section and Result section.

      (3) Please cite and discuss briefly previous papers that have shown fast endocytosis in the calyx of Held with membrane capacitance measurements like Renden and von Gersdorff, J Neurophysiology, 98:3349, 2007 and Taschenberger et al., Neuron, 2002. These papers first showed exocytosis and endocytosis kinetics in more mature (hearing) mice calyx of Held and at higher physiological temperatures.

      One of these literatures relevant to the present study is quoted in p4.

      (4) The findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee et al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

      We added discussions on the issue of latrunculin in Result section by quoting previous literatures (p9-10). Since there is no direct evidence (by vesicle imaging) for the presence of FRP and SRP, these definitions derived from voltage clamp step-depolarization studies are difficult to incorporate into the dissection of synaptic depression in physiological conditions.

      Reviewer #1 (Recommendations For The Authors):

      I have no major comments, but the following issues may be addressed.

      (1) The term "fast and slow" synapses may be relative and a bit confusing. I do not think hippocampal synapses are slow synapses.

      We have replaced “fast and slow” by “fast-signaling and slow-plastic” to represent their functions and added explanation in the text.

      (2) Off-target effects of pharmacological effects may be discussed. In this respect, bafilomycin experiments can be used to argue against the slow effects of vesicle cycling such as endocytosis, and vesicle mobilization. However, the effects on rapid vesicle mobilization cannot be excluded entirely. Because I cannot exclude the absence of off-target effects either (can be addressed by looking at single vesicle imaging at nano-scale, which is hard to do or looking at EM level quantitatively?), I feel this is a matter of discussion.

      It is possible that Dynasore might have unknown or off-target effects. However, the main conclusion is backed up by Pitstop-2.

      (3) Fig2 A2, B2 and Fig 4 A2 and B2. It is easier to plot the recovery only normalized to the initial value. Subtracting steady-state is somewhat confusing because the recovery looks faster after deeper depression, but this may be just apparent.

      We have given values for both types of plots in Table 2, which indicates no essential difference in the recovery parameters.

      Reviewer #2 (Recommendations For The Authors):

      Line 51: Rajappa et al. (2016) investigated clearance deficits in synaptophysin KO mice (not synaptobrevin).

      Corrected.

      Line 54: intersectin is introduced as AZ scaffold protein, although in most of the literature, it is referred to as an endocytic scaffold protein (also in the cited one, e.g. Sakaba et al. 2013). At least, this should be discussed.

      Since blockers of intersectin downstream protein activity has no effect on vesicle endocytosis (Figure 3 and Sakaba et al, 2013), we called it (presynaptic) scaffold protein instead of endocytic scaffold protein.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments

      Page 1, Title: I don't think the presented data address the role of the presynaptic scaffold in SV replenishment. In addition, 'SV replenishment' and 'site clearance' should not be used synonymously as it seems to be implied here.

      In this study our focus was on the downstream activity of scaffold protein intersectin and since block of its downstream effector proteins CDC42 and actin activities do not obstruct the endocytic activity (Fig 3, and Sakaba et al., 2013), instead of naming it as “endocytic scaffold protein”, we adopted “presynaptic scaffold protein”.

      We have corrected it in the text.

      Page 2, Abstract: Clarify 'physiologically optimized condition' here and elsewhere in the manuscript.

      Abstract: in physiologically optimized condition → in physiological temperature and Ca2+.

      Page 3, line 62: I don't think 'the site-clearance hypothesis is widely accepted'. There are very few models that implement such a mechanism. Examples would be Pan & Zucker (2009) Neuron and Lin, Taschenberger & Neher 2022 (PNAS) which could be cited.

      62: the site-clearance hypothesis is “widely accepted”→ “well supported”

      Page 3 line 77: Please clarify 'fast synapses

      77: fast synapses→fast-signaling synapses, added clarification in the text.

      Page 4, line 100: Please clarify 'in the maximal rate'.

      100: in the maxima rate→reached during 1-Hz stimulation.

      Page 6, line 136: Please clarify 'to reduce the gap'.

      136: To reduce the gap between these different results→To explore the reason for these different results

      Page 7, line 157: I don't consider ML141 and Latrunculin-B 'scaffold protein inhibitors'.

      157: scaffold protein inhibitors had no effect on→ reworded as “none of these inhibitors affected fast or slow endocytosis”.  

      Page 7, line 162: P-value missing.

      162: p < 0.001 added.

      Page 8, line 184: "Since both endocytic blockers and scaffold inhibitors enhanced synaptic depression with a similar time course" consider rephrasing. Sounds like you refer to the time course by which these drugs exert their effect after being applied.

      184: Since both endocytic blockers and scaffold inhibitors enhance synaptic depression with a similar time course→Since the enhancement of synaptic depression by endocytic blockers or scaffold inhibitor occurred mostly at the early phase of synaptic depression.

      Same on page 11, line 250: "At the calyx of Held, scaffold protein inhibitors significantly enhanced synaptic depression with a time course closely matching to that enhanced by endocytic blocker" Please consider rephrasing.

      At the calyx of Held, scaffold protein inhibitors significantly enhanced synaptic depression with a time course closely matching to that enhanced by endocytic blocker →the early phase of synaptic depression like endocytic blockers

      Page 13, line 318: Please clearly state which experiments were performed at 1.3 mM and which at 2 mM external Ca if two different concentrations were used during recordings.

      320: Added text “Unless otherwise noted, EPSCs were recorded in 1.3 mM [Ca2+] aCSF at 37oC” in the methods.

      Page 15: line 346: Reference in the wrong format.

      346; (25) → (Yamashita et al, 2005)

      Page 15: line 351: Do you mean to say every 10 s and every 20 s? Please clarify.

      No, averaged at 10 ms and 20 ms, respectively as written.

      Page 16, line 369: 1 mM kyn was present in only very few experiments shown in the supplemental figures. Please clarify.

      368: In some experiments, to test in the presence of 1 mM kyn, if there is any difference in enhanced STD following endocytic block. However, as shown in Figure S3, our results are essentially the same with or without kynurenate, suggesting glutamate released during AP-evoked EPSCs does not saturate or desensitize postsynaptic receptors at post-hearing calyces of Held (Ishikawa et al, 2002; Yamashita et al, 2003) unlike in pre-hearing calyces (Yamashita et al, 2009).

      Page 16, line 387: You cannot simply use multiple t-tests to compare a single control to multiple test conditions which seems to be the scenario here. Please correct or clarify.

      Experimental protocols are clarified in Methods as “Experiments were designed as population study using different cells from separate brain slices under control and drug treatment, rather than on a same cell before and after the drug exposure.”

      Table S1: 'Endo decay rate'. It's either the 'Endo rate' or the 'Deacy rate of delta Cm'. Please correct.

      Corrected as Endocytosis rate (Endo rate).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Why does stimulation at 0.15 Hz show a third harmonic signal (Figure 5A) but 0.25 Hz does not show a second harmonic signal?

      Second and third harmonic signals were sometimes observed in 0.15 Hz and also in 0.25 Hz and other frequency stimulations. The second harmonic signal is easier to understand as vasomotion may be reacting to both directions of oscillating stimuli. The reason for the emergence of the third harmonics was totally unknown. These harmonic signals were not always observed, and the magnitude of these signals was variable. The frequency-locked signal was robust, thus, in this manuscript, we decided to describe only this signal. These observations are mentioned in the revised manuscript (Results, page 9, paragraph 2).

      References for the windows are missing. Closed craniotomy: (Morii, Ngai, and Winn 1986). Thinned skull: (Drew et al. 2010).

      These references were incorporated into the revised manuscript.

      An explanation of, or at least a discussion on, why a flavoprotein or other intrinsic signal from the parenchyma might follow vasomotion with high fidelity would be most helpful.

      We spend a large part of the Results describing that any fluorescence signal from the brain parenchyma follows the vasomotion because the blood vessels largely lack fluorescence signals within the filter band that we observe. This is described as “shadow imaging”. What was rather puzzling was that flavoprotein or other intrinsic signals were phase-shifted in time. This suggests that these autofluorescence signals have an anti-phase “shadow imaging” component and another component that is phase-shifted in time. This is described in the manuscript as the following.

      (Results, page 13, paragraph 2)

      “Production and degradation of flavin and other metabolites may be induced by the fluctuation in the blood vessel diameter with a fixed delay time. The phase shift in the autofluorescence could be due to the additive effect of “shadow” imaging of the vessel and to the concentration fluctuation of the autofluorescent metabolite”

      Glucose and oxygen are likely to be abundantly delivered during the vasodilation phase compared to the vasoconstriction phase of vasomotion. These molecules will trigger cell metabolism and endogenous fluorescent molecules such as NADH, NADPH, and FAD may increase or decrease with a certain delay, which is required for the chemical reactions to occur. Therefore, the concentration fluctuation of these metabolites could lag in time to the changes in the blood flow. These discussions are added in the revised manuscript (Discussions, page 19, paragraph 2).

      Reviewer #2 (Recommendations For The Authors):

      Minor corrections to the text and figures:

      (1) Figures 1 and 2- The single line slice basal and dilated traces are larger in Figure 2 (intact skull) than in Figure 1 (thinned skull)- have these been mixed up, as the authors state in the text that larger dilations are detected in the thinned skull preparation?

      The example vessel described for the thinned skull (Figure 1) happened to be larger than that shown for the intact skull (Figure 2). We did not describe that larger dilations are observed in the thinned skull preparation. What was described was that the vessel profiles were shallower in the intact skull. This is because the presence of the intact skull blurs the fluorescence image.

      (2) Figure 3- I think the lower panel of the amplitude spectrums from 3 individual animals included in D would benefit from being in its own panel within this Figure (i.e. E). The peak ratio is also used in this figure, but the equation to calculate this is not displayed until Figure 4.

      We thank the reviewer for recommending making the figure more comprehensible. We have divided panel D into D and E and shifted the panel character accordingly. The manuscript text was also updated.

      As the reviewer describes, the peak ratio of 0.25 Hz is used in Figure 3E (original). However, the equation to calculate this figure is described in the appropriate location within the main text of the manuscript (Results, page 10, paragraph 2) as well as in the figure legend.

      (3) Figure 5- In the visual stimulation traces displayed in C you have included a 10-degree scale bar, which looks similar in amplitude to the trace but the text states these are 17-degree amplitude traces.

      We thank the reviewer for noticing this mistake of labeling in the figure. We have corrected the error in the revised figure.

      (4) Figure 6- For the Texas red fluorescence traces and image scales displayed in F, you have shown the responding traces on the right and non-responding on the left, but the figure legend states the amplitude is strong on the left and weak on the right.

      We thank the reviewer for noticing the error in the figure legend text. We have corrected the error in the revised manuscript.

      (5) Figure 6- It would be helpful for the reader if the r value was displayed on the graph in G.

      We thank the reviewer for the suggestion. We have indicated the r value in Figure 6G as the reviewer recommended.

      Reviewer #3 (Recommendations For The Authors):

      Major

      It is unclear to me if the authors are studying vasomotion per se. Vasomotion is an intrinsic, natural rhythm of blood vessel diameter oscillation that is entrained by endogenous rhythmic neural activity. Importantly, if you take neural activity away, the blood vessel (with flow and pressure) should still be capable of oscillating due to an intrinsic mechanism within the vessel wall. In contrast, if one increases neural activity by way of sensory stimulation and blood flow increases, this is the basis of functional hyperemia. If one stimulates the brain over and over again at a particular frequency, it is expected that blood flow will increase whenever neural activity increases to the stimulus, up to a particular frequency until the blood vessel cannot physically track the stimulus fast enough. Functional hyperemia does not depend on an intrinsic oscillator mechanism. It occurs when the brain becomes active above endogenous resting activity due to sensory or motor activity.

      We thank the reviewer for stressing the importance of the distinction between “vasomotion” and functional “hyperemia”.

      We recognized that the terminology used in our paper was not explicitly explained. Traditionally, “vasomotion” is defined as the dilation and constriction of the blood vessels that occurs spontaneously at low frequencies in the 0.1 Hz range without any apparent external stimuli. Sensory-induced changes in the blood flow are usually called “hyperemia”. However, in our paper, we used the term, vasomotion, literally, to indicate both forms of “vascular” “motion”. Therefore, the traditional vasomotion was called “spontaneous vasomotion” and the hyperemia, with both vasoconstriction and vasodilation, induced with slow oscillating visual stimuli was called “visually induced vasomotion”. This distinction in the terminology is now explicitly introduced in the revised manuscript (Introduction, page 3, paragraph 2-3; page 4, paragraph 1-2).

      Using our newly devised methods, we show the presence of “spontaneous vasomotion”. However, this spontaneous vasomotion was often fragmented and did not last long at a specific frequency. With visual stimuli that slowly oscillated at temporal frequencies close to the frequency of spontaneous vasomotion, oscillating hyperemia, or “visually induced vasomotion” was observed. Importantly, this visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex. We also do not know how the synchronized vasomotion can spread throughout the whole brain. Where the plasticity for vasomotion entrainment occurs is also unknown. How much of the visually induced vasomotion relies on the mechanisms of intrinsic spontaneous vasomotion is also undetermined. Discussion about the future directions of understanding the mechanisms of visually induced vasomotion and entrainment is described in better detail in the revised manuscript (Discussions, page 19, paragraph 1).

      To me, one would need to silence the naturally occurring vasomotion to study it. As soon as one activates the brain with an external stimulus, functional hyperemia is being studied. One idea that would be interesting to look at is whether a single or perhaps a double stimulus, in an untrained vs trained mouse, shows vasodilation that occurs across the cortex and in the cerebellum. In other words, is there something special about repeating the signal over and over again that results in brain-wide synchronization, or does a single or double oscillation of the same frequency (0.25Hz) also transiently synchronize the brain? My guess is that a short stimulus would give you the same thing (especially in a trained mouse) and that there is nothing special about oscillating the signal over and over again (except for the learning component).

      We thank the reviewer for the ideas of new experiments to understand whether the visually induced vasomotion shares the same mechanisms for creating spontaneous vasomotion or not.

      We would like to emphasize again that the visually induced vasomotion is not observed in the Novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to the visual stimuli. Entrainment with repeated presentation of visual stimuli is required for this global synchronization phenomenon to occur.

      We would also like to emphasize that, even in Expert animals, the visually induced vasomotion that is frequency-locked to the presented stimulus does not always occur immediately. As shown in Figure 3D lower panel (Figure 3E in the revised figure), the vasomotion did not always immediately frequency-lock. The vasomotion was also not always stable throughout the 15 min of visual stimulation presentation. These characteristics are emphasized in the revised manuscript (Results, page 10, paragraph 1).

      Therefore, we would assume that a single or double frequency of the visual stimulation would not always be sufficient to transiently frequency-lock the visually induced vasomotion.

      An alternative idea is to test frequencies lower than vasomotion. Vasomotion typically oscillates around a wide range of very low frequencies averaging around 0.1Hz, yet here the authors entrain blood vessel oscillations towards the top end of vasomotion, at 0.25Hz. What would happen if the authors tried synchronizing brain activity with 0.025Hz? Would the natural vasomotion frequency still be there, or would it be gone, dominated by the 0.025Hz entrainment?

      We would assume that visually induced vasomotion will not be induced with 0.025 Hz visual stimuli. This is too slow to induce smooth pursuit of the visual stimuli with eye movement. We show that, even if smooth eye pursuit occurs, the visually induced vasomotion may or may not occur (Figure 6F). However, visually induced vasomotion does not largely occur without eye movement. Therefore, the proposed experiment by the reviewer is likely not doable.

      Finally, perhaps the authors can see if there is a long-lasting change in natural vasomotion occurring after the animal has been trained to 0.25Hz. For example, is there greater power in the endogenous fluctuation at either 0.25Hz (or perhaps 0.1Hz) with no visual stimulation given but after the animal has been trained? These ideas would be interesting to test and could help clarify whether this is plasticity in functional hyperemia or plasticity in vasomotion.

      It should also be mentioned that the frequency-locked vasomotion quickly dissipates as soon as the visual stimulation is halted (Figure 3D upper panel, middle). However, we agree with the reviewer that it would be interesting to see whether the fragmentation of the spontaneous vasomotion is observed less in the Trained or Expert mice compared to the Novice mice, to understand whether the entrainment effect would propagate to the properties of the spontaneous vasomotion.

      This issue I have raised is not a fundamental flaw in the paper, it pertains more to the wording, phrasing, and pitch of the paper i.e. is this really entrained and plastic vasomotion? I am skeptical. Nevertheless, I think the authors should try some of these suggestions to better characterize this effect.

      We agree that the phrasing used in the original manuscript was rather confusing, as “vasomotion” normally refers to spontaneous vascular movement. However, functional “hyperemia” may not adequately express the phenomenon that we observe either. The phenomenon that we observe is slowly oscillating vasodilation and vasoconstriction that is induced with visual stimuli with a temporal frequency similar to the spontaneously occurring “vasomotion”. This phenomenon is not a direct hyperemia response to the visual stimuli as it requires entrainment and it spreads globally throughout the whole brain. We revised our manuscript to define the terminology that we use.

      An important question is if neural activity is entraining the CBF responses. The authors should do one experiment in a pan-neural GCaMP line to test if neural activity in the visual cortex (and other areas captured in the widefield microscope) shows a progressive and gradual synchronization (or not) to the vasomotion responses with training. It is possible to do this through a thinned skull window. This important to know if/how synchronized population neural activity scales with training. Perhaps they will not correlate and there is something more subtle going on.

      In our paper, we mainly studied visually induced vasomotion (or visual stimulus-triggered vasomotion). Therefore, visual stimulation must first activate the neurons and, through neurovascular coupling, the initial drive for vasomotion is likely triggered. However, visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex.

      An important point that should be pointed out is that the neuronal visual response in the primary visual cortex could potentially decrease with repeated visual stimulation presentation as the adaptive movement of the eye should decrease the retinal slip. With repeated training sessions, a more static projection of the presented image will likely be shown to the retina. The neurovascular coupling could be enhanced with increased responsiveness of the vascules and vascular-to-vascular coupling could also be potentiated. This argument is now incorporated in the revised manuscript (Discussions, page 19, paragraph 1).

      We agree with the reviewer that, to identify the extent of the neuronal contribution to the vasomotion triggering, whole brain synchronization, and vasomotion entrainment, simultaneous neuronal calcium imaging would be ideal. However, due to the fact that fluorescent Ca2+ indicators expressed in neurons would also be distorted by the “shadow” effect from the vasomotion, exquisite imaging techniques would be required. We recognize this “shadow” effect and we are currently developing methods to take out the “shadow” effect and the intracellular pH fluctuation effect from the fluorescence traces.

      The authors nicely show that plasticity in vasomotion coincides with the mouse learning the HOKR task and that as eye movement tracks the stimulus, CBF gets entrained. However, there could also be a stress effect going on in the early trials, and as the mouse gets used to the procedure and stress comes down, the vasomotion entrainment can be seen. It could be the case that the vasomotion process is there on the first trial, but masked by stress-induced effects on neural and/or vascular activity. I did not see anything in the methods about how the mouse was habituated to head restraint. Was the first visual stim trial the first time the mouse was head restrained? If so, there could be a strong stress effect. The authors should address this either by clarifying that habituation to head restraint was done, or by doing a control experiment where each animal receives at least 1week of progressive and gradual head restraint before doing the same HOKR experiment using multiple trials.

      We agree with the reviewer that stress could well affect spontaneous vasomotion as well as visually induced vasomotion (or visual stimulus-triggered vasomotion). As the reviewer suggested, we could have compared the habituated and non-habituated mice to the initial visually induced vasomotion response. In addition, whether the experimentally induced increase in stress would interfere with the vasomotion or not could also be studied. With the TexasRed experiments, we observed that tail-vein injection stress appeared to interfere with the HOKR learning process. In the experiments presented in Fig. 3, TexasRed was injected before session 1. Vasomotion entrainment likely progressed with sessions 2 and 3 training. Before session 4, TexasRed was injected again to visualize the vasomotion. The vasomotion was clearly observed in session 4, indicating that the stress induced by tail-vein injection could not interfere with the generation of visually induced vasomotion. This argument is included in the revised manuscript (Discussions, page 20, paragraph 2).

      Minor

      The first sentence of the introduction requires citations. It is also a somewhat irrelevant comparison to make.

      Necessary citation was made in the revised manuscript, as the reviewer suggested. We think that describing how the energy is distributed in the brain would provide one of the most important breakthroughs to the understanding of how efficient information processing in the brain works. Therefore, we would like to keep this introduction.

      The third and fourth sentence of the introduction equates vasodilation/vasoconstriction with vasomotion and it is not this simple. Vasomotion is a specific physiological process involving rhythmic changes to artery diameter. Also, the frequency of these slow oscillations needs to be stated. The authors only say they are slower than 10Hz.

      The definition of spontaneous vasomotion with indication of typical temporal frequency is described in the revised manuscript, as the reviewer suggested.

      More than half of the introduction is describing the paper itself, rather than setting the stage for the findings. The authors need a more thorough account of what is known and what is not known in this area. Some of this information is in the discussion, which should be moved up to the intro.

      We have revised the introduction to include the definition of spontaneous vasomotion and visually induced vasomotion or functional hyperemia, as the reviewer suggested.

      In the first paragraph of the results section, the authors should state in what way the mice are awake. Are they freely mobile? Are they head-restrained? Are they resting or moving or doing both at different times? This is clarified later but it should come up front as someone reads through the paper.

      As the reviewer suggested, we clarified that the experiments were done in awake and head-restrained mice within the first paragraph for the Results section.

      The authors say "As shown later, blood vessels on the surface...". There is no need to say "as shown later".

      This is deleted as the reviewer suggested.

      The use of "full width at 10% maximum" of the Texas red intensity for the diameter measure is a little odd, as it may actually overestimate the diameter, but I see what the authors were trying to do. A full-width half max is standard here and that is likely more appropriate. Also, the line profiles of intensity are not raw data. The authors say the trace is strongly filtered/smoothed. If so, this creates a somewhat artificial platform to make the diameter measurement. The authors should show raw data from a single experiment and make the measurement from that. The raw line profile should look almost square, where a full-width half-max would work well.

      Contrary to what the reviewer observed, the raw line profile was not almost square. Even if there were almost no blur in the XY dimension in the optical imaging system, one would not expect to see a square line profile, as the thickness of the vessel increases in the Z dimension towards the center, as this is not a confocal or two-photon microscope image, and an ideal optical section was not created. Therefore, the full-width half-maximum value would definitely be an underestimate of the actual vessel diameter. It may be possible to equate an ideal value for cutoff if we have the 3D point spread function of the imaging. 10% is an arbitrary number but we think 10% is the minimum intensity that we can distinguish from the background intensity fluctuations. We did not attempt to derive the “true” diameter of the vessel and full-width at 10% maximum is just an index of the actual diameter. In most of the manuscript, we only deal with the change of the vessel diameter relative to the basal diameter, therefore, we considered that careful derivation of the absolute diameter estimate is not necessary. This argument is detailed in the Materials and Methods section in the revised manuscript (page 31, paragraph 2).

      The raw line profile before filtering is shown overlaid in Figure 1C, as the reviewer suggested.

      In Figures 1 and 2, state/label what brain region this is.

      The blood vessels between the bregma and lambda on the cortex were observed and described in Figures 1 and 2. This is described in the revised manuscript, as the reviewer suggested.

      Can the authors also show what a vein or venule looks like using their quantification method in Figures 1 and 2? This would be a helpful comparison to a static vein.

      The methods shown in Figures 1 and 2 would not allow us to distinguish between vein and venule in our study. Methods that allow quantification of the relative blood vessel diameter fluctuation due to spontaneous or visually induced vasomotion activities are shown in Figures 1 and 2. Later in the manuscript, the whole intensity fluctuation of TexasRed or autofluorescence in the brain parenchyma is studied, and in this case, no distinction between vein and venules could be made.

      Statements such as this are not necessary: "Later in the manuscript, we will be dealing with vasomotion dynamics observed with the optical fiber photometry methods, in which the blood vessel type under the detection of the fiber could not be identified". Simply talk about this data when you get to it.

      We have deleted this statement in this part of the manuscript, as the reviewer suggested.

      Same as this, please consider deleting: "Spontaneous vasomotion dynamic differences between different classes of blood vessels would be of interest to study using a more sophisticated in vivo two-photon microscope which we do not own." Just describe the data you have from the methods you have. There is no need to lament.

      We deleted this sentence, as the reviewer suggested.

      Figure 3 D the light blue boxes showing the time period of visual stimulation physically overlay with the frequency-time spectrograms. They should not overlay with this graph because it makes them more light blue, distorting the figure which also uses light blue in the heat map.

      Figure 3D was modified, as the reviewer suggested.

      The authors say: "The reason why the vasomotion detected in our system through the intact skull in awake in vivo mice was less periodic was unknown." Yes, but you are imaging an awake mouse. Many spontaneous behaviours such as whisking, grooming, twitching, and struggling will manifest as increased artery diameter. These will be functional hyperemia occurring events on top of rhythmic vasomotion. This can be briefly discussed.

      As the reviewer comments, the vasomotion detected in awake mice was likely to be less periodic because the spontaneous animal behavior induces functional hyperemia and interrupts spontaneous vasomotion. This interpretation was included in the revised manuscript (Results, page 8, paragraph 1).

      The authors say "extremely tuned" on page 8. They should not use words like "extremely". Perhaps say "more strongly tuned" or equivalent.

      We have changed “extremely” to “more strongly”, as the reviewer suggested.

      The authors say "First, the Texas Red fluorescence images were Gaussian filtered in the spatial XY dimension to take out the random noise presumably created within the imaging system." It is inadvisable to alter the raw data in this way unless there is a sound reason to do so. If there is random noise this should not affect the Fast Fourier Transform analysis. If there is regular noise caused by instrumentation artefact, which is picked up by the analysis then perhaps this could be filtered out. A static Texas red sample in a vial can be used to determine if there is artefactual noise.

      We mainly used the Gaussian filter for better presentation of the imaged data. The TexasRed fluorescence was low in intensity and the acquired images were Gaussian filtered in the spatial XY dimesion to reduce the pixelated noise at the expense of spatial resolution reduction. This filter should not affect the temporal frequency of the observed vasomotion. This is now more clearly indicated in the revised manuscript (Results, page 10, paragraph 2).

      There are endogenous fluorescent molecules in cell metabolism that change dynamically to neural activity: NADH, NADPH, and FAD. These are almost certainly a fraction of the auto-fluorescent signal the authors are measuring and it would be expected to see small fluctuations in these metabolites with neural activity. Perhaps this can be discussed, and the authors can likely argue that metabolic signals are much smaller than the change caused by vasodilation.

      We found that the autofluorescence signal was phase-shifted in time relative to the vasomotion, which was visualized with TexasRed. This suggests that these autofluorescence signals have an anti-phase “shadow imaging” component and another component that is phase-shifted in time. Glucose and oxygen are likely to be abundantly delivered during the vasodilation phase compared to the vasoconstriction phase of vasomotion. These molecules will trigger cell metabolism and endogenous fluorescent molecules such as NADH, NADPH, and FAD may increase or decrease with a certain delay, which is required for the chemical reactions to occur. Therefore, the concentration fluctuation of these metabolites could lag in time to the changes in the blood flow. It is also expected that these metabolites may fluctuate according to the neuronal activity that triggers visually induced vasomotion or functional hyperemia. These discussions are added in the revised manuscript (Discussions, page 19, paragraph 2).

      The authors say "however, we found that, if Texas Red had to be injected before every training session, the mouse did not learn very well." This is interesting. Why do the authors suppose this was the case? Stress from the injection? Or perhaps some deleterious effect on blood vessel function caused by the dye itself? Either way, I think this honest statement should remain. Others need to know about it.

      We think that the stress from the injection interferes with the HOKR learning. However, as shown, TexasRed injection after the mouse had learned did not interfere with the eye movement or with the visually induced vasomotion. We do not know whether the injection stress directly interferes with the blood vessel function and affects the plastic vasomotion entrainment. These arguments are now described in the revised manuscript (Discussions, page 20, paragraph 2). The statement above remains as is, as the reviewer suggested.

      YCnano50 is a calcium sensor and not really appropriate for the use employed by the authors. They are exciting YFP at 505nm but unless the authors are using a laser line, there is some bandwidth of excitation light that is likely exciting the CFP too which still absorbs light up to ~490nm. Here, calcium signalling may affect the YFP signal. This can be discussed.

      Multiband-pass filter (Chroma 69008x with the relevant band of 503 nm / 19.5 nm (FWHM)) was used for direct excitation of YFP. Negligible light is passed below 490 nm. CFP excitation above 490 nm is assumed to be negligible and usually not defined in literature. We assume that with our optical system, fluorescence by direct YFP excitation dominates the effect from the minor CFP excitation effect. We explicitly describe this in the revised manuscript (Materials and Methods, page 28, paragraph 2).

      The discussion is interesting but does not actually discuss much of the data or measurements in the paper. Most of the discussion reads more like a topical review, rather than a critical analysis of the effects/measurements and why the authors' interpretations are likely correct. This can be improved.

      As the reviewer suggests, we have improved the discussion by starting with the summary of the results (Discussion, page 19, paragraph 1). We also included the possibility of stress affecting visually induced vasomotion (Discussion, page 20, paragraph 2).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper presents a thoroughly detailed methodology for mesoscale-imaging of extensive areas of the cortex, either from a top or lateral perspective, in behaving mice. While the examples of scientific results to be derived with this method are in the preliminary stages, they offer promising and stimulating insights. Overall, the method and results presented are convincing and will be of interest to neuroscientists focused on cortical processing in rodents.

      Authors’ Response: We thank the reviewers for the helpful and constructive comments. They have helped us plan for significant improvements to our manuscript. Our preliminary response and plans for revision are indicated below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors introduce two preparations for observing large-scale cortical activity in mice during behavior. Alongside this, they present intriguing preliminary findings utilizing these methods. This paper is poised to be an invaluable resource for researchers engaged in extensive cortical recording in behaving mice.

      Strengths:

      -Comprehensive methodological detailing:

      The paper excels in providing an exceptionally detailed description of the methods used. This meticulous documentation includes a step-by-step workflow, complemented by thorough workflow, protocols, and a list of materials in the supplementary materials.

      -Minimal movement artifacts:

      A notable strength of this study is the remarkably low movement artifacts. To further underscore this achievement, a more robust quantification across all subjects, coupled with benchmarking against established tools (such as those from suite2p), would be beneficial.

      Authors’ Response: This is a good suggestion. We have records of the fast-z correction applied by the ScanImage on microscope during acquisition, so we have supplied the online fast-z motion correction .csv files for two example sessions on our GitHub page as supplementary files:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/online_fast_z_correction

      These files correspond to Figure S3b (2367_200214_E210_1) and to Figures 5 and 6 (3056_200924_E235_1). These are now also referenced in the main text. See lines ~595, pg 18 and lines ~762, pg 24.

      We have also made minor revisions to the main text of the manuscript with clear descriptions of methods that we have found important for the minimization of movement artifacts, such as fully tightening all mounting devices, implanting the cranial window with proper, evenly applied pressure across its entire extent, and mounting the mouse so that it is not too close or far from the surface of the running wheel. See Line ~309, pg 10.

      Insightful preliminary data and analysis:

      The preliminary data unveiled in the study reveal interesting heterogeneity in the relationships between neural activity and detailed behavioral features, particularly notable in the lateral cortex. This aspect of the findings is intriguing and suggests avenues for further exploration.

      Weaknesses:

      -Clarification about the extent of the method in the title and text:

      The title of the paper, using the term "pan-cortical," along with certain phrases in the text, may inadvertently suggest that both the top and lateral view preparations are utilized in the same set of mice. To avoid confusion, it should be explicitly stated that the authors employ either the dorsal view (which offers limited access to the lateral ventral regions) or the lateral view (which restricts access to the opposite side of the cortex). For instance, in line 545, the phrase "lateral cortex with our dorsal and side mount preparations" should be revised to "lateral cortex with our dorsal or side mount preparations" for greater clarity.

      Authors’ Response: We have opted to not change the title of the paper, because we feel that adding the qualifier, “in two preparations,” would add unnecessary complexity. In addition, while the dorsal mount preparation allows for imaging of bilateral dorsal cortex, the side mount preparation does indeed allow for imaging of both dorsal and lateral cortex across the right hemisphere (a bit of contralateral dorsal cortex is also imageable), and the design can be easily “flipped” across a mirror-plane to allow for imaging of left dorsal and lateral cortex. Taken together, we do show preparations that allow for pan-cortical 2-photon imaging.

      We do agree that imprecise reference to the two preparations can sometimes lead to confusion. Therefore, we made several small revisions to the manuscript, including at ~line 545, to make it clearer that we used two imaging preparations to generate our combined 2-photon mesoscope dataset, and that each of those two preparations had both benefits and limitations.

      -Comparison with existing methods:

      A more detailed contrast between this method and other published techniques would add value to the paper. Specifically, the lateral view appears somewhat narrower than that described in Esmaeili et al., 2021; a discussion of this comparison would be useful.

      Authors’ Response: The preparation by Esmaeili et al. 2021 has some similarities to, but also differences from, our preparation. Our preliminary reading is that their through-the-skull field of view is approximately the same as our through-the-skull field of view that exists between our first (headpost implantation) and second (window implantation) surgeries for our side mount preparation, although our preparation appears to include more anterior areas both near to and on the contralateral side of the midline. We have compared these preparations more thoroughly in the revised manuscript. (See lines ~278.)

      Furthermore, the number of neurons analyzed seems modest compared to recent papers (50k) - elaborating on this aspect could provide important context for the readers.

      Authors’ response: With respect to the “modest” number of neurons analyzed (between 2000 and 8000 neurons per session for our dorsal and side mount preparations with medians near 4500; See Fig. S2e) we would like to point out that factors such as use of dual-plane imaging or multiple imaging planes, different mouse lines, use of different duration recording sessions (see our Fig S2c), use of different imaging speeds and resolutions (see our Fig S2d), use of different Suite2p run-time parameters, and inclusion of areas with blood vessels and different neuron cell densities, may all impact the count of total analyzed neurons per session. We now mention these various factors and have made clear that we were not, for the purposes of this paper, trying to maximize neuron count at the expense of other factors such as imaging speed and total spatial FOV extent.

      We refer to these issues now briefly in the main text. (See ~line 93, pg 3).

      -Discussion of methodological limitations:

      The limitations inherent to the method, such as the potential behavioral effects of tilting the mouse's head, are not thoroughly examined. A more comprehensive discussion of these limitations would enhance the paper's balance and depth.

      Authors’ Response: Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this configuration (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript at ~line 235, pg. 7.

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it is possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the Thorlabs mesoscope objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use ultrasound gel instead (which we found to be, to some degree, optically inferior to water), but without the horizontal light shield, light from the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult under these conditions because the camera would need the same optical access angle as the 2-photon objective, or would need to be moved downward toward the air table and rotated up at an angle of 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      -Preliminary nature of results:

      The results are at a preliminary stage; for example, the B-soid analysis is based on a single mouse, and the validation data are derived from the training data set.

      Authors’ Response: In this methods paper, we have chosen to supply proof of principle examples, without a complete analysis of animal-to-animal variance.

      The B-SOiD analysis that we show in Figure 6 is based on a model trained on 80% of the data from four sessions taken from the same mouse, and then tested on all of a single session from that mouse. Initial attempts to train across sessions from different mice were unsuccessful, probably due to differences in behavioral repertoires across mice. However, we have performed extensive tests with B-SOiD and are confident that these sorts of results are reproducible across mice, although we are not prepared to publish these results at this time.

      We now clarify these points in the main text at ~line 865, pg 27.

      An additional comparison of the results of B-SOiD trained on different numbers of sessions to that of keypoint-MOSEQ (Weinreb et al, 2023, bioRxiv) trained on ~20 sessions can now be found as supplementary material on our GitHub site:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/Figure_SZZ_BSOID_MOSEQ_align.pdf

      The discrepancy between the maps in Figures 5e and 6e might indicate that a significant portion of the map represents noise. An analysis of variability across mice and a method to assign significance to these maps would be beneficial.

      Authors’ Response: After re-examination of the original analysis output files, we have indeed discovered that some of the Rastermap neuron density maps in Figure 6e were incorrectly aligned with their respective qualitative behaviors due to a discrepancy in file numbering between the images in 6e and the ensembles identified in 6c (each time that Rastermap is run on the same data, at least with the older version available at the time of creation of these figures, the order of the ensembles on the y-axis changes and thus the numbering of the ensembles would change even though the neuron identities within each group stayed the same for a given set of parameters).

      This unfortunate panel alignment / graphical display error present in the original reviewed preprint has been fixed in the current, updated figure (i.e. twitch corresponds to Rastermap groups 2 and 3, whisk to group 6, walk to groups 5 and 4, and oscillate to groups 0 and 1), and in the main text at ~line 925, pg 29. We have also changed the figure legend, which also contained accurate but misaligned information, for Figure 6e to reflect this correction.

      One can now see that, because the data from both figures is from the same session in the same mouse, as you correctly point out, Fig 5d left (walk and whisk) corresponds roughly to Fig 6e group R7, “walk”, and that Fig 5d right (whisk) corresponds roughly to Fig 6e group R4, “twitch”.

      We have double-checked the identity of other CCF map displays of Rastermap neuron density and of mean correlations between neural activity and behavioral primitives in all other figures, and we found no other such alignment or mis-labeling errors.

      We have also added a caveat in the main text at ~lines 925-940, pg. 30, pointing out the preliminary nature of these findings, which are shown here as an example of the viability of the methods. Analysis of the variability of Rastermap alignments across sessions is beyond the scope of the current paper, although it is an issue that we hope to address in upcoming analysis papers.

      -Analysis details:

      More comprehensive details on the analysis would be beneficial for replicability and deeper understanding. For instance, the statement "Rigid and non-rigid motion correction were performed in Suite2p" could be expanded with a brief explanation of the underlying principles, such as phase correlation, to provide readers with a better grasp of the methodologies employed.

      Authors’ Response: We added a brief explanation of Suite2p motion correction at ~line 136, pg 4. We have also added additional details concerning CCF / MMM alignment and other analysis issues. In general we cite other papers where possible to avoid repeating details of analysis methods that are already published.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a comprehensive technical overview of the challenging acquisition of large-scale cortical activity, including surgical procedures and custom 3D-printed headbar designs to obtain neural activity from large parts of the dorsal or lateral neocortex. They then describe technical adjustments for stable head fixation, light shielding, and noise insulation in a 2-photon mesoscope and provide a workflow for multisensory mapping and alignment of the obtained large-scale neural data sets in the Allen CCF framework. Lastly, they show different analytical approaches to relate single-cell activity from various cortical areas to spontaneous activity by using visualization and clustering tools, such as Rastermap, PCA-based cell sorting, and B-SOID behavioral motif detection.

      Authors’ Response: Thank you for this excellent summary of the scope of our paper.

      The study contains a lot of useful technical information that should be of interest to the field. It tackles a timely problem that an increasing number of labs will be facing as recent technical advances allow the activity measurement of an increasing number of neurons across multiple areas in awake mice. Since the acquisition of cortical data with a large field of view in awake animals poses unique experimental challenges, the provided information could be very helpful to promote standard workflows for data acquisition and analysis and push the field forward.

      Authors’ Response: We very much support the idea that our work here will contribute to the development of standard workflows across the field including those for multiple approaches to large-scale neural recordings.

      Strengths:

      The proposed methodology is technically sound and the authors provide convincing data to suggest that they successfully solved various problems, such as motion artifacts or high-frequency noise emissions, during 2-photon imaging. Overall, the authors achieved their goal of demonstrating a comprehensive approach for the imaging of neural data across many cortical areas and providing several examples that demonstrate the validity of their methods and recapitulate and further extend some recent findings in the field.

      Weaknesses:

      Most of the descriptions are quite focused on a specific acquisition system, the Thorlabs Mesoscope, and the manuscript is in part highly technical making it harder to understand the motivation and reasoning behind some of the proposed implementations. A revised version would benefit from a more general description of common problems and the thought process behind the proposed solutions to broaden the impact of the work and make it more accessible for labs that do not have access to a Thorlabs mesoscope. A better introduction of some of the specific issues would also promote the development of other solutions in labs that are just starting to use similar tools.

      Authors’ Response: We have edited the motivations behind the study to clarify the general problems that are being addressed. However, as the 2-photon imaging component of these experiments were performed on a Thorlabs mesoscope, the imaging details necessarily deal specifically with this system.

      We briefly compare the methods and results from our Thorlabs system to that of Diesel-2p, another comparable system, based on what we have been able to glean from the literature on its strengths and weaknesses. See ~lines 206-213, pg 6.

      Reviewer #3 (Public Review):

      Summary

      In their manuscript, Vickers and McCormick have demonstrated the potential of leveraging mesoscale two-photon calcium imaging data to unravel complex behavioural motifs in mice. Particularly commendable is their dedication to providing detailed surgical preparations and corresponding design files, a contribution that will greatly benefit the broader neuroscience community as a whole. The quality of the data is high, but it is not clear whether this is available to the community, some datasets should be deposited. More importantly, the authors have acquired activity-clustered neural ensembles at an unprecedented spatial scale to further correlate with high-level behaviour motifs identified by B-SOiD. Such an advancement marks a significant contribution to the field. While the manuscript is comprehensive and the analytical strategy proposed is promising, some technical aspects warrant further clarification. Overall, the authors have presented an invaluable and innovative approach, effectively laying a solid foundation for future research in correlating large-scale neural ensembles with behaviour. The implementation of a custom sound insulator for the scanner is a great idea and should be something implemented by others.

      Authors’ Response: Thank you for the kind words.

      We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      The data is located here: https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with in-depth analysis papers that are currently in preparation.

      This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other. This is described in the methods, but a visual representation would greatly benefit the readers looking to implement something similar.

      Authors’ Response: This is an excellent suggestion. We have included a workflow diagram in the revised manuscript, in the form of a 3-part figure, for the methods (a), data collection (b and c), and analysis (d). This supplementary figure is now located on the GitHub page at the following link:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/pancortical_workflow_diagrams.pdf

      We now reference this figure on ~lines 190-192, pg 6 of the main text, near the beginning of the Results section.

      The authors should cite sources for the claims stated in lines 449-453 and cite the claim of the mouse's hearing threshold mentioned in lines 463.

      Authors’ Response: For the claim stated in lines 449-453:

      “The unattenuated or native high-frequency background noise generated by the resonant scanner causes stress to both mice and experimenters, and can prevent mice from achieving maximum performance in auditory mapping, spontaneous activity sessions, auditory stimulus detection, and auditory discrimination sessions/tasks”

      ,we can provide the following references: (i) for mice: Sadananda et al, 2008 (“Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain”, Neuroscience Letters, Vol 435, Issue 1, p 17-23), and (ii) for humans: Fletcher et al, 2018 (“Effects of very high-frequency sound and ultrasound on humans. Part I: Adverse symptoms after exposure to audible very-high frequency sound”, J Acoust Soc A, 144, 2511-2520). We will include these references in the revised paper.

      For the claim stated on line 463:

      “i.e. below the mouse hearing threshold at 12.5 kHz of roughly 15 dB”

      ,we can provide the following reference: Zheng et al, 1999 (“Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses”, Vol 130, Issues 1-2, p 94-107).

      We have included these two new references in the new, revised version of our paper. Thank you for identifying these citation omissions.

      No stats for the results shown in Figure 6e, it would be useful to know which of these neural densities for all areas show a clear statistical significance across all the behaviors.

      Authors’ Response: It would be useful if we could provide a statistic similar to what we provide for Fig. S6c and f, in which for each CCF area we compare the observed mean correlation values to a null of 0, or, in this case, the population densities of each Rastermap group within each CCF area to a null value equal to the total number of CCF areas divided by the total number of recorded neurons for that group (i.e. a Rastermap group with 500 neurons evenly distributed across ~30 CCF areas would contain ~17 neurons, or ~3.3% density, per CCF area.) Our current figure legend states the maximums of the scale bar look-up values (reds) for each group, which range from ~8% to 32%.

      However, because the data in panel 6e are from a single session and are being provided as an example of our methods and not for the purpose of claiming a specific result at this point, we choose not to report statistics. It is worth pointing out, perhaps, that Rastermap group densities for a given CCF area close to 3.3% are likely not different from chance, and those closer to ~40%, which is our highest density (for area M2 in Rastermap group 7, which corresponds to the qualitative behavior “walk”), are most likely not due to chance. Without analysis of multiple sessions from the same mouse we believe that making a clear statement of significance for this likelihood would be premature.

      We now clarify this decision and related considerations in the main text at ~line 920, pg 29.

      While I understand that this is a methods paper, it seems like the authors are aware of the literature surrounding large neuronal recordings during mouse behavior. Indeed, in lines 178-179, the authors mention how a significant portion of the variance in neural activity can be attributed to changes in "arousal or self-directed movement even during spontaneous behavior." Why then did the authors not make an attempt at a simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc). These models are straightforward to implement, and indeed it would benefit this work if the model extracts information on par with what is known from the literature.

      Authors’ Response: This is an excellent suggestion, but beyond the scope of the current methods paper. We are following up with an in depth analysis of neural activity and corresponding behavior across the cortex during spontaneous and trained behaviors, but this analysis goes well beyond the scope of the present manuscript.

      Here, we prefer to present examples of the types of results that can be expected to be obtained using our methods, and how these results compare with those obtained by others in the field.

      Specific strengths and weaknesses with areas to improve:

      The paper should include an overall cartoon diagram that indicates how the various modules are linked together for the sampling of both behaviour and mesoscale GCAMP. This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other.

      Authors’ Response: This is an excellent suggestion. We have included a workflow diagram in the revised manuscript, in the form of a 3-part figure, for the methods (a), data collection (b and c), and analysis (c). This supplementary figure is now located on the GitHub page at the following link:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/pancortical_workflow_diagrams.pdf

      The paper contains many important results regarding correlations between behaviour and activity motifs on both the cellular and regional scales. There is a lot of data and it is difficult to draw out new concepts. It might be useful for readers to have an overall figure discussing various results and how they are linked to pupil movement and brain activity. A simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc) may help in this regard.

      Authors’ Response: This is an excellent suggestion, but beyond the scope of the present methods paper. Such an analysis is a significant undertaking with such large and heterogeneous datasets, and we provide proof-of-principle data here so that the reader can understand the type of data that one can expect to obtain using our methods. We will provide a more complete analysis of data obtained using our methodology in the near future in another manuscript.

      Previously, widefield imaging methods have been employed to describe regional activity motifs that correlate with known intracortical projections. Within the authors' data it would be interesting to perhaps describe how these two different methods are interrelated -they do collect both datasets. Surprisingly, such macroscale patterns are not immediately obvious from the authors' data. Some of this may be related to the scaling of correlation patterns or other factors. Perhaps there still isn't enough data to readily see these and it is too sparse.

      Authors’ Response: Unfortunately, we are unable to directly compare 1-photon widefield GCaMP6s activity with mesoscope 2-photon GCaMP6s activity. During widefield data acquisition, animals were stimulated with visual, auditory, or somatosensory stimuli (i.e. “passive sensory stimulation”), while 2-photon mesoscope data collection occurred during spontaneous changes in behavioral state, without sensory stimulation. The suggested comparison is, indeed, an interesting project for the future.

      In lines 71-71, the authors described some disadvantages of one-photon widefield imaging including the inability to achieve single-cell resolution. However, this is not true. In recent years, the combination of better surgical preparations, camera sensors, and genetically encoded calcium indicators has enabled the acquisition of single-cell data even using one-photon widefield imaging methods. These methods include miniscopes (Cai et al., 2016), multi-camera arrays (Hope et al., 2023), and spinning disks (Xie et al., 2023).

      Cai, Denise J., et al. "A shared neural ensemble links distinct contextual memories encoded close in time." Nature 534.7605 (2016): 115-118.

      Hope, James, et al. "Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton." bioRxiv (2023).

      Xie, Hao, et al. "Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution." Nature Biomedical Engineering (2023): 1-14.

      Authors’ Response: We have corrected these statements and incorporated these and other relevant references. There are advantages and disadvantages to each chosen technique, such as ease of use, field of view, accuracy, and speed. We will reference the papers you mention without an extensive literature review, but we would like to emphasize the following points:

      Even the best one-photon imaging techniques typically have ~10-20 micrometer resolution in xy (we image at 5 micrometer resolution for our large FOV configuration, but the xy point-spread function for the Thorlabs mesoscope is 0.61 x 0.61 micrometers in xy with 970 nm excitation) and undefined z-resolution (4.25 micrometers for Thorlabs mesoscope). A coarser resolution increases the likelihood that activity related fluorescence from neighboring cells may contaminate the fluorescence observed from imaged neurons. Reducing the FOV and using sparse expression of the indicator lessens this overlap problem.

      We do appreciate these recent advances, however, particularly for use in cases where more rapid imaging is desired over a large field of view (CCD acquisition can be much faster than that of standard 2-photon galvo-galvo or even galvo-resonant scanning, as the Thorlabs mesoscope uses). This being said, there are few currently available genetically encoded Ca2+ sensors that are able to measure fluctuations faster than ~10 Hz, which is a speed achievable on the Thorlabs 2-photon mesoscope with our techniques using the “small, multiple FOV” method (Fig. S2d, e).

      We have further clarified our discussion of these issues in the main text at ~lines 76-80, pg 2.

      The authors' claim of achieving optical clarity for up to 150 days post-surgery with their modified crystal skull approach is significantly longer than the 8 weeks (approximately 56 days) reported in the original study by Kim et al. (2016). Since surgical preparations are an integral part of the manuscript, it may be helpful to provide more details to address the feasibility and reliability of the preparation in chronic studies. A series of images documenting the progression optical quality of the window would offer valuable insight.

      Authors’ Response: As you suggest, we now include brief supplementary material demonstrating the changes in the window preparation that we observed over the prolonged time periods of our study, for both the dorsal and side mount preparations. The following link to this material is now referenced at ~line 287, pg 9, and at the end of Fig S1:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/window_preparation_stability.pdf

      We have also included brief additional details in the main text that we found were useful for facilitating long term use of these preparations. These are located at ~line 287-290, pg 9.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Sharing raw data and code:

      I strongly encourage sharing some of the raw data from your experiments and all the code used for data analysis (e.g. in a github repository). This would help the reader evaluate data quality, and reproduce your results.

      Authors’ Response: We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

      The data is located here: https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

      Our existing GitHub repository, already referenced in the paper, is located here:

      https://github.com/vickerse1/mesoscope_spontaneous

      We have added an additional reference in the main text to the existence of these publicly available resources, including the appropriate links, located at ~lines 190-200, pg 6.

      (2) Use of proprietary software:

      The reliance on proprietary tools like LabView and Matlab could be a limitation for some researchers, given the associated costs and accessibility issues. If possible, consider incorporating or suggesting alternatives that are open-source, to make your methodology more accessible to a broader range of researchers, including those with limited resources.

      Authors’ Response: We are reluctant to recommend open source software that we have not thoroughly tested ourselves. However, we will mention, when appropriate, possible options for the reader to consider.

      Although LabView is proprietary and can be difficult to code, it is particularly useful when used in combination with National Instruments hardware. ScanImage in use with the Thorlabs mesoscope uses National Instruments hardware, and it is convenient to maintain hardware standards across the integrated rig/experimental system. Labview is also useful because it comes with a huge library of device drivers that makes addition of new hardware from basically any source very convenient.

      That being said, there are open source alternatives that could conceivably be used to replace parts of our system. One example is AutoPilot (author: Jonny Saunders), for control of behavioral data acquisition: https://open-neuroscience.com/post/autopilot/.

      We are not aware of an alternative to Matlab for control of ScanImage, which is the supported control software for the ThorLabs 2-photon mesoscope.

      Most of our processing and analysis code (see GitHub page: https://github.com/vickerse1/mesoscope_spontaneous) is in Python, but some of the code that we currently use remains in Matlab form. Certainly, this could be re-written as Python code. However, we feel like this is outside the scope of the current paper. We have provided commenting to all code in an attempt to aid users in translating it to other languages, if they so desire.

      (3) Quantifying the effect of tilted head:

      To address the potential impact of tilting the mouse's head on your findings, a quantitative analysis of any systematic differences in the behavior (e.g. Bsoid motifs) could be illuminating.

      Authors’ Response: We have performed DeepLabCut analysis of all sessions from both preparations, across several iterations with different parameters, to extract pose estimates, and we have also performed BSOiD of these sessions. We did not find any obvious qualitative differences in the number of behavioral motifs identified, the dwell times of these motifs, and similar issues, relating to the issue of tilting of the mouse’s head in the side mount preparation. We also did not find any obvious differences in the relative frequencies of high level qualitative behaviors, such as the ones referred to in Fig. 6, between the two preparations.

      Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this configuration (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript. (See ~line 235, pg. 7)

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it would in principle be nearly possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the Thorlabs mesoscope objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use gel instead (which we found to be optically inferior to water), but without the horizontal light shield, the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult to impossible under these conditions because the camera would need the same optical access angle as the objective, or would need to be moved down toward the air table and rotated up 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      (4) Clarification in the discussion section:

      The paragraph titled "Advantages and disadvantages of our approach" seems to diverge into discussing future directions, rather than focusing on the intended topic. I suggest revisiting this section to ensure that it accurately reflects the strengths and limitations of your approach.

      Authors’ Response: We agree with the reviewer that this section included several potential next steps or solutions for each advantage and disadvantage, which the reviewer refers to as “future directions” and are thus arguably beyond the scope of this section. Therefore we have retitled this section as, “Advantages and disadvantages of our approach (with potential solutions):”.

      Although we believe this to be a logical organization, and we already include a section focused purely on future directions in the Discussion section, we have refocused each paragraph of the advantages/disadvantages subsection to concentrate on the advantages and disadvantages per se. In addition, we have made minor changes to the “future directions” section to make it more succinct and practical. These changes can be found at lines ~1016-1077, pg 33-34.

      Reviewer #2 (Recommendations For The Authors):

      Below are some more detailed points that will hopefully help to further improve the quality and scope of the manuscript.

      • While it is certainly favorable for many questions to measure large-scale activity from many brain regions, the introduction appears to suggest that this is a prerequisite to understanding multimodal decision-making. This is based on the argument that combining multiple recordings with movement indicators will 'necessarily obscure the true spatial correlation structures'. However, I don't understand why this is the case or what is meant by 'true spatial correlation structures'. Aren't there many earlier studies that provided important insights from individual cortical areas? It would be helpful to improve the writing to make this argument clearer.

      Authors’ Response: The reviewer makes an excellent point and we have re-worded the manuscript appropriately, to reflect the following clarifications. These changes can be found at ~lines 58-71, pg. 2.

      We believe you are referring to the following passage from the introduction:

      “Furthermore, the arousal dependence of membrane potential across cortical areas has been shown to be diverse and predictable by a temporally filtered readout of pupil diameter and walking speed (Shimoaka et al, 2018). This makes simultaneous recording of multiple cortical areas essential for comparison of the dependence of their neural activity on arousal/movement, because combining multiple recording sessions with pupil dilations and walking bouts of different durations will necessarily obscure the true spatial correlation structures.”

      Here, we do not mean to imply that earlier studies of individual cortical areas are of no value. This argument is provided as an example, of which there are others, of the idea that, for sequences or distributed encoding schemes that simultaneously span many cortical areas that are too far apart to be simultaneously imaged under conventional 2-photon imaging, or are too sparse to be discovered with 1-photon widefield imaging, there are some advantages of our new methods over conventional imaging methods that will allow for truly novel scientific analyses and insights.

      The general idea of the present example, based on the findings of Shimoaka et al, 2018, is that it is not possible to directly combine and/or compare the correlations between behavior and neural activity across regions that were imaged in separate sessions, because the correlations between behavior and neural activity in each region appear to depend on the exact time since the behavior began (Shimoaka et al, 2018), in a manner that differs across regions. So, for example, if one were to record from visual cortex in one session with mostly brief walk bouts, and then from somatosensory cortex in a second session with mostly long walk bouts, any inferred difference between the encoding of walk speed in neural activity between the two areas would run the risk of being contaminated by the “temporal filtering” effect shown in Shimoaka et al, 2018. However, this would not be the case in our recordings, because the distribution of behavior durations corresponding to our recorded neural activity across areas will be exactly the same, because they were recorded simultaneously.

      • The text describes different timescales of neural activity but is an imaging rate of 3 Hz fast enough to be seen as operating at the temporal dynamics of the behavior? It appears to me that the sampling rate will impose a hard limit on the speed of correlations that can be observed across regions. While this might be appropriate for relatively slow behaviors and spontaneous fluctuations in arousal, sensory processing and decision formation likely operate on faster time scales below 100ms which would even be problematic at 10 Hz which is proposed as the ideal imaging speed in the manuscript.

      Authors’ Response: Imaging rate is always a concern and the limitations of this have been discussed in other manuscripts. We will remind the reader of these limitations, which must always be kept in mind when interpreting fluorescence based neural activity data.

      Previous studies imaging on a comparable yet more limited spatial scale (Stringer et al, 2019) used an imaging speed of ~1 Hz. With this in view, our work represents an advance both in spatial extent of imaged cortex and in imaging speed. Specifically, we believe that ~1 Hz imaging may be sufficient to capture flip/flop type transitions between low and high arousal states that persist in general for seconds to tens of seconds, and that ~3-5 Hz imaging likely provides additional information about encoding of spontaneous movements and behavioral syllables/motifs.

      Indeed, even 10 Hz imaging would not be fast enough to capture the detailed dynamics of sensory processing and decision formation, although these speeds are likely sufficient to capture “stable” encodings of sensory representations and decisions that must be maintained during a task, for example with delayed match-to-sample tasks.

      In general we are further developing our preparations to allow us to perform simultaneous widefield imaging and Neuropixels recordings, and to perform simultaneous 1.2 x 1.2 mm 2-photon imaging and visually guided patch clamp recordings.

      Both of these techniques will allow us to combine information across both the slow and fast timescales that you refer to in your question.

      We have clarified these points in the Introduction and Discussion sections, at ~lines ~93-105, pg 3, and ~lines 979-983, pg 31 and ~lines 1039-1045, pg 33, respectively.

      • The dorsal mount is very close to the crystal skull paper and it was ultimately not clear to me if there are still important differences aside from the headbar design that a reader should be aware of. If they exist, it would be helpful to make these distinctions a bit clearer. Also, the sea shell implants from Ghanbari et al in 2019 would be an important additional reference here.

      Authors’ Response: We have added brief references to these issues in our revised manuscript at ~lines 89-97, pg 3:

      Although our dorsal mount preparation is based on the “crystal skull paper” (Kim et al, 2016), which we reference, the addition of a novel 3-D printable titanium headpost, support arms, light shields, and modifications to the surgical protocols and CCF alignment represent significant advances that made this preparation useable for pan-cortical imaging using the Thorlabs mesoscope. In fact, we were in direct communication with Cris Niell, a UO professor and co-author on the original Kim et al, 2016 paper, during the initial development of our preparation, and he and members of his lab consulted with us in an ongoing manner to learn from our successful headpost and other hardware developments. Furthermore, all of our innovations for data acquisition, imaging, and analysis apply equally to both our dorsal mount and side mount preparations.

      Thank you for mentioning the Ghanbari et al, 2019 paper on the transparent polymer skull method, “See Shells.” We were in fact not aware of this study. However, it should be noted that their preparation seems to, like the crystal skull preparation and our dorsal mount preparation, be limited to bilateral dorsal cortex and not to include, as does our cranial window side mount preparation and the through-the-skull widefield preparation of Esmaeili et al, 2021, a fuller range of lateral cortical areas, including primary auditory cortex.

      • When using the lateral mount, rotating the objective, rather than the animal, appears to be preferable to reduce the stress on the animal. I also worry that the rather severe head tilt could be an issue when training animals in more complex behaviors and would introduce an asymmetry between the hemispheres due to the tilted body position. Is there a strong reason why the authors used water instead of an imaging gel to resolve the issue with the meniscus?

      Authors’ Response: Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this situation (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript. (See ~line 235, pg. 7)

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it would in principle be nearly possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use gel instead (which we found to be optically inferior to water), but without the horizontal light shield, the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult to impossible under these conditions because the camera would need the same optical access angle as the objective, or would need to be moved down toward the air table and rotated up 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      • In parts, the description of the methods is very specific to the Thorlabs mesoscope which makes it harder to understand the general design choices and challenges for readers that are unfamiliar with that system. Since the Mesoscope is very expensive and therefore unavailable to many labs in the field, I think it would increase the reach of the manuscript to adjust the writing to be less specific for that system but instead provide general guidance that could also be helpful for other systems. For example (but not exclusively) lines 231-234 or lines 371 and below are very Thorlabs-specific.

      Authors’ Response: We have revised the manuscript so that it is more generally applicable to mesoscopic methods.

      We will make revisions as you suggest where possible, although we have limited experience with the other imaging systems that we believe you are referring to. However, please note that we already mentioned at least one other comparable system in the original eLife reviewed pre-print (Diesel 2p, line 209; Yu and Smith, 2021).

      Here are a couple of examples of how we have broadened our description:

      (1) On lines ~231-234, pg 7, we write:

      “However, if needed, the objective of the Thorlabs mesoscope may be rotated laterally up to +20 degrees for direct access to more ventral cortical areas, for example if one wants to use a smaller, flat cortical window that requires the objective to be positioned orthogonally to the target region.”

      Here have modified this to indicate that one may in general rotate their objective lens if their system allows it. Some systems, such as the Thorlabs Bergamo microscope and the Sutter MOM system, allow more than 20 degrees of rotation.

      (2) On line ~371, pg 11, we write:

      “This technique required several modifications of the auxiliary light-paths of the Thorlabs mesoscope”

      Here, we have changed the writing to be more general such as “may require…of one’s microscope.”

      Thank you for these valuable suggestions.

      • Lines 287-299: Could the authors quantify the variation in imaging depth, for example by quantifying to which extent the imaging depth has to be adjusted to obtain the position of the cortical surface across cortical areas? Given that curvature is a significant challenge in this preparation this would be useful information and could either show that this issue is largely resolved or to what extent it might still be a concern for the interpretation of the obtained results. How large were the required nominal corrections across imaging sites?

      Authors’ Response: This information was provided previously (lines 297-299):

      “In cases where we imaged multiple small ROIs, nominal imaging depth was adjusted in an attempt to maintain a constant relative cortical layer depth (i.e. depth below the pial surface; ~200 micrometer offset due to brain curvature over 2.5 mm of mediolateral distance, symmetric across the center axis of the window).”

      This statement is based on a qualitative assessment of cortical depth based on neuron size and shape, the density of neurons in a given volume of cortex, the size and shape of blood vessels, and known cortical layer depths across regions. A ground-truth measurement of this depth error is beyond the scope of the present study. However, we do specify the type of glass, thickness, and curvature that we use, and the field curvature characterization of the Thorlabs mesoscope is given in Fig. 6 of the Sofroniew et al, 2016 eLife paper.

      In addition, we have provided some documentation of online fast-z correction parameters on our GitHub page at:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/online_fast_z_correction

      ,and some additional relevant documentation can be found in our publicly available data repository on FigShare+ at: https://doi.org/10.25452/figshare.plus.c.7052513

      • Given the size of the implant and the subsequent work attachments, I wonder to which extent the field of view of the animal is obstructed. Did the authors perform receptive field mapping or some other technique that can estimate the size of the animals' remaining field of view?

      Authors’ Response: The left eye is pointed down ~22.5 degrees, but we position the mouse near the left edge of the wheel to minimize the degree to which this limits their field of view. One may view our Fig. 1 and Suppl Movies 1 and 6 to see that the eyes on the left and right sides are unobstructed by the headpost, light shields, and support arms. However, other components of the experimental setup, such as the speaker, cameras, etc. can restrict a few small portions of the visual field, depending on their exact positioning.

      The facts that mice responded to left side visual stimuli in preliminary recordings during our multimodal 2-AFC task, and that the unobstructed left and right camera views, along with pupillometry recordings, showed that a significant portion of the mouse’s field of view, from either side, remains intact in our preparation.

      We have clarified these points in the text at ~lines 344-346, pg. 11.

      • Line 361: What does movie S7 show in this context? The movie seems to emphasize that the observed calcium dynamics are not driven by movement dynamics but it is not clear to me how this relates to the stimulation of PV neurons. The neural dynamics in the example cell are also not very clear. It would be helpful if this paragraph would contain some introduction/motivation for the optogenetic stimulation as it comes a bit out of the blue.

      Authors’ Response: This result was presented for two reasons.

      First, we showed it as a control for movement artifacts, since inhibition of neural activity enhances the relative prominence of non-activity dependent fluorescence that is used to examine the amplitude of movement-related changes in non-activity dependent fluorescence (e.g. movement artifacts). We have included a reference to this point at ~lines 587-588, pg 18.

      Second, we showed it as a demonstration of how one may combine optogenetics with imaging in mesoscopic 2-P imaging. References to this point were already present in the original version of the manuscript (the eLife “ reviewed preprint”).

      • Lines 362-370: This paragraph and some of the following text are quite technical and would benefit from a better description and motivation of the general workflow. I have trouble following what exactly is done here. Are the authors using an online method to identify the CCF location of the 2p imaging based on the vessel pattern? Why is it important to do this during the experiment? Wouldn't it be sufficient to identify the areas of interest based on the vessel pattern beforehand and then adjust the 2p acquisition accordingly? Why are they using a dial, shutter, and foot pedal and how does this relate to the working distance of the objective? Does the 'standardized cortical map' refer to the Allen common coordinate framework?

      Authors’ Response: We have revised this section to make it more clear.

      Currently, the general introduction to this section appears in lines 349-361. Starting in line 362, we currently present the technical considerations needed to implement the overall goals stated in that first paragraph of this section.

      In general we use a post-hoc analysis step to confirm the location of neurons recorded with 2-photon imaging. We use “online” juxtaposition of the multimodal map image with overlaid CCF with the 2-photon image by opening these two images next to each other on the ScanImage computer and matching the vasculature patterns “by eye”. We have made this more clear in the text so that the interested reader can more readily implement our methods.

      By use of the phrase “standardized cortical map” in this context, we meant to point out that we had not decided a priori to use the Allen CCF v3.0 when we started working on these issues.

      • Does Fig. 2c show an example of the online alignment between widefield and 2p data? I was confused here since the use of suite2p suggests that this was done post-recording. I generally didn't understand why the user needed to switch back and forth between the two modes. Doesn't the 2p image show the vessels already? Also, why was an additional motorized dichroic to switch between widefield and 2p view needed? Isn't this the standard in most microscopes (including the Thorlabs scopes)?

      Authors’ Response: We have explained this methodology more clearly in the revised manuscript, both at ~lines 485-500, pg 15-16, and ~lines 534-540, pg 17.

      The motorized dichroic we used replaced the motorized mirror that comes with the Thorlabs mesoscope. We switched to a dichroic to allow for near-simultaneous optogenetic stimulation with 470 nm blue light and 2-photon imaging, so that we would not have to move the mirror back and forth during live data acquisition (it takes a few seconds and makes an audible noise that we wanted to avoid).

      Figure 2c shows an overview of our two step “offline” alignment process. The image at the right in the bottom row labeled “2” is a map of recorded neurons from suite2p, determined post-hoc or after imaging. In Fig. 2d we show what the CCF map looks like when it’s overlaid on the neurons from a single suite2p session, using our alignment techniques. Indeed, this image is created post-hoc and not during imaging. In practice, “online” during imaging, we would have the image at left in the bottom row of Fig. 2c (i.e. the multimodal map image overlaid onto an image of the vasculature also acquired on the widefield rig, with the 22.5 degree rotated CCF map aligned to it based on the location of sensory responses) rotated 90 degrees to the left and flipped over a horizontal mirror plane so that its alignment matches that of the “online” 2-photon acquisition image and is zoomed to the same scale factor. Then, we would navigate based on vasculature patterns “by-eye” to the desired CCF areas, and confirm our successful 2-photon targeting of predetermined regions with our post-hoc analysis.

      • Why is the widefield imaging done through the skull under anesthesia? Would it not be easier to image through the final window when mice have recovered? Is the mapping needed for accurate window placement?

      Authors’ Response: The headpost and window surgeries are done 3-7 days apart to increase success rate and modularize the workflow. Multimodal mapping by widefield imaging is done through the skull between these two surgeries for two major reasons. First, to make efficient use of the time between surgeries. Second, to allow us to compare the multimodal maps to skull landmarks, such as bregma and lambda, for improved alignment to the CCF.

      Anesthesia was applied to prevent state changes and movements of the mouse, which can produce large, undesired effects on neural responses in primary sensory cortices in the context of these mapping experiments. We sometimes re-imaged multimodal maps on the widefield microscope through the window, roughly every 30-60 days or whenever/if significant changes in vasculature pattern became apparent.

      We have clarified these points in the main text at ~lines 510-522, pg 20-21, and we added a link to our new supplementary material documenting the changes observed in the window preparation over time:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/window_preparation_stability.pdf

      Thank you for these questions.

      • Lines 445 and below: Reducing the noise from resonant scanners is also very relevant for many other 2p experiments so it would be helpful to provide more general guidance on how to resolve this problem. Is the provided solution only applicable to the Thorlabs mesoscope? How hard would it be to adjust the authors' noise shield to other microscopes? I generally did not find many additional details on the Github repo and think readers would benefit from a more general explanation here.

      Authors’ Response: Our revised Github repository has been modified to include more details, including both diagrams and text descriptions of the sound baffle, respectively:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_for_noise_reduction_on_resonant_scanner_devices.pdf

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_methodology_summary.pdf

      However, we can not presently disclose our confidential provisional patent application. Complete design information will likely be available in early 2025 when our full utility patent application is filed.

      With respect to your question, yes, this technique is adaptable to any resonant scanner, or, for that matter, any complicated 3D surface that emits sound. We first 3D scan the surface, and then we reverse engineer a solid that fully encapsulates the surface and can be easily assembled in parts with bolts and interior foam that allow for a tight fit, in order to nearly completely block all emitted sound.

      It is this adaptability that has prompted us to apply for a full patent, as we believe this technique will be quite valuable as it may apply to a potentially large number of applications, starting with 2-photon resonant scanners but possibly moving on to other devices that emit unwanted sound.

      • Does line 458 suggest that the authors had to perform a 3D scan of the components to create the noise reduction shield? If so, how was this done? I don't understand the connection between 3D scanning and printing that is mentioned in lines 464-466.

      Authors’ Response: We do not want to release full details of the methodology until the full utility patent application has been submitted. However, we have now included a simplified text description of the process on our GitHub page and included a corresponding link in the main text:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_methodology_summary.pdf

      We also clarified in the main text, at the location that you indicate, why the 3D scanning is a critical part of our novel 3D-design, printing, and assembly protocol.

      • Lines 468 and below: Why is it important to align single-cell data to cortical areas 'directly on the 2-photon microscope'? Is this different from the alignment discussed in the paragraph above? Why not focus on data interpretation after data acquisition? I understand the need to align neural data to cortical areas in general, I'm just confused about the 'on the fly' aspect here and why it seems to be broken out into two separate paragraphs. It seems as if the text in line 485 and below could also be placed earlier in the text to improve clarity.

      Authors’ Response: Here by “such mapping is not routinely possible directly on the 2-photon mesoscope” what we mean is that it is not possible to do multimodal mapping directly on the mesoscope - it needs to be done on the widefield imaging rig (a separate microscope). Then, the CCF is mapped onto the widefield multimodal map, which is overlaid on an image of the vasculature (and sometimes also the skull) that was also acquired on the widefield imaging rig, and the vasculature is used as a sort of Rosetta Stone to co-align the 2-photon image to the multimodal map and then, by a sort of commutative property of alignment, to the CCF, so that each individual neuron in the 2-photon image can be assigned a unique CCF area name and numerical identifier for subsequent analysis.

      We have clarified this in the text, thank you.

      The Python code for aligning the widefield and 2-photon vessel images would also be of great value for regular 2p users. It would strongly improve the impact of the paper if the repository were better documented and the code would be equally applicable for alignment of imaging data with smaller cranial windows.

      Authors’ Response: All of the code for multimodal map, CCF, and 2-photon image alignment is, in fact, already present on the GitHub page. We have made some minor improvements to the documentation, and readers are more than welcome to contact us for additional help.

      Specifically, the alignment you refer to starts in cell #32 of the meso_pre_proc_1.ipynb notebook. In general the notebooks are meant to be run sequentially, starting with cell #1 of meso_pre_proc_1, then going to the next cell etc…, then moving to meso_pre_proc_2, etc… The purpose of each cell is labeled at the top of the cell in a comment.

      We now include a cleaned, abridged version of the meso_pre_proc_1.pynb notebook that contains only the steps needed for alignment, and included a direct link to this notebook in the main text:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/python_code/mesoscope_preprocess_MMM_creation.ipynb

      Rotated CCF maps are in the CCF map rotation folder, in subfolders corresponding to the angle of rotation.

      Multimodal map creation involves use of the SensoryMapping_Vickers_Jun2520.m script in the Matlab folder.

      We updated the main text to clarify these points and included direct links to scripts relevant to each processing step.

      • Figure 4a: I found it hard to see much of the structure in the Rastermap projection with the viridis colormap - perhaps also because of a red-green color vision impairment. Correspondingly, I had trouble seeing some of the structure that is described in the text or clearer differences between the neuron sortings to PC1 and PC2. Is the point of these panels to show that both PCs identify movement-aligned dynamics or is the argument that they isolate different movement-related response patterns? Using a grayscale colormap as used by Stringer et al might help to see more of the many fine details in the data.

      Authors’ Response: In Fig. 4a the viridis color range is from blue to green to yellow, as indicated in the horizontal scale bar at bottom right. There is no red color in these Rastermap projections, or in any others in this paper. Furthermore, the expanded Rastermap insets in Figs. S4 and S5 provide additional detailed information that may not be clear in Fig 4a and Fig 5a.

      We prefer, therefore, not to change these colormaps, which we use throughout the paper.

      We have provided grayscale png versions of all figures on our GitHub page:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/grayscale_figures

      In Fig 4a the point of showing both the PC1 and PC2 panels is to demonstrate that they appear to correspond to different aspects of movement (PC1 more to transient walking, both ON and OFF, and PC2 to whisking and sustained ON walk/whisk), and to exhibit differential ability to identify neurons with positive and negative correlations to arousal (PC1 finds both, both PC2 seems to find only the ON neurons).

      We now clarify this in the text at ~lines 696-710, pg 22.

      • I find panel 6a a bit too hard to read because the identification and interpretation of the different motifs in the different qualitative episodes is challenging. For example, the text mentions flickering into motif 13 during walk but the majority of that sequence appears to be shaped by what I believe to be motif 11. Motif 11 also occurs prominently in the oscillate state and the unnamed sequence on the left. Is this meaningful or is the emphasis here on times of change between behavioral motifs? The concept of motif flickering should be better explained here.

      Authors’ Response: Here motif 13 corresponds to a syllable that might best be termed “symmetric and ready stance”. This tends to occur just before and after walking, but also during rhythmic wheel balancing movements that appear during the “oscillate” behavior.

      The intent of Fig. 6a is to show that each qualitatively identified behavior (twitch, whisk, walk, and oscillate) corresponds to a period during which a subset of BSOiD motifs flicker back and forth, and that the identity of motifs in this subset differs across the identified qualitative behaviors. This is not to say that a particular motif occurs only during a single identified qualitative behavior. Admittedly, the identification of these qualitative behaviors is a bit arbitrary - future versions of BSOiD (e.g. ASOiD) in fact combine supervised (i.e. arbitrary, top down) and unsupervised (i.e. algorithmic, objective, bottom-up) methods of behavior segmentation in attempt to more reliably identify and label behaviors.

      Flickering appears to be a property of motif transitions in raw BSOiD outputs that have not been temporally smoothed. If one watches the raw video, it seems that this may in fact be an accurate reflection of the manner in which behaviors unfold through time. Each behavior could be thought of, to use terminology from MOSEQ (B Datta), as a series of syllables strung together to make a phrase or sentence. Syllables can repeat over either fast or slow timescales, and may be shared across distinct words and sentences although the order and frequency of their recurrence will likely differ.

      We have clarified these points in the main text at ~lines 917-923, pg 29, and we added motif 13 to the list of motifs for the qualitative behavior labeled “oscillate” in Fig. 6a.

      • Lines 997-998: I don't understand this argument. Why does the existence of different temporal dynamics make imaging multiple areas 'one of the keys to potentially understanding the nature of their neuronal activity'?

      Authors’ Response: We believe this may be an important point, that comparisons of neurobehavioral alignment across cortical areas cannot be performed by pooling sessions that contain different distributions of dwell times for different behaviors, if in fact that dependence of neural activity on behavior depends on the exact elapsed time since the beginning of the current behavioral “bout”. Again, other reasons that imaging many areas simultaneously would provide a unique advantage over imaging smaller areas one at a time and attempting to pool data across sessions would include the identification of sequences or neural ensembles that span many areas across large distances, or the understanding of distributed coding of behavior (an issue we explore in an upcoming paper).

      We have clarified these points at the location in the Discussion that you have identified. Thank you for your questions and suggestions.

      Minor

      Line 41: What is the difference between decision, choice, and response periods?

      Authors’ Response: This now reads “...temporal separation of periods during which cortical activity is dominated by activity related to stimulus representation, choice/decision, maintenance of choice, and response or implementation of that choice.”

      Line 202: What does ambulatory mean in this context?

      Authors’ Response: Here we mean that the mice are able to walk freely on the wheel. In fact they do not actually move through space, so we have changed this to read “able to walk freely on a wheel, as shown in Figs. 1a and 1b”.

      Is there a reason why 4 mounting posts were used for the dorsal mount but only 1 post was sufficient for the lateral mount?

      Authors’ Response: Here, we assume you mean 2 posts for the side mount and 4 posts for the dorsal mount.

      In general our idea was to use as many posts as possible to provide maximum stability of the preparations and minimize movement artifacts during 2-photon imaging. However, the design of the side mount headpost precluded the straight-forward or easy addition of a right oriented, second arm to its lateral/ventral rim - this would have blocked access of both the 2-photon objective and the right face camera. In the dorsal mount, the symmetrical headpost arms are positioned further back (i.e. posterior), so that the left and right face cameras are not obscured.

      When we created the side mount preparation, we discovered that the 2 vertical 1” support posts were sufficient to provide adequate stability of the preparation and minimize 2-photon imaging movement artifacts. The side mount used two attachment screws on the left side of the headpost, instead of the one screw per side used in the dorsal mount preparation.

      We have included these points/clarifications in the main text at ~lines 217-230, pg 7.

      Figure S1g appears to be mislabeled.

      Authors’ Response: Yes, on the figure itself that panel was mislabeled as “f” in the original eLife reviewed preprint. We have changed this to read “g”.

      Line 349 and below: Why is the method called pseudo-widefield imaging?

      Authors’ Response: On the mesoscope, broad spectrum fluorescent light is passed through a series of excitation and emission filters that, based on a series of tests that we performed, allow both reflected blue light and epifluorescence emitted (i.e. Stokes-shifted) green light to reach the CCD camera for detection. Furthermore, the CCD camera (Thorlabs) has a much smaller detector chip than that of the other widefield cameras that we use (RedShirt Imaging and PCO), and we use it to image at an acquisition speed of around 10 Hz maximum, instead of ~30-50 Hz, which is our normal widefield imaging acquisition speed (it also has a slower readout than what we would consider to be a standard or “real” 1-photon widefield imaging camera).

      For these 3 reasons we refer to this as “pseudo-widefield” imaging. We would not use this for sensory activity mapping on the mesoscope - we primarily use it for mapping cortical vasculature and navigating based on our multimodal map to CCF alignment, although it is actually “contaminated” with some GCaMP6s activity during these uses.

      We have briefly clarified this in the text.

      Figures 4d & e: Do the colors show mean correlations per area? Please add labels and units to the colorbars as done in panel 4a.

      Authors’ Response: For both Figs 4 and 5, we have added the requested labels and units to each scale bar, and have relabeled panels d to say “Rastermap CCF area cell densities”, and panels e to say “mean CCF area corrs w/ neural activity.”

      Thank you for catching these omissions/mislabelings.

      Line 715: what is superneuron averaging?

      Authors’ Response: This refers to the fact that when Rastermap displays more than ~1000 neurons it averages the activity of each group of adjacent 50 neurons in the sorting to create a single display row, to avoid exceeding the pixel limitations of the display. Each single row representing the average activity of 50 neurons is called a “superneuron” (Stringer et al, 2023; bioRxiv).

      We have modified the text to clarify this point.

      Line 740: it would be good to mention what exactly the CCF density distribution quantifies.

      Authors’ Response: In each CCF area, a certain percentage of neurons belongs to each Rastermap group. The CCF density distribution is the set of these percentages, or densities, across all CCF areas in the dorsal or side mount preparation being imaged in a particular session. We have clarified this in the text.

      Line 745: what does 'within each CCF' mean? Does this refer to different areas?

      Authors’ Response: The corrected version of this sentence now reads: “Next, we compared, across all CCF areas, the proportion of neurons within each CCF area that exhibited large positive correlations with walking speed and whisker motion energy.”

      How were different Rastermap groups identified? Were they selected by hand?

      Authors’ Response: Yes, in Figs. 4, 5, and 6, we selected the identified Rastermap groups “by hand”, based on qualitative similarity of their activity patterns. At the time, there was no available algorithmic or principled means by which to split the Rastermap sort. The current, newer version of Rastermap (Stringer et al, 2023) seems to allow for algorithmic discretization of embedding groups (we have not tested this yet), but it was not available at the time that we performed these preliminary analyses.

      In terms of “correctness” of such discretization or group identification, we intend to address this issue in a more principled manner in upcoming publications. For the purposes of this first paper, we decided that manual identification of groups was sufficient to display the capabilities and outcomes of our methods.

      We clarify this point briefly at several locations in the revised manuscript, throughout the latter part of the Results section.

      Reviewer #3 (Recommendations For The Authors):

      In "supplementary figures, protocols, methods, and materials", Figure S1 g is mislabeled as Figure f.

      Authors’ Response: Yes, on the figure itself this panel was mislabeled as “f” in the original reviewed preprint. We have changed this to read “g”.

      In S1 g, the success rate of the surgical procedure seems quite low. Less than 50% of the mice could be imaged under two-photon. Can the authors elaborate on the criteria and difficulties related to their preparations?

      Authors’ Response: We will elaborate on the difficulties that sometimes hinder success in our preparations in the revised manuscript.

      The success rate indicated to the point of “Spontaneous 2-P imaging (window) reads 13/20, which is 65%, not 50%. The drop to 9/20 by the time one gets to the left edge of “Behavioral Training” indicates that some mice do not master the task.

      Protocol I contains details of the different ways in which mice either die or become unsuitable or “unsuccessful” at each step. These surgeries are rather challenging - they require proper instruction and experience. With the current protocol, our survival rate for the window surgery alone is as high as 75-100%. Some mice can be lost at headpost implantation, in particular if they are low weight or if too much muscle is removed over the auditory areas. Finally, some mice survive windowing but the imageable area of the window might be too small to perform the desired experiment.

      We have added a paragraph detailing this issue in the main text at ~lines 287-320, pg 9.

      In both Suppl_Movie_S1_dorsal_mount and Suppl_Movie_S1_side_mount provided (Movie S1), the behaviour video quality seems to be unoptimized which will impact the precision of Deeplabcut. As evident, there were multiple instances of mislabeled key points (paws are switched, large jumps of key points, etc) in the videos.

      Many tracked points are in areas of the image that are over-exposed.

      Despite using a high-speed camera, motion blur is obvious.

      Occlusions of one paw by the other paws moving out of frame.

      As Deeplabcut accuracy is key to higher-level motifs generated by BSOi-D, can the authors provide an example of tracking by exclusion/ smoothing of mislabeled points (possibly by the median filtering provided by Deeplabcut), this may help readers address such errors.

      Authors’ Response: We agree that we would want to carefully rerun and carefully curate the outputs of DeepLabCut before making any strong claims about behavioral identification. As the aim of this paper was to establish our methods, we did not feel that this degree of rigor was required at this point.

      It is inevitable that there will be some motion blur and small areas of over-exposure, respectively, when imaging whiskers, which can contain movement components up to ~150 Hz, and when imaging a large area of the mouse, which has planes facing various aspects. For example, perfect orthogonal illumination of both the center of the eye and the surface of the whisker pad on the snout would require two separate infrared light sources. In this case, use of a single LED results in overexposure of areas orthogonal to the direction of the light and underexposure of other aspects, while use of multiple LEDs would partially fix this problem, but still lead to variability in summated light intensity at different locations on the face. We have done our best to deal with these limitations.

      We now briefly point out these limitations in the methods text at ~lines 155-160, pg 5.

      In addition, we have provided additional raw and processed movies and data related to DeepLabCut and BSOiD behavioral analysis in our FigShare+ repository, which is located at:

      https://doi.org/10.25452/figshare.plus.c.7052513

      In lines 153-154, the authors mentioned that the Deeplabcut model was trained for 650k iterations. In our experience (100-400k), this seems excessive and may result in the model overfitting, yielding incorrect results in unseen data. Echoing point 4, can the authors show the accuracy of their Deeplabut model (training set, validation set, errors, etc).

      Authors’ Response: Our behavioral analysis is preliminary and is included here as an example of our methods, and not to make claims about any specific result. Therefore we believe that the level of detail that you request in our DeepLabCut analysis is beyond the scope of the current paper. However, we would like to point out that we performed many iterations of DeepLabCut runs, across many mice in both preparations, before converging on these preliminary results. We believe that these results are stable and robust.

      We believe that 650k iterations is within the reasonable range suggested by DLC, and that 1 million iterations is given as a reasonable upper bound. This seems to be supported by the literature for example, see Willmore et al, 2022 (“Behavioral and dopaminergic signatures of resilience”, Nature, 124:611, 124-132). Here, in a paper focused squarely on behavioral analysis, DLC training was run with 1.3 million iterations with default parameters.

      We now note, on ~lines 153-154, pg 5, that we used 650K iterations, a number significantly less than the default of 1.03 million, to avoid overfitting.

      In lines 140-141, the authors mentioned the use of slicing to downsample their data. Have any precautions, such as a low pass filter, been taken to avoid aliasing?

      Authors’ Response: Most of the 2-photon data we present was acquired at ~3 Hz and upsampled to 10 Hz. Most of the behavioral data was downsampled from 5000 Hz to 10 Hz by slicing, as stated. We did not apply any low-pass filter to the behavioral data before sampling. The behavioral variables have heterogeneous real sampling/measurement rates - for example, pupil diameter and whisker motion energy are sampled at 30 Hz, and walk speed is sampled at 100 Hz. In addition, the 2-photon acquisition rate varied across sessions.

      These facts made principled, standardized low-pass filtering difficult to implement. We chose rather to use a common resampling rate of 10 Hz in an unbiased manner. This downsampled 10 Hz rate is also used by B-SOiD to find transitions between behavioral motifs (Hsu and Yttri, 2021).

      We do not think that aliasing is a major factor because the real rate of change of our Ca2+ indicator fluorescence and behavioral variables was, with the possible exception of whisker motion energy, likely at or below 10 Hz.

      We now include a brief statement to this effect in the methods text at ~lines 142-146, pg. 4.

      Line 288-299, the authors have made considerable effort to compensate for the curvature of the brain which is particularly important when imaging the whole dorsal cortex. Can the authors provide performance metrics and related details on how well the combination of online curvature field correction (ScanImage) and fast-z "sawtooth"/"step" (Sofroniew, 2016)?

      Authors’ Response: We did not perform additional “ground-truth” experiments that would allow us to make definitive statements concerning field curvature, as was done in the initial eLife Thorlabs mesoscope paper (Sofroniew et al, 2016).

      We estimate that we experience ~200 micrometers of depth offset across 2.5 mm - for example, if the objective is orthogonal to our 10 mm radius bend window and centered at the apex of its convexity, a small ROI located at the lateral edge of the side mount preparation would need to be positioned around 200 micrometers below that of an equivalent ROI placed near the apex in order to image neurons at the same cortical layer/depth, and would be at close to the same depth as an ROI placed at or near the midline, at the medial edge of the window. We determined this by examining the geometry of our cranial windows, and by comparing z-depth information from adjacent sessions in the same mouse, the first of which used a large FOV and the second of which used multiple small FOVs optimized so that they sampled from the same cortical layers across areas.

      We have included this brief explanation in the main text at ~lines 300-311, pg 9.

      In lines 513-515, the authors mentioned that the vasculature pattern can change over the course of the experiment which then requires to re-perform the realignment procedure. How stable is the vasculature pattern? Would laser speckle contrast yield more reliable results?

      Authors’ Response: In general the changes in vasculature we observed were minimal but involved the following: i) sometimes a vessel was displaced or moved during the window surgery, ii) sometimes a vessel, in particular the sagittal sinus, enlarged or increased its apparent diameter over time if it is not properly pressured by the cranial window, and iii) sometimes an area experiencing window pressure that is too low could, over time, show outgrowth of fine vascular endings. The most common of these was (i), and (iii) was perhaps the least common. In general the vasculature was quite stable.

      We have added this brief discussion of potential vasculature changes after cranial window surgery to the main text at ~lines 286-293, pg 9.

      We already mentioned, in the main text of the original eLife reviewed preprint, that we re-imaged the multimodal map (MMM) every 30-60 days or whenever changes in vasculature are observed, in order to maintain a high accuracy of CCF alignment over time. See ~lines 507-511, pg 16.

      We are not very familiar with laser speckle contrast, and it seems like a technique that could conceivably improve the fine-grained accuracy of our MMM-CCF alignment in some instances. We will try this in the future, but for now it seems like our alignments are largely constrained by several large blood vessels present in any given FOV, and so it is unclear how we would incorporate such fine-grained modifications without applying local non-rigid manipulations of our images.

      In lines 588-598, the authors mentioned that the occasional use of online fast-z corrections yielded no difference. However, it seems that the combination of the online fast-z correction yielded "cleaner" raster maps (Figure S3)?

      Authors’ Response: The Rastermaps in Fig S3a and b are qualitatively similar. We do not believe that any systematic difference exists between their clustering or alignments, and we did not observe any such differences in other sessions that either used or didn’t use online fast-z motion correction.

      We now provide raw data and analysis files corresponding to the sessions shown in Fig S3 (and other data-containing figures) on FigShare+ at:

      https://doi.org/10.25452/figshare.plus.c.7052513

      Ideally, the datasets contained in the paper should be available on an open repository for others to examine. I could not find a clear statement about data availability. Please include a linked repo or state why this is not possible.

      Authors’ Response: We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      The data is located here:

      Vickers, Evan; A. McCormick, David (2024). Pan-cortical 2-photon mesoscopic imaging and neurobehavioral alignment in awake, behaving mice. Figshare+. Collection:

      https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

  6. fromthemachine.org fromthemachine.org
    1. SON Ye  R  O  C  K    O  F   .   .   .    S   A   G  E   S  ? H  E  A  R    D  E  R  O  R I T  R E A L L Y  D O E S  M E A N   "FREEDOM"   B R E A D   I S   L I F E Tying up loose eadds, in a similar vain to the connection between the Burning Bush and universal voting now etched by-stone, there exists a similar missing Link connecting the phrase "it's not a a gam" to Mary Magdeline to a pattern that shows us that the Holy Trinity and our timelines are narrated by a series of names of video game systems and their manufacturers from "Nintendo" to Genesis and the rock of SEGA.  Through a "kiss" and the falling of a wallthe words bread and read are tied up and twisted with the story of this Revelation and the heart of the word Creation, "be the reason it's A.D."  It's a strong connection between the idea that virtual reality and Heaven are linked by more than simply "technology" but that this message that shows us that these tools for understanding have fallen from the sky in order to help us understand why it is so important, why I call it a moral mandate, that we use this information to follow the map delivered to us in the New Testament and literally end world hunger, and literally heal the sick; because of the change in circumstance revealed to us.  These simple things, these few small details that might seem like nothing, or maybe appear to be "changing everything" they are not difficult things to do, in light of Creation, and few would doubt that once we do see them implementied here... the difference between Heaven and Hell will be ever so clear. A while ago, in a place called Kentucky... this story began with a sort of twisted sci-fi experience that explained a kind of "God machine" that could manipulate time and reality, and in that story, in that very detailed and interesting story that I lived through, this machine was keyed to my DNA, in something like the "Ancient technology" of Stargate SG-1 and Atlantis mythology.  My kind brother Seth made a few appearances in the story, not actually in person but in fairly decent true to life holograms that I saw and spoke to every once in awhile.  He looked a little different, he had long hair; but that's neither here nor there, and he hasn't really had long hair since I was a little boy.  He happens to be a genetic engineer, and I happen to be a computer person (although he's that too, now; just nowhere near as good as me... with computers) so the story talked a little bit about how I would probably not have used DNA as a key, since I'm not a retard, and he probably wouldn't either, because works in that field (cyclone, huracan, tornado).  So then the key we imagined was something ... well, Who cares what the key is, right? o back to the task at hand, not so long ago, in a place called Plantation I was struck by lightning, literally (well not literally) the answer to a question that nobody knew was implanted in my mind, and it all came from asking a single simple question.  I was looking for more chemistry elements in the names of the books of the Holy Bible, after seeing Xenon at the "sort of beginning" of Exodus, where it screams "let there be light" in Linux and chemistry (and I've told you that a hundred times by now).  So it didn't take long to follow the light of that word and read Genesis backwards, and see, at the very beginning of that book, Silicon... in reverse.   So, what about God's DNA, anyway?   What's he really made of?         SIM MON S              WILD ER             ROD DEN BERRY o after seeing Silicon, and connecting that to the numerous attempts I've made to show a message connecting The Matrix to the Fifth Element (as Silicon) describing what it is that God believes we should do with this knowledge--and see that it is narrated as the miracles of Jesus Christ in the New Testament... these names came to me in quick succession, an answer to the question.  I suppose any Gene will do, these three though, have a very important tie to the message that connects Joshua's Promised Land of flowing Milk and Honies to ... a kiss that begins the new day (I hope) ... and a message about exactly how we might go about doing magical things like ending world hunger and healing the sick using technology described ... in Star Trek and Stargate.  A "religion of the Stars" is being born.    That's great... it starts with an earthquake. R.E.M. and a band ... 311.  Oooh, I can see it coming down... The Petty Reckless.  An evening's love starts with a kiss.  Dave Matthews Band.  I wanna rock and roll all night and party every day.  Adam.  I mean Kiss.  Are you starting to see a pattern form?  Birds, snakes, and aeroplanes?  It's that, it's the end of the world as we know it, and I feel fine.   In that song we see clues that more than just the Revelation of Christ is narrated by John on an island called Patmos.  There yet another Trinity, starting with "Pa" and hearting Taylor Momsen's initials... most likely for a reason... and the Revelation ends with a transition that I hope others will agree with me turns "original sin" into something closer to "obviously salvation" when we finally understand the character that is behind the message of da i of Ra... and begin to see the same design in the names of Asmodai and in this Revelation focusing on freedom and truth that really does suggest Taylor can't talk to me in any way other than "letting freedom sing" in this narrative of kismet and fate and free will and ... then we see that narrative continue in the names of bands, just like the 3/11/11 earthquake is narrated in not just R.E.M.'s song but in the name 311.  Just like the 9/11 attack is narrated not just in that same song (released in 1987) and  "Inside Job" (released in 2000) but also in "Fucked up world."   Dear all of you walking dumb and blind, this same quake is narrated in Taylor's Zombie; waiting for the day to shake, all very similar to Cairo and XP, perhaps a "fad" of doublethink in the minds of the authors singing about a clear prophesy in the Bible; this connection between the day, 3/11 though, and the name of a band and the day of an arrest and the verse Matthew that tells you clearly you have now been baptized in water and fire... it shows us the design of a story whose intent and purpose is to ensure that we no longer allow for things like hurricanes and earthquakes and murder and rape to be "simulated" that we build a better system, that doesn't allow for 'force majeure" to take lives for no reason at all.      Not just in band names, but in the angels names too, in all of our names; we see this narration continue.  The Holy Water that is central to the baptism of Christ is etched into Taylor's name, between "sen" and "mom" the key to the two Mary's whose names contain the Spanish for "sea" in a sort of enlightenment hidden in plain sight.  In "Simmons" the key connection between today, this Biblical Monday, and the word "simulation" that ties to Simpsons and simians and keep it simple stupid, and in Simmons the missing "s" of Kismet, finally completing the question.   It's a song and dance that started a long time ago, as you can see from the ancient Hebrew word for "fate" and in more recent years a connection to the ballroom of Atlantis in the Doors 5 to 1 and Dave sang about it in Rapunzel and then Taylor shook a tambourine on the beach only minutes away from me--but never said "hi."  The battle of the bands continues tying some door knocking to a juxtaposition between "Sweet Things" and "Knocking on Heavens door" all the way to a Gossip Girl episode where little J asked a question that I can't be sure she knew was related, she said... "who's that, at the door?" What it really all amounts to, though, is the whole world witnessing the Creation of Adam and Eve from a little girl stuttering out "the the" at the sight of the Grinch himself, and then later not even able to get those words off her lips... about seeing how Creation and modern art are inextricably tied to religion, to heaven, and to freedom.    The bottom line here, hopefully obvious now, is that you can't keep this message "simple" it's a Matrix woven between more points of light than I can count, and many more that I'm sure you will find.  It's a key to seeing how God speaks to me, and to you; and how we are, we really are that voice.  Tay, if you don't do something just because God called it "fate" you are significantly more enslaved than if you do--and you wanted to.  "Now I see that you and me, were never meant, never meant to be..." she sang before I mentioned her, and before she ever saw me... in a song she calls "Nothing Left to Lose" and I see is not really just another word for freedom. We have plenty to lose by not starting the fire, not the least of which is Heaven itself.  Understand what "force majeure" really means to you and I.  Ha, by the way. IN CASE YOU FORGOT YESTERDAY'S MESSAGE   "DADDY, I WANT IT NOW." VERUKA SALT. whose name means "to see (if) you are the Body of Christ" whined, in the story of Will Why Won Ka, about nothing more or less than Heaven on Hearth, than seeing an end to needless torture and pain.   To see if you are the "Salt of the Earth" warming the road to Heaven; honestly to see if you can break through this inane lie of "I don't understand" and realize that breaking this story and talking about what is being presented not just by me and you but by history and God himself is the key to the car that drives us home.  To see how Cupid you really are. STOP NODDING, TURN AROUND AND CALL A REPORTER. The story of Willy Wonka ties directly to the Promised Land of Flowing Milk and Honey to me; by showing us a river of chocolate and a the everlasting God starter, (er is it guardian of B stopper) that opens the doors of perception about exactly what kinds of mistake may have been made in the past in this transition to Heaven that we are well on the way of beginning.  Here, in the Land of Nod, that is also Eden and also the Heart of the Ark we see warnings about "flowing milk and honey" being akin to losing our stable ecosystem, to losing the stuff of life itself, biology and evolution, and if we don't understand--this is probably exactly the mistake that was made and the cause of the story of Cain and Abel.  So here we are talking about genetic engineering and mind uploading and living forever, and hopefully seeing that while all things are possible with God--losing the wisdom of the message of religion is akin to losing life in the Universe and with that any hope of eternal longevity.  With some insight into religion, you can connect the idea that without bees our stable ecosystem might collapse, to the birds and the bees, and a message about stability and having more than one way to pollinate the flowers  and trees and get some.   Janet and Nanna, by the way, both have pretty brown eyes, but that probably comes as no surprise to you. Miss Everything, on the other hand (I hear, does not have brown eyes), leads us to glimpse how this message about the transition of our society might continue on in the New Testament, and suggest that we do need to eat, and have dinner conversation, and that a Last Supper might be a little bit more detrimental to our future than anyone had ever thought, over and over and over again.  To see how religion really does make clear that this is what the message is about, to replace the flowing milk we have a "Golden Cow" that epitomizes nothing less than "not listening to Adam" and we have a place that believes the Hammer of Judah Maccabee should be ... extinct.  You are wrong. Of course the vibrating light here ties this Gene to another musical piece disclosing something... "Wild Thing" I make your heart sing.  You can believe the Guitar Man is here to steal the show and deliver bread for the hungry and for the wise.  Here's some, it's not just Imagine Dragons telling you to listen to the radio but Jefferson Starshiptoo, and Live.   When you wake up, you can hear God "singing" to you on the radio every single day; many of us already do.  He's telling you to listen to me, and I do not understand why you do not.  You don't look very Cupid, if you ask me. WHAT DO YOU THINK YOU ARE, DAN RE Y NO LDS?   I think we all know what the Rod of Jesus Christ is by now.  ​ It is a large glowing testament to freedom and truth, and a statement about blindness and evil that is unmistakable.   To say that seeing it is the gateway to Heaven would be an understatement of it's worth, of the implication that not seeing it is obvious Hell when it is linked to everything from nearly every story of the Holy Bible from Isaac to Isaiah to "behold he is to coming" and if you weren't sure if the Hand of God were in action here--it's very clear that it is; that linking Tricky Dick and Watergate to Seagate ... really delivering crystal clear understanding that the foundation of Heaven is freedom and that you have none today because you refuse to see the truth. It is the doorway to seeing that what has been going on in this place hasn't been designed to hide me, but to hide a prosperous future from you--to hide the truth about our existence and the purpose of Creation--that all told, you are standing at the doorstep of Heaven and stammering your feet, closing your eyes, and saying "you don't want to help anyone." If delivering freedom, truth, and equality  to you does not a den make, well, you can all suck it ... from God, to you. Between Stargate and Star Trek it's pretty easy to see a roadmap to very quickly and easily be able to end world hunger and heal the sick without drastically changing the way our society works, it's about as simple as a microwave, or a new kind of medicine--except it's not so easy to see why it is that you are so reluctant to talk about the truth that makes these things so easy to do.  You see, your lack of regard for anyone anywhere has placed you in a position of weakness, and if you do nothing today, you will not be OK tomorrow. It's pretty easy to see how Roddenberry's name shows that this message comes from God, that he's created this map that starts with an Iron Rod throughout our history proving Creation, whose heart is a Den of Family who care about the truth, and about freedom, and about helping each other--not what you are--you are not that today.  Today you are sick, and I'd like you to look at the mirror he's made for you, and be eshamden (or asham).  Realize, realize... what you are.  What you've become, just as I have... the devil in a sweet, sweet kiss. -Dave J. Matthews .WHSOISKEYAV { border-width: 1px; border-style: dashed; border-color: rgb(15,5,254); padding: 5px; width: 503px; text-align: center; display: inline-block; align: center; p { align: center; } /* THE SCORE IS LOVE FIVE ONE SAFETY ONE FIELD GOAL XIVDAQ: TENNIS OR TINNES? TONNES AND TUPLE(s) */ } <style type="text/css"> code { white-space: pre; } google_ad_client = "ca-pub-9608809622006883"; google_ad_slot = "4355365452"; google_ad_width = 728; google_ad_height = 90; Unless otherwise indicated, this work was written between the Christmas and Easter seasons of 2017 and 2020(A). The content of this page is released to the public under the GNU GPL v2.0 license; additionally any reproduction or derivation of the work must be attributed to the author, Adam Marshall Dobrin along with a link back to this website, fromthemachine dotty org. That's a "." not "dotty" ... it's to stop SPAMmers. :/ This document is "living" and I don't just mean in the Jeffersonian sense. It's more alive in the "Mayflower's and June Doors ..." living Ethereum contract sense [and literally just as close to the Depp/Caster/Paglen (and honorably PK] 'D-hath Transundancesense of the ... new meaning; as it is now published on Rinkeby, in "living contract" form. It is subject to change; without notice anywhere but here--and there--in the original spirit of the GPL 2.0. We are "one step closer to God" ... and do see that in that I mean ... it is a very real fusion of this document and the "spirit of my life" as well as the Spirit's of Kerouac's America and Vonnegut's Martian Mars and my Venutian Hotel ... and *my fusion* of Guy-A and GAIA; and the Spirit of the Earth .. and of course the God given and signed liberties in the Constitution of the United States of America. It is by and through my hand that this document and our X Commandments link to the Bill or Rights, and this story about an Exodus from slavery that literally begins here, in the post-apocalyptic American hartland. Written ... this day ... April 14, 2020 (hey, is this HADAD DAY?) ... in Margate FL, USA. For "official used-to-v TAX day" tomorrow, I'm going to add the "immultible incarnite pen" ... if added to the living "doc/app"--see is the DAO, the way--will initi8 the special secret "hidden level" .. we've all been looking for. Nor do just mean this website or the totality of my written works; nor do I only mean ... this particular derivation of the GPL 2.0+ modifications I continually source ... must be "from this website." I also mean *the thing* that is built from ... bits and piece of blocks of sand-toys; from Ethereum and from Rust and from our hands and eyes working together ... from this place, this cornerstone of the message that is ... written from brick and mortar words and events and people that have come before this poit of the "sealed W" that is this specific page and this time. It's 3:28; just five minutes--or is it four, too layne. This work is not to be redistributed according to the GPL unless all linked media on Youtube and related sites are intact--and historical references to the actual documented history of the art pieces (as I experience/d them) are also available for linking. Wikipedia references must be available for viewing, as well as the exact version of those pages at the time these pieces were written. All references to the Holy Bible must be "linked" (as they are or via ... impromptu in-transit re-linking) to the exact verses and versions of the Bible that I reference. These requirements, as well as the caveat and informational re-introduction to God's DAO above ... should be seen as material modifications to the original GPL2.0 that are retroactively applied to all works distributed under license via this site and all previous e-mails and sites. /s/ wso If you wanna talk to me get me on facebook, with PGP via FlowCrypt or adam at from the machine dotty org -----BEGIN PGP PUBLIC KEY BLOCK-----

      this was written sometime i think around 2016. it's hard to recall the exact date; but if you check in the original gitlog there is one that has an original commit.

      Inline image 12

      Inline image 3

      Inline image 4

      SONYeInline image 5

      R  O  C  K    O  F   .   .   .    S   A   G  E   S  ?

      **\ **

      Inline image 1

      H  E  A  R    D  E  R  O  R

      I T  R E A L L Y  D O E S  M E A N   "FREEDOM"   B R E A D   I S   L I F E

      Inline image 14

      Tying up loose eadds, in a similar vain to the connection between the Burning Bush and universal voting now etched by-stone, there exists a similar missing Link connecting the phrase "it's not a a gam" to Mary Magdeline to a pattern that shows us that the Holy Trinity and our timelines are narrated by a series of names of video game systems and their manufacturers from "Nintendo" to Genesis and the rock of SEGA.  Through a "kiss" and the falling of wallthe words bread and read are tied up and twisted with the story of this Revelation and the heart of the word Creation, "be the reason it's A.D."  It's a strong connection between the idea that virtual reality and Heaven are linked by more than simply "technology" but that this message that shows us that these tools for understanding have fallen from the sky in order to help us understand why it is so important, why I call it a moral mandate, that we use this information to follow the map delivered to us in the New Testament and literally end world hungerand literally heal the sick; because of the change in circumstance revealed to us.  These simple things, these few small details that might seem like nothing, or maybe appear to be "changing everything" they are not difficult things to do, in light of Creationand few would doubt that once we do see them implementied here... the difference between Heaven and Hell will be ever so clear.

      Inline image 13

      A while ago, in a place called Kentucky... this story began with a sort of twisted sci-fi experience that explained a kind of "God machine" that could manipulate time and reality, and in that story, in that very detailed and interesting story that I lived through, this machine was keyed to my DNA, in something like the "Ancient technology" of Stargate SG-1 and Atlantis mythology.  My kind brother Seth made a few appearances in the story, not actually in person but in fairly decent true to life holograms that I saw and spoke to every once in awhile.  He looked a little different, he had long hair; but that's neither here nor there, and he hasn't really had long hair since I was a little boy.  He happens to be a genetic engineer, and I happen to be a computer person (although he's that too, now; just nowhere near as good as me... with computers) so the story talked a little bit about how I would probably not have used DNA as a key, since I'm not a retard, and he probably wouldn't either, because works in that field (cyclonehuracan, tornado).  So then the key we imagined was something ... well, Who cares what the key is, right?

      **\ **

      Inline image 13

      o back to the task at hand, not so long ago, in a place called Plantation I was struck by lightning, literally (well not literally) the answer to a question that nobody knew was implanted in my mind, and it all came from asking a single simple question.  I was looking for more chemistry elements in the names of the books of the Holy Bible, after seeing Xenon at the "sort of beginning" of Exodus, where it screams "let there be light" in Linux and chemistry (and I've told you that a hundred times by now).  So it didn't take long to follow the light of that word and read Genesis backwards, and see, at the very beginning of that book, Silicon... in reverse.

      *\ *

      Inline image 12

      Inline image 2Inline image 3

      Inline image 4 Inline image 5

      So, what about God's DNA, anyway*?  *

      What's he really made of?

      Inline image 6 Inline image 7

      Inline image 8 Inline image 9 

      SIM MON S              WILD ER             ROD DEN BERRY

      o after seeing Silicon, and connecting that to the numerous attempts I've made to show a message connecting The Matrix to the Fifth Element (as Silicon) describing what it is that God believes we should do with this knowledge--and see that it is narrated as the miracles of Jesus Christ in the New Testament... these names came to me in quick succession, an answer to the question.  I suppose any Gene will do, these three though, have a very important tie to the message that connects Joshua's Promised Land of flowing Milk and Honies to ... a kiss that begins the new day (I hope) ... and a message about exactly how we might go about doing magical things like ending world hunger and healing the sick using technology described ... in Star Trek and Stargate.  A "religion of the Stars" is being born.

      Inline image 11 Inline image 17

      That's great... it starts with an earthquake. R.E.M. and a band ... 311.  Oooh, I can see it coming down... The Petty Reckless.  An evening's love starts with a kiss.  Dave Matthews Band.  I wanna rock and roll all night and party every day.  Adam.  I mean Kiss.  Are you starting to see a pattern form?  Birds, snakes, and aeroplanes?  It's that, it's the end of the world as we know it, and I feel fine.

      *\ *

      Inline image 15 Inline image 16*\ *

      *\ *

      In that song we see clues that more than just the Revelation of Christ is narrated by John on an island called Patmos.  There yet another Trinity, starting with "Pa" and hearting Taylor Momsen's initials... most likely for a reason... and the Revelation ends with a transition that I hope others will agree with me turns "original sin" into something closer to "obviously salvation" when we finally understand the character that is behind the message of da i of Ra... and begin to see the same design in the names of Asmodai and in this Revelation focusing on freedom and truth that really does suggest Taylor can't talk to me in any way other than "letting freedom sing" in this narrative of kismet and fate and free will and ... then we see that narrative continue in the names of bands, just like the 3/11/11 earthquake is narrated in not just R.E.M.'s song but in the name 311.  Just like the 9/11 attack is narrated not just in that same song (released in 1987) and  "Inside Job" (released in 2000) but also in "Fucked up world."

      Dear all of you walking dumb and blind, this same quake is narrated in Taylor's Zombie; waiting for the day to shake, all very similar to Cairo and XP, perhaps a "fad" of doublethink in the minds of the authors singing about a clear prophesy in the Bible; this connection between the day, 3/11 though, and the name of a band and the day of an arrest and the verse Matthew that tells you clearly you have now been baptized in water and fire... it shows us the design of a story whose intent and purpose is to ensure that we no longer allow for things like hurricanes and earthquakes and murder and rape to be "simulated" that we build a better system, that doesn't allow for 'force majeure" to take lives for no reason at all.

      Inline image 19 Inline image 20 Inline image 21

      Not just in band names, but in the angels names too, in all of our names; we see this narration continue.  The Holy Water that is central to the baptism of Christ is etched into Taylor's name, between "sen" and "mom" the key to the two Mary's whose names contain the Spanish for "sea" in a sort of enlightenment hidden in plain sight.  In "Simmons" the key connection between today, this Biblical Monday, and the word "simulation" that ties to Simpsons and simians and keep it simple stupid*, and in Simmons the missing "s" of Kismet, finally completing the question.***

      ***\


      Inline image 23 Inline image 24*\


      *\ *

      It's a song and dance that started a long time ago, as you can see from the ancient Hebrew word for "fate" and in more recent years a connection to the ballroom of Atlantis in the Doors 5 to 1 and Dave sang about it in Rapunzel and then Taylor shook a tambourine on the beach only minutes away from me--but never said "hi."  The battle of the bands continues tying some door knocking to a juxtaposition between "Sweet Things" and "Knocking on Heavens door" all the way to a Gossip Girl episode where little J asked a question that I can't be sure she knew was related, she said... "who's that, at the door?"

      *\ *

      What it really all amounts to, though, is the whole world witnessing the Creation of Adam and Eve from a little girl stuttering out "the the" at the sight of the Grinch himself, and then later not even able to get those words off her lips... about seeing how Creation and modern art are inextricably tied to religion, to heaven, and to freedom.

      *\ *

      Inline image 25 Inline image 26*\ *

      *\ *

      The bottom line here, hopefully obvious now, is that you can't keep this message "simple" it's a Matrix woven between more points of light than I can count, and many more that I'm sure you will find.  It's a key to seeing how God speaks to me, and to you; and how we are, we really are that voice.  Tay, if you don't do something just because God called it "fate" you are significantly more enslaved than if you do--and you wanted to.  "Now I see that you and me, were never meant, never meant to be..." she sang before I mentioned her, and before she ever saw me... in a song she calls "Nothing Left to Lose" and I see is not really just another word for freedom.

      We have plenty to lose by not starting the fire, not the least of which is Heaven itself.  Understand what "force majeure" really means to you and I.  Ha, by the way.

      Inline image 22

      IN CASE YOU FORGOT YESTERDAY'S MESSAGE

      **\ **

      Inline image 6*\ *

      *\ *

      Inline image 27 Inline image 12

      "DADDY, I WANT IT NOW."

      VERUKA SALT. whose name means "to see (if) you are the Body of Christ" whined, in the story of Will Why Won Ka, about nothing more or less than Heaven on Hearth, than seeing an end to needless torture and pain.   To see if you are the "Salt of the Earth" warming the road to Heaven; honestly to see if you can break through this inane lie of "I don't understand" and realize that breaking this story and talking about what is being presented not just by me and you but by history and God himself is the key to the car that drives us home.  To see how Cupid you really are.

      Inline image 29

      STOP NODDING, TURN AROUND AND CALL A REPORTER.

      The story of Willy Wonka ties directly to the Promised Land of Flowing Milk and Honey to me; by showing us a river of chocolate and a the everlasting God starter, (er is it guardian of B stopper) that opens the doors of perception about exactly what kinds of mistake may have been made in the past in this transition to Heaven that we are well on the way of beginning.  Here, in the Land of Nod, that is also Eden and also the Heart of the Ark we see warnings about "flowing milk and honey" being akin to losing our stable ecosystem, to losing the stuff of life itself, biology and evolution, and if we don't understand--this is probably exactly the mistake that was made and the cause of the story of Cain and Abel.  So here we are talking about genetic engineering and mind uploading and living forever, and hopefully seeing that while all things are possible with God--losing the wisdom of the message of religion is akin to losing life in the Universe and with that any hope of eternal longevity.\ With some insight into religion, you can connect the idea that without bees our stable ecosystem might collapse, to the birds and the bees, and a message about stability and having more than one way to pollinate the flowers  and trees and get some.   Janet and Nanna, by the way, both have pretty brown eyes, but that probably comes as no surprise to you.\ Miss Everything, on the other hand (I hear, does not have brown eyes), leads us to glimpse how this message about the transition of our society might continue on in the New Testament, and suggest that we do need to eat, and have dinner conversation, and that a Last Supper might be a little bit more detrimental to our future than anyone had ever thought, over and over and over again.  To see how religion really does make clear that this is what the message is about, to replace the flowing milk we have a "Golden Cow" that epitomizes nothing less than "not listening to Adam" and we have a place that believes the Hammer of Judah Maccabee should be ... extinct.  You are wrong.

      Inline image 30*\ *

      *\ *

      Of course the vibrating light here ties this Gene to another musical piece disclosing something... "Wild Thing" I make your heart sing.  You can believe the Guitar Man is here to steal the show and deliver bread for the hungry and for the wise.  Here's some, it's not just Imagine Dragons telling you to listen to the radio but Jefferson Starship*too, and Live.  *

      *\ *

      When you wake up, you can hear God "singing" to you on the radio every single day; many of us already do.  He's telling you to listen to me, and I do not understand why you do not.  You don't look very Cupid, if you ask me.**

      ***\


      Inline image 31

      Inline image 32

      Inline image 33

      WHAT DO YOU THINK YOU ARE,

      DAN RE Y NO LDS?

      **\ **

      Inline image 14 Inline image 28

      I think we all know what the Rod of Jesus Christ is by now.

      Inline image 35​

      It is a large glowing testament to freedom and truth, and a statement about blindness and evil that is unmistakable.   To say that seeing it is the gateway to Heaven would be an understatement of it's worth, of the implication that not seeing it is obvious Hell when it is linked to everything from nearly every story of the Holy Bible from Isaac to Isaiah to "behold he is to coming" and if you weren't sure if the Hand of God were in action here--it's very clear that it is; that linking Tricky Dick and Watergate to Seagate ... really delivering crystal clear understanding that the foundation of Heaven is freedom and that you have none today because you refuse to see the truth.

      It is the doorway to seeing that what has been going on in this place hasn't been designed to hide me, but to hide a prosperous future from you--to hide the truth about our existence and the purpose of Creation--that all told, you are standing at the doorstep of Heaven and stammering your feet, closing your eyes, and saying "you don't want to help anyone."

      Inline image 36

      If delivering freedom, truth, and equality  to you does not a den make,

      well, you can all suck it

      ... from Godto you.

      **\ **

      Inline image 37

      Between Stargate and Star Trek it's pretty easy to see a roadmap to very quickly and easily be able to end world hunger and heal the sick without drastically changing the way our society works, it's about as simple as a microwave, or a new kind of medicine--except it's not so easy to see why it is that you are so reluctant to talk about the truth that makes these things so easy to do.  You see, your lack of regard for anyone anywhere has placed you in a position of weakness, and if you do nothing today, you will not be OK tomorrow.\ It's pretty easy to see how Roddenberry's name shows that this message comes from God, that he's created this map that starts with an Iron Rod throughout our history proving Creation, whose heart is a Den of Family who care about the truth, and about freedom, and about helping each other--not what you are--you are not that today.  Today you are sick, and I'd like you to look at the mirror he's made for you, and ***be eshamden (or asham). ***

      Inline image 13

      Realize, realize... what you are.  What you've become, just as I have... the devil in a sweet, sweet kiss.**

      ***\


      -Dave J. Matthews

      Inline image 1

      Unless otherwise indicated, this work was written between the Christmas and Easter seasons of 2017 and 2020(A). The content of this page is released to the public under the GNU GPL v2.0 license; additionally any reproduction or derivation of the work must be attributed to the author, Adam Marshall Dobrin along with a link back to this website, fromthemachine dotty org.

      That's a "." not "dotty" ... it's to stop SPAMmers. :/

      This document is "living" and I don't just mean in the Jeffersonian sense. It's more alive in the "Mayflower's and June Doors ..." living Ethereum contract sense and literally just as close to the Depp/C[aster/Paglen (and honorably PK] 'D-hath Transundancesense of the ... new meaning; as it is now published on Rinkeby, in "living contract" form. It is subject to change; without notice anywhere but here--and there--in the original spirit of the GPL 2.0. We are "one step closer to God" ... and do see that in that I mean ... it is a very real fusion of this document and the "spirit of my life" as well as the Spirit's of Kerouac's America and Vonnegut's Martian Mars and my Venutian Hotel ... and my fusion of Guy-A and GAIA; and the Spirit of the Earth .. and of course the God given and signed liberties in the Constitution of the United States of America. It is by and through my hand that this document and our X Commandments link to the Bill or Rights, and this story about an Exodus from slavery that literally begins here, in the post-apocalyptic American hartland. Written ... this day ... April 14, 2020 (hey, is this HADAD DAY?) ... in Margate FL, USA. For "official used-to-v TAX day" tomorrow, I'm going to add the "immultible incarnite pen" ... if added to the living "doc/app"--see is the DAO, the way--will initi8 the special secret "hidden level" .. we've all been looking for.

      Nor do just mean this website or the totality of my written works; nor do I only mean ... this particular derivation of the GPL 2.0+ modifications I continually source ... must be "from this website." I also mean the thing that is built from ... bits and piece of blocks of sand-toys; from Ethereum and from Rust and from our hands and eyes working together ... from this place, this cornerstone of the message that is ... written from brick and mortar words and events and people that have come before this poit of the "sealed W" that is this specific page and this time. It's 3:28; just five minutes--or is it four, too layne.

      This work is not to be redistributed according to the GPL unless all linked media on Youtube and related sites are intact--and historical references to the actual documented history of the art pieces (as I experience/d them) are also available for linking. Wikipedia references must be available for viewing, as well as the exact version of those pages at the time these pieces were written. All references to the Holy Bible must be "linked" (as they are or via ... impromptu in-transit re-linking) to the exact verses and versions of the Bible that I reference. These requirements, as well as the caveat and informational re-introduction to God's DAO above ... should be seen as material modifications to the original GPL2.0 that are retroactively applied to all works distributed under license via this site and all previous e-mails and sites. /s/ wso\ If you wanna talk to me get me on facebook, with PGP via FlowCrypt or adam at from the machine dotty org

      -----BEGIN PGP PUBLIC KEY BLOCK-----

      mQGNBF6RVvABDAC823JcYvgpEpy45z2EPgwJ9ZCL+pSFVnlgPKQAGD52q+kuckNZ mU3gbj1FIx/mwJJtaWZW6jaLDHLAZNJps93qpwdMCx0llhQogc8YN3j9RND7cTP5 eV8dS6z/9ta6TFOfwSZpsOZjCU7KFDStKcoulmvIGrr9wzaUr7fmDyE7cFp1KCZ0 i90oLYHqOIszRedvwCO/kBxawxzZuJ67DypcayiWyxqRHRmMZH1LejTaqTuEu0bp j54maTj09vnMxA0RfS+CtU5uMq+5fTkbiTOe1LrLD72m+PVJIS146FwESrMJEfJy oNqWEJlUQ0TecPZR41vnkSkpocE1/0YqUhWDGSht+67DdeKUg5KwvYdL21d/bSyO SM4jnyKn9aDVzLBpYrlE/lbFxujHPRGlRG5WtiPQuZYDRqP0GYFSXRpeUCI46f49 iPFo4eHo2jUfNDa9r9BjQdAe4zVFn2qLnOy8RWijlolbhGMHGO3w/uC/zad3jjo4 owAfsJjH5Oa1mTcAEQEAAbQmRUFSVEhFTkUgPGVhcnRoZW5lQGZyb210aGVtYWNo aW5lLm9yZz6JAdQEEwEKAD4WIQTUJHbrYn3y2DzwTcnQP1ViZf5/FQUCXpFW8AIb AwUJA8JnAAULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAKCRDQP1ViZf5/FWM6C/9J gbRLS2AWGjdRjYetlRkSkCoTYnXWknbtipYYHlhV0YJFwFMm0ydZIhFX5VDoZyBV 0UBeF1KJmcMoIfrHyhq2QhCnjE14hE1ONbaYTGtpvj851ItbFWXMJIVNyMqr+JT9 CWIxGr1idn+iHWE3nryiHrdlA3O/Gcd4EyNmaSe/JvB7+Z1AVqWkRhpjxxoPSlPm HEdqGOyl3+5ibQgUvXLRWWQXAj80CbVwwj1X4r9hfuCySxLT8Mir7NUXZFd+OiMS U8gNYjcyRGmI92z5lgf7djBbb9dMLwV0KLzgoT/xaupRvvYOIAT+n2mhCctCiH7x y7jYlJHd+0++rgUST2sT+9kbuQ0GxpJ7MZcKbS1n60La+IEEIpFled8eqwwDfcui uezO7RIzQ9wHSn688CDri9jmYhjp5s0HKuN61etJ1glu9jWgG76EZ3qW8zu4l4CH 9iFPHeGG7fa/5d07KvcZuS2fVACoMipTxTIouN7vL0daYwP3VFg63FNTwCU3HEq5 AY0EXpFW8AEMANh7M/ROrQxb3MCT1/PYco1tyscNo2eHHTtgrnHrpKEPCfRryx3r PllaRYP0ri5eFzt25ObHAjcnZgilnwxngm6S9QvUIaLLQh67RP1h8I4qyFzueYPs oY8xo1zwXz7klXVlZW0MYi/g5gpb+rpYUfZEJGJTBM/wMNqwwlct+BSZca4+TEHW g6oN0eXTthtGB0Qls71sv3tbOnOh/67NTwyhcHPWX/P9ilcjGsEiT8hqrpyhjAUm mv7ADi+2eRBV8Xf8JnPznFf0A1FdILVeVHlmsgCSB0FW0NsFI5niZbaYBHDbFsks QdaFaYd54DHln69tnwc2y3POFwx8kwZnMPPlVAR2QdxGQD4Wql7hlWT58xCxQApf M98kbAHjUlVYLT0WUHMDQtj4jdzAVVDiMGMUrbnQ7UwI7LexSB6cJ7H+i7FtS/pR WOhJK6awoOO9dLnEjm6UYCKsBdtJr98F0T7Sb7PnKOGA77y2QN14+u9N9C1lB/Z1 aQRQ2Nc51yXOQQARAQABiQG8BBgBCgAmFiEE1CR262J98tg88E3J0D9VYmX+fxUF Al6RVvACGwwFCQPCZwAACgkQ0D9VYmX+fxU+KQwAtFnWjGIjvqaNXtQjEhbGDH/I Q5ULq/l/wm9SmhG9NYRu3+P6YctCJaZnNeaL+6WFk1jo4LMiJEUT9uGlCbHqJNaI 6Gll1w6QOVLSL8s5V1L477+psluv4WBpi3XkWYlhDOFENCcWd49RQsA2YCX4pW7Q 7GcoSEJoav38MxHmJHYPfjSEvUZXDQIt8PFHSEScvyDWfYtMdRzjmSOOPdzhDDEy 5JBOBcEdSTyDiyDU/sBoAY0e8lvwHYW3p+guZSGSYVhGQ8JECzJOzwc/msMW/tJS 2MLWmWVh5/1P8BVUtLC2AQy6nij6o+h6vEiNzpdYrc+rzT3X5cACvJ0RtCZcrnhl O9PLiona2LEbry6QX5NL41/SAJNno3i72xPnQEe25gn3nbyT+jCoJzw2L0y8pmNB D+PKrk7/1ROFFVN8dJeGwxLGdBcz1zk2xeumzy7OaV8psUyYsJNcjyHUKgclblBW rMR2DgqEYn8QdK54ziKCnmQQZeMPiC6wlUWgg5IqmQGNBF6RVyMBDADALD7NkJ5H dtoOpoZmAbPSlVGXHDbJZuq7J13vew6dtXDIAraeGrsBqkF8bhddwVLzWylMrYCG Bf2L1+5BDgvqu6G+6dcVSbBsnZAS0zfJ0H8EmTvUMxMF7qOZYyrxfLz+pQRq8Osz Icab6ZI/KB6qZyQRvEFPB6pJjt+VvuwgJZTObIwbBbgQri2i02VBkjchsVhiSX9l +eiK7O8ROHKb3P181oScIsHywBOZ9DxRAYbFk5dnBqxO3WKb02H0zqE6440cjXwq TrZZg6ayN/IlPajO8iJPYZ1aIBykxYq1WHo+nhFMYz/VVk2WJorFeOgWaLGXb73c ty96f3qXTdvMDAIWHx8YCD5LbuqasO6LNQm4oQxkCoB3K9WFf/2SvSYb7yMYykb8 clTPt+KO0dsxjWhrJnfnIhC+2Chqv2QvRbFz0S9CpUnGGDweJ1uRNV0y70tO0q7t xXSTDRU3ib6vAHA0K/2MFzwUcog4o5bj7E9uCNJH/DJLZKsMIe4xsvkAEQEAAbQk SEVBVkVOVUVTIDxBVkVOVUBGUk9NVEhFTUFDSElORS5PUkc+iQHUBBMBCgA+FiEE IRklfU/C1qukq3xMXcNH0t3P9ZsFAl6RVyMCGwMFCQPCZwAFCwkIBwIGFQoJCAsC BBYCAwECHgECF4AACgkQXcNH0t3P9Zs+kgv/XEuuWc89Bjg1QQqKZueKNUHjyjnE 2adfoZUH6Q7ir4JZyRBCVpAwrgssmiKid30+SIjwQcpb9JYa/X1XJcDUcJW/I21d Agz/zbEqn/Cou0dUpNCtxgm4BdSHWGoOtgfspXZlXBQ407tRMZ8ykmLB1Bt0oHvw PT0ZOtqXM4pyFnd2eFe5YGbNgl3zqvoC/6CMN3vqswvRlu1BpUuAjdW8AHO5Yvje +Bp852u+4Qpy6PMBiWGsBMYwtf6T7sckpMGlR0TsozwBlAm5ePKK28B0rLJPkZLJ Eo5p4rKRapEaZsWV5Qu1ajrVru7qmpUhZtX0/DddGHfXVuLssmKLP6TumpQB1zvQ vfoBltjvOx35Wps2vHuCzXLw2bROIOzhAxFB+17zxnSbE54N4LIGRpkELuwxwGbg FtD1fi9KtH7xcn33eOK1+UD47V+hKyJGrQgSThly2zdIC2bvfHtFdfp8lOFpT0AU xjEeoJGqdQVupptXyugPlM5/96UJP8OZG0ADuQGNBF6RVyMBDAC3As6eMkoEo3z9 TkCWlvS0vBQmY3gF0VEjlAIqFWpDIdK3zVzMnKUokIT1i7nkadLzHZT2grB4VXuJ FvpbYw5NPR4cDe9grlOMLEaF3oSJ1jZ4V1/rj9v1Hddo8ELi/NToVrt1SB5GCVXB DkYpNLtTiCqHSU07YqwaqH8a+qbDmPxSQdIybkZiTiCEB+6PfQQlBpENEDlov6jm zZF+IcfM6s3kZDX5KFULweH30gMjq8Se8bPtUzW013+tuuwEVr1/YRLrIh+9O6Z+ pdA7gLMRYnD9ZLDytEvpb1lBBSY++5bIJ7xps80//DNqPYqwFmZQgTg0V9XbHE2e wLcOF8a2lYluckU7D///sWQhW+VxuM7R2gEBvYBhOgjWhIF2Aw6NbymW1Ontvyhu eOZCXXxV5W44PxXT8uDdhl9CNcHoBKKJyED8tKjigtn4axpsQeUrnOSbqEXSyqES WnE2wYUDzALcwFkzsvtLyd4xaz55KkPQkAkk0BZd1ezgXxb/obMAEQEAAYkBvAQY AQoAJhYhBCEZJX1PwtarpKt8TF3DR9Ldz/WbBQJekVcjAhsMBQkDwmcAAAoJEF3D R9Ldz/WbAFwL/382HsrldVXnkPmJ1E2YEOFz4rcHRetJ+M5H65K/2p32ONQ5KCbE s8MRY6g2CkE70en2HlpDwr/MdATwxBzIjEpjgHbfqCqVVATY+kSpXsttaKKAUVHi bFgV4QkdDJNSpcHEj+bqaggRnuWiV9T6ECG7kQjHiEXPNojzsiaXMDiM5r+acZm6 82id9qOFySQ2cZEy5HbwXM+ITLQGngnppa7du2KdgiqDeqtODOTWZvLYAq2tmEwD 3TT6ttLUBwOOu2IWpDkXswlrk62ESorE5mpLxop9fsxD39E2H06JoC/YfUPIVkEv fj06e7LEdcx0I7kRfD1v6qOUUsMsLZnmyGIk24iFjLkwu1VToWfwXDN1D2+SeAat 9ydNt4M7oEbd1QaOXXjmqpdU+VUiWcBXg+p3/WdV60MkyAgc3x+YanLljy/Rh18h cZwVlinf/tgvAQLi5f9hpwrwUMoGKijEYHKuEvi3C12Si7UVDfuIR7yS0dKcfuKF MbgwdvNXqpD9W5kBjQRekVd4AQwApHVgw2PVlBDpVcyoymUOXFQIJzJ9wRtr6/sG zwv8rrQnUEtOkkna7TDU3/UTj9FUH0gbpAKGNNPaPj5q0dlLIvzxb15r1uvDGaGL MA+8GFaGFnkxzhg0aXrcKZAN0/Zhgi2B7P8oXQuug5mi1JVDkZN5SeCZNOubdQWL 3xz3jEHp3ixj1mdOdvfdWQFR4CVMXt/A6VI2ujLVb3Yalft/c5bbclAgcJQhgDUu NqGYJEJonESNRSd8fEvhNb6cx7+Djd9+Wyctr76mwOr3nRb1N1OGhFxWjIroUpfz b+6y3oQjT58cJA1ZHqmJ6UlZd81hNNd9KWpbDVwONEPpiqPzfSaonxuqQa0/Cy4W 403OhfoLM/1ZDqD4YrJ/rpyNEfSSdqptWiY0KeErLOYng7rStW/4ZeZVj6b2xxB2 Oas/Z1QYfJyFUki9vaJ5IyN6Y7nVdSP6mbAQC9ESh+VPvRUMpYi4pMGK4rweBVHu oMRRwzk7W5zVIgd425WUe3eCQFn3ABEBAAG0K0VTQ0FQRSBST09NIDxFU0NBUEFF REVTQEZST01USEVNQUNISU5FLk9SRz6JAdQEEwEKAD4WIQTvnDJqcmqzlF87/t82 pJ91j4NOaAUCXpFXeAIbAwUJA8JnAAULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAK CRA2pJ91j4NOaJVjC/4oo5yCHe7M2h1DiTXVcLI5rXQ1feY7B1feg+YJX/mI4+EV xjC/y5VVpV4syJk5GGZNXhKPHiGLaBYvglTlYOJ98RSEsHrwT3go6S8ZVvMNdP5v CEncn2vm5JGnp4k26PuOzMcJioQLOoUjWtcPFis3gG+ueH3NcPZ22oZUql2xuerh TQZegGp+jJ7bdxwYElx5jDDDkh196d5nlO2ZKENl0ZDp4GAzRNjnQ7KBV6R74J3U cLQDWY8vAFaRBZXIC5XtSzj9lr+jWgvxz7Il51+26VDTEtSafZ2uZfCOFk7GrzJg

      sneak preview

      now linking to the next page ... in the discussion:

      https://fromthemachine.org/2017/08/waiting-for-that-green-light.html

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      This manuscript provides some valuable findings concerning the hippocampal circuitry and the potential role of adult-born granule cells in an interesting long-term social memory retrieval. The behavior experiments and strategy employed to understand how adult-born granule cells contribute to long-term social discrimination memory are interesting.

      We thank the reviewer for the positive evaluation.

      I have a few concerns, however with the strength of the evidence presented for some of the experiments. The data presented and the method described is incomplete in describing the connection between cell types in CA2 and the projections from abGCs. Likewise, I worry about the interpretation of the data in Figures 1 and 2 given the employed methodology. I think that the interpretation should be broadened. This second concern does not impact the interest and significance of the findings.

      In response to this concern, we have removed the data concerning abGC projections to PCP4+ and PV-GFP+ cell bodies from Figure 1 and have focused this analysis on dendrites. We now provide high magnification images of dendrites and expand on the methodology, results, and interpretations in the manuscript. We also broaden the interpretation throughout the manuscript to address the reviewer’s concern.

      Strengths:

      The behavior experiments are beautifully designed and executed. The experimental strategy is interesting.

      We appreciate these positive comments.

      Weaknesses:

      The interpretation of the results may not be justified given the methods and details provided.

      We have addressed this concern by providing more methodological details and broadening our interpretation of the results.

      Reviewer #2:

      Summary:

      Laham et al. investigate how the projection from adult-born granule cells into CA2 affects the retrieval of social memories at various developmental points. They use chemogenetic manipulations and electrophysiological recordings to test how this projection affects hippocampal network properties during behavior. I find the study to be very interesting, the results are important for our understanding of how social memories of different natures (remote or immediate) are encoded and supported by the hippocampal circuitry. I have some points that I added below that I think could help clarify the conclusions:

      We appreciate the positive assessment and have addressed the more specific points below.

      My major concern with the manuscript was that making the transitions between the different experiments for each result section is not very smooth. Maybe they can discuss a bit in a summary conclusion sentence at the end of each result section why the next set of experiments is the most logical step.

      In response, we have added summary conclusion sentences at the end of each result section.

      In line 113, the authors say that "the DG is known to influence hippocampal theta-gamma coupling and SWRs". Another recent study Fernandez-Ruiz et al. 2021, examined how various gamma frequencies in the dentate gyrus modulate hippocampal dynamics.

      We cite this paper in the revised manuscript.

      Having no single cells in the electrophysiological recordings makes it difficult to interpret the ephys part. Perhaps having a discussion on this would help interpret the results. If more SWRs are produced from the CA2 region (perhaps aided by projections from abGC), more CA2 cells that respond to social stimuli (Oliva et al. 2020) would reactivate the memories, therefore making them consolidate faster/stronger. On the other hand, the projections from abGC that the authors see, also target a great deal of PV+ interneurons, which have been shown to pace the SWRs frequency (Stark et al 2014, Gan et al 2017), which further suggests that this projection could be involved in SWRs modulation.

      We discuss these possibilities and cite Gan et al 2017, Schlingloff et al., 2014, and Stark et al., 2014 in the revised manuscript.

      The authors should cite and discuss Shuo et al., 2022 (A hypothalamic novelty signal modulates hippocampal memory).

      We mention Chen et al (A hypothalamic novelty signal modulates hippocampal memory.) in the revised manuscript. “Shuo” is the first name of the first author on this paper, so we believe that this is the same paper to which the reviewer refers.

      I think the authors forgot to refer to Fig 3a-f, maybe around lines 163-168.

      We thank the reviewer for pointing out this error. In the revised manuscript, we refer to all figure panels. Since Fig 3 is now broken into two figures (Fig 3 and 4), the panel lettering has changed in the revised manuscript.

      Are the SWRs counted only during interaction time or throughout the whole behavior session for each condition?

      The SWRs are counted throughout the whole behavior session for each condition. This is now stated in the revised manuscript.

      Figure 3t shows a shift in the preferred gamma phase within theta cycles as a result of abGC projections to CA2 ablation with CNO, especially during Mother CNO condition. I think this result is worth mentioning in the text.

      We now mention this finding in the revised manuscript.

      Figure 3u in the legend mention "scale bars = 200um", what does this refer to?

      The scale bar refers to that shown in Figure 3b, which is now indicated in the legend.

      What exactly is calculated as SWR average integral? Is it a cumulative rate? Please clarify.

      The integral measure provides information regarding the average total power of SWR events. It sums z-scored amplitude values from beginning to the end of each SWR envelope, and then takes the average across all summed envelopes. SWR integral has been shown to influence SWR propagation (De Filippo and Schmitz, 2023). This is now described in the text.

      Alexander et al 2017, "CA2 neuronal activity controls hippocampal oscillations and social behavior", examined some of the CA2 effects in the hippocampal network after CNO silencing, and the authors should cite it.

      Alexander et al., 2018, which we believe is the relevant paper, is now cited in the revised manuscript.

      Strengths:

      Behavioral experiments after abGC projections to CA2 are compelling as they show clearly distinct behavioral readout.

      We thank the reviewer for this positive assessment.

      Weaknesses:

      Electrophysiological experiments are difficult to interpret without additional quantifications (single-cell responses during interactions etc.)

      We have addressed this concern by expanding the interpretation of our results.

      Reviewer #3:

      Laham et al. present a manuscript investigating the function of adult-born granule cells (abGCs) projecting to the CA2 region of the hippocampus during social memory. It should be noted that no function for the general DG to CA2 projection has been proposed yet. The authors use targeted ablation, chemogenetic silencing, and in vivo ephys to demonstrate that the abGCs to CA2 projection is necessary for the retrieval of remote social memories such as the memory of one's mother. They also use in vivo ephys to show that abGCs are necessary for differential CA2 network activity, including theta-gamma coupling and sharp wave-ripples, in response to novel versus familiar social stimuli.

      The question investigated is important since the function of DG to CA2 projection remained elusive a decade after its discovery. Overall, the results are interesting but focused on the social memory of the mother, and their description in the manuscript and figures is too cursory. For example, raw interaction times must be shown before their difference. The assumption that mice exhibit social preference between familiar or novel individuals such as mother and non-mother based on social memory formation, consolidation, and retrieval should be better explained throughout the manuscript. Thus, when describing the results, the authors should comment on changes in preference and how this can be interpreted as a change in social memory retrieval. Several critical experimental details such as the total time of presentation to the mother and non-mother stimulus mice are also lacking in the manuscript. The in vivo e-phys results are interesting as well but even more succinct with no proposed mechanism as to how abGCs could regulate SWR and PAC in CA2.

      In response to these comments, we provide raw interaction times in a new Figure (Fig. S1). We also provide more information about the experiments and figures in the revision. We explain the rationale for our behavioral interpretations and discuss proposed mechanisms for how abGCs regulate SWR and PAC.

      The manuscript is well-written with the appropriate references. The choice of the behavioral test is somewhat debatable, however. It is surprising that the authors chose to use a direct presentation test (presentation of the mother and non-mother in alternation) instead of the classical 3-chamber test which is particularly appropriate to investigate social preference. Since the authors focused exclusively on this preference, the 3-chamber test would have been more adequate in my opinion. It would greatly strengthen the results if the authors could repeat a key experiment from their investigation using such a test. In addition, the authors only impaired the mother's memory. An additional experiment showing that disruption of the abGCs to CA2 circuit impairs social memory retrieval would allow us to generalize the findings to social memories in general. As the manuscript stands, the authors can only conclude the importance of this circuit for the memory of the mother. Developmental memory implies the memory of familiar kin as well.

      We selected the direct social interaction test because it allows for more naturalistic social behaviors than measuring investigation times toward social stimuli located inside wire mesh containers. We also decided to focus our studies on the retrieval of mother memories because these are likely the first social memories to be formed. We emphasize that our results cannot be generalized to memories of other social stimuli but given studies on recent social memory formation and retrieval in adults that manipulate abGCs and CA2 separately, we feel that it is likely that this circuit is involved in these functions as well. However, we specify throughout the manuscript that our experiments can only tell us about mother memories. We have also changed the title to reflect this.

      The in vivo ephys section (Figure 3) is interesting but even more minimalistic and it is unclear how abGCs projection to CA2 can contribute to SWR and theta-gamma PAC. In Figure 1, the authors suggest that abGCs project preferentially to PV+ neurons in CA2. At a minimum, the authors should discuss how the abGCs to PV+ neurons to CA2 pyramidal neurons circuit can facilitate SWR and theta-gamma PAC.

      We have divided Figure 3 into two figures (Figures 3 and 4) and revised the electrophysiology section of the results section. In the revised paper, we now discuss how abGC projections to PV+ interneurons may facilitate SWR and PAC.

      Finally, proposing a function for 4-6-week-old abGCs projecting to CA2 begs two questions: What are abGCs doing once they mature further, and more generally, what is the function of the DG to CA2 projection? It would be interesting for the authors to comment on these questions in the discussion.

      In response to these comments, we discuss possible answers to these interesting questions.

      Recommendations for the authors:

      Reviewer #1:

      Specifically, in Figure 1, for the analysis of the synapses formed between abGCs and CA2 PNS (as identified by PCP4 expression) and CA2 PV+ cells (as identified by cre-dependent AAV-mCherry expression) in PV-cre line. In panels c and d the soma of a CA2 PN cell is shown, as well as the soma of a PV cell is shown. Why was the soma analyzed? What relevance is there for this? It is my understanding that synapses form on dendrites- this would be much more relevant to show, in my opinion. Also, the methods for panels e and f state that the 3R-Tau+ intensity was analyzed only in stratum lucidum. (There was a normalization for the overall 3R-Tau intensity in SL of CA2 that was obtained by dividing the 3R-Tau intensity of corpus callosum). I don't understand then how a comparison of 3RTau intensity could have been done for CA2 PN soma. There are no CA2 PN soma in stratum lucidum. (This is fairly clearly shown in Figure 1aiii, with the PCP4 staining showing the soma in the somatic layer... not in stratum lucidum). What is being analyzed here?

      If the 3R-Tau intensity for dendrites is higher for PV cell dendrites, an example image of dendrites would be very helpful. How was the CA2 PV cell dendrite delimited from the CA2 PN dendrites at 40x magnification for the 3R-Tau intensity? Why were pre-synaptic puncta not examined? Is it possible to determine the post-synaptic target with these methods? This result could be particularly interesting, but I find it very difficult to understand the quantification or the justification behind it. To truly know if a cell is getting a connection, the best method would be to perform whole-cell patch clamp recordings of the post-synpatic target cells and use optogenetics of the abGCs. I understand that perhaps this may be beyond the scope of the paper, but it is a severe limitation for these results.

      We have eliminated the cell body measures from Figure 1 and focus instead on the dendrite measures, which we agree are more relevant. We now provide high magnification example images of pyramidal cell (PCP4+) and PV+ interneuron (GFP+) dendrites in Figure 1. We thank the reviewer for pointing out the error about the stratum lucidum as some of the dendrites analyzed are located in the pyramidal cell layer. In addition, neither PCP4 nor GFP label the full extent of dendrites emanating from CA2 pyramidal cells or PV+ interneurons respectively. We mention this in the revised manuscript because abGC projections to more distal dendrites might show a different pattern than that which was observed for proximal dendrites. We also provide more details about how the dendrites were delimited for the analysis, and mention that these results cannot definitively inform us about whether functional synaptic connections have been formed.

      Canulation over CA2 is potentially not specific to CA2 terminals. It would be optimal if the authors had some histology demonstrating specific cannula placement, as these surgeries are really tough to get perfectly centered over CA2. Even if it is perfectly centered, how much would the CNO diffuse into CA3? I think that given the methodology, the authors really need to consider that the behavioral results are not only a result of blocking abGC terminals in CA2 alone. Would it really change much if the abGC terminals are also silenced in CA3a/b as well? The McHugh lab has shown that area CA3 is also playing a role in social memory (Chiang, M.-C., Huang, A. J. Y., Wintzer, M. E., Ohshima, T. & McHugh, T. J. A role for CA3 in social recognition memory. Behav Brain Res 354, 2018). It may be that both areas CA2 and CA3 are important for the phenomenon being demonstrated in Figure 2. I think the impact of the study is just as interesting, as this examination of early social memories is very interesting and nicely done. In fact, areas CA2 and CA3 may be acting together (please see Stöber, T. M., Lehr, A. B., Hafting, T., Kumar, A. & Fyhn, M. Selective neuromodulation and mutual inhibition within the CA3-CA2 system can prioritize sequences for replay. Hippocampus 30, 1228-1238, 2020).

      We agree that it is possible that CNO infusions targeted at the CA2 would also influence CA3a/b and have revised the paper to include this possible interpretation. We also cite the suggested paper on CA3 involvement in social memory (Chiang et al., 2018) and the paper on CA2-CA3 interactions (Stöber et al, 2020).

      Figure 3 is packed with information, but not communicated in a reasonable way. Much more information and a description of the experimental protocol need to be presented. Furthermore, why are there no example traces for the SWRs recorded? There should be more analysis than just a difference score and frequency. How is j, k, and l analyzed and interpreted? Why no example traces there? Also, the n's seem way too small for Figure 3mr. Are there only 32 or three animals used for some of these conditions? This is insufficient in my opinion to conclude much for a 5-minute interaction.

      In response to this concern, we have divided Figure 3 into 2 figures – Figure 3 and Figure 4. In Figure 3, we provide example traces for SWRs, with additional SWR data presented in Figures S3 and S4, including data to complement the difference score data in Figure 3. In Figure 4, we include traces of phase amplitude coupling. We also provide more information in the methods about how the phase amplitude coupling data were analyzed. For Figure 4, we used methods described by Tort et al., 2010 to produce a modulation index, which is a measure of the intensity of coupling between theta phase and gamma amplitude. This method additionally allows for visualization of how gamma amplitude is modified across individual theta phase cycles. Regarding the question about n sizes in the 10-12 week abGC group (Fig. 3), the numbers are lower than in the 4-6 week abGC group because by 6 weeks after the first set of recordings, the electrodes in some of the mice were no longer usable. The n sizes for this specific study are 4-5 per group for Nestin-cre mice; 7-8 for Nestin-cre:Gi. This is now clarified in the figure legend.

      The discussion section of this paper does not put these results into a broader context with the field. There are other studies examining abGCs and their roles in novelty and memory formation (the work from Juna Song's lab, for example). These should be properly mentioned and discussed.

      In response, we have added discussion on the roles of abGCs in nonsocial novelty and memory formation and have cited papers from the Song lab.

      In the figure legend for Figure 2, there is no specific explanation for panel h. Perhaps the label is missing in the legend.

      We thank the reviewer for noting this error and now include a description in the revised manuscript.

      Reviewer #2:

      Adding more quantifications (single cells, isolating data during interactions versus noninteraction times) would help understand the results better. In the lack of this, adding a more clear rationale (even if only through the presentation of hypotheses) in between the transitions of the different results sections would make the study easier to read.

      In response to this comment, we have added transition sentences between results sections to clarify the rationale and make the manuscript easier to understand.

      Reviewer #3:

      Line 110: "Hippocampal phase-amplitude coupling (PAC) and generation of sharp waveripples (SWRs) have been linked to novel experience, memory consolidation, and retrieval (Colgin, 2015; Fernandez Ruiz et al., 2019; Meier et al., 2020; Joo and Frank, 2018; Vivekananda et al., 2021). The DG is known to influence hippocampal theta-gamma coupling and SWRs (Bott et al, 2016; Meier et al., 2020), yet no studies have examined the influence of abGCs on these oscillatory patterns." This information comes too early in the result section and is somewhat confusing.

      In response to this comment, we have moved this information and provided a better description.

      Line 118: "we found that mice with normal levels of abGCs can discriminate between their own mother and a novel mother." Be more descriptive of the results (present the raw interaction times with the statistical test to compare them), this is the conclusion.

      In response to this comment, we provide the raw interaction times in a new Figure (Fig. S1) and describe the results in more detail.

      Line 121: "These effects were not due to changes in physical activity". Be more specific. Did you subject the mice to a specific test? If not, how did you calculate locomotion? The data presented in the supplementary figure 1a only states the % locomotion.

      Locomotion was manually scored whenever an animal moved in the testing apparatus. Speed was not recorded. Total locomotion was divided by trial duration to create a % locomotion measure. We have added these details to the methods.

      Line 124: "Coinciding with the recovery of adult neurogenesis, GFAP-TK animals regained the ability to discriminate between their mother and a novel mother". Explain how the difference in interaction time can be interpreted as the ability to discriminate. You could also compute the discrimination index used by several other laboratories (difference of interaction normalized by the total interaction time).

      In response to this comment, we describe how the difference in interaction time can be interpreted as the ability to discriminate between novel and familiar mice.

      Line 133: "Targeted CNO infusion in Nestin-Cre:Gi mice enabled the inhibition of GiDREADD+ abGC axon terminals present in CA2." Provide data or references to support this claim. Injection of a dye of comparable size to CNO would help. Otherwise, mention that nearby CA3a could be affected as well.

      We cannot rule out that nearby CA3a was affected by our cannula infusions of CNO into CA2. Furthermore, since dyes likely diffuse at different rates than CNO, we believe that a dye injection would not eliminate this concern completely. Therefore, we have revised the paper to acknowledge the likelihood that the CNO infusion affected parts of CA3 in addition to CA2. We also changed the title to focus more on the CA2 electrophysiological recordings, which we know were obtained only from the CA2.

      Line 150: "When reintroduced to the now familiar adult mouse 6 hours later, after the effects of CNO had largely worn off". Provide data or references supporting this claim.

      In response, we cite articles that show behavioral effects of CNO DREADD activation are returned to baseline 6 hrs later.

      Line 165: "We found that SWR production is increased during social interaction, with more SWRs produced during novel mouse investigation, presumably during encoding social memories, than during familiar mouse investigation, presumably during retrieval of developmental social memories". How does this compare to the results in Oliva et al, Nature 2021?

      The Oliva et al 2021 paper recorded CA2 SWRs during home cage and during post-social stimulus exposure periods of sleep. The timing of the study does not coincide with the measures we made, but we cite the paper.

      Line 168: "Inhibition of abGCs in the presence of a social stimulus". How does silencing abGC impact CA2 pyramidal neurons' firing rate?

      The direct answer to this question is unknown because we did not measure single units, but based on studies done in the CA3, it is likely that firing rate in CA2 would increase.

      Line 203: "abGCs possess a time-sensitive ability to support retrieval of developmental social memories." Can you speculate on the function of the cells later on?

      In the revised paper, we speculate about the function of abGCs after they mature and no longer support retrieval of developmental social memories.

      Line 229: "GFAP-TK mice were group housed by genotype". Why not housed them with CD1 littermates?

      We housed these mice according to genotype to avoid having mice with different levels of abGCs (GFAP-TK + VGCV and CD1 + VGCV) living together in social groups. We did this to avoid potential differences that might emerge in social behavior.

      Line 237: "Adult TK, Nestin-cre, and Nestin-cre:Gi offspring underwent a social interaction test in which they directly interacted with the mother". Specify how long was the social interaction time.

      In the revised manuscript, we specify that mice interacted with each social stimulus for 5 minutes.

      Line 240: "After a 1-hour delay spent in the home cage". Were the mice single-housed or with their littermates during this delay?

      In the revised manuscript, we indicate that mice were put back into the home cage with their cagemates during the 1 hr delay period.

      Line 241: "The order of stimulus exposure was counterbalanced in all tests." Can you show some data to confirm that the order of presentation did not impair the interaction? Have you considered using your own version of the classical 3-chamber test in order to assess directly the preference for one or the other female mouse?

      Our data suggest that the order of testing is not responsible for the observed results. Across all experimental groups without an abGC manipulation (i.e., all direct social interaction assays excluding VGCV+ GFAP-TK trials and CNO+ Nestin-cre:Gi trials), ~84.4% of animals demonstrate a social preference for the novel mother over the mother (CD1 + GFAP-TK VGCV- cohort: 28/33; CD1 VGCV+ cohort: 17/17; CD1 and TK recovery cohort: 24/31; Nestin-cre and Nestin-cre:GI 4-6-week-old abGC cohort: 77/95; 10-12-week-old abGC cohort: 49/55; Total = 195/231 mice with an investigation preference for the novel mother). If stimulus presentation order were to bias social investigation preference toward the first stimulus presented, we would expect the percentage of animals demonstrating a social preference for each stimulus to be around 50%, as roughly half the animals were first exposed to the mother with the other half first exposed to the novel mother. The social novelty preference percentage reported above is comparable to percentages we observe in our lab's novel to familiar social interaction experiments, in which all animals are first exposed to a novel conspecific. We have yet to conduct experiments testing adults using the modified 3-chamber assay described in Laham et al., 2021.

      Statistics: The statistical tests used throughout the paper are appropriate but their description is too cursory. Please provide F values and specify the name of the tests used in the figure legends before giving the exact p values.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors were attempting to determine the extent that CIH altered swallowing motor function; specifically, the timing and probability of the activation of the larygneal and submental motor pools. The paper describes a variety of different motor patterns elicited by optogenetic activation of individual neuronal phenotypes within PiCo in a group of mice exposed to CIH. They show that there are a variety of motor patterns that emerge in CIH mice; this is apparently different than the more consistent motor patterns elicited by PiCo activation in normoxic mice (previously published).

      Strengths:

      The preparation is technically challenging and gives valuable information related to the role of PiCo in the pattern of motor activation involved in swallowing and its timing with phrenic activity. Genetic manipulations allow for the independent activation of the individual neuronal phenotypes of PiCo (glutamatergic, cholinergic) which is a strength.

      We thank the reviewers for acknowledging and summarizing the strengths of this study.

      Weaknesses:

      (1) The data presented are largely descriptive in terms of the effect of PiCo activation on the probability of swallowing and the pattern of motor activation changes following CIH. Comparisons made between experimental data acquired currently and those obtained in a previous cohort of animals (possibly years before) are extremely problematic, with the potential confounding influence of changing environments, genetics, and litter effects. The statistical analyses (i.e. comparing CIH with normoxic) appear insufficiently robust. Exactly how the data were compared is not described.

      Yes, we agree the data are descriptive in terms of characterizing the effect of CIH on PiCo activation. However, we would like to emphasize that the data are also mechanistic because they characterize the effects of specifically, optogenetically manipulating PiCo neurons after being exposed to CIH.

      Thank you for this comment and for pointing out our misleading description in the paper. This manuscript is meant to independently characterize the effects of CIH to the response of PiCo stimulation. We are not making direct comparisons between the previously published manuscript where mice were exposed to room air. There has been no statistical analysis made between previously published control and current CIH data, since we are not making a direct comparison, only an observational comparison.

      To make this clearer, and to address the reviewers concern, we have removed the room air data from figures 1E, 2C and 3A. However, we believe it is important to keep the data from mice exposed to room air in Figure 2B since we did not include this information in the previously published manuscript. It is important to point out that all mice exposed to CIH have some form of submental activity during laryngeal activation in response to PiCo stimulation. This is not the case when mice are exposed to room air only. In this figure, only descriptive analysis are presented. We adjusted our wording throughout the text, particularly in the discussion, to eliminate any confusion that we are making direct comparisons between the two studies. The following sentence has been added to the discussion “While we do not intend to make direct quantitative comparisons between the previously published PiCo-triggered swallows in control mice exposed to room air (Huff et al 2023) and the data presented here for mice exposed to CIH, we believe it is important to compare the conclusions made in these two studies.” This was the motivation for using the eLife Advance format. Since the present study demonstrates that PiCo affects swallow patterning which was not observed in the control data.

      (2) There is limited mechanistic insight into how PiCo manipulation alters the pattern and probability of motor activation. For example, does CIH alter PiCo directly, or some other component of the circuit (NTS)? Techniques that silence or activation projections to/from PiCo should be interrogated. This is required to further delineate and define the swallowing circuit, which remains enigmatic.

      We agree with the reviewer that our study raises many more questions than we are able to answer at the moment. This however applies to most scientific studies. Even though swallowing has been studied for many decades, the underlying circuitry remains largely enigmatic. We will continue to investigate the role of PiCo and its interaction with the NTS, in healthy and diseased states. These investigations require many different techniques, and approaches, some of which are still in development. For example, we are currently conducting experiments that silence portions of the NTS related to swallow and PiCo: ChAT/Vglut2 neurons using novel unpublished viral approaches. However, these are separate and ongoing studies beyond the scope of the current one.

      To address the reviewer’s comment, we have added to the following to the limitation section: “In addition, this preparation does not allow for recording of PiCo neurons to evaluate the direct effects of CIH in PiCo neuronal activity”. The following has also been added to the discussion: “Rather, our data reveal CIH disrupts the swallow motor sequence which is likely due to changes in the interaction between PiCo and the SPG, presumably located in the cNTS. While it has previously been demonstrated that PiCo is an important region in swallow-breathing coordination (Huff et al., 2023), previous studies did not demonstrate that PiCo is involved in swallow motor patterning itself. Here we show for the first time that CIH leads to disturbances in the generation of the swallow motor pattern that is activated by stimulating PiCo. This suggests that PiCo is not only important for coordinating swallow and breathing, but also modulating swallow motor patterning. Further studies are necessary to directly evaluate the presumed interactions between PiCo and the cNTS.”

      (3) The functional significance of the altered (non-classic) patterns is unclear.

      Like in our original study, the preparation used to stimulate PiCo does not allow to simultaneously characterize the functional significance of swallowing. Therefore, we have included this as a limitation in the limitation section: “In this preparation we are unable to directly determine the functionality of the variable swallow motor pattern seen after CIH. Different experimental techniques, such as videofluoroscopy would need to be used to directly evaluate functional significance. This technique is beyond the scope of this study and not possible to perform in this preparation. We acknowledge this limits our ability to make direct comparisons between dysphagic swallows in OSA patients.”

      Reviewer #1 (Recommendations For The Authors):

      (1) A more rigorous experimental approach is required. Littermates should be separated and exposed to either room air or CIH at the same (or close to the same) time.

      As stated above, we did not directly compare mice exposed to room air with mice exposed to CIH. Hence, we believe this is not necessary, and it would have meant repeating all the experiments already published in the original eLife paper.

      (2) Robust statistical analyses are required to determine whether the effects of CIH on the pattern/probability of motor activation are required.

      Since control and CIH group were not compared in this study, statistical hypothesis testing is not appropriate or applicable.

      (3) Use a combination of retrograde, Cre- AAVs and Cre-dependent approaches to interrogate the circuitry to/from PiCO that forms the swallowing network. This is what is needed to push this area forward, in my view.

      Thank you for this suggestion, we will consider this suggestion as we plan for future experiments. Indeed, we are in the process of developing novel approaches. However, in this context we would like to emphasize that further network investigations are exponentially more complicated given that we need to use a Flpo/Cre approach to specifically characterize the glutamatergic-cholinergic PiCo neurons. Most other laboratories that have studied PiCo have avoided this experimental complication and used only a “cre-dependent” approach. This approach is much simpler, but the data are much less specific and the conclusions sometimes misleading. Stimulating for example cholinergic neurons in the PiCo area will also activate Nucleus ambiguus neurons, stimulating glutamatergic neurons will also activate glutamatergic neurons that are not necessarily the glutamatergic/cholinergic neurons that we use to define PiCo specifically. Readers that are unfamiliar with these different approaches often miss this important difference. Hence, compared to stimulating other areas, stimulating the cholinergic-glutamatergic neurons in PiCo is much more specific than e.g. stimulating preBötzinger complex neurons. There are no markers that will specifically stimulate only preBötzinger complex neurons or neurons in the parafacial Nucleus. Unfortunately, this difference is often overlooked.

      (4) It should be made more clear how each of the "non-classic" swallowing patterns could cause dysfunction - especially to the reader who is not completely familiar with the neural control of swallowing.

      We agree that it would be helpful to understand the functional implications of these alterations in swallow-related motor activation, however since our approach does not allow us to use any tools to measure or evaluate functional activity it would be inappropriate to make suggestions of this type without any data to back up our conclusion. This is why we have not speculated on the functional implications. We have added the following to the discussion section of this manuscript. “While fine wire EMG studies are an excellent evaluation tool to observe temporal motor pattern of sequential swallow related muscles; it must be combined with tools such as videofluoroscopic swallow study (VFSS) and/or high resolution manometry (HRM) in order to characterize the functional significance of these alterations to the swallow motor pattern shown in this study (Park et al., 2017). Since the preparation in this study utilizes only fine wire EMGs we are not able to evaluate or comment on the functional significance of the variable swallow motor patterns. ”

      Minor:

      The Results should be written in a way that better conveys the neurophysiological effects of the manipulations. As it stands, it reads like a statistical report on how activation of each neuronal phenotype is statistically different from each other. As such it is difficult to read and understand the salient findings.

      Thank you for this insight. We have adjusted the language in the results section.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigated the role of a medullary region, named Postinspiratory Complex (PiCo), in the mediation of swallow/laryngeal behaviours, their coordination with breathing, and the possible impact on the reflex exerted by chronic intermittent hypoxia (CIH). This region is characterized by the presence of glutamatergic/cholinergic interneurons. Thus, experiments have been performed in single allelic and intersectional allelic recombinase transgenic mice to specifically excite cholinergic/glutamatergic neurons using optogenetic techniques, while recording from relevant muscles involved in swallowing and laryngeal activation. The data indicate that in anaesthetized transgenic mice exposed to CIH, the optogenetic activation of PiCo neurons triggers swallow activity characterized by variable motor patterns. In addition, these animals show an increased probability of triggering a swallow when stimulation is applied during the first part of the respiratory cycle. They conclude that the PiCo region may be involved in the occurrence of swallow and other laryngeal behaviours. These data interestingly improve the ongoing discussion on neural pathways involved in swallow-breathing coordination, with specific attention to factors leading to disruption that may contribute to dysphagia under some pathological conditions.

      The Authors' conclusions are partially justified by their data. However, it should be acknowledged that the impact of the study is to a certain extent limited by the lack of knowledge on the source of excitatory inputs to PiCo during swallowing under physiological conditions, i.e. during water-evoked swallowing. Also the connectivity between this region and the swallowing CPG, a structure not well defined, or other brain regions involved in the reflex is not known.

      We thank the reviewer for the comments and the strength of the paper. However, with regards to the “lack of knowledge”, we would like to emphasize that PiCo was first described in 2016, while e.g. the preBötzinger complex was described in 1991. Thus, it is not fair to assume the same level of anatomical and physiological understanding for PiCo as we became accustomed to for the preBötzinger complex. We are fairly confident that in 25 years from now, our knowledge of the in- and outputs of PiCo will be much less limited than it currently is.

      Strengths:

      Major strengths of the manuscript:

      • The methodological approach is refined and well-suited for the experimental question. The in vivo mouse preparation developed for this study takes advantage of selective optogenetic stimulation of specific cell types with the simultaneous EMG recordings from upper airway muscles involved in respiration and swallowing to assess their motor patterns. The animal model and the chronic intermittent hypoxia protocol have already been published in previous papers (Huff et al. 2022, 2023).

      • The choice of the topic. Swallow disruption may contribute to the dysphagia under some pathological conditions, such as obstructive sleep apnea. Investigations aimed at exploring and clarifying neural structures involved in this behaviour as well as the connectivity underpinning muscle coordination are needed.

      • This study fits in with previous works. This work is a logical extension of previous studies from this group on swallowing-breathing coordination with further advances using a mouse model for obstructive sleep apnea.

      We thank the reviewers for acknowledging and summarizing the strengths of this study.

      Weaknesses:

      Major weaknesses of the manuscript:

      • The Authors should be more cautious in concluding that the PiCo is critical for the generation of swallowing itself. It remains to demonstrate that PiCo is necessary for swallowing and laryngeal function in a more physiological situation, i.e. swallow of a bolus of water or food. It should be interesting to investigate the effects of silencing PiCo cholinergic/glutamatergic neurons on normal swallowing. In this perspective, the title should be slightly modified to avoid "swallow pattern generation" (e.g. Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production).

      Thank you for pointing out that this manuscript suggest PiCo is necessary for swallow generation. We agree further interventions to silence specifically PiCo ChAt/Vglut2 neurons will be necessary to investigate this claim. Which we have begun to evaluate for a future study by developing a novel as yet unpublished approach. We have altered language throughout the text to limit the perception that PiCo is the swallow pattern generator. We have also changed the title to say: Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production

      • The duration of swallows evoked by optogenetic stimulation of PiCo is considerably shorter in comparison with the duration of swallows evoked by a physiological stimulus (water). This makes it hard to compare the timing and the pattern of motor response in CIH-exposed mice. In Figure 1, the trace time scale should be the same for water-triggered and PiCo-triggered swallows. In addition, it is not clear if exposure to CIH alters the ongoing respiratory activity. Is the respiratory rhythm altered by hypoxia? If a disturbed or irregular pattern of breathing is already present in CIH-exposed mice, could this alteration interfere with the swallowing behaviour?

      Thank you. We have changed the time scale so that all representative traces are on the same time scale.

      We explained in the original paper (Huff et al 2023) that the significant decrease in PiCo-evoked swallow duration compared to water evoked is likely due to the absence of oral/upper airway feedback. We are not making comparisons of the effects of CIH on swallow motor pattern between water-evoked and PiCo-evoked. Rather, we are only characterizing the effects of CIH on the swallow motor pattern in PiCo-evoked swallows. The purpose of Figure 1A is to show that the rostocaudal submental-laryngeal sequence in water-evoked swallows is preserved in “canonical” PiCo-evoked swallow like is shown in the original study. While we did not measure the effects of CIH on breathing and the respiratory pattern in this study, it has been established, by others, that CIH causes respiratory muscle weakness, impaired motor control of the upper airway and variable respiratory rhythm and rhythm generation. However, when characterizing the timing of swallow in relation to inspiration (Figure 1 Figure Supplement 1) and the reset of the respiratory rhythm (Figure 3 figure supplement 1) and by observationally comparing these results with mice exposed to room air (Huff et al 2023) we do not observe any obvious differences in swallow-breathing coordination. However, a separate study in wild-type mice focusing on a characterization of swallowing via water after CIH would be better suited to achieve a better understanding of the physiological changes of swallowing after CIH. We would like to point out that this has shown in Huff et al 2022 that altering respiratory rate/pattern via activation of various preBötzinger Complex neurons does not change swallow behavior. Except in the case of Dbx1 PreBötC neuron activation, which was independent of CIH. Increasing or decreasing respiratory rate via activation of PreBötC Vgat and SST neurons did not change the swallow pattern rather it changed the timing of when swallows occurred. It has been reported before by others that swallow has a hierarchical control over breathing and has the ability to shut breathing down. We believe that the swallowing behavior is independent of respiratory pattern and alterations in breathing pattern does not necessarily affect the swallow motor pattern rather could affect the swallow timing.

      Reviewer #2 (Recommendations For The Authors):

      Abstract

      Lines 37-41 "Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly the generation of swallow motor pattern was significantly disturbed."

      It should be better:

      "Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly triggers variable swallow motor patterns".

      Thank you, this has been changed

      Lines 41-43 "This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the gating of postinspiratory and swallow activity but also play important roles in the generation of swallow motor pattern." I suggest removing any language claiming PiCo is swallow gating and change "generation" in "modulation"

      "This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical in regulating swallow-breathing coordination but also play important roles in the modulation of swallow motor pattern."

      Thank you, this has been changed

      Introduction:

      Line 88-90: Actually, in Huff et al. 2023 it is said "PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing". Please, change accordingly. Please, remove Toor et al., 2019 since their conclusions are quite different.

      Line 100-101: Please, change the sentence according to the comments reported above.

      Thank you, this has been changed

      Results:

      Lines 104-105: Did you mean: "We confirmed that optogenetic stimulation of PiCo neurons in ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH triggers swallow and laryngeal activation similar to the control mice exposed to room air (Huff et al., 2023)." Otherwise, the sentence is not clear.

      Thank you, this has been changed

      Lines 129-130: This finding is not surprising since similar results have been reported in Huff et al. 2023.

      Thank you, we wanted to confirm that CIH did not alter this characteristic, which it did not. We believe that it is important to include this as it is a criterion for characterizing laryngeal activation.

      Lines 219: The number of water swallows is considerably lower than stimulation-evoked swallows. Why?

      We inject water into the mouth three times. Typically, there is one swallow in response to each water injection. Pico is stimulated 25 times at each duration. If we were to stimulate swallow with water as many times as optogenetic stimulation there would be an adaptive response to the water stimulation and the mouse would not respond. This does not seem to be the case with PiCo stimulation. Simple answer is, there are many more PiCo stimulations than water stimulation.

      Lines 228-232: "PiCo-triggered swallows are characterized by a significant decrease in duration compared to swallows evoked by water in ChATcre:Ai32 mice (265 {plus minus} 132ms vs 144 {plus minus} 101ms; paired t-test: p= 0.0001, t= 5.21, df= 8), Vglut2cre:Ai32 mice (308 {plus minus} 184ms vs 125 {plus minus} 44ms; paired t-test: p= 0.0003, t= 6.46, df= 7), and ChATcre:Vglut2FlpO:ChR2 mice (230 {plus minus} 67ms vs 130 {plus minus} 35ms; paired t-test: p= 0.0005, t= 5.62, df= 8) exposed to CIH (Table S1).".

      Thank you, this has been changed

      Line 252 and 254: remove SEM.

      Thank you, this has been changed

      Discussion

      Line 267: ...(Figure 1Bi), while 28% of PiCo-triggered swallows...

      Thank you, this has been changed

      Lines 283-290: "Thus, CIH does not alter PiCo's ability to coordinate the timing for swallowing and breathing. Rather, our data reveals that CIH disrupts the swallow motor sequence likely due to changes in the interaction between PiCo and the SPG, presumably the cNTS.

      While it has previously been demonstrated that PiCo is an important region in swallow-breathing coordination (Huff et al., 2023), previous studies did not demonstrate that PiCo is involved in swallow pattern generation itself. Thus, here we show for the first time that CIH resulted in the instability of the swallow motor pattern activated by stimulating PiCo, suggesting PiCo plays a role in its modulation.".

      Thank you, this has been changed

      Could the observed effects be due to a non-specific effect of hypoxia on neuronal excitability? In addition, it should be considered that PiCo-triggered swallows lack the behavioural setting of water-evoked swallows and do not activate the sensory component of the SPG to the same extent as the water-evoked swallows.

      Yes, this is very possible. We stated in our first manuscript that the decrease in PiCo-triggered swallow duration, as compared to water-triggered swallow duration, is likely because oral sensory components are not being activated to the same extent (Huff et al. 2023). Since we do not directly measure neuronal excitability, it is not known (in this study) whether CIH causes changes in the excitability to swallow related areas. However, others have shown increased excitability and activity of Vglut2 neurons after CIH exposure (Kline et al 2007,2010), and we have shown e.g. changes in the excitability of preBötC neurons (Garcia et al. 2016, 2017).

      Lines 293-300: The sentence is not clear. Is there any evidence indicating that glutamatergic neurons are differently affected by hypoxia than cholinergic neurons?

      Thank you, these sentences have been changed to increase clarity. The section now reads: There was no statistical difference in the probability of triggering a swallow during optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32 and ChATcre:Vglut2FlpO:ChR2 neurons in mice exposed to room air (Huff et al 2023). However, when exposed to CIH, ChATcre:Ai32 and Vglut2:Ai32 mice have a lower probability of triggering a swallow -- in some mice swallow was never triggered via PiCo activation, while water-triggered swallows remained – compared to the ChATcre:Vglut2FlpO:ChR2 mice. While it is possible that portions of the presumed SPG remain less affected by CIH, which could offset these instabilities to produce functional swallows, our data suggest that PiCo targets microcircuits within the SPG that are highly affected by CIH. The NTS is a primary first site for upper airway and swallow-related sensory termination in the brainstem (Jean, 1984). CIH induces changes to the cardio-respiratory Vglut2 neurons, resulting in an increase in cNTS neuronal activity (Kline, 2010; Kline et al., 2007), as well as changes to preBötzinger neurons (Garcia et al., 2017; Garcia et al., 2016) and ChAT neurons in the basal forebrain (Tang et al., 2020). It is reasonable to suggests that CIH has differential effects on neurons that only express ChATcre and Vglut2cre versus the PiCo-specific interneurons that co-express ChATcre and Vglut2FlpO, emphasizing the importance of targeting and manipulating these PiCo-specific interneurons.”

      Lines 372-374: "Here we show that PiCo, a neuronal network which is critical for the generation of postinspiratory activity (Andersen et al. 2016) and implicated in the coordination of swallowing and breathing (Huff et al., 2023), is severely affected by CIH.".

      Thank you, this has been changed.

      Methods

      Line 398: Did you mean Slc17a6-IRES2-FlpO-D?

      Thank you, this has been changed.

      Line 399: were.

      Thank you, this has been changed.

      Line 403: ... expressing both ChAT and Vglut2 and will be reported as ChATcre:Vglut2FlpO.

      Thank you, this has been changed.

      Line 437: Mice of the ChATcre:Ai32, Vglut2cre:Ai32 and ChATcre:Vglut2FlpO:ChR2 lines were kept in collective cages with food and water ad libitum placed inside custom-built chambers.

      Thank you, this has been changed.

      Line 479: (Figure 6a in Huff et al., 2022).

      Line 497: What does Fig 7 refer to?

      This should say Figure 1- figure supplement 2, This has been changed

      Lines 501-506: "First, swallow was stimulated by injecting 0.1cc of water into the mouth using a 1.0 cc syringe connected to a polyethylene tube. Second, 25 pulses of each 40ms, 80ms, 120ms, 160ms and 200ms continuous TTL laser stimulation at PiCo was repeated, at random, throughout the respiratory cycle. The lasers were each set to 0.75mW and triggered using Spike2 software (Cambridge Electronic Design, Cambridge, UK). These stimulation protocols were performed in all ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2." .

      Thank you, this has been changed.

      Line 526 and 540: (Fig.6 in Huff et al., 2022) and (Fig.6d in Huff et al., 2022).

      Thank you, this has been fixed

      Line 594: Figure 5 doesn't exist. Please, change the sentence.

      Thank you, this has been fixed

      Line 595 and 609: The reference Kirkcaldie et al. 2012 is referred to the neocortex and doesn't seem appropriate. Please, quote the atlas of Paxinos and Franklin.

      Thank you, this has been changed.

      Reference:

      Please, correct throughout the text editing of references by removing e.g J.M. or A. or David D. and so on. Only surnames should be mentioned.

      Thank you, this has been changed.

      Figures:

      Figure 1. A and B as well as the purple arrow are lacking. In addition, optogenetic stimulation is applied during different periods of inspiratory activity and this could impact the swallow motor pattern. In Bv, Non-LAR seems very similar to LAR. In panel E, please add the number of animals.

      Thank you, this has been fixed.

      We used the same optogenetic protocols in the original paper (Huff et al. 2023) and did not observe any changes to the swallow motor patter in relation to the time PiCo was stimulated. The only phase dependent response seen in both control and CIH is when PiCo Is stimulated during inspiration and a swallow is triggered, inspiration will be inhibited. Therefore, we do not believe variability in swallow motor pattern is dependent on the phase of breathing in which PiCo is stimulated.

      Biv LAR has a pause in EMG activity before the swallow begins (red arrow pointing to the pause). While Bv Non-LAR does not have this pause, rather the two behaviors converge (red arrow). In order for something to be considered an LAR the pause must be present which is why we separated these two motor patterns.

      Figure 1 - Figure Supplement 1. Why do the Authors call the lines "histograms"?

      Thank you, this has been fixed. This is a line graph of swallow frequency in relation to inspiration.

      Tables:

      In tables, data are provided as means and standard deviation. Please, specify this in the Method section.

      Thank you, the following is listed in the methods section: “All data are expressed as mean ± standard deviation (SD), unless otherwise noted.”

      Reviewer #3 (Public Review):

      In the present study, the authors investigated the effects of CIH on the swallowing and breathing responses to PICO stimulation. Their conclusion is that glutamatergic-cholinergic neurons from PICO are not only critical for the gating of post-inspiratory and swallow activity, but also play important roles in the generation of swallow motor patterns. There are several aspects that deserve the authors' attention and comments, mainly related to the study´s conclusions.

      • The authors refer to PICO as the generator of post-inspiratory rhythm. However, evidence points to this region as a modulator of post-inspiratory activity rather than a rhythmogenic site (Toor et al., 2019 - 10.1523/JNEUROSCI.0502-19.2019; Oliveira et al., 2021 - 10.1016/j.neuroscience.2021.09.015). For example, sustained activation of PICO for 10 s barely affected the vagus or laryngeal post-inspiratory activity (Huff et al., 2023 - 10.7554/eLife.86103).

      Yes, we did refer to PiCo as the postinspiratory rhythm generator as defined as Anderson et al. 2016. We base this statement on the following criteria and experiments: In Anderson et al. 2016, we demonstrate that PiCo can be isolated in vitro, that PiCo neurons are activated in phase with postinspiration, and that they are inhibited during inspiration by preBötC neurons via GABAergic mechanisms and not glycinergic mechanisms. We also demonstrate that optogenetically stimulating cholinergic neurons in the PiCo area resets the inspiratory rhythm both in vivo and in vitro. We also show that PiCo when isolated in transverse slices is autorhythmic and that PiCo, like the preBötC in transverse slices can generate respiratory rhythmic activity in vitro and independent of the preBötC. We also demonstrate that PiCo neurons are an order of magnitude more sensitive to opioids (DAMGO) than the preBötC and that local injections of DAMGO into the PiCo area in vivo abolishes postinspiration, and also abolishes the phase delay of the respiratory rhythm. None of these specific rhythmogenic properties have been studied by the Toor study or the Oliveira et al study. Hence, we do not understand why the reviewer cites these studies as evidence for modulation as opposed to rhythmogenic properties. The fact that PiCo is rhythmogenic should not be considered as an “exclusive property”. Specifically, this does not mean that PiCo is also “modulating” the swallow-breathing coordination as we have demonstrated more specifically in the Huff et al study. In the same sentence we also referred to the PreBӧtzinger complex as the inspiratory rhythm generator as defined by Smith et al 1991, and it seems that the reviewer did not object to this reference. But we would like to point out that the same criteria were used to define the preBötzinger complex as we used for PiCo, except that PiCo neurons are better defined than preBötzinger complex neurons. Dbx1 neurons are often used to characterize the PreBötC, but these neurons form a rostrocaudal and ventrodorsal column which involves also glia cells and transcends the preBötC. Glutamatergic neurons are everywhere, and so are Somatostatin or Neurokinin neurons. Moreover, the 1991 study was only performed in vitro, and did not include a histochemical analysis. We would also like to point out that the present manuscript is investigating the role of PiCo in swallow and laryngeal behaviors, and not specifically postinspiration. Thus, we are not entirely sure how this comment relates to this manuscript.

      • The optogenetic activation of glutamatergic and cholinergic neurons from PICO evoked submental and laryngeal responses, and CIH changed these motor responses. Therefore, the authors proposed that PICO is directly involved in swallow pattern generation and that CIH disrupts the connection between PICO and SPG (swallow pattern generator). However, the experiments of the present study did not provide evidence about connections between these two regions nor their possible disruption after CIH, or even whether PICO is part of SPG.

      We have edited the text to suggest PiCo modulates swallow motor sequence in addition to the coordination of swallow and breathing. We have also added that further experiments will be necessary to further investigate the connections between PiCo and SPG. But, unfortunately, compared to PiCo, the SPG is much less defined. As already stated above, it cannot be expected that a single study can address all possible open questions. Clearly, more work needs to be done outside of this study to answer all of these questions, which makes this an exciting area of research.

      • CIH affects several brainstem regions which might contribute to generating abnormal motor responses to PICO stimulation. For example, Bautista et al. (1995 - 10.1152/japplphysiol.01356.2011) documented that intermittent hypoxia induces changes in the activity of laryngeal motoneurons by neural plasticity mechanisms involving serotonin.

      Yes, we thank the reviewer for this comment and we agree that CIH effects multiple brainstem regions. We stated in the manuscript that we are measuring changes in two muscle complexes which spread among three motor neuron pools: hypoglossal nucleus, trigeminal nucleus, and nucleus ambiguus. We have added a discussion on laryngeal activity in the presence of acute bouts of extreme hypoxia, acute intermittent hypoxia, as well as chronic intermittent hypoxia.

      • To support the hypothesis that PICO is directly involved in swallow pattern generation the authors should perform the inhibition of Vglut2-ChAT neurons from PICO and then evoke swallow motor responses. If swallow is abolished when the neurons from this region are inhibited, it would indicate that PICO is crucial to generate this behavior.

      Thank you. We would like to clarify: “involvement” does not mean “necessary for”. Confusing this difference has caused much confusion and debate in the field. Just as an example: We can argue in great length whether inhibition is necessary for respiratory rhythmogenesis in vivo, but I think there is no question that inhibition is involved in respiratory rhythmogenesis in vivo. But to avoid any confusion, we have changed the text to suggest PiCo is involved in the modulation of swallow motor sequence. We agree various additional inhibition experiments are necessary to explain if PiCo is also a necessary component of the SPG, but this is not the question we have set out to address in this study. To specifically target PiCo we must not only inhibit Vglut2 neurons but neurons that express both ChAT and Vglut2. To our knowledge there are no inhibitory DREADD or opsin techniques for cre/FlpO to specifically target these neurons. As stated above, non-experts in the field do not appreciate this technical nuance. However, we have begun to develop novel techniques necessary to inhibit these specific neurons which will be published in the future.

      • In almost all the data presented, the authors observed different patterns of changes in the motor submental and laryngeal responses to PICO activation, including that animals submitted to CIH (6%) presented a "normal" motor response. However, the authors did not discuss the possible explanations and functional implications of this variability.

      We agree that it would be helpful to understand the functional implications of these alterations in swallow-related motor activation, however since we are not using any tools to measure or evaluate functional activity it would be inappropriate to make suggestions of this type without any data to back up our conclusion. This is why we have not included any functional implications. We have added the following to the manuscript. “While fine wire EMG studies are an excellent evaluation tool to observe temporal motor pattern of sequential swallow related muscles; it must be combined with tools such as videofluoroscopic swallow study (VFSS) and/or high resolution manometry (HRM) in order to characterize the functional significance of these alterations to the swallow motor pattern shown in this study (Park et al., 2017). Since the preparation in this study utilizes only fine wire EMGs we are not able to evaluate or comment on the functional significance of the variable swallow motor patterns.”

      • In Figure 4, the authors need to present low magnification sections showing the PICO transfected neurons as well as the absence of transfection in the ventral respiratory column. The authors could also check the scale since the cAmb seems very small.

      Thank you, added different histology images to have a more comparable cAmb. As well as added lower magnification to show absence of transfection in the VRC.

      • Finally, the title does not reflect the study. The present study did not demonstrate that PICO is a swallow pattern generator.

      We have also changed the title to say: Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production

    1. Re-establishing the three ordersI will now go back through these orders and show how the worldview I have espoused in this essay may be able to re-invigorate them. a. The nomological orderIn the worldview I’ve put forward in this essay, there is a different kind of nomological order. Here there is also an affinity, or deep continuity, between how the mind works and the structure of reality. As I argued in section 4, relevance realization, i.e., the process by which we become more behaviorally attuned to the world, is a particular manifestation of the general process by which the universe at large is continually being created and complexified. In a previous essay I showed that there is a great deal of overlap between relevance realization and the modern science of consciousness. I think Jordan Peterson was right when said that “we are really reflective, including in our consciousness, of something about the structure of reality itself.”Or, as John Vervaeke and colleagues put it, there really are “fundamental principles by which knowledge and reality co-operate” (Vervaeke et al., 2017), and this constitutes a kind of nomological order. b. The narrative orderThe Christian-Aristotelian narrative order was participatory. We were participating in the process by which the kingdom of heaven would be built on earth. In the worldview I’ve put forward in this essay, there is no final “goal” towards which the universe is aiming. Rather, the process itself is the goal. This constitutes an infinite game rather than a finite game. Although we are not participating in a narrative that brings about some final state of utopia, we are capable of participating in a process that is of ultimate value, both for ourselves and for the world at large. Vervaeke and colleagues said that the narrative order:…provided an overarching story into which the minutia of the cosmos―individuals and their own stories―could fit and belong. Further, it introduced the idea that the agency of persons could intervene in the cycle of repetition and meaningfully impact the course of cosmic history.What I am arguing for is not far off from that. Our individual stories do fit into the overarching story of the cosmos (which is, as Azarian suggested, a never-ending story of continual self-organization and complexification). Our actions — every decision we make — can therefore meaningfully impact the course of cosmic history. That constitutes a kind of narrative order. c. The normative orderThe normative order consisted of a connection between ontology and values. In the worldview I have put forward in this essay, there is also a connection between ontology and values. In section 6 I argued that our participation in the process of complexification is biologically and psychologically optimal. This process therefore constitutes an ontological structure that simultaneously informs us about the nature of the good. Ontologically speaking, this process underlies reality as we know it. Normatively, our participation in this process is of ultimate value. This constitutes a kind of normative order. In sum, the worldview put forward in this essay may be able to re-invigorate the three orders, the loss of which precipitated the “meaning crisis” in Western culture.

      Summary

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This study presents a valuable finding on the possible use of vilazodone in the management of thrombocytopenia through regulating 5-HT1A receptor signaling. The evidence supporting the claims of the authors is solid, with the combined use of computational methods and biochemical assays. The work will be of broad interest to scientists working in the field of thrombocytopenia.

      Public Review:

      Reviewer #1 (Public Review):

      Summary:

      This is well-performed research with solid results and thorough controls. The authors did a good job of finding the relationship between the 5-HT1A receptor and megakaryocytopoiesis, which demonstrated the potential of vilazodone in the management of thrombocytopenia. The paper emphasizes the regulatory mechanism of 5-HT1A receptor signaling on hematopoietic lineages, which could further advance the field of thrombocytopenia for therapeutic purposes.

      Strengths:

      This is comprehensive and detailed research using multiple methods and model systems to determine the pharmacological effects and molecular mechanisms of vilazodone. The authors conducted in vitro experiments using HEL and Meg-01 cells and in vivo experiments using Zebrafish and Kunming-irradiated mice. The experiments and bioinformatics analysis have been performed with a high degree of technical proficiency. The authors demonstrated how vilazodone binds to 5-HTR1A and regulates the SRC/MAPK pathway, which is inhibited by particular 5-HTR1A inhibitors. The authors determined this to be the mechanistic underpinning for the effects of vilazodone in promoting megakaryocyte differentiation and thrombopoiesis.

      Weaknesses:

      (1) Which database are the drug test sets and training sets for the creation of drug screening models obtained from? What criteria are used to grade the results?

      Response: Thank you for your thoughtful comment. The database is built by our laboratory. Firstly, we collected 39 small molecule compounds that can promote MK differentiation or platelet formation and 691 small molecule compounds that have no obvious effect on MK differentiation or platelet formation to buiid the datbase. Then, the data of the remaining 713 types of small molecule compounds were utilized as the Training set, and the Molecular Descriptors of 2 types of active and 15 types of inactive small molecule compounds were randomly picked as the Validation set. With regard to the activity evaluation criteria, the prediction score for each molecule was between 0 and 1, and the model decision was made with a threshold of 0.5. The molecule with a score above the 0.5 threshold was identified as a megakaryopoiesis inducer (1).

      Reference:

      (1) Mo Q, Zhang T, Wu J, et al. Identification of thrombopoiesis inducer based on a hybrid deep neural network model. Thromb Res. 2023;226:36-50. doi:10.1016/j.thromres.2023.04.011

      (2) What is the base of each group in Figure 3b for the survival screening of zebrafish? The positivity rate of GFP-labeled platelets is too low, as indicated by the quantity of eGFP+ cells. What gating technique was used in Figure 3e?

      Response: We are deeply grateful for the insightful feedback you have provided regarding Figure 3 and the assessment of zebrafish model. We used 50 zebrafish embryos per group to evaluate VLZ toxicity, and we think this is a suitable and fair baseline. Our gating procedure is clearly depicted in the resulting diagram. Since our goal was to evaluate the fluorescence intensity quantitatively, we isolated the entire zebrafish cell. Since the amount of eGFP+ in various zebrafish tissues found in other literature is likewise quite low and we are unsure of the typical eGFP+ threshold for zebrafish (1, 2), we think this finding should be fair given that each group's activities in the experiment were conducted in parallel.

      Reference:

      (1) Yang L, Wu L, Meng P, et al. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J Thromb Haemost. 2022; 20(8): 1900-1909. doi:10.1111/jth.15772

      (2) Fallatah W, De Silva IW, Verbeck GF, Jagadeeswaran P. Generation of transgenic zebrafish with 2 populations of RFP- and GFP-labeled thrombocytes: analysis of their lipids. Blood Adv. 2019;3(9):1406-1415. doi:10.1182/bloodadvances.2018023960

      (3) In Figure 4C, the MPV values of each group of mice did not show significant downregulation or upregulation. The possible reasons for this should be explained.

      Response: Thank you for your thoughtful comment. Megakaryocytes build pseudopodia, which form extensions that release proplatelets into the bone marrow sinusoids. Proplatelets convert into barbell-shaped proplatelets to form platelets in an integrin αIIbβIII mediated process (1-2). Platelet size is established by microtubule and actin-myosin-sceptrin cortical forces which determine platelet size during the vascular formation of barbell proplatelets (3). Conversion is regulated by the diameter and thickness of the peripheral microtubule coil. Proplatelets can also be formed from proplatelets in the circulation (4). Megakaryocyte ploidy correlates with platelet volume following a direct nonlinear relationship to mean platelet volumes (5). Usually there is an equilibrium between platelet generation and clearance from the circulation (normal turnover) controlled by thrombopoietin. When healthy humans receive thrombopoietin, their platelet size decreases (6). Proplatelet formation is dynamic and influenced by platelet turnover (7) which increases upon increased platelet consumption and/or sequestration. In our study, the MPV values of each group of mice did not show significant downregulation or upregulation, from our point of view, there are several possible reasons for these results.

      (1) Mice in a radiation-damaged state may result in a decrease in platelet count, but at the same time stimulate the bone marrow to release young and larger platelets, thus keeping the MPV relatively stable.

      (2) After radiation injury, bone marrow cells were suppressed, resulting in a decrease in the number of platelets produced, but MPV remained unchanged, possibly because the direct effects of radiation on the bone marrow caused thrombocytopenia, but not necessarily the average platelet size.

      Reference:

      (1) Thon JN, Italiano JE. Platelet formation. Semin Hematol. 2010(3):220-226. doi: 10.1053/j.seminhematol.2010.03.005.

      (2) Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood. 2006(5):1509-1514. doi: 10.1182/blood-2005-11-011957.

      (3) Thon JN, Macleod H, Begonja AJ, et al., Microtubule and cortical forces determine platelet size during vascular platelet production. Nat. Commun. 2012(3):852. doi: 10.1038/ncomms1838.

      (4) Machlus KR, Thon JN, Italiano JE Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br. J. Haematol. 2014(2):227-36. doi: 10.1111/bjh.12758.

      (5) Bessman JD. The relation of megakaryocyte ploidy to platelet volume. Am. J. Hematol. 1984(2):161-170. doi: 10.1002/ajh.2830160208.

      (6) Harker LA, Roskos LK, Marzec UM, et al., Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000(8):2514-2522. doi: 10.1182/blood.V95.8.2514.

      (7) Kowata S, Isogai S, Murai K, et al., Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb. Haemost. 2014(4):743-756. doi: 10.1160/TH14-02-0123.

      (4) The PPI diagram and the KEGG diagram in Figure 6 both provide a possible mechanism pathway for the anti-thrombocytopenia effect of vilazodone. How can the authors analyze the differences in their results?

      Response: We are appreciated your valuable comments. PPI (Protein-Protein Interaction) refers to the interaction between proteins. Inside cells, proteins interact with each other to perform various biological functions, influencing cell signaling, metabolic pathways, cell cycle, and more. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates information on genomes, chemicals, and biological systems. In pharmacoinformatic, KEGG pathways are often used to understand the molecular mechanisms of specific diseases or biological processes. KEGG contains the interrelationships between genes, proteins, and metabolites, helping to reveal key nodes in biological processes. PPI information can be integrated with data from KEGG pathways, such as metabolic and signaling pathways, to gain a more comprehensive understanding of the role of protein-protein interactions in cellular processes and biological functions. For example, by analyzing nodes in the PPI network, proteins associated with a specific disease can be identified, and further examination of these proteins' locations in KEGG pathways can reveal molecular mechanisms underlying the onset and development of the disease. However, this method also has some limitations:

      Uncertainty (1): The construction of protein-protein interaction networks and drug interaction networks involves many assumptions and speculations. The edges of these networks may be based on experimental data but can also rely on bioinformatics predictions. Therefore, the accuracy of predictions is limited by the quality and reliability of the data used during network construction.

      Insufficient data (2): Despite the availability of a large amount of bioinformatics data for network construction, interactions between some proteins and drugs may still lack sufficient experimental data. This data insufficiency can result in inaccuracies in network predictions.

      Dynamics and temporal-spatial changes (3): The dynamics and temporal-spatial changes in biological systems are crucial for drug effects. Pharmacoinformatic may struggle to capture these changes as it often relies on static network representations, overlooking the temporal and dynamic nature of biological systems.

      Reference:

      (1) Fernando PC, Mabee PM, Zeng E. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. BMC Bioinformatics. 2020(1):442. doi: 10.1186/s12859-020-03773-2.

      (2) Zhang S, Zhao H, Ng MK. Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015(5):1146-1160. doi: 10.1109/TCBB.2015.2396073.

      (3) Cinaglia P, Cannataro M. A method based on temporal embedding for the pairwise alignment of dynamic networks. Entropy (Basel). 2023(4):665. doi: 10.3390/e25040665.

      (5)-HTR1A protein expression is measured only in the Meg-01 cells assay. Similar quantitation through western blot is not shown in other cell models.

      Response: Your insightful criticism and recommendation to use different cell models in order to obtain a more accurate depiction of 5-HTR1A protein expression are greatly appreciated. We completely concur that using this strategy would greatly increase the validity of our research. However, establishing a primary megakaryocyte model requires specialized expertise and technical resources, which unfortunately are not readily available to us within the given timeframe. Nevertheless, we acknowledge the limitations of Meg-01 cells, which may exhibit distinct properties compared to true megakaryocytes. To mitigate this concern, we have ensured robust experimental design and rigorous data analysis to interpret our findings within the context of these model cell lines. We believe our results still provide valuable insights into megakaryocyte differentiation and address an important biological question.

      Reviewer #2 (Public Review):

      Summary:

      The authors tried to understand the mechanism of how a drug candidate, VLZ, works on a receptor, 5-HTR1A, by activating the SRC/MAPK pathway to promote the formation of platelets.

      Strengths:

      The authors used both computational and experimental methods. This definitely saves time and funds to find a useful drug candidate and its therapeutic marker in the subfield of platelets reduction in cancer patients. The authors achieved the aim of explaining the mechanism of VLZ in improving thrombocytopenia by using two cell lines and two animal models.

      Weaknesses:

      Only two cell lines, HEL and Meg-01 cells, were evaluated in this study. However, using more cell lines is really depending on the workflow and the grant situations of the current research team.

      Response: We deeply appreciate your insightful feedback and valuable suggestions regarding the use of more suitable models for studying the role of VLZ in megakaryocyte differentiation and platelet production. We fully agree that CD34+ hematopoietic stem/progenitor cells or primary megakaryocytes would provide a more accurate representation of in vitro megakaryopoiesis compared to HEL and Meg-01 cells, which possess limited potential for this process. We acknowledge that our current study did not include experiments with these preferred cell models. This is because our laboratory is still actively developing the technical expertise and resources required for establishing and maintaining primary megakaryocyte and CD34+ cell cultures. Despite the limitations of the current study, we believe the results using HEL and Meg-01 cells provide valuable preliminary insights into the potential effects of VLZ on megakaryocyte differentiation. We are actively working to overcome these limitations and plan to incorporate these more advanced models in our future investigations.

      Reviewer #1 (Recommendations For The Authors):

      I think the authors can enhance the mechanism study by developing more reliable models and methodologies. The connection to clinical research should be strengthened at the same time.

      Response: We deeply appreciate your insightful feedback and valuable suggestions regarding the use of more suitable models for studying the role of VLZ in megakaryocyte differentiation and platelet production. Despite the limitations, we are committed to expanding our research in the future by incorporating your suggestion and establishing a primary megakaryocyte model to further validate our findings and strengthen our conclusions. At the same time, we wholeheartedly concur with your suggestion to combine clinical research. Unfortunately, VLZ is not a first-line treatment for depression in China, and getting blood samples from the matching number of patients for analysis is a challenge. To give additional experimental support for the medication, we have attempted to improve the data in vivo as much as feasible, including by implementing the intervention in normal mice. Our findings should also contribute to the theoretical underpinnings of this medication and aid in its practical application.

      Reviewer #2 (Recommendations For The Authors):

      Issues the authors need to address:

      Figure 7: Why the band intensity of GAPDH in b or e is much greater than that in f, g, or h?

      Response: Thank you for your careful observation and insightful comment regarding Figure 7. Because the concentration of each batch of protein samples is different, sometimes the GAPDH band strength is increased by the large loading volume. Other factors that may influence the GAPDH band strength include the instrument's contrast adjustment during exposure and the use of different numbers of holes for electrophoresis. Meanwhile, the original three replicate results of all WB results will be provided in the supplementary materials.

      Finally, we sincerely thank you for providing us with this opportunity to make a further revision and modification of our manuscript, and your valuable and scientific comments are useful for the great improvement of our manuscript!

    1. Book Summary:PART 1: FUNDAMENTAL TECHNIQUES IN HANDLING PEOPLEPrinciple 1: Don't Criticise, Condemn or ComplainCriticism is futile, it makes the other person strive to justify himselfCriticism doesn't correct a situationWhen you give a person criticism, they will never make lasting changes in the things you criticised them forDon't criticise anyone; "they are just what we would be in similar circumstances"📝Action Step: Ponder and journal on all the instances when you criticised someone on something they valued or were making progress in (e.g. studies, business, sport). Journal on why you said that, really get to the roots of your beliefs. Go and message the person you criticised and tell them you're sorry. Next time don't criticise ANYONE."Don't complain about the snow on your neighbour's roof, when your own is unclean"🤔Action Step: Think of all the times when you complained in the last week or so. Write it down/type it out, then write next to the complain, what an alternative for the complain could be. Next time NEVER complain."I will speak ill of no man ... and speak all the good I know of everybody"Principle 2: Give Honest And Sincere AppreciationHumans all want to have the feeling of importance in societyAndrew Carnegie praised his associates publicly and privately to handle them better"Don't be afraid of enemies that attack you, be afraid of friends that flatter you"If someone makes a mistake, don't condemn them, appreciate their good points, and reward them through praise🗣️Action Step: The next time you see someone making progress or working really hard, go and give them a compliment (give them honest and sincere appreciation) - Go to AG wins and comment on a win —> DO THIS RN OR YOUR A JEFFREY"Every man I meet is superior to me in some way, in that way I learn of him"Principle 3: Arouse In The Other Person An Eager WantThe only way to influence other is to talk about what they want and show them how to get it💡Action Step: The next time you come across a situation where you have to make someone do something under your responsibility/leadership, ponder for a second, "How can I make this person want to do it?", really get into their shoes - journal/ponder on it, then apply it to the person in real life — or, if you sell a product, ask yourself, "How can I make this person want to buy it?", use the feedback and apply it"If there's a secret to success, it's the ability to get into the POV of the other person and see thingsPART 2: 6 WAYS TO MAKE PEOPLE LIKE YOUPrinciple 1: Be Genuinely Interested In The Other PersonYou can make more friends in 2 months by becoming interested in others, than you can in 2 years by being interested in yourselfMake yourself do things for others — things that require time, thoughtfulness/unselfishness😢Action Step: Whenever you see someone that is in need of help in their life, or is struggling, go and give them advice. Be genuinely interested in helping them improve rather than helping yourself —> Do this in AG right NOW."We are interested in others when they are interested in us"Principle 2: SmileWhat one wears on one's face is far more important that the clothes on one's backHappiness doesn't depend on outer conditions, it depends on inner conditions😀Action Step: Start SMILING RIGHT NOW, Literally, Just put a smirk on your face and wear it for the rest of the day (see how people respond to it)"There is nothing good or bad, it is thinking that makes it so"Principle 3: Remember A Person's Name To That Person Is The Sweetest Sound🤝Action Step: Whenever you meet someone new, find out their complete name and associate it with an image in your headYour name to you is more important than 1000 other names of othersPrinciple 4: Be A Good Listener, Encourage Others To TalkListening is one of the highest compliments we can pay to anybodyGood conversationalist = Good Listener (be attentive)To be interesting, be interested🗣️Action Step: The next time you socialise with someone, make them to 80% of the talk, ask them open-ended questions, and let them freely answer (follow the 80/20 principle)Principle 5: Talk In Terms Of The Other Persons Interest💡Action Step: When talking to someone else, talk about something that they're interested in (e.g. self-improvement, sports), then let the conservation freely flow on that topic, pick their brain on that topic, ask them questionsPrinciple 6: Make The Other Person Feel Appreciated And ImportantAlways make the other person feel appreciated and importantUse phrases like, "I'm sorry to trouble you", "Would you be kind as to ____", "Would you mind"🤷‍♂️Action Step: The next time you have to call someone, or tell someone to move, use of the phrases abovePART 3: HOW TO WIN PEOPLE TO YOUR WAY OF THINKINGPrinciple 1: The Only Way To Get The Best Out Of An Argument Is To Avoid It, You Can't WinWhy argue?"A man convinced against his will, is of the same opinion still""Hatred is never ended by hatred, but by love"😠Action Step: The next time you're talking to someone and you notice them starting to escalate into an argument, end it right there by showing love (e.g. give them a compliment, express gratitude)Principle 2: Show Respect For The Other's Opinion, Never Say "You're Wrong"If you're going to prove something, don't let anyone know it"Be wiser than other person if you can, but do not tell them so"If someone says something wrong say, "I thought otherwise", "I may be wrong ____"Telling someone directly that they're wrong can cause a lot of damage💬Action Step: When you're in a discussion with someone, let's say one of your JEFFREY friends at school, he says Junk FOOD is fine, instead of saying "you're wrong", use one of the phrases above, repeat in a much friendlier tonePrinciple 3: If You Are Wrong, Admit Quickly And EmphaticallyAdmit quickly that the other person is right and you are wrong in a friendly toneYou need to have courage to have the ability to criticise yourself🤨Action Step: The next time you find yourself having made a mistake in front of others, admit it straight away in a friendly manner. Make sure you don't cause damage to others while doing so.Principle 4: Begin In A Friendly Way"A drop of honey catches more flies than gallon of gall"Always begin the conversation in a friendly manner and friendly tone💭Action Step: The next time you have a conversation with someone, start the conversation with a positive vibe, and friendly tone.Principle 5: Get The Other Person Saying "Yes" "Yes" ImmediatelyDon't start a convo with things you differ from, start with things you agree onAt all costs, keep the person from saying "no" at the startIt is much more profitable to set things from the other person's view point and make them say "yes"🙌Action Step: After bringing the positive vibe to the conversation, start talking about things you agree on to the other person, and ask them questions which deliberately provoke a "yes" response. Brainstorm a little on this in your brain before proceeding the person.Principle 6: Let The Other Person Do A Great Deal Of The TalkingEncourage them to talk, if you disagree, hold silent, listen with an open mind"If you want enemies, excel your friends; if you want friends; let your friends excel you" - keep quiet about your accomplishments, don't talk about them, unless somebody asks🏆Action Step: Follow the 80/20 rule when talking in convo, only talk about the other person, their interests, don't show off in the conversation to look cool (e.g. saying you earn $10k/m online), keep quiet, remain humble in the conversationPrinciple 7: Let The Other Person Feel The Idea Is TheirsMaking someone feel that the idea is theirs is like giving them a compliment💡Action Step: The next time you come up with a great idea and you implement it, and it gives your reasonable success, thank the friend that helped you generate the idea (e.g. tag someone in AG because they helped you start a profitable business)Principle 8: Try Honestly To See Things From The Other Person's POVPeople may be totally wrong, but don't condemn them, try to understand them, their situation🧐Action Step: The next time you're in a conversation, and someone has said something that is completely wrong, and you thought to yourself "why did he/she say that!" - empathise their situation and see things from their POV (e.g. say to yourself, "I would've done the same if I was in that situation)Principle 9: Be Sympathetic With The Other Persons's POV3/4 of people which you meet crave sympathy, go give it to themPut yourself in the shoes of the other person at the start of a conversation, or deal😊Action Step: Another tip to just keep at the back of your head is to see things from the other person's POV, have sympathy for the situation their own. Really put your shoes in the other person, make yourself feel that you're the other person, see things from a new REALITY.Principle 10: Appeal To The Nobler MotivesAlways choose a nobler motive when you assume something about othersBe the kind of leader who appeals to what really matters and, even when the feedback is tough, reminds people why they're really therePrinciple 11: Dramatise Your IdeasTruth isn't enough, the truth has to be made vivid, interesting dramatic🕺Action Steps💡Make your ideas more obvious, interesting, and vivid to peopleUse drama and showmanship to capture attention and imagination to make your ideas more impressiveWhen presenting an idea, make it more exciting than it really isPrinciple 12: Throw Down A Challenge"The way to get things done is to throw down a competition"🥵Action Step: When you're doing something that many others are doing (e.g. participating in a challenge), ask someone participating and throw down a challenge to them (e.g. whoever finishes the challenge first wins)PART 4: BE A LEADER - HOW TO CHANGE PEOPLE WITHOUT GIVING OFFENCEPrinciple 1: Begin With Praise And Honest AppreciationAppreciate the person first before bringing up your problem for resolution🗣️Action Steps:e.g. if someone did a random act of kindness for youTell the person that you appreciate the actTell them how it made you feel goodCongratulate and tell them that it was beyond expectationsPrinciple 2: Call Attention To People's Mistakes IndirectlyWhen indirectly criticising someone, never use the word "but", use "and" insteadThis technique works well for sensitive people who resent criticism💭Action Step: Praise a quality, and also a quality that you want to see the improvement in of someone else (e.g. if someone doesn't keep his house clean, say, "I appreciate the effort you put in to make the house clean")Principle 3: Talk About Your Own Mistakes Before Criticising The Other PersonTalk about your own shortcomings, before judging someone (e.g. asking them to improve)😆Action Step: If again you want to see a direct improvement in someone, before telling them, talk about your own mistakes in that area you want to see improvement in from the other person, tell them a joke about you, a story about the mistakes you madePrinciple 4: Ask Questions Instead Of Giving Direct OrdersAlways give people the opportunity to do things by themselves through questionsResentment is caused by a brash order that may last a long time😤Action Step: When you need something done by someone else, don't give them a direct order. Give the person an opportunity to do things by asking questions (questions must be relevant to the task that you need done)Principle 5: Let The Other Person Save FaeFinding faults in the other person will make them resent you❌Action Step: Instead of directly pointing out the faults in the other person, let them save face and find their own mistakes (or point it out indirectly)Principle 6: Praise The Slightest Improvement, And Praise Every ImprovementFaults start to disappear after you give praise😊Action Step: When you see someone making progress, or you see growth, praise them on their hard work, and praise the improvementPrinciple 7: Give The Other Person A Fine Reputation To Live Up To💡Action Step: If you want to improve a person in a certain area, act as though that trait was already one of his or her outstanding characteristics (e.g. make it seem as if they already have that trait)Principle 8: Use Encouragement, Make The Fault Seem Easy To CorrectLet the other person know that you have faith in their ability to performa task💪🏿Action Step: When you see a fault, and they're trying their best to fix it, let them know that you have full faith in themPrinciple 9: Make The Other Person Happy About Doing The Thing You SuggestGive some reward for performing what you want to the other person, and take away a little for something which they do not doRules for making other person happy about thing you suggest:Be sincere, do not promise anything you can't deliverKnow exactly what it is you want the other person to doBe empathetic, ask yourself what it is the other person really wantsConsider the benefits the person will receive from doing what you suggestMatch those benefits to the other person's wantsWhen you make your request, put in a form that will convey to the other person the idea that he personally will benefit from

      how to win friends and influence people summary

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer_01

      Major comments:

      1. The authors cite that acetylated and tyrosinated microtubules have different spatial and compartmental distribution in dendrites and axons and investigate the distribution in the AIS of nonAcD cells and AcD cells, as well as the stem dendrites. However, they just show one example of two different cells (Figure 2D and E) without any statistical analysis. Either, they should remove this part or provide a thorough quantification. Reply: The spatial and compartmentalized distribution of stable and dynamic MTs in the dendrites and axons of nonAcD neurons has been extensively studied and reviewed (see Kapitein & Hoogenraad, 2011; Katrukha et al., 2021; Tas et al., 2017 for reference). However, the organization of the MT cytoskeleton in AcD neurons is still unknown. Here, we provide the very first evidence on the distribution of tyrosinated and acetylated MTs in AcD neurons, as well as data on MT orientations. We agree with the reviewer that to make our results on the spatial organization of these post-translational modifications in AcD neurons more complete, we need to provide a more thorough quantification analysis.

      To achieve this, we plan to perform immunostainings on DIV10 neurons using antibodies against tyrosinated (tyr) and acetylated (ac-) tubulin to label dynamic and stable MTs, respectively. Subsequently, we will conduct high-resolution 3D confocal imaging and measure fluorescent intensity to illustrate the abundance and staining patterns of tyr- and ac- MTs in the axons and dendrites of AcD neurons. Since the spatial distribution of tyr- and ac-MTs is distinguishable with confocal microscopy, we will retain STED examples in the figures but conduct new analyses on confocal imaging data. We will measure the total fluorescent intensity of tyr- and ac- MTs in different compartments of AcD neurons and normalize it to the size of the measured area. We will then compare the normalized intensity values between the axons and dendrites of AcD neurons to examine whether there is a specific distribution pattern of stable and dynamic MTs. We will analyse at least 3 independent primary culture preparations with a minimum of 30 cells. Using the same dataset, we will also quantify the percentage of AcD neurons with ac-MTs specifically elongating into the axon compared to AcD.

      The authors use EGFP-Rab3A vesicle to investigate anterograde transport at the axon and dendrites. They find a slightly faster transport of these vesicles at the AIS of AcD cells and conclude the axonal cargos in general are transported faster across the AIS in AcD cells. In my opinion, this generalization based on one type of vesicle is too farfetched.

      Reply: The Rab3A protein is associated with pre-synaptic vesicles that are transported by KIF1A and KIF1Bβ, members of the kinesin-3 family, towards pre-synaptic buttons (see Guedes-Dias & Holzbaur, 2019; Niwa et al., 2008 for reference). Since KIF1A and KIF1Bβ are common motor proteins that mediate MT-based transport of different types of vesicles (e.g., synaptic vesicles and dense-core vesicles, see Carabalona et al., 2016; Helmer & Vallee, 2023 for reference), we reasoned that Rab3A should be a representative marker for an axonal cargo. However, this indeed does not rule out whether the faster trafficking effect we saw is specific to presynaptic vesicles, as different types of vesicles tend to recruit different modulators that could lead to different trafficking features.

      To address this question, we will perform a live-imaging experiment including two additional organelle marker proteins, Neuropeptide Y (NPY) and Lysosome-associated membrane protein 1 (Lamp1). NPY is transported into the axon via KIF1A and KIF1Bβ-mediated dense-core vesicles (see Helmer & Vallee, 2023; Lipka et al., 2016 for reference). Lamp1 is associated with lysosomes and a range of endocytic organelles that recruit both kinesin-1 and kinesin-3, and are transported into both axons and dendrites (as reviewed in Cabukusta & Neefjes, 2018). By introducing two additional types of vesicles, we should be able to answer whether AcD neurons, in general, tend to transport cargoes into the axon faster than nonAcD neurons.

      __Minor comments: __

      In the introduction, the authors describe how synaptic inputs are received at the dendrites and propagated to the soma in the form of membrane depolarizations. They should add 'excitatory' to synaptic inputs or also describe the impact of inhibitory synaptic inputs at the dendrites.

      In my opinion, Figure 2 could be presented in a slightly better way. The lower part of panel A better fits to panel B, which is next to the upper part of panel A. I understand that the authors systematically present their data first for nonAcD cells and then for AcD cells. However, in this special case it is a little bit more difficult to read the current figure in that order. The results displayed in Figure 4 are presented in a slightly confusing order. The authors jump from 4D to 4G, then to 4I and 4E, 4H, 4F. Similarly, 4M and N are addressed before 4O and P to finally get to 4K and L. It would be beneficial to present and address the data in a stringent way.

      Reply: Thank you for the suggestions on how to improve the data representation in the figures. We will change Figures 2 and 4 and make adjustments in the text upon revision since we also plan to include additional data.

      Reviewer_02

      Major comments:

      1. The authors suggest that there is reduced Na+ channel density at AcD AIS compared to other AIS arising from the cell body. This is not convincing. Immunostaining for Na+ channels is notoriously difficult and sensitive to fixation since the epitopes of the anti-Pan Nav antibodies are highly sensitive to fixation. In addition, this is based on immunofluorescence intensity quantification. Since the mechanism of localization is through binding to AnkG, the authors should also measure other AIS proteins like AnkG, b4 spectrin, and Nfasc. Do these change? If all uniformly change I would be much more inclined to accept the conclusion. If they do not change, it still doesn't rule out the concern about fixation conditions and slight differences in the cultures. The authors indicate there is about a 40% reduction in fluorescence intensity. That is quite large. This big difference should also be confirmed in brain sections. Reply: The potential fixation issue and antibody sensitivity on Na+ channel staining are indeed valid considerations, and we are aware of them. However, it should be noted that we used pan-Na+ channel antibodies that were previously characterised and widely used in literature (see Solé et al., 2019; Yang et al., 2020 for references). Furthermore, our samples underwent the same fixation and staining protocol, and comparable numbers of AcD and nonAcD neurons were imaged from the same preparation and coverslip for each experiment. Imaging settings were also kept constant. Any loss of Na+ channel staining at the AIS due to fixation should affect both neuron types and therefore our conclusion is justified. Nevertheless, the reviewer's point regarding other AIS components is valid and will be investigated further in the revised manuscript.

      Following the reviewer's suggestion to further strengthen our conclusion, we will measure the intensity of AnkG, βIV-spectrin, and neurofascin in DIV21 AcD and nonAcD neurons. We will compare a minimum of 3 independent cultures, each containing at least 10 cells of each type per culture.

      We agree with the reviewer that confirming observed differences in Na+ channel staining using brain slices would be beneficial. However, conducting such experiments presents several challenges. Firstly, one approach could involve immunostaining with antibodies against AIS marker AnkG, in combination with somatodendritic marker MAP2 and pan-Nav. However, this method lacks the advantage of clearly identifying neuronal morphology as seen in dissociated cultures, making the outcome unclear and difficult for analysis and interpretation. Alternatively, the use of Thy1-GFP rats, where a subset of neurons is labelled with GFP, could allow for morphological studies. Unfortunately, we do not have access to this rat line, and the process of importing it, obtaining permits, and establishing a colony is beyond the timeframe for manuscript revision. Additionally, while pan-Nav antibodies have shown reliability in dissociated cultures, their efficacy in tissue staining is less certain. We could provide example images upon request. Secondly, endogenously labelling of Na+ channels is another option, but remains a significant challenge. Recent developments in endogenous labelling, such as the CRISPR/Cas9-based method using pORANGE by Fréal et al. (Fréal et al., 2023), and the generation of Scn1a-GFP transgenic mice by Yamagata et al. (Yamagata et al., 2023), offer potential solutions. However, the labelling efficiency of pORANGE is uncertain, and both methods are time-consuming and cannot be completed within the three-month revision period.

      As an alternative, we propose emphasising that our results are based on in vitro experiments and discussing the advantages and limitations of this approach in the discussion section.

      The analysis of inhibitory synapse differences at the AIS are also not compelling - this is a limitation of the culture system. The authors have no control over the density of inhibitory neurons in the culture well. This interaction is not intrinsic to the AcD neuron, but rather a feature of neuron-neuron interactions which should only be modelled in the animal.

      Reply: The reviewer is correct in pointing out that establishing inhibitory synapses at the AIS is not an intrinsic feature of AcD neurons; it depends on the network and should be modelled in animals. We will include this limitation of the cell culture model in the discussion section in the revised manuscript. We also understand the reviewer's concern that the lower amount of inhibitory synapses at AcD neuron AIS might be due to uneven density of inhibitory neurons between cultures. Nonetheless, assuming that the number of inhibitory neurons is constant between preparations, it is an interesting observation that AcD neurons form fewer inhibitory synapses at the AIS. This may be related to the features of the AIS and its morphology and should be further investigated.

      To make our study more comprehensive and also address the reviewer's concern regarding the presence of inhibitory neurons, we will perform immunostainings in dissociated cultures (40.000 cells per 18 mm coverslip, same as in experiments with synapse quantification) with antibodies against pCaMKIIa, an excitatory neuron marker, and GAD1, a marker for inhibitory neurons. Then, we will quantify the density of inhibitory neurons in the culture. We will perform measurements from 3-6 independent cultures by analysing large fields of view in different areas of a coverslip (20-30 neurons per area) to determine if the density of inhibitory neurons varies between cultures as well as preparations. Furthermore, as also requested by reviewer 4, we will perform new immunostainings where pre- and post-synaptic markers (VGAT and Gephyrin) will be included in the same sample together with the AIS (AnkG or Neurofascin) and dendritic marker (MAP2). Synapses that contain pre- and post-synaptic components will be analysed and included in the revised version of the manuscript.

      Finally, the major limitation of this study is that it is performed in vitro. Surprisingly, the authors actually argue this is a feature of their system. While it is true some of the questions can be addressed perfectly well in vitro, many cannot. In the first paragraph of the results the authors state an advantage of their system is that there are no microenvironments to influence the development of the AcDs. I'm afraid I view this as a drawback. The authors suggest this is an opportunity to examine intrinsic mechanisms of development - true, but it also foregoes the opportunity to determine if the outcomes are different from what occurs in vivo. To this point, the authors report that only 15-20% of the population of hippocampal neurons in culture are AcD neurons. But in their introduction they cite other literature indicating 50% of hippocampal neurons in vivo are AcD neurons - this suggests that the environment of the hippocampus in vivo influences whether a neuron becomes an AcD neuron or not.

      Reply: The reviewer is right in pointing that the in vivo environment could indeed affect AcD neuron development, and we also find this to be a very interesting topic to investigate in the future. Even more intriguingly, as shown in a preprint by Lehmann et al. (doi: https://doi.org/10.1101/2023.07.31.551236), network activity stimulates neurons to acquire AcD morphology. While it is true that the impact of the microenvironment on AcD neuron development cannot be studied in dissociated cultures, our in vitro data undoubtedly support the fact that hippocampal neurons can intrinsically develop into AcD morphology independent of the in vivo environment. As also mentioned in the next point, our statement "...their development must be driven by genetically encoded factors rather than specific..." might sound too definitive and therefore eliminate possible effects from the microenvironment. We will revise this part. Although it is highly desirable to move cell biological studies from neuronal cell cultures to tissue, to date, it is still very challenging to perform many of experiments which we did in this study in slices or living animals due to a lack of appropriate technologies and tools. We are convinced that many basic biological questions can be and should be studied in simplified culturing models because they are truly fundamental, they should also be reproducible in these models.

      To address the reviewer's question regarding the percentage difference between our data and the previous study by Thome et al. (2014), several factors should be considered. First, as noted by the reviewer, our results were obtained from an in vitro system, which is not directly comparable to the in vivo model system used in Thome et al.'s study (Thome et al., 2014). Second, the age of the neurons quantified in our developmental experiments is DIV5 and DIV7. This young age disparity could contribute to the percentage difference, as Thome et al. analyzed neurons from P28-35 adult animals, where 50% of the AcD neuron population was observed, specifically in the CA1 region. Third, it's important to note that in other hippocampal regions, the percentage of AcD neurons is lower (approximately 20-30%). Since our hippocampal primary cultures contain neurons from all hippocampal regions, this may have averaged out our quantification of AcD neuron percentage. Additionally, in the study by Benavides-Piccione et al. (Benavides-Piccione et al., 2020), they reported 20% AcD neurons in the CA1 region of hippocampi isolated from 8-week-old mouse pups, a number similar to what we observed in vitro. Interestingly, Thome et al. reported that in P8 pups, AcD neuron population in hippocampal CA1 region is 30%. This number increased to 50% in adult animals at age of P28-35, suggesting there is perhaps an age dependent increase of AcD neuron population. This could be an additional reason of why we only saw 15-20% of AcD neurons in our in vitro system, regardless of the in vivo environment.

      In the revised version, we will clarify these points in the introduction and discussion sections. Additionally, we will quantify the proportion of AcD neurons in mature DIV21 dissociated hippocampal cultures and compare it to DIV7 cultures to assess whether there is an increase in the AcD population over time. We believe that this experiment, combined with the explanations provided above, will sufficiently address the reviewer's question. However, it is important to acknowledge that the establishment of neuronal networks in vitro differ from those in vivo. Therefore, there may be potential differences in the outcomes.

      I appreciated the balanced discussion of whether this is a stochastic or genetically programmed process. This could have been emphasized earlier in the results since the authors invoke the concept that "...their development must be driven by genetically encoded factors rather than specific...". The authors have not shown this and cannot show it in this system. Indeed, as stated in point 4 above, I think their data argue against a simple genetic program.

      Reply: As suggested by the reviewer and noted in point 4, we will revise the section on AcD neuron development in our manuscript to emphasize that hippocampal neurons may adopt AcD morphology through genetic or stochastic mechanisms. While we acknowledge that environmental and activity factors may also influence this process, particularly in mature neurons, our study focuses on developing neurons where genetic and stochastic factors are likely to be predominant. This conclusion is supported by the observation that neurons develop into AcD morphology in vitro, where environmental and activity patterns do not mimic those of in vivo systems.

      Indeed, our current manuscript does not explore genetic factors involved in AcD neuron development. To address this question, one approach could be to label AIS markers endogenously in dissociated cultures using the PORANGE method (see Willems et al., 2020 for reference) or utilize AnkG-GFP transgenic mice (Fréal et al., 2023; Thome et al., 2023) along with a volume marker like mRuby or GFP. This would allow for the identification of AcD and nonAcD neurons in vivo and in vitro, followed by single-cell transcriptomics analysis to uncover potential genetic factors. Subsequently, candidate genes could be manipulated to demonstrate their essential role in AcD neuron development. However, such experiments require significant time and resources beyond the scope of our current revision timeframe. Nonetheless, this question presents an exciting direction for future research.

      Reviewer 3

      Major comments:

      1. The authors classify neurons into axon-carrying dendrite (AcD) and non-AcD neurons by measuring the stem dendrite length (> 3 µm). I could not find the validity for this cut-off. The non-AcD neurons in Fig. 6B appear more AcD to this reviewer, and, in addition, other researchers have proposed a third category of 'shared root' neurons (doi: 10.7554/eLife.76101). For purposes of reproducibility and transparency, please provide first a comprehensive overview of the entire population of morphologies (i.e. all cells in control conditions). The distances from the soma could be plotted in histogram (etc.) and authors may want to think about independent supporting evidence for the cut-off to classify AcD and non-AcD neurons. Reply: Concerning the validity of AcD neuron classification, we did measure the length of the stem dendrite, as shown in Figure S4G, with an average distance of around 10 µm. However, we admit that this information is presented relatively late in the manuscript. To address the reviewer's criticism, in the revised version, we will include a supplementary figure displaying a gallery of representative images of both AcD and nonAcD neurons analyzed in our study (please refer to Hodapp et al., 2022; Fig S1 C&D; Fig S3 as an example). Given the sample size of AcD and nonAcD neurons in our study, including all images would result in a very large figure (for example, Figure 1: DIV5: 83 AcD neurons out of 427 cells, DIV7: 47 AcD neurons out of 387 cells). We will only show representative examples of AcD neurons in the gallery. Additionally, as suggested, we will plot the length of the stem dendrite (or axon distance) of AcD neurons as a histogram to demonstrate that the AcD neurons included in our study indeed have a stem dendrite longer than 3 µm. To further validate the used classification method, we will measure the diameter of the stem dendrite in all analyzed AcD neurons and then compare the distance between the soma and the start of the axon in each analyzed AcD neuron to the diameter of its stem dendrite. As described by Hodapp et al. (Hodapp et al., 2022; Fig S1A), AcD neurons are expected to have a stem dendrite longer than their diameter.

      We have considered having independent evidence to support the classification of nonAcD and AcD neurons. However, the method used by Thome et al. and Wahle et al. for AcD and nonAcD neuron classification is well established and widely accepted (see Thome et al., 2014; Wahle et al., 2022 for references). Similar standards were also employed by Benavides-Piccione et al. (Benavides-Piccione et al., 2020). Introducing independent evidence could potentially raise further doubts, so we have chosen to maintain consistency with previous studies.

      As for the "shared root" neurons described by Wahle et al., we did not analyze this category separately and included them in the nonAcD subtype. Nonetheless, it is an interesting direction to explore in the future. For completeness, we will discuss this point in the revised manuscript.

      Related to point #1 the primary hippocampal neuron system is excellent for cell biological questions but comes with the drawback of imaginative morphologies including neurons with multiple axons and AISs. It is not mentioned here but literature indicates up to 20% of neurons have two axons (e.g. doi: 10.1007/s12264-017-0169-3, 10.1083/jcb.200707042). How did the authors classify the double axon cells? Since the main hypothesis is the existence of an intrinsic program for AcD neurons (p. 5 top), the two axons from one neuron should develop similarly. The authors can easily test this with the data.

      Reply: We appreciate the reviewer's comment regarding the choice of the model system for this type of study. Indeed, as they pointed out, in primary cultures, some neurons develop more than one axon. Since we did not find any supporting evidence from the literature reporting that hippocampal neurons have multiple axons in vivo, we only analyzed neurons with one axon for both AcD and nonAcD neurons. We will clarify this in our method section of the revised manuscript.

      Some interpretations about function are not correct and the authors should reconsider these. A role of cisternal organelles on neuronal excitability remains to be demonstrated (and see doi.org/10.1002/cne.21445 showing there is none). In addition, the statement that lower fluorescence intensity of Pan-Nav1 is indicating reduced excitability is flawed. Antibody staining does not scale linearly with voltage-gated sodium channel density and since the AIS of AcD neurons is further from the soma it is most likely smaller in diameter which may account for apparent fluorescent differences. For biophysical reasons (for details I refer to 10.3389/fncel.2019.00570, 10.1016/j.conb.2018.02.016 and 10.7554/eLife.53432) smaller diameter axons will be easier to depolarize by depolarizing voltage-gated channels or excitatory synapses. Finally, in AcD neurons the AIS distance from the soma poses all sorts of interesting cable properties with the soma and the local dendritic membrane and the electrotonic properties alone suffice to make these neurons more excitable.

      Reply: The reviewer brings up very valid and important points that we will address in the revised manuscript. First, we will rephrase and adjust our interpretations regarding the functions of the cisternal organelle in the AIS. As also mentioned by reviewer #2, we are aware that antibody staining does not properly reflect Na+ channel density. As discussed above, we will also measure other AIS proteins that anchor Na+ channels to see if there are any correlations in fluorescence intensity between them and Nav1. We agree with the reviewer that AcD neuron's AIS could have a smaller diameter, resulting in fewer Na+ channels. Indirect evidence is already available in the study of Benavides-Piccione et al., showing a smaller axon diameter in AcD neurons compared to nonAcD neurons in both human and mouse brain sections (Figure S4). To test this in our model system, we propose to measure the AIS diameter in AcD neurons. If this is indeed the case, we will indicate it in our revised manuscript and edit the section on Na+ channels.

      Exploring the biophysical properties of the AIS and axons of AcD neurons is indeed a highly interesting direction to pursue and is the project in its own. It would necessitate the use of computational modeling approaches, which require considerable time and resources that are not feasible within the timeframe of this revision.

      Comparing AcD and non-AcD neurons for AIS plasticity is an excellent idea but the present statistical design is not suitable for answering this question. The authors should directly compare non-AcD and AcD neurons within a two-way ANOVA design, asking the question whether the independent variable axon type is significantly different and interacts with plasticity.

      Related points: 'AIS distance' in Figure 7 seems to refer to something else than distance from soma (Figure 1). Please clarify. What were the absolute distances from the soma for the AcD neurons and was this dependent on treatment?

      Reply: We appreciate reviewer's comment and in the revised version we will perform the analysis using two-way ANOVA.

      Regarding the terminology and definitions used in our manuscript, the "AIS distance" refers to the measurement between the start of the AIS and the axon initiating point, as depicted in Figure S4 of the manuscript. We adopted this parameter from the previous study by Grubb et al. (Grubb & Burrone, 2010), ensuring consistency in our investigation of AIS plasticity. For AcD neurons, where the axon branches out from the dendrite, we defined the AIS distance as the length between the start of the AIS and the border of the stem dendrite, as illustrated in Figure S4B.

      In Figure 1, the term "distance from soma" represents the length of stem dendrite and used for AcD and nonAcD neuron classification. As shown in Figure S4G, the absolute distance from the soma for AcD neurons is approximately 10 µm and remains consistent across treatments. We will explain these points more clearly in the revised manuscript.

      Minor comments:

      1. At p. 7 is stated that "The percentage of none-AcD forming collaterals at DIV1 is much lower than for AcD neurons" but statistical support is lacking. The conclusion in the next line is that "AcD neurons follow consensus development". That is puzzling given the difference just mentioned before. Please clarify. Reply: We will provide statistical support for comparing collateral formation between nonAcD and AcD neurons at DIV1.

      Regarding the second point concerning consensus development, we were referring to the general developmental sequence of AcD neurons, as described by Dotti et al. (see Dotti et al., 1988 for reference), where neurons typically first establish an axon and then dendrites. This sequence is not necessary related to collateral formation, which indeed differs between nonAcD and AcD neurons. The ability to form collaterals may come from local differences in microtubule (MT) and actin dynamics at AcD neuron precursor axons, but it does not alter the fact that AcD neurons initially establish an axon and subsequently dendrites. We will clarify it in the revised manuscript.

      A study not cited in this manuscript showed distinct dendritic morphologies (doi: 10.1073/pnas.1607548113) and AcD interneurons are different for their axonal arborization (doi: 10.1242/dev.202305). Differences in growth of branch arborization could hint to subtypes. Are the AcD and non-AcD neurons different in their adult morphology? A detailed account of the axonal and dendritic trees would strengthen the data.

      Reply: Thank you for pointing this out. We will include this citation. In the study by Hodapp et al., it was shown that AcD and nonAcD neurons exhibit similar dendritic morphology and do not differ in spine density, number of dendritic branches, and total dendritic length. However, in hippocampal AcD neurons, the AcD occupies 35% of the total basal dendrite length, which is larger than basal dendrites in nonAcD neurons, suggesting that AcD neurons do possess specific features in their dendritic trees.

      Regarding the axons of AcD neurons, there is currently no detailed study available, and it would be more appropriate to investigate neuronal connectivity through tracing studies in animals rather than in primary cultures. Therefore, this question falls outside the scope of the current manuscript.

      Some key references are not included here, and a number of these are mentioned above. In the context of the detailed MT and Rab3A vesicle and cargo transport studies, please acknowledge some of the pioneering work of Alan Peters revealing the ultrastructure of axons emerging from dendrites. See Figs. 5-7 in Peters, Proskauer and Kaiserman-Abramof IR., J Cell Biol 39:604 (1968). What is the identity of the neurons? It makes a difference if the cells are interneurons or pyramidal neurons, CA1 or CA3-like. For plasticity experiments the authors uses cells as independent measurements, but this is inflating the power. How many cultures were used?

      Reply: Thank you for pointing this out; we will include the suggested references in the revised manuscript. In our study, we focused on excitatory neurons from the hippocampus. We distinguished neuron types morphologically or with the inhibitory neuron marker GAD1. Identifying CA1, CA2, CA3, and DG subtypes in dissociated culture is more challenging, and this would be an interesting avenue to explore in an in vivo system. Here, we focused on fundamental cell biology aspects related to the AIS structure and its trafficking barrier function, which should be similar in all these neuron types. While there may be subtype-specific differences in AIS plasticity, investigating this is beyond the scope of our manuscript.

      For the plasticity experiments, we used a total of 3 independent cultures, from which we collected a comparable number of neurons. In response to the reviewer's concern, we will also plot the mean of each culture to illustrate the variability of our data points.

      Reviewer 4

      Major comments:

      1. A general limitation of this study is the low N for some critical experiments. In several experiments, individual cells become an N, therefore boosting the power of the analysis when in reality, due to the known heterogeneity of AIS length, position, and general cell morphology in vitro, the aim should be to compare means across animals / preparations, each consisting of a comparable number of individual cells. This is especially important for the analyses of COs, axo-axonic synapses and channel expression at the AIS. Reply: We would like to mention that this is a cell biological study where neurons are grown in dissociated cultures. To prepare one such culture, we typically use hippocampi from 6-8 E18 rat embryos, which are then mixed in one suspension before plating. The cells are then plated on coverslips in a 12-well plate format. When referring to replicates, for all experiments except for the longitudinal study of 5-day-long time-lapse imaging of developmental sequences (Figure 1), we used between 3 to 6 independent preparations. From each preparation, we took a comparable number of cells derived from 4-6 different coverslips. For each experiment, we measured more than a hundred cells, which is standard practice in the field. To address the issue with individual measurements, in the revised manuscript, we will additionally plot the means of each independent preparation.

      Such critical parameters as e.g. synaptic innervation at the AIS are investigated in a way that does not support the clear statements given, e.g. "The AIS of AcD neurons receives fewer inhibitory inputs" (Highlights statement) or "AcD neurons have less inhibitory synapses at the AIS" (header of Fig. 6). The overall number of analyzed cells is low (3 and 4 preparations, respectively and approximately 50-cells for each marker). The combination of a pre- and postsynaptic marker for inhibitory / excitatory neurons is a solid decision, but the analysis is not done based on the close approximation of these markers, in 3D, along an AIS, but rather in maxIPs and without any regard of whether pre-and postsynaptic markers are actually close to each other not. The expression of these markers alone just points towards the epitopes being expressed, but are they localized to each other in such a manner that they could form bona fide synapses? The methods are not totally clear on the image depth (tile scans with 5 µm in z will not provide the detail of information to resolve synapses, so how did the authors address the subcellular analysis here and for the CO and VGSCs?). And generally, were Nyquist conditions taken into consideration throughout the study? This can be clarified in text and does not require additional experiments.

      Reply: The overall number of cells for quantifying inhibitory synapses along the AIS was approximately 80 cells for each synaptic marker. To clarify this, we will indicate the number of cells in the figure legend of our revised manuscript and will additionally plot mean values across independent preparations.

      In the current manuscript, our main goal was to provide an initial quantitative measurement of AIS features in AcD neurons to see if they differ from nonAcD neurons. Hence, maxIPs are sufficient for this purpose as they summarize the 3D information. To make our study more comprehensive, following the reviewer's suggestion, we will conduct additional experiments to co-label pre- and post-inhibitory synapses at the AIS with VGAT and gephyrin, respectively. Then, we will image samples in 3D to measure the density as well as the distance between pre- and post-synapses at the AIS of AcD neurons and compare them to nonAcD neurons.

      The Nyquist condition was taken into consideration throughout the study. The pixel size of our data collection was 0.081 µm for the laser scanning microscope, as indicated in our methods section. Given the optical setup of our microscope and the fluorophores used to label target proteins (information available in the methods section of our manuscript), the acceptable Nyquist lateral sampling size (or pixel size, in other words) for confocal images is between 0.083 to 0.093 µm and 0.2 µm in the z-plane. In our data collection for laser scanning confocal images, the z-step size was 0.5 µm (see methods section of our manuscript), which is indeed undersampling the data. However, this should not significantly affect our analysis based on maxIPs. The new stainings with matched pre- and post-synaptic markers will be imaged with a smaller z-step (0.2 µm) and then reconstructed in 3D.

      The chapter on AIS plasticity is certainly an interesting addition to the study, but is a bit superficial, yet reaches strong conclusions ("More importantly, it further indicates that the AIS of AcD neurons is insensitive to activity changes"). This is based on un-physiological concentrations of KCl, and certainly not on network manipulation that truly tests synaptic activity. It also comes back to the 1st point above. A suggestion would be to edit the conclusion.

      Reply: KCl treatment globally depolarizes the membrane potential of neurons, leading to an increase in intracellular calcium via voltage-sensitive calcium channels as well as NMDA and AMPA receptors (Rienecker et al., 2020). This protocol has been used in several initial studies describing the plasticity of the AIS (see Evans et al., 2013, 2017; Grubb & Burrone, 2010; Jamann et al., 2021; Muir & Kittler, 2014; Wefelmeyer et al., 2015 for references). Moreover, as shown by Evans et al. and Grubb et al. (see Evans et al., 2013; Grubb & Burrone, 2010 for references), AIS plasticity is not abolished by TTX, which blocks Na+ channels, but is prevented by L-type calcium channel blockers. This suggests that the occurrence of AIS plasticity is independent of action potentials but more sensitive to calcium-related pathways downstream of membrane potential depolarization and post-synaptic activation. Hence, we believe our results are indicative of how the AIS would react when calcium signaling pathways are altered by activity levels. To address the reviewer's concern, we will focus our conclusion more on membrane potential depolarization and calcium signalling and edit out statements.

      As discussed above in response to reviewer #3, the quantification of AIS plasticity includes 3 independent preparations, comprising approximately 200 neurons in total. To prevent inflation of statistical power in the analysis, we will also plot the means and standard error of the mean (SEM) for each independent experiment and assess whether any differences persist.

      The rationale behind looking at the cisternal organelle (CO) in this study is outlined in the Introduction, where the authors state that "...... and is responsible for calcium handling". What is "calcium-handling" and where is the evidence cited? Furthermore, in the Results, they state that "...both compounds (VGSCs and COs) are critical for the AIS to regulate neuronal excitability". While this is the case for VGSCs, there is no conclusive evidence in the literature whether of not the CO is "critical" for neuronal excitability. In fact, a number of neurons have no CO in the AIS (as much as 50% of all AIS in mouse primary visual cortex for example do not express synpo at the AIS at all, Schlüter et al., 2017). The CO can therefore not be as critical for AP initiation as the authors state. Furthermore, the authors state that "AIS plasticity in excitatory neurons is triggered by calcium signaling". While certainly shown and adequately cited here, other factors (independent of calcium) can also play a role, therefore this statement is a bit absolute and should be edited accordingly.

      Reply: Thank you for constructive editorial suggestions. Regarding the first question on calcium handling, we were referring to Ca2+ storage and release mechanisms. Benedeczky et al. already showed the existence of SERCA-type Ca2+ pumps at the membrane of the cisternal organelle (CO) to demonstrate the involvement of Ca2+ sequestering/storage by the CO at the AIS (Benedeczky et al., 1994). Although indirect, Sánchez-Ponce et al. showed the presence of IP3R, which promotes Ca2+ release from internal storage, at the AIS and partially colocalizes with synaptodin (Sánchez-Ponce et al., 2011). This is also the same case for the Ca2+-binding protein annexin 6. Together, this evidence indicates a putative role of the CO in regulating Ca2+ dynamics (storage/release) at the AIS. Since Ca2+ levels have a significant impact on action potential generation and timing at the AIS (see Bender & Trussell, 2009; Yu et al., 2010 for references), and therefore should be strictly regulated, it is likely that the CO at the AIS is important for regulating neuronal excitability by controlling Ca2+ dynamics. However, as mentioned by the reviewer, there are no conclusive pieces of evidence showing the relationship between the CO and neuron excitability regulation. We will edit our statement accordingly.

      In contrast to the findings of Schlüter et al. (Schlüter et al., 2019), which were conducted in the mouse primary visual cortex, Sánchez-Ponce et al. showed that nearly 90% of hippocampal neurons contain synaptopodin, the CO marker protein, at the AIS. Furthermore, Schlüter et al. also demonstrated that in the other 50% of neurons containing COs at the AIS, the COs change size during visual deprivation, and their presence correlates with AIS length changes as well as eye-opening. These observations do suggest that COs are related to neuronal activity. However, this correlation and the formation of COs may be specific to neuro subtypes or require certain triggers. This is another interesting direction to explore, and we will include it in the discussion of the revised manuscript.

      Regarding the last point on Ca2+ and AIS plasticity, we were not excluding other factors that could potentially participate in AIS plasticity and will also discuss it in the revised version.

      The Introduction ends with the rationale of the study, namely that the authors seek to ....."provide a detailed characterization of the AIS, including its structural and functional properties....". Structure is investigated, but function is limited to the barrier function of the AIS. Since the authors provide no electrophysiology that would really dissect AIS function, I suggest to rephrase this part and focus on transport.

      Reply: As suggested, we will certainly emphasize the cargo barrier function of the AIS in AcD neurons in our introduction. But we would like to keep the term "AIS function", because it has already been nicely demonstrated electrophysiologically by previous studies that the plasticity effect of the AIS is very important for maintaining cellular homeostasis.

      The Discussion is more a list of future plans than a context to current data. The authors could move some of the new questions they identify into an "outlook" section at the end? Also, again have a critical look at the literature that is cited and which statements are accurate.

      For example, the 2nd phrase in the Discussion states that is was shown that AcD neurons have a "role in memory consolidation", referenced to Hodapp et al., 2022. However, that paper does not provide direct evidence of such a role for AcD neurons. The statement "Collectively, our data provide new insights into the development of AcD neurons and demonstrate that there are differences in AIS functionality between AcD and nonAcD neurons", is not correct. AIS function was not investigated outside of the axonal barrier, and here, the AcD and nonAcD cells do not differ. Also, although the Discussion is geared towards excitatory / glutamatergic neurons, it has been shown by others that interneurons show an even stronger trend to exhibit AcD morphology (work by the Wahle lab and others). This is not clear from the current text (also compare "...AcD neurons being a different subtype if pyramidal neuron").

      Further original publications should be included in the paragraph highlighting patch-clamp recordings (see above). In the same context, the statement "...showed that rapid AID plasticity occurs mainly in hippocampal dentate gyrus cells but not in principal excitatory neurons" is not accurate (see Kim, Kuba, Jamann and others). Generally, the Introduction and Discussion would benefit from a very clear distinction between studies done in vitro versus those done ex vivo or in vivo. This needs to be stated in the Abstract as well.

      Methods: For the imaging of synapses, the CO and VGSCs, it is not clear to me from the methods whether Nyquist conditions were applied to produce data that can support the quantification of nanoscale structures. Basing the analysis and interpretation of channel expression on fluorescence intensity profiles is problematic (variance in staining quality from samples to sample, lack of an internal standard). This should be noted in the text. In the text, the first two references given for "Induction of plasticity" do not reference the correct papers.

      Reply: Thank you for the valuable suggestions; we will incorporate them into the revised version of the manuscript. The structure will undoubtedly benefit from these improvements. We will also have a further look into our interpretation of the literatures as well as citations during our revision time frame.

      Regarding methods, as stated in response to the second point raised by this reviewer, we ensured that the Nyquist condition was adhered to throughout the study. The pixel size, z-step size, and optical setup of the microscopes used were already indicated in our methods section. With respect to Na+ channel staining, we were indeed aware of the potential issues posed by the experimental setup, and we will explicitly mention this in our revised manuscript. Additionally, we plan to measure other AIS scaffolding and membrane proteins that anchor Na+ channels to assess for potential changes, which could indirectly support our Na+ channel staining results.

      Finally, the text is lacking a discussion of limitations of the study, especially from a methodological point of view. In the Abstract/Summary already, the authors could point out that this is a pure in vitro study. Interestingly, to this day, AIS relocation during plasticity events has only been shown in cell culture systems, and not in vivo. Therefore, this needs to be put into context here - the chosen system is great for the type of imaging approach presented here, but may look at a type of AIS plasticity that is not seen in vivo.

      Reply: These are very good points. We will include the limitations of the study in the discussion. Indeed, due to technical and methodological challenges, the relocation of the AIS has not yet been demonstrated using animal models. However, in the study by Wefelmeyer et al. (Wefelmeyer et al., 2015), a similar relocation of the AIS resulting from chronic stimulation was observed in hippocampal organotypic slices, and it was accompanied by reduced excitability of neurons. Furthermore, in the same study, neurons with axons/AIS originating from basal dendrites were also mentioned. However, the measurement of chronic AIS plasticity in their study was not performed based on different classes of neuron types. Hence, our work complements their results. Given that the network connectivity of organotypic slices is much closer to real physiological conditions, it is likely that similar plastic adaptations could occur in vivo.

      __Minor comments __

      1. How does intrinsic neuronal activity play into developmental programs in vitro? Electrical activity in maturing neurons is a major part of how networks are shaped, and cells differentiate. This is not genetically encoded per se, but has been shown to be a major driving force of neuronal development in vivo. Is this reflected in the culture setting in any way? And have the authors considered testing early changes in activity patterns in their cultures to see whether AcDs and nonAcDs develop in similar percentages? To clarify, I am not asking for additional experiments. Reply: It is indeed a valid point that activity can influence neuronal morphology. Lehmann et al. (pre-print, doi: https://doi.org/10.1101/2023.07.31.551236) have recently demonstrated that increased network activity leads to more excitatory principal neurons adopting AcD morphology. However, our developmental data were collected from DIV0 to DIV5, an age at which dissociated neurons do not yet form functional excitatory synapses. Therefore, it is highly unlikely that network activity plays a role in shaping AcD neuron development during this early stage.

      The authors may want to add a bit of a technical discussion on the choice of KCl and TTX as triggers for plasticity, especially at the non-physiological concentrations offered here and elsewhere (15 mM KCl).

      Reply: We appreciate the reviewer for pointing this out. We will add this in our revised manuscript.

      Some key statements would benefit from citing the appropriate original literature (some examples would be the original work by Kole, Bender and Brette on the role of the AIS in AP initiation; original work by D'Este and Letterier on the dendritic and axonal scaffold using nanoscopy; work by Kim, Kuba and Jamann on AIS plasticity in vitro and in vivo that is critical for a more informed discussion of AIS plasticity here, and others)

      Reply: These are very good points, we will make suggested edits in the revised version.

      In the Introduction, the authors word their text explicitly for excitatory neurons. However, AIS plasticity has also been observed in interneurons (work by the Grubb lab for example), and axo-axonic synapses are in fact not all inhibitory - this is in important factor to consider given the embryonic state of the culture material. Does the DIV maturation reflect how axo-axonic synapses "switch" from excitatory to inhibitory in vivo (also see work of the Burrone lab)? Can the conclusions form the paper really be drawn based on this type of system?

      Reply: The AIS plasticity was indeed also observed in inhibitory interneurons (see Chand et al., 2015 for reference) and show opposite phenotypes compared to excitatory neurons. Also related to major comment #5, we did take the potential influence of AcD interneurons on the outcome of AIS plasticity experiment into consideration. Therefore, we also did a control experiment where inhibitory interneurons were labelled with GAD1 after chronic KCl treatment and these neurons were excluded from the analysis. Consistently, we got the same results that excitatory AcD neurons do not undergo chronic AIS plasticity. We will include this data in our revised manuscript. Further, in our current manuscript, we decided to focus on excitatory AcD neurons not only because they are the major functional unit in neuronal circuits, but also because the majority of the electrophysiological features were studied in excitatory AcD neurons. But we agree with the reviewer that AcD interneuron is definitely an interesting subject for follow up research in the future.

      As mentioned by the reviewer, Pan-Vazquez et al. (Pan-Vazquez et al., 2020) nicely showed that axo-axonic synapses made by GABAergic Chandelier cells (ChCs) depolarise neurons in brain slices obtained from P12-18 animals. But this effect is reversed in slices obtained from older animals (>>P40). Of note, their results were based on cortical neurons but not hippocampal neurons, hence cell type specificity should be considered. More importantly, previous study reported that this conversion or switch of GABAergic interneurons from excitatory to inhibitory occurs on hippocampal neurons in P12-13 animals (Leinekugel et al., 1995). In dissociated hippocampal neurons from E18 rat embryos, this switch of GABAergic interneurons takes place on DIV9-11 and completes on DIV19, which should have a comparable neuronal developmental stage as the P12-13 in in vivo system (see Ganguly et al., 2001 for reference). Therefore, the conclusion could be drawn in an in vitro system, but it certainly needs to be validated in in vivo system.

      The authors state that "less COs account for higher intrinsic excitability". Why is that the case?

      Reply: According to Yu et al. and Bender et al., Ca2+ transient at the AIS regulates the generation of action potentials (APs). For instance, reducing Ca2+ transient at the AIS by blocking Ca2+ channels with either mibefradil (a T-type Ca2+ channel antagonist) or Ni2+ (which blocks R- and T-type channels) decreased the number of spikelets evoked by EPSP-like current injection and delayed the timing of spike generation (please see Bender & Trussell, 2009 for details). Therefore, we speculate that Ca2+ transients are less affected when there are fewer cisternal organelles (COs) at the AIS, which could have a more direct impact on AP initiation. However, this is just our hypothesis, and there is indeed no direct evidence showing that COs regulate Ca2+ dynamics. We will discuss this in the revised manuscript.

      Last but not least, some very recent studies on AcD biology (Stevens, Thome, Lehmann, Wahle) is available online also on preprint servers and may provide additional support for the current study.

      Reply: We will check these pre-prints and include relevant information into the revised version.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The author should evaluate the possibility of naturally occurring arrhythmia due to the geometry of the tissues, by using voltage or calcium dye.

      Answer: We thank the reviewer for this suggestion. We have performed new experiments using a voltage-sensitive fluorescent dye (i.e. FluoVolt) with data reported in the new Figure 4 + new results section “arrhythmia analysis”. Briefly, we found that our ring-shaped tissues are compatible with live fluorescence imaging. We were then able to show that our cardiac tissues beat regularly, without naturally occurring arrhythmias or extra beats. We could not detect any re-entrant waves in our tissues in the conditions offered by the speed of our camera. A specific paragraph has also been added to the discussion.

      (2) There is only 50% survival after 20 days of culture in the optimized seeding group. Is there any way to improve it? The tissues had two compartments, cardiac and fibroblast-rich regions, where fibroblasts are responsible for maintaining the attachment to the glass slides. Do the cardiac rings detach from the glass slides and roll up? The SD of the force measurement is a quarter of the value, which is not ideal with such a high replicate number.

      Answer: This paper report seminal data that will serve as a foundation for further use of the platform. We are currently expanding to other cell lines with improvement in survival (see https://insight.jci.org/articles/view/161356). We confirm that the rings do not detach. The pillar was specifically designed to avoid this (See figure 1B).

      As the platform utilizes imaging analysis to derive contractile dynamics, calibration should be done based on the angle and the distance of the camera lens to the individual tissues to reduce the error. On the other hand, how reproducible of the pillars? It is highly recommended to mechanically evaluate the consistency of the hydrogel-based pillars across different wells and within the wells to understand the variance.

      Answer: We propose a system and a measurement method that do not need calibration. Contraction amplitude is expressed as a ratio between the contracted / relaxed areas (See figure 3 A). There is thus no influence of the distance of the camera lens.

      In order to evaluate the consistency of the mechanical properties of the hydrogel, we reproduced the experiment pictured in Figure1-Supplement 1, and measured the Young’s Modulus of three different gel solutions on different days. In the three experiments performed, we found values of 10.0-12.2 kPa, resulting in a final average value of 11.2 (+/- 0.6) kPa, coherent with the value reported in the article. We are therefore confident that the mechanical properties are consistent across and within wells. More extensive mechanical characterization of the molded gels would require the access to an Atomic Force Microscope (AFM), and is considered in the future.

      The author should address the longevity and reproducibility issues, by working on the calibration of camera lens position/distance to tissues and further optimizing the seeding conditions with hydrogels such as collagen or fibrin, and/or making sure the PEG gels have high reproducibility and consistency.

      Answer: This paper report seminal data that will serve as a foundation for further use of the platform. This platform (including the design, approach and choice of polymers) allows a fast and reproducible formation of an important number of cardiac tissues (up to 21 per well in a 96-well format, meaning a potential total of about 2,000 tissues) with a limited number of cells.

      (3) The evaluation of the arrhythmia should be more extensively explained and demonstrated.

      Answer : See answer to comment 1

      (4) The results of isoproterenol should be checked as non-paced tissues should have increased beating frequency with increasing dosages. Dofetilide does not typically have a negative inotropic effect on the tissues. Please check on the cell viability before and after dosing

      Answer : We agree with this reviewer on the principle. However, we have repeated the experiments and we confirm our results, i.e. increasing concentrations of isoproterenol induced a trend towards increase in the contraction force and significantly increased contraction and relaxation speeds without change in the beat rate (Figure 5C). We do not have a definitive explanation for this observation. Our hypothesis is that this increase in contraction and relaxation speeds induced by isoproterenol is translated, on average in our study, into an increase in contractile force rather than in an increase in contraction frequency. This may depend on the cell line used, and is very well illustrated in a recent paper from Mannhardt and colleagues (Stem cell reports. 2020; 15(4):983–998). Of the 10 different cell lines tested in engineered heart tissues, all show an increase in contraction and relaxation speeds after isoproterenol administration, but this is translated either into an increase in contractile force (4 cell lines) or into a shortening of the beat (3 cell lines), and only 2 cell lines show an increase in both parameters. Indeed, since iPSC-CMs are immature cardiac cells, it is rare to obtain a positive force-frequency relationship without any maturation medium or mechanical or electrical training. We agree that above a concentration of 10nM, dofetilide shows cardiotoxicity in our tissues as tissues completely stop beating.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the general comments in the public review, I have the following specific suggestions to the authors, that would help improve the manuscript.

      (1) Please describe the protocol for preparation of cardiac rings (shown in Figure 1C) in more detail. In particular, please describe how the tissues were transferred from the mold into the 96-well plate and how are they positioned and characterized during the study.

      Answer: There is no transfer of the tissues as they directly form in the well, that is pre-equipped with the molded PEG gel (See Figure 1B and methods section). The in situ analysis is a strong asset of this platform.

      (2) Please clarify the timepoints in this study. The overall schematic in Figure 1 C shows that the rings were formed on day 22 and then studied for 14 days, while Figure 2B shows data over 20 days following seeding, and Figure 3 shows data 14 days after seeding. It appears that these were separate studies (optimization of myocyte/fibroblast ratio followed by the main study.

      Answer: Figure 1C is showing the timeline including the cardiomyocytes differentiation. hiPSC-CMs are indeed seeded in the wells 22 days after starting the differentiation, which represent the Day0 for tissue formation. We apologize for the confusion.

      (3) Please explain if the number of rings per well (Figure 2) was used as the only criterion for selecting the myocyte/fibroblast ratio, and if so, why. Were these rings also characterized for their structural and contractile properties?

      Answer: Figure 2 supplement 1 report the contractility data according to the different tested ratios, and show no differences. The number for generated ring-shaped tissues was indeed the only criterion retained.

      (4) Please provide rationale for using the dermal rather than cardiac fibroblasts.

      Answer: We had previous experience generating EHTs using dermal fibroblasts which are easier to obtain commercially. Our approach could in theory also work using cardiac fibroblasts, which we have not tested in the present study.

      (5) Figure 2 panels C-E show an interesting segregation of cardiomyocytes into a thin cylindrical layer that does not appear to contain fibroblasts and a shorter and thicker cylinder containing fibroblasts mixed with occasional myocytes. Please specify at which time point this structure forms, and how does it change over time in culture? At which time point were the images taken? It would be helpful to include serial images taken over 1-14 days of study.

      Answer: We thank the reviewer for this interesting comment. We have performed additional immunostainings (reported in Figure 2 supplement 3) on tissues at Day 1 and day 7 after seeding. The segregation appears in the 7 first days. It appears that 1 day after seeding the fibroblasts are not yet attached, although the cardiac fiber has already started to be formed. Seven days after seeding, fibroblasts are fully spread and attached, and the contractile ring is formed and well-aligned. Brightfield images are reported in Figure 1E.

      (6) In the cardiomyocyte region (Figure 2D) the cells staining for troponin seem to be only at the surfaces. The thickness of the layer is only about 30-40 µµ, so one would assume that cell viability was not an issue. Please specify and discuss the composition of this region.

      Answer: We agree but we think this is a technical issue as at the center of the tissue, tissue thickness will limit laser penetration, although at the surface (inner our outer), the laser infiltrates easily between the tissue and the PEG. Moreover, we see on the zoomed view of the tissue in Figure 2 Supplement 2 that we have a staining inside the cardiac fiber, which just appears less strong due to tissue thickness.

      (7) Please also discuss segregation in terms of possible causes and the implications of apparently very limited contact between the two cell types, i.e., how representative is this two-region morphology of native heart tissue. Also, it would be interesting to know how the segregation has changed with the change in myocyte/fibroblast ratio.

      Answer: We are not sure there is a very limited contact as the use of fibroblasts is critical to ensure the formation of tissues (i.e. no tissues can be formed if we avoid the use of fibroblasts). We agree that these ring-shaped cardiac tissues are not especially representative of a native heart tissue in terms of interactions between several cell types. They were developed as a surrogate for physiopathological and pharmacological experiments (see a recent application in https://insight.jci.org/articles/view/161356)

      (8) There is interest and demonstrated ability to culture engineered cardiac tissues over longer periods of time. Please comment what was the rationale for selecting 14-day culture and if the system allows longer culture durations.

      Answer: In line with this comment, we have studied the contractile parameters of our rings 28 days after seeding and compared to their contractile parameters at D14. We found a slight increase for all the parameters, which is significant for the maximum contraction speed. Nevertheless, the data is much more variable and the number of tissues is lower (29 for D14 against 17 for D28). Therefore, we demonstrated that long-term culture of our tissues is possible, however not yet optimized. Hence, the following physiological and pharmacological tests have been done at D14.

      (9) Figure 3 documents the development of contractile parameters over 14 days of culture. Would it be possible to replace the arbitrary units with the actual values? Also, would it be possible to include the corresponding images of the rings taken at the same time points, to show the associated changes in ring morphologies.

      Answer: Contraction amplitude is expressed as a ratio between the contracted / relaxed areas (See figure 3 A): it is a ratio, thus without unit. Corresponding images can be seen in Figure 1 E.

      (10) The measured contraction stress, strain, and the speeds of contraction and relaxation improve from day 1 to day 7 and then plateau (Figure 3, Supplemental Figure 3. Please discuss this result.

      Answer: The new immunostainings performed on tissues at Day 1 and Day 7 show the progressive alignment of the cardiomyocytes and the muscular fibers, with an almost complete organization at Day 7.

      (11) The beating frequency does not appear to markedly change over time, while Figure 3B shows strong statistical significance (***) throughout the 14-day period. Please check/confirm.

      Answer: We confirm this result.

      (12) Please comment on the lack of effect of isoproterenol on beating frequency.

      Answer: We agree with this reviewer on the principle. However, we have repeated the experiments and we confirm our results, i.e. increasing concentrations of isoproterenol induced a trend towards increase in the contraction force and significantly increased contraction and relaxation speeds without change in the beat rate (Figure 5C). We do not have a definitive explanation for this observation. Our hypothesis is that this increase in contraction and relaxation speeds induced by isoproterenol is translated, on average in our study, into an increase in contractile force rather than in an increase in contraction frequency. This may depend on the cell line used, and is very well illustrated in a recent paper from Mannhardt and colleagues (Stem cell reports. 2020; 15(4):983–998). Of the 10 different cell lines tested in engineered heart tissues, all show an increase in contraction and relaxation speeds after isoproterenol administration, but this is translated either into an increase in contractile force (4 cell lines) or into a shortening of the beat (3 cell lines), and only 2 cell lines show an increase in both parameters. Indeed, since iPSC-CMs are immature cardiac cells, it is rare to obtain a positive force-frequency relationship without any maturation medium or mechanical or electrical training.

      (13) Please compare the contractile function of cardiac tissues measured in this study with data reported for other iPSC-derived tissue models.

      Answer : A specific paragraph tackles this aspect in the discussion

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewers’ Public Comments

      We are grateful for the reviewers’ comments. We have modified the manuscript accordingly and detail our responses to their major comments below.

      (1) Reviewer 2 was concerned that transformation of continuous functional data into categorical form could reduce precision in estimating the genetic architecture.

      We agree that transforming continuous data into categories may reduce resolution, but it also improves accuracy when the continuous data are affected by measurement noise. In our dataset, many genotypes are at the lower bound of measurement, and the variation in measured fluorescence among these genotypes is largely or entirely caused by measurement noise. By transforming to categorical data, we dramatically reduced the effect of this noise on the estimation of genetic effects. We modified the results and discussion sections to address this point.

      (2) Reviewer 2 asked about generalizability of our findings.

      Because our paper is the first use of reference-free analysis of a 20-state combinatorial dataset, generalizability is at this point unknown. However, a recent manuscript from our group confirms the generality of the simplicity of genetic architecture: using reference-free methods to analyze 20 published combinatorial deep mutational scans, several of which involve 20-state libraries, we found that main and pairwise effects account for virtually all of the genetic variance across a wide variety of protein families and types of biochemical functions (Park Y, Metzger BPH, Thornton JW. 2023. The simplicity of protein sequence-function relationships. BioRxiv, 2023.09.02.556057). Concerning the facilitating effect of epistasis on the evolution of new functions, we speculate that this result is likely to be general: we have no reason to think that the underlying cause of this observation – epistasis brings genotypes with different functions closer in sequence space to each other and expands the total number of functional sequences – arises from some peculiarity of the mechanisms of steroid receptor DBD folding or DNA binding. However, we acknowledge that our data involve sequence variation at those sites in the protein that directly mediate specific protein-DNA contact; it is plausible that sites far from the “active site” may have weaker epistatic interactions and therefore have weaker effects on navigability of the landscape. We have addressed these issues in the discussion.

      (3) Reviewer 3 asked “in which situation would the authors expect that pairwise epistasis does not play a crucial role for mutational steps, trajectories, or space connectedness, if it is dominant in the genotype-phenotype landscape?”

      The question addressed in our paper is not whether epistasis shapes steps, trajectories or connectedness in sequence space but how it does so and what its particular effects are on the evolution of new functions. The dominant view in the field has been that the primary role of epistasis is to block evolutionary paths. We show, however, that in multi-state sequence space, epistasis facilitates rather than impedes the evolution of new functions. It does this by increasing the number of functional genotypes and bringing genotypes with different functions closer together in sequence space. This finding was possible because of the difference in approach between our paper and prior work: most prior work considered only direct paths in a binary sequence space between two particular starting points – and typically only considering optimization of a single function – whereas we studied the evolution of new functions in a multi-state amino acid space, under empirically relevant epistasis informed by complete combinatorial experiments. The result is a clear demonstration that the net effect of real-world levels of epistasis on navigability of the multidimensional sequence landscape is to make the evolution of new functions easier, not harder.

      (4) Reviewer 3 asked for “an explanation of how much new biological results this paper delivers as compared with the paper in which the data were originally published.”

      Starr 2017 did not use their data to characterize the underlying genetic architecture of function by estimating main and epistatic effects of amino acid states and combinations; it also did not evaluate the importance of epistasis in generating functional variants, determining the transcription factor’s specificity, or shaping evolutionary navigability on the landscape.

      (5) Reviewer 3 requested an explanation of how the results would have been (potentially) different if a reference-based approach were used, and how reference-based analysis compares with other reference-free approaches to estimating epistasis.

      This topic has been covered in detail in a recent manuscript from our group (Park et al. Biorxiv 2023.09.02.556057). Briefly, reference-free approaches provide the most efficient explanation of an entire genotype-phenotype map, explaining the maximum amount of genetic variance and reducing sensitivity to experimental noise and missing genotypes compared to reference-based approaches. Reference-based approaches tend to infer much more epistasis, especially higher-order epistasis, because measurement error and local idiosyncrasy near the wild-type sequence propagate into spurious high-order terms. Reference-based analyses are appropriate for characterizing only the immediate sequence neighborhood of a particular “wild-type” protein of interest. Reference-free approaches are therefore best suited to understanding genotype-phenotype landscapes as a whole. We have clarified these issues in the revised discussion.

      (6) Reviewer 3 suggested that the comparison between the full and main-effects-only model should involve a re-estimation of main effects in the latter case.

      This is indeed what we did in our analysis. We have clarified the description in the results and methods sections to make this clear.

      (7) Reviewer 3 asked about the applicability of the approach to data beyond those analyzed in the present study and requirements to use it.

      Our approach could be used for any combinatorial DMS dataset in which the phenotypic data are categorical (or can be converted to categorical form). Complete sampling is not required: a virtue of reference-free analysis is that by averaging the estimated effects of states and combinations over all variants that contain them, reference-free analysis is highly robust to missing data (except at the highest possible order of epistasis, where only a single variant represents a high-order effect) as long as variant sampling is unbiased with respect to phenotype. All the required code are publicly available at the github link provided in this manuscript. We have also described a general form of reference-free analysis for continuous data and applied it to 20 protein datasets in a recent publication (Park et al. Biorxiv 2023.09.02.556057).

      (8)Reviewer 3 suggested that the text could be shortened and made less dense.

      We agree and have done a careful edit to streamline the narrative.

      Response to Reviewers’ Non-Public Recommendations

      (1) Reviewer 1 noted that specific epistatic effects might in some cases produce global nonlinearities in the genotype-phenotype relationship. They then asked how our results might change if we did not impose a nonlinear transformation as part of the genotype-phenotype model. The reviewer’s underlying concern was that the non-specific transformation might capture high-order specific epistatic effects and thus reducing their importance.

      Because our data are categorical, we required a model that characterizes the effect of particular amino acid states and combinations on the probability that a variant is in a null, weak, or strong activation class. A logistic model is the classic approach to this kind of analysis. The model structure assumes that amino acid states and combinations have additive effects on the log-odds of being in one functional class versus the lower functional class(es); the only nonlinear transformation is that which arises mathematically when log-odds are transformed into probability through the logistic link function. Thinking through the reviewer’s comment, we have concluded that our model does not make any explicit transformation to account for nonlinearity in the relationship between the effects of specific sequence states/combinations and the measured phenotype (activation class). If additional global nonlinearities are present in the genotype-phenotype relationship – such as could be imposed by limited dynamic range in the production of the fluorescence phenotype or the assay used to measure it – it is possible that the sigmoid shape of the logistic link function may also accommodate these nonlinearities. We have noted this part in the revised manuscript.

      (2) Reviewer 1 observed that our model seems to prefer sets of several pairwise interactions among states across sites rather than fewer high-order interactions among those same states.

      This finding arises because the pattern of phenotypic variation across genotypes in our dataset is consistent with that which would be produced by pairwise interactions rather than by high-order interactions. In a reference-free framework, these patterns are distinct from each other: a group of second-order terms cannot fit the patterns produced by high-order epistasis, and high-order terms cannot fit the pattern produced by pairwise interactions. Similarly, main-effect terms cannot fit the pattern of phenotypes produced by a pairwise interaction, and a pairwise epistatic term cannot fit the pattern produced by main effects of states at two sites. For example, third-order terms are required when the genotypes possessing a particular triplet of states deviate from that expected given all the main and second-order effects of those states; this deviation cannot be explained by any combination of first- and second-order effects.

      We explain this point in detail in our recent manuscript (Park Y, Metzger BPH, Thornton JW. 2023. The simplicity of protein sequence-function relationships. BioRxiv, 2023.09.02.556057) and we summarize it here. Consider the simple example of two sites with two possible states (genotypes 00, 01, 10, and 11). If there are no main effects and no pairwise effects, this architecture will generate the same phenotype for all four variants – the global average (or zero-order effect). If there are pairwise effects but no main effects, this architecture will generate a set of phenotypes on which the average phenotype of genotypes with a 0 at the first site (00 and 01) equals the global average – as does the average of those with 0 at the second site (00 and 10). The epistatic effect causes the individual genotypes to deviate from the global average. This pattern can be fit only by a pairwise epistatic term, not by first-order terms. Conversely, if there are main effects but no pairwise effects, then the average phenotype of genotypes 00 and 01 will deviate from the global average (by an amount equal to the first-order effect), as will the average of (00 and 10): the phenotype of each genotype will be equal to the sum of the relevant first-order effects for the state it contains. This pattern cannot be fit by second-order model terms. The same logic extends to higher orders: a cluster of second-order terms cannot explain variation generated by third-order epistasis, because third-order variation is by definition is the deviation from the best second-order model.

      (3) Reviewer 1 suggested several places in the text where citations to prior work would be appropriate.

      We appreciate these suggestions and have modified the manuscript to refer to most of these works.

      (4) Reviewer 1 pointed to the paper of Gong et al eLife 2013 and asked whether it is known how robust the proteins in our study are to changes in conformation/stability compared to other proteins, and whether this might impact the likelihood of observing higher-order epistasis in this system.

      The DBDs that we study here are very stable, and previous work shows that mutations affect DNA specificity primarily by modifying the DBD’s affinity rather than its stability (McKeown et al., Cell 2014). Additionally, Gong et al.’s findings pertain to a globally nonlinear relationship between stability and function, which arises from the Boltzmann relationship between the energy of folding and occupancy of the folded state. Because our data are categorical – based on rank-order of measured phenotype rather than fluorescence as a continuous phenotype – the kind of global nonlinearity observed in Gong’s study are not expected to produce spurious estimates of epistasis in our work. We have modified the discussion to discuss the point.

      (5) Reviewer 1 asked a) why the epistatic models produce landscapes on which variants have fewer neighbors on average than main-effects only models and b) why the average distance from all ERE-specific nodes to all SRE-specific nodes is greater with epistasis (but the average distance from ERE to nearest SRE is lower with epistasis).

      In the main effects-only landscape, the functional genotypes are relatively similar to each other, because each must contain several of the states that contribute the most to a positive genetic score. Moreover, ERE-specific nodes are similar to each other, and SRE-specific nodes are similar to each other, because each must contain one or more of a relatively small number of specificity-determining states. When epistasis is added to the genetic architecture, two things happen: 1) more genotypes become functional because there are more combinations that can exceed the threshold score to produce a functional activator and 2) these additional functional variants are more different from each other – in general, and within the classes of ERE- or SRE-specific variants – because there are now more diverse combinations of states that can yield either phenotype. As a result, a broader span of sequence space is occupied, but ERE- and SRE-specific variants are more interspersed with each other. This means that the average distance between all pairs of nodes is greater, and this applies to all ERE-SRE pairs, as well. However, the interspersing means that the closest single SRE to any particular ERE is closer than it was without epistasis. We have added this explanation to the main text.

      (6) Reviewer 2 asked us to explain why average path length increases with pairwise epistasis as the strength of selection for specificity increases.

      This behavior occurs because of the existence of a local peak in the pairwise model. Genotypes on this peak contained few connections to other genotypes, all of which were less SRE specific. Thus, with strong selection, i.e. high population size, the simulations became stuck on the local peak, cycling among the genotypes many times before leaving, resulting in a large increase in the mean step number. As shown in the rest of the figure, when the longest set of paths are removed, there are still differences in the average number of steps with and without epistasis. This issue is described in the methods section.

      (7) Reviewers made several suggestions for clarity in the text and figures.

      We have modified the paper to address all of these comments.

      (8) Reviewer 3 stated that the code should be available.

      The code is available at https://github.com/JoeThorntonLab/DBD.GeneticArchitecture.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors were trying to understand the relationship between the development of large trunks and longirrostrine mandibles in bunodont proboscideans of Miocene, and how it reflects the variation in diet patterns.

      Strengths:

      The study is very well supported, written, and illustrated, with plenty of supplementary material. The findings are highly significant for the understanding of the diversification of bunodont proboscideans in Asia during Miocene, as well as explaining the cranial/jaw disparity of fossil lineages. This work elucidates the diversification of paleobiological aspects of fossil proboscideans and their evolutionary response to open environments in the Neogene using several methods. The authors included all Asian bunodont proboscideans with long mandibles and I suggest that they should use the expression "bunodont proboscideans" instead of gomphotheres.

      Weaknesses:

      I believe that the only weakness is the lack of discussion comparing their results with the development of gigantism and long limbs in proboscideans from the same epoch.

      Thank you for your comprehensive review and positive feedback on our study regarding the co-evolution of feeding organs in bunodont proboscideans during the Miocene. We appreciate your suggestion, and have decided to use the term "bunodont elephantiforms" (for more explicit clarification, we use elephantiforms to exclude some early proboscideans, like Moeritherium, ect.) instead of "gomphotheres," and we will make this change in our revised manuscript. We also appreciate the potential weakness you mentioned regarding the lack of discussion comparing our results with the development of gigantism and long limbs in proboscideans from the same epoch. We agree with the reviewer’s suggestion, and we are aware that gigantism and long limbs are potential factors for trunk development. Gigantism resulted in the loss of flexibility in elephantiforms, and long limbs made it more challenging for them to reach the ground. A long trunk serves as compensation for these limitations. limb bones were rare to find in our material, especially those preserved in association with the skull.

      Reviewer #2 (Public Review):

      This study focuses on the eco-morphology, the feeding behaviors, and the co-evolution of feeding organs of longirostrine gomphotheres (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) which are characterised by their distinctive mandible and mandible tusk morphologies. They also have different evolutionary stages of food acquisition organs which may have co-evolve with extremely elongated mandibular symphysis and tusks. Although these three longirostrine gomphothere families were widely distributed in Northern China in the Early-Middle Miocene, the relative abundances and the distribution of these groups were different through time as a result of the climatic changes and ecosysytems.

      These three groups have different feeding behaviors indicated by different mandibular symphysis and tusk morphologies. Additionally, they have different evolutionary stages of trunks which are reflected by the narial region morphology. To be able to construct the feeding behavior and the relation between the mandible and the trunk of early elephantiformes, the authors examined the crania and mandibles of these three groups from the Early and Middle Miocene of northern China from three different museums and also made different analyses.

      The analyses made in the study are:

      (1) Finite Element (FE) analysis: They conducted two kinds of tests: the distal forces test, and the twig-cutting test. With the distal forces test, advantageous and disadvantageous mechanical performances under distal vertical and horizontal external forces of each group are established. With the twig-cutting test, a cylindrical twig model of orthotropic elastoplasity was posed in three directions to the distal end of the mandibular task to calculate the sum of the equivalent plastic strain (SEPS). It is indicated that all three groups have different mandible specializations for cutting plants.

      (2) Phylogenetic reconstruction: These groups have different narial region morphology, and in connection with this, have different stages of trunk evolution. The phylogenetic tree shows the degree of specialization of the narial morphology. And narial region evolutionary level is correlated with that of character-combine in relation to horizontal cutting. In the trilophodont longirostrine gomphotheres, co-evolution between the narial region and horizontal cutting behaviour is strongly suggested.

      (3) Enamel isotopes analysis: The results of stable isotope analysis indicate an open environment with a diverse range of habitats and that the niches of these groups overlapped without obvious differentiation.

      The analysis shows that different eco-adaptations have led to the diverse mandibular morphology and open-land grazing has driven the development of trunk-specific functions and loss of the long mandible. This conclusion has been achieved with evidence on palaecological reconstruction, the reconstruction of feeding behaviors, and the examination of mandibular and narial region morphology from the detailed analysis during the study.

      All of the analyses are explained in detail in the supplementary files. The 3D models and movies in the supplementary files are detailed and understandable and explain the conclusion. The conclusions of the study are well supported by data.

      We appreciate your detailed and insightful review of our study. Your summary accurately captures the essence of our research, and we are pleased to note that multiple research methods were used to demonstrate our conclusions. Your recognition of the evidence-based conclusions from paleoecological, feeding behavior reconstruction, and morphological analyses reinforces the validity of our findings. Once again, we appreciate your time and thoughtful reviews.

      Reviewer #1 (Recommendations For The Authors):

      Thank you very much for the invitation to review this amazing manuscript. It is very well written and supported, and I have only minor suggestions to improve the text:

      (1) Some references are not in chronological sequence in the text, and this should be reviewed.

      We greatly appreciate the positive comments of the reviewer. We revised the reference of the manuscript as the reviewer’s suggestion.

      (2) I suggest the use of the expression "bunodont proboscideans" instead of Gomphotheres because there is no agreement if Amebelodontidae and Choerolophodontidae are within Gomphotheriidae, as well as some brevirrostrine bunodont proboscideans from South America. So I think it is ok to use "Gomphotheriidae", but not gomphotheres to refer to all bunodont proboscideans included in the study.

      The reviewer is correct. Using “gomphotheres” to refer to these three groups is inappropriate. We have replaced “gomphotheres” with "bunodont elephantiforms" throughout the entire manuscript. Here, we use “elephantiforms”, not “proboscideans”, to avoid confusion with some early proboscidean members like Moeritherium, ect.

      (3) I was expecting some discussion on the development of large trunks related to the gigantism in these bunodont proboscideans, regarding the huge skulls and the columnar limbs.

      We appreciate this suggestion, and we are aware that gigantism is a potential factor for trunk development. It is difficult to compare the three groups (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) in terms of their weight and limb bone length, because in our material, limb bones were rarely found, especially those associated with cranial material. Nevertheless, at this stage, all elephantiforms had significantly enlarged cranial sizes and limb bone lengths compared to early members like Phiomia. Gigantism caused the loss of flexibility in elephantiforms, and even the long limbs made it more difficult for an elephantiform to reach the ground. A long trunk compensates for this evolutionary change. Exploring these aspects further is a part of our future work.

      (4) The reference to Alejandro et al should be replaced by Kramarz et al (and the correct surname of the authors). The name and surname of this reference need to be corrected. The correct names are Kramarz, A., Garrido, A., Bond, M. 2019. Please correct this in the text too.

      We thank the reviewer for catching this error. This reference has been corrected.

      Reviewer #2 (Recommendations For The Authors):

      I believe your paper will lead to other studies on other Proboscidean groups on the evolution of the mandible and trunk. There are some corrections in the text:

      • In line 199 in the text in pdf, "Tassy, 1994" should be "Tassy, 1996".

      • In line 241, "studied" should be "studies"

      • In line 313, "," after the word "tool" should be "."

      We appreciate the reviewer for pointing these errors out and have revised these based on the suggestions.

      • In the References, you write "et al." in some references. You should write the names of all of the authors.

      • In the References: "Lister AM. 2013" and "Shoshani&Tassy" are not referenced in the text.

      • In the References: "Tassy P. Gaps, parsimony, and early Miocene elephantoids (Mammalia), with a re-evaluation of Gomphotherium annectens (Matsumoto, 1925). Zool. J. Linn." should be "Tassy P. 1994. Gaps, parsimony, and early Miocene elephantoids (Mammalia), with a re-evaluation of Gomphotherium annectens (Matsumoto, 1925). Zool. J. Linn. 112, 1-2, 101-117" and replaced before "Tassy P. 1996".

      We appreciate the reviewer’s suggestions and have revised these references.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1

      The authors provided experimental data in response to my comments/suggestions in the revision. Overall, most points were appropriate and satisfactory, but some issues remain.

      (1) It is not fully addressed how atypical survivors are generated independently of Rad52-mediated homologous recombination.

      The newly provided data indicate that the formation of atypical telomeres is independent of the Rad52 homologous recombination pathway.

      "The atypical telomeres clones exhibit non-uniform telomere pattern", but the TG-hybridized signals after XhoI digestion are clear and uniform.

      "Atypical telomere" clones may carry circular chromosomes embedded with short TG repeats, rather than linear chromosomes. In other words, atypical telomeres may differ from telomeres, the ends of chromosomes. Is atypical telomere formation dependent on NHEJ? Given that "two chromosomes underwent intra-chromosomal fusions" (Line 248), are atypical telomere clones detected frequently in SY13 cells containing two chromosomes?

      We thank the reviewer’s questions. Frankly, we have not been able to determine the chromosome structures in these so-called "atypical survivors". As we mentioned in the manuscript, there could be mixed telomere structures, e.g. TG tract amplification, intro-chromosome telomere fusion and inter-chromosome telomere fusion. Worse still, these 'atypical survivors' may not have maintained a stable genome, and their karyotype may have undergone stochastic changes during passages. To avoid misunderstanding, we change the term "atypical" to "uncharacterized" in the revised manuscript.

      We have previously shown that deletion of YKU70 does not affect MMEJ-mediated intra-chromosome fusion in single-chromosome SY14 cdc13Δ cells (Wu et al., 2020). In SY12 cells, double knockout of TLC1 and YKU resulted in synthetic lethality, and we were unable to continue our investigation. The result of synthetic lethality of TLC1 and YKU70 double deletion was shown in the Figure 7B in the reviewed preprint version 1, and the result was not included in the reviewed preprint version 2 in accordance with the reviewer's instructions.

      "Atypical” survivors could be detected in SY13 cells (Figure 1D), but the frequency of their formation in the SY13 strain appeared to be lower than in SY12. As one can imagine, SY13 contains two chromosomes and its survivors should have a higher frequency of intra-chromosome fusions.

      (2) From their data, it is possible that X and Y elements influence homologous recombination, type 1 and type 2 (type X), at telomeres. In particular, the presence of X and Y elements appears to be important for promoting type 1 recombination. In other words, although not essential, subtelomeres have some function in maintaining telomeres. I suggest that the authors include author response image 4 in the text. They could revise their conclusion and the paper title accordingly.

      According to this suggestion, we have included author response image 4 in the revised manuscript as Figure 2E, Figure 5D, Figure 6C and Figure 6E. Accordingly, we have changed the title as “Elimination of subtelomeric repeat sequences exerts little effect on telomere essential functions in Saccharomyces cerevisiae”.

      (3) Minor points: The newly added data indicate that X survivors are generated in a type 2-dependent manner. The authors could discuss how Y elements were eroded while retaining X elements (line 225, Figure 2A).

      Thank this reviewer’s suggestion. We have discussed it in the revised manuscript (p.13 line 244-245). When telomere was deprotected, chromosome end resection took place. Since SY12 only has one Y’-element, it is hard to search homology sequences to repair the Y’-element in XVI-L. When the X-element in XVI-L was exposed by further resection, it is easier to find homology sequences to repair. So, in Type X survivor the Y’-element was eroded while retaining X-element.

      Reviewer #2

      I would like to congratulate the authors for their work and the efforts they put in improving the manuscript. The major criticism I had previously, ie testing the genetic requirements for the survivor subtypes, has been met. Below are a few minor comments that don't necessarily require a response.

      (1) I think the Author response image 6 could have been included in the manuscript. I understand that the authors don't want to overinterpret survivor subtype frequencies, but this figure would have suggested some implication of Rad51 in the emergence of survivors even in the absence of Y' elements. At this stage, however, it is up to the authors, and leaving this figure out is also fine in my opinion.

      According to the suggestion, the author response image 6 has been presented as Figure 6—figure supplement 7.

      (2) Chromosome circularization seems to rely on microhomologies. Previously, the authors proposed that SY14 circularization depended on SSA (Wu et al. 2020), but here, since circularization appears to be Rad52-independent, it is likely to be based on MMEJ rather than SSA (although there are contradictory results on Rad52's role in MMEJ in the literature).

      Yes, we mentioned it in the revised manuscript.

      (3) p. 28 lines 511-513: "The erosion sites and fusion sequences differed from those observed in SY12 tlc1Δ-C1 cells (Figure 2D), suggesting the stochastic nature of chromosomal circularization": I don't think they are necessarily stochastic, because the sequences beyond the telomeres are now modified, the available microhomologies have changed as well.

      We agreed with your opinion. In different chromosomes, there tend to be some hotspots for chromosome fusion. For example, in Figure 6C and 6F the resection site in Chr1 and Chr2 was the same in SY12XYΔ+Y tlc1Δ-C1 and SY12XYΔ tlc1Δ-C1. So, we speculate that there are some hotspots for chromosome fusion, but which site the cell will choose in one round chromosome fusion event is stochastic.

      (4) Typos and other errors:

      • p. 3 line 52: "subtelomerice" and "varies" are mispelled.

      • p. 5 line 78: "processes" should be "process".

      • Supp files are mislabelled (the numbers do not correspond to file name).

      • Supp file 2: how come SY12 has only one Y' element and SY13 has two?

      • p. 10 line 175: "emerging" should be "emergence".

      • p.15 line 276: "counter-selected" should be "being counter-selected" or "counterselection".

      • p. 29 line 523: "the formation of them" should be "their formation".

      • p. 37 line 653: "could have been an ideal tool": the sentence is grammatically incorrect. Writing "AND could have been an ideal tool" is enough to make it structurally correct.

      Thanks for pointing these errors out. We have corrected them in the revised manuscript. For the question “how come SY12 has only one Y' element and SY13 has two?” we were not sure at this moment. We speculated that one of the Y’ might be lost during genetic engineering of the chromosomes by CRISPR–Cas9 system.

      Reviewer #3

      The authors included statistical analyses of the qPCR data (Fig 4B) as requested, but did not comment on the striking difference in expression of MPH3 and HSP32 in the SY12 strain compared to BY4742. An improvement of the manuscript is the inclusion of rad52 tlc1 strains in their analyses, demonstrating that the "atypical and circular survivors" arose independently of homologous recombination. In addition, by analyzing rad51 and rad50 mutant strain they could demonstrate that the "type X" survivors had similar molecular requirements to type II survivors. Overall, the revised submission improves the article.

      We thank the reviewer’s comments and suggestions. The SY12 strain (with three chromosomes) exhibited lower expression levels of both MPH3 and HSP32 compared to the parental strain BY4742 (with 16 chromosomes). We speculated that with the reduced chromosome numbers, the silencing proteins appeared to no longer be titrated by other telomeres that have been deleted. We have added these comments in the revised manuscript.

      Wu, Z.J., Liu, J.C., Man, X., Gu, X., Li, T.Y., Cai, C., He, M.H., Shao, Y., Lu, N., Xue, X., et al. (2020). Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. Elife 9.

    1. Reviewer #2 (Public Review):

      In the manuscript "Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress", Dar, Malla, and colleagues use direct RNA sequencing on nanopores to characterize the transcriptome after arsenite and oxidative stress. They observe a population of transcripts that are shortened during stress. The authors hypothesize that this shortening is mediated by the 5'-3' exonuclease XRN1, as XRN1 knockdown results in longer transcripts. Interestingly, the authors do not observe a polyA-tail shortening, which is typically thought to precede decapping and XRN1-mediated transcript decay. Finally, the authors use G3BP1 knockout cells to demonstrate that stress granule formation is required for the observed transcript shortening.

      The manuscript contains intriguing findings of interest to the mRNA decay community. That said, it appears that the authors at times overinterpret the data they get from a handful of direct RNA sequencing experiments. To bolster some of the statements additional experiments might be desirable.

      A selection of comments:

      (1) Considering that the authors compare the effects of stress, stress granule formation, and XRN1 loss on transcriptome profiles, it would be desirable to use a single-cell system (and validated in a few more). Most of the direct RNAseq is performed in HeLa cells, but the experiments showing that stress granule formation is required come from U2OS cells, while short RNAseq data showing loss of coverage on mRNA 5'ends is reanalyzed from HEK293 cells. It may be plausible that the same pathways operate in all those cells, but it is not rigorously demonstrated.

      (2) An interesting finding of the manuscript is that polyA tail shortening is not observed prior to transcript shortening. The authors would need to demonstrate that their approach is capable of detecting shortened polyA tails. Using polyA purified RNA to look at the status of polyA tail length may not be ideal (as avidity to oligodT beads may increase with polyA tail length and therefore the authors bias themselves to longer tails anyway). At the very least, the use of positive controls would be desirable; e.g. knockdown of CCR4/NOT.

      (3) The authors use a strategy of ligating an adapter to 5' phosphorylated RNA (presumably the breakdown fragments) to be able to distinguish true mRNA fragments from artifacts of abortive nanopore sequencing. This is a fantastic approach to curating a clean dataset. Unfortunately, the authors don't appear to go through with discarding fragments that are not adapter-ligated (presumably to increase the depth of analysis; they do offer Figure 1e that shows similar changes in transcript length for fragments with adapter, compared to Figure 1d). It would be good to know how many reads in total had the adapter. Furthermore, it would be good to know what percentage of reads without adapters are products of abortive sequencing. What percentage of reads had 5'OH ends (could be answered by ligating a different adapter to kinase-treated transcripts). More read curation would also be desirable when building the metagene analysis - why do the authors include every 3'end of sequenced reads (their RNA purification scheme requires a polyA tail, so non-polyadenylated fragments are recovered in a non-quantitative manner and should be discarded).

      (4) The authors should come to a clear conclusion about what "transcript shortening" means. Is it exonucleolytic shortening from the 5'end? They cannot say much about the 3'ends anyway (see above). Or are we talking about endonucleolytic cuts leaving 5'P that then can be attached by XRN1 (again, what is the ratio of 5'P and 5'OH fragments; also, what is the ratio of shortened to full-length RNA)?

      (5) The authors should clearly explain how they think the transcript shortening comes about. They claim it does not need polyA shortening, but then do not explain where the XRN1 substrate comes from. Does their effect require decapping? Or endonucleolytic attacks?

      (6) XRN1 KD results in lengthened transcripts. That is not surprising as XRN1 is an exonuclease - and XRN1 does not merely rescue arsenite stress-mediated transcript shortening, but results in a dramatic transcript lengthening.

    1. The district and state and federal governments haveestablished our standards and handed our curriculumdown to us. These standards make up the goals estab-lished for all of our students. How we reach these goalsmay require different paths. The core of differentiatedinstruction is flexibility in content, process, and productbased on student strengths, needs, and learning styles.

      Reaching these goals does require an enormous amount of flexibility by educators. It is easy to make a to-do list, it is much more difficult to complete that to-do list. I think it would be helpful to have direct student incentives so that they can see the immediate reward for their efforts instead of the abstract idea that being more educated may make their lives more successful as adults.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review

      [...] A particular strength of the present study is the structural characterization of human PURA, which is a challenging target for structural biology approaches. The molecular dynamics simulations are state-of-the-art, allowing a statistically meaningful assessment of the differences between wild-type and mutant proteins. The functional consequences of PURA mutations at the cellular level are fascinating, particularly the differential compartmentalization of wild-type and mutant PURA variants into certain subcellular condensates.

      Weaknesses that warrant rectification relate to (i) The interpretation of statistically non-significant effects seen in the molecular dynamic simulations.

      We removed from the manuscript the sentence which indicated that we analyzed statistically non-significant effects. Therefore, the above statement has been resolved.

      (ii) The statistical analysis of the differential compartmentalization of PURA variants into processing bodies vs. stress granules, and

      We re-analyzed all cell-biological data and adjusted the statistical analysis of P-bodies and Stress-granule intensity analysis. The new, and improved statistics have replaced the original analyses in the corresponding figures (Figs. 1C and 2B).

      (iii) Insufficient documentation of protein expression levels and knock-down efficiencies.

      Quantification of protein expression levels by Western blotting is shown in Appendix Figure S1. Quantification of knock-down efficiencies by Western blot experiments (Appendix Figure S3).

      Recommendations for the authors: Reviewer #1

      Concerns and Suggested Changes

      (a) I have only one concern about the computational part and that is about statements such as "There are also large differences in the residue surrounding the mutation spot (residues 90 to 100), where the K97E mutant also shows much greater fluctuation. However, these differences are not significant due to the large standard deviations." If the differences are not statistically significant, then I would suggest either removing such a statement or increasing the statistics.

      We agree with the Reviewer’s comment. We removed this sentence from the text.

      Recommendations for the authors: Reviewer #2

      General Comments

      This is a challenging structural target and the authors have made considerable efforts to determine the effect of several mutations on the structure and function. Many of the constructs, however, could not be expressed and/or purified in bacteria. However, it is not clear to what extent other expression systems (e.g. Drosophila or human) were considered and if this would have been beneficial.

      We did not use other expression systems because the wild-type protein is well-behaved when expressed in E. coli. In case a mutant variant cannot be expressed or does not behave well in E. coli, this constitutes a clear indication that the respective mutation impairs the protein’s integrity. Thus, by using E. coli as a reference system for all the variants of PURA protein, we could assess the influence of the mutations on the structural integrity and solubility. Only for the variants that did not show impairment in E. coli expression, we continued to assess in more detail why they are nevertheless functionally impaired and cause PURA Syndrome.

      Concerns and Suggested Changes

      (a) The schematic in Figure 3A would have been helpful for interpreting the mutations discussed in Figures 1 and 2. I would suggest moving it earlier in the text.

      We changed the figure according to the Reviewer’s suggestion.

      (b) I believe the RNA used for binding studies in Figures 3C and D was (CGG)8. Are the two "free" RNA bands a monomer and a dimer (duplex?)?

      Although we do not know for certain, it is indeed likely that the two free RNA bands represent either different secondary structures of the free RNA or a duplex of two molecules. Of note, PURA binds to both “free” RNA bands, indicating that it either does not discriminate between them or melts double-stranded RNA in these EMSAs.

      There also seems to be considerable cooperativity in the binding, so I wonder if a shorter RNA oligonucleotide might facilitate the measurement of Kds.

      The length of the used RNA was selected based on the estimated elongated size of the full-length PURA and the presence of 3 PUR repeats. Assuming that one PUR repeat interacts with about 6-7 bases (data from the co-structure of Drosophila PURA with DNA; PDB-ID: 5FGP) and that full-length PURA forms a dimer consisting of three PUR repeats, the full-length protein in its extended form should cover a nucleic-acid stretch of about 24 bases.

      Also, it is not clear how the affinities were measured particularly for hsPURA III since free band is never fully bound at the highest protein concentration.

      It was not our goal to measure Kds for the interaction of PURA variants with RNA. The EMSA experiments were conducted to detect relative differences in the interaction between PURA variants and RNA. To estimate the differences, we measured total intensity of the bound (shifted) and unbound RNA. The intensities of the bands observed on the scanned EMSA gels were quantified with FUJI ImageJ software. We calculated the percentage of the shifted RNA and normalized it. hsPURA III fragment shows much lower affinity therefore it does not fully shift RNA with the highest protein concentration when compared to the full-length PURA and to PURA I-II.

      (c) Do the human PURA I+II and dmPURA I+ II crystallize in the same space group and have similar packing? Can the observed structural flexibility be due to crystal contacts?

      hsPURA I+II and dmPURA I+II crystallize in different space groups with different crystal packing. In both cases, the asymmetric unit contains 4 independent molecules with the flexible part of the structure composed of the β4 and β8 (β ridge) exposed to solvent. In the case of the Drosophila structure, we do not observe any flexibility of both β-strands. In contrast, for the human PURA structure the β ridge exhibits lots of flexibility and it adopts different conformations in all 4 molecules of the asymmetric unit. We observe similar flexibility of the β4 and β8 (β ridge) in the structure of K97E mutant which contains 2 molecules in the asymmetric unit. We would like to add that we expect crystal contacts to rather stabilize than destabilize domains.

      Similarly, can the conformations observed for the K97E mutant be partially explained by packing?

      Regarding the sequence shift observed for the β5 and β6 strands in hsPURA I+II K97E variant: although the β5 strand with shifted amino acid sequence is involved in the contact with the symmetry-related molecule with another β5 strand we don’t consider this interaction as a source of the shift. To be sure that the shift is not forced by the crystallization, we had performed NMR measurement which confirmed that in solution there is a strong change in the β-stands comparing WT and K97E mutant. This is an unambiguous indication that the structural changes observed in the crystal structure are also happening in solution. In addition, the MD simulations provide additional confirmation of our interpretation that K97E destabilizes the corresponding PUR domain. Taken together, we provide proof from three different angles that the observed differences indeed affect the integrity and hence function of the protein.

      (d) Perhaps, it is my misunderstanding, but I find the NMR data on the Arg sidechains for the K97E confusing. If they are visible for K97E and not WT, doesn't this indicate that there is an exchange between two conformations or more dynamics in the WT structure? This does not seem to be the opposite of the expectation if K97E is thought to have more conformational flexibility.

      Due to a technical issue (peak contour level), arginine side chain resonances were not clearly visible in the WT spectrum. The figure 5F has been updated. Now, they do correspond to those seen in the mutant spectrum. However, to prevent any confusion or mis/overinterpretation, we removed the sentence regarding arginine side chain: "Intriguingly, arginine side chain resonances Nε-Hε were only visible in the K97E variant, while they were broadened out in the wild-type spectrum."

      (e) The most speculative part of the paper is the interpretation of SG and PB localization of PURA in Fig 1 and 2. There is an important issue with the statistics that must be clarified because it would appear that statistical significance was determined using each SG or PB as an independent measurement. This is incorrect and significance should be measured by only using the means of three biological replicates. This is well described here. It is not clear at this time if the reported P values will be confirmed upon reanalysis, and this may require reinterpretation of the data.

      We are grateful for this clarifying comment and agree that the statistical analysis of P-body and stress granule was misleading. Of note, while the figures depicted all the values independent of the biological repeats, the statistical analyses were done on the mean value of each replicate of each cell line and not all raw data points.

      We prepared new Plots, only showing the mean value of each replicate, and also re-calculated P-values. The values have changed only slightly in this new analysis because we now also included the previously labeled outliers (red points) to better demonstrate that significance still exists even when considering them.

      In the new analysis of stress-granule association, only the value of the K97E mutant lost its significance, indicating that its association to stress granules is not lost. Therefore, we adjusted the following sentences in the manuscript.

      Results:

      Original: "While quantification showed a reduced association of hsPURA K97E mutant with G3BP1-positive granules (Fig 1B), the two other mutants, I206F and F233del, showed the same co-localization to stress granules as the wild type control."

      Corrected: "In all the patient-related mutations, no significant reduction in stress granule association was seen when compared to the wild type control (Fig 1C)."

      Original: "The observation that only one of the patient-related mutations of hsPURA, K97E, showed reduced stress granule association indicates that this feature may not constitute a major hallmark of the PURA syndrome. It should be noted however that this interpretation must be considered with some caution as the experiments were performed in a PURA wild-type background."

      Corrected: "As we did not observe significant changes in the association of patient-related mutations of hsPURA to stress granules, it is suggested that that this feature may not constitute a major hallmark of the PURA syndrome. It should be noted however that this interpretation must be considered with some caution as the experiments were performed in a PURA wild-type background."

      (f) A western blot showing the level of overexpression of the PURA proteins should be shown in Figure 1 as well as the KD of endogenous PURA for Figure S2?

      As requested, a Western blot showing the level of overexpression of the different PURA proteins has been added as Appendix Figure S1.

      A Western blot of the siRNA-mediated knock-down experiments of PURA and their corresponding control has been added to Appendix Figure S3. Quantification of three biological repeats showed a significant reduction of PURA protein levels upon knock down.

      (g) While I appreciate that rewriting is time-consuming, I would recommend considering restructuring the manuscript because I think that it would aid the overall clarity. I think the foundation of the work is the structural characterization and would suggest beginning the paper with this data and the biochemical characterization. The co-localization with SGs and PBs and how this may be relevant to disease is much more speculative and is therefore better to present later. While I appreciate that the structural interpretation of why some mutants localize to PBs differently is not entirely clear, I do think that this would provide some context for the discussion.

      In the initial version of the manuscript we first presented the structural characterization of PURA and afterwards the co-localization with SGs and PBs. As this reviewer stated him-/herself in (e), we also noticed that the SG and PB interpretation is the most speculative part of this manuscript. We felt that having this at the end of the results section would weaken the manuscript. On the other hand, we consider that the structural interpretation of mutations is much stronger and has a greater impact for future research. After long discussion we decided to swap the order to leave the most important results for the end of the manuscript.

      Recommendations for the authors: Reviewer #3

      Concerns and Suggested Changes:

      (a) For the characterization of G3BP1-positive stress granules in HeLa cells upon depletion of PURA, it remains unclear what is the efficiency of siRNA? The authors should provide a western blot to indicate how much the endogenous levels were reduced.

      We completely agree with the stated concern and addressed it accordingly. We had performed this experiment prior to submission but for some unknown reason it was not included in the manuscript.

      The Western blot of siRNA-mediated knock-down experiments of PURA and their corresponding control is now shown in Appendix Figure S3. Quantification of three biological repeats, showed a significant reduction of PURA protein levels upon knock down.

      (b) How does knocking down PURA affect DCP1A-positive structures in HeLa cells? Would P bodies be formed even in the absence (or reduction) of total PURA?

      Indeed, the stated question is very interesting. In fact, we have already shown in our recent publication (Molitor et al., 2023) that a knock down of PURA in HeLa and NHDF cells leads to a significant reduction of P-bodies. We actually referred to this finding on page 6:

      "Since hsPURA was recently shown to be required for P-body formation in HeLa cells and fibroblasts (Molitor et al. 2023), PURA-dependent liquid phase separation could potentially also directly contribute to the formation of these granules."

      On the same page, we also refer to the underlying molecular mechanism:

      "However, when putting this observation in perspective with previous reports, it seems unlikely that P-body formation directly depends on phase separation by hsPURA, but rather on its recently reported function as gene regulator of the essential P-body core factors LSM14a and DDX6 (Molitor et al., 2023)."

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      These ingenious and thoughtful studies present important findings concerning how people represent and generalise abstract patterns of sensory data. The issue of generalisation is a core topic in neuroscience and psychology, relevant across a wide range of areas, and the findings will be of interest to researchers across areas in perception, learning, and cognitive science. The findings have the potential to provide compelling support for the outlined account, but there appear other possible explanations, too, that may affect the scope of the findings but could be considered in a revision.

      Thank you for sending the feedback from the three peer reviewers regarding our paper. Please find below our detailed responses addressing the reviewers' comments. We have incorporated these suggestions into the paper and provided explanations for the modifications made.

      We have specifically addressed the point of uncertainty highlighted in eLife's editorial assessment, which concerned alternative explanations for the reported effect. In response to Reviewer #1, we have clarified how Exp. 2c and Exp. 3c address the potential alternative explanation related to "attention to dimensions." Further, we present a supplementary analysis to account for differences in asymptotic learning, as noted by Reviewer #2. We have also clarified how our control experiments address effects associated with general cognitive engagement in the task. Lastly, we have further clarified the conceptual foundation of our paper, addressing concerns raised by Reviewers #2 and #3.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript reports a series of experiments examining category learning and subsequent generalization of stimulus representations across spatial and nonspatial domains. In Experiment 1, participants were first trained to make category judgments about sequences of stimuli presented either in nonspatial auditory or visual modalities (with feature values drawn from a two-dimensional feature manifold, e.g., pitch vs timbre), or in a spatial modality (with feature values defined by positions in physical space, e.g., Cartesian x and y coordinates). A subsequent test phase assessed category judgments for 'rotated' exemplars of these stimuli: i.e., versions in which the transition vectors are rotated in the same feature space used during training (near transfer) or in a different feature space belonging to the same domain (far transfer). Findings demonstrate clearly that representations developed for the spatial domain allow for representational generalization, whereas this pattern is not observed for the nonspatial domains that are tested. Subsequent experiments demonstrate that if participants are first pre-trained to map nonspatial auditory/visual features to spatial locations, then rotational generalization is facilitated even for these nonspatial domains. It is argued that these findings are consistent with the idea that spatial representations form a generalized substrate for cognition: that space can act as a scaffold for learning abstract nonspatial concepts.

      Strengths:

      I enjoyed reading this manuscript, which is extremely well-written and well-presented. The writing is clear and concise throughout, and the figures do a great job of highlighting the key concepts. The issue of generalization is a core topic in neuroscience and psychology, relevant across a wide range of areas, and the findings will be of interest to researchers across areas in perception and cognitive science. It's also excellent to see that the hypotheses, methods, and analyses were pre-registered.

      The experiments that have been run are ingenious and thoughtful; I particularly liked the use of stimulus structures that allow for disentangling of one-dimensional and two-dimensional response patterns. The studies are also well-powered for detecting the effects of interest. The model-based statistical analyses are thorough and appropriate throughout (and it's good to see model recovery analysis too). The findings themselves are clear-cut: I have little doubt about the robustness and replicability of these data.

      Weaknesses:

      I have only one significant concern regarding this manuscript, which relates to the interpretation of the findings. The findings are taken to suggest that "space may serve as a 'scaffold', allowing people to visualize and manipulate nonspatial concepts" (p13). However, I think the data may be amenable to an alternative possibility. I wonder if it's possible that, for the visual and auditory stimuli, participants naturally tended to attend to one feature dimension and ignore the other - i.e., there may have been a (potentially idiosyncratic) difference in salience between the feature dimensions that led to participants learning the feature sequence in a one-dimensional way (akin to the 'overshadowing' effect in associative learning: e.g., see Mackintosh, 1976, "Overshadowing and stimulus intensity", Animal Learning and Behaviour). By contrast, we are very used to thinking about space as a multidimensional domain, in particular with regard to two-dimensional vertical and horizontal displacements. As a result, one would naturally expect to see more evidence of two-dimensional representation (allowing for rotational generalization) for spatial than nonspatial domains.

      In this view, the impact of spatial pre-training and (particularly) mapping is simply to highlight to participants that the auditory/visual stimuli comprise two separable (and independent) dimensions. Once they understand this, during subsequent training, they can learn about sequences on both dimensions, which will allow for a 2D representation and hence rotational generalization - as observed in Experiments 2 and 3. This account also anticipates that mapping alone (as in Experiment 4) could be sufficient to promote a 2D strategy for auditory and visual domains.

      This "attention to dimensions" account has some similarities to the "spatial scaffolding" idea put forward in the article, in arguing that experience of how auditory/visual feature manifolds can be translated into a spatial representation helps people to see those domains in a way that allows for rotational generalization. Where it differs is that it does not propose that space provides a scaffold for the development of the nonspatial representations, i.e., that people represent/learn the nonspatial information in a spatial format, and this is what allows them to manipulate nonspatial concepts. Instead, the "attention to dimensions" account anticipates that ANY manipulation that highlights to participants the separable-dimension nature of auditory/visual stimuli could facilitate 2D representation and hence rotational generalization. For example, explicit instruction on how the stimuli are constructed may be sufficient, or pre-training of some form with each dimension separately, before they are combined to form the 2D stimuli.

      I'd be interested to hear the authors' thoughts on this account - whether they see it as an alternative to their own interpretation, and whether it can be ruled out on the basis of their existing data.

      We thank the Reviewer for their comments. We agree with the Reviewer that the “attention to dimensions” hypothesis is an interesting alternative explanation. However, we believe that the results of our control experiments Exp. 2c and Exp. 3c are incompatible with this alternative explanation.

      In Exp. 2c, participants are pre-trained in the visual modality and then tested in the auditory modality. In the multimodal association task, participants have to associate the auditory stimuli and the visual stimuli: on each trial, they hear a sound and then have to click on the corresponding visual stimulus. It is thus necessary to pay attention to both auditory dimensions and both visual dimensions to perform the task. To give an example, the task might involve mapping the fundamental frequency and the amplitude modulation of the auditory stimulus to the colour and the shape of the visual stimulus, respectively. If participants pay attention to only one dimension, this would lead to a maximum of 25% accuracy on average (because they would be at chance on the other dimension, with four possible options). We observed that 30/50 participants reached an accuracy > 50% in the multimodal association task in Exp. 2c. This means that we know for sure that at least 60% of the participants paid attention to both dimensions of the stimuli. Nevertheless, there was a clear difference between participants that received a visual pre-training (Exp. 2c) and those who received a spatial pre-training (Exp. 2a) (frequency of 1D vs 2D models between conditions, BF > 100 in near transfer and far transfer). In fact, only 3/50 participants were best fit by a 2D model when vision was the pre-training modality compared to 29/50 when space was the pre-training modality. Thus, the benefit of the spatial pre-training cannot be due solely to a shift in attention toward both dimensions.

      This effect was replicated in Exp. 3c. Similarly, 33/48 participants reached an accuracy > 50% in the multimodal association task in Exp. 3c, meaning that we know for sure that at least 68% of the participants actually paid attention to both dimensions of the stimuli. Again, there was a clear difference between participants who received a visual pre-training (frequency of 1D vs 2D models between conditions, Exp. 3c) and those who received a spatial pre-training (Exp. 3a) (BF > 100 in near transfer and far transfer).

      Thus, we believe that the alternative explanation raised by the Reviewer is not supported by our data. We have added a paragraph in the discussion:

      “One alternative explanation of this effect could be that the spatial pre-training encourages participants to attend to both dimensions of the non-spatial stimuli. By contrast, pretraining in the visual or auditory domains (where multiple dimensions of a stimulus may be relevant less often naturally) encourages them to attend to a single dimension. However, data from our control experiments Exp. 2c and Exp. 3c, are incompatible with this explanation. Around ~65% of the participants show a level of performance in the multimodal association task (>50%) which could only be achieved if they were attending to both dimensions (performance attending to a single dimension would yield 25% and chance performance is at 6.25%). This suggests that participants are attending to both dimensions even in the visual and auditory mapping case.”

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, L&S investigates the important general question of how humans achieve invariant behavior over stimuli belonging to one category given the widely varying input representation of those stimuli and more specifically, how they do that in arbitrary abstract domains. The authors start with the hypothesis that this is achieved by invariance transformations that observers use for interpreting different entries and furthermore, that these transformations in an arbitrary domain emerge with the help of the transformations (e.g. translation, rotation) within the spatial domain by using those as "scaffolding" during transformation learning. To provide the missing evidence for this hypothesis, L&S used behavioral category learning studies within and across the spatial, auditory, and visual domains, where rotated and translated 4-element token sequences had to be learned to categorize and then the learned transformation had to be applied in new feature dimensions within the given domain. Through single- and multiple-day supervised training and unsupervised tests, L&S demonstrated by standard computational analyses that in such setups, space and spatial transformations can, indeed, help with developing and using appropriate rotational mapping whereas the visual domain cannot fulfill such a scaffolding role.

      Strengths:

      The overall problem definition and the context of spatial mapping-driven solution to the problem is timely. The general design of testing the scaffolding effect across different domains is more advanced than any previous attempts clarifying the relevance of spatial coding to any other type of representational codes. Once the formulation of the general problem in a specific scientific framework is done, the following steps are clearly and logically defined and executed. The obtained results are well interpretable, and they could serve as a good stepping stone for deeper investigations. The analytical tools used for the interpretations are adequate. The paper is relatively clearly written.

      Weaknesses:

      Some additional effort to clarify the exact contribution of the paper, the link between analyses and the claims of the paper, and its link to previous proposals would be necessary to better assess the significance of the results and the true nature of the proposed mechanism of abstract generalization.

      (1) Insufficient conceptual setup: The original theoretical proposal (the Tolman-Eichenbaum-Machine, Whittington et al., Cell 2020) that L&S relate their work to proposes that just as in the case of memory for spatial navigation, humans and animals create their flexible relational memory system of any abstract representation by a conjunction code that combines on the one hand, sensory representation and on the other hand, a general structural representation or relational transformation. The TEM also suggests that the structural representation could contain any graph-interpretable spatial relations, albeit in their demonstration 2D neighbor relations were used. The goal of L&S's paper is to provide behavioral evidence for this suggestion by showing that humans use representational codes that are invariant to relational transformations of non-spatial abstract stimuli and moreover, that humans obtain these invariances by developing invariance transformers with the help of available spatial transformers. To obtain such evidence, L&S use the rotational transformation. However, the actual procedure they use actually solved an alternative task: instead of interrogating how humans develop generalizations in abstract spaces, they demonstrated that if one defines rotation in an abstract feature space embedded in a visual or auditory modality that is similar to the 2D space (i.e. has two independent dimensions that are clearly segregable and continuous), humans cannot learn to apply rotation of 4-piece temporal sequences in those spaces while they can do it in 2D space, and with co-associating a one-to-one mapping between locations in those feature spaces with locations in the 2D space an appropriate shaping mapping training will lead to the successful application of rotation in the given task (and in some other feature spaces in the given domain). While this is an interesting and challenging demonstration, it does not shed light on how humans learn and generalize, only that humans CAN do learning and generalization in this, highly constrained scenario. This result is a demonstration of how a stepwise learning regiment can make use of one structure for mapping a complex input into a desired output. The results neither clarify how generalizations would develop in abstract spaces nor the question of whether this generalization uses transformations developed in the abstract space. The specific training procedure ensures success in the presented experiments but the availability and feasibility of an equivalent procedure in a natural setting is a crucial part of validating the original claim and that has not been done in the paper.

      We thank the Reviewer for their detailed comments on our manuscript. We reply to the three main points in turn.

      First, concerning the conceptual grounding of our work, we would point out that the TEM model (Whittington et al., 2020), however interesting, is not our theoretical starting point. Rather, as we hope the text and references make clear, we ground our work in theoretical work from the 1990/2000s proposing that space acts as a scaffold for navigating abstract spaces (such as Gärdenfors, 2000). We acknowledge that the TEM model and other experimental work on the implication of the hippocampus, the entorhinal cortex and the parietal cortex in relational transformations of nonspatial stimuli provide evidence for this general theory. However, our work is designed to test a more basic question: whether there is behavioural evidence that space scaffolds learning in the first place. To achieve this, we perform behavioural experiments with causal manipulation (spatial pre-training vs no spatial pre-training) have the potential to provide such direct evidence. This is why we claim that:

      “This theory is backed up by proof-of-concept computational simulations [13], and by findings that brain regions thought to be critical for spatial cognition in mammals (such as the hippocampal-entorhinal complex and parietal cortex) exhibit neural codes that are invariant to relational transformations of nonspatial stimuli. However, whilst promising, this theory lacks direct empirical evidence. Here, we set out to provide a strong test of the idea that learning about physical space scaffolds conceptual generalisation.“

      Second, we agree with the Reviewer that we do not provide an explicit model for how generalisation occurs, and how precisely space acts as a scaffold for building representations and/or applying the relevant transformations to non-spatial stimuli to solve our task. Rather, we investigate in our Exp. 2-4 which aspects of the training are necessary for rotational generalisation to happen (and conclude that a simple training with the multimodal association task is sufficient for ~20% participants). We now acknowledge in the discussion the fact that we do not provide an explicit model and leave that for future work:

      “We acknowledge that our study does not provide a mechanistic model of spatial scaffolding but rather delineate which aspects of the training are necessary for generalisation to happen.”

      Finally, we also agree with the Reviewer that our task is non-naturalistic. As is common in experimental research, one must sacrifice the naturalistic elements of the task in exchange for the control and the absence of prior knowledge of the participants. We have decided to mitigate as possible the prior knowledge of the participants to make sure that our task involved learning a completely new task and that the pre-training was really causing the better learning/generalisation. The effects we report are consistent across the experiments so we feel confident about them but we agree with the Reviewer that an external validation with more naturalistic stimuli/tasks would be a nice addition to this work. We have included a sentence in the discussion:

      “All the effects observed in our experiments were consistent across near transfer conditions (rotation of patterns within the same feature space), and far transfer conditions (rotation of patterns within a different feature space, where features are drawn from the same modality). This shows the generality of spatial training for conceptual generalisation. We did not test transfer across modalities nor transfer in a more natural setting; we leave this for future studies.”

      (2) Missing controls: The asymptotic performance in experiment 1 after training in the three tasks was quite different in the three tasks (intercepts 2.9, 1.9, 1.6 for spatial, visual, and auditory, respectively; p. 5. para. 1, Fig 2BFJ). It seems that the statement "However, our main question was how participants would generalise learning to novel, rotated exemplars of the same concept." assumes that learning and generalization are independent. Wouldn't it be possible, though, that the level of generalization depends on the level of acquiring a good representation of the "concept" and after obtaining an adequate level of this knowledge, generalization would kick in without scaffolding? If so, a missing control is to equate the levels of asymptotic learning and see whether there is a significant difference in generalization. A related issue is that we have no information on what kind of learning in the three different domains was performed, albeit we probably suspect that in space the 2D representation was dominant while in the auditory and visual domains not so much. Thus, a second missing piece of evidence is the model-fitting results of the ⦰ condition that would show which way the original sequences were encoded (similar to Fig 2 CGK and DHL). If the reason for lower performance is not individual stimulus difficulty but the natural tendency to encode the given stimulus type by a combo of random + 1D strategy that would clarify that the result of the cross-training is, indeed, transferring the 2D-mapping strategy.

      We agree with the Reviewer that a good further control is to equate performance during training. Thus, we have run a complementary analysis where we select only the participants that reach > 90% accuracy in the last block of training in order to equate asymptotic performance after training in Exp. 1. The results (see Author response image 1) replicates the results that we report in the main text: there is a large difference between groups (relative likelihood of 1D vs. 2D models, all BF > 100 in favour of a difference between the auditory and the spatial modalities, between the visual and the spatial modalities, in both near and far transfer, “decisive” evidence). We prefer not to include this figure in the paper for clarity, and because we believe this result is expected given the fact that 0/50 and 0/50 of the participants in the auditory and visual condition used a 2D strategy – thus, selecting subgroups of these participants cannot change our conclusions.

      Author response image 1.

      Results of Exp. 1 when selecting participants that reached > 90% accuracy in the last block of training. Captions are the same as Figure 2 of the main text.

      Second, the Reviewer suggested that we run the model fitting analysis only on the ⦰ condition (training) in Exp. 1 to reveal whether participants use a 1D or a 2D strategy already during training. Unfortunately, we cannot provide the model fits only in the ⦰ condition in Exp. 1 because all models make the same predictions for this condition (see Fig S4). However, note that this is done by design: participants were free to apply whatever strategy they want during training; we then used the generalisation phase with the rotated stimuli precisely to reveal this strategy. Further, we do believe that the strategy used by the participants during training and the strategy during transfer are the same, partly because – starting from block #4 – participants have no idea whether the current trial is a training trial or a transfer trial, as both trial types are randomly interleaved with no cue signalling the trial type. We have made this clear in the methods:

      “They subsequently performed 105 trials (with trialwise feedback) and 105 transfer trials including rotated and far transfer quadruplets (without trialwise feedback) which were presented in mixed blocks of 30 trials. Training and transfer trials were randomly interleaved, and no clue indicated whether participants were currently on a training trial or a transfer trial before feedback (or absence of feedback in case of a transfer trial).”

      Reviewer #3 (Public Review):

      Summary:

      Pesnot Lerousseau and Summerfield aimed to explore how humans generalize abstract patterns of sensory data (concepts), focusing on whether and how spatial representations may facilitate the generalization of abstract concepts (rotational invariance). Specifically, the authors investigated whether people can recognize rotated sequences of stimuli in both spatial and nonspatial domains and whether spatial pre-training and multi-modal mapping aid in this process.

      Strengths:

      The study innovatively examines a relatively underexplored but interesting area of cognitive science, the potential role of spatial scaffolding in generalizing sequences. The experimental design is clever and covers different modalities (auditory, visual, spatial), utilizing a two-dimensional feature manifold. The findings are backed by strong empirical data, good data analysis, and excellent transparency (including preregistration) adding weight to the proposition that spatial cognition can aid abstract concept generalization.

      Weaknesses:

      The examples used to motivate the study (such as "tree" = oak tree, family tree, taxonomic tree) may not effectively represent the phenomena being studied, possibly confusing linguistic labels with abstract concepts. This potential confusion may also extend to doubts about the real-life applicability of the generalizations observed in the study and raises questions about the nature of the underlying mechanism being proposed.

      We thank the Reviewer for their comments. We agree that we could have explained ore clearly enough how these examples motivate our study. The similarity between “oak tree” and “family tree” is not just the verbal label. Rather, it is the arrangement of the parts (nodes and branches) in a nested hierarchy. Oak trees and family trees share the same relational structure. The reason that invariance is relevant here is that the similarity in relational structure is retained under rigid body transformations such as rotation or translation. For example, an upside-down tree can still be recognised as a tree, just as a family tree can be plotted with the oldest ancestors at either top or bottom. Similarly, in our study, the quadruplets are defined by the relations between stimuli: all quadruplets use the same basic stimuli, but the categories are defined by the relations between successive stimuli. In our task, generalising means recognising that relations between stimuli are the same despite changes in the surface properties (for example in far transfer). We have clarify that in the introduction:

      “For example, the concept of a “tree” implies an entity whose structure is defined by a nested hierarchy, whether this is a physical object whose parts are arranged in space (such as an oak tree in a forest) or a more abstract data structure (such as a family tree or taxonomic tree). [...] Despite great changes in the surface properties of oak trees, family trees and taxonomic trees, humans perceive them as different instances of a more abstract concept defined by the same relational structure.”

      Next, the study does not explore whether scaffolding effects could be observed with other well-learned domains, leaving open the question of whether spatial representations are uniquely effective or simply one instance of a familiar 2D space, again questioning the underlying mechanism.

      We would like to mention that Reviewer #2 had a similar comment. We agree with both Reviewers that our task is non-naturalistic. As is common in experimental research, one must sacrifice the naturalistic elements of the task in exchange for the control and the absence of prior knowledge of the participants. We have decided to mitigate as possible the prior knowledge of the participants to make sure that our task involved learning a completely new task and that the pre-training was really causing the better learning/generalisation. The effects we report are consistent across the experiments so we feel confident about them but we agree with the Reviewer that an external validation with more naturalistic stimuli/tasks would be a nice addition to this work. We have included a sentence in the discussion:

      “All the effects observed in our experiments were consistent across near transfer conditions (rotation of patterns within the same feature space), and far transfer conditions (rotation of patterns within a different feature space, where features are drawn from the same modality). This shows the generality of spatial training for conceptual generalisation. We did not test transfer across modalities nor transfer in a more natural setting; we leave this for future studies.”

      Further doubt on the underlying mechanism is cast by the possibility that the observed correlation between mapping task performance and the adoption of a 2D strategy may reflect general cognitive engagement rather than the spatial nature of the task. Similarly, the surprising finding that a significant number of participants benefited from spatial scaffolding without seeing spatial modalities may further raise questions about the interpretation of the scaffolding effect, pointing towards potential alternative interpretations, such as shifts in attention during learning induced by pre-training without changing underlying abstract conceptual representations.

      The Reviewer is concerned about the fact that the spatial pre-training could benefit the participants by increasing global cognitive engagement rather than providing a scaffold for learning invariances. It is correct that the participants in the control group in Exp. 2c have poorer performances on average than participants that benefit from the spatial pre-training in Exp. 2a and 2b. The better performances of the participants in Exp. 2a and 2b could be due to either the spatial nature of the pre-training (as we claim) or a difference in general cognitive engagement. .

      However, if we look closely at the results of Exp. 3, we can see that the general cognitive engagement hypothesis is not well supported by the data. Indeed, the participants in the control condition (Exp. 3c) have relatively similar performances than the other groups during training. Rather, the difference is in the strategy they use, as revealed by the transfer condition. The majority of them are using a 1D strategy, contrary to the participants that benefited from a spatial pre-training (Exp 3a and 3b). We have included a sentence in the results:

      “Further, the results show that participants who did not experience spatial pre-training were still engaged in the task, but were not using the same strategy as the participants who experienced spatial pre-training (1D rather than 2D). Thus, the benefit of the spatial pre-training is not simply to increase the cognitive engagement of the participants. Rather, spatial pre-training provides a scaffold to learn rotation-invariant representation of auditory and visual concepts even when rotation is never explicitly shown during pre-training.”

      Finally, Reviewer #1 had a related concern about a potential alternative explanation that involved a shift in attention. We reproduce our response here: we agree with the Reviewer that the “attention to dimensions” hypothesis is an interesting (and potentially concerning) alternative explanation. However, we believe that the results of our control experiments Exp. 2c and Exp. 3c are not compatible with this alternative explanation.

      Indeed, in Exp. 2c, participants are pre-trained in the visual modality and then tested in the auditory modality. In the multimodal association task, participants have to associate the auditory stimuli and the visual stimuli: on each trial, they hear a sound and then have to click on the corresponding visual stimulus. It is necessary to pay attention to both auditory dimensions and both visual dimensions to perform well in the task. To give an example, the task might involve mapping the fundamental frequency and the amplitude modulation of the auditory stimulus to the colour and the shape of the visual stimulus, respectively. If participants pay attention to only one dimension, this would lead to a maximum of 25% accuracy on average (because they would be at chance on the other dimension, with four possible options). We observed that 30/50 participants reached an accuracy > 50% in the multimodal association task in Exp. 2c. This means that we know for sure that at least 60% of the participants actually paid attention to both dimensions of the stimuli. Nevertheless, there was a clear difference between participants that received a visual pre-training (Exp. 2c) and those who received a spatial pre-training (Exp. 2a) (frequency of 1D vs 2D models between conditions, BF > 100 in near transfer and far transfer). In fact, only 3/50 participants were best fit by a 2D model when vision was the pre-training modality compared to 29/50 when space was the pre-training modality. Thus, the benefit of the spatial pre-training cannot be due solely to a shift in attention toward both dimensions.

      This effect was replicated in Exp. 3c. Similarly, 33/48 participants reached an accuracy > 50% in the multimodal association task in Exp. 3c, meaning that we know for sure that at least 68% of the participants actually paid attention to both dimensions of the stimuli. Again, there was a clear difference between participants who received a visual pre-training (frequency of 1D vs 2D models between conditions, Exp. 3c) and those who received a spatial pre-training (Exp. 3a) (BF > 100 in near transfer and far transfer).

      Thus, we believe that the alternative explanation raised by the Reviewer is not supported by our data. We have added a paragraph in the discussion:

      “One alternative explanation of this effect could be that the spatial pre-training encourages participants to attend to both dimensions of the non-spatial stimuli. By contrast, pretraining in the visual or auditory domains (where multiple dimensions of a stimulus may be relevant less often naturally) encourages them to attend to a single dimension. However, data from our control experiments Exp. 2c and Exp. 3c, are incompatible with this explanation. Around ~65% of the participants show a level of performance in the multimodal association task (>50%) which could only be achieved if they were attending to both dimensions (performance attending to a single dimension would yield 25% and chance performance is at 6.25%). This suggests that participants are attending to both dimensions even in the visual and auditory mapping case.”

      Conclusions:

      The authors successfully demonstrate that spatial training can enhance the ability to generalize in nonspatial domains, particularly in recognizing rotated sequences. The results for the most part support their conclusions, showing that spatial representations can act as a scaffold for learning more abstract conceptual invariances. However, the study leaves room for further investigation into whether the observed effects are unique to spatial cognition or could be replicated with other forms of well-established knowledge, as well as further clarifications of the underlying mechanisms.

      Impact:

      The study's findings are likely to have a valuable impact on cognitive science, particularly in understanding how abstract concepts are learned and generalized. The methods and data can be useful for further research, especially in exploring the relationship between spatial cognition and abstract conceptualization. The insights could also be valuable for AI research, particularly in improving models that involve abstract pattern recognition and conceptual generalization.

      In summary, the paper contributes valuable insights into the role of spatial cognition in learning abstract concepts, though it invites further research to explore the boundaries and specifics of this scaffolding effect.

      Reviewer #1 (Recommendations For The Authors):

      Minor issues / typos:

      P6: I think the example of the "signed" mapping here should be "e.g., ABAB maps to one category and BABA maps to another", rather than "ABBA maps to another" (since ABBA would always map to another category, whether the mapping is signed or unsigned).

      Done.

      P11: "Next, we asked whether pre-training and mapping were systematically associated with 2Dness...". I'd recommend changing to: "Next, we asked whether accuracy during pre-training and mapping were systematically associated with 2Dness...", just to clarify what the analyzed variables are.

      Done.

      P13, paragraph 1: "only if the features were themselves are physical spatial locations" either "were" or "are" should be removed.

      Done.

      P13, paragraph 1: should be "neural representations of space form a critical substrate" (not "for").

      Done.

      Reviewer #2 (Recommendations For The Authors):

      The authors use in multiple places in the manuscript the phrases "learn invariances" (Abstract), "formation of invariances" (p. 2, para. 1), etc. It might be just me, but this feels a bit like 'sloppy' wording: we do not learn or form invariances, rather we learn or form representations or transformations by which we can perform tasks that require invariance over particular features or transformation of the input such as the case of object recognition and size- translation- or lighting-invariance. We do not form size invariance, we have representations of objects and/or size transformations allowing the recognition of objects of different sizes. The authors might change this way of referring to the phenomenon.

      We respectfully disagree with this comment. An invariance occurs when neurons make the same response under different stimulation patterns. The objects or features to which a neuron responds is shaped by its inputs. Those inputs are in turn determined by experience-dependent plasticity. This process is often called “representation learning”. We think that our language here is consistent with this status quo view in the field.

      Reviewer #3 (Recommendations For The Authors):

      • I understand that the objective of the present experiment is to study our ability to generalize abstract patterns of sensory data (concepts). In the introduction, the authors present examples like the concept of a "tree" (encompassing a family tree, an oak tree, and a taxonomic tree) and "ring" to illustrate the idea. However, I am sceptical as to whether these examples effectively represent the phenomena being studied. From my perspective, these different instances of "tree" do not seem to relate to the same abstract concept that is translated or rotated but rather appear to share only a linguistic label. For instance, the conceptual substance of a family tree is markedly different from that of an oak tree, lacking significant overlap in meaning or structure. Thus, to me, these examples do not demonstrate invariance to transformations such as rotations.

      To elaborate further, typically, generalization involves recognizing the same object or concept through transformations. In the case of abstract concepts, this would imply a shared abstract representation rather than a mere linguistic category. While I understand the objective of the experiments and acknowledge their potential significance, I find myself wondering about the real-world applicability and relevance of such generalizations in everyday cognitive functioning. This, in turn, casts some doubt on the broader relevance of the study's results. A more fitting example, or an explanation that addresses my concerns about the suitability of the current examples, would be beneficial to further clarify the study's intent and scope.

      Response in the public review.

      • Relatedly, the manuscript could benefit from greater clarity in defining key concepts and elucidating the proposed mechanism behind the observed effects. Is it plausible that the changes observed are primarily due to shifts in attention induced by the spatial pre-training, rather than a change in the process of learning abstract conceptual invariances (i.e., modifications to the abstract representations themselves)? While the authors conclude that spatial pre-training acts as a scaffold for enhancing the learning of conceptual invariances, it raises the question: does this imply participants simply became more focused on spatial relationships during learning, or might this shift in attention represent a distinct strategy, and an alternative explanation? A more precise definition of these concepts and a clearer explanation of the authors' perspective on the mechanism underlying these effects would reduce any ambiguity in this regard.

      Response in the public review.

      • I am wondering whether the effectiveness of spatial representations in generalizing abstract concepts stems from their special nature or simply because they are a familiar 2D space for participants. It is well-established that memory benefits from linking items to familiar locations, a technique used in memory training (method of loci). This raises the question: Are we observing a similar effect here, where spatial dimensions are the only tested familiar 2D spaces, while the other 2 spaces are simply unfamiliar, as also suggested by the lower performance during training (Fig.2)? Would the results be replicable with another well-learned, robustly encoded domain, such as auditory dimensions for professional musicians, or is there something inherently unique about spatial representations that aids in bootstrapping abstract representations?

      On the other side of the same coin, are spatial representations qualitatively different, or simply more efficient because they are learned more quickly and readily? This leads to the consideration that if visual pre-training and visual-to-auditory mapping were continued until a similar proficiency level as in spatial training is achieved, we might observe comparable performance in aiding generalization. Thus, the conclusion that spatial representations are a special scaffold for abstract concepts may not be exclusively due to their inherent spatial nature, but rather to the general characteristic of well-established representations. This hypothesis could be further explored by either identifying alternative 2D representations that are equally well-learned or by extending training in visual or auditory representations before proceeding with the mapping task. At the very least I believe this potential explanation should be explored in the discussion section.

      Response in the public review.

      I had some difficulty in following an important section of the introduction: "... whether participants can learn rotationally invariant concepts in nonspatial domains, i.e., those that are defined by sequences of visual and auditory features (rather than by locations in physical space, defined in Cartesian or polar coordinates) is not known." This was initially puzzling to me as the paragraph preceding it mentions: "There is already good evidence that nonspatial concepts are represented in a translation invariant format." While I now understand that the essential distinction here is between translation and rotation, this was not immediately apparent upon first reading. This crucial distinction, especially in the context of conceptual spaces, was not clearly established before this point in the manuscript. For better clarity, it would be beneficial to explicitly contrast and define translation versus rotation in this particular section and stress that the present study concerns rotations in abstract spaces.

      Done.

      • The multi-modal association is crucial for the study, however to my knowledge, it is not depicted or well explained in the main text or figures (Results section). In my opinion, the details of this task should be explained and illustrated before the details of the associated results are discussed.

      We have included an illustration of a multimodal association trial in Fig. S3B.

      Author response image 2.

      • The observed correlation between the mapping task performance and the adoption of a 2D strategy is logical. However, this correlation might not exclusively indicate the proposed underlying mechanism of spatial scaffolding. Could it also be reflective of more general factors like overall performance, attention levels, or the effort exerted by participants? This alternative explanation suggests that the correlation might arise from broader cognitive engagement rather than specifically from the spatial nature of the task. Addressing this possibility could strengthen the argument for the unique role of spatial representations in learning abstract concepts, or at least this alternative interpretation should be mentioned.

      Response in the public review.

      • To me, the finding that ~30% of participants benefited from the spatial scaffolding effect for example in the auditory condition merely through exposure to the mapping (Fig 4D), without needing to see the quadruplets in the spatial modality, was somewhat surprising. This is particularly noteworthy considering that only ~60% of participants adopted the 2D strategy with exposure to rotated contingencies in Experiment 3 (Fig 3D). How do the authors interpret this outcome? It would be interesting to understand their perspective on why such a significant effect emerged from mere exposure to the mapping task.

      • I appreciate the clarity Fig.1 provides in explaining a challenging experimental setup. Is it possible to provide example trials, including an illustration that shows which rotations produce the trail and an intuitive explanation that response maps onto the 1D vs 2D strategies respectively, to aid the reader in better understanding this core manipulation?

      • I like that the authors provide transparency by depicting individual subject's data points in their results figures (e.g. Figs. 2 B, F, J). However, with an n=~50 per condition, it becomes difficult to intuit the distribution, especially for conditions with higher variance (e.g., Auditory). The figures might be more easily interpretable with alternative methods of displaying variances, such as violin plots per data point, conventional error shading using 95%CIs, etc.

      • Why are the authors not reporting exact BFs in the results sections at least for the most important contrasts?

      • While I understand why the authors report the frequencies for the best model fits, this may become difficult to interpret in some sections, given the large number of reported values. Alternatives or additional summary statistics supporting inference could be beneficial.

      As the Reviewer states, there are a large number of figures that we can report in this study. We have chosen to keep this number at a minimum to be as clear as possible. To illustrate the distribution of individual data points, we have opted to display only the group's mean and standard error (the standard errors are included, but the substantial number of participants per condition provides precise estimates, resulting in error bars that can be smaller than the mean point). This decision stems from our concern that including additional details could lead to a cluttered representation with unnecessary complexity. Finally, we report what we believe to be the critical BFs for the comprehension of the reader in the main text, and choose a cutoff of 100 when BFs are high (corresponding to the label “decisive” evidence, some BFs are larger than 1012). All the exact BFs are in the supplementary for the interested readers.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This is a strong manuscript about the existence of proteins coded by intracellular parasites (here Coxiella) that have evolved to parasitise the lipid transport machinery of their hosts. This is a first in that the parasite protein acts at a distance from the parasite itself, manipulating two of the host organelles - and not acting at their site of contact with PVs. There is considerable research into one protein and its effect when expressed by itself.

      Despite all the advances there are a couple of areas where the manuscript can be improved, and a few extra fairly straightforward experiments added about the amphipathic helix. Even though these are unlikely change the overall message, they would make the story more complete.

      Major points

      More details are required about the amphipathic helix. Check that the AH does target LDs by expression of the AH alone in a GFP chimera +/- oleate and then mutagenesis. Also show the AH in a helical wheel projection (eg by Heliquest) and say if it aligns with similar AHs in homologs (see my point below)

      Fig 1B: In infected cells, do the affected LDs tend to be close to the PVs?

      Also in Fig 1B: highlight small KDEL+ve ER rings around LDs here. Study whether LDs have these in infected cells without the confounder (?artefact) of EPF1 over-expression

      Fig 2A the ER looks quite different here from Fig 1B, even at t0. Grossly the strands are spaced wider apart. In detail there are no rings around LDs. Can the authors explain this? Which morphology is common, especially in cells early in infection without co-expressed protein?

      Fig 6 & Line 237: "As the N-terminal region of CbEPF1 is undefined": I suggest that the authors could do more here. At minimum change model to highlight the strong probability that the N term is a globular domain that functions at the LD ER interface. (What are three other unidentified LD proteins? I suggest omitting them).

      Although the Alphafold prediction for EPF1 is low confidence only, in a few minutes of BLAST searching I found the homolog A0A1J8NR10_9COXI (also FFAT+ve) which has a moderately confident structural prediction for its N terminus. This model has a quite large internal hydrophobic cavity, indicating lipid transfer capability and function similar to known LTPs. This means that action as a "tether" possibly results from experiments with viral promoters (see minor point on terminology).

      Minor:

      Fig 2B: add more arrowheads/arrows to fit legend (says they are both multiple)

      FFAT selectivity for MOSPD2: say if this fits the di Mattia or (as appears likely) it extends the known differences between VAPA/B and MOSPD2. Also say if VAPA is expected to behave as VAPB

      Explain how "Mutations in the CbEPF1 FFAT motif(s) did not influence CbEPF1-GFP localization to either the host ER (Supplementary Fig. 1)". In F3mt this shows that EPF1 has a way to target ER other than FFAT/VAP. Discuss if that is via AH insertion in ER.

      Also, the (admittedly low) level of ER targeting is possibly slightly reduced by F3mt, as shown by greater GFP in the nucleus in the single cells shown. If this is a feature of the whole field of cells, it implies that the FFATs normally work with the AHs to target EPF1 to the ER.

      "clustering" LDs w F3mt: could this indicate dimer formation by CbEPF1? Note: to me it appears wrong to describe fig 4A as showing ER exclusion. LD proximities to each other dominate. It's not 100% clear that LDs cluster as their proximities are not universal: "LD-LD interactions" may be (very) weak.

      Fig 5: can levels of EPF1 here be compared to those in cells undergoing natural infection(approximate comparison by qPCR better than nothing if no antibodies are available)? Fig 5a: would it be possible to increase the number of cells counted to attempt to make the reduced number of LD in F3mt significant?

      Minor

      Line 226: no sequence homology: misses the point- there is the common feature of an AH

      Issue to be discussed, as probably too difficult to experiment on: when EPF1 is on the ER does it engage vap only weakly (implying a means to mask its motifs), since if the interaction is strong vap is then unable to bind other partners?

      Line 245: "MOSPD2, a sole VAP that is known to localize on LD surfaces" (worth citing Zouiouich again here). Do the cells/tissues infected by Coxiella express MOSPD2?

      Line 259/260: this "suggestion" about cholesterol should be toned down. It is a speculation that could be tested in future, but the data here do not suggest it.

      'Tether' this word implies more than just bridging but also a role in the physical formation of the contact. Since EPF1 most likely has an LTP domain, it seems linguistically confusing to refer to it as a tether, especially since the experiments that physically later LD-ER contact involve probable over-expression.

      Discuss whether it is 100% certain that EPF1 is in the host cytosol or whether some experiment(s) at a future date (proteomic/western blotting) will be needed to make that conclusion 100% secure.

      Referees cross-commenting

      COMMENT 1

      I realise that both reviewer 1 and reviewer 3 have considered this MS carefully, but I think that their reviews could be improved in some respects. I will add two comments, one for each of the other reviews.

      Reviewer 1. The review poses multiple questions to the authors suggesting that answering these questions experimentally would strengthen the paper. Some of the points seem to misunderstand what is the accepted standard for membrane cell biological research into membrane contact sites. While it might be that the authors can rebut these points, I think it is preferable to use Cross Commenting as an opportunity to address these issues beforehand.

      Major Comment 1: CbEPF1 and ER-LD contact

      Looking at endogenous proteins: I wondered about the same point, but I concluded that this is not likely to be possible in the scope of this submission. If it were possible then I guess the authors would have attempted it. Looking on Google Scholar I could find no example of an endogenous Coxiella proteins being tagged in the bacterial genome. So the only way to find the portion is via an antibody. Assuming the authors do not have one, I do not think we should ask for one at this stage in the publication process.

      Electron microscopy: the reviewer is incorrect to say that this is necessary. It may be the gold standard, but it is a huge amount of extra work. Furthermore it is not at all necessary when the protein in question localises clearly to the interface between organelles identified by confocal microscopy.

      Can a specific CbEPF1 domain be identified? Here a Amphipathic Helix has been identified, but the lack of dissection of that region by the authors explains this question by the reviewer, which is also shared by Reviewer 3. I agree with the implication that more should be done to dissect that.

      Major Comment 2: CbEPF1 FFAT motifs and VAP binding

      Are the two FFAT motifs redundant or synergistic? I would say that the authors have addressed that to a reasonable extent

      CbEPF1 binding specificity towards a VAP/MOSPD2 Ditto

      Major Comment 3: LD clustering

      Since this is an effect of mutated protein only, I think that the 3 questions posed at the end here need only be addressed in Discussion.

      Major Comment 4: CbEPF1-mediated increase in LD number and size

      less LD upon expression of F1mt or F2mt, compared to WT: this seems wrong. The numbers are the same. The comment about IF images are unjustified as they have been quantified and do show a difference. I agree that the biological relevance is unclear, and that this might be addressed. That would require making a mutant Coxiella strain. While that would make a big different to this work, my feeling is that this is well over a year's work.I would be guided by the authors on that and I would not suggest it as required for this MS.

      De novo LD production at the ER is unlikely: This statement is ill-considered as the FFAT motifs ARE required (Fig 5). Furthermore, in all systems ever reported de novo LD production takes place at the ER, so any alternative would be quite extraordinary.

      Altogether, strengthening this aspect of the study: In my view, this area does not need more work and it would not be constructive to ask for more.

      Major Comment 5: Functional relevance

      assessing the phenotype of a Coxiella CbEPF1 mutant I agree that this would be good, but it mightn't be feasible within the confines of this one paper. In the various projects that have made transposon mutants of Coxiella, has a strain been made that affects EPF1? If not, then the authors should state this and discuss it as work for the future. The reviewers cannot expect any experiments!

      Is VAP required for Coxiella intracellular growth/vacuole maturation? On the surface this suggestion seems to offer an experimental route to understanding EPF1. However, VAP binds to >100 cellular proteins, many relating to lipids traffic and a considerable number of these already lcoalised to lipids droplets (ORP2, MIGA2, VPS13A/C). It is therefore unlikely that such an experiment would be interpretable, and I recommend that this request be reconsidered.

      Are LD formation induced upon infection? Are ER-LD contact increased upon infection? These are very reasonable ideas and the results would be interesting additions to this paper.

      COMMENT 2 I have given one set of comments already. Here are my comments for Reviewer 3.

      The review makes a few assumptions that I question. While it might be that the authors can rebut these assumptions, I think it is preferable to use Cross Commenting as an opportunity to address these issues beforehand.

      Major Point 1: What is surprising is that the BFP-KDEL signal is also localizing to the LD surface: "Surprising" is misguided, as it seems to deny the probability that there is a class of proteins that sit at organelle interfaces binding to both partners simultaneously. Maybe the reviewer means "significant" here, in which case I would agree.

      The authors must perform LD isolation the reviewer is incorrect to say that this must be done. It is a huge amount of extra work. Furthermore it is not at all necessary when the protein in question localises clearly to the structures, and its may not even work as the protein may need a reasonably high general concentration to avoid gradual dissociation (wit any re-association) during organelle purification.

      what features of the protein enable its LD binding? Here an Amphipathic Helix has been identified, but the lack of dissection of that region by the authors explains this question by the reviewer, which is also shared by Reviewer 1. I agree with the implication that more should be done to dissect that.

      Major Point 2: Quantitative image analysis:

      Mander's Colocalization analyses with Costes correction are required No. The images in Figure 4 speak for themselves.

      Please show the LD phenotype of untransfected, and CbEPF1-GFP transfected cells also This s a good idea.

      provide a means to quantify the clustering of LDs Unnecessary. Not all findings need to be quantified.

      Major Point 3:

      Data depends largely on overexpression of the protein in uninfected cells. I agree

      What is the localization of the protein in infected cells? I wondered about the same point, but I concluded that this is not likely to be possible in the scope of this submission. If it were possible then I guess the authors would have attempted it. Looking on Google Scholar I could find no example of an endogenous Coxiella proteins being tagged in the bacterial genome. So the only way to find the portion is via an antibody. Assuming the authors do not have one, I do not think we should ask for one at this stage in the publication process.

      What happens to ER-LD contacts upon infection with C. burnetii? This is a very valid question, and answering it would not only strengthen the manuscript but should be achievable in 1-3 months.

      Significance

      This work takes a reasonably big step towards uncovering how parasites have mimicked the molecular machinery of contact sites, here in the context of ER-LD interactions and tantalizingly suggestive of lipid transfer at that contact site (although hard to get strong evidence for that at this stage). This provides yet more evidence for the conservation and overall importance to cells of lipid transfer at contact sites, as well as reminding us of the ability of parasites to attack every aspect of cell function.

    1. Reviewer #1 (Public Review):

      Summary:

      The motivating questions are an accurate reflection of the current state of knowledge surrounding striatal pathway function. The comparisons of pathway function across striatal subregion, activation & inhibition, and task context are laudable and extremely important for advancing the subfield. Had these manipulations, to the largest extent possible been performed in single animals (e.g. activate dSPNs of DMS or DLS in the same mouse across the 3 tasks), this would have significantly strengthened the impact and conclusions that could be drawn by making this set of studies even more so internally consistent and directly comparable. While this is no longer possible, a conceptually related and fantastic contribution to the subfield (and likely beyond in terms of Opto manipulations of brain areas) would be to directly demonstrate that within their studies their DMS pathway manipulations do not impact nearby DLS activity (and vice versa). This is a significant and non-essential request. More feasibly and reasonably, it would be fantastic and strengthen the conclusions here to more fully detail their opsin expression patterns in DMS vs DLS groups and perhaps attempt to relate individual opsin profiles and fiberoptic targeting with behavioral outcomes across tests.

      Strengths:

      A comprehensive and paired comparison of inhibition and activation of striatal pathways across subregions and tasks is a very important and meaningful step towards reconciling contradictory results on striatal pathway function that are observed across labs (who typically focus on one subregion, one task setting, and often do not directly report comparisons of activation and inhibition).

      Weaknesses:

      Figure 1A - the example DMS vs DLS opsin expression and fiber targeting are not terribly convincing that the manipulations will be specific to each subregion (the example in Figure 2A is a little better but I have a similar concern still). The specificity of these manipulations is key to interpretation and conclusions and I strongly feel they should be strengthened here. The best evidence would be direct neural recordings (light in DMS, no effect in DLS, and vice versa), but this is a tall ask and not expected. The next best option, which is readily feasible, is to show not only fiberoptic targeting summaries (as in Figure 1A, Figure 2A) but also a summary of opsin spread for all animals (especially given the two examples appear to have significant spread across DMS and DLS). It would be of great benefit to the field to have these in the Allen Common Coordinate Framework. It would also be fine and useful to utilize the authors' current classical histological atlas alignment methods (e.g. Paxinos pdf). These histological summary figures would also benefit from being larger and more visible (perhaps as separate supplemental figures associated with the main figures).

      Related to the above, it is a concern that the classic view is supported or not because of individual variations in virus/fiber targeting to striatal subregions which likely have greater granularity than the traditional dorsal medial vs lateral (e.g. Hunnicutt et al 2016, Foster et al 2021, Hintiryan et al 2016). Although there may not be enough animals or variation in targeting in the present study to find meaningful relationships, it would strengthen the paper and be a great benefit to the field to know whether for key findings if the strength of behavioral effects correlated with anterior/posterior or medial/lateral or dorsal/ventral fiberoptic coordinates (or the volume of opsin expression profiles).

      Conceptually, a clear new idea or integrative interpretation of prior work (nor even the large body of results within this work) comes to the fore, save for the already appreciated fact that the classic view of opposing pathways is sometimes supported and sometimes not. Two tangible suggestions that I believe would facilitate the influence of this study - (1) can the authors more thoughtfully bridge the logical steps in their results sections and the prior context around them (some topic sentences jump right into results, e.g. line 195: "The inhibition experiment showed), and (2) in discussion, rather than emphasizing when/where the classic view is supported and not, more content on precisely why would be helpful. Some questions more specifically, if DMS/DLS pathway activation/inhibition is *mostly* oppositely appetitive/aversive, what does that mean in the context of spontaneous or reward-guided locomotion? Self-initiated pathway activation/inhibition is in part learned (with very intriguing differences across pathways in the expression across learning) - how should we think about striatal pathway function with regards to learning, spontaneous/innate behaviors, vs over-trained behaviors? When the classic view fails in the dorsal striatum - why? And is a complimentary "model" an actual alternative concept, a distinct mode of circuit function, or just a negative result on the classic view?

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their valuable comments, which definitely make our story stronger.

      2. Description of the planned revisions

      Reviewer 1

      Comments:

      No data are shown from the genome-wide screening approach, including the common regulators of KRAS and HRAS. Information about how imaging data were processed and analysed is missing. A final table of 8 selected factors with phosphatase activity is presented without providing further insight about the selection criteria and other factors.

      This information will be included in the revised manuscript. In the subsequent characterization via image-based quantification of GFP-KRAS membrane localization, a Manders´ coefficient was calculated. A respective chapter in the methods section on how this was done is missing.

      This information will be provided in the revised manuscript. I would be happy to see the following analyses to strengthen the dataset:

      • Reconstitution experiments and further validation to show that it is dependent on the enzymatic activity of MTMRs.

      MTMR3 knockdown (KD) cells will be rescued with wildtype (WT) MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. - Additive effect upon depletion of multiple MTMRs? Are they functionally co-operative?

      MTMR3 and 4 KD cells will be rescued with WT MTMR4 and 3, respectively, and the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. - Signalling analysis is very limited (Fig. 5). Do the authors detect any defects in K-RAS driven downstream signaling in these cells upon depletion of MTMRs.

      Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Reviewer 2

      Major comments

      The unbiased siRNA screen used to identify proteins that impact KRAS membrane localization was a very nice approach to identify MTMR proteins. Although there is a clear phenotype of KRAS mislocalization associated with knockdown of the various MTMR proteins, the data provided does not prove a causational role for the MTMR proteins in maintaining PtdSer content, nor KRAS localization, at the PM. The current data does not provide a mechanism by which MTMR proteins are influencing this process, but rather speculates using existing literature that it is the loss in MTMR 3-phosphotase activity that leads to decreased PtdSer in the membrane. There is a series of conversions and exchanges that act upon PI3P (the substrate of MTMR proteins) and PI to generate PtdSer in the PM; thus, it is a dynamic process that is influenced by a variety of different proteins and transporters [3, 4, 5, 6]. To prove their single-protein-driven hypothesis, the authors should clone and express a mutant MTMR protein construct that contains an inactive phosphatase catalytic domain, to prove that it is indeed MTMR's generation of PI (which is further converted into PI4P) in the membrane that is responsible for maintaining PtdSer content and KRAS localization. Without this, there is not enough evidence to support this claim.

      MTMR3 knockdown (KD) cells will be rescued with wildtype (WT) MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. In addition, the authors speculate that ORP5 is a critical intermediate in this process, and that the loss in PI4P/ORP5 at the PM following MTMR knockdown is responsible for the decrease in PtdSer at the PM. The authors should knockdown ORP5 in MTMR-wildtype cells, since it is downstream of their proposed mechanism, and see whether this leads to comparable reductions in PtdSer levels and KRAS mislocalization at the PM. This would confirm ORP5 as having a major role in this setting and would support the initial mechanistic hypothesis. These experiments are imperative to forming an appropriate conclusion, especially since some of their current data contradicts their mechanistic hypothesis: the authors identify a decrease in whole cell PtdSer content, not just PM PtdSer content, when MTMR proteins are knocked down. Based on this result, one would predict that a secondary or supporting mechanism must exist that contributes to a reduction in whole cell PtdSer content, which likely contributes to its loss at the PM as well. The authors describe in line 360 how "previous work has shown that PM PI4P depletion indirectly blocks PtdSer synthase 1 and 2 activities," to explain this reduction in total cell levels of PtdSer. The authors should look at PtdSer synthase 1 and 2 activities in the presence of MTMR knockdown, as the loss in PtdSer at the PM may rely more heavily on synthase activity than ORP-dependent transfer of PtdSer.

      Investigating the PM localization of KRAS and PtdSer after silencing ORP5 in MTMR WT mammalian cell lines has been published (PMID: 31451509 and 34903667). In these studies, silencing ORP5 1) reduces the levels of PtdSer and KRAS from the plasma membrane (PM), 2) reduces KRAS signal output, 3) blocks the growth of KRAS-dependent PDAC in vitro and in vivo. These studies have been appropriately cited in our manuscript in lines 82 and 277. Although the c. Elegans model that was used to investigate downstream let-60 (RAS ortholog) activity through a multi-vulva phenotype is quite intriguing, it is more critical to assess downstream RAS pathway activation, especially in the human colorectal adenocarcinoma or the human mammary gland ductal carcinoma cell lines. Not only would this line of questioning provide a higher significance and increase the clinical applicability of these findings, but it is also crucial to support the author's claim that MTMR knockdown can influence mutant KRAS activity. Although small changes in KRAS localization to the PM can have significant effects on downstream signaling, these effects need to be measured and confirmed in this setting. The authors should perform western blots to assess the activation of both the PI3K and MAPK pathway in the MTMR knockdown cell lines.

      Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. In addition to this, it might be important to know whether there are any changes in the levels of the KRAS protein itself, as recycling/transport pathways may be impacted by its lack of recruitment to the plasma membrane.

      Total KRAS protein expression will be measured in MTMR KD cell lines. Finally, the authors show that proliferation is inhibited by MTMR knockdown as a readout of RAS activity. The authors should also assess the levels of cell death, as the inhibition of mutant KRAS in cancer cells would likely lead to cell death. The authors do not describe why reducing any one of the MTMR proteins alone is sufficient to deplete the PM of PtdSer. This sort of discussion is important for understanding compensatory or regulatory mechanisms in place between the MTMR proteins, as this may influence PtdSer levels at the PM. For example, it has been shown that MTMR2 can stabilize MTMR13 on membranes. Do the levels, stability, or localization of the other MTMR proteins change when one specific MTMR is knocked down? Is this why we see an effect on PtdSer in any one of the knockdowns? The authors should at the very least provide western blots for each of the MTMR proteins discussed in the presence of each individual MTMR knockdown.

      MTMR3 knockdown (KD) cells will be rescued with WT MTMR3 or the phosphatase mutant MTMR3 (C413S, PMID: 11676921). MTMR4 KD cells will be rescued with WT MTMR4 or the phosphatase mutant MTMR4 (C407S, PMID: 20736309). In these cells, the PM localization of KRAS and PtdSer will be examined by confocal and electron microscopy. In addition, we will measure endogenous MTMR 2/3/4/7 proteins levels in the presence of each individual MTMR KD by immunoblotting. In addition to the above experiments, the MTMR hairpins should be expressed in a secondary or tertiary cell line to prove that these events are not specific to the current model used. Since their current human mammary gland ductal carcinoma cell line overexpresses a mutant KRAS-GFP construct, perhaps doing similar experiments in a cancer cell line that already expresses an endogenous mutant KRAS might provide a better model.

      Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Although this protein would not include a GFP-tag, other ways of visualizing its localization at the PM (such as immunofluorescent staining) could be used to confirm its localization there.

      The anti-KRAS antibody for IF has not been reported to my knowledge. In addition, the effects on downstream RAS signaling could be measured through western blot of PI3K and MAPK pathways.

      Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Supplemental Figure 4 is incorrectly referred to in the text as Supplemental Figure 3 (line 257-258). The text reads, "Confocal microscopy further demonstrates that HRASG12V cellular localization is not disrupted after silencing MTMR 2/3/4/7 (Fig. S3)" but Figure S3 is an EM image of PM basal sheets from T47D cells expressing GFP-KRASG12V. Supplemental Figure 4 shows that mutant HRAS is unaffected by the various MTMR knockdowns.

      They will be labeled correctly in the revised manuscript. Since the authors show decreased proliferation in mutant KRAS cells following MTMR knockdown, the authors should also investigate any changes to proliferation rates in mutant HRAS cell lines following MTMR knockdown. This data is necessary to prove that MTMR-driven changes in downstream RAS signaling are specific to mutant KRAS and not mutant HRAS.

      Cell proliferation assay will be performed using MTMR 2/3/4/7-silenced T47D cell lines stably expressing oncogenic mutant HRAS (HRASG12V) to address this questions. It may also be important for the authors to also show any effects on wildtype RAS localization to the PM when MTMR-2,-3,-4, and -7 are knocked down, to show whether this is a oncoprotein-specific event.

      Cells expressing the truncated mutant KRAS, which contains the minimal membrane anchor and does not have G-domain will be infected with lentivirus expressing shRNA against MTMR 2/3/4/7, and their localization will be examined. The representative images chosen for Figure 4 diminish the reliability of the data, as it is difficult to see a visible change in the PI3P probe between the control and MTMR knockdown cells in these images. Since the authors rely on the Mander's coefficient and the number of gold particles throughout much of the paper, having the same conclusion quantitatively but not qualitatively for these assays is confusing. Perhaps the authors should elaborate on whether MTMR knockdown has a stronger effect on PtSer and KRAS PM presence than PI3P PM presence.

      We will include the discussion in the revised manuscript. They should also describe their method for identifying early endosomes, since they switch back and forth between describing the content of the PM and of early endosomes, such as in Figure 1 and Figure 4.

      We will include the information in the revised manuscript. Minor comments:

      An additional experiment that may add another layer of clinical applicability would be the use of an MTMR inhibitor in this cell line, to see whether similar effects can be achieved pharmacologically [7]. This would provoke other researchers to investigate MTMR inhibitors in vitro and in vivo to assess the effect on mutant KRAS cancers.

      • This is an important point, but while vanadate, a general phospho-tyrosine phosphatase (PTP) inhibitor, has been reported to inhibit myotubulin, a family member of MTMR (PMID: 8995372 and 1943774), there are no commercially available MTMR-specific inhibitors. Using vanadate to inhibit MTMR proteins will produce non-specific effects by blocking other PTPs. The inclusion of cell lines that express KRAS proteins of different mutational statuses would be extremely interesting, as KRAS' orientation within the plasma membrane has been shown to be altered by these mutations. This fact should potentially be considered when choosing a secondary or tertiary cell line to do additional experiments in, but it is not necessary for the authors to elaborate on how MTMR proteins may impact different KRAS mutants for the scope of this project.

      For the aforementioned experiments using human KRAS-dependent and -independent PDAC cell lines, we will use MiaPaCa2 (KRASG12C) and AsPC1 (KRASG12D). Reviewer #3

      *Major comments: *

      One of the two main manuscript claims indicates that KRAS12V "function" is impaired upon MTMR knockdown. While this is an obvious phenotype expected by mislocalizing KRAS from the inner PM it is not sufficiently demonstrated in the current version of the manuscript. Western blots of at least MAPK and PI3K signalling following MTMR knockdown in KRAS-dependent cell lines should be included. In addition to the T47D cells used in the manuscript, it would be ideal to include a KRAS-mutant cell line from tumour types where KRAS mutations are more frequent that in breast.

      • Human pancreatic ductal adenocarcinoma (PDAC) cell lines that harbor oncogenic mutant KRAS and their growth is KRAS signaling-dependent (MiaPaCa2 and AsPC1), and PDAC cell line harboring WT KRAS and their growth is KRAS signaling-independent (BxPC3) will be infected with lentivirus expressing shRNAs against MTMR 2, 3, 4 or 7. Their growth (proliferation assay) and KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) will be measure. Since the MTMR dependent phenotypes are mutant-KRAS specific it would be interesting to study the resulting phenotypes in HRAS-mutant cell line.

      Cell proliferation assay will be performed using MTMR 2/3/4/7-silenced T47D cell lines stably expressing oncogenic mutant HRAS (HRASG12V) to address these questions.

      **Referee cross-commenting**

      After reading the reviews of my colleagues I think there is a clear agreement on the need to further substantiate that KRAS membrane mis-localization is indeed affecting oncogenic output. The use of other KRAS addicted and non-addicted models would further enhance this analysis.

      Likewise, the other two reviewers request experimental evidences to validate the role of MTMR enzymatic activity in the process. This is a pertinent request that I failed to put forward. Suggestions include the use of reconstitution experiments catalytically dead mutants. Also, the use of MTMR small molecule inhibitors is proposed. If those exist with sufficient specificity this would indeed be appropriate to perform.

      Experiments addressing these comments have been described above.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      N/A

      • *

      4. Description of analyses that authors prefer not to carry out

      *Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. *

      Reviewer 2

      R2 suggests to investigate PtdSer synthase 1 and 2 activities in presence of MTMR knockdown, as the loss in PtdSer at the PM may rely more heavily on synthase activity than ORP-dependent transfer of PtdSer.

      Although it is intriguing to examine the effect of MTMR loss on the activities of PtdSer synthase 1 and 2, our lab does not have resources/techniques to carry out the experiment. * *

      The results of this paper rely heavily on one experimental technique, which is calculating a Mander's coefficient and counting the co-localization of the probe of interest with the CellMask stain of the plasma membrane. How this coefficient is derived is explained in appropriate detail in the methods section of this manuscript; however, a secondary route of identifying these changes in membrane constituents would greatly enhance the paper's conclusions. This would eliminate any doubt surrounding the accuracy of the technique, since so much of the data relies on one experimental output.

      In addition to Manders' coefficient for examining the colocalization of KRAS and LactC2 (the PtdSer probe) to propose KRAS/PS redistribution to endomembranes after MTMR loss. To complement this, we also performed quantitative EM to demonstrate the PM depletion of KRAS and PtdSer from the inner PM leaflet. We believe these two techniques would appropriate to investigate KRAS/PtdSer PM depletion and cellular re-distribution. * *

      Reviewer 3

      To further support the conclusions, oncogenic signalling should be studied in the C.elegans model by immunofluorescence of immunohistochemistry. Furthermore, although not strictly required to support the author's claims, it would be interesting to elucidate whether the inhibition of the multivulva phenotype upon MTMR knockdown in vivo results as a consequence of cell death.

      Our collaborator for C. elegans study does not have resources to carry out the proposed IF and IHC experiment. Instead, we will measure KRAS signaling (e.g. phosphorylated ERK and Akt by immunoblot) and the growth of KRAS-dependent PDAC after MTMR loss. These experiments would be more clinically and physiologically relevant.

    1. “detailed specifications”

      I think it's important to note that task analysis is ONLY used when learners require "detailed specification." Task analysis is important IF we assume that the ID's job is to tell the learner exactly what needs to be done and how. Task analysis is essential when using a behavioristic learning model. However, it may not be as applicable to more constructivist learning models.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels.

      Strengths:

      The experiments were thorough and well designed. The results are compelling and support the main claim. The development and the use of the DrosoX two-choice assay put forward for a more quantitative and automatic/unbiased assessment for ingestion volume and preference.

      Weaknesses:

      There are a few inconsistencies with respect the the exact role by which IR60b neurons limit high salt consumption and the contribution of external (labellar) high-salt sensors in regulating high salt consumption. These weaknesses do not significantly impact the main conclusion, however.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Sang et al. set out to identify gustatory receptors involved in salt taste sensation in Drosophila melanogaster. In a two-choice assay screen of 30 Ir mutants, they identified that Ir60b is required for avoidance of high salt. In addition, they demonstrate that activation of Ir60b neurons is sufficient for gustatory avoidance using either optogenetics or TRPV1 to specifically activate Ir60b neurons. Then, using tip recordings of labellar gustatory sensory neurons and proboscis extension response behavioral assays in Ir60b mutants, the authors demonstrate that Ir60b is dispensable for labellar taste neuron responses to high salt and the suppression of proboscis extension by high salt. Since external gustatory receptor neurons (GRNs) are not implicated, they look at Poxn mutants, which lack external chemosensory sensilla but have intact pharyngeal GRNs. High salt avoidance was reduced in Poxn mutants but was still greater than Ir60b mutants, suggesting that pharyngeal gustatory sensory neurons alone are sufficient for high salt avoidance. The authors use a new behavioral assay to demonstrate that Ir60b mutants ingest a higher volume of sucrose mixed with high salt than control flies do, suggesting that the action of Ir60b is to limit high salt ingestion. Finally, they identify that Ir60b functions within a single pair of gustatory sensory neurons in the pharynx, and that these neurons respond to high salt but not bitter tastants.

      Strengths:

      A great strength of this paper is that it rigorously corroborates previously published studies that have implicated specific Irs in salt taste sensation. It further introduces a new role for Ir60b in limiting high salt ingestion, demonstrating that Ir60b is necessary and sufficient for high salt avoidance and convincingly tracing the action of Ir60b to a particular subset of gustatory receptor neurons. Overall, the authors have achieved their aim by identifying a new gustatory receptor involved in limiting high salt ingestion. They use rigorous genetic, imaging, and behavioral studies to achieve this aim, often confirming a given conclusion with multiple experimental approaches. They have further done a great service to the field by replicating published studies and corroborating the roles of a number of other Irs in salt taste sensation. An aspect of this study that merits further investigation is how the same gustatory receptor neurons and Ir in the pharynx can be responsible for regulating the ingestion of both appetitive (sugar) and aversive tastants (high salt).

      A previous report published in eLife from John Carlson’s lab (Joseph et al, 2017) showed that the Ir60b GRN in the pharynx responds to sucrose resulting in sucrose repulsion. Thus, stimulation of this pharyngeal GRN results in gustatory avoidance only, not both attraction and avoidance. (lines 205-207)

      Weaknesses:

      There are several weaknesses that, if addressed, could greatly improve this work.

      (1) The authors combine the results and discussion but provide a very limited interpretation of their results. More discussion of the results would help to highlight what this paper contributes, how the authors interpret their results, and areas for future study.

      We agree and have now separated the Results and Discussion, and in so doing have greatly expanded discussion of the results.

      (2) The authors rename previously studied populations of labellar GRNs to arbitrary letters, which makes it difficult to understand the experiments and results in some places. These GRN populations would be better referred to according to the gustatory receptors they are known to express.

      One of the corresponding authors (Craig Montell) introduced this alternative GRN nomenclature in a review in 2021: Montell, C. (Drosophila sensory receptors—a set of molecular Swiss Army Knives. Genetics 217, 1-34) (Montell, 2021). We are not fans of referring to different classes of GRNs based on the receptors that they express since it is not obvious which receptors to use. For example, the GRNs that respond to bitter compounds all express multiple GR co-receptors. The same is true for the GRNs that respond to sugars. The former system of referring to GRNs simply as sugar, bitter, salt and water GRNs is also not ideal since the repertoire of chemicals that stimulates each class is complex. For example, the Class A GRNs (formerly sugar GRNs) are also activated by low Na+, glycerol, fatty acids, and acetic acid, while the B GRNs (former bitter GRNs) are also stimulated by high Na+, acids, polyamines, and tryptophan. In addition, there are five classes of GRNs. At first mention of the Class A—E GRNs, we mention the most commonly used former nomenclature of sugar, bitter, salt and water GRNs. In addition, for added clarify, we now also include a mention of one of the receptors that mark each class. (lines 51-59)

      (3) The conclusion that GRNs responsible for high salt aversion may be inhibited by those that function in low salt attraction is not well substantiated. This conclusion seems to come from the fact that overexpression of Ir60b in salt attraction and salt aversion sensory neurons still leads to salt aversion, but there need not be any interaction between these two types of sensory neurons if they act oppositely on downstream circuits.

      We did not make this claim.

      (4) The authors rely heavily on a new Droso-X behavioral apparatus that is not sufficiently described here or in the previous paper the authors cite. This greatly limits the reader's ability to interpret the results.

      We expanded the description of the apparatus in the Droso-X assay section of the Materials and Methods. (lines 588-631)

      Reviewer #3 (Public Review):

      Summary:

      Sang et al. successfully demonstrate that a set of single sensory neurons in the pharynx of Drosophila promotes avoidance of food with high salt concentrations, complementing previous findings on Ir7c neurons with an additional internal sensing mechanism. The experiments are well-conducted and presented, convincingly supporting their important findings and extending the understanding of internal sensing mechanisms. However, a few suggestions could enhance the clarity of the work.

      Strengths:

      The authors convincingly demonstrate the avoidance phenotype using different behavioral assays, thus comprehensively analyzing different aspects of the behavior. The experiments are straightforward and well-contextualized within existing literature.

      Weaknesses:

      Discussion

      While the authors effectively relate their findings to existing literature, expanding the discussion on the surprising role of Ir60b neurons in both sucrose and salt rejection would add depth. Additionally, considering Yang et al. 2021's (https://doi.org/10.1016/j.celrep.2021.109983) result that Ir60b neurons activate feeding-promoting IN1 neurons, the authors should discuss how this aligns with their own findings.

      Yang et al. demonstrated that the activation of Ir60b neurons can trigger the activation of IN1 neurons akin to pharyngeal multimodal (PM) neurons, potentially leading to enhanced feeding (Yang et al, 2021). However, our research reveals a specific pattern of activation for Ir60b neurons. Instead of being generalists, they are specialized for certain sugars, such as sucrose and high salt. Consequently, while Ir60b GRNs activate IN1 neurons, we contend that there are other neurons in the brain responsible for inhibiting feeding. (lines 412-417)

      Lines 187: The discussion primarily focuses on taste sensillae outside the labellum, neglecting peg-type sensillae on the inner surface. Clarification on whether these pegs contribute to the described behaviors and if the Poxn mutants described also affect the pegs would strengthen the discussion.

      We added the following to the Discussion section. “We also found that the requirement for Ir60b appears to be different when performing binary liquid capillary assay (DrosoX), versus solid food binary feeding assays. When we employed the DrosoX assay to test mutants that were missing salt aversive GRNs in labellar bristles but still retained functional Ir60b GRNs, the flies behaved the same as wild-type flies (e.g. Figure 3J and 3L). However, using solid food binary assays, Poxn mutants, which are missing labellar taste bristles but retain Ir60b GRNs (LeDue et al, 2015), displayed repulsion to high salt food that was intermediate between control flies and the Ir60b mutant (Figure 2J). Poxn mutants retain taste pegs (LeDue et al., 2015), and these hairless taste organs become exposed to food only when the labial palps open. We suggest that there are high-salt sensitive GRNs associated with taste pegs, which are accessed when the labellum contacts a solid substrate, but not when flies drink from the capillaries used in DrosoX assays. This explanation would also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but prefers 1 mM sucrose alone over 300 mM NaCl and 5 mM sucrose in the solid food binary assay (Figure 1B).”. (lines 430-444)

      In line 261 the authors state: "We attempted to induce salt activation in the I-type sensilla by ectopically expressing Ir60b, similar to what was observed with Ir56b 8; however, this did not generate a salt receptor (Figures S6A)"

      An obvious explanation would be that these neurons are missing the identified necessary co-receptors Ir76b and Ir25a. The authors should discuss here if the Gr33a neurons they target also express these co-receptors, if yes this would strengthen their conclusion that an additional receptor might be missing.

      We clarified this point in the Discussion section as follows, “An open question is the subunit composition of the pharyngeal high Na+ receptor, and whether the sucrose/glucose and Na+ receptors in the Ir60b GRN are the same or distinct. Our results indicate that the high salt sensor in the Ir60b GRN includes IR25a, IR60b and IR76b since all three IRs are required in the pharynx for sensing high levels of NaCl. I-type sensilla do not elicit a high salt response, and we were unable to induce salt activation in I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. This indicates that IR25a, IR60b and IR76b are insufficient for sensing high Na+. The inability to confer a salt response by ectopic expression of Ir60b was not due to absence of Ir25a and Ir76b in Gr33a GRNs since Gr33a and Gr66a are co-expressed (Moon et al, 2009), and Gr66a GRNs express Ir25a and Ir76b (Li et al, 2023). Thus, the high salt receptor in Ir60b GRNs appears to require an additional subunit. Given that Na+ and sugars are structurally unrelated, we suggest that the Na+ and sucrose/glucose receptors do not include the identical set of subunits, or that that they activate a common receptor through disparate sites”. (lines 464-477)

      Methods

      The description of the Droso-X assay seems to be missing some details. Currently, it is not obvious how the two-choice is established. Only one capillary is mentioned, I assume there were two used? Also, the meaning of the variables used in the equation (DrosoX and DrosoXD) are not explained.

      We expanded the description of the apparatus in the Droso-X assay section of the Materials and Methods. (lines 588-631)

      The description of the ex-vivo calcium imaging prep. is unclear in several points:

      (1) It is lacking information on how the stimulus was applied (was it manually washed in? If so how was it removed?).

      We expanded the description of the apparatus in the ex vivo calcium imaging section of the Materials and Methods. (lines 682-716)

      (2) The authors write: "A mild swallow deep well was prepared for sample fixation." I assume they might have wanted to describe a "shallow well"?

      We deleted the word “deep.”.(line 691)

      (3) "...followed by excising a small portion of the labellum in the extended proboscis region to facilitate tastant access to pharyngeal organs." It is not clear to me how one would excise a small portion of the labellum, the labellum depicts the most distal part of the proboscis that carries the sensillae and pegs. Did the authors mean to say that they cut a part of the proboscis?

      Yes. We changed the sentence to “…followed by excising a small portion of the extended proboscis to facilitate tastant access to the pharyngeal organs.”.(lines 693)-695

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels. In general, I find the collective evidence presented by the authors convincing. But I feel the MS can benefit from having a discussion session and a few simple experiments. Below I listed some inconsistencies I hope the authors can address or at least discuss.

      We have now added a Discussion section, and expanded the discussion.

      (1) The role of IR60b neurons on suppressing PER appeared inconsistent. On the one hand, optogenetic activation of these neurons suppressed PER (Fig 1D), on the other hand, IR60b mutants were as competent to suppress PER in response to high salt as WT (Fig 2G). Are pharyngeal neurons expected to modulate PER? It might be worth including a retinal-free or genotype control to ascertain the PER suppression exhibited by IR60b>CsChrimson is genuine.

      Please note that Figure 2G is now Figure 2H.

      Our interpretation is that activation of aversive GRNs by high salt either in labellar bristles or in the pharynx is sufficient to inhibit repulsion to high salt. Consistent with this conclusion, optogenetic activation of Ir60b GRNs, which are specific to the pharynx, is sufficient to reduce the PER to sucrose containing food (Figure 1D). However, mutation of Ir60b has no impact on the PER to sucrose plus high (300 mM) NaCl since the high-salt activated GRNs in labellar bristles are not impaired by the Ir60b mutation. In contrast, Ir25a and Ir76b are required in both labellar bristles and in the pharynx to reject high salt. As a consequence, mutation of either Ir25a or Ir76b impairs the repulsion to high salt. Thus, there is no inconsistency between the optogenetics and PER results. We clarified this point in the Discussion section. In terms of controls for IR60b>CsChrimson, we show that UAS-CsChrimson alone or UAS-CsChrimson in combination with the Gr5a driver has no impact on the PER (Figure 1D). In addition, we now include a retinal free control (Figure 1D). These findings provide the key genetic controls and are described in the Results section. (lines 167-170)

      (2) The role of labellar high-salt sensors in regulating salt intake appeared inconsistent. On the one hand, they appeared to have a role in limiting high salt consumption because poxn mutants were significantly more receptive to high salt than WT (Fig. 2J). On the other hand, selectively restoring IR76b or IR25a in only the IR60b neurons in these mutants - thus leaving the labellar salt sensors still defective - reverted the flies to behave like WT when given a choice between sucrose vs. sucrose+high salt (Fig 3J, L).

      We now offer an explanation for these seemingly conflicting results in the Discussion section. When we employed the DrosoX assay with mutants with functional Ir60b GRNs, but were missing salt aversive GRNs in labellar bristles, the flies behaved the same as control flies (e.g. Figure 3J and L). However, using solid food binary assays, Poxn mutants, which are missing labellar taste bristles but retain Ir60b GRNs (LeDue et al., 2015), display aversion high salt food intermediate between control and Ir60b mutant flies (Figure 2J). Poxn mutants retain taste pegs (LeDue et al., 2015), which are exposed to food substrates only when the labial palps open. We suggest that the taste pegs harbor high salt sensitive GRNs, and they may be exposed to solid substrates, but not to the liquid in capillary tubes used in the DrosoX assays. This explanation would also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but prefers 1 mM sucrose alone over 300 mM NaCl and 5 mM sucrose in the solid food binary assay (Figure 1B). (lines 433-444)

      (3) The behavior sensitivity of IR60b mutant to high salt again appeared somewhat inconsistent when assessed in the two different choice assays. IR60b mutant flies were indifferent to 300 mM NaCl when assayed with DrosoX (Fig 3A, B) but were clearly still sensitive to 300 mM NaCl when assayed with "regular" assay - they showed much reduced preference for 5 mM sucrose over 1 mM sucrose when the 5 mM sucrose was adulterated with 300 mM NaCl (Fig 1B).

      The explanation provided above may also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but not when selecting between 300 mM NaCl and 5 mM sucrose versus 1 mM sucrose in the solid food binary assay (Figure 1B). Alternatively, the different behavioral responses might be due to the variation in sucrose concentrations in each of these two assays, which employed 5 mM sucrose in the solid food binary assay, as opposed to 100 mM sucrose in the DrosoX assay. This disparity in attractive valence between these two concentrations of sucrose might consequently impact feeding amount and preference. This point is now also included in the Discussion section. (lines 441-449)

      (4) Given the IR60b neurons exhibited clear IR60b/IR25a/IR76b-dependent sucrose sensitivity, too, I am curious how the various mutant animals behave when given a choice between 100 mM sorbitol vs. 100 mM sorbitol + 300 mM NaCl, a food choice assay not complicated by the presence of sucrose. Similarly, I am curious if the Ca2+ response of IR60 neurons differs significantly when presented with 100 mM sucrose vs. when presented with 100 mM sucrose + 300 mM NaCl. In principle, the magnitude for the latter should be significantly larger than the former as animals appeared to be capable of discriminating these two choices solely relying on their IR60b neurons.

      To investigate the aversion induced by high salt in the absence of a highly attractive sugar, such as sucrose, we combined 300 mM salt with 100 mM sorbitol, which is a tasteless but nutritive sugar (Burke & Waddell, 2011; Fujita & Tanimura, 2011). Using two-way choice assays, we found that the Ir25a, Ir60b, and Ir76b mutants exhibited substantial reductions in high salt avoidance (Figure 3—figure supplement 2A). In addition, we performed DrosoX assays using 100 mM sorbitol alone, or sorbitol mixed with 300 mM NaCl. Sorbitol alone provoked less feeding than sucrose since it is a tasteless sugar (Figure 3—figure supplement 2B and C). Nevertheless, addition of high salt to the sorbitol reduced food consumption (Figure 3—figure supplement 2B and C). (lines 300-308)

      We also conducted a comparative analysis of the Ca2+ responses within the Ir60b GRN, examining its reaction to various stimuli, including 100 mM sucrose alone, 300 mM NaCl alone, and a combination of 100 mM sucrose and 300 mM NaCl. We found that the Ca2+ responses were significantly higher when we exposed the Ir60b GRN to 300 mM NaCl alone, compared with the response to 100 mM sucrose alone (Figure 4—figure supplement 1D). However, the GCaMP6f responses was not higher when we presented 100 mM sucrose with 300 mM NaCl, compared with the response to 300 mM NaCl alone (Figure 4—figure supplement 1D). (lines 360-367)

      Minor issues

      (1) The labels of sucrose concentration on Figure 2D were flipped.

      This has been corrected.

      (2) The phrasing of the sentence that begins in line 196 (i.e., "This suggests the internal sensor ...") is not as optimal.

      We changed the sentence to, “We found that the aversive behavior to high salt was reduced in the Poxn mutants relative to the control (Figure 2J), consistent with previous studies demonstrating roles for GRNs in labellar bristles in high salt avoidance (Jaeger et al, 2018; McDowell et al, 2022; Zhang et al, 2013).”. (lines 217-219)

      (3) In Line 231, I am not sure why the authors think ectopic expressing IR60b in labellar neurons would allow them to become activated by Na+. It seems highly unlikely to me, especially given IR60b also plays a role in sensing sugar.

      We added the following paragraph to the Discussion addressing this point, “An open question is the subunit composition of the pharyngeal high Na+ receptor, and whether the sucrose/glucose and Na+ receptors in the Ir60b GRN are the same or distinct. Our results indicate that the high salt sensor in the Ir60b GRN includes IR25a, IR60b and IR76b since all three IRs are required in the pharynx for sensing high levels of NaCl. I-type sensilla do not elicit a high salt response, and we were unable to induce salt activation in I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. This indicates that IR25a, IR60b and IR76b are insufficient for sensing high Na+. The inability to confer a salt response by ectopic expression of Ir60b was not due to absence of Ir25a and Ir76b in Gr33a GRNs since Gr33a and Gr66a are co-expressed (Moon et al., 2009), and Gr66a GRNs express Ir25a and Ir76b (Li et al., 2023). Thus, the high salt receptor in Ir60b GRNs appears to require an additional subunit. Given that Na+ and sugars are structurally unrelated, we suggest that the Na+ and sucrose/glucose receptors do not include the identical set of subunits, or that that they activate a common receptor through disparate sites.”. (lines 464-477)

      Reviewer #2 (Recommendations For The Authors):

      Line 41, acutely excessive salt ingestion can lead to death, not just health issues

      We now state that, “consumption of excessive salt can contribute to various health issues in mammals, including hypertension, osteoporosis, gastrointestinal cancer, autoimmune diseases, and can lead to death.”. (lines 41-43)

      Line 46, delete the comma after flies

      Done. (line 47)

      Lines 51-56: This description is unnecessarily confusing and does not cite proper sources. Renaming these GRNs arbitrarily can only create confusion, plus this description lacks nuance. If E GRNs are Ir94e positive, this description is out of date. Furthermore, If D GRNs are ppk23 and Gr66a positive then they will respond to both bitter and high salt.

      Papers to consult: https://elifesciences.org/articles/37167 10.1016/j.cell.2023.04.038

      We have now added citations. We prefer the A—E nomenclature, which was introduced in a 2021 Genetics review by one of the authors of this manuscript (Montell) (Montell, 2021) since naming different classes of GRNs on the basis of markers or as sweet, bitter, salt and water GRNs is misleading and an oversimplification. We cite the Genetics 2021 review, and for added clarity include both types of former names (markers and sweet, bitter, salt and water). Class D GRNs are not marked by Gr66a. The eLife reference cited above provided the initial rationale for stating that Class E GRNs are marked by Ir94e and activated by low salt. According to the Taisz et al reference (Cell 2023), the Class E GRNs, which are marked by Ir94e, are also activated by pheromones, which we now mention (Taisz et al, 2023). (lines 51-59)

      Line 62, E GRNs are not required for low salt behaviors

      We do not state that E GRNs are required for low salt behaviors, only that they sense low Na+ levels. (line 58)

      Line 70-81 - Great deal of emphasis on labellar GRNs but then no mention of how pharyngeal GRNs fit into categories A-E

      We devote the following paragraph to pharyngeal GRNs. We do not mention how they fit in with the A—E categories because it is not clear.

      “In addition to the labellum and taste bristles on other external structures, such as the tarsi, fruit flies are endowed with hairless sensilla on the surface of the labellum (taste pegs), and three internal taste organs lining the pharynx, the labral sense organ (LSO), the ventral cibarial sense organ (VCSO), and the dorsal cibarial sense organ (DCSO), which also function in the decision to keep feeding or reject a food (Chen & Dahanukar, 2017, 2020; LeDue et al., 2015; Nayak & Singh, 1983; Stocker, 1994). A pair of GRNs in the LSO express a member of the gustatory receptor family, Gr2a, and knockdown of Gr2a in these GRNs impairs the avoidance to slightly aversive levels of Na+ (Kim et al, 2017). Pharyngeal GRNs also promote the aversion to bitter tastants, Cu2+, L-canavanine, and bacterial lipopolysaccharides (Choi et al, 2016; Joseph et al., 2017; Soldano et al, 2016; Xiao et al, 2022). Other pharyngeal GRNs are stimulated by sugars and contribute to sugar consumption (Chen & Dahanukar, 2017; Chen et al, 2021; LeDue et al., 2015). Remarkably, a pharyngeal GRN in each of the two LSOs functions in the rejection rather the acceptance of sucrose (Joseph et al., 2017).”. (lines 74-89)

      Line 89, aversive --> aversion

      We changed this part.

      Line 90, gain of aversion capsaicin avoidance suggests they are sufficient for avoidance, not essential for avoidance.

      We changed “essential” to “sufficient.”. (line 100)

      Line 104, what are you recording from here? Labellar or pharyngeal GRNs

      We added “S-type and L-type sensilla” to the sentence. (line 119)

      Line 107, How are A GRNS marked with tdTomato? It is important to mention how you are defining A GRNs.

      We modified the sentence as follows: “Using Ir56b-GAL4 to drive UAS-mCD8::GFP, we also confirmed that the reporter was restricted to a subset of Class A GRNs, which were marked with LexAop-tdTomato expressed under the control of the Gr64f-LexA (Figure 1—figure supplement 1D—F).”. (lines 120-123)

      Line 124, should read "concentrated as sea water."

      We made the change. (line 142)

      Line 125, I am not sure what is meant by "alarm neurons"

      We changed “additional pain or alarm neurons” to “nociceptive neurons.”. (line 144)

      Line 141, Are you definitely A GRNs as only labellar GRNs, i.e. the Gr5a-GAL4 pattern with labellar plus few pharyngeal GRNs? Or are the defining it as Gr64f-GAL4 (i.e. labellar plus many pharyngeal GRNs)

      We refer to the Class A—E GRNs as labellar GRNs. Therefore, in this instance, we removed the reference to A GRNs and B GRNs, and simply mention the drivers that we used (Gr5a-GAL4 and Gr66a-GAL4) to express UAS-CsChrimson. The modified sentence is, “As controls we drove UAS-CsChrimson under control of either the Gr5a-GAL4 or the Gr66a-GAL4.”. (lines 51-59, 160-161)

      Line 180, labellar hairs--> labellar taste bristles

      We made the change. (line 204)

      Line 190, possess only --> only possess

      We made the change. (line 216)

      Line 202, Should this read increased?

      Yes. We changed “reduced” to “increased.”. (line 225)

      Line 206, The information provided here and in reference 47 was not sufficient for me to understand how the Droso-X system works and whether it has been validated. Better diagrams and much more description is required for the reader to understand this system and assess its validity

      We now explain that the DrosoX “system consists of a set of five separately housed flies, each of which is exposed to two capillary tubes with different liquid food options. One capillary contained 100 mM sucrose and the other contained 100 mM sucrose mixed with 300 mM NaCl. The volume of food consumed from each capillary is then monitored automatically over the course of 6 hours and recorded on a computer.”. (lines 238-243)

      Line 218-219, It would be helpful to expand on this to explain how the previous paper detected no difference. Is this because the contact time with the food is the same but the rate of ingestion is slower?

      Yes. This is correct. We now clarify this point by stating that, “In a prior study, it was observed that the repulsion to high salt exhibited by the Ir60b mutant was indistinguishable from wild-type (Joseph et al., 2017). Specifically, the flies were presented with drop of liquid (sucrose plus salt) at the end of a probe, and the Ir60b mutant flies fed on the food for the same period of time as control flies (Joseph et al., 2017). However, this assay did not discern whether or not the volume of the high salt-containing food consumed by the Ir60b mutant flies was reduced relative to control flies. Therefore, to assess the volume of food ingested, we used the DrosoX system, which we recently developed (Figure 3—figure supplement 1A) (Sang et al, 2021). This system consists of a set of five separately housed flies, each of which is exposed to two capillary tubes with different liquid food options. One capillary contained 100 mM sucrose and the other contained 100 mM sucrose mixed with 300 mM NaCl. The volume of food consumed from each capillary was then monitored automatically over the course of 6 hours and recorded on a computer. We found that control flies consuming approximately four times more of the 100 mM sucrose than the sucrose mixed with 300 mM NaCl (Figure 3A). In contrast, the Ir25a, Ir60b, and Ir76b mutants consumed approximately two-fold less of the sucrose plus salt (Figure 3A). Consequently, they ingested similar amounts of the two food options (Figure 3B; ingestion index). Thus, while the Ir60b mutant and control flies spend similar amounts of time in contact with high salt-containing food when it is the only option (Joseph et al., 2017), the mutant consumes considerably less of the high salt food when presented with a sucrose option without salt.”. (lines 226-251)

      Lines 231-235, Is this evidence for this, that Ir60b expression in the Ir25a or Ir76b pattern will induce high salt responses in the labellum? You should elaborate on this to clearly state what you mean rather than implying it. I do not think that overexpression of one Ir is enough evidence for this sweeping conclusion.

      We agree. We eliminated this point. (lines 227-232)

      Lines 261-263, Please elaborate here, how did you target the I-type sensilla and where are these neurons? So they already express Ir76b and Ir25a?

      We now explain in the Results that, “We attempted to induce salt activation in the I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. Gr33a is co-expressed with Gr66a (Moon et al., 2009), which has been shown to be co-expressed Ir25a and Ir76b (Li et al., 2023). When we performed tip recordings from I7 and I10 sensilla, we did not observe a significant increase in action potentials in response to 300 mM NaCl (Figure 4—figure supplement 1A), indicating that ectopic expression of Ir60b in combination with Ir25a and Ir76b is not sufficient to generate a high salt receptor.”. (lines 324-330)

      Lines 300-303, The discussion needs to be greatly expanded. What is the proposed mechanism by which the same neurons/receptors can inhibit sucrose and high salt feeding? What is the author's interpretation of what this study adds to our understanding of taste aversion?

      We have now added a Discussion section and greatly expanded the discussion.

      Reviewer #3 (Recommendations For The Authors):

      In line 73 there is a typo in "esophagus"

      We changed this part.

      In line 331, the use of a mixture of sucrose and "saponin" seems to be a mistake; "NaCl" is likely intended.

      We made the correction. (lines 546 and 640)

      On several occasions, the authors refer to the pharynx as a taste organ (for example 1st sentence of the abstract). I am not sure this is correct, the actual pharyngeal taste organs are the LSO, DSCO, and VSCO which are located in the pharynx.

      We made the corrections. (lines 24, 90, 92, 93, and 356)

      In line 155 the authors refer to Ir25a and Ir76b as "broadly tuned". I think it is not correct to refer to co-receptors this way, I'd suggest to just call them co-receptors.

      We made the correction. (lines 177-178)

      In line 182, stating "Gr2a is also expressed in the proboscis" is unclear. Clarify whether it refers to sensillae, pharyngeal taste organs, etc.

      We clarified it refers to pharyngeal taste organs. (lines 206-207)

      Line 253: "These finding imply that all three Irs are coexpressed in the pharynx." "The pharynx" is very unspecific, did the authors mean to say "the same neuron"?

      We now clarify by saying “in the Ir60b GRN in the pharynx.”. (line 317)

      Figures & Legends

      I found it confusing that the same color scale is being reused for different panels with different meanings repeatedly and in inconsistent ways. For example in Figure 2, red and blue are being used for Ir25a² mutants, while blue is also being used for Gr64f-Gal4 and S type sensilla. It is also not easily visible nor mentioned in the caption which of the 3 color scales presented belong to which panels.

      We modified the colors in the figures so that they are used in a consistent way. We now also define the colors in the legends.

      In Figure 2 F-I, indicating the stimulus sequence in each panel would enhance clarity. The color scale in Figure 3 could benefit from explicit explanations of different shades in the caption for easier interpretation.

      For example: "The ingestion of (a, dark color) 100 mM sucrose alone and (b, light color) in combination with 300 mM"

      We made the suggested modification.

      In Figure 4a the authors highlight that Ir76b and Ir25a label 2 neurons in the LSO. Did the imaging in 4c also capture the second cell, and if so did it respond to their stimulation?

      No, the focal plane differs, and the signal in Figure 4C is considerably weaker compared to the immunohistochemistry shown in Figure 4A. Notably, the other neuron did not exhibit a response to NaCl.

      In Figure 4f a legend for the color scale is missing, or the color might not be necessary at all. Also, the asterisks seem to be shifted to the right.

      We fixed the shifted asterisks and eliminated the color.

      Figure 4i is mislabeled 4f

      We made the correction.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __Summary __

      Geng et al. explore the molecular mechanisms underlying the role of KIF1C in RNA transport, focusing on how it interacts with RNA. KIF1C is shown to form dynamic puncta when overexpressed in COS-7 cells that do not appear to colocalise with organelle markers. An IDR in the tail of the kinesin is necessary and sufficient for the formation of these structures and FRAP experiments show that they can exchange their contents with proteins in the cytosol and that their formation can can be reversibly modulated by hypotonic shock, consistent with LLPS. In vitro, the IDR and flanking regions can undergo phase separation at physiologically relevant concentrations and salt conditions. In cells, KIF1C puncta enrich for RNAs and support their transport, and depletion of RNA modulates KIF1C LLPS properties. A model is proposed whereby KIF1C mediated RNA transport to the cell periphery promotes the formation of a protein-RNA condensate that may act to fine tune local RNA activity.

      __Major comments __

      In general, the claims made here are well-supported by the data. However, I think that some exploration of the extent of LLPS at different KIF1C expression levels in cells is important but missing. The authors carefully estimate the endogenous concentration of KIF1C in COS-7 cells (at around 25 nm), but is isn't clear how this compares to that observed in transient transfection experiments. Although this is partly addressed in the vitro assays, I am still left with some questions over the extent of this phenomenon in a cellular context. Can the authors provide some experimental evidence to support the proposition that LLPS occurs (perhaps in a more localised fashion?, as Fig.9) at lower KIF1C expression levels? One way to address this might be a GFP-knock-in (although how feasible this is may depend on the genomic context), alternatively, the authors could generate cell lines that express KIF1C-GFP from a very weak promoter, demonstrate LLPS using their established assays, show that this is comparable to endogenous expression.

      Response: We thank the reviewer for this suggestion. We have carried out additional experiments to explore the extent of KIF1C LLPS at endogenous levels. We used antibody against KIF1C to stain WT and KIF1C knockout (KO) cells. Although the antibody shows a high background of non-specific signal in the cytoplasm and nucleoplasm of both WT and KO cells, we were able to observe small puncta of KIF1C at the periphery of WT but not KO cells (new Figure 8). This finding supports our hypothesis that endogenous KIF1C undergoes LLPS upon reaching a high local concentration at the periphery of cells. Two lines of evidence support that these puncta of endogenous KIF1F protein are RNA-containing biomolecular condensates formed by LLPS (new Figure 8). First, these small puncta of endogenous KIF1C incorporate RAB13 mRNA, suggesting that they are RNA granules. Second, the puncta do not form in cells stably expressing KIF1C DIDR at near-endogenous levels.

      Minor comments

      Lines 107-109 and Figure 1B on localisation of other kinesin-3s. The authors state that they localise to certain organelle but don't show co-staining for those organelles.

      Response: The localization of other kinesin-3s to certain organelles has been shown in the cited literature. In response to the reviewer's request, we now verify these findings by staining cells expressing the other kinesin-3s for specific organelles (new Figure S1 A).

      Lines 172-183 and Figure 3. Evidence is provided through FRAP experiments that KIF1C puncta exchange with the cytosolic pool. However, the extent of recovery appears to saturate at Response: We agree that the data suggest the existence of an immobile pool of KIF1C within the condensates. We have added this information to the main text (lines 178-182). We note that these findings are consistent with recent studies demonstrating membrane-less organelles with at least partially solid-like properties, including nucleoli and stress granules as well as microtubule associated proteins (see references, reviewed in Van Treeck & Parker 2019).

      Line 238 - Fig. S5C is cited as data on endogenous concentration of KIF1C - this should be Fig. S6C.

      Response: Thank you. We have corrected this (now Fig S8 C).

      Line 331-332 - I did not fully follow the logic here the RNAse A injection experiment supports the idea that KIF1C interaction with RNA is sequence selective. Could the authors expand on this.

      Response: We thank the reviewer for this comment. We have rewritten the text (lines 235-238, 246-248).

      __Reviewer #1 (Significance (Required)): __

      This study introduces a new and exciting concept to motor protein biology: that some cytoskeletal motors and motor-cargo complexes can undergo phase separation, and that this is important for their function. The experiments are logical, progressive, and form a clear and compelling case. The main limitation is that demonstration of LLPS in cells is limited to over-expressed protein. Some exploration/demonstration of LLPS properties of KIF1C in cells at near to endogenous expression levels would enhance the study.

      The work should be of interest to a broad range of readers, from the cytoskeletal motor community, those interested in mRNA regulation, as well as scientists studying phase separation more generally.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      This paper investigates mRNA transport by the kinesin Kif1C and tests the hypothesis that liquid condensation of the disordered C terminal region is important for mRNA recruitment. It is based on prior work from other labs showing that Kif1C recruits and transports a set of mRNAs to the periphery of cells. The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved is novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding in Fig 7.

      __Major comments __

      A major concern is reliance on expression of tagged KifC1 in Cos cells in several figures. The expression level in these experimental probably far exceeds normal, though this comparison is not reported. It is possibly justified to use over-expression to reveal a condensate mechanism, but it is concerning and the authors needs to strongly qualify their conclusions. One way to moderate this concern would be to examine condensation as a function of expression level.

      Response: We thank the reviewer for this suggestion. We have carried out additional experiments to explore the extent of KIF1C LLPS at endogenous levels. We used antibody against KIF1C to stain WT and KIF1C knockout (KO) cells. Although the antibody shows a high background of non-specific signal in the cytoplasm and nucleoplasm of both WT and KO cells, we were able to observe small puncta of KIF1C at the periphery of WT but not KO cells (new Figure 8). This finding supports our hypothesis that endogenous KIF1C undergoes LLPS upon reaching a high local concentration at the periphery of cells. Two lines of evidence support that these puncta of endogenous KIF1F protein are RNA-containing biomolecular condensates formed by LLPS (new Figure 8). First, these small puncta of endogenous KIF1C incorporate RAB13 mRNA, suggesting that they are RNA granules. Second, the puncta do not form in cells stably expressing KIF1C DIDR at near-endogenous levels.

      Another significant concern is that the biochemical reconstitution figure tests protein alone, not protein + RNA. Disordered RNA binding proteins usually phase separate better in the presence of RNA. The best reconstitution papers evaluate specificity of RNA recruitment to condensates. Specificity testing in a reconstituted system may not be required for a first paper, but testing the effect of some kind of RNA seems important.

      Response: The purified CC4+IDR and IDR constructs form condensates at low mM concentrations and in the absence of RNA or crowding agents, thus we did not test whether they would phase separate better in the presence of RNA. In response to the reviewer's comments, we now evaluate the specificity of RNA recruitment to the KIF1C condensates. We utilized the purified CC4+IDR protein and added the same GU-rich and polyA RNAs used in cells (now Fig 4 B) at different concentrations. Interestingly, there is selective incorporation of GU-rich oligos in condensates at low RNA concentrations, incorporation of both RNAs into condensates at medium concentrations, and an inhibition of condensate formation at high RNA concentrations (new Fig 7 E,F).

      A final concern is that the specificity of mRNA recruitment to Kif1C puncta in cells is not critically evaluated. Among endogenous mRNAs, only one (Rab13) is tested. The paper would be stronger with a second positive mRNA and a negative control mRNA.

      Response: We have now tested whether the specificity of mRNA recruitment to KIF1C puncta applies to additional mRNAs. We carried out single-molecule FISH (smFISH) experiments for two additional mRNAs. Based on the literature showing KIF1C-dependent localization of specific RNAs, we chose NET1 as a second positive mRNA and CAM1 as a negative control mRNA (Pichon et al., 2021). We first show that NET1 mRNA is mislocalized in KIF1C KO cells whereas CAM1 mRNA is not (new Fig S7 C,D). We then rescued the KO cells with FL or DIDR constructs and show that the FL protein rescues NET1 mRNA localization to the cell periphery whereas the DIDR construct does not (new Fig S7 E,F).

      __Reviewer #2 (Significance (Required)): __

      The mechanism of the KifC1-mRNA interaction was not investigated in the prior work, so the proposal that a liquid condensate is involved in novel. It is also topical, since there is intense current interest in transport and regulation of mRNAs by condensate-mediated mechanisms. The most useful part of this paper to the field may be the identification of IDR2 as required for mRNA binding.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      KIF1C is a member of the kinesin-3 family, which is responsible for fast organelle transport in cells. The cargos of KIFIC are diverse, such as Golgi apparatus, Rab6 vesicles, exon junction complex (EJC), integrins, and RNA. Mutations in the KIF1C coding sequence leads to neurodegenerative diseases, such as hereditary spastic paraparesis (HSP). In addition, as an RNA transporter, KIF1C transports various types of mRNAs (e. g., APC-dependent mRNAs, KIF1C's own mRNA) along the microtubules and clusters them to cytoplasmic protrusions to fulfill certain biological functions.

      In the current manuscript, Gen et.al., investigated the intracellular behaviors of the kinesin-3 member KIF1C. The study revealed that the KIF1C can form dynamic condensates both in cells and in vitro via an unstructured domain within the tail of the motor. KIF1C was found to also interact with synthesized RNA and other RNA granules in cells. In addition, the authors also show the KIFIC participates intracellular transport of endogenous mRNA, Rab13mRNA, identified a 47aa fragment in the KIF1C's IDR is critical for the KIF1C- Rab13mRNA interaction. Finally, as well as other prion-like proteins, the PPLS of KIF1C is buffered by the non-specific RNA pool in the cytoplasm.

      In summary, this is an interesting work in the field, and reveals novel results about the mechanisms of motor protein transport that will be broadly interesting. The assays are generally well performed, and the results and discussion are well described, but some descriptions in the article should be more rigorous and objective. The article is very long, and I think it would benefit from streamlining and reducing the number of figures to make it more accessible for non-specialists in the field.

      Here are some concerns:

      __Major: __

      Fig. 1A shows the domain organization of all kinesin-3 members, but Figure 1B only represents KIF1Bβ, KIF13B and KIF16B as controls. Generally, the KIF1Bα has the highest sequence similarity with KIF1C in kinesin-3 family (very high sequence similarity before aa 992 in KIF1C, which locates in IDR, probably contains IDR2a from Fig. S10A). In addition, both KIF1C and KIF1Bα contain a PLD from the prediction in this paper (Figure S2C). Although the authors show the phenotype of KIF1Bα in the Fig. S9, it might be better to put some descriptions up front, as readers may consider why the authors did not use KIF1Bα as a control. Actually, I kept thinking about this concern before I got to the discussion.

      Response: We thank the reviewer for this suggestion. We have moved the descriptions of KIF1Ba phenotypes to earlier in the manuscript. We show that KIF1Ba forms puncta in cells but unlike KIF1C, the KIF1Ba puncta do not colocalize with known RNA granules P-bodies or stress granules (now in Fig S5 B,C). We show that, unlike KIF1C, the KIF1Ba puncta do not incorporate GU-rich or polyA RNA (now in Fig S6 B).

      It would be better if the authors can combine the Fig. 2B and 2C, since the article did not mention Fig. 2B at all. In addition, Fig. S3 does not help this article too much. Probably it would be better if the authors could take the ΔIDR-mNG data from the Fig. S3 and put into the Fig. 2. as a negative control, especially for Fig. 2D an 2F. As for whether the phenotype of the ΔIDR-mNG construct is "similar to a constitutively active KIF1C construct containing only the motor domain (amino acids 1-348) (Fig. S3 C)", I do not think it is important here, since in this part, the authors are aiming to confirm the IDR is critical for KIF1C phase separation.

      Response: We have combined Figures 2B and 2C as suggested. We prefer to leave Figure S3 intact since, as the reviewer mentioned, the article is already long and these data are not critical for the story.

      The description "the condensate properties can be modulated by adjacent coiled-coil segments" in the abstract and the sentence "However, the coiled-coil segments in the stalk domain appear to facilitate puncta formation as the addition of increasing amounts of coiled coil resulted in increased KIF1C enrichment in puncta as compared to the IDR alone" in the article are not accurate, since there is no direct evidence in this manuscript that shows that. In Fig. 2D, as well as Fig. 6A and Fig. S7, it is manifest at a glance there are lots of IDR-mNG localized in nucleus, which decreases the concentration of this construct in cytoplasm which in turn may lower its capability to form puncta. This is important, as the results in Fig.4 show that the concentration of protein directly affects the formation of phase separated puncta in cells. From my view, the words "modulate", "tune" ... usually describe active processes, and these words may be confusing unless there are enough evidence support direct regulation. But the data presented in this article suggests to us that it is likely a passive process, such as the coiled coil region preventing the CC4-IDR construct from entering the nucleus (Fig. 2D, Fig. 6A and Fig. S7). Moreover, CC4 does affect the critical concentration of IDR in vitro (Fig. 5E), but that could be attributed to the coiled coil domain increasing its solubility. I like the word "influence" used in a subtitle in the discussion portion.

      Response: We have removed this from the text.

      In addition, the in vitro study of this paper in Fig. 5 did not show any significant difference of the puncta formation between IDR-mNG and CC4 - IDR-mNG (Diameter: 0.43 {plus minus} 0.22 μm (mean {plus minus} STD) for IDR-mNG vs 0.48 {plus minus} 0.27 μm (mean {plus minus} STD) for CC4-IDR-mNG. Roundness: No value was show in the article). So, a stricter assay or a more accurate description is required here to avoid any misleading to the readers.

      Response: We now include p values showing that the differences in diameter and roundness are statistically significant (data moved to Fig S8 B).

      The description for Fig. 5 "At 2 uM protein concentration and 100 mM NaCl, the KIF1C(IDR) droplets were smaller [diameter 0.43 {plus minus} 0.22 μm (mean {plus minus} STD)] than KIF1C(CC4+IDR) droplets [0.48 {plus minus} 0.27 μm (mean {plus minus} STD)] (Fig. 5 C)" does not appear accurate as well, since there is no significant difference between the value 0.43 {plus minus} 0.22 μm and the value 0.48 {plus minus} 0.27 μm, so it should not be descripted as "smaller". In addition, the article mentioned that "The KIF1C(IDR) puncta were also less round than those of KIF1C(CC4+IDR) (Fig. 5 C)", but there is no corresponding value from the quantification show the KIF1C(IDR) is less round.

      Response: We now include p values showing that the differences in diameter and roundness are statistically significant (data moved to Fig S8 B).

      The description in sentence "We thus tested whether ... LLPS is mutually exclusive (Fig. S5 A)" may not be accurate. Results in Fig. S5 only show there is no direct interaction between KIF1C and CLIP-170 or these two proteins do not colocalize. The words "mutually exclusive" means two proteins competent each other in the same location from my understanding.

      Response: We have replaced the words "mutually exclusive" with "no colocalization" (line 204).

      In addition, is it necessary to put Fig. S5 into this article? Since from my side, it does not help too much for the whole story. In cells, kinesin motors are autoinhibited in the cytoplasm. For this KIF1C, most of motors appear autoinhibited as well, even when the authors removed the IDR based on Fig. S3C (ΔIDR-mNG vs. MD-mNG). In this case, it is hard to investigate the potential interaction between the KIF1C (or its ΔIDR mutant) with the microtubules or with the tubulin due to the autoinhibition of constructs used in Fig. S5. It would be better to use other active versions of KIF1C, such as ΔP (Soppina et. al., PNAS, 2014) or other mutants (Ren et. al., PNAS, 2018; Wang et. al., Nat. Commun., 2022) if the authors want to show this part in the article.

      Response: We agree that this data is not essential for the story, however, it may be of interest and benefit to others in the field studying LLPS of microtubule-associated proteins and we prefer to leave Figure S5 (now Figure S4) in the supplementary information.

      The conclusion "This result suggests that the IDR- driven LLPS of KIF1C does not depend on mRNA incorporation, but is strongly affected by it" may not be accurate, there is no direct evidence that shows that mRNA, at least Rab13mRNA incorporation strongly affects the IDR- driven LLPS of KIF1C. Perhaps a knock out of Rab13mRNA would alter the formation of condensates, which would support a direct effect on LLPS.

      Response: We have changed the text (line 306).

      In addition, the sentence "These results also show that the LLPS is resistant to truncations of large portions of IDR" may not accurate, from my view, except IDR2a, the rest of the IDR may not participate or contribute too much to the formation of puncta, but that doesn't mean LLPS is resistant to the truncation of these portions in IDR, these are different logics. The quantification from Fig. 7E also show there is no significant difference between the ST and truncations except ΔIDR2 and ΔIDR2a in statistics, such as ST (21.8 {plus minus} 12.0 puncta per cell, 2.06 {plus minus} 0.83 μm diameter), ΔPLD (20.1 {plus minus} 13.7 puncta per cell, 1.62 {plus minus} 0.94 μm diameter), ΔIDR1 (23.1 {plus minus} 14.3 puncta per cell, 2.13 {plus minus} 1.04 μm diameter), ΔIDR3 (18.4 {plus minus} 8.1 puncta per cell, 1.71 {plus minus} 0.98 μm diameter).

      Response: We have changed the text (line 307).

      I am not sure I agree with the author's interpretation of their FRAP data in Fig. 3. It appears to me that there is a large immobile population of molecules, as the bleached areas recover less than 50% of their initial intensity. However, the authors conclude that there is rapid exchange of molecules in the puncta. The authors need to further analyze and discuss both the exchange rate of the population of molecules that exchange, but also the fraction of apparently immobile molecules that do not recover in their experiments. These data appear to suggest that a large percentage of the molecules in the KIF1C puncta in fact do not exchange with the cytoplasm and undermine their argument for a liquid-like phase of the puncta.

      Response: We agree that the data suggest the existence of an immobile pool of KIF1C within the condensates. We have added this information to the main text (lines 178-182). We note that these findings are consistent with recent studies demonstrating membrane-less organelles with at least partially solid-like properties, including nucleoli and stress granules as well as microtubule associated proteins (see references, reviewed in Van Treeck & Parker 2019).

      __Minor: __

      As mentioned above, Fig. 2 F needs a negative control, since the values of FL and IDR are lower than other constructs, maybe use the Δ IDR-mNG protein is better. In addition, from my view, the lower value of IDR construct does not represent this construct has lower capability to form puncta, but more likely because most of this protein localizes in nucleus, thus dramatically lowering the cytoplasmic concentration.

      Response: We have changed the text as suggested (lines 152-154).

      Fig. 6A probably need a negative control as well, maybe use the same construct ΔIDR in Fig. S7 is better.

      Response: We have now included KIF1Ba as a negative control (Fig S6 B).

      Although I guess the reason for using hTERT-RPE1 cells in Rab13mRNA rescue assay (Fig. 6D-G) probably is easier to get KIF1C knock out cells (if I am correct), it would be better if there is a brief introduction for the reason to use hTERT-RPE1 here, since all previous assay in the article used COS-7 cells.

      Response: You are correct and we have added text introducing the use of hTERT-RPE1 cells (line 269).

      Is there any specific reason to use the construct ST in Fig. 7? Since in Fig. 6, the authors used FL-length KIFIC, if the authors want to avoid any effects caused by motor domain, the construct CC4-IRD also could be a simpler candidate.

      Response: No specific reason other than to be consistent as most experiments that we carried out in cells used the ST construct (e.g. FRAP assay in Fig 3, hypotonic assay in Fig 3, RNaseA injection in Fig 4, RNA incorporation in Fig 4). (Note that Fig 7 is now Fig 6).

      This article is a great case for motor-cargo interaction, since the RNA binding site of KIF1C is within its tail domain. This left me curious about if the interaction between the KIF1C and the membrane-less RNA granule is sufficient to release the KIF1C motor from autoinhibition? I guess the binding of RNA is not enough to release the KIF1C from autoinhibition. From Fig. S3C and Fig. 6D, seems the motor still in autoinhibition, even remove the Rab13mRNA binding region.

      Response: We believe the question of whether the RNA binding relieves autoinhibition of KIF1C is beyond the scope of this manuscript and we plan to address this in the future with recombinant full-length KIF1C and RAB13 mRNAs.

      There are some grammar mistakes, e.g., There should be a "is" between "IDR" and "critical" in the title "A subregion of the KIF1C IDR critical for enrichment of Rab13mRNA in condensates".

      Response: Thank you. We have corrected this (line 289).

      There should be a definition for the full names of the abbreviate "RBD" mentioned in the article although the readers may guess that is an RNA binding domain, if possible, it would be better but not necessary if the authors could show the residues or the region in IDR.

      Response: RBD is defined at the beginning to the section "KIF1C condensates display properties of RNA granules" (line 219) but in response to the reviewer's comment, we now include this definition a second time in the Discussion section (line 420).

      In the results (line 126), the authors refer to the KIF1C IDR without first defining this region in the introduction. I would re-word this sentence for clarity by first defining what an IDR is and how it's assessed in the current study.

      Response: The IDR is defined at the end of the Introduction (lines 94-95).

      What is the significance of the roundness measurement in Fig. 5? This should be described for the reader.

      Response: Roundness refers to the shape of the droplet and this is now included in the text (line 323, data moved to Fig S8 B).

      The authors state several times that this is the first kinesin shown to undergo LLPS. However, is this true? What about the recent work showing that the yeast Tea2 kinesin undergoes LLPS with other +TIP components (Maan et al. NCB 2023).

      Response: We thank the reviewer for this comment. The recent work from the Dogterom lab (Maan et al., 2023) demonstrates that the end binding (EB) protein Mal3 forms condensates alone and with the kinesin-7 family member Tea2 and its cargo Tip1 for enrichment at microtubule plus ends. The authors show images of Mal 3 droplets and the requirement of the IDR domain and the crowding agent polyethylene glycol for droplet formation. The authors state that "Tea2 and Tip1 formed condensates under similar crowding conditions and concentrations on their own (Extended Data Fig. 5)." However, Extended Data Fig 5 reports on the fluorescence intensity of Mal3-EGFP colocalizing with Tea2 or Tip1. No images of Tea2-only droplets are shown and no information is provided on the Tea2 and/or PEG concentrations required for droplet formation or the liquid nature of Tea2 droplets. Thus, we do not feel comfortable stating that Tea2 on its own undergoes LLPS. We do reference the Maan et al., 2023 work in the Discussion listing microtubule-associated proteins shown to undergo LLPS (line 403) and when comparing the mM concentrations of KIF1C required for LLPS to the mM concentrations of these other microtubule-associated proteins (line 417).

      The authors don't discuss KIF5A, but their analysis reveals it also contains a low complexity region that may undergo LLPS (Fig. S2D). This would fit with recent reports that KIF5A tends to oligomerize more than other KIF5 isoforms, and that mutations in KIF5A that impact the tail domain may lead to aberrant oligomerization. I feel that it would be useful to the field for the authors to discuss these results in light of their own.

      Response: We thank the reviewer for this suggestion. Although it is intriguing that KIF5A is predicted to contain an IDR, there is, however, no data to suggest that KIF5A undergoes LLPS. Rather, the current literature suggests that KIF5A undergoes higher-order oligomerization and accumulation at the cell periphery, especially for the isoform lacking exon 27 (Nakano et al., 2022, Baron et al., 2022, Pant et al., 2023, Soustelle et al., 2023). It thus does not seem prudent for us to speculate on whether or not KIF5A undergoes LLPS.

      __Reviewer #3 (Significance (Required)): __

      The study is novel and interesting and will be impactful for the cytoskeletal and RNA biology communities. The experiments are of high quality and controls are appropriate. The finding that motor proteins can participate in LLPS will be of high interest for a variety of fields and provides a very interesting advance over current knowledge in the field.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      KIF1C is a member of the kinesin-3 family, which is responsible for fast organelle transport in cells. The cargos of KIFIC are diverse, such as Golgi apparatus, Rab6 vesicles, exon junction complex (EJC), integrins, and RNA. Mutations in the KIF1C coding sequence leads to neurodegenerative diseases, such as hereditary spastic paraparesis (HSP). In addition, as an RNA transporter, KIF1C transports various types of mRNAs (e. g., APC-dependent mRNAs, KIF1C's own mRNA) along the microtubules and clusters them to cytoplasmic protrusions to fulfill certain biological functions.

      In the current manuscript, Gen et.al., investigated the intracellular behaviors of the kinesin-3 member KIF1C. The study revealed that the KIF1C can form dynamic condensates both in cells and in vitro via an unstructured domain within the tail of the motor. KIF1C was found to also interact with synthesized RNA and other RNA granules in cells. In addition, the authors also show the KIFIC participates intracellular transport of endogenous mRNA, Rab13mRNA, identified a 47aa fragment in the KIF1C's IDR is critical for the KIF1C- Rab13mRNA interaction. Finally, as well as other prion-like proteins, the PPLS of KIF1C is buffered by the non-specific RNA pool in the cytoplasm.

      In summary, this is an interesting work in the field, and reveals novel results about the mechanisms of motor protein transport that will be broadly interesting. The assays are generally well performed, and the results and discussion are well described, but some descriptions in the article should be more rigorous and objective. The article is very long, and I think it would benefit from streamlining and reducing the number of figures to make it more accessible for non-specialists in the field.

      Here are some concerns:

      Major:

      1. Fig. 1A shows the domain organization of all kinesin-3 members, but Figure 1B only represents KIF1Bβ, KIF13B and KIF16B as controls. Generally, the KIF1Bα has the highest sequence similarity with KIF1C in kinesin-3 family (very high sequence similarity before aa 992 in KIF1C, which locates in IDR, probably contains IDR2a from Fig. S10A). In addition, both KIF1C and KIF1Bα contain a PLD from the prediction in this paper (Figure S2C). Although the authors show the phenotype of KIF1Bα in the Fig. S9, it might be better to put some descriptions up front, as readers may consider why the authors did not use KIF1Bα as a control. Actually, I kept thinking about this concern before I got to the discussion.
      2. It would be better if the authors can combine the Fig. 2B and 2C, since the article did not mention Fig. 2B at all. In addition, Fig. S3 does not help this article too much. Probably it would be better if the authors could take the ΔIDR-mNG data from the Fig. S3 and put into the Fig. 2. as a negative control, especially for Fig. 2D an 2F. As for whether the phenotype of the ΔIDR-mNG construct is "similar to a constitutively active KIF1C construct containing only the motor domain (amino acids 1-348) (Fig. S3 C)", I do not think it is important here, since in this part, the authors are aiming to confirm the IDR is critical for KIF1C phase separation.
      3. The description "the condensate properties can be modulated by adjacent coiled-coil segments" in the abstract and the sentence "However, the coiled-coil segments in the stalk domain appear to facilitate puncta formation as the addition of increasing amounts of coiled coil resulted in increased KIF1C enrichment in puncta as compared to the IDR alone" in the article are not accurate, since there is no direct evidence in this manuscript that shows that. In Fig. 2D, as well as Fig. 6A and Fig. S7, it is manifest at a glance there are lots of IDR-mNG localized in nucleus, which decreases the concentration of this construct in cytoplasm which in turn may lower its capability to form puncta. This is important, as the results in Fig.4 show that the concentration of protein directly affects the formation of phase separated puncta in cells. From my view, the words "modulate", "tune" ... usually describe active processes, and these words may be confusing unless there are enough evidence support direct regulation. But the data presented in this article suggests to us that it is likely a passive process, such as the coiled coil region preventing the CC4-IDR construct from entering the nucleus (Fig. 2D, Fig. 6A and Fig. S7). Moreover, CC4 does affect the critical concentration of IDR in vitro (Fig. 5E), but that could be attributed to the coiled coil domain increasing its solubility. I like the word "influence" used in a subtitle in the discussion portion.

      In addition, the in vitro study of this paper in Fig. 5 did not show any significant difference of the puncta formation between IDR-mNG and CC4 - IDR-mNG (Diameter: 0.43 {plus minus} 0.22 μm (mean {plus minus} STD) for IDR-mNG vs 0.48 {plus minus} 0.27 μm (mean {plus minus} STD) for CC4-IDR-mNG. Roundness: No value was show in the article). So, a stricter assay or a more accurate description is required here to avoid any misleading to the readers.

      The description for Fig. 5 "At 2 uM protein concentration and 100 mM NaCl, the KIF1C(IDR) droplets were smaller [diameter 0.43 {plus minus} 0.22 μm (mean {plus minus} STD)] than KIF1C(CC4+IDR) droplets [0.48 {plus minus} 0.27 μm (mean {plus minus} STD)] (Fig. 5 C)" does not appear accurate as well, since there is no significant difference between the value 0.43 {plus minus} 0.22 μm and the value 0.48 {plus minus} 0.27 μm, so it should not be descripted as "smaller". In addition, the article mentioned that "The KIF1C(IDR) puncta were also less round than those of KIF1C(CC4+IDR) (Fig. 5 C)", but there is no corresponding value from the quantification show the KIF1C(IDR) is less round. 4. The description in sentence "We thus tested whether ... LLPS is mutually exclusive (Fig. S5 A)" may not be accurate. Results in Fig. S5 only show there is no direct interaction between KIF1C and CLIP-170 or these two proteins do not colocalize. The words "mutually exclusive" means two proteins competent each other in the same location from my understanding.

      In addition, is it necessary to put Fig. S5 into this article? Since from my side, it does not help too much for the whole story. In cells, kinesin motors are autoinhibited in the cytoplasm. For this KIF1C, most of motors appear autoinhibited as well, even when the authors removed the IDR based on Fig. S3C (ΔIDR-mNG vs. MD-mNG). In this case, it is hard to investigate the potential interaction between the KIF1C (or its ΔIDR mutant) with the microtubules or with the tubulin due to the autoinhibition of constructs used in Fig. S5. It would be better to use other active versions of KIF1C, such as ΔP (Soppina et. al., PNAS, 2014) or other mutants (Ren et. al., PNAS, 2018; Wang et. al., Nat. Commun., 2022) if the authors want to show this part in the article. 5. The conclusion "This result suggests that the IDR- driven LLPS of KIF1C does not depend on mRNA incorporation, but is strongly affected by it" may not be accurate, there is no direct evidence that shows that mRNA, at least Rab13mRNA incorporation strongly affects the IDR- driven LLPS of KIF1C. Perhaps a knock out of Rab13mRNA would alter the formation of condensates, which would support a direct effect on LLPS.

      In addition, the sentence "These results also show that the LLPS is resistant to truncations of large portions of IDR" may not accurate, from my view, except IDR2a, the rest of the IDR may not participate or contribute too much to the formation of puncta, but that doesn't mean LLPS is resistant to the truncation of these portions in IDR, these are different logics. The quantification from Fig. 7E also show there is no significant difference between the ST and truncations except ΔIDR2 and ΔIDR2a in statistics, such as ST (21.8 {plus minus} 12.0 puncta per cell, 2.06 {plus minus} 0.83 μm diameter), ΔPLD (20.1 {plus minus} 13.7 puncta per cell, 1.62 {plus minus} 0.94 μm diameter), ΔIDR1 (23.1 {plus minus} 14.3 puncta per cell, 2.13 {plus minus} 1.04 μm diameter), ΔIDR3 (18.4 {plus minus} 8.1 puncta per cell, 1.71 {plus minus} 0.98 μm diameter). 6. I am not sure I agree with the author's interpretation of their FRAP data in Fig. 3. It appears to me that there is a large immobile population of molecules, as the bleached areas recover less than 50% of their initial intensity. However, the authors conclude that there is rapid exchange of molecules in the puncta. The authors need to further analyze and discuss both the exchange rate of the population of molecules that exchange, but also the fraction of apparently immobile molecules that do not recover in their experiments. These data appear to suggest that a large percentage of the molecules in the KIF1C puncta in fact do not exchange with the cytoplasm and undermine their argument for a liquid-like phase of the puncta.

      Minor:

      1. As mentioned above, Fig. 2 F needs a negative control, since the values of FL and IDR are lower than other constructs, maybe use the Δ IDR-mNG protein is better. In addition, from my view, the lower value of IDR construct does not represent this construct has lower capability to form puncta, but more likely because most of this protein localizes in nucleus, thus dramatically lowering the cytoplasmic concentration.
      2. Fig. 6A probably need a negative control as well, maybe use the same construct ΔIDR in Fig. S7 is better.
      3. Although I guess the reason for using hTERT-RPE1 cells in Rab13mRNA rescue assay (Fig. 6D-G) probably is easier to get KIF1C knock out cells (if I am correct), it would be better if there is a brief introduction for the reason to use hTERT-RPE1 here, since all previous assay in the article used COS-7 cells.
      4. Is there any specific reason to use the construct ST in Fig. 7? Since in Fig. 6, the authors used FL-length KIFIC, if the authors want to avoid any effects caused by motor domain, the construct CC4-IRD also could be a simpler candidate.
      5. This article is a great case for motor-cargo interaction, since the RNA binding site of KIF1C is within its tail domain. This left me curious about if the interaction between the KIF1C and the membrane-less RNA granule is sufficient to release the KIF1C motor from autoinhibition? I guess the binding of RNA is not enough to release the KIF1C from autoinhibition. From Fig. S3C and Fig. 6D, seems the motor still in autoinhibition, even remove the Rab13mRNA binding region.
      6. There are some grammar mistakes, e.g., There should be a "is" between "IDR" and "critical" in the title "A subregion of the KIF1C IDR critical for enrichment of Rab13mRNA in condensates".
      7. There should be a definition for the full names of the abbreviate "RBD" mentioned in the article although the readers may guess that is an RNA binding domain, if possible, it would be better but not necessary if the authors could show the residues or the region in IDR.
      8. In the results (line 126), the authors refer to the KIF1C IDR without first defining this region in the introduction. I would re-word this sentence for clarity by first defining what an IDR is and how it's assessed in the current study.
      9. What is the significance of the roundness measurement in Fig. 5? This should be described for the reader.
      10. The authors state several times that this is the first kinesin shown to undergo LLPS. However, is this true? What about the recent work showing that the yeast Tea2 kinesin undergoes LLPS with other +TIP components (Maan et al. NCB 2023).
      11. The authors don't discuss KIF5A, but their analysis reveals it also contains a low complexity region that may undergo LLPS (Fig. S2D). This would fit with recent reports that KIF5A tends to oligomerize more than other KIF5 isoforms, and that mutations in KIF5A that impact the tail domain may lead to aberrant oligomerization. I feel that it would be useful to the field for the authors to discuss these results in light of their own.

      Significance

      The study is novel and interesting and will be impactful for the cytoskeletal and RNA biology communities. The experiments are of high quality and controls are appropriate. The finding that motor proteins can participate in LLPS will be of high interest for a variety of fields and provides a very interesting advance over current knowledge in the field.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript by DeHaro-Arbona et al., the authors wish to understand how a signaling pathway (Notch) is dynamically decoded to elicit a specific transcriptional output. In particular, they investigate the kinetic properties of Notch-responsive nuclear complexes (the DNA binding factor CSL and its co-activator Mastermind (mam) along with several candidate interacting partners). Their experimental model is the polytene chromosome of the Drosophila salivary gland, in which the naturally inactive Notch can be artificially induced through the expression of a constitutively active form of Notch.

      The authors develop a series of CRISPR and transgenic lines enabling the live imaging of these complexes at a specific locus and in various backgrounds (genetic perturbations/drug treatments). This quantitative live imaging data suggests that Notch nuclear complexes form hubs, and the authors characterize their binding dynamics. Interestingly, they elegantly demonstrate that the content of these hubs and their kinetic properties can evolve, even within Notch ON cells. Hence, they propose the existence of distinct hubs, distinguishing an open (CSL), engaged (CSK-Mam), or active (CSL-Mam-Med-PolII) configuration in Notch ON cells and an inactive hub (in Notch OFF having previously been exposed to Notch) state, that would explain the surprising transcriptional memory that the authors observe hours after Notch withdrawal.

      We thank the reviewer for this constructive summary of our work

      Reviewer #2 (Public Review):

      The manuscript from deHaro-Arbona et al, entitled "Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind", uses single molecule microscopy imaging in live tissues to understand the dynamics and molecular determinants of transcription factor recruitment to the E(spl)-C locus in Drosophila salivary gland cells under Notch-ON and -OFF conditions. Previous studies have identified the major players that are involved in transcription regulation in the Notch pathway, as well as the importance of general transcriptional coregulators, such as CBP/P300 and the Mediator CDK module, but the detailed steps and dynamics involved in these processes are poorly defined. The authors present a wealth of single molecule data that provides significant insights into Notch pathway activation, including:

      (1) Activation complexes, containing CSL and Mam, have slower dynamics than the repressor complexes, containing CSL and Hairless.

      (2) Contribution of CSL, NICD, and Mam IDRs to recruitment.

      (3) CSL-Mam slow-diffusing complexes are recruited and form a hub of high protein concentrations around the target locus in Notch-ON conditions.

      (4) Mam recruitment is not dependent on transcription initiation or RNA production.

      (5) CBP/P300 or its associated HAT activity is not required for Mam recruitment.

      (6) Mediator CDK module and CDK8 activity are required for Mam recruitment, and vice-versa, but not CSL recruitment.

      (7) Mam is not required for chromatin accessibility but is dependent on CSL and NICD.

      (8) CSL recruitment and increased chromatin accessibility persist after NICD removal and loss of Mam, which confers a memory state that enables rapid re-activation in response to subsequent Notch activation.

      (9) Differences in the proportions of nuclei with both Pol II and with Mam enrichment, which results in transcription being probabilistic/stochastic. These data demonstrate that the presence of Mamcomplexes is not sufficient to drive all the steps required for transcription in every Notch-ON nucleus.

      (10) The switch from more stochastic to robust transcription initiation was elicited when ecdysone was added.

      Overall, the manuscript is well written, concise, and clear, and makes significant contributions to the Notch field, which are also important for a general understanding of transcription factor regulation and behavior in the nucleus. I recommend that the authors address my relatively minor criticisms detailed below.

      We thank the reviewer for their thorough and constructive summary of our work. We are glad that they overall found it insightful and interesting. Below we have addressed the points they have raised.

      Page 7, bottom. The authors speculate, "It is possible therefore that, once recruited, Mam can be retained at target loci independently of CSL by interactions with other factors so that it resides for longer." Is it possible that another interpretation of that data is that Mam is a limiting factor?

      As indicated our comment is a speculation and is based on the observations summarized in the paragraph. We are not entirely sure what the reviewer is proposing as an alternate model. However, if it relates to the relative concentrations of the different factors, this would not account for the differences in trajectory durations. And for most aspects of our analysis, K[off] has the most profound influence on the results. Furthermore, differences persist even when CSL levels are considerably reduced (as in conditions with Hairless RNAi).

      Page 9. The authors write, "A very low level of enrichment was evident for... for the CSL Cterminus..". The recruitment of CSL ct IDR does not appear to be statistically significant or there is no apparent difference (Figure S2C), suggesting the CSL ct IDR does not play a role in enrichment.

      We agree with the comments of the reviewer and have adjusted the text on page 9 accordingly.

      Page 9. The authors write, "Notably, MamnIDR::GFP fusion was present in droplets, suggesting it can self-associate when present in a high local concentration (Figure S2B)." Is this result only valid for Mam nIDR or does full-length Mam also localize into droplets, as has been previously observed for full-length mammalian Maml1 in transfected cells?

      We agree that the observed foci of MamL1 that have been detected in mammalian cells are interesting. We have not tried to replicate those data because the large size of Mam has made it challenging to produce a full-length form in over-expression. We note however that another portion of Mam, MamIDR, does not make droplets when over-expressed despite it containing a large section of the disordered region of the Drosophila Mam. We have now included a comment about the mammalian data in the text (page 9) to put our findings in context.

      Previous studies in mammalian cells suggest that Maml1 is a high-confidence target for phosphorylation by CDK8, see Poss et al 2016 Cell Reports https://doi.org/10.1016/j.celrep.2016.03.030. By sequence comparison, does fly Mam have similar potential phosphorylation sites, and might these be critical for Mam/CDK module recruitment?

      We thank the reviewer for highlighting this point. Indeed, we were very excited when we learnt that MamL1 was found to be a high confidence CDK8 target and we looked hard in the Mam sequence for potential phosphorylation sites. Sadly, there is very little conservation between the fly and the mammalian proteins beyond the helical region that contacts CSL and NICD. Furthermore, there are no identifiable putative CDK8 phosphorylation sites based on conventional motifs. It therefore remains to be established whether or not Mam is a direct target of the CDK8 kinase activity. We have added an explanatory comment in the text (page 11).

      Page 11: The authors write, "The differences in the effects on Mam and CSL imply that the CDK module is specifically involved in retaining Mam in the hub, and that in its absence other CSL complexes "win-out", either because the altered conditions favour them and/or because they are the more abundant." Are the "other" complexes the authors are referring to Hairless-containing complexes? With the reagents the authors have in hand couldn't this be explicitly shown for CSLcomplexes rather than speculated upon?

      The reviewer is correct that CSL complexes containing Hairless are good candidates to be recruited in these conditions. We have compared the levels of Hairless at E(spl)-C following treatments with Senexin and have not detected a difference. However, it appears that the high proportion of unbound Hairless makes it difficult to detect/quantify the enrichment at E(spl)-C. We have therefore taken a different strategy, which is to measure the recruitment of a mutant form of CSL that is compromised for Hairless binding. Recruitment of the mutant CSL is detected in Notch-ON conditions, but is significantly reduced/absent following Senexin treatment. These data favour the model proposed by the reviewer that in the absence of CDK8 activity, the CSL-Hairless complexes win out. These new data have been added in new Supplementary Figure S3F and S3G (and see text page 11)

      Page 12/13: The authors write, "Based on these results we propose that, after Notch activity decays, the locus remains accessible because when Mam-containing complexes are lost they are replaced by other CSL complexes (e.g. co-repressor complexes)." Again, why not actually test this hypothesis rather than speculate? The dynamics of Hairless complexes following the removal of Notch would be very interesting and build upon previously published results from the Bray lab.

      We thank the reviewer for this comment and we agree it’s possible that the proportion of Hairless complexes increases after Notch withdrawal. However, for the reasons outlined above, it is difficult to quantify changes in Hairless, (and our preliminary experiment did not reveal any large-scale effect) and because of the complexity of the genetics we cannot straightforwardly extend the experiment to analyze the behaviour of the mutant CSL as above. Therefore, at present, we cannot say whether the loss of Mam is compensated by an increase in Hairless. We hope in future to investigate the characteristics of the memory in more depth.

      Page 13: The authors write, "As Notch removal leads to a loss of Mam, but not CSL, from the hub, it should recapitulate the effects of MamDN." While the data in Figure 5B seem to support this hypothesis, it's not clear to me that the loss of Mam and MamDN should phenocopy each other, bc in the case of MamDN, NICD would still be present.

      We apologise that this sentence was a bit misleading. We have now rewritten it to improve accuracy (page 13) “As Notch removal leads to a loss of Mam, but not CSL, from the hub, we hypothesised it would recapitulate the effects of MamDN on chromatin accessibility and transcription of targets.”

      The temporal dynamics for Mam recruitment using the temperature- and optogenetic-paradigms are quite different. For example, in the optogenetic time course experiments, the preactivated cells are in the dark for 4 hours, while in the temperature-controlled experiments, there is still considerable enrichment of Mam at 4 hours. For the preactivated optogenetic experiments, how sure are the authors that Mam is completely gone from the locus, and alternatively, can the optogenetic experimental results be replicated in the temperature-controlled assays? My concern is whether the putative "memory" observation is just due to incomplete Mam removal from the previous activation event.

      We appreciate the concerns of the reviewer. However, we are confident that the 4-hour optogenetic inactivation is much more effective than the equivalent time for temperature shifts. The temperature sensitive experiment involves a longer decay, because not only the protein but also the mRNA has to decay to fully remove NICD activity. The optogenetic experiments, involve only protein decay and so are more acute. Furthermore, we have tested (and we show in Figure 5H) that Mam is fully depleted after 4 hours “Off” in the optogenetic experiments.

      In order to further strengthen the evidence in favour of the memory hub, we have extended the time-frame further to show that CSL is retained at the locus even after 24 hours “Notch OFF” in both the temperature and the optogenetic paradigm. We have also measured the effects on transcription after a 24hr OFF period using the optogenetic paradigm and seen that robust transcription is initiated in cells that have experienced a previous activation (preactivated) compared to those that have not (naïve). These new data have been added to new Figure 5 C-F and strongly support the memory model.

      Reviewer #3 (Public Review):

      Summary:

      DeHaro-Arbona and colleagues investigate the in vivo dynamics of Notch-dependent transcriptional activation with a focus on the role of the Mastermind (MAM) transcriptional co-activator. They use GFP and HALO-tagged versions of the CSL DNA-binding protein and MAM to visualize the complex, and Int/ParB to visualize the site of Notch-dependent E(Spl)-C transcription. They make several conclusions. First, MAM accumulates at E(Spl)-C when Notch signaling is active, just like CSL. Second, MAM recruits the CDK module of Mediator but does not initiate chromatin accessibility. Third, after signaling is turned off, MAM leaves the site quickly but CSL and chromatin accessibility are retained. Fourth, RNA pol II recruitment, Mediator recruitment, and active transcription were similar and stochastic. Fifth, ecdysone enhances the probability of transcriptional initiation.

      Strengths:

      The conclusions are well supported by multiple lines of extensive data that are carefully executed and controlled. A major strength is the strategic combination of Drosophila genetics, imaging, and quantitative analyses to conduct compelling and easily interpretable experiments. A second major strength is the focus on MAM to gain insights into the dynamics of transcriptional activation specifically.

      We thank the reviewer for their positive comments about the strengths of our work.

      Weaknesses:

      Weaknesses are minor. There were no p-values reported for data presented in Figure S1D and no indication of how variable measurements were. In addition, the discussion of stochasticity was not integrated optimally with relevant literature.

      We thank the reviewer for noting these points. The statistical tests have now been included for Figure S1D (now Figure S1F). We have amplified the discussion about stochasticity, to include more reference to the literature and to make clear also the distinction with transcription bursting (page 19, 20).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors have an elegant series of manipulations that provide strong evidence for their hypotheses and conclusions. Their exploitation of a unique biological system amenable to imaging in the larval salivary gland is well-considered and well-performed. Most of the conclusions are supported by the data. I only have the concerns below.

      (1) One of the main findings is the composition of Notch nuclear complexes and their interactions within a 'hub'. Yet most of the data showing hubs focus on labeling one protein component (+the locus or transcription), but multi-color imaging is rarely used to show how CSL-Mam, Mam-Med... protein signals coalescence to form a hub. Given the powerful tool developed, it would be important to show these multi-state hubs. Related to this, if the authors expect that hubs are formed independently of transcription or Notch pathway activation, do the authors see clustering at other non-specific loci in the nucleus? If not, can the authors comment on why they think that is the case? If so, do they demonstrate consistent residence time profiles with the tracked E(spl) locus?

      We apologise that it was not evident from the data shown that the proteins co-localize. First we stress that all the experiments are multicolor and most rely on very powerful methods to measure co-recruitment at a chromosomal locus- something that is very rarely achieved by others studying hubs. Second, we have in all cases confirmed that the proteins do colocalize. We have modified the diagram of our analysis pipeline to make more clear that this relies on multi-colour imaging, and adjusted all the figure labels to indicate the position of E(spl)-C. We have also added panels to new supplementary Figure S1C with examples of the co-localization between CSL and Mam and a plot confirming their levels of recruitment are correlated across multiple nuclei.

      We would like to clarify that our data show that the hubs do require Notch activation for their establishment. Other regions of enrichment are detected in Notch-ON conditions, but these are less prominent and, with no independent method for identifying them, can’t be compared between nuclei. In SPT experiments, other clusters with consistent residence are detected as reported in our recent paper which expanded on the SPT data (Baloul et al, 2023). We also detect co-localizations and “hubs” in other tissues, but those analyses are ongoing and beyond the scope of this paper.

      (2) The authors convincingly show that Notch hub complexes exhibit a memory. While the data showing rapid hub reformation upon Notch withdrawal are solid and convincing (Figure 5, in particular, F), the claim that this memory fosters rapid transcriptional reactivation is less clear. Yet in order to invoke transcriptional memory, it's necessary to solidify this transcriptional response angle. The authors should consider quantifying the changes in transcription activity (at the TS and not in the cytoplasm as currently shown), as well as the timing of transcriptional reactivation (with the MS2 system or smFISH). Manipulating the duration of the activation and dark recovery periods could help to draw a better correlation between the timing of hub reformation and that of transcriptional response and would also help determine how persistent this phenomenon is.

      We thank the reviewer for these suggestions. We have carried out several new experiments to probe further the persistence of memory and to show the effects on transcription when Notch is inactivated/reactivated. First, we have extended the time period for Notch inactivation by temperature control and show that the CSL hub persists even at 24 hours and that no transcription from the target E(spl)m3 is detected –neither at the transcription start-site nor in the cytoplasm. Second, we have extended the Notch OFF time period to 24 hours using the optogenetic approach and show that transcription is robustly reinitiated in preactivated nuclei when Notch is re-activated with 30 mins light treatment while little if any E(spl)m3 transcription is detected in naïve nuclei with the same treatment. These new data are included in new Figure 5 C-F and see page 13-14. Both these new experiments substantiate the model that the nuclei retain transcriptional memory.

      (3) The manuscript ends with the finding that the presence of a Mam hub does not always correlate with transcription. They conclude that transcription is initially stochastic. The authors find this surprising and even state that this could not be observed without their in vivo live imaging approaches. I don't understand why this result is surprising or unexpected, as we now know that transcription is generally a stochastic process and that most (if not all) loci are transcribed in a bursting manner. The fact that E(spl)-C locus is bursty is already obvious from the smFISH data. The fact that active nascent transcription does not correlate with local TF hubs was already observed in early Drosophila embryos (with Zelda hubs and two MS2 reporters, hb-MS2, sna-MS2). If, in spite of the inherent stochasticity of transcription (bursting), the data are surprising for other reasons, the authors should explain it better.

      We apologise that we had not made clear the reasons why the results were unexpected. We have substantially rewritten this section, and the discussion section, to clarify. We have also moderated the language used to better reflect the overall context of our results. We briefly summarise here. As the reviewer correctly states, it is well known that transcription is inherently bursty. Indeed the MS2 transcription profiles in “ON” nuclei are bursty, which likely reflects the switching of the promoter. However, in other contexts where we have monitored transcription although it is bursty it has nevertheless been initiated synchronously in response to Notch in all nuclei in a manner that was fully penetrant. What we observe in our current conditions, is that some nuclei never initiate transcription over the time-course of our experiments (2-3 hours), and those that are ON rarely switch off. This implies that there is another rate-limiting step. Supplying a second signal can modulate this so that it occurs with much higher frequency/penetrance. We consider this to be a second tier of regulation above the fundamental transcriptional bursting.

      The fact that Mam is recruited in all nuclei, whether or not they are actively transcribing was surprising because recruitment of the activation complex has been considered as the limiting step. This is somewhat different from Zelda, which is thought to be permissive and needed at an early step to prime genes for later activation rather than to be the last step needed to fire transcription. We note also that we are not monitoring the position of the hub with respect to the promoter, as in the Zelda experiments (Zelda hubs may still persist, but they are not overlapping with the nascent RNA), we are monitoring the presence or absence of Mam hub in proximity to a genomic region.

      Minor suggestions:

      (1) The genotypes of the samples should be indicated in the figure legends.

      We thank the reviewer for this suggestion. We have provided a table (new Table S3) where all of the genetic combinations are provided in detail for each figure. We considered that this approach would be preferable because it would be quite cumbersome to have the genotypes in each legend as they would become very long and repetitive.

      (2) While the schematic Fig1A explains how the locus is detected, the presence of ParS/ParB is never indicated in subsequent panels and Figure. I assume that all panels depicting enrichment profiles, use a given radius from the ParS/ParB dot to determine the zero of the x-axis (grey zone). This should be clearly stated in all panels/figure legends concerned.

      We apologies if this was not made explicit. Yes, all panels depicting enrichment profiles, use immunofluorescence signal from ParA/ParB recruitment to determine the zero of the x-axis. We have now marked this more clearly In all figures (grey bar, grey shading or labelled 0). All images where the locus is indicated by an arrowhead, by a coloured bar above the intensity plots or by grey shading in the graphs have been captured with dual colour and the signal from ParA/B recruitment used to define its location. This is now clearly stated in the analysis methods and in the legend. We have also modified the diagram in new supplementary Figure S1B, showing our analysis pipeline, to make that more explicit.

      (3) FRAP/SPT experiments: the author should provide more details. How many traces? Are traces showing bleaching removed?

      P7: does the statement ' The residences are likely an underestimation because bleaching and other technical limitations also affect track durations' imply that traces showing bleaching have not been removed from the analysis?

      The authors could justify the choice of the model for fitting FRAP/Spt experiments and be cautious about their interpretation. For example, interpreting a kinetic behavior as a DNA-specific binding event can be accurate, only if backed up with measurements with a mutant version of the DNA binding domain.

      We apologise if some of this information was not evident. The number of trajectories is provided in new Figure S1F, which indicates the number of trajectories analyzed for each condition in Figure 1.

      We have now added also the numbers of trajectories analyzed for the ring experiments.

      The comments on page 7 about bleaching refer to the technical limitations of the SPT approach. However, as bleached particles cannot be distinguished from those that leave the plane of imaging, they have not been filtered or removed. We have not sought to make claims about absolute residence times for that reason. Rather the point is to make a comparison between the different molecules. As the same fluorescent ligand and imaging conditions are used in all the experiments, all the samples are equivalently affected by bleaching. We subdivide trajectories according to their properties and infer that those which are essentially stationary are bound to chromatin, as is common practice in the field. We note that we have previously shown that a DNA binding mutant of CSL does not produce a hub at E(spl)-C in Notch-ON conditions and has a markedly more rapid recovery in FRAP experiments (Gomez-Lamarca et al, 2018) consistent with the slow recovery being related to DNA binding. This point has been added to the text (page 8).

      (4) The authors should quantify their RNAi efficiency for Hairless-RNAi, Med13-RNAi, white-RNAi, yellow-RNAi, CBP-RNAi, and CDK8-RNAi.

      We thank the reviewer for this comment. We have made sure that we are using well validated RNAis in all our experiments and have included the references in Table S2 where they have been used. We have now evaluated the knock-down in the precise conditions used in our experiments by quantitative RT-PCR and added those data, which show efficient knock-down is occurring, to new Supplementary Figure S1D and Figure S3J. We note also that the RNAi experiments are complemented by experiments inhibiting the complexes with specific drugs and that these yield similar results.

      (5) Figure 3 A: could the author show that transcription is indeed inhibited upon triptolide treatment with smFISH (with for example m3 probes)? Why not use alpha-amanitin?

      We thank the reviewer for this suggestion. We had omitted the smFISH data from this experiment in error. These data have now been added to new Supplementary Figure S3A and clearly show that transcription is inhibited following 1 hour exposure to triptolide. Triptolide is a very fast acting and very efficient inhibitor of transcription that acts at a very early step in transcription initiation. In our experience it is much more efficient than alpha-amanitin and is now the inhibitor of choice in many transcription studies.

      (6) Figure 4 typo: panel B should be D and vice versa. Accessibility panels are referred to as Figure 4D, D' in the text but presented as panel B in the Figure.

      We thank the reviewer for noting this mistake, it is now changed in the main text.

      (7) The authors must add their optogenetic manipulation protocol to their methods section.

      The method is described in detail in a recently published paper that reports its design and use. We have now also added a section explaining the paradigm in the methods (Page 31) as requested.

      (8) Figure 3G needs a Y-axis label.

      Our apologies, this has now been added.

      (9) The authors should note why there was a change of control in Figure 3D compared to 3E and G (yellow RNAi vs white RNAi).

      This is a pragmatic choice that relates to the chromosomal site of the RNAis being tested. Controls were chosen according to the chromosome that carries the UAS-RNAi: for the second chromosome this was yellow RNAi and for the third white RNAi. This is explained in the methods.

      (10) Figure 1 would benefit from a diagram describing the genomic structure of the E(spl) locus and the relative position of the labelled locus within it.

      We thank the reviewer for this suggestion and have added a diagram to Supplementary Figure S1A .

      Reviewer #2 (Recommendations For The Authors):

      Minor criticisms and typos:

      Pet peeve: in some of the figure panels they are labeled Notch ON or OFF, but in others they are not, albeit that info is included in the figure legend. For the ease of the reader/reviewer, would it be possible to label all relevant figure panels either Notch ON or OFF for clarity?

      We thank the reviewer for this suggestion and have modified the figures accordingly.

      Page 7, top. "In comparison to their average distribution across the nucleus, both CSL and Mam trajectories were significantly enriched in a region of approximately 0.5 μm around the target locus in Notch-ON conditions, reflecting robust Notch dependant recruitment to this gene complex." Are the authors referring to Figure 1D here?

      Thank you, this figure call-out has been added in the text.

      Page 9. "...reported to interact with p300 and other factors (Figure S2B)." I believe the authors mean Figure S2C and not S2B.

      Thank you, this has been corrected in the text.

      Page 9. There is no Figure S2D.

      Apologies, this was referring to Figure S1D, and is now corrected in the text.

      Page 11: "...were at very reduced levels in nuclei co-expressing MamDN (Figure 4B).." Should be Figure 4CD.

      Thank you, this has been corrected in the text.

      Page 12: "...which was maintained in the presence of MamDN (Figure 4D, D')." Should be Figure 4B.

      Thank you, this has been corrected in the text.

      Reviewer #3 (Recommendations For The Authors):

      In the Results section on Hub, the paragraph starting with "Third, we reasoned . ." the callout to Figure S2D should be Fig S1D.

      Thank you, this has been corrected in the text

      Figures: The font size in the Figures is so small that most words and numbers cannot be read on a printout. One has to go to the electronic version and increase the size to read it. This reviewer found that inconvenient and often annoying.

      We apologise for this oversight, the font size has now been adjusted on all the graphs etc.

      Figure legends: the legends are terse and in some cases leave explanations to the imagination (e.g. "px" in Figure 2E). It would be useful to go through them and make sure those who are not a Drosophila Notch person and not a transcription biochemist can make sense of them.

      Our apologies for the lack of clarity in the legends. We have gone over them to make them more accessible and less succinct.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-01938R

      Corresponding author(s): Ilan, Davis

      1. General Statements

      We thank all four reviewers for their helpful and constructive comments. We have gone through each and every comment and proposed how we would address each point raised by the reviewers. We are confident our proposed revisions are feasible within a reasonable and expected time frame. Some of the comments regarding minor typo/aesthetics and extra references have already been addressed in the transferred manuscript. The changes are highlighted in yellow in the transferred manuscript.

      2. Description of the planned revisions

      Reviewer #1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

      Major points:

      1. The presented work itself (Figures 1-4) does not need significant adjustments prior to publication, in my view, with only a few points to address. However, the work in Figure 5- doesn't really support the claims the authors make on its own, and would require some additional experiments or at the very least discussion of the caveats to its current form.

      We thank the reviewer for these comments and will follow the reviewer’s suggestion by discussing the caveats regarding the interpretation of Figure 5. We will also add to the discussion to suggest future research approaches beyond the scope of this manuscript that would address the functional importance of localised mRNA translation. We will briefly mention in the discussion methods such as the quantification of the mRNA foci and the disruption of the mRNA localisation signals to disrupt localised translation and the use of techniques such as Sun-Tag (Tanenbaum et al, 2014) and FLARIM (Richer et al, 2021) to visualise local translation directly.


      Tanenbaum et al, 2014 DOI: 10.1016/j.cell.2014.09.039

      Richer et al, 2021 DOI: 10.1101/2021.08.13.456301

      * __ Localized glia transcripts, are they "glial/CNS/PNS" significant or are they similar to other known datasets of protrusion transcriptomes? The authors compared their 4801 "total" localized to a local transcriptome dataset from the Chekulaeva lab finding that a significant fraction are localized in both. As the authors note, this is in good agreement with a recent paper from the Talifarro lab showing conservation of localization of mRNAs across different cell types. What the authors haven't done here, is further test this by looking at other non-neuronal projection transcriptomic datasets (for example Mardakheh Developmental Cell 2015, among others). If the predicted glia-localized processes are similar to non-neuronal processes transcriptomes, this would further strengthen this claim and rule out some level of CNS/PNS derived linage driving the similarities between glia and neuronal localized transcripts. __*

      This is a good point and we thank the review for pointing out this interesting cancer data set. We will do as the reviewer suggests and intersect our data with Mardakheh Dev Cell 2015 to test the further generality of localisation in neurons and glia, in other cell types. Specifically, we plan to intersect both glial (this study) and neuronal (von Kuegelgen & Chekulaeva, 2020) dataset with protrusive breast cancer cells (Mardakeh et al, 2015).

      • *

      von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590

      Mardakeh et al, 2015 DOI: 10.1016/j.devcel.2015.10.005

      * __ The presentation/discussion around Figure 3 is a bit weaker than other parts of the manuscript, and it doesn't really contribute to the story in its current form. Notably there is no discussion about the significance of glia in neurological disorders until the very end of the manuscript (page 21), meaning when its first brought up.. it just sits there as a one off side point. The authors might consider strengthening/tightening up the discussion here, if they really want to keep it as a solo main figure rather than integrating it somewhere else/putting it into supplemental. In my view, Figures 2 & 3 should be merged into something a bit more streamlined. __*

      This is a good point. We plan to strengthen the presentation of Figure 3 and discussion of the significance of glia in neurological disorders by adding a description of the Figure in the Results section and highlighting the significance of glia in nervous system disorders in the Discussion section.

      * __ Why aren't there more examples of different mRNAs in Figure 4? Seems a waste to kick them all to supplemental. __*

      We agree that it could be helpful to show different expression patterns in the main figure. To address this point we will add Pdi (Fig. S4D), which shows mRNA expression in both the glia and the surrounding muscle cell. This pattern is in contrast to Gs2, which is highly specific to glial cells. We will also note that although pdi mRNA is present in both the glia and muscle, Pdi protein is only abundant in the glia, suggesting that translation of pdi mRNA to protein is regulated in a cell-specific manner.

      The plasticity experiments, while creative, I think need to be approached far more cautiously in their interpretation. Given that the siRNAs will completely deplete these mRNAs- it really needs to be stressed any/all of the effects seen could just be the result of "defective" or "altered" states in this glial population- which has spill over effects on plasticity in at the NMJ. Without directly visualizing if these mRNAs are locally translated in these processes and assessing if their translation is modulated by their plasticity paradigm, all these experiments can say is that these RNAs are needed in glia to modulate ghost bouton formation in axons. This represents the weakest part of this manuscript, and the part that I feel does not actually backup the claims currently being made. Without any experiments to A. quantify how much of these transcripts are localized vs in the cell body of these glia, B. visualize/quantify the translation of these mRNAs during baseline and during plasticity; the authors cannot use these data to claim that localized mRNAs are required for synaptic plasticity.

      We are grateful to the reviewer for pointing out that we were not precise enough in defining our interpretation of the structural plasticity assay. We did not intend to claim that our results show that local translation of these transcripts is necessary for plasticity, only that these transcripts are localized and are required in the glia for plasticity in the adjacent neuron (in which the transcript levels are not disrupted in the experiment). Definitively proving that these transcripts are required locally and translated in response to synaptic activity would require genetic/chemical perturbations and imaging assays that would require a year or more to complete, so are beyond the scope of this manuscript. To address this point, we will clarify that the results do not show that localized transcripts are required, only that the transcripts are required somewhere specifically in the glial cell (without affecting the neuron level), and we can indeed show in an independent experiment that there are localized transcripts.

      Reviewer #2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

      Major points:

      1. * __ The authors analyse the 1700 shortlisted genes for Gene Ontology and associations with austism spectrum disorder, leading to interesting results. However, it is not clear to what extent the enrichments they observe are driven by their presumptive localization or if the associations are driven to a significant extent by the presence of these genes in the selected cell types in the Fly Cell Atlas. One way to address this would be to perform the GO and SFARI analysis on genes that are expressed in the same cells in the Fly Cell Atlas but were not shortlisted from the mammalian cell datasets - the results could then be compared to those obtained with the 1700 localized transcripts. __* This is a fair point raised by the reviewer as genes involved in neurological disease such as Autism Spectrum Disorder may be enriched in CNS/PNS cell types. We will follow the reviewer’s suggestion to perform GO and SFARI gene enrichment analysis in genes that were not shortlisted for presumptive glial localisation.

      Although the authors attempt to justify its inclusion, I'm not convinced why it was important to use the whole cell transcriptome of perisynaptic Schwann cells as part of the selection process for localizing transcripts. Including this dataset may reduce the power of the pipeline by including mRNAs that are not localized to protrusions. How many of the shortlisted 1700 genes, and how many of the 11 glial localized mRNAs in Table 5, would be lost if the whole cell transcriptome were excluded. More generally, what is the distribution of the 11 validated localizing transcripts in each dataset in Table 4? This information might be valuable for determining which dataset(s), if any, has the best predictive power in this context.

      We thank the reviewer for raising this point, which we will address with further analysis and adding to the discussion. We propose to address the criticism by running our analysis pipeline without the inclusion of the dataset using Perisynaptic Schwann Cells (PSCs) and then intersect with the PSCs-expressed genes, since their functional similarity with polarised Drosophila glial cells is highly relevant. We also agree with the reviewer that it would be a useful control for us to assess the ‘predictive power’ of each glial dataset by calculating their contribution to the shortlisted 1,700 glial localised transcripts and to the 11 experimentally validated transcripts via in situ hybridisation. To address this point, we plan to add this information in the revised manuscript.

      * __ Did the authors check if any of the RNAi constructs are reducing levels of the target mRNA or protein? Doing so would strengthen the confidence in these important results significantly. In any case, the authors should also mention the caveat of potential off-target effects of RNAi. __*

      We thank the reviewer for their useful comment and agree that the extent to which the RNAi expression reduces the levels of mRNA is not specifically known. We will add a FISH experiment on lac, pdi and gs2 RNAi showing very strong reduction in mRNA levels. We will also add an explanation of the caveats of the use of the RNAi system to the discussion.

      Methods: what is the justification for assuming that if the RNAi cross caused embryonic or larval lethality then the 'next most suitable' RNAi line is reporting on a phenotype specific to the gene. If the authors want to claim the effect is associated with different degrees of knockdown they should show this experimentally. An alternative explanation is that the line used for phenotypic analysis in glia is associated with an off-target effect.

      We thank the reviewer for this comment. We agree that off target effects cannot in principle be completely ruled out without considerable additional experimental analysis beyond the scope of this manuscript. To address the criticism we will remove the expression data of the lines that cause lethality and revise the discussion to explain that the level of knockdown in each line is unknown, and would require further experimental exploration.

      Minor points:

      1. It would be helpful to have in the Introduction (rather than the Results, as is currently the case) an operational definition of mRNA localization in the context of the study. And is it known whether or not localization in protrusions is the norm in mammalian glia or the Drosophila larval glia? I ask because it may be that almost all mRNAs diffuse into the protrusion, so this is not a selective process. One interesting approach to test this idea might be to test if the 1700 shortlisted transcripts have a significant underrepresentation of 'housekeeping' functions. We thank the reviewer for this excellent suggestion. To address the comment, we will move our explanation of the operational definition of mRNA localization to the Introduction. We will also perform enrichment analysis of housekeeping genes within 1,700 shortlisted transcripts compared to the transcriptome background, as the reviewer suggested.

      Reviewer #3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

      Major points:

      1. The authors have pooled data from different studies across different type of glial cells performed from in vitro to in vivo. While pooling datasets may reveal common transcripts enriched in processes, this may not be the best approach considering these are completely different types of glial cells with distinct function in neuronal physiology. We thank the reviewer for highlighting the need for us to further justify why we pooled datasets. We will revise the manuscript to better emphasise that the overarching goal of our study was to try to discern a common set of localised transcripts shared between the cells. The problem with analysing and comparing individual data sets is that much of the variation may be due to differences in the methods used and amount of material, rather than differences in the type of cells used. We will revise the discussion to make this point and plan to explain that our approach corresponds well with a previous publication pooling localised mRNA datasets in neurons (von Kugelgen & Chekulaeva 2021).

      von Kuegelgen & Chekulaeva, 2020 DOI: 10.1002/wrna.1590

      It is important to note the limitations of the study. For example, DeSeq2 is biased for highly expressed transcripts. How robust was the prediction for low abundance transcripts?

      The presented 1,700 transcripts were shortlisted based on their presence and expression level (TPM) in glial protrusions rather than their relative enrichment. Nevertheless, the reviewer makes a valid criticism of our use of DESeq2, where we compared enriched transcripts in glial and neuronal protrusions in Figure 1D. To address this point we will discuss this caveat in the relevant section.

      The issue raised regarding low abundance transcript prediction raises an important question: does the likelihood of localisation to cell extremities correlate with mRNA abundance? We have already partially addressed this point, since our analysis of the fraction of localised transcripts per expression level quantiles shows only limited correlation. To address this comment, we will add these results in the revised manuscript as a supplementary figure.

      The authors identify 1,700 transcripts that they classify as "predicted to be present" in the projections of the Drosophila PNS glia. This was based on the comparison to all the mammalian glial transcripts. Since the authors have access to a transcriptomic study from Perisynaptic Schwann cells (PSCs), the nonmyelinating glia associated with the NMJ isolated from mice; it would be more convincing to then validate the extent of overlap between Drosophila peripheral glial with the mammalian PSCs. This may reveal conserved features of localized transcripts in the PNS, particularly associated with the NMJ function.

      Thank you for the valuable suggestion. A similar point was also raised by __[Reviewer #2 - Major point 2] __to re-run our pipeline excluding the PSCs dataset and intersect with the PSC transcriptome post-hoc. Please see the above section for our detailed response.

      Fig 2: What is the extent of overlap between the translating fractions versus the localized fraction? It will be informative to perform the functional annotation of the translating glial transcripts as identified from Fig 1D.

      This is an interesting question. To address this point, we plan to: (i) compare transcripts that are translated vs. localised in glial protrusions, and (ii) perform functional annotation enrichment analysis on the translated fraction of genes.

      "We conclude predicted group of 1,700 are highly likely to be peripherally localized in Drosophila cytoplasmic glial projections". To validate their predictions, the authors test some of these candidates in only one glial cell type. It might be worthy to extend this for other differentially expressed genes localized in another glial type as well.

      The presented in vivo analyses made use of the repo-GAL4 driver, which is active in all glial subtypes, including subperineurial, perineurial and wrapping glia that make distal projection to the larval neuromuscular junction. We agree that subtype-specific analysis would be highly informative, but we believe this is outside the scope of the current work where we aimed to identify conserved localised transcriptomes across all glial subtypes. Nevertheless, to address the comment, we plan to further clarify our use of pan-glial repo-GAL4 driver in the Results and Method section of the revised manuscript.

      Figure 5: The authors perform KD of candidate transcripts to test the effect on synapse formation. However, these are KD with RNAi that spans across the entire cell. To make the claim about the importance of "target" RNA localization in glia stronger, ideally, they should disrupt the enrichment specifically in the glial protusions and test the impact on bouton formation. Do these three RNAs have any putative localization elements?

      We agree with the review, that we would ideally test the effect of disruption of mRNA localization (and therefore localised translation). However, we feel these experiments are beyond the scope of this current study, as they will require a long road of defining localisation signals that are small enough to disrupt without affecting other functions. To address this comment we will revise the Discussion section to mention those difficulties explicitly, and clarify the limitations of the approach used in our study for greater transparency.

      Reviewer #4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

      Major points:

      1. The authors use FISH to validate the glial expression of their target genes, though these experiments are not quantified, and no controls are shown. The authors should provide a supplemental figure with "no probe" controls, and/or validate the specificity of the probe via glial knockdown of the target gene (see point 2). Furthermore, these data should be quantified (e.g. number of puncta colocalized with NMJ glia membrans). Thank you for requesting further information regarding the YFP smFISH probes. We have validated the specificity and sensitivity of the YFP probe in our recent publication (Titlow et al, 2023, Figure 1 and S1). Specifically, we demonstrated the lack of YFP probe signal from wild-type untagged biosamples and showed colocalization of YFP spots with additional probes targeting the endogenous exon of the transcript. Nevertheless, we will address this comment by adding control image panels of smFISH in wild-type (OrR) neuromuscular junction preparations.

      Titlow et al, 2023 DOI: 10.1083/jcb.202205129

      For the most part, the authors only use one RNAi line for their functional studies, and they only show data for one line, even if multiple were used. To rule out potential false negatives, the authors should leverage their FISH probes to show the efficacy of their knockdowns in glia. This would serve the dual purpose of validating the new probes (see point 1).

      Thank you for the suggestion. This point was also raised by [Reviewer #2 - Major point 3]. Please see above for our detailed response.

      In Figure 5 E, given the severe reduction in size in the stimulated Pdi KD animals, the authors should show images of the unstimulated nerve as well. Do the nerve terminals actually shrink in size in these animals following stimulation, rather than expand? The NMJ looks substantially smaller than a normal L3 NMJ, though their quantification of neurite size in F suggests they're normal until stimulation.

      We share the same interpretation of the data with the reviewer that the neurite area is reduced post-potassium stimulation in pdi knockdown animals. We will follow the reviewer’s suggestion and add an image showing unstimulated neuromuscular junctions.

      Minor points:

      The authors claim that there is an enrichment of ASD-related genes in their final list of ~1400 genes that are enriched in glial processes. It is well-appreciated that synaptically-localized mRNAs are generally linked to ASDs. Can the authors comment on whether the transcripts localized to glial processes are even more linked to ASDs and neurological disorders than transcripts known to be localized to neuronal processes?

      This is an interesting point. To address the comment, we will add a comparison of the degree of enrichment of ASD-related genes in neurite vs. glial protrusions in the revised manuscript.

      __*

      *__

      • *

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1


      1. The use of blue/green or blue/green/magenta is difficult to resolve in some places. Swapping blue for cyan would greatly aid in visualizing their data.
      2. *

      This comment is much appreciated. We have swapped blue for cyan in Figures 4 and S4. We have also changed Figure S1 to increase contrast and visibility as per reviewer’s comment.

      Make the colouring/formatting of the tables more consistent, its distracting when its constantly changing (also there is no need for a blue background.. just use a basic white table).

      This comment is much appreciated. We have applied a consistent colour palette to the Tables without background colourings and made the formatting uniform.

      • *

      Reviewer #2

      • *

      Introduction: 'Asymmetric mRNA localization is likely to be as important in glia, as it is in neurons,...'. Remove commas

      Thank you for pointing this mistake out. We have made the corresponding edits.

      • *

      Reviewer #3

      RNA localization in oligodendrocytes has been well studied and characterized. The authors should cite and discuss those papers (PMID: 18442491; PMID: 9281585).

      We thank the reviewer for this useful suggestion. We have added these references to the paper.

      • *

      • *

      Reviewer #4

      • *

      • In Figure 5D, the authors should include a label to indicate that these images are from an unstimulated condition. We thank the reviewer for pointing this out. We have added the label as requested.

      The authors are missing a number of key citations for studies that have explored the functional significance of mRNA trafficking in glia, and those that have validated activity-dependent translation:

      - ____https://pubmed.ncbi.nlm.nih.gov/18490510____/

      -____https://pubmed.ncbi.nlm.nih.gov/7691830____/

      -____https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001053

      -____https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450274____/

      -_https://pubmed.ncbi.nlm.nih.gov/36261025_*/

      *__

      We thank the reviewer for the comment. We have added these references to the text.

      • *

      4. Description of analyses that authors prefer not to carry out

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We thank the Reviewers for their helpful and constructive comments. In response to these suggestions we have performed new experiments and amended the manuscript, as we describe in our detailed response below.

      2. Point-by-point description of the revisions

      Reviewer #1

      1. The Reviewer notes that while our analysis of centrosome size was comprehensive, we provided no analysis of centrosomal MTs, pointing out that while centrosome size declines as the embryos enter mitosis, the ability of centrosomes to organise MTs might not. This is a good point, and we now provide an analysis of centrosomal-MT behaviour (Figure 2). We find that there is a dramatic decline in centrosomal MT fluorescence at NEB, although the pattern of centrosomal MT recruitment prior to NEB is surprisingly complex.

      The Reviewer questions how PCM client proteins can be recruited in different ways by the same Cdk/Cyclin oscillator. We apologise for not explaining this properly. It is widely accepted that Cdk/Cyclins drive cell cycle progression, in part, by phosphorylating different substrates at different activity thresholds (e.g. Coudreuse and Nurse, Nature, 2010; Swaffer et al., Cell, 2016). Moreover, it is also clear that Cdk/Cyclins can phosphorylate the same protein at different sites at different activity thresholds (e.g. Koivomagi et al., Nature, 2011; Asafa et al., Curr. Biol., 2022; Ord et al., Nat. Struct. Mol. Biol., 2019). Thus, we hypothesise that rising Cdk/Cyclin cell cycle oscillator (CCO) activity phosphorylates multiple proteins at different times and/or at different sites to generate the complicated kinetics of centrosome growth. We now explain this point more clearly throughout the manuscript.

      The Reviewer is puzzled as to how we conclude that Cdk/Cyclins phosphorylate Spd-2 and Cnn at all the potential Cdk/Cyclin phosphorylation sites we mutate in our study. The Reviewer is right that we cannot make this conclusion, and we did not intend to make this claim. As we now clarify (p11, para.1), although it is unclear if Cdk/Cyclins phosphorylate Spd-2 or Cnn on all, some, or none of these sites, if either protein can be phosphorylated by Cdk/Cyclins, then these mutants should not be able to be phosphorylated in this way—allowing us to address the potential significance of any such phosphorylation. We now also note that several of these sites have been shown to be phosphorylated in embryos in Mass Spectroscopy screens (Figure S6).

      The Reviewer highlights differences in how Spd-2 and Cnn help recruit γ-tubulin to centrosomes (Figure 6). They ask for a more detailed description, and are puzzled as to how this is compatible with direct regulation by a single oscillator. We now explain our thinking on this important point in much more detail. It appears that Spd-2 helps recruit γ-tubulin throughout S-phase, while Cnn has a more prominent role in late S-phase (Figure 6). This is consistent with our overall hypothesis of CCO regulation, as we postulate that low-level CCO activity promotes the Spd-2/γ-tubulin interaction in early S-phase, while higher CCO activity promotes the Cnn/γ-tubulin interaction in late-S-phase, potentially explaining the increase in the rate of γ-tubulin (but not γ-TuRC) recruitment we observe at this point (see minor comment #1, below, for an explanation of the various γ-tubulin complexes in flies). This is consistent with recent literature showing that CCO activity promotes γ-tubulin (but not γ-TuRC) recruitment by Cnn/SPD-5 in worms and flies (Ohta et al., 2021; Tovey et al., 2021).

      The Reviewer was not convinced by our model (Figure 8, now Figure 9), raising two major concerns. First, they were unsure how a single oscillator could generate different patterns of protein recruitment. We addressed this in point #2 and #4, above, where we explain how different thresholds of CCO activity trigger different events, so there is no expectation that we should observe steady changes in recruitment over time as CCO activity rises. Second, they questioned how modest levels of Cdk/Cyclin activity can promote recruitment, while high levels of activity can inhibit recruitment. In point #1, above, we cite several examples where such positive and negative regulation by different Cdk/Cyclin activity levels have been described. We also now explain throughout the manuscript why this hypothesis provides a plausible explanation for our results: with moderate CCO activity promoting Spd-2-dependent PCM-client recruitment in early S-phase; higher CCO activity promoting a decrease in Spd-2 recruitment in mid-late-S-phase (so centrosomal Spd-2 levels decline); and even higher levels of CCO activity leading to a decrease in the interactions between the client proteins and the Spd-2/Cnn scaffold as the embryos enter mitosis (so the client proteins are rapidly released from the centrosome).

      The Reviewer also raised the important point here that our model does not explain why the mutant forms of Spd-2 and Cnn accumulate to higher levels at the start of S-phase, and not just at the end of S-phase/entry into mitosis. We apologise for not explaining this properly. The accumulation of the mutant proteins (particularly Spd-2, Figure 5C) in early-S-phase occurs because the excess mutant protein that accumulates at centrosomes in late-S-phase/mitosis is not removed properly from centrosomes during mitosis (presumably because there is insufficient time). Thus, centrosomes still have too much mutant Spd-2 at the start of the next S-phase. We show this in Reviewer Figure 1 (attached to this letter), which tracks Spd-2 behaviour further into mitosis, and now explain this in more detail in the text (p12, para.1).

      The Reviewer questions how the CCO can both induce centrosome growth and also switch it off, as it is unclear how an oscillator that only phosphorylates sites to decrease centrosome binding could also promote growth. They ask if we can identify and mutate any Cdk/Cyclin sites in centrosome proteins that promote centrosome recruitment. As we now clarify, we did not intend to claim that the CCO only phosphorylates sites that decrease the centrosome binding of proteins, although we do hypothesise that such phosphorylation is important for switching off centrosome growth in mitosis. In addition, we hypothesise that moderate levels of CCO initially promote centrosome growth, and our data suggests that the CCO does this, at least in part, by promoting Polo recruitment (Figure 8). We speculate that the CCO phosphorylates specific Polo-box-binding sites in Ana1 and Spd-2, the main proteins that recruit Polo to centrioles. We agree that identifying these sites is an important next step, but it is complicated as our studies indicate that multiple sites contribute in a complex manner. Importantly, it is well established that the CCO triggers centrosome growth as cells prepare to enter mitosis, so our hypothesis that moderate levels of CCO activity initiate centrosome growth is not new or controversial.

      Minor Comments

      1. The reviewer asks how we explain the different incorporation profiles we observe for the different subunits of the γ-tubulin ring complex. We apologise for not discussing this point. In flies there is a “core” γ-tubulin-small complex (γ-TuSC) and a larger γ-tubulin-ring complex (γ-TuRC) that contains the Grip71, Grip75 and Grip128 subunits we analyse here (Oegema et al., JCB, 1999). The γ-TuSC functions independently of the γ-TuRC so γ-tubulin and γ-TuRC components can behave differently.

      The Reviewer questions why we claim an “inverse-linear” relationship between S-phase length and the centrosome growth rate when the relationship is not linear (Figure 3, now Figure S3). I was originally confused by this as well but, mathematically, a linear relationship means y is proportional to x, whereas an inverse-linear relationship means y is proportional to 1/x. Thus, an inverse-linear relationship between x and y does not plot as a straight line, but rather as the curves we show on the graphs. We now explain this in text (p9, para.2).

      Reviewer #2

      This Reviewer found the manuscript hard to follow, so we are very grateful that they took the time to try to understand it. We agree that the subject matter is complicated, and that our presentation was not always helpful. The Reviewer’s comments have been very useful in helping us to identify (and hopefully improve) areas of particular difficulty.

      Major points:

      1. The Reviewer highlights that the two experimental approaches underpinning our main conclusions are problematic: (1) Experiments with mutants of Spd-2 and Cnn that theoretically cannot be phosphorylated by Cdk/Cyclins are hard to interpret as these mutations may have other effects; (2) It is unclear whether reducing Cyclin B levels reduces peak CDK activity or simply slows the time it takes to reach peak levels. They suggest a more direct test of our model would be to analyse PCM recruitment in embryos arrested in S-phase or mitosis. (1) We agree that the mutations designed to prevent Cdk/Cyclin phosphorylation could perturb function in other ways, but this is true for any such mutation, and there are many papers that infer a function for Cdk/Cyclin phosphorylation from such experiments. Importantly, the centrosomal accumulation of the phospho-null mutants actually slightly increases compared to WT (Figure 5C and I), and we now show that the centrosomal accumulation of a phosphomimicking Spd-2-Cdk20E mutant slightly decreases (Figure S8). We now acknowledge the potential caveat of a non-specific perturbation of protein function, but feel that the reciprocal behaviour of the phospho-null and phospho-mimicking mutants somewhat mitigates this concern (p12, para.2). (2) Fortunately, and as we now clarify, it has recently been shown that reducing Cyclin levels does not reduce peak Cdk activity, but rather slows the time it takes to reach peak activity (Figure 2A, Hayden et al., Curr. Biol., 2022). Thus, the cyclin half-dose experiments provide an excellent alternative test of our hypothesis as they show that the WT proteins can exhibit similar behaviour to the mutants if the rate of Cdk/Cyclin activation is slowed. We feel the evidence supporting our hypothesis is strong enough that it warrants serious consideration. The suggestion to look at PCM recruitment in embryos arrested in either S-phase or M-phase is a good one, but these experiments produce complicated data. In M-phase arrested embryos, for example, Cnn levels continue to rise (see Figure 1G, Conduit et al., Dev. Cell, 2014), but the other PCM proteins do not (unpublished); in S-phase arrested embryos (arrested by mitotic cyclin depletion) centrosomes continue to duplicate, but now do so asynchronously, greatly complicating the analysis (McCleland and O’Farrell, Curr. Biol.., 2008; Aydogan et al., Cell, 2020). The centrosomes that don’t duplicate, however, reach a constant steady-state size (where the rate of centrosome protein addition is balanced by the rate of loss). These observations are consistent with our recent mathematical modelling of mitotic PCM assembly (Wong et al., 2022) if we additionally account for cell cycle regulation (which was not considered in our original model). We believe such analyses are beyond the scope of the current paper and we plan to publish a second paper incorporating our new hypothesis into our mathematical modelling.

      The Reviewer questions whether our methods accurately measure centrosomal protein accumulation, pointing out that γ-tubulin and Grip128 occupy different centrosomal areas—which should not be possible if they are part of the same complex. They suspect that our use of different transgenes with different promotors could explain these differences. As we should have described (see point #1 in our response to the minor comments of Reviewer #1), γ-tubulin exists in two complexes in flies, only one of which contains Grip128, so γ-tubulin and Grip128 exhibit different localisations. Moreover, as we now show (Figure S2), using different promotors does not seem to make a difference to overall recruitment kinetics. Thus, we are confident that our methods measure centrosome protein recruitment dynamics accurately.

      The Reviewer is concerned that our measurements of centrosome size based on fluorescence intensity (Figure 1) and centrosomal area (Figure S1) do not always match. They suggest a potential reason for this is that proteins are not uniformly distributed within centrosomes, and this may impact our ability to measure protein accumulation based on 2D projections (noting, for example, that Polo and Spd-2 are concentrated at centrioles and in the PCM, potentially explaining the different shape of their growth curves compared to the client proteins). When the centrosome-fluorescence-intensity and centrosome-area recruitment profiles of a protein do not match, the average “centrosome-density” of that protein must be changing over time. In some cases, we understand why density changes. Cnn, for example, stops flaring outwards on the centrosomal MTs during mitosis so its centrosomal area decreases even as its fluorescence intensity increases (leading to an increase in its centrosomal-density). We agree (and now discuss—p19, para.3) that the prominent accumulation of Spd-2 and Polo at centrioles could help to explain why Spd-2 and Polo accumulation dynamics differ from the client proteins.

      Other points:

      The Reviewer suggests it would be good to know how much Polo at the centrosome is active____. We agree, but although commercial antibodies against PLK1 phosphorylated in its activation loop work in cultured fly cells, we cannot get them to work in embryos. Moreover, the recruitment of Polo/PLK1 to its site of action by its Polo-Box Domain is sufficient to partially activate the kinase independently of phosphorylation (Xu et al., NSMB, 2013). Thus, it seems likely that all the Polo/PLK1 recruited to centrosomes will be at least partially activated, even if it is not necessarily phosphorylated on its activation loop.

      The Reviewer asks if it is clear that less Spd-2 and Cnn are recruited to centrosomes in the half gene-dosage embryos. We apologise for not mentioning that this is indeed the case. We showed this previously for Cnn (Conduit et al., Curr. Biol., 2010) and we now state that this is also the case for Spd-2. We do not show the Spd-2 data as we plan to publish a comprehensive dose-response curve of Spd-2 (and Cnn) recruitment in our next modelling paper.

      Would it not be relevant to examine Polo ½ dosage embryos? We do have this data (Reviewer Figure 2), attached to this letter, but it is quite complicated to interpret (as we explain in the legend). We feel it would be more appropriate to include this in our next modelling paper where we can properly explain the behaviours we observe. Publishing this data here would distract from our main message without changing any of our conclusions.

      The Reviewer asks why the non-phosphorylatable Spd-2 protein is also present at higher levels on centrosomes at the start of S-phase (not just the end of S-phase). This was also raised by Reviewer #1 (point #5), so please see the second paragraph of our response there.

      Minor/Discussion Points:

      We thank the Reviewer for highlighting that absolute and relative centrosome size control are different things and we have amended the manuscript accordingly.

      The Reviewer questions whether it is accurate to describe Spd-2 and Polo as scaffold proteins, noting that only Cnn has been shown to have scaffolding properties. There is strong evidence that Spd-2 has Cnn-independent scaffolding properties in flies (e.g. Conduit et al., eLife, 2014), but this is a fair point for Polo. We think it is justified to separate Polo from other client proteins as Polo is essential for scaffold assembly, whereas other client proteins are not. We now define our scaffold/client terminology to avoid confusion (p4, para.3).

      The Reviewer highlights several points related to differences in recruitment kinetics (also touched on in points #2 and #3, above), noting we don’t discuss properly the idea of two different modes of PCM recruitment. These are all good points, largely addressed in our response to points #2 and #3, above. We now discuss much more prominently the two different modes of client protein recruitment throughout the manuscript.

      As we now clarify, in all our experiments we use centrosome separation and nuclear envelope breakdown (NEB) to define the start and end of S-phase, respectively.

      The Reviewer quotes the landmark Woodruff paper (Cell, 2017) as showing that the ability to concentrate client proteins (including ZYG-9, the worm homologue of Msps) is an intrinsic property of the PCM scaffold, so how do we explain that Msps departs prior to NEB while Cnn continues to accumulate? It is indeed a striking observation of our study that all PCM client proteins (not just Msps) start to leave the centrosome prior to NEB, even as Cnn levels continue to accumulate. Our hypothesis is that this ‘leaving’ event is triggered by a threshold level of Cdk/Cyclin activity—explaining why these client proteins all start to leave the PCM at the same time (just prior to NEB) irrespective of nuclear cycle length. This is not incompatible with the Woodruff paper, which did not attempt to reconstitute any potential regulation by Cdk/Cyclins in their in vitro studies.

      The Reviewer questions why Spd-2 that cannot be phosphorylated by Cdk/Cyclins (Spd-2-Cdk20A) accumulates abnormally at centrosomes in late S-phase, yet γ-tubulin (which is recruited by Spd-2) seems to leave centrosomes more slowly in the presence of the mutant protein. As we now explain more clearly, there is no contradiction here. Spd-2-Cdk20A accumulates to abnormally high levels in late-S-phase/early mitosis (Figure 5C), and this reduces the γ-tubulin dissociation rate, as we would predict (Figure 7B, right most graph). It does not “prevent” dissociation, however, (as the Reviewer seems to suggest it should?), but this is probably because these experiments have to be performed in the presence of large amounts of the WT Spd-2 (Figure 5A).

      The referencing error has been corrected.

      The Reviewer asks why in Figure 1 not all of the centrosome proteins could be followed for the full time period (as we mention in the legend, but do not explain). There are different reasons for different proteins: (1) Polo cannot be followed in mitosis as it binds to the kinetochores, making it impossible to accurately track centrosomes (so the data for mitosis is missing for Polo); (2) Cnn exhibits extensive flaring at the end of mitosis/early S-phase (Megraw et al., JCS, 1999), so we cannot track individual separating centrosomes labelled with NG-Cnn in early S-phase until they have moved sufficiently far-apart (so the early S-phase time-points are missing for Cnn); (3) In addition, several of the client proteins bind to the mitotic spindle, so although we can still track and measure the centrosomes in late mitosis in the graphs, we don’t show pictures of these late mitosis centrosomes in the montage in Figure 1A as the images look a bit odd. We now explain these reasons in the Materials and Methods.

      We now indicate that nuclear cycle 12 (NC12) is being analysed in Figures 4-8.

      The reviewer questions why we don’t show the decrease rate for γ-tubulin in Figure 6 (the Spd-2 and Cnn half-dose experiments), when we do show it in Figure 7 (the Spd-2 and Cnn Cdk-mutant experiments), suspecting that it is slowed in both cases. The reviewer is correct and we now show this data for both sets of experiments.

      We have corrected the labelling error in Figure S1.

      The Reviewer suggest moving some of the data from the main Figures, and the entirety of Figures 2 and 3 to the Supplemental Information. We understand this point, and agree that the amount of data presented in Figures 1-3 is somewhat overwhelming. We have played around with the Figures a lot—in particular trying to show a few examples of the data and moving the rest to Supplementary—but it is hard to pick a “typical” example, and the power of comparing the behaviour of so many different centrosome proteins is somewhat lost. We have tidied up several Figures and, as a compromise, we keep Figure 2 (now Figure 3) in the main text, but have moved Figure 3 to Supplementary (now Figure S5).

      The Reviewer suggests that we should repeat the analysis of Spd-2, Polo and Cnn dynamics that we show here, as we already presented this data in a previous publication (Wong et al., EMBO. J, 2022). We understand this point, but feel this would be a less accurate comparison, as essentially all of the data shown in Figure 1 was obtained several years ago during a contiguous ~6month period. Since then, the lasers and software on our microscope system have been updated, so it would probably be less fair of a comparison to obtain new data for a subset of these proteins (and it seems overkill to perform the entire analysis again). We clearly state that this data has been presented previously, so we hope the Reviewer will agree that it is acceptable to present it again here so readers can more easily compare the data.

      Reviewer #3

      This Reviewer is broadly supportive of the manuscript, but to publish in a prestigious journal they think additional experimental evidence will be required to support our hypothesis.

      The Reviewer notes that our only evidence that Cdk/Cyclins directly phosphorylate Spd-2 comes from our analysis of the Spd-2-Cdk20A mutant, as the effect of reducing Cyclin B dosage on WT Spd-2 behaviour is very modest. They request that we analyse the behaviour of a Spd-2-Cdk20E phospho-mimicking mutant. The effect of halving the dose of Cyclin B on Spd-2 behaviour is modest, but this is what we would predict as all we are doing in this experiment is slowing S-phase by ~15%, so Spd-2 should accumulate at centrosomes for a slightly longer time and to a slightly higher level (as we observe, Figure 5E). A great advantage of the early fly embryo system is that we can compare the behaviour of many hundreds of centrosomes, so even subtle differences like this are usually meaningful. To illustrate this point, we have now repeated the Spd-2 analysis in WT and CycB1/2 embryos (but now using a CRISPR/Cas9 Spd-2-NG knock-in line) and we see the same subtle differences (Figure S9). In addition, as requested, we have now analysed the behaviour of a Spd-2Cdk20E mutant protein using an mRNA injection assay (as it would have taken too long to generate and test new transgenic lines). In this assay we injected embryos with mRNA encoding either WT Spd-2-GFP, Spd-2-Cdk20A-GFP or Spd-2-Cdk20E-GFP. The mRNA is quickly translated, and we computationally measured the fluorescence intensity of the centrosomes in mid-S-phase (i.e. at the Spd-2 peak) (Figure S8). This analysis confirms that Cdk20A accumulates to slightly higher levels, and reveals that Cdk20E accumulates to slightly lower levels, than the WT protein. Together, these new experiments strongly support our original conclusions.

      The Reviewer notes that we propose that the CCO initially promotes centrosome growth by stimulating Polo recruitment to centrosomes, but states that we only provide indirect evidence for this by showing that centrosomal Polo levels are strongly reduced in Cyclin B half-dose embryos. They suggest we determine Spd-2 levels in Polo half-dose embryos, and/or the centrosome levels of mutant forms of Spd-2 that cannot be phosphorylated by Polo. We believe the Cyclin B half-dose experiment provide direct support for our hypothesis that Cdk/Cyclin activity influences Polo recruitment (Figure 8), although, clearly, we have not identified the mechanism. We do, however, suggest a plausible mechanism: Ana1 and Spd-2 are largely responsible for recruiting Polo to centrosomes, and we have previously shown that several of the potential phosphorylation sites in these proteins that help recruit Polo to centrosomes are Cdk/Cyclin or Polo phosphorylation sites (Alvarez-Rodrigo et al., eLife, 2020 and JCS, 2021; Wong et al., EMBO J., 2022). We are currently testing this hypothesis, but progress is slow as it is clear that multiple sites in both proteins can influence this process.

      As the Reviewer requests, we have now also examined how Spd-2 and Cnn behave in Polo half-dose embryos (Reviewer Figure 2, attached to this letter). As we describe in the Figure legend, this data is informative, but is complicated. With relatively minor, but mechanistically important, tweaks to our previous mathematical modelling we can explain these behaviours, but introducing such a significant mathematical modelling element would be beyond the scope of this paper. As described above, these findings will form the basis of a follow-up paper that is more mathematically oriented.

      It is a great idea to look at mutant forms of Spd-2 that cannot be phosphorylated by Polo, but the consensus Polo phosphorylation site (N/D/E-X-S, with the N/D/E at -2 and the S at 0 being preferences, rather than a strict rule) is less well-defined than the consensus Cdk/Cyclin phosphorylation site (where the Pro at -1 is essentially invariant). Thus, we cannot accurately predict which sites would need to be mutated to generate such a mutant.

      The Reviewer requests that we analyse the behaviour of TACC in embryos expressing the Spd-2-Cdk20A and Cnn-Cdk6A (as we do in Figure 7 for γ-tubulin). This is a reasonable request, but we prefer not to show this data as we have recently identified an interesting interaction between TACC, Spd-2 and Aurora A that will be the subject of another paper we hope to submit shortly. This data is hard to interpret without explaining these interactions properly, which is beyond the scope of the current manuscript.

      We hope the Reviewers will agree that these changes have improved the manuscript substantially, and that it is now suitable for publication. We would like to thank them again for taking the time to read this rather complicated paper so thoroughly.

      We look forward to hearing from you.

      Yours sincerely,

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We thank the reviewers for their appreciation of the interest, novelty and quality of our study, and their useful feedback to improve its presentation.

      We have revised the manuscript addressing all the points they made, as detailed below, section by section, following the organization in the reviews. The corresponding changes are highlighted in yellow (new text) or crossed out (deleted text) in our revised manuscript.

      In case it is useful for the editor to check how each individual point was addressed, we also have extracted from the reviews each individual reviewer’s comment and our direct response, listed as bullet points at the end of this text.

      2. Point-by-point description of the revisions

      I - General criticisms

      Reviewer #1: My main criticism is unfortunately inherent to the approach: comparative studies are absolutely critical, but they can only provide a very sparse sampling of diversity. Fortunately, thanks to high-throughput sequencing, bioinformatic analyses can now be performed on a large number of species, but experimental validation is typically restricted to two or three species. The consequence of this for the present manuscript is that while the functional conservation of the Gwl site is convincingly shown, the exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.

      We completely agree with the reviewer that comparative approaches are critical to understanding biological mechanisms, and are excited by the increasing possibilities to perform not only sequence and descriptive comparisons but functional studies across a range of emerging model organisms. We hope that more and more researchers in cell and molecular biology will profit from experimental tools and techniques now available in such species, and to pioneer new ones. Of course, and he/she rightly points out, conclusions are currently limited by the number of species studied, but comparisons between two judiciously chosen species can already be very informative. Thus, in our study, the use of Xenopus and Clytia allowed us to make significant progress towards our main objective of understanding the cAMP-PKA paradox in the control of oocyte maturation; specifically by showing both that PKA phosphorylation of Clytia ARPP19 is lower in efficiency and that the phosphorylated protein has a lower effect on oocyte maturation than the Xenopus protein. As the reviewer points out, unravelling the exact mechanisms underlying these differences will require a large amount of additional work and is beyond the scope of the current study. Actually, we have embarked on several series of experiments to this end using some of the approaches listed in the Discussion. Specifically, we are testing the biochemical and functional properties of chimeric constructs containing the consensus PKA site from various species. This is a substantial undertaking which will require one to two years to complete, but is already giving some very interesting findings.

      Reviewer #1: The figures and text could be slightly condensed down to about 6 figures.

      We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

      ______________II - Abstract__

      As recommended by Reviewer #2, we have reworked the Abstract to make it more accessible to new readers, attempting to bring out more clearly and simply the main results and conclusions of the study. We correspondingly simplified and shortened the title of the article. Changes: Page 2.

      ____________III- Introduction points__

      Reviewer #2: I believe that it would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. How long is prophase arrest in Xenopus compared to Clytia or other organisms? How can this affect the prophase arrest mechanisms? It seems that the prophase arrest in Xenopus oocytes is found to be significantly more prolonged compared to Clytia and various other organisms, and also meiotic maturation proceeds much more rapidly in Clytia than in Xenopus. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study.

      Differences in timing of oocyte prophase arrest and in maturation kinetics across animals are indeed highly relevant in relation to the underlying biochemical mechanisms. Unfortunately, not enough information is currently available concerning the duration of the successive phases of oocyte prophase arrest across species to make any meaningful correlations with PKA regulation of maturation initiation. We have nevertheless expanded the Introduction to cover this issue as follows:

      • We start the introduction by mentioning how the length of the prophase arrest varies across species. __Changes: Page 3, lines 5-11. __
      • We have added examples of species which likely have similar durations of prophase arrest but show cAMP-stimulated vs cAMP-inhibited release. Changes:____ Page 4, lines 28-35.
      • We have specified the temporal differences in meiotic maturation in Xenopus (3-7 hrs) and Clytia (10-15 min). Changes: Page 5, lines 32-33. Reviewer #2: why, and not others, were these species [Xenopus, Clytia] chosen for this study. A brief justification is included in lines 1-page 5 "..a laboratory model hydrozoan species well suited to oogenesis studies", but it does not explain why this and not other hydrozoan species like Hydra, that has also been used for meiosis studies.

      As requested by Reviewer #2, fuller details are now included about the advantages of Clytia compared to other hydrozoan species, citing several articles and recent reviews here and also in the Discussion. Changes: Page 5, lines 21-32 & 37-39.

      Hydra is a classic cnidarian experimental species and has proved an extremely useful model for regeneration and body patterning, but is not suitable for experimental studies on oocyte maturation because spawning is hard to control and fully-grown oocytes cannot easily be obtained, manipulated or observed. In contrast many hydromedusae (including Clytia, Cytaeis, and Cladonema) have daily dark/light induced spawning and accessible gonads, so provide great material for studying oogenesis and maturation. Of these, Clytia has currently by far the most advanced molecular and experimental tools.

      Reviewer #2: The proteins MAPK is not introduced properly, as it is first mentioned in the results section in line 12. Given the importance of the results provided with it, it should be presented in the introduction prior to the results section.

      As requested by Reviewer #2, the involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced, explaining how its phosphorylation serves as a marker of Cdk1 activation. Changes: Page 5, lines 1-5.

      Reviewer #2: *These sentences need a more elaborate explanation: Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? *

      We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation initiation in the starfish. Changes: Page 4, lines 1-15.

      Reviewer #2: Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. If the general pathway has been identified but the signaling cascade is still not well described, please indicate that in a clearer way.

      We apologise that the wording we used was not clear and implied that the mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 were poorly understood. On the contrary, they are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.

      ______________IV - Results__

      Reviewer #2: The text of the results is generally well described; however, all the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. For example, in page 5 lines 12-25, or page 7 lines 30-37, are all introduction information.

      As requested by Reviewer #2, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. We did not restrict to the two examples cited by the reviewer, but have shortened all the Results passages that repeat information already provided in the Introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

      Reviewer #2: Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.

      We have followed the reviewer's recommendation. The explanation of the experiments and the results are more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.

      Reviewer #2: Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?

      Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but lysis can happen either immediately following injection or during the natural exaggerated cortical contraction waves that accompany meiotic maturation, suggesting that it relates to mechanical trauma. We have expanded this paragraph and the legend of Fig. 3C to explain these injection experiments more fully in the text and to clarify these issues. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

      Same paragraph: Lines 25-27 of page 8. Text reads, "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD.". Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.

      As explained above, we could not increase the concentrations of ARPP19 protein beyond 4mg/ml. It is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte.

      Concerning OA, it is well documented in many systems including Xenopus, starfish and mouse oocytes as well as mammalian cell cultures, that high concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation (Goris et al, 1989; Rime & Ozon, 1990; Alexandre et al, 1991; Boe et al, 1991; Gehringer, 2004; Maton el al, 2005; Kleppe et al, 2015). Specific tests in Xenopus oocytes, have shown that injecting 50 nl of 1 or 2 mM OA specifically inhibits PP2A, while injecting 5 mM also targets PP1 and higher OA concentrations inhibit all phosphatases. For these reasons, we did not increase OA concentrations over 2 mM. When injected in Xenopus oocyte at 1 or 2 mM, OA induces Cdk1 activation, GVBD but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 mM in Clytia oocytes, OA does not induce Cdk1 activation nor GVBD but promotes cell lysis. This supports the conclusion that 2 mM OA is sufficient to inhibit PP2A (and possibly other phosphatases) but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia.

      We have reworded the relevant text to make these points clearer. The previous statement that “we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD” has been removed because it was unnecessarily cautious in the context of the literature cited above, as now fully explained. Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

      References: Alexandre et al, 1991, doi: 10.1242/dev.112.4.971; Boe et al, 1991, doi: 10.1016/0014-4827(91)90523-w; Gehringer, 2004, doi: 10.1016/s0014-5793(03)01447-9; Goris et al, 1989, doi: 10.1016/0014-5793(89)80198-x; Kleppe et al, 2015, doi: 10.3390/md13106505; Maton el al, 2005, doi: 10.1242/jcs.02370; Rime & Ozon, 1990, doi: 10.1016/0012-1606(90)90106-s

      Reviewer #2: Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".

      We realise that we had not explained clearly enough how the thiophosphorylation assay works. In this assay, γ-S-ATP will be incorporated into any amino acid of ClyARPP19 phosphorylatable by PKA. The observed thiophosphorylation of the wild-type protein, demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.

      ______________V - Figures and text related to the figures__

      Figure 1A

      Reviewer #2: *Why is mouse not included in Figure 1A? Although it might be very similar to human, given that mouse is the species that is most commonly use as a mammalian model, I believe it could be included. However, this is optional upon decision by the authors. *

      We have replaced the human sequence in Figure 1A with the mouse sequence as suggested. The sequences of each of the mouse and human ENSA/ARPP19 proteins are indeed virtually identical across mammals. Changes: Fig. 1A.

      Figure 1C

      Reviewer #2: *There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Note that Clytia is not a commonly used species, therefore images should be properly explained for general readers. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic, plus any additional information needed to understand the image. In addition, the detection of ARPP19 in the nerve rings is intriguing. This is mentioned in the discussion section, any idea of its function there? Please include some additional information or additional references, if they exist. *

      We have expanded the explanations of Fig. 1C in the text and in the figure legend. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components including mRNAs are significantly diluted by high quantity of yolk proteins as the oocytes grow to full size. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

      Nothing is known about the function of ARPP19 in the Clytia nervous system. The only data linking ARPP19 and the nervous system concerns mammalian ARPP16, an alternatively spliced variant of ARPP19. ARPP16 is highly expressed in medium spiny neurons of the striatum and likely mediates effects of the neurotransmitter dopamine acting on these cells (Andrade et al, 2017; Musante et al, 2017). This point is included in the Discussion in relation to the hypothesis that PKA phosphorylation of ARPP19 proteins in animals first arose in the nervous system and only later was coopted into oocyte maturation initiation. Changes: page 16, lines 12-13 & 17-20 - page 19, lines 6-9.

      Figure 2A

      Reviewer #1: Fig. 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?

      As requested by reviewer #1, the x-axis is no longer cut. The number of oocytes for each experiment is now provided in the legend of Fig. 2A and in similar plots of Fig. 5A and 5D. Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

      Figure 2D-E (as well as Figure 6C-D and Figure 8B-C)

      Reviewer #1: *Fig. 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. *

      We added all the data points to the concerned plots: 2D, 6C and 8B. As recommended by reviewer #1, we combined on a single plot the phosphorylation levels and the half-times. 2D-E => 2D, 6C-D => 6C and 8B-C => 8B. Changes: Figs 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

      Figure 3A and 3B

      Reviewer #1: Fig. 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.

      In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. We had separated them on the figure to make it clear that the membrane had been cut. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).

      Figure 3C

      Reviewer #2: Fig. 3C needs a better explanation in the text. The way these graphs are presented is somehow confusing. The meaning of the dots is not self-explanted in the graph, and it seems that each experiment was done independently but then the complete set of results is presented. Legend says that "each dot represents one experiment" but this is difficult to read as in every analysis the figure also indicates the average and the total number of oocytes. If authors wish so, they can keep the figure as it is, but then please explain this graph better in the text, and please include statistical analysis. These results are very robust, but a comparison between the number of oocytes that go through spontaneous GVBD of lysis in the different conditions will benefit their understanding.

      This figure is intended to provide an overview of all the Clytia oocyte injection experiments that we performed, for which full details are given in Supplementary Table 1. Since these experiments were not equivalent in terms of exact timing and types of observation (or films) made and oocyte sensitivity to injection -as ascertained by buffer injections-, it is not justified to make statistical comparisons between groups. We apologise that the presentation was misleading in this respect and hope that the new version is easier to understand. We removed from the figure the average percentage of maturation for each condition between experiments to avoid any misunderstanding of the nature of the data, and rather represent the values of each experiment independently. We also now explain the data included in the figure fully in the text and figure legend. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

      Reviewer #2: Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions (Fig 3C). Given that in the control experiments with buffer this effect is also observed in some oocytes, please explain if this is caused by a mechanical disruption of the oocyte during the injection. In contrast, okadaic acid induces the lysis in all the 14/14 oocytes analyzed, is this due also to the mechanical approach? Or is there other reason more related to the PP2A inhibition? Please explain.

      These points are treated above in the response to this reviewer concerning the Results section.

      Figure 5

      Reviewer #2: In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?

      The binding partners/effectors of XeARPP19-S109D that are involved in maintaining the prophase arrest have not yet been identified. The most probable explanation of the delay in meiotic maturation induced by ClyARPP19-S109D is that Clytia protein recognizes less efficiently these unknown ARPP19 effectors that mediate the prophase arrest. As a result, maturation would be delayed, but not blocked. This explanation was provided in the Discussion (page 17, lines 14-17) and is now mentioned in the Results section. Changes: page 11, lines 16-19.

      ______________VI - Discussion__

      Reviewer #2: Although it presents highly interesting suggestions, discussion may border on being overly speculative, especially from line 37 of page 15 till the end.

      We agree and have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios in a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

      SUMMARY - ____Point by point responses to individual reviewers’ comments in their order of appearance.

      Reviewer 1

      • The figures and text could be slightly condensed down to about 6 figures. We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

      • The exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative. As the reviewer points out, unravelling these exact mechanisms will require a large amount of additional work and is beyond the scope of the current study.

      • 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)? Fig. 2A has been changed in line with the reviewer's request (as well as similar plots in Fig. 5A and 5D). Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

      • 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. Fig. 2D has been changed in line with the reviewer's request (as well as similar plots in Figs 6C-D and 8B-C). Changes: Fig. 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

      • 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane. In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).

      Reviewer 2

      • Abstract needs to be simplified if wants to reach a broader range of readers. We have reworked the Abstract to make it more accessible to new readers. Changes: Page 2.

      • It would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study. We have expanded the Introduction to cover the issue of time-references. Fuller details are now included about the advantages of Clytia compared to other hydrozoan species. Changes: Page 3, lines 5-11, page 4, lines 28-35, page 5, lines 32-33, page 5, lines 21-32 & 37-39.

      • The proteins MAPK is not introduced properly, as it is first mentioned in the results section. The involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced. Changes: Page 5, lines 1-5.

      • Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation in starfish, also mentioning that in many species the pathways are still unknown. Changes: Page 4, lines 1-15.

      • Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. The mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.

      • Why is mouse not included in Figure 1A? We have replaced the human sequence in Figure 1A with the mouse sequence. Changes: Fig. 1A.

      • 1C: There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic. We have expanded the explanations of Fig. 1C in the text. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components are significantly diluted by high quantity of yolk proteins. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

      • In addition, the detection of ARPP19 in the nerve rings is intriguing. Any idea of its function there? The only data linking ARPP19 and the nervous system concerns a mammalian variant of ARPP19 that is highly expressed in the striatum. This point is included in the Discussion. __Changes: __page 16, lines 12-13 & 17-20 - page 19, lines 6-9.

      • Figure 3C. The way these graphs are presented is somehow confusing. If authors wish so, they can keep the figure as it is, but then Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions. please explain this graph better in the text, and please include statistical analysis. This figure is intended to provide an overview of all the Clytia oocyte injection experiments, for which full details are given in Supplementary Table 1. We have modified the figure and now clarified this fully in the text and figure legend. Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but it probably relates to mechanical trauma. We now explain these injection experiments more fully in the text. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

      • In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed? The most probable explanation is that Clytia protein recognizes less efficiently the unknown ARPP19 effectors that mediate the prophase arrest in Xenopus. This explanation is provided in the Results section. Changes: page 11, line 16-19.

      • All the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. As requested, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

      • Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described. The explanation of the experiments and the results are now more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.

      • Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion? As explained above, increasing injection volumes or protein concentrations increases the levels of lysis observed due probably to mechanical trauma. But it is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

      • Lines 25-27 of page 8. "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD." Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion. High OA concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation. For these reasons, we cannot increase OA concentrations over 2 µM. When injected in Xenopus oocyte at 1 or 2 µM, OA induces Cdk1 activation, but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 µM in Clytia oocytes, OA does not induce Cdk1 activation but promotes cell lysis. This supports the conclusion that 2 µM OA is sufficient to inhibit PP2A but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia. We have reworded the relevant text. Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

      • Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19". The observed thiophosphorylation of the wild-type protein demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.

      • Some parts of the discussion are a bit speculative. We have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios into a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      *REVIEW COMMENT *

      *The article titled "The tRNA thiolation-mediated translational control is essential for plant immunity" by Zheng et al. highlights the critical role of tRNA thiolation in Arabidopsis plant immunity through comprehensive analysis, including genetics, transcriptional, translational, and proteomic approaches. Through their investigation, the authors identified a cbp mutant, resulting in the knockout of ROL5, and discovered that ROL5 and CTU2 form a complex responsible for catalyzing the mcm5s2U modification, which plays a pivotal role in immune regulation. The findings from this study unveil a novel regulatory mechanism for plant defense. Undoubtedly, this discovery is innovative and holds significant potential impact. However, before considering publication, it is necessary for the authors to address the various questions raised in the manuscript concerning the experiments and analysis to ensure the reliability of the study's conclusions. *

      __Response: Thank you very much for your support and suggestions! __

      *Here is Comments: *

      *Line 64-65: *

      *The author mentioned that 'While NPR1 is a positive regulator of SA signaling, NPR3 and NPR4 are negative regulators.' However, several recent discoveries are suggesting that it may not be a definitive fact that NPR3 and NPR4 are negative regulators. Therefore, I recommend the authors to review this section in light of the findings from recent papers and make necessary edits to reflect the most current understanding. *

      __Response: Thank you for your feedback. Since we mainly focused on NPR1 in this study, we removed this sentence to avoid confusion. We provided additional information about NPR1 in the Introduction section to emphasize the importance of NPR1 (Line 64-68). __

      *Line 182- & Figure 4: *

      *The author conducted RNA-seq, Ribo-seq, and proteome analysis. Describing the analysis as "transcriptional and translational" using RNA-seq and proteome data seems not entirely accurate. Proteome data compared with RNA-seq not only reflects translational changes but may also encompass post-translational regulations that contribute to the observed differences. To maintain precision, the title of this section should either be modified to "transcriptional and protein analysis" or, alternatively, compare RNA-seq and Ribo-seq data to demonstrate the transcriptional and translational changes more explicitly. *

      __Responses: Thank you for your suggestions. We agree with you and thus change the description accordingly throughout the manuscript. __

      *Line 229-235 and Figure 5C: *

      *The interpretation of Figure 5C's polysome profiling results is inconclusive. There does not seem to be a noticeable difference in polysomal fractions between the cab mutant and CAM. The observed differences in the overlay of multiple polysome fractions between cab and COM could be primarily influenced by baseline variations rather than a significant decrease in the polynomial fractions in cpg. Therefore, it is necessary to carefully review other relevant papers that discuss polysome fraction data and their analysis. By doing so, the authors can make the appropriate corrections to ensure accurate interpretations. *

      __Responses: Thank you for your comments. We agree that the difference between cgb and COM was not dramatic visually. This is a common feature of ____polysome profiling assay (e.g. Extended Data Fig. 1f in Nature 545: 487–490; Fig. 1c in Nature Plants, 9: 289–301). In our case, the difference between polysome fractions was unlikely due to the baseline variation for two reasons. First, baseline variation affects monosome and polysome fractions in the same way. However, our results showed the monosome fraction of cgb is higher than that of COM, whereas the polysome fraction of cgb is lower than that of COM. Second, this result was repeatedly detected. For better visualization, we adjusted the scale of Y axis in the revised manuscript (Figure 5D). __

      *Line 482 Ion Leakage assay: *

      I could not find the ion leakage assay in this manuscript, so I wonder why it is mentioned.

      __Response: We are sorry for the mistake. The Ion leakage data were included in previous visions of the manuscript. We removed the data but forgot to remove the corresponding method in the present version. __

      *Materials and Methods: *

      *To enhance the reproducibility of the study, the authors should provide a more detailed description of the materials and methods, especially for critical experiments like the Yeast-two-hybrid assays. Clear documentation of specific reagents, strains, and protocols used, along with information on controls, will bolster the validity of the results and facilitate future research in this area. *

      __Response: Thank you for your suggestions. We provided more details in the methods. For y____east two-hybrid assays, the vector information was included in “Vector constructions” section. __

      *Minor Point: *

      Line 61: There is a space between ')' and '.', which needs to be edited.

      Response: The space was deleted.

      *Reviewer #1 (Significance (Required)): *

      *This study holds significant importance within the field of plant immunity research. The authors have made valuable contributions through their comprehensive analysis, encompassing genetics, transcriptional, translational, and proteomic approaches, to elucidate the critical role of tRNA thiolation in plant immunity. One of the major strengths of this study lies in its ability to shed light on a previously unknown regulatory mechanism for plant defense. By identifying the cbp mutant and investigating the role of ROL5 and CTU2 in catalyzing the mcm5s2U modification, the authors have unveiled a novel aspect of plant immune regulation. This innovative discovery provides a deeper understanding of the intricate molecular processes governing immunity in plants. *

      *Moreover, the study's findings are not limited to the immediate field of plant immunity but also have broader implications for the scientific community. By employing diverse methodologies, the authors have demonstrated how tRNA thiolation exerts control over both transcriptional and translational reprogramming, revealing intricate links between these processes. This integrative approach sets a precedent for future research in the field of plant molecular biology and opens up new avenues for investigating other aspects of immune regulation. *

      In terms of its relevance, the study's findings have the potential to captivate researchers across various disciplines, such as plant biology, molecular genetics, and translational research. The insights gained from this study may inspire researchers to explore further the role of tRNA in other regulation.

      Response: Thank you very much for your positive comments and support!

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors presented an intriguing and previously unknown mechanism that the tRNA mcm5s2U modification regulates plant immunity through the SA signaling pathway, specifically by controlling NPR1 translation. The manuscript was well-written and logically structured, allowing for a clear understanding of the research. The authors provided strong and persuasive data to support their key claims. However, further improvement is required to strengthen the conclusion that mcm5s2U regulates plant immunity by controlling NPR1 translation.

      __Response: Thank you very much for your positive comments and support! __

      Major comments:

      • NPR1 translation should be examined to verify the Mass Spec (Figure 5B) and polysome profiling data (Figure 5D) by checking the NPR1 protein and mRNA level using antibodies and qPCR, respectively, in the cgb mutant background to establish a concrete confirmation of CGB regulation in NPR1 translation. * Response: This is a very constructive suggestion. We performed these experiments and found that the transcription levels of NPR1 were similar between COM and cgb both before and after ____Psm_ES4326 infection (Figure S2), _which is consistent with RNA-Seq data____. Consistent with the Mass Spec and polysome profiling data, _the NPR1 protein level was much higher in COM than that in cgb(Figure 5C) after _Psm____ ES4326 infection. Together, these data further supported our conclusion that translation of NPR1 is impaired in cgb. __

      • Analyzing the genetic epistasis of CGB and NPR1 to check if CGB regulates plant immunity through the NPR1-dependent SA signal pathway. If the authors' claim is valid, I would expect no addictive effect on bacterial growth in the cgb/npr1 double mutant compared to the single mutants. Due to the broad impact of CGB on plant signaling (Figures 4E and 4F), the SA protection assay, which concentrates on the SA signal pathway, needs to be tested in WT, cgb and npr1 plants as an alternative assay to the genetic epistasis analysis. I expect that the SA-mediated protection is also compromised in cgb mutant background.*

      __Response: Thank you for your suggestions. We did examine the growth of Psm ES4326 in the cgb npr1double mutant and found that cgb npr1 was significantly more susceptible than npr1 and cgb (Figure below). Although the additive effects were observed, this result was not against our conclusion for the following reasons. First, the translation of NPR1 was reduced rather than completely blocked in cgb. In other words, NPR1 still has some function in cgb. But in the cgb npr1 double mutant, the function of NPR1 is completely abolished, which explains why cgb npr1 was more susceptible than cgb. Second, in addition to NPR1, some other immune regulators (such as PAD4, EDS5, and SAG101) were also compromised in cgb(Figure 5B), which explained why cgb npr1 was more susceptible than npr1. Since the result of the genetic analysis was not intuitive, we decided not to include it in the manuscript. __

      __SA signaling is known to regulate both basal resistance and systemic acquired resistance (SA-mediated protection). We have shown that cgb is defective in the defect of basal resistance, which cgb is sufficient to support our conclusion that the tRNA thiolation is essential for plant immunity. We agree that it is expected that the SA-mediated protection is also compromised in cgb. We will test this in the future study. __

      • Could the authors comment on why using COM instead of WT as a control to perform the majority of the experiments? __Response: Thank you for your comments. In addition to ROL5, the cgb mutant may have other mutations compared with WT.COM is a complementation line in the cgb background. Therefore, the genetic background between COM and cgb may be more similar than that of WT and cgb*. __

      • In Figure 5E, why does ACTIN2 have an enhanced translation while NPR1 shows a compromised one in cgb mutant? How does the mcm5s2U distinguish NPR1 and ACTIN2 codons? Does mcm5s2U modification have both positive and negative roles in regulating protein translation? __Response: Thank you for raising this question. As previously reported, _loss of the mcm5s2U modification causes ribosome pausing at AAA and CAA codons. Therefore, the translation of the mRNAs with more _GAA/CAA/AAA codons (called s2 codon) is likely to be affected more dramatically in cgb*. We have analyzed the percentage of s2 codon at whole-genome level (Figure below). The average percentage is 8.5%, while NPR1 contains 10.1% s2 codon and actin contains only 4.5% s2 codon. When fewer ribosomes are used for translation of the mRNAs with high s2 codon percentage, more ribosomes are available for translation of the mRNAs with low s2 codon percentage, which may account for the enhanced translation efficiency. To focus on NPR1 and to avoid confusion, we removed the ACTIN data in the revised manuscript. __

      • Specify the protein amount used for the in vitro pull-down assay and agrobacteria concentration used for the tobacco Co-IP assay in the protocol section.*

      Response: We added this information in Method section in the revised manuscript.

        1. Delete the SA quantification and Ion leakage assay in the protocol, which are not used in the study.*

      __Response: We are sorry for the mistake. The ____SA quantification and ion leakage data were included in previous visions of the manuscript. We removed the data but forgot to remove the corresponding method in the present version. We deleted them in the revised manuscript. __

      • The strain Pst DC3000 avrRPT2 was not used in this study. Please remove it.*

      Response: We are sorry for the mistake. ____The strain Pst DC3000 avrRPT2 was used for ion leakage assay in previous visions of the manuscript. We deleted it in the revised manuscript.

      • In Figure 5F, did the 59 genes tested overlap with the 366 attenuated proteins in the cgb mutant? Were the 59 genes translationally regulated?*

      __Response: Thank you for your suggestion. Venn diagram analysis revealed that 12 genes (about 20%) are also attenuated proteins, suggesting that ____the mcm5s2U modification regulates the translation of some SA-responsive genes. __

      Reviewer #2 (Significance (Required)):

      The authors' study is significant as it establishes the first connection between tRNA mcm5s2U modification and plant immunity, specifically by regulating NPR1 protein translation. This research expands our understanding of the biological role of tRNA mcm5s2U modification and highlights the importance of translational control in plant immunity. It is likely to captivate scientists working in this field.

      Response: Thank you very much for your positive comments and support!

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors identified a cgb mutant that carries a mutation in the ROL5 gene Both the cgb mutant and the newly created rol5-c mutant are susceptible to the bacterial pathogen Psm. The authors showed that ROL5 interacts with CTU2, the Arabidopsis homologous protein of the yeast tRNA thiolation enzyme NCS2. A ctu2-1 mutant is also susceptible to Psm, suggesting the tRNA thiolation may play a role in plant immunity. Indeed, tRNA mcm5S2U levels are undetectable in rol5-c and ctu2-1 mutants. The authors found that the cgb mutation significantly attenuated basal and Psm-induced transcriptome and proteome changes. Furthermore, it was found that the translation efficiency of a group of SA signaling-related proteins including NPR1 is compromised.

      The manuscript provides solid evidence for the involvement of ROL5 and CTU2 in plant immunity using the rol5 and ctu2 mutants. The authors may consider the following suggestions and comments to improve the manuscript.

      Response: Thank you very much for your support and suggestions!

      • The function of the Elongator complex in tRNA modification/thiolation has been extensively studied. In Arabidopsis Elongator mutants, mcm5S2U levels are very low, similar to the levels in the rol5 and ctu2 mutants (Mehlgarten et al., 2010, Mol Microbiology, 76, 1082-1094; Leitner et al., 2015 Cell Rep). In elp mutants, the PIN protein levels are reduced without reduced mRNA levels (Leitner et al., 2015), indicating that Elongator-mediated tRNA modification is involved in translation regulation. The Elongator complex plays an important role in plant immunity, though the reduced mcm5S2U levels in elp mutants were not proposed as the exclusive cause of the immune phenotypes. In fact, it would be difficult to establish a cause-effect relationship between tRNA modification and immunity. These results should be discussed in the manuscript.* Response: Thank you very much for your insightful comment on the role of the ELP complex in tRNA modification and plant immunity. We added a paragraph ____discussing the ELP complex in the revised manuscript (Line 280-295).

      __In addition to tRNA modification, the ELP complex has several other distinct activities including histone acetylation, α-tubulin acetylation, and DNA demethylation. Therefore, it is difficult to dissect which activity of the ELP complex contributes to plant immunity. However, the only known activity of ROL5 and CTU2 is to catalyze _tRNA thiolation. Considering that the elp, rol5, and ctu2 mutants are all defective in tRNA thiolation, it is likely the _tRNA modification activity of the ELP complex underlies its function in plant immunity. __

      • The interaction between CTU2 and ROL5 in Y2H has previously been reported (Philipp et al., 2014). The same report also showed reduced tRNA thiolation in the ctu2-2 mutant using polyacrylamide gel. These results should be mentioned/discussed in the manuscript.*

      __Response: Thank you for pointing them out. We added this information in the revised version (Line 146-147). __

      • tRNA modification unlikely plays a unique role in plant immunity. It can be inferred that mutations affecting tRNA modification (rol5, ctu2, elp, etc.) would delay both internal and external stimulus-induced signaling including immune signaling.*

      Response: We agree with you that tRNA modification has other roles in addition to plant immunity. In the Discussion section, we have mentioned that “it was found that tRNA thiolation is required for heat stress tolerance ____(Xu et al., 2020)____. ……It will also be interesting to test whether tRNA thiolation is required for responses to other stresses such as drought, salinity, and cold.” (Line276-279).

      • It would be interesting to conduct statistical analyses on the genetic codons used in the CDSs whose translation was attenuated as described in the manuscript. Do these genes including NPR1 use more than average levels of AAA, CAA, and GAA codons? If not, why their translation is impaired?*

      __Response: Thank you for your suggestion. We called _GAA/CAA/AAA codons s2 codon. We have analyzed the percentage of s2 codon at whole-genome level (Figure below). NPR1 does contain more s2 codon (10.1%) than the average level (8.5%). We are preparing another manuscript, which will report the relationship between _s2 codon and translation. __

      **Referees cross-commenting**

      It is important to put current research in the context of available knowledge in the field. The digram in Figure 3C shows that the Elongator complex functions upstream of ROL5 & CTU2 in modifying tRNA. The function of Elongator in plant immunity has been well established. The similarities and differences should be discussed. Additionally, it may no be a good idea to claim that the results are novel.

      __Response: Thank you for your comments. We added a paragraph ____discussing the ELP complex in the revised manuscript (Line 280-295). The ELP complex catalyzes the cm5U modification, which is the precursor of mcm5s2U catalyzed by ROL5 and CTU2. In addition to tRNA modification, the ELP complex has several other distinct activities including histone acetylation, α-tubulin acetylation, and DNA demethylation. Therefore, it is difficult to dissect which activity of the ELP complex contributes to plant immunity. However, the only known activity of ROL5 and CTU2 is to catalyze tRNA thiolation. Considering that the elp, rol5, and ctu2 mutants are all defective in tRNA thiolation, it is likely the tRNA modification activity of the ELP complex underlies its function in plant immunity. Therefore, our study improved our understanding of the ELP complex in plant immunity. We have deleted the words “new” and “novel” throughout the manuscript. __

      Reviewer #3 (Significance (Required)):

      *The manuscript provides solid evidence for the involvement of ROL5 and CTU2 in plant immunity. However, the authors did not acknowledge the existing results about the Elongator complex that functions in the same pathway in modifying tRNA. The involvement of Elongator in plant immunity has been well established. The cause-effect relationship between tRNA modification and plant immunity is difficult to demonstrate. *

      Response: We think that t____he cause-effect relationship between the activities of the ELP complex and plant immunity is difficult to demonstrate because the ELP complex has several distinct activities other than tRNA modification. However, since the only known activity of ROL5 and CTU2 is to catalyze tRNA thiolation, the cause-effect relationship between tRNA thiolation and plant immunity is clear, which indicated that ____the ____tRNA modification activity of the ELP complex contributes to plant immunity.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Editor and Reviewers,

      *We thank you for the thorough and detailed examination of our preprint and providing the very valuable comments that helped to even better present and interpret our data. *

      *Thank you in particular for appreciating the extensive set of microscopic techniques that we have combined to study in a unique manner the characteristics and functionalities of FIT nuclear bodies in living plant cells. *

      We prepared a revised preprint in which we address all reviewer comments. Our revision includes a NEW experiment (in four repetitions) that addresses one comment made by the reviewers with regard to the effects of the environmental FIT NB-inducing situation:

      • NEW Supplemental Figures S6 and S7: Analysis of previously reported intron retention splicing variants of Fe deficiency genes FIT, BHLH039, IRT1, FRO2 in new gene expression experiments (Four independent repetitions of the experiments with three biological replicates of each sample – white/blue light treatment, sufficient and deficient iron supply). In the following, please find our detailed response to all reviewer comments.

      With these changes, we hope that our peer-reviewed preprint can receive a positive vote,

      We are looking forward to your response,

      Sincerely

      Petra Bauer and Ksenia Trofimov on behalf of all authors

      Comments to the reviews:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this paper entitled " FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) accumulates in homo- and heterodimeric complexes in dynamic and inducible nuclear condensates associated with speckle components", Trofimov and colleagues describe for the first time the function of FIT in nuclear bodies. By an impressive set of microscopies technics they assess FIT localization in nuclear bodies and its dynamics. Finally, they reveal their importance in controlling iron deficiency pathway. The manuscript is well written and fully understandable. Nonetheless, at it stands the manuscript present some weakness by the lack of quantification for co-localization and absence controls making hard to follow authors claim. Moreover, to substantially improve the manuscript the authors need to provide more proof of concepts in A. thaliana as all the nice molecular and cellular mechanism is only provided in N. bentamiana. Finally, some key conclusions in the paper are not fully supported by the data. Please see below:

      Main comments:

      1) For colocalization analysis, the author should provide semi-quantitative data counting the number of times by eyes they observed no, partial or full co-localization and indicate on how many nucleus they used.

      Authors:

      We have added the information in the Materials and Method section, lines 731-734:

      In total, 3-4 differently aged leaves of 2 plants were infiltrated and used for imaging. One infiltrated leaf with homogenous presence of one or two fluorescence proteins was selected, depending on the aim of the experiment, and ca. 30 cells were observed. Images are taken from 3-4 cells, one representative image is shown.

      In all analyzed cases, except in the case of colocalization of FIT and PIF4 fusion proteins, the ca. 30 cells had the same localization and/or colocalization patterns. This information has also been added in the figure legends. Each experiment was repeated at least 2-3 times, or as indicated in the figure legend.

      2) Do semi-quantitative co-localization analysis by eyes, on FIT NB with known NB makers in the A. thaliana root. For now, all the nicely described molecular mechanism is shown in N. benthamiana which makes this story a bit weak since all the iron transcriptional machinery is localized in the root to activate IRT1.

      Authors:

      The described approach has been very optimal, and we were able to screen co-localizing marker proteins in FIT NBs in N. benthamiana to better identify the nature of FIT NBs. This has been successful as we were able to associate FIT NBs with speckles. The N. benthamiana system allowed optimal microscopic observation of fluorescence proteins and quantification of FIT NB characteristics in contrast to the root hair zone of Arabidopsis where Fe uptake takes place. FIT is expressed at a low level in roots and also in leaves, whereby fluorescence protein expression levels are insufficient for the here-presented microscopic studies. The tobacco infiltration system is also well established to study FIT-bHLH039 protein interaction and nuclear body markers. We discuss this point in the discussion, see line 489-500.

      3) The authors need to provide data clearly showing that the blue light induce NB in A. thaliana and N. benthamiana.

      Authors:

      *For tobacco, see Figure 1B (t = 0, 5 min) and Supplemental Movies S1. For Arabidopsis, please see Figure 1A (t = 0, 90 and 120 min) and Supplemental Figure S1A. We provide an additional image of pFIT:cFIT-GFP Arabidopsis control plants, showing that NB formation is not detected in plants that were grown in white light and not exposed to blue light before inspection (Supplemental Figure S1B). We state, that upon blue light exposure, plants had FIT NBs in at least 3-10 nuclei of 20 examined nuclei in the root epidermis in the root hair zone (in three independent experiments with three independent plants). White-light-treated plants showed no NB formation unless an additional exposure to blue light was provided (in three independent experiments, three independent plants per experiment and with 15 examined nuclei per plant). *

      4) Direct conclusion in the manuscript:

      • Line 170: At this point of the paper the author cannot claim that the formation of FIT condensates in the nucleus is due to the light as it might be indirectly linked to cell death induced by photodamaging the cell using a 488 lasers for several minutes. This is true especially with the ELYRA PS which has strong lasers made for super resolution and that Cell death is now liked to iron homeostasis. The same experiment might be done using a spinning disc or if the authors present the data of the blue light experiment mentioned above this assumption might be discarded. Alternatively, the author can use PI staining to assess cell viability after several minutes under 488nm laser.

      Authors:

      As stated in our response to comment 3, we have included now a white light control to show that FIT NB formation is not occurring under the normal white light conditions. Since the formation of FIT NBs is a dynamic and reversible process (Figure 1A), it indicates that the cells are still viable, and that cell death is not the reason for FIT NB formation.

      • Line 273: I don't agree with the first part of the authors conclusion, saying that "wild-type FIT had better capacities to localize to NBs than mutant FITmSS271AA, presumably due its IDRSer271/272 at the C-terminus. This is not supported by the data. In order to make such a claim the author need to compare the FA of FIT WT with FITmSS271AA by statistical analysis. Nonetheless, the value seems to be identical on the graphs. The main differences that I observed here are, 1) NP value for FITmSS271AA seems to be lower compared to FIT-WT, suggesting that the Serine might be important to regulate protein homedimerization partitioning between the NP and the NB. 2) To me, something very interesting that the author did not mention is the way the FA of FITmSS271AA in the NB and NP is behaving with high variability. The FA of those is widely spread ranging from 0.30 to 0.13 compared to the FIT-WT. To me it seems that according to the results that the Serine 271/272 are required to stabilize FIT homodimerization. This would not only explain the delay to form the condensate but also the decreased number and size observed for FITmSS271AA compared to FIT-WT. As the homodimerization occurs with high variability in FITmSS271AA, there is less chance that the protein will meet therefore decreasing the time to homodimerize and form/aggregate NB.

      Authors:

      We fully agree. We meant to describe this result it in a similar way and thank you for help in formulating this point even better. Rephrasing might make it better clear that the IDRSer271/272 is important for a proper NB localization, lines 272-278:

      “Also, the FA values did not differ between NBs and NP for the mutant protein and did not show a clear separation in homodimerizing/non-dimerizing regions (Figure 3D) as seen for FIT-GFP (Figure 3C). Both NB and NP regions showed that homodimers occurred very variably in FITmSS271AA-GFP.

      In summary, wild-type FIT could be partitioned properly between NBs and NP compared to FITmSS271AA mutant and rather form homodimers, presumably due its IDRSer271/272 at the C-terminus.”

      • Line 301: According to my previous comment (line 273), here it seems that the Serine 271/272 are required only for proper partitioning of the heterodimer FIT/BHLH039 between the NP and NB but not for the stability of the heterodimer formation. However, it might be great if the author would count the number of BHLH039 condensates in both version FITmSS271AA and FIT-WT. To my opinion, they would observe less BHLH039 condensate because the homodimer of FITmSS271AA is less likely to occur because of instability.

      Authors:

      bHLH039 alone localizes primarily to the cytoplasm and not the nucleus, and the presence of FIT is crucial for bHLH039 nuclear localization (Trofimov et al., 2019). Moreover, bHLH039 interaction with FIT depends on SS271AA (Gratz et al., 2019). We therefore did not consider this experiment for the manuscript and did not acquire such data, as we did not expect to achieve major new information.

      5) To wrap up the story about the requirements of NB in mediating iron acquisition under different light regimes, provide data for IRT1/FRO2 expression levels in fit background complemented with FITmSS271AA plants. I know that this experiment is particularly lengthy, but it would provide much more to this nice story.

      Authors:

      Data for expression of IRT1 and FRO2 in FITmSS271AA/fit-3 transgenic Arabidopsis plants are provided in Gratz et al. (2019). To address the comment, we did here a NEW experiment. We provide gene expression data on FIT, BHLH039, IRT1 and FRO2 splicing variants (previously reported intron retention) to explore the possibility of differential splicing alterations under blue light (NEW Supplemental Figure S6 and S7, lines 454-466). Very interestingly, this experiment confirms that blue light affects gene expression differently from white light in the short-term NB-inducing condition and that blue light can enhance the expression of Fe deficiency genes despite of the short 1.5 to 2 h treatment. Another interesting aspect was that the published intron retention was also detected. A significant difference in intron retention depending on iron supply versus deficiency and blue/white light was not observed, as the pattern of expression of transcripts with respective intron retentions sites was the same as the one of total transcripts mostly spliced.

      Minor comments

      In general, I would suggest the author to avoid abbreviation, it gets really confusing especially with small abbreviation as NB, NP, PB, FA.

      Authors:

      *We would like to keep the used abbreviations as they are utilized very often in our work and, in our eyes, facilitate the understanding. *

      Line 106: What does IDR mean?

      Authors:

      Explanation of the abbreviation was added to the text, lines 105-108:

      “Intrinsically disordered regions (IDRs) are flexible protein regions that allow conformational changes, and thus various interactions, leading to the required multivalency of a protein for condensate formation (Tarczewska and Greb-Markiewicz, 2019; Emenecker et al., 2020).”

      Line 163-164: provide data or cite a figure properly for blue light induction.

      Authors:

      We have removed this statement from the description, as we provide a white light control now, lines 157-158:

      “When whole seedlings were exposed to 488 nm laser light for several minutes, FIT became re-localized at the subnuclear level.”

      Line 188: Provide Figure ref.

      Authors:

      Figure reference was added to the text, lines 184-185:

      “As in Arabidopsis, FIT-GFP localized initially in uniform manner to the entire nucleus (t=0) of N. benthamiana leaf epidermis cells (Figure 1B).”

      Line 194: the conclusion is too strong. The authors conclude that the condensate they observed are NB based on the fact the same procedure to induce NB has been used in other study which is not convincing. Co-localization analysis with NB markers need to be done to support such a claim. At this step of the study, the author may want to talk about condensate in the nucleus which might correspond to NB. Please do so for the following paragraph in the manuscript until colocalization analysis has not been provided. Alternatively provide the co-localization analysis at this step in the paper.

      Authors:

      We agree. We changed the text in two positions.

      Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”

      Lines 192-193:We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”

      Line 214: In order to assess the photo bleaching due to the FRAP experiment the quantification of the "recovery" needs to be provided in an unbleached area. This might explain why FIT recover up to 80% in the condensate. Moreover, the author conclude that the recovery is high however it's tricky to assess since no comparison is made with a negative/positive control.

      Authors:

      In the FRAP analysis, an unbleached area is taken into account and used for normalization.

      We reformulated the description of Figure 1F, lines 212-214:

      “According to relative fluorescence intensity the fluorescence signal recovered rapidly within FIT NBs (Figure 1F), and the calculated mobile fraction of the NB protein was on average 80% (Figure 1G).”

      Line 220-227: The conclusion it's too strong as I mentioned previously the author cannot claim that the condensate are NBs at this step of the study. They observed nuclear condensates that behave like NB when looking at the way to induce them, their shape, and the recovery. And please include a control.

      Authors:

      Please see the reformulated sentences and our response above.

      Lines 176-178: “Since we had previously established a reliable plant cell assay for studying FIT functionality, we adapted it to study the characteristics of the prospective FIT NBs (Gratz et al., 2019, 2020; Trofimov et al., 2019).”

      Lines 192-193:We deduced that the spots of FIT-GFP signal were indeed very likely NBs (for this reason hereafter termed FIT NBs).”

      Line 239: It's unappropriated to give the conclusion before the evidence.

      Authors:

      Thank you. We removed the conclusion.

      Line 240: Figure 2A, provide images of FIT-G at 15min in order to compare. And the quantification needs to be provided at 5 minutes and 15 minutes for both FIT-G WT and FIT-mSS271AA-G counting the number of condensates in the nucleus. Especially because the rest of the study is depending on these time points.

      Authors:

      *This information is provided in the Supplemental Movie S1C. *

      Line 241: the author say that the formation of condensate starts after 5 minutes (line 190) here (line 241) the author claim that it starts after 1 minutes. Please clarify.

      Authors:

      In line 190 we described that FIT NB formation occurs after the excitation and is fully visible after 5 min. In line 241 we stated that the formation starts in the first minutes after excitation, which describes the same time frame. We rephrased the respective sentences.

      Lines 185-188: “A short duration of 1 min 488 nm laser light excitation induced the formation of FIT-GFP signals in discrete spots inside the nucleus, which became fully visible after only five minutes (t=5; Figure 1B and Supplemental Movie S1A).”

      Lines 239-242: “While FIT-GFP NB formation started in the first minutes after excitation and was fully present after 5 min (Supplemental Movie S1A), FITmSS271AA-GFP NB formation occurred earliest 10 min after excitation and was fully visible after 15 min (Supplemental Movie S1C).”

      Line 254: Not sure what the authors claim "not only for interaction but also for FIT NB formation ". To me, the IDR is predicted to be perturbed by modeling when the serines are mutated therefore the IDR might be important to form condensates in the nucleus. Please clarify.

      Authors:

      The formation of nuclear bodies is slow for FITmSS271AA as seen in Figure 2. Previously, we showed that FITmSS271AA homodimerizes less (Gratz et al., 2019.) Therefore, the said IDR is important for both processes, NB formation and homodimerization. We have added this information to make the point clear, lines 253-255:

      “This underlined the significance of the Ser271/272 site, not only for interaction (Gratz et al., 2019) but also for FIT NB formation (Figure 2).”

      Line 255: It's not clear why the author test if the FIT homodimerization is preferentially associated with condensate in the nucleus.

      Authors:

      We test this because both homo- and heterodimerization of bHLH TFs are generally important for the activity of TFs, and we unraveled the connection between protein interaction and NB formation. We state this in lines 228-232.

      Line 269-272: It's not clear to what the authors are referring to.

      Authors:

      We are describing the homodimeric behavior of FIT and FITmSS271AA assessed by homo-FRET measurements that are introduced in the previous paragraph, lines 256-268.

      Line 309: This colocalization part should be presented before line 194.

      Authors:

      We find it convincing to first examine and characterize the process underlying FIT NB formation, then studying a possible function of NBs. The colocalization analysis is part of a functional analysis of NBs. We thank the reviewer for the hint that colocalization also confirms that indeed the nuclear FIT spots are NBs. We will take this point and discuss it, lines 516-522:

      “Additionally, the partial and full colocalization of FIT NBs with various previously reported NB markers confirm that FIT indeed accumulates in and forms NBs. Since several of NB body markers are also behaving in a dynamic manner, this corroborates the formation of dynamic FIT NBs affected by environmental signals.”

      “In conclusion, the properties of liquid condensation and colocalization with NB markers, along with the findings that it occurred irrespective of the fluorescence protein tag preferentially with wild-type FIT, allowed us to coin the term of ‘FIT NBs’.”

      Line 328: add the ref to figure, please.

      Authors:

      Figure reference was added to the text, lines 330-332:

      “The second type (type II) of NB markers were partially colocalized with FIT-GFP. This included the speckle components ARGININE/SERINE-RICH45-mRFP (SR45) and the serine/arginine-rich matrix protein SRm102-mRFP (Figure 5).”

      Line 334: It seems that the size of the SR45 has an anormal very large diameter between 4 and 6 µm. In general a speckle measure about 2-3µm in diameter. Can the author make sure that this structure is not due to overexpression in N. benthamiana or make sure to not oversaturate the image.

      Authors:

      Thank you for this hint. Indeed, there are reports that SR45 is a dynamic component inside cells. It can redistribute depending on environmental conditions and associate into larger speckles depending on the nuclear activity status (Ali et al., 2003). We include this reference and refer to it in the discussion, lines 557-564:

      “Interestingly, typical FIT NB formation did not occur in the presence of PB markers, indicating that they must have had a strong effect on recruiting FIT. This is interesting because the partially colocalizing SR45, PIF3 and PIF4 are also dynamic NB components. Active transcription processes and environmental stimuli affect the sizes and numbers of SR45 speckles and PB (Ali et al., 2003; Legris et al., 2016; Meyer, 2020). This may indicate that, similarly, environmental signals might have affected the colocalization with FIT and resulting NB structures in our experiments. Another factor of interference might also be the level of expression.”

      Line 335: It seems that the colocalization is partial only partial after induction of NB. The FIT NB colocalize around SR45. But it's hard to tell because the images are saturated therefore creating some false overlapping region.

      Authors:

      The localization of FIT with SR45 is partial and occurs only after FIT has undergone condensation, see lines 335-338.

      Line 344-345: It's unappropriated to give the conclusion before the evidence.

      Authors:

      We explain at an earlier paragraph that we will show three different types of colocalization and introduce the respective colocalization types within separate paragraphs accordingly, see lines 314-321.

      Line 353: increase the contrast in the image of t=5 for UAP56H2 since it's hard to assess the colocalization.

      Authors:

      This is done as noted in the figure legend of Figure 6.

      Line 381-382: "In general" does not sound scientific avoid this kind of wording and describe precisely your findings.

      Authors:

      We rephrased the sentence, line 387-388:

      Localization of single expressed PIF3-mCherry remained unchanged at t=0 and t=15 (Supplemental Figure S5A).

      Line 384-385: Provide the data and the reference to the figure.

      Authors:

      We apologize for the misunderstanding and rephrased the sentence, line 389-391:

      After 488 nm excitation, FIT-GFP accumulated and finally colocalized with the large PIF3-mCherry PB at t=15, while the typical FIT NBs did not appear (Figure 7A)

      Line 386: The structure in which FIT-G is present in the Figure 7A t=15 is not alike the once already observed along the paper. This could be explained by over-expression in N. benthamiana. Please explain.

      Authors:

      Thank you for the hint. We discuss this in the discussion part, see lines 555-568.

      Line 393: Explain and provide data why the morphology of PIF4/FIT NB do not correspond to the normal morphology.

      Authors:

      Thank you for the valuable hints. Several reasons may account for this and we provide explanations in the discussion, see lines 555-568.

      Line 396-398: It seems also from the data that co-expression of PIF4 of PIF3 will affect the portioning of FIT between the NP and the NB.

      Authors:

      We can assume that residual nucleoplasm is depleted from protein during NB formation. This is likely true for all assessed colocalization experiments. We discuss this in lines 492-494.

      The discussion is particularly lengthy it might be great to reduce the size and focus on the main findings.

      Authors:

      *We shortened the discussion. *

      **Referees cross-commenting**

      All good for me, I think that the comments/suggestions from Reviewer #2 are valid and fair. If they are addressed they will improve considerably the manuscript.

      Reviewer #1 (Significance (Required)):

      This manuscript is describing an unprecedent very precise cellular and molecular mechanism in nutrition throughout a large set of microscopies technics. Formation of nuclear bodies and their role are still largely unexplored in this context. Therefore, this study sheds light on the functional role of this membrane less compartment and will be appreciated by a large audience. However, the fine characterization is only made using transient expression in N. Bentamiana and only few proofs of concept are provided in A. thaliana stable line.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript of Trofimov et al shows that FIT undergoes light-induced, reversible condensation and localizes to nuclear bodies (NBs), likely via liquid-liquid phase separation and light conditions plays important role in activity of FIT. Overall, manuscript is well written, authors have done a great job by doing many detailed and in-depth experiments to support their findings and conclusions.

      However, I have a number of questions/comments regarding the data presented and there are still some issues that authors should take into account.

      Major points/comments:

      1) Authors only focused on blue light conditions. Is there any specific reason for selecting only blue light and not others (red light or far red)?

      Authors:

      There are two main reasons: First, in a preliminary study (not shown) blue light resulted in the formation of the highest numbers of NBs. Second, iron reductase activity assays and gene expression analysis under different light conditions showed a promoting effect under blue light, but not red light or dark red light (Figure 9). This indicated to us, that blue light might activate FIT, and that active FIT may be related to FIT NBs.

      2) Fig. 3C and D: as GFP and GFP-GFP constructs are used as a reference, why not taking the measurements for them at two different time points for example t=0 and t=5 0r t=15???

      Authors:

      Free GFP and GFP-GFP dimers are standard controls for homo-FRET that serve to delimit the range for the measurements.

      3) Line 27-271: Acc to the figure 3d, for the Fluorescence anisotropy measurement of NBs appears to be less. Please explain.

      Authors:

      FA in NBs with FITmSS271AA is variable and the value is lower than that of whole nucleus but not significantly different compared with that in nucleoplasm. We describe the results of Figure 3D in lines 272-275.

      4) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.

      Authors:

      Neither for FIT/bHLH039 nor the FITmSS271AA/bHLH039 pair, there is a significant decrease in the fluorescence lifetime values between t=0 and t=5/15. FIT-G is a control to delimit the range. The interesting experiment is to compare the protein pairs of interest between the different nuclear locations at t=5/15.

      5) Line 300-301: In Figure 4D and 4E. Fluorescence lifetime of G measurement at t=0 seems very similar for both FIT-G as well as FITmSS but if we look at the values of t=0 for FIT-G+bhlh039 it is greater than 2.5 and for FITmSS271AA-G+bhlh039 it is less which suggests more heterodimeric complexes to be formed in FITmSS271AA-G+bhlh039. Similar pattern is observed for NBs and NPs, according to the figure 4d and E.

      Therefore, heterodimeric complexes accumulated more in case of FITmSS271AA-G+bhlh039 as compared to FIT-G+bhlh039 (if we compare measurement values of Fluorescence lifetime of G of FITmSS271AA-G+bhlh039 with FIT-G+bhlh039).

      Please comment and elaborate about this further.

      Authors:

      These conclusions are not valid as the experiments cannot be conducted in parallel. Since the experiments had to be performed on different days due to the duration of measurements including new calibrations of the system, we cannot compare the absolute fluorescence lifetimes between the two sets.

      6) Figure 4: For the negative controls, data is shown at only t=0, data should be shown at t=5 also to prove that there is no decrease in fluorescence in these negative controls when they are expressed alone without bhlh39 as there is no acceptor in this case.

      Authors:

      Please see our response to your comment 4).

      7) Line 439-400: As iron uptake genes (FRO2 and IRT1) are more induced in WT under blue light conditions and FRO2 is less induced in case of red-light conditions. So, what happens to Fe content of WT grown under blue light or red light as compared to WT grown under white light. Perls/PerlsDAb staining of WT roots under different light conditions will add more information to this.

      Authors:

      We focused on the relatively short-term effects of blue light on signaling of nuclear events that could be related to FIT activity directly, particularly gene expression and iron reductase activity as consequence of FRO2 expression. These are both rapid changes that occur in the roots and can be measured. We suspect that iron re-localization and Fe uptake also occur, however, in our experience differences in metal contents will not be directly significant when applying the standard methods like ICP-MS or PERLs staining.

      Minor comments:

      Line 75-76: Rephrase the sentence

      Authors:

      We rephrased the sentence, lines 73-74:

      “As sessile organisms, plants adjust to an ever-changing environment and acclimate rapidly. They also control the amount of micronutrients they take up.”

      Line 119: Rephrase the sentence

      Authors:

      We rephrased the sentence, line 118-119:

      “Various NBs are found. Plants and animals share several of them, e.g. the nucleolus, Cajal bodies, and speckles.”

      Line 235-236: rephrase the sentence

      Authors:

      We rephrased the sentence, line 232-234:

      “In the work of Gratz et al. (2019), the hosphor-mimicking FITmS272E protein did not show significant changes in its behavior compared to wild-type FIT.”

      Line 444: Correct the sentence “Fe deficiency versus sufficiency”

      Authors:

      We corrected that, line 449-451:

      “In both, the far-red light and darkness situations, FIT was induced under iron deficiency versus sufficiency, while on the other side, BHLH039, FRO2 and IRT1 were not induced at all in these light conditions (Figure 9I-P).”

      **Referees cross-commenting**

      I agree with R1 suggestions/comments and i think manuscript quality will be much better if authors carry out the experiments suggested by R1. I believe this will also strengthen their conclusions.

      Reviewer #2 (Significance (Required)):

      Overall, manuscript is well written, authors have done a nice job by doing several key experiments to support their findings and conclusions. However, the results and manuscript can be improved further by addressing some question raised here. This study is interesting for basic scientists which unravels the crosstalk of light signaling in nutrient signaling pathways.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      In this manuscript, Hoskins et al describe analyses of the effects of sequence variation on RNA levels, protein levels, and ribosome loading for the COMT gene. They use multiple experimental approaches to assay these levels and report on how sequence differences affect expression. Overall, the paper is interesting in that it presents a very deep dive into the effects of sequence variation on gene expression, including in coding sequences. However, there are some issues with the polysome loading assay technique and there are substantial issues with the figure presentation, which is often confusing.

      __Response: __Thanks for the positive assessment of our manuscript and the constructive feedback regarding the issues with the figure presentation. We have addressed all of these below and they have significantly improved the clarity.

      • Major comments:*

      • 1) Figures:*

      • --Fig 1C needs a cartoon description to show where the UTRs are. Y-axis should say "Ribo-seq CPM"*

      __Response: __Fig 1C now includes a schematic and the y-axis is updated. Locations of the uORFs are also now included in Fig 1A.

      • --Sup Fig 1A confusing, what is "start" what is the point of this panel?*

      __Response: __We apologize for the confusing labeling of the panels in Sup Fig 1. “Start” refers to the MB-COMT start codon. We removed this annotation as it is irrelevant to the figure. We included Supplementary Figure 1A to show RNA probing data for the entire transcript. Figure 1A and B only show the regions that encompass the variants assayed in our study.

      • --Sup Fig 1B what is PCBP del?*

      Response: “PCBP del” refers to deletion of PCBP1/PCBP2 RNA binding protein motifs. The legend now specifies this.

      • --Sup Fig 1C what is "uORF B restore"? The description in the figure legend is not interpretable. Draw diagrams of the mutations that tell the reader what was assayed and why it was assayed. Why are there multiplication factors listed (e.g. 1.33X)? The data are depicted on a log scale, which makes it difficult to appreciate the fold-effects of the mutations (e.g. does uORFA mutation increase expression 1.5-fold?). Please calculate median expression values and report them on a bar graph or something like that so readers can interpret the results.*

      Response: “uORF B restore” refers to restoration of the endogenous uORF B frame with a silent variant in the Flag tag of the transgene. The multiplication factors listed were the fold change in median fluorescence between each mutant and the template (wild-type) transgene. We retained the figures as they show the raw distribution of fluorescence in each cell line, but in response to the reviewer’s suggestion we included a new figure displaying the effects as a bar graph (Supplementary Figure 1E).

      • --Fig 2A. It's hard to understand the cartoon diagram of the expression reporter construct. Why is +Dox shown here? Does that induce transcription?*

      __Response: __The reviewer is correct. “+Dox” indicated addition of Doxycycline to induce transcription before the data collection step. We agree that there may have been too much detail in this diagram and have now removed this for simplicity and indicated this in the Methods section.

      • --Fig 2B. What's on the x-axis? is it Log2(RNA/gDNA) from sequencing? is it Log2 or Log10 or Ln?*

      __Response: __Variant effects in each figure were derived from ALDEx2 analysis, which reports effect size as the median standardized difference between groups. The effect size is not directly interpretable as a log fold change; it takes into account the difference between groups as well as the dispersion. This analysis strategy has been previously demonstrated for analysis of SELEX experiments (Fernandes et al. 2014), which are used to select small populations of cells with specific phenotypes.

      ALDEx2 is a robust and principled choice for the analysis of count-compositional datasets, particularly after selection (e.g. sorted cell populations or low-input RNA fractions arising from polysome profiling). While we understand that this choice leads to less easily interpretable effect sizes, the mathematical advantages make ALDEx2 a more appropriate choice for this type of data. In the past, we had used other methods to analyze log frequencies (limma, a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology) that directly reported fold changes. In our experience, the ALDEx2-derived effect sizes are well-correlated with those estimates (Pearson correlation 0.93 for variants significant at a FDR

      • --Fig 2C. What's on the y-axis (same question). I think it's LogX(mutant/wt)RNA level?*

      __Response: __For consistency with other figures, we replaced Figure 2C to report the effect size statistic as described above.

      • --Fig 2D. What's on the y-axis now? Fold-difference (not log transformed)?*

      __Response: __Please see our response above.

      • --Fig 2E. The scale bar is flipped vs. normal convention. This is also log transformed, but it's not labeled. Please label as log(whatever) and put the negative values on the left side of the bar (red on the left, blue on the right).*

      __Response: __Thanks for the suggestion, we have now updated the scale bar.

      --Fig 2F y-axis should say Ribo-seq CPM.

      __Response: __Done

      • --Fig 3A - please separate the graphs more. Did you sort cells from ROI2 into populations, or just cells from ROI1?*

      __Response: __Thanks for the suggestion, we now separate the graphs further. Cells were sorted for both ROI 1 and ROI 2 libraries.

      • --Fig3C-F What's the "effect size" mean on these graphs?*

      __Response: __Please see the response above regarding the effect size estimate from ALDEx2.

      • --Fig3D It looks like the colors have switched for positive / negative "effects" on the heat map*

      • compared to Figure 2E. Please define what "median effect" means and be consistent with*

      • comparison to figure 2E.*

      __Response: __We intentionally inverted colors for Figure 3. The rationale is that a variant causing low protein abundance corresponds to enrichment in P3 compared to gDNA, as opposed to depletion in P3. On the other hand, for effects on RNA abundance and ribosome load, a variant leading to low abundance for these measures is depleted.

      • --Figure 4 what does effect size mean, what's the log-transformed scale (log2, 10, etc) same issues from earlier figures.*

      __Response: __Please see response above.

      • --Figure 5 "effect size"*

      __Response: __The same definition of effect size was used with the exception that effect sizes are multiplied by -1 so that color schemes are consistent for deleterious effects.

      • 2) "Codon stability" should always be "Codon Stability Coefficient", maybe use "CSC". Otherwise it's confusing.*

      __Response: __Thanks for the suggestion. This has been updated throughout the manuscript.

      3) Flow cytometry section talks about "RNA fluorescence", which is confusing. You need to explain that it's IRES-driven mCherry as a proxy for the level of RNA first. It would also help to state explicitly that you sorted the cells into four populations, and define them all first before describing the results.

      __Response: __We apologize for the use of imprecise language with respect to this reporter. We revised the text to emphasize that mCherry is a proxy for RNA abundance and described the populations first as suggested.

      4) What are DeMask scores? How are they related to conservation or amino acid properties? If you define these, you can help the reader interpret the result.

      __Response: __Thanks for the suggestion. We now include a conceptual interpretation of the DeMask score in the relevant section. We also include a comparison to a recent large language model for variant effect prediction (ESM1b, Brandes et al. 2023) which is now reported in Supplementary Figure 5C.

      5) There are several issues with the Polysome gradient fractionation. The gradients did not separate 40S, 60S, and monosomal fractions, so it's hard to tell how many ribosomes correspond to each peak on the gradient graph in Figure S5. This is probably because the authors used a 20-50% gradient instead of a lower percentage on top. More significantly, variations in the coding region of COMT are likely affecting the polysome association in ways the authors didn't consider. Nonsense codons will simply make the orf a lot shorter, hence fewer ribosomes. This may have nothing to do with NMD. Silent and missense variants may have unpredictable effects because they may make translation faster (fewer ribosomes) or slower (more ribosomes) on the reporter. This could lead to more ribosomes with less protein or fewer ribosomes with more protein. The reporter RNA also has an IRES loading mCherry on it, which probably helps blunt or dampen the effects of the COMT sequence variants on polysome location distribution. Overall, the design of the polysome assay is probably very limited in power to detect changes in ribosome loading (four fractions, limited separation by 20-50 gradient, IRES loading, etc). This is partially addressed in the limitations section, but these issues could be discussed in more detail.

      __Response: __Given high polysomal association of endogenous COMT and our COMT transgene (Supplementary Figure 2B, Supplementary Figure 5B-C), we chose a 20-50% sucrose gradient to better resolve changes in ribosome load among heavy polysomes.

      We thank the reviewer for offering another valid explanation regarding the depletion of nonsensense variants. We have now included a sentence in the discussion to indicate lower ribosome load for nonsense variants may be due to a shorter ORF as opposed to NMD. We further include the potential limitation of the assay due to the presence of the IRES-mCherry.

      We agree that variants may have unpredictable effects due to effects on the dynamics of translation elongation. To address this potential limitation, we attempted to devise a selective ribosome profiling strategy by immunoprecipitating N-terminal Flag tagged peptides to enrich ribosomes translating COMT. However, we were unable to achieve significant enrichment, limiting our ability to measure variant effects on elongation in a high-throughput manner.

      Significance

      The study is novel in that it assays both 5' UTR and a wide range of protein coding sequence variants for effects on RNA and protein levels from a clinically important gene, COMT. The manuscript reports that most protein coding variants have modest effects on RNA levels, and that the minority of variants that do affect RNA levels are not predictable due to their affect on codon usage. The work also determines the distribution of effects of variants on protein levels, finding a variety of effects on expression. Interestingly, the authors found SNPs that affect ribosome loading generally affect RNA structure of the COMT coding region, rather than affecting codon usage.

      This should appeal to many different communities of biologists - gene expression experts, geneticists, and clinical neurobiologists who focus on COMT. So there is a potential for fairly broad interest. The main limitations to the work are in a lack of clarity in the figures and perhaps in the underdeveloped nature of the discussion section. The discussion section reports new results (SNP associations that affect expression). These would make more sense in the results section, such that the discussion could do a better job relating the impact of sequence variants on expression levels to prior work to highlight the novelty.

      __Response: __We thank reviewer #1 for their positive assessment of the broad significance of our study. We also thank them for constructive suggestions that led to increased clarity in the presentation. We have moved the analysis of gnomAD variants to the Results section and expanded the discussion.

      Reviewer #2

      Evidence, reproducibility and clarity

      Summary:

      Hoskins and colleagues expressed a reporter containing all silent, missense, and nonsense codons at 58 amino acid positions in the human COMT gene in HEK293T cells and measured levels of DNA, bulk RNA, and pooled polysomal mRNA. They included a C-terminal translational GFP fusion and a downstream transcriptional mCherry fusion in the reporter in order to also bin variants by their relative protein and mRNA levels by flow cytometry. They hypothesized that RNA structure, in-part by mediating uORF translation, influences COMT gene expression. The authors conclude by identifying previously-uncharacterized COMT variants that, in this reporter system, affect RNA abundance and ribosome load. We generally found the results of this paper convincing and clear. We do not have major comments, but have many minor comments that we hope the authors can address. These comments mostly deal with clarification on analysis metrics and giving recommendations on data presentation.

      __Response: __Thanks for highlighting the strengths of our study and the constructive suggestions to improve the presentation.

      Minor comments:

      In Figure 2C, the vertical axis reads "Median between-group difference". How was this metric calculated and normalized? We also agree that nonsense mutations having consistently-detrimental effects on RNA abundance is reassuring, but recommend more explanation as to why the difference in the effects of silence and missense mutations between regions may be biologically relevant.

      __Response: __Variant effects in each figure derive from ALDEx2 analysis, which reports effect size as the median standardized difference between groups. In particular, to avoid any distributional assumptions for standardization, ALDEx2 uses a permutation based non-parametric estimate of dispersion. The effect size is not directly interpretable as a log fold change; it takes into account the difference between groups as well as the max dispersion of the groups. We have now provided explicit references to the specific R functions that were used to calculate the effect size.

      ALDEx2 is robust for analysis of count-compositional datasets, particularly after selection and bottlenecking (e.g. sorted cell populations or low-input RNA fractions arising from polysome profiling). While we have used other methods to analyze log frequencies (limma, a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology), we opted for the less-interpretable but more robust ALDEx2 analysis to report variant effects between varying nucleic acid inputs.

      We currently lack a mechanistic interpretation for the difference in RNA abundance effects between ROI 1 and 2. However, we observed consistent results using a different analysis framework, which makes use of variant frequencies (as in Hoskins et al. 2023 Genome Biology) instead of the centered log ratios used in ALDEx2 analysis, further supporting a biological difference between the two.

      In Figure 3, we believe that the authors are claiming that lower RNA abundance causes lower protein abundance in some variants. However, this data only reports on protein abundance relative to transcript abundance, not absolute protein abundance. We think the claim should be revised to (1) clarify that the authors are measuring protein per mRNA, and (2) express that lower mRNA amounts are more likely to co-occur with lower protein amounts, but that this data does not support any causative model.

      __Response: __Thanks for the suggestion. We have now included an explicit description of the experimental design in the results section and noted that we are unable to assign protein abundance effects to underlying RNA abundance effects. In the current setup, we did not sort cells based on the ratio of moxGFP/mCherry fluorescence (protein per mRNA), but rather we defined gates based on the 2D plot of moxGFP versus mCherry. This is explicitly marked in Figure 3A.

      On page 9, the authors claim that their data supports a model that rs4633 increases RNA

      abundance, leading to higher COMT expression. Can the authors rule out a model whereby rs4633 facilitates translation initiation, as suggested by Tsao et al. 2011, leading to both an increase in mRNA and protein abundance?

      __Response: __Thanks for this question and opportunity to clarify. We have now added a sentence to the Discussion and included the following paragraph in the Supplementary Note:

      “Importantly, our study does not rule out a model where rs4633 facilitates translation initiation. Nevertheless, our data suggest a potential concurrent mechanism where rs4633 leads to higher protein abundance in human cell lines and in an in vitro translation assay (Tsao et al. 2011) by increasing RNA abundance. We note that Tsao et al did not directly measure RNA abundance in their study. In Supplementary Figure 3A of Nackley et al 2006, the APS haplotype containing rs4633 C>T showed slightly higher total RNA abundance compared to the LPS haplotype (in our study, the wild-type template). However, this was not statistically significant and was only observed for the S-COMT isoform. It is possible that our observations are compatible with the conclusions in Tsao et al. 2011. For example, increased translation of rs4633 C>T may lead to stabilization of the RNA.”

      The paper references "effect size" at multiple points (e.g. "polysome effect size") but we could not find this term explicitly defined (for example: for the polysome effect size, were RNA counts for each polysome fraction divided by the relative abundance of that RNA in total RNA?)

      __Response: __We apologize for this confusion. Please see our response above. We have also stated the definition of effect size explicitly in the revised manuscript.

      Could you elaborate on how you define "protein abundance and "effect size: in Figure 5G? How is enrichment in P3 or P1 calculated?

      __Response: __Effect size is defined as described above. Enrichment in P3 or P1 is calculated with respect to the abundance in gDNA (unsorted cells).

      Were 3396 variants considered for all readouts in this paper? How many of these variants were present in each ROI? It may be worth clarifying sample sizes.

      __Response: __Thanks for the suggestion. The reviewer is correct: 3396 variants were present in all biological replicates and all readouts (after excluding polysome metafractions 1 and 2 and flow cytometry population 4). The Methods were updated to include all readouts that were dropped. The number of variants in each ROI are now included in this section of the main text.

      How did Twist generate these mutagenized sequences? We assumed that they used error-prone PCR due to the mention of multiple nucleotide polymorphisms, but couldn't find an explicit answer.

      __Response: __Twist generates these mutagenized inserts using degenerate primers. This allows all alternate codons to be assayed (all silent, missense changes). This is now noted in the Methods.

      https://www.twistbioscience.com/resources/technical-note/solid-phase-dna-synthesis-allows-tight-control-combinatorial-library

      In the methods, it may be worth elaborating on the composition of the HsCD00617865 plasmid. For example: this COMT reporter is under the control of a constitutively-expressed T7 promoter, correct?

      __Response: __The HsCD00617865 plasmid was only used as a template for PCR amplification and generation of the transgene. The transgene is cloned into a vector containing attB sites for recombination into the landing pad cell line (Matreyek et al 2020). Transcription is induced by Doxycycline from the landing pad locus. Plasmid maps used for transfection into the landing pad line are now included in the GitHub repository.

      In Supplementary Figures 4 and 5, it would be helpful to explicitly say that you are reporting Pearson correlations between biological replicates.

      __Response: __Thanks for the suggestion. The legends have been updated accordingly.

      "After summarizing biological replicates (N=4) for each readout...": how did the authors summarize biological replicates? Were counts averaged?

      __Response: __Biological replicates were summarized using the median. This is now clarified in the Methods.

      The authors used pairwise correlations between flow cytometry fractions, polysome fractions, and total RNA/gDNA as indications of data quality. Do the authors expect for these counts to be strongly correlated? We would not necessarily expect to see a strong correlation between ribosome load and RNA/gDNA.

      __Response: __We used replicate correlation as an indicator of data quality. Our readouts of ribosome load reflect the abundance of a variant in a particular polysome fraction. Given that variants that are highly abundant in the RNA pool will on average be more highly represented in polysome fractions, we would expect a correlation between the abundance of a variant in total RNA and in polysome fractions.

      The authors may need to check that their standard deviations on fold changes are properly reported.

      __Response: __iIn the Figures and the main text, we specified the confidence intervals as calculated by ALDEx2 method instead of reporting standard deviations on fold changes,. Specifically, the confidence intervals were determined by Monte Carlo methods that produce a posterior probability distribution of the observed data given repeated sampling. Variants in which the confidence intervals do not cross 0 are considered true discoveries (section 5.4.1 of the ALDEx2 vignette on Bioconductor).

      https://www.bioconductor.org/packages/devel/bioc/vignettes/ALDEx2/inst/doc/ALDEx2_vignette.html#541_The_effect_confidence_interval

      We would expect standard deviation bounds to be symmetric for log fold changes, but not on unlogged fold changes - for example see page 8, for the sentence "our point estimate for nonsense variant effects on COMT RNA abundance was approximately a two-fold decrease relative to the gDNA frequency (fold change of 0.43 +/- 0.13; mean +/- standard deviation; Methods)."

      __Response: __Thanks for the suggestion. To avoid any confusion about the symmetry, we replaced the +/- notation, and explicitly noted the mean and standard deviation. To help the reader gain an intuition of the magnitude of variant effects, we conducted a frequency based normalization-dependent analysis using limma (as previously employed in Hoskins et al. 2023. Genome Biology). We now report a fold change (unlogged) for RNA abundance compared to gDNA abundance. The point estimate is the mean and s.d. across all nonsense variants.

      On page 10, the authors say that their data suggests that hydrophobicity in the early coding region of COMT may be important for COMT folding. If this is the case, would we expect to see this effect in flow cytometry data (which is affected by protein degradation) and not polysome profiling (which is unaffected by post-translational protein degradation)?

      __Response: __We apologize as we are uncertain about the reviewer’s intended question. The section that refers to the importance of hydrophobicity indeed refers to the flow cytometry data. While there are specific instances in which the amino acid properties encoded by the mRNA influences translation dynamics, these are not universally true. Consequently, we did not expect these impacts to be observed at the level of polysome profiling.

      We believe that we would have some trouble replicating the analysis from this paper from the raw data, given that the bulk of the analysis on GitHub is presented as a single R Markdown file, with references to local files to which we do not have access. We recommend that the authors add additional documentation to their repository to facilitate re-analysis.

      __Response: __Thanks for the opportunity to address this issue of critical importance. To facilitate replication, we have now deposited all analysis files to Zenodo and refactored the code to enable replication by simply running a markdown file.

      In Figure 1B, indicating that more signal indicates less structure (in the legend or the figure itself) may assist readers who are unfamiliar with DMS-seq.

      __Response: __Thanks for the suggestion. This is now updated.

      Figure 1C does a great job presenting evidence for the translation of uORFs, but does not seem to flow with the overall argument of the paper, so may fit better in the supplement.

      __Response: __We considered this suggestion, and opted for keeping its placement as it gives evidence that our transgene is translated primarily as the MB-COMT isoform. This ensures that, for variants upstream of the S-COMT isoform, we can assay effects on ribosome load that are tied to mechanisms of translation elongation and codon stability.

      We believe there is a typo in the Figure 1 legend that should read "K562" instead of "H562".

      __Response: __Thank you, this was indeed a typo.

      You also gated to separate into P1-P4, correct? Can you also show the bounds of that gating

      strategy in Figure 3A?

      __Response: __This has been updated. We also added the gating strategy in response to comments from reviewer #1.

      We find Figure 3F very compelling. Do you have any theories as to why mutating I59-H66 to

      nonpolar, uncharged residues leads to increased COMT expression?

      __Response: __We do not have any theories for why this may be. However, we noted that with the exception of V63, residues I59-H66 are not evolutionarily constrained (based on DeMask entropy values). This suggests mutational tolerance for nonpolar, uncharged residues in this region (with the exception of V63 and H66; see Figure 3D).

      There appears to be a non-negligible proportion of di- and tri- nucleotide polymorphisms in Supplementary Figure 4. Were these excluded in downstream analyses?

      __Response: __These variants are expected from the Twist mutagenesis strategy and included in analysis. We believe they are at lower frequency compared to SNPs due to less favorable annealing of the degenerate primers.

      A minor typo in the discussion reads "fluoresce".

      __Response: __Done

      Significance

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      This work investigated the regulatory effects of thousands of coding variants in the COMT gene, focusing on two regions with clinical significance, by using high-throughput reporter assays. The results from this will be useful for clinical scientists interested in understanding the impacts of COMT mutations and be a useful framework for other systems/computational biologists to understand the impacts of coding mutations across different levels of regulatory function. Mutations in protein regions, if having a function, are classically known to interfere with protein function. There are fewer large-scale efforts to understand the impacts of coding mutations affecting expression through potentially changing of RNA structure or codon optimization - this work has contributed towards that frontier.

      Place the work in the context of the existing literature (provide references, where appropriate). This is (as far as I am aware) the first paper that has integrated high-throughput screens massively parallel reporter assays from RNA degradation, ribosomal load, and flow cytometry. Previous papers have tended to measure on expression regulation on only one dimension (i.e. Greisemer et al. 2023 on RNA degradation, Sample et al. 2019 on ribosomal load, and de Boer at al. 2020 on protein expression).

      __Response: __Thanks for highlighting the novelty of our approach compared to existing strategies in the literature.

      State what audience might be interested in and influenced by the reported findings.

      Clinicians/researchers interested in COMT, computational biologists, geneticists and potentially structural biologists interested in understanding the consequences of amino acid mutations on RNA/protein expression

      __Response: __Thanks for noting the broad significance of our study.

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Genomics, Massively parallel reporter assays, High-throughput regulatory screens.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      *This manuscript reports on transcript sequence variants that affect expression of the gene COMT. Targeted analysis of SNPs identifies 5' UTR variants that affect COMT, leading to the identification of translated uORFs. Common coding sequence SNPs do not affect COMT expression, however. Massively parallel analyses of mRNA abundance, protein abundance, and translation are combined to look more broadly at coding sequence variants. These analyses focus on regions of predicted structure in the COMT transcript. Both silent and missense mutations that increase mRNA abundance are identified. Protein abundance is then measured and many missense mutations are found to change protein levels. To address translation directly, analysis of polysome loading is performed and significant differences are identified, although technical challenges limit data quality in these experiments. These different experiments are then analyzed jointly to classify mutation effects and identify a class of silent mutations with expression effects, leading to a proposal that these act through structure. *

      *The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications. *

      __Response: __Thanks for the positive assessment of the quality of the data generated and the potential for the broader application of the technical innovations.

      *I do have concerns with the present version of this work. *

        • There is no validation presented for high-throughput experimental data. I would say that validating the effects of M152T and V63V variants from Figure 2B would substantially strengthen the work and support key conclusions. * __Response: __Our experiments collectively enabled nearly 10,000 measurements of variant effect (summed over three layers of gene expression). The goal of our study was to identify broad mechanisms of variant effect. While we are excited about the specific variants uncovered, targeted experimental methods for validating changes to RNA abundance, such as RT-qPCR, are unlikely to be sufficiently sensitive. For example, RNA abundance effects in our study had a median effect size of 1.47 for variants up in RNA, and 0.4 for variants down in RNA. This likely corresponds to less than one Ct difference between the variant and the reference allele. Indeed, previous studies such as Findlay et al., 2018 Nature that reported similar effect sizes (FGF7 and FOS, respectively (Figure 4B).

      Thus, for time and cost concerns, we respectfully suggest that targeted experiments involving V63V and M152T are beyond the scope of our study. Nevertheless, to further strengthen our conclusions, we have computationally confirmed our findings using a different analysis framework. We found 75/76 of the variants significant by ALDEx2 analysis were also significant by limma analysis (a frequency based normalization-dependent analysis, as previously employed in Hoskins et al. 2023. Genome Biology) using the same FDR (0.1).

      • In the fluorescent reporter scheme, it seems that variants reducing mRNA abundance should be enriched in the "P2" gate region relative to "P1", as they would have lower mRNA abundance and correspondingly lower protein abundance. However, this analysis is not performed, and instead P1 and P3 are compared (Figure 3G), which would seem to focus on protein-level effects. *

      __Response: __Our initial hesitation in comparing P2 to P1 is that the P2 population may be enriched for cells that underwent inefficient induction of transcription with Doxycycline. Hence technical factors as opposed to the effect of the variants may dominate this comparison. In response to the reviewer’s comments, we carried out the suggested analysis (new Supplementary Figure 5B). We found that variants that are down in RNA are enriched in P2 relative to P1 as expected. This is now noted in the Results section.

      • In general the work classifies variants in several different ways and it would help to be a little clearer in naming these classes. For instance, in describing the FACS-based analysis of variant expression it is written, "protein fluorescence conditioned on RNA fluorescence" which is confusing at best-it's a fluorescence-based measurement that is used indirectly to measure COMT reporter abundance. *

      __Response: __Thanks for the suggestion. We agree that our initial word-choice was imprecise. We rewrote this section to indicate mCherry fluorescence is an indirect proxy for RNA abundance.

      • Likewise, the populations with shifted GFP/mCherry ratio in this assay are described as "uncorrelated" populations, which is opaque and somewhat inaccurate-there seems to be a correlation in this group but at a different ratio. *

      __Response: __We have revised the language in the manuscript. We opted for “low or high RNA/protein abundance” to indicate the relationship between GFP and mCherry fluorescence in populations P3 and P4.

      • In the same way, "deleterious variants" is used to describe protein abundance changes, but this term implies a fitness effect and is not very specific. *

      __Response: __We apologize for the confusing word choice. We did away with this term in favor of “variants with low protein abundance”.

      • In discussing the effects of missense COMT variants on protein levels, there is an implicit assumption that degradation of mis-folded protein (or perhaps properly-folded protein with excess hydrophobic exposure?) explains these effects. This is plausible, but it would help to lay out this reasoning more clearly. *

      __Response: __Thanks for the suggestion. We have added a sentence at the end of the section that specifies this assumption and cites a recent study reporting that rare missense variants in COMT may be misfolded and degraded by the proteasome (Larsen et al. 2023).

      • It is written that,"In line with codon stability as a predictor of translational efficiency (Presnyak et al., 2015), variants with low codon optimality were depleted from polysomes compared to variants with optimal codons". However, this mis-states the conclusions of the cited study, which notes, "Importantly, under normal conditions the ribosome occupancy of the HIS3 opt and non-opt constructs was determined to be similar (Fig. 6B)". *

      __Response: __We apologize for mis-stating the conclusions of Presnyak et al. 2015. We have now revisited the relevant literature to more accurately place our conclusions in the context of literature. While Presnyak et al. and several other studies (Bazzini et al., 2016; Mauger et al., 2019) have clearly linked the association between codon choice and mRNA stability. We now reference Mauger et al. 2019 who used elegant experiments to demonstrate that mRNA secondary structure is a driver of increased protein production and synergizes with codon optimality (Figure 5B). Their results further support the role of codon optimality on RNA stability while providing evidence of additive impact on translation efficiency.

      • It is written that, "One intriguing possibility is to develop multiplexed assays of variant effect on RNA folding, using mutational profiling RNA probing methods (Weng et al., 2020; Zubradt et al., 2017)." How would this differ from the "Mutate and Map" approach in doi://10.1038/nchem.1176 and subsequent work from the same group? *

      __Response: __Thanks for pointing out the more recent work following the initial papers in 2010-2011. We have missed the work from the Das lab that extended the Mutate and Map approach to utilize mutational profiling (Cheng and Kladwang et al., 2017). We updated our Discussion to indicate that the proposed assay has been pioneered and is a viable approach for high-throughput determination of variant effects on RNA folding.

      Because mutational profiling methods leverage reverse transcriptase readthrough and mismatch incorporation, they enable deeper and more uniform coverage of sequencing reads, particularly for longer transcripts. A key design principle of the proposed assay is to mutagenize only certain types of variants in the library such that they do not overlap RT mismatch signatures arising from the RNA probing reagent/RT enzyme. For example, readthrough of DMS base adducts largely generates A>N or C>N mismatches, so a variant library would be designed to only contain variants at G or T bases. This ensures variants in the library can be differentiated from signals of the RNA probing method.

      ***Referees cross-commenting** *

      *I generally agree with the other reviewers and found that many small points on the figures were confusing, and in some cases the values being computed and displayed were under-specified. *

      *I agree with Reviewer 1 that the polysome fractionation probably has limited power due to experimental design, and that the interpretation of changed ribosome loading is subtle. *

      __Response: __In response to these helpful comments, we have clarified the points highlighted by the reviewers and expanded the limitations section related to the ribosome loading assay. Thanks for these constructive suggestions to strengthen our study.

      *Reviewer #3 (Significance (Required)): *

      *The joint, integrative analysis of COMT variants through a range of methods allows clearer insights into interconnected post-transcriptional effects. The massively parallel experiments generate high-quality data, although targeted validation of key results would strengthen the work. The findings advance our understanding of silent variant effects, which remains an open question, and technical innovations could find broader applications. *

      __Response: __Thanks for pointing out the high-quality of the generated data and the broad significance of our study. The goal of our study was to identify broad mechanisms of variant effect instead of focusing on differential expression for any specific variants.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      Hoskins and colleagues expressed a reporter containing all silent, missense, and nonsense codons at 58 amino acid positions in the human COMT gene in HEK293T cells and measured levels of DNA, bulk RNA, and pooled polysomal mRNA. They included a C-terminal translational GFP fusion and a downstream transcriptional mCherry fusion in the reporter in order to also bin variants by their relative protein and mRNA levels by flow cytometry. They hypothesized that RNA structure, in-part by mediating uORF translation, influences COMT gene expression. The authors conclude by identifying previously-uncharacterized COMT variants that, in this reporter system, affect RNA abundance and ribosome load.

      We generally found the results of this paper convincing and clear. We do not have major comments, but have many minor comments that we hope the authors can address. These comments mostly deal with clarification on analysis metrics and giving recommendations on data presentation.

      Minor comments:

      In Figure 2C, the vertical axis reads "Median between-group difference". How was this metric calculated and normalized? We also agree that nonsense mutations having consistently-detrimental effects on RNA abundance is reassuring, but recommend more explanation as to why the difference in the effects of silence and missense mutations between regions may be biologically relevant.

      In Figure 3, we believe that the authors are claiming that lower RNA abundance causes lower protein abundance in some variants. However, this data only reports on protein abundance relative to transcript abundance, not absolute protein abundance. We think the claim should be revised to (1) clarify that the authors are measuring protein per mRNA, and (2) express that lower mRNA amounts are more likely to co-occur with lower protein amounts, but that this data does not support any causative model.

      On page 9, the authors claim that their data supports a model that rs4633 increases RNA abundance, leading to higher COMT expression. Can the authors rule out a model whereby rs4633 facilitates translation initiation, as suggested by Tsao et al. 2011, leading to both an increase in mRNA and protein abundance?

      The paper references "effect size" at multiple points (e.g. "polysome effect size") but we could not find this term explicitly defined (for example: for the polysome effect size, were RNA counts for each polysome fraction divided by the relative abundance of that RNA in total RNA?)

      Could you elaborate on how you define "protein abundance and "effect size: in Figure 5G? How is enrichment in P3 or P1 calculated?

      Were 3396 variants considered for all readouts in this paper? How many of these variants were present in each ROI? It may be worth clarifying sample sizes.

      How did Twist generate these mutagenized sequences? We assumed that they used error-prone PCR due to the mention of multiple nucleotide polymorphisms, but couldn't find an explicit answer.

      In the methods, it may be worth elaborating on the composition of the HsCD00617865 plasmid. For example: this COMT reporter is under the control of a constitutively-expressed T7 promoter, correct?

      In Supplementary Figures 4 and 5, it would be helpful to explicitly say that you are reporting Pearson correlations between biological replicates.

      "After summarizing biological replicates (N=4) for each readout...": how did the authors summarize biological replicates? Were counts averaged?

      The authors used pairwise correlations between flow cytometry fractions, polysome fractions, and total RNA/gDNA as indications of data quality. Do the authors expect for these counts to be strongly correlated? We would not necessarily expect to see a strong correlation between ribosome load and RNA/gDNA.

      The authors may need to check that their standard deviations on fold changes are properly reported. We would expect standard deviation bounds to be symmetric for log fold changes, but not on unlogged fold changes - for example see page 8, for the sentence "our point estimate for nonsense variant effects on COMT RNA abundance was approximately a two-fold decrease relative to the gDNA frequency (fold change of 0.43 +/- 0.13; mean +/- standard deviation; Methods)."

      On page 10, the authors say that their data suggests that hydrophobicity in the early coding region of COMT may be important for COMT folding. If this is the case, would we expect to see this effect in flow cytometry data (which is affected by protein degradation) and not polysome profiling (which is unaffected by post-translational protein degradation)?

      We believe that we would have some trouble replicating the analysis from this paper from the raw data, given that the bulk of the analysis on GitHub is presented as a single R Markdown file, with references to local files to which we do not have access. We recommend that the authors add additional documentation to their repository to facilitate re-analysis.

      In Figure 1B, indicating that more signal indicates less structure (in the legend or the figure itself) may assist readers who are unfamiliar with DMS-seq.

      Figure 1C does a great job presenting evidence for the translation of uORFs, but does not seem to flow with the overall argument of the paper, so may fit better in the supplement.

      We believe there is a typo in the Figure 1 legend that should read "K562" instead of "H562".

      You also gated to separate into P1-P4, correct? Can you also show the bounds of that gating strategy in Figure 3A?

      We find Figure 3F very compelling. Do you have any theories as to why mutating I59-H66 to nonpolar, uncharged residues leads to increased COMT expression? There appears to be a non-negligible proportion of di- and tri- nucleotide polymorphisms in Supplementary Figure 4. Were these excluded in downstream analyses?

      A minor typo in the discussion reads "fluoresce".

      Significance

      Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      This work investigated the regulatory effects of thousands of coding variants in the COMT gene, focusing on two regions with clinical significance, by using high-throughput reporter assays. The results from this will be useful for clinical scientists interested in understanding the impacts of COMT mutations and be a useful framework for other systems/computational biologists to understand the impacts of coding mutations across different levels of regulatory function. Mutations in protein regions, if having a function, are classically known to interfere with protein function. There are fewer large-scale efforts to understand the impacts of coding mutations affecting expression through potentially changing of RNA structure or codon optimization - this work has contributed towards that frontier.

      Place the work in the context of the existing literature (provide references, where appropriate).

      This is (as far as I am aware) the first paper that has integrated high-throughput screens massively parallel reporter assays from RNA degradation, ribosomal load, and flow cytometry. Previous papers have tended to measure on expression regulation on only one dimension (i.e. Greisemer et al. 2023 on RNA degradation, Sample et al. 2019 on ribosomal load, and de Boer at al. 2020 on protein expression).

      State what audience might be interested in and influenced by the reported findings.

      Clinicians/researchers interested in COMT, computational biologists, geneticists and potentially structural biologists interested in understanding the consequences of amino acid mutations on RNA/protein expression

      Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate.

      Genomics, Massively parallel reporter assays, High-throughput regulatory screens.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Through Review Commons, we received some highly favorable and constructive feedback from reviewers who are clearly knowledgeable about phylogenomics and/or the field of bacterial anti-phage immunity. We have responded to all suggestions made by the reviewers, which we feel have substantially improved and clarified the manuscript. We thank all three reviewers for their thoughtfulness and time.

      Reviewer #1

      Evidence, reproducibility and clarity

      Culbertson and Levin present an elegant computational analysis of the evolutionary history of several families of immune proteins conserved in bacteria and metazoan cells. The authors' work is impressive, revealing interesting insight into previously known connections and identifying exciting new connections that further link bacterial anti-phage defense and animal innate immunity. The results are overall well-presented and will have an important impact on multiple related fields. I have a few comments for the authors to help explain some of the new connections observed in their findings and clarify the results for a general audience.

      We thank the reviewer for their kind appraisal of our manuscript as well as their helpful comments. We found their comments to be very useful in strengthening our work and increasing the clarity of the writing.

      Comments: 1) The authors adeptly navigate difficult and changing nomenclature around cGAS-STING signaling but there may be room for clarifying terminology. Although historically the term "CD-NTase" has been used to describe both bacterial and animal enzymes (including by this reviewer's older work as well), the field has now settled on consistent use of the name "CD-NTase" to describe bacterial cGAS/DncV-like enzymes and the use of the names "cGAS" and "cGLR" to describe animal cGAS-like receptor proteins. Nearly all papers describing bacterial signaling use the term CD-NTase, and since 2021 most papers describing divergent cGAS-like enzymes in animal signaling now use the term "cGLR" (for recent examples see primary papers Holleufer et al 2021 PMID 34261128; Slavik et al 2021 PMID 34261127; Li et al 2023 PMID 37379839; Cai et al 2023 PMID 37659413 and review articles Cai et al 2022 PMID 35149240; Slavik et al 2023 PMID 37380187; Fan et al 2021 PMID 34697297; West et al 2021 PMID 34373639 Unterholzner Cell 2023 PMID 37478819). Kingdom-specific uses of CD-NTase and cGLR may help add clarity to the manuscript especially as each group of enzyme is quite divergent and many protein members synthesize signaling molecules that are distinct from cyclic GMP-AMP (i.e. not cGAS).

      Related to this point, the term "SMODS" is useful for describing the protein family domain originally identified in the elegant work of Burroughs and Aaravind (Burroughs et al 2015 PMID 26590262), but this term is rarely used in papers focused on the biology of these systems. "eSMODS" is a good name, but the authors may want to consider a different description to better fit with current terminology.

      We appreciate the reviewer’s suggestion and have updated the text to try to be more clear (ex: using cGLR as a more specific term whenever possible). However, as OAS is distinctly not a cGLR, strict kingdom-specific use of the terms CD-NTase and cGLR is not possible. We have updated the Mab21 superfamily to be re-named as the cGLR superfamily, as those seem to be synonymous based on recent literature. At this time we are choosing to stick with the eSMODS terminology as it remains to be shown that these eukaryotic proteins have a CD-NTase-like biochemical function.

      An example of how we have tried to navigate this naming issues is:

      “The cGLR superfamily passed all four of these HGT thresholds, as did another eukaryotic clade of CD-NTases that were all previously undescribed. We name this clade the eukaryotic SMODS (eSMODS) superfamily, because the top scoring domain from hmmscan for each sequence in this superfamily was the SMODS domain (PF18144), which is typically found only in bacterial CD-NTases (Supplementary Data).”

      2) The authors state that proteins were identified using an iterative HMM-based search until they "began finding proteins outside of the family of interest" (Line 86). Is it possible to please explain in more detail what this means? A key part of the analysis pipeline is knowing when to stop, especially as some proteins like CD-NTases and cGLRs share related-homology to other major enzyme groups like pol-beta NTases while other proteins like STING and viperin are more unique.

      We have updated the text to better explain how we determined that a given protein sequence was excluded:

      “After using this approach to create pan-eukaryotic HMMs for each protein family, we then added in bacterial homologs to generate universal HMMs (Fig. 1A and Supp. Fig. 1), continuing our iterative searches until we either failed to find any new protein sequences or began finding proteins outside of the family of interest (Supp. Fig. 1). To define the boundaries that separated our proteins of interest from neighboring gene families, we focused on including homologs that shared protein domains that defined that family (see Materials and Methods for domain designations) and were closer to in-group sequences than the outgroup sequences on a phylogenetic tree (outgroup sequences are noted in the Materials and Methods). “

      We also added a section to the Methods specifically defining our outgroups:

      “As outgroup sequences, we used Poly(A) RNA polymerase (PAP) sequences for the CD-NTases, and molybdenum cofactor biosynthetic enzyme (MoaA) for viperin. We did not have a suitable outgroup for STING domains, nor did any diverged outgroups come up in our searches.”

      3) The authors comment on several controls to guard against potential contaminating bacterial sequences present in metazoan genome sequencing datasets (Lines 174-182). It may be helpful to include this very important part of the analysis as part of the stepwise schematic in Figure 1a. Additionally, have the authors used other eukaryotic features like the presence of introns or kingdom specific translation elements (e.g. Shine-Dalgarno- vs. Kozak-like sequences) as part of the analysis?

      We agree that it will be very interesting to look for these eukaryotic gene features, both to rule out contamination and to discern how eukaryotes have acquired and domesticated bacteria-like immune proteins. However, one limitation when working with the data in EukProt is that many species are represented by de novo transcriptome datasets and therefore information about the local gene environment, introns, or promoters are unavailable.

      4) A particularly surprising result of the analysis is a proposed connection between oligoadenylate synthase-like (OAS-like) enzymes and bacterial Clade C CD-NTases. A concern with these results is that previous structural analysis has demonstrated that bacterial CD-NTase enzymes and animal cGLRs are more closely related to each other than they are to OAS (Slavik et al 2021 PMID 34261127). Can the authors provide further support for a connection between OAS and Clade C CD-NTases? The C-terminal alpha-helix bundle of OAS is known to be distinct (Lohöfener et al 2015 PMID 25892109) and perhaps AlphaFold2 modeling of bacterial Clade C CD-NTases and additional OAS sequences may provide further bioinformatic evidence to support the authors' conclusions.

      We were also surprised by this finding as it seems to be in opposition to structural comparisons in studies such as Whiteley et. al 2019 (PMID 30787435). As the reviewer suggests,e used AlphaFold to predict the structures of two CD-NTases, that of Bacterioides uniformis (Clade C016) and Escherichia coli (Clade C018) as well as a previously uncharacterized OAS-like protein (Tripos fusus P058904) and compared those structural predictions to those of cGAS (PDB: 6CTA), OAS1 (PDB: 4RWO), and DncV (PDB: 4TY0). We used the DALI server to make these all vs all comparisons.

           We have not included these analyses in the manuscript as the results were largely inconclusive. The average pairwise z-score between any of these structures was around 20, with a narrow range of scores between 16 (e.g. OAS vs. DncV) and 22 (e.g. DncV vs. the Clade C CD-NTases). For reference, the z-score of a given protein compared to itself was ~50 and a z-score of 20 is a general DALI benchmark used to determine if structures are homologous ( z-scores between 8-20 are in a gray area, and 20+ are generally considered homologous).
      

      In our view, these pairwise structural comparisons suffer from essentially the same problem that is evident in phylogenetic trees containing only animal and bacterial homologs. Namely, all structures/sequences under consideration are extremely different from each other, on very long branches that are difficult to place with confidence when few homologs are being considered. The benefit of our approach is that we have the ideal species diversity to break up the long branches (particularly with respect to the OAS superfamily), allowing us to place those sequences confidently on the phylogeny.

      That said, while we have strong support for the topology of OAS within the CD-NTase tree, the interpretation of the relationships relies partly on the inferred root of the tree. In our analyses, we opted not to include a distant outgroup such as pol-beta for rooting purposes, as these sequences aligned poorly with the CD-NTases, resulting in a substantial decrease in alignment and tree quality. Instead, in Fig. 2 we present a tree that is arbitrarily rooted within the bacterial CD-NTases, as this root allows for clade C to be phylogenetically coherent. Our data are also consistent with an alternative rooting, placing OAS as an outgroup. If so, this would yield a tree that implies that OAS-like sequences could have given rise to all other CD-NTases and that, within the non-OAS sequences, all bacterial CD-NTases emerged from within Clade C. We thought it slightly more likely that the root of CD-NTases was solidly within bacteria, hence the display we chose. However, we were not intending to rule out an OAS-outgroup model here. As this response to reviewers will be publically available alongside the final manuscript, we hope this clarifies our claims about the placement of OAS.

      5) One of the most exciting results in the paper is identification of a family of putative CD-NTase enzymes conserved in metazoans. Although full description may be beyond the scope of this paper, if possible, some more analysis would be interesting here: a. Are these CD-NTase enzymes in a conserved gene neighborhood within the metazoan genomes (i.e. located next to a potential cyclic nucleotide receptor?) b. Do these metazoan genomes encode other known receptors for cyclic nucleotide signaling (PFAM searches for CARF or SAVED domains for instance). c. Similar to points 3 and 4, is it possible to add further evidence for support of these proteins as true metazoan sequences that have predicted structural homology to bacterial CD-NTase enzymes?

      Yes agreed, we think point a is an exciting avenue of questioning to pursue. However, as mentioned above, the Eukprot dataset often does not provide the relevant information for the analyses proposed. Therefore, we feel that answering questions about the genomic region of these proteins is beyond the scope of the current manuscript. In particular, all 6 of the eSMODS species are represented only by transcriptomes, making these analyses impossible.

      For point b, we searched EukProt with HMMs for SAVED domains (PF18145), finding 24 total SAVED-containing proteins in EukProt. (We did not find a CARF HMM in Pfam, Tigrfam or other databases, and so could not easily carry out these searches.) Five of the 24 SAVED-containing sequences came from species encoding an eSMODS gene. This represented 3 species out of the total 20 species where we detected a SAVED domain. While this is a potentially intriguing overlap, we cannot make a strong claim about whether these SAVED sequences derive from eukaryotes vs. bacterial contamination without undergoing the extensive searching and phylogenetic tree construction methods for SAVED domains that we have performed for our three families of interest. We expect this will be an interesting line of inquiry for a future study.

      For point c, we agree that additional evidence to support the finding that the eSMODS are eukaryotic rather than bacterial sequences would be helpful. To us, the strongest pieces of evidence would be: 1) presence of eukaryotic gene architecture, 2) adjacency to clearly eukaryotic genes in the contig, and/or 3) fluorescence in situ hybridization experiments in these species to localize where the genes are encoded. Unfortunately, the transcriptome data available does not provide this level of information. We hope that other groups will follow up on these genes and species to decide the matter more definitively. In the meantime, we feel that our filters for HGT vs. contamination have done as much as possible with the existing dataset. We have modified the text in this region to leave open potential scenarios that could be fooling us, such as the presence of unusual, long-term, eukaryote-associated symbionts in the taxa where we detect eSMODS:

      “For species represented only by transcriptomes, these criteria may still have difficulty distinguishing eukaryote-bacteria HGT from certain specific scenarios such as the long-term presence of dedicated, eukaryote-associated, bacterial symbionts. However, because these criteria allow us to focus on relatively old HGT events, they give us higher confidence these events are likely to be real. ”

      6) The authors state that obvious CD-NTase/cGLR enzymes are not present in organisms that encode the group of divergent eukaryotic "blSTINGs". Have the authors analyzed the protein-coding genes encoded immediately upstream and downstream of the blSTING proteins with AlphaFold2 and FoldSeek? It would be very exciting if putative cyclic nucleotide generating enzymes are predicted to be encoded within the nearby gene neighborhood.

      Similar to the eSMODS, the majority of the species with blSTINGs were represented by transcriptomes (22/26). We do agree that this type of analysis would be very interesting. However, we feel that this is beyond the scope of this manuscript.

      7) Line 144 appears to reference the incorrect supplementary figure. SI Figure 4 may be the correct reference?

      We agree and have made this change. We thank the reviewer for catching this error.

      I hope the authors will find my comments useful, thank you for the opportunity to read this exciting manuscript.

      Significance

      Culbertson and Levin present an elegant computational analysis of the evolutionary history of several families of immune proteins conserved in bacteria and metazoan cells. The authors' work is impressive, revealing interesting insight into previously known connections and identifying exciting new connections that further link bacterial anti-phage defense and animal innate immunity. The results are overall well-presented and will have an important impact on multiple related fields. I have a few comments for the authors to help explain some of the new connections observed in their findings and clarify the results for a general audience.

      Reviewer #2

      Evidence, reproducibility and clarity

      Describe your expertise? Molecular Evolution, Mechanisms of Protein evolution, Phylogenomics, Adaptation.

      Summary: This manuscript broadly aims to improve our understanding the evolutionary relationships between eukaryote and bacterial protein families where members of those families have immune roles. The study focuses on three such families and samples deeply across the eukaryotic tree. The approaches taken include a nice application of the EukProt database and the use of homology detection approaches that are sensitive to the issues of assigning homology through deep time. The main findings show the heterogeneity in means by which these families have arisen, with some of the families originating at least as far back as the LCA of eukaryotes, in contrast the wide spread yet patchy distribution of other families is the result of repeated independent HGT events and/or convergent domain shuffling.

      We thank the reviewer for this excellent review and their helpful comments and suggestions. We firmly believe that these comments will strengthen and clarify our work.

      Major Comments: 1. Overall the level of detail provided throughout the manuscript is lacking, perhaps the authors were constrained by a word limit for initial submission, if so then this limit needs to be extended to include the detail necessary. In addition, there are some structural issues throughout, e.g. some of the very brief intro (see later comment) reads a little more like methods (paragraph 2) and abstract (paragraph 3). The results section is lacking detail of the supporting evidence from the clever analyses that were clearly performed and the statistics underpinning conclusions are not included.

      Good suggestion, we have updated the paper to include more details and statistics on the analyses that were performed. We have also expanded on some of the most interesting findings about these bacterial innate immune proteins in the introduction (see Comment 2 below for our changes), as well as shifting the methods-like paragraph mentioned (paragraph 2) to later on in the paper. For paragraph 3, we have slimmed this down to include fewer details, but leave the final paragraph of the Introduction as a brief synopsis to prime the reader for the rest of the paper.

      1. The intro and discussion both include statements about some recent discoveries that bacteria and mammals share mechanisms of innate immunity - but there is no further detail into what would appear to be important work leading to this study. This context needs to be provided in more detail therefore I would encourage the authors to expand on the intro to include specific detail on these significant prior studies. In addition, more background information on the gene families investigated in detail here would be useful e.g. how the proteins produced influence immunity etc should be a feature of the intro. A clear and concise rationale for why these 3 particular gene families (out of all the possible innate immune genes known) were selected for analysis.

      We have added in additional background about some of the most exciting discoveries made in the past few years. We also included specific rationale as to why we chose to look at cGAS, STING, and Viperin.

      Specifically, we have added the following to the introduction:

      “ For example, bacterial cGAS-DncV-like nucleotidyltransferases (CD-NTases), which generate cyclic nucleotide messengers (similar to cGAS), are massively diverse with over 6,000 CD-NTase proteins discovered to date. Beyond the cyclic GMP-AMP signals produced by animal cGAS proteins, bacterial CD-NTases are capable of producing a wide array of nucleotide signals including cyclic dinucleotides, cyclic trinucleotides, and linear oligonucleotides [11,14]. Many of these bacterial CD-NTase products are critical for bacterial defense against viral infection[8]. Interestingly, these discoveries with the CD-NTases mirror what has been discovered with bacterial viperins. In mammals, viperin proteins restrict viral replication by generating 3’-deoxy-3’,4’didehdro- (ddh) nucleotides[4,15–17] block RNA synthesis and thereby inhibit viral replication[15,18]. Mammalian viperin generates ddhCTP molecules while bacterial viperins can generate ddhCTP, ddhUTP, and ddhGTP. In some cases, a single bacterial protein is capable of synthesizing two or three of these ddh derivatives[4]. These discoveries have been surprising and exciting, as they imply that some cellular defenses have deep commonalities spanning across the entire Tree of Life, with additional new mechanisms of immunity waiting to be discovered within diverse microbial lineages. But despite significant homology, these bacterial and animal immune proteins are often distinct in their molecular functions and operate within dramatically different signaling pathways (reviewed here[5]). How, then, have animals and other eukaryotes acquired these immune proteins?”

      In regards to why we choose to investigate CD-NTases, STING, and Viperin specifically, we have added the following to the third paragraph of the introduction:

      “We choose to focus on the cGAS, STING, and Viperin for a number of reasons. First, in metazoans cGAS and STING are part of the same signaling pathway whereas bacterial CD-NTases often act independently of bacterial STINGs[21], raising interesting questions about how eukaryotic immune proteins have gained their signaling partners. Also, given the vast breadth of bacterial CD-NTase diversity, we were curious as to if any eukaryotes had acquired CD-NTases distinct from cGAS. For similar reasons, we investigated Viperin, which also has a wide diversity in bacteria but a much more narrow described function in eukaryotes.”

      1. Context: Genome quality is always a concern, and confirming the absence of an element/protein in a genome is challenging given the variation in quality of available genomes. Low BUSCO scores mean that the assessment of gene loss is difficult to evaluate (but we are not provided with said scores). Query: in the results section it states that the BUSCO completeness scores (which need to be provided) etc were insufficient to explain the pattern of gene loss. I would like to know how they reached this conclusion - what statistical analyses (ANOVA?? OTHER??) have been performed to support this statement and please include the associated P values etc. Similarly, throughout the paper, including in the discussion section, the point is brushed over. If, given a statistical test, you find that some of the disparity in gene presence is explained by BUSCO score, most of your findings are still valid. It would just be difficult to make conclusions about gene loss.

      We have rewritten this section to be more clear about what we feel we can and cannot say about gene loss and BUSCO scores. This section now reads:

      “However, outside of Metazoa, these homologs were sparsely distributed, such that for most species in our dataset (711/993), we did not recover proteins from any of the three immune families examined (white space, lack of colored bars, Fig. 1B). While some of these absences may be due to technical errors or dataset incompleteness (Supp. Fig. 2), we interpret this pattern as a reflection of ongoing, repeated gene losses across eukaryotes, as has been found for other innate immune proteins[27–29] and other types of gene families surveyed across eukaryotes[28,30–32]. Indeed, many of the species that lacked any of the immune homologs were represented by high-quality datasets (Ex: Metazoa, Chlorplastida, and Fungi). Thus, although it is always possible that our approach has missed some homologs, we believe the resulting data represents a fair assessment of the diversity across eukaryotes, at least for those species currently included within EukProt.”

      In addition, we direct readers to EukProt v3, where the BUSCO scores are publicly available.

      “BUSCO scores can also be viewed on EukProt v3 (https://evocellbio.com/SAGdb/images/EukProtv3.busco.output.txt).”

      1. In terms of the homolog search strategy - line 394 - can you please state what an "outgroup gene family" means in this context. It is unclear but very important to the downstream interpretation of results.

      We have updated the materials and methods to specifically name our outgroups:

      “As outgroup sequences, we used Poly(A) RNA polymerase (PAP) sequences for the CD-NTases, and molybdenum cofactor biosynthetic enzyme (MoaA) for viperin. We did not have a suitable outgroup for STING domains, nor did any diverged outgroups come up in our searches.”

      1. For reproducibility, the materials and methods section needs to provide more detail/sufficient detail to reproduce these results. E.g the section describing phase 1 of the euk searches the text here repeats what is in the results section for the crystal structure work but doesn't give me any information on how, what method was used to "align the crystal structures", what scoring scheme is used and how the scoring scheme identifies "the core"? What specific parameters are used throughout. Why is MAFFT the method of choice for some of the analyses? Whereas, in other cases both MAFFT and MUSCLE are employed. What are the specific settings used for the MAFFT alignments throughout - is it default (must state if that is the case) or is it MAFFT L-INS-I with default settings etc.

      We have updated the text to include the specific settings used each time a particular software package was deployed. We also have included information for STING as to how we aligned 3 published crystal structures to determine the boundaries of homology.

      Here is how we now discuss identifying the “core” STING domain:

      “ For STING, where the Pfam profile includes regions of the protein outside of the STING domain, we generated a new HMM for the initial search. First, we aligned crystal structures of HsSTING (6NT5), Flavobacteriaceae sp. STING (6WT4) and Crassostrea gigas STING (6WT7) with the RCSB PDB “Pairwise Structure Alignment” tool with a jFATCAT (rigid) option[73,74]. We defined a core “STING” domain, as the ungapped region of 6NT5 that aligned with 6WT7 and 6WT4 (residues G152-V329 of 6NT5).Then we aligned 15 eukaryotic sequences from PF15009 (all 15 of the “Reviewed” sequences on InterPro) with MAFFT(v7.4.71)[75] with default parameters and manually trimmed the sequences down to the boundaries defined by our crystal alignment (residues 145-353 of 6NT5). We then trimmed the alignment with TrimAI (v1.2)[76] with options -gt 0.2. The trimmed MSA was then used to generate an HMM profile with hmmbuild from the hmmer (v3.2.1) package (hmmer.org) using default settings. “

      We employed three alignment softwares at specific times throughout our analyses. MAFFT was used as our default aligner for most of the analysis. Hmmalign (part of the hmmer package) was used to make the alignments prior to hmmbuild. The overall goal of this work was to reconstruct the evolutionary history of these proteins via a phylogenetic tree. To ensure that this tree topology was as robust as possible we employed the more computationally intensive, but more accurate, tree builder MUSCLE. We have updated the text in the methods section to be more clear as to why we used each software.

      We have updated the methods section to read:

      “MUSCLE was deployed in parallel with MAFFT to generate these final alignments to ensure that the final tree topology would be as robust as possible. MUSCLE is a slightly more accurate but more computationally intensive alignment software[79].”

      1. The justification for the number of HMM searches needs to be included. The choice of starting points for the HMMs was cryptic - please provide details. It is likely that you ran the search until no more sequences were found or until sequences were added from a different gene family, and that these happened to be between 3 and 5 searches, but it reads like you wanted to run it 3 or 5 times and that corresponds to the above condition. Something like this would be clearer: "The profile was [...] until no more sequences were found or until sequences from other gene families were found which was between 3 and 5 times in all cases" - the same is true of figure 1.

      We agree that this could have been worded better. We have updated the text to make it more clear that we searched until saturation which happened to occur between 3-5 searches and not that we arbitrarily wanted to do 3-5 searches.

      We have updated the text, which now reads:

      “After using this approach to create pan-eukaryotic HMMs for each protein family, we then added in bacterial homologs to generate universal HMMs (Fig. 1A and Supp. Fig. 1), continuing our iterative searches until we either failed to find any new protein sequences or began finding proteins outside of the family of interest (Supp. Fig. 1). To define the boundaries that separated our proteins of interest from neighboring gene families, we focused on including homologs that shared protein domains that defined that family (see Materials and Methods for domain designations) and were closer to in-group sequences than the outgroup sequences on a phylogenetic tree (outgroup sequences are noted in the Materials and Methods). “

      We also updated the figure legend to Fig. 1. It now reads:

      “Each set of searches was repeated until few or no additional eukaryotic sequences were recovered which was between 3-5 times in all cases.”

      1. Why do you limit hits to 10 per species - might this lead to misleading findings about gene family diversity? Info and justification for approach is required (411-412).

      We limited the hits to 10 per species to limit the influence of any one species on our alignments and subsequent phylogenetic trees. This 10-per-species cap was never reached with any search for STING or Viperin, but was used to throttle the number of Metazoan hits when searching for CD-NTases. Because of this, we probably have missed some amount of the diversity of Metazoan Mab21-like/OAS-like sequences, although this was not a focus of our manuscript. We have updated the text to be more clear about why we have included this limit and when the limit was invoked.

      We have update the text, which now reads:

      “HMM profiles were used to search EukProt via hmmsearch (also from hmmer v3.2.1) with a statistical cutoff value of 1e-3 and -hit parameter set to 10 (i.e. the contribution of a single species to the output list is capped at 10 sequences). It was necessary to cap the output list, as EukProt v3 includes de novo transcriptome assemblies with multiple splice isoforms of the same gene and we wanted to limit the overall influence a single species had on the overall tree. We never reached the 10 species cap for any search for STING or viperin homologs; only for the CD-NTases within Metazoa did this search cap limit hits.”

      1. The information in Supplementary Figure 3 is quite difficult to assess visually, but I think that is what is expected from that figure. However, this is an important underpinning element of the work and should really be quantitatively assessed. A metric of comparison of trees, with defined thresholds etc there are many out there, even a simple Robinson-Foulds test perhaps? Essentially - comparing the panels in Supplementary Figure 3 by eye is unreliable and in this case not possible given there are no labels. It would also be important to provide these full set of phylogenies generated and associated RF/other scores as supplementary file.

      We agree that this Supplementary Figure is difficult to assess by eye, however we feel that it is vital to show this data. Visually, we do feel like this figure conveys the idea that while individual branches may move around, the major clades/areas of interest are stable across the different alignments and tree builders. To increase robustness, we have included the weighted Robinson-Foulds test results into a new panel of this figure (Supplementary Fig. 3B).

      We have added a section to the methods on how this weighted Robinson-Foulds test was conducted:

      “Weighted Robinson-Foulds distances for Supp. Fig. 3B were calculated with Visual TreeCmp (settings: -RFWeighted -Prune trees -include summary -zero weights allowed)[83].”

      We added the weighted Robinson-Foulds data to Supplemental Fig. 3 and have updated the figure legend to reflect this new data. The new legend for Supp. Fig. 3B reads:

      “(B) The average weighted Robinson-Foulds distances all pairwise comparisons between the four tree types (MAFFT/MUSCLE alignment built with IQTREE/RAXML-ng). Although the distances were higher for the CD-NTase tree (as expected for this highly diverse gene family), all of the key nodes defining the cGLR, OAS, and eSMODS superfamilies, as well as their nearest bacterial relatives, were well supported (>70 ultrafast bootstrap value).”

      1. Does domain shuffling mean that phylogenetic reconstruction is less valid? How was the alignment performed in these cases to account for this.

      Thank you for bringing this up, this is a point we have now clarified in the text. Our searches, alignments, and trees are all of single protein domains, as typically only conservation within domains is retained across the vast distances between bacteria and eukaryotes. As such, domain shuffling should have no impact on the validity of that phylogenetic reconstruction. We have updated the text to be more clear about the scope of the alignments and searches. We made changes to our wording throughout the manuscript. One specific example of this is:

      “Using maximum likelihood phylogenetic reconstruction on the STING domain alone, we identified STING-like sequences from 26 diverse microeukaryotes whose STING domains clustered in between bacterial and metazoan sequences, breaking up the long branch.”

      Minor Comments: 10. I am not sure about the use of the term "truly ancestral" or variants thereof, same issues with "significant homology" and "inherited since LECA and possibly longer" .. these are awkwardly phrased. E.g. I think perhaps "homologous across the whole length" might be clearer, and elsewhere "present in LECA and possibly earlier" may be more fitting.

             We have updated the text for these phrases throughout the manuscript and have replaced them with more specific language.
      
      1. Line 75 - "Detecting" rather than discovering?

      We appreciate the suggestion. However, because many of these gene families have never been described in the eukaryotic lineages considered here, we think ‘discovering’ is more appropriate. Indeed, the eSMODS lineage demonstrates that our search approach has the power to find not just new homologs but to discover totally new subfamilies of these eukaryotic proteins.

      1. 132-133 - more justification is needed for the choice of bacterial genes.

      We have clarified that our selection of bacterial CD-NTases included every known CD-NTase at the time of our analysis. The text now reads:

      “As representative bacterial CD-NTases, we used 6,132 bacterial sequences, representing a wide swath of CD-NTase diversity[43]. To our knowledge, this dataset included every known bacterial CD-NTase at the time of our analysis.”

      1. For the downsizing from 6000 to 500 what were the criteria and thresholds.

      We have updated the text to include the PDA software options for downsampling.The text now reads:

      “We downsampled the CD-NTase bacterial sequences from ~6000 down to 500 using PDA software (options -k 500) on a FastTree (default settings) tree built upon a MAFFT (default parameters) tree, to facilitate more manageable computation times on alignments and tree construction.“

      1. How are you rooting your trees e.g. figure 2? Information is provided for Viperin but not others.

      We have updated the text to ensure that the root of every tree is specifically stated.

      1. In the results section on CD-NTases I think it would be best to place the second paragraph detailing the role of cGAS earlier in this section, perhaps after the first sentence.

      We have moved the second paragraph, which introduces cGAS, OAS, and the other CD-NTases to the beginning of the CD-NTase section.The first paragraph of the CD-NTase section of the results now reads:

      “We next studied the evolution of the innate immune proteins, beginning with cGAS and its broader family of CD-NTase enzymes. Following infections or cellular damage, cGAS binds cytosolic DNA and generates cyclic GMP-AMP (cGAMP)[32–35], which then activates downstream immune responses via STING [34,36–38]. Another eukaryotic CD-NTase, 2’5’-Oligoadenylate Synthetase 1 (OAS1), synthesizes 2',5'-oligoadenylates which bind and activate Ribonuclease L (RNase L)[39]. Activated RNase L is a potent endoribonuclease that degrades both host and viral RNA species, reducing viral replication (reviewed here[40,41]). Some bacterial CD-NTases such as DncV behave similar to animal cGAS; they are activated by phage infection and produce cGAMP[8,42,43]. These CD-NTases are commonly found within cyclic oligonucleotide-based anti-phage signaling systems (CBASS) across many bacterial phyla and archaea[8,27,43].”

      1. Is FASTtree really necessary to include as it will underperform in all instances? Removing that method and comparing the remaining two (i.e. IQTREE and RAXML) - what level of disagreement do you find between the 2 alignment and 2 tree building methods? The cases that disagree should also be detailed.

      We agree that FASTtree underperforms against IQTREE and RAXML and have eliminated those trees from the supplement. We initially had included FASTtree, as it still seems to be widely used in phylogenetic analyses within the recent papers on bacterial immune homologs, but we completely agree with the reviewer and have removed it. In addition, we have calculated and added in the average weighted Robinson-Foulds Distance to Supplemental Figure 3. Our manuscript focuses on features of the phylogenetic trees that were consistent across all the replicate methods. However, given the numerous sequences and high degree of divergence involved, there were many cases where individual branches shifted between the methods, e.g. if individual CD-NTases within bacterial clade G swapped positions with one another. The differences we observed between the trees were inconsequential to our overall conclusions.

      1. Again a structural point - the start to paragraph "To understand the evolutionary history of CD-NTases we used the Pfam domain PF03281 as a starting point", I don't know at this point why or how you have done this. The sentence seems a little premature. I would therefore suggest that you start that paragraph with your motivation, "In order to..." and then finish that paragraph with your sentence in quotes above which actually summarizes the paragraph.

      We have updated the text to clear up this paragraph (in addition to other structural changes in the CD-NTase section. The paragraph containing information about how we started the HMM searches for the CD-NTases now reads:

      “ To begin our sequence searches for eukaryotic CD-NTases, we used the Pfam domain PF03281, representing the main catalytic domain of cGAS, as a starting point. As representative bacterial CD-NTases, we used 6,132 bacterial sequences, representing a wide swath of CD-NTase diversity[21]. Following our iterative HMM searches, we recovered 313 sequences from 109 eukaryotes, of which 34 were metazoans (Supplemental Data and Fig. 1B). Within the phylogenetic trees, most eukaryotic sequences clustered into one of two distinct superfamilies: the cGLR superfamily (defined by clade and containing a Mab21 PFAM domain: PF03281) or the OAS superfamily (OAS1-C: PF10421) (Fig. 2A). Bacterial CD-NTases typically had sequences matching the HMM for the Second Messenger Oligonucleotide or Dinucleotide Synthetase domain (SMODS: PF18144).”

      1. Line 148 - "within" change to "before"?

      We have updated the text with this suggestion.

      1. Unclear from text as is whether you found any STING homologs in arthropods (~line 157). Please update the text for clarity. Would also suggest that "agreeing" should be replaced with "aligning".

      We found several STING homologs in arthropods and have updated the text to specifically note this. We also have updated the text as per the suggestion of using the term “aligning” instead of “agreeing”.The text now reads:

      “Almost half of these species (10/19) were arthropods, aligning with prior findings of STING sparseness among arthropods(Wu et al. 2014). We did find STING homologs in 8/19 arthropod species in EukProt v3, including the previously identified STINGs of Drosophila melanogaster, Apis mellifera and Tribolium castaneum(Wu et al. 2014; Margolis, Wilson, and Vance 2017).”

      1. Line 169 - If clade D is not a clade, maybe it should be called something different.

      Yes, unfortunate naming, isn’t it? Clade D is not a coherent clade in our results nor when it was first described, but we feel that for consistency with the rest of the field, it is best if we adhere to previously published nomenclature.

      1. Line 188-190 - In principle, max likelihood should be able to infer the right tree even with high divergence.

      Yes, we agree that maximum likelihood methods should be able to infer the correct tree. However, we are not sure what change the reviewer is suggesting here.

      1. Paragraph starting at 199 - eSMODS - always unknown function or mostly - could be important.

      To our knowledge the function of the two closest bacterial CD-NTases to the eSMODS group have an unknown function.

      1. For calling HGT you state that one of the criteria is that the euk and bac sequences branched near one another, what is "near" in this scenario?

      “Near” in this case refers to being adjacent on the phylogenetic tree. We have updated the text for clarity. The text now reads:

      “To minimize such false positive HGT calls, we took a conservative approach in our analyses, considering potential bacteria-eukaryote HGT events to be trustworthy only if: 1) eukaryotic and bacterial sequences branched adjacent to one another with strong support (bootstrap values >70); 2) the eukaryotic sequences formed a distinct subclade, represented by at least 2 species from the same eukaryotic supergroup; 3) the eukaryotic sequences were produced by at least 2 different studies; and 4) the position of the horizontally transferred sequences was robust across all alignment and phylogenetic reconstruction methods used (Supp. Fig. 3A).”

      1. In legends be specific about what type of support value, e.g. bootstrap or jack-knife.. I think it is always bootstrap but would be good to have that precision.

      Our phylogenetic trees only use bootstrap values for support and so have updated the figure legends and methods to provide this information. Apologies for this lack of clarity.

      1. Throughout the text if stating e.g. "clustered robustly and with high support" please provide the appropriate values.

      We have updated the text to provide bootstrap values when invoking statements about support. An example of this is:

      “There are two clades of Chloroplastida (a group within Archaeplastida) sequences that branch robustly (>80 ultrafast bootstrap value) within the bacteria clade.”

      1. It is unclear from the text how the animal origin of the TIR domain is supported (~line 274). Please provide necessary details to support your statements in the results section.

      Our phylogenetic tree of TIR domains (Supp. Fig. 7), places C. gigas’ TIR domain (of its STING protein) clusters with high support next to other metazoan TIR domains.

      We have updated the STING section to include these lines:

      “We also investigated the possibility that C. gigas acquired the TIR-domain of its TIR-STING protein via HGT from bacteria, however this analysis also suggested an animal origin for the TIR domain (Supp. Fig. 7), as the C. gigas TIR domain clustered with other metazoan TIR domains such as Homo sapiens TICAM1 and 2 (ultrafast bootstrap value of 75). Eukaryotic TIR-STINGs are also rare, further supporting the hypothesis that this protein resulted from recent convergence, where animals independently fused STING and TIR domains to make a protein resembling bacterial TIR-STINGs, consistent with previous reports[19].”

      1. Replace similar with -> similar "to"

      We have accepted the suggestion and replaced “with” with “to”.

      1. Line 266: It was previously shown .. or it is known but not "it was previously known"

      We have rephrased the sentence to be clearer: “Some eukaryotes like C. gigas…”.

      1. The last sentence in paragraph ~line 277: "Our work also identified a number of non-metazoan STINGS...." Please expand on this and provide some of the details on this finding in the text or point to the figure that supports the statement and provide a little more detail here.

      The intent of the words on line 277 was a summary of what we had previously discussed in the STING section. For clarity we updated the text, which now reads:

      “Interestingly the non-metazoan, blSTINGs (Fig. 3C) that are found in the Stramenopiles, Haptista, Rhizaria, Choanoflagellates and Amoebozoa have a TM-STING domain architecture similar to animal STINGs but a STING domain more similar to bacterial STINGs..”

      blSTINGs are discussed in more detail earlier in the STING section (specifically paragraph 3) where we say:

      “Using maximum likelihood phylogenetic reconstruction on the STING domain alone, we identified STING-like sequences from 26 diverse microeukaryotes whose STING domains clustered in between bacterial and metazoan sequences, breaking up the long branch. We name these sequences the bacteria-like STINGs (blSTINGs) because they were the only eukaryotic group of STINGs with a bacteria-like Prok_STING domain (PF20300) and because of the short branch length (0.86 vs. 1.8) separating them from bacterial STINGs on the tree (Fig. 3C). While a previous study reported STING domains in two eukaryotic species (one in Stramenopiles and one in Haptista) [19], we were able to expand this set to additional species and also recover blSTINGs from Amoebozoa, Rhizaria and choanoflagellates. This diversity allowed us to place the sequences on the tree with high confidence (bootstrap value >70), recovering a substantially different tree than previous work[19]. As for CD-NTases, the tree topology we recovered was robust across multiple different alignment and phylogenetic tree construction algorithms (Supp. Fig. 3A).”

      1. Line 294: it is unclear which are the orphan taxa -we are directed to figure 1 but there is no notation for orphan taxa here perhaps add something to the figure to make obvious which these are.

      We have updated the text to mention these orphan taxa specifically by name.

      The text now reads:

      “The 194 viperin-like proteins we recovered came from 158 species spanning the full range of eukaryotic diversity, including organisms from all of the major eukaryotic supergroups, as well as some orphan taxa whose taxonomy remains open to debate (Fig. 1, Ancyromonadida, Hemimastigophora, Malawimonadida).”

      1. Lines 340-341 - some redundant use of eukaryotic/eukaryotes

      We have updated the text to reduce redundancy.

      1. Lines 475-480 - some further detail needed - how were sequences trimmed to the TIR domain? - what were your starting sequences? etc.

      We have updated the text detailing how we acquired a set of proteins from Interpro and how we used hmmscan to determine the coordinates for the TIR domains in those proteins. We then isolated the TIR domains (using the coordinates defined by hmmscan) and proceeded to align those sequences

      The text now reads:

      “We used hmmscan to identify the coordinates of TIR domains in a list of 203 TIR domain containing-sequences from InterPro (all 203 proteins from curated “Reviewed” selection of IPR000157 (Toll/interleukin-1 receptor homology (TIR) domain as of 2023-04-04)) and 104 bacterial TIR-STING proteins (the same TIR-STING proteins used in Fig. 3)[3]. Next, we trimmed the sequences down to the hmmscan identified TIR coordinates and aligned the TIR domains with MUSCLE (-super5). We trimmed the alignments with TrimAL and built a phylogenetic tree with IQtree (-s, -bb 1000, -m TEST, -nt AUTO).”

      1. Check that the colour schemes for branches etc are detailed in the legends of supplementary as well as main.

      We have updated the text of figure legends to be more clear about our maintenance of the same color scheme throughout the manuscript. This involved ensuring that the following statement (or an equivalent statement) was present in the figure legends of Figures 2, 3, 4, S2, S3,S4,S5,S6, and S7:

      “Eukaryotic sequences are colored according to eukaryotic group as in Fig. 1B.”

      1. The threshold set for gaps is very strict at 0.2. This seems quite strict given the sequences are potentially quite highly divergent. What length are the alignments that you are using after trimming - these details need to be included and considered.

      We have updated the text to specifically detail how long our alignments were after trimming and how that post-trimming length compares to the length of the alignment for each PFAM group.

      Specifically, the text now reads:

      “The length of these final alignments were 232, 175, and 346 amino acids long for CD-NTases, STING, and viperin respectively. These alignments represent ≥75% of the length of alignment their respective PFAM domain (PF3281 (Mab-21 protein nucleotidyltransferase domain) for CD-NTases, PF20300 (Prokaryotic STING domain) for STING, and PF404055 (Radical SAM family) for viperin.”

      1. How were sequences downsampled with PDA? Line 424.

      We have updated the text to include the PDA settings that were used to downsample sequences. The text now reads:

      “To ensure the combined HMM did not have an overrepresentation of either bacterial or eukaryotic sequences, we downsampled the bacterial sequences and eukaryotic sequences to obtain 50 phylogenetically diverse sequences of each, and then combined the two downsampled lists. To do this, eukaryotic and bacterial sequences were each separately aligned with MAFFT (default parameters), phylogenetic trees were built with FastTree (v2.1.10)[77], and the Phylogenetic Diversity Analyzer (pda/1.0.3)[78] software with options -k 50 or -k 500 with otherwise default parameters was run the the FastTree files to downsample the sequences while maximizing remaining sequence diversity.”

      1. Please provide adequate descriptions for the materials in the supplementary files for the manuscript, they currently lack description. They are useful and we fully support their inclusion with sufficient information.

      We have expanded the descriptions of the provided supplementary files.

      1. The starting sequences, hmm pipeline and scripts would be great to include, apologies if we have missed them.

      We have added the starting bacterial sequences to the supplementary data, as well as the final HMMs, and the one script that we used in our analysis. All other software (including the included script) is freely and publicly available.

      Significance

      This study provides us with examples of instances where a medley of different mechanisms have resulted in the emergence of innate immune proteins across eukaryotes. The study is entirely bioinformatic in nature and provides some nice cases for future study. The thorough search strategies are to be commended. The limitations of the work are that we don't know whether the functions have also been conserved across deep time and/or in the independent events described. Nevertheless, this work contributes to a growing body of evidence on the complex, and sometimes shared, nature of the evolution of animal and bacterial immunity. I would classify this nice study as a conceptual advance of our understanding of the evolution of protein families through deep time and would imagine it is of interest to a broad audience of biologists from immunologists to evolutionary biologists and structural biologists.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Culbertson and Levin takes a bioinformatic approach to investigate the evolutionary origins/trajectories of three different proteins domains involved in innate immunity in both bacteria and eukaryotes: cGAS/CD-NTases, STING, and Viperins. To perform this analysis, the authors apply an iterative homology search model to the EukProt database of eukaryotic genomes. Their analysis finds that that eukaryotic CD-NTases arose from multiple horizontal gene transfer events between bacteria and eukaryotes. They also fill in an important gap in understanding how STING from bacteria evolved into modern human STING by identifying blasting in diverse eukaryotes. Finally, they determine that Viperins are an ancient protein family that likely existed in LECA, but found two more recent HGT events for proteins related in Vipirin.

      Major comments

      1. The hypothesis for the origin of STING via convergent domain shuffling could be handled with a little more care in the text. The authors show that homologs of STING from animals can also be found in the genomes of diverse eukaryotes outside the metazoa, demonstrating (1) STING and cGAS have had different histories, and (2) that these sequences are more bacteria-like than metazoan STING. However, in multiple places (the title, line 275, elsewhere) the term "convergence" could be misleading. "Convergence" leaves the reader with the impression that there is no common ancestor between the STING domain from bacteria and eukaryotes. I understand that the authors are using "convergent domain shuffling" to draw this distinction, but I'm unsure if a naïve reader will glean the distinction between domain shuffling and STING itself converging. I would argue that we simply cannot place eukaryotic STING and blSTING proteins on the tree of bSTING sequences. i.e. blSTING are no more related to bacterial TM-STING than bacterial TIR-STING (likely the missing bSTING sequences are simply extinct?). Can the authors curate their language to state more simply that STING likely arose through horizontal gene transfer, but it is unlikely that bacterial TM-STING is the unequivocal progenitor?

      We thank the reviewer for this comment, and we absolutely agree that we should be clearer about the distinction between convergence and convergent domain shuffling. We have changed the title and edited the text to increase clarity. In addition, we have clarified what our data does and does say about the evolutionary history of STING. We feel that our STING tree (Fig.3 C), due to a general sparseness of eukaryotic and bacterial sequences, is insufficient to confidently call if eukaryotes acquired STING by HGT or if STING was present in the LECA.

      We have added the following to clear up this issue:

      “Overall, the phylogenetic tree we constructed (Fig. 3C) suggests that there is domain-level homology between bacterial and eukaryotic STINGs, but due to sparseness and lack of a suitable outgroup, this tree does not definitively explain the eukaryotic origin of the STING domain. However, the data does clearly support a model in which convergent domain shuffling in eukaryotes and bacteria generated similar TM-STING and TIR-STING proteins independently.”

      Minor Comments

      1. Spelling error in Figure 3B and 3C: "cannoical"

      Thanks, we have corrected this error.

      1. Figure 5 could be improved to more clearly articulate the findings of the manuscript. In A, it's unclear how OAS relates to Mab21 and a reader not paying close attention might think that OAS was part of the gene duplications after Mab21 was acquired. The LECA origins of OAS are also not presented (albeit, these are still defined in the legend). In B, this panel would suggest that there was not horizontal transfer of STING from bacteria to eukaryotes but rather both domains of life received STING from a separate source. My understanding is STING did likely arise in bacteria, however, the assumption that extant TM-STING in bacteria is the predecessor of TM-STING in eukaryotes is not well supported. Similarly for the TIR domain.

      We have updated Fig. 5 to more clearly show that OAS was likely in the LECA and that eSMODS and cGLRs were HGT’d from bacteria to other eukaryotic lineages. For STING, it was not our intent to imply that the extant TM-STING in bacteria is the predecessor of TM-STING in eukaryotes, and we agree with the reviewer that this is unlikely. Although we do not have sufficient data to speak to the origin of the STING domain itself, we do feel confident in our evidence of domain shuffling. Our illustration in Fig 5B was meant to correspond to the following statement: “Drawing on a shared ancient repertoire of protein domains that includes STING, TIR, and transmembrane (TM) domains, bacteria and eukaryotes have convergently evolved similar STING proteins through domain shuffling.” We believe this inference valid and best describes our results for STING.

      1. Line 119: While the role of Mab21L1-2 are established for development, I'm unaware of a role for MB21D2 in development (or any other phenotype).

      We agree with the reviewer that MB21D2 has not been shown to have any phenotype and have corrected the wording to clarify this point.

      The line now reads “However, the immune functions of Mab21L1 and MB21D2 remain unclear, although Mab21L1they has been shown to be important for development[29–31].”

      1. Line 210: "Gamma" should be "genes"

      We have corrected this error and replaced the word.

      Reviewer #3 (Significance (Required)):

      This work is of high quality, is timely, and will have a large impact on shaping the field. The origins and evolution of antiviral immunity from bacteria to eukaryotes have been investigated from multiple angles. While the phylogeny and evolutionary trajectory of these genes have been traced in bacteria, there have been relatively fewer analyses across diverse (non-metazoan) eukaryotes. For this reason, I am confident that this manuscript will help future researchers select homologs for investigation and guide similar analyses of other bacterial defense systems.

      A particular challenge of this work is accounting for gene loss across taxa and weighing that possibility against horizontal gene transfer. The authors are conservative in their conclusions and well-reasoned. The comments I have can be addressed with changes to the writing and emphasis of certain points.

      I expect these findings to be of interest to a broad audience of evolutionary biologists, microbiologists, and immunologists.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Describe your expertise? Molecular Evolution, Mechanisms of Protein evolution, Phylogenomics, Adaptation.

      Summary: This manuscript broadly aims to improve our understanding the evolutionary relationships between eukaryote and bacterial protein families where members of those families have immune roles. The study focusses on three such families and samples deeply across the eukaryotic tree. The approaches taken include a nice application of the EukProt database and the use of homology detection approaches that are sensitive to the issues of assigning homology through deep time. The main findings show the heterogeneity in means by which these families have arisen, with some of the families originating at least as far back as the LCA of eukaryotes, in contrast the wide spread yet patchy distribution of other families is the result of repeated independent HGT events and/or convergent domain shuffling.

      Major Comments:

      1. Overall the level of detail provided throughout the manuscript is lacking, perhaps the authors were constrained by a word limit for initial submission, if so then this limit needs to be extended to include the detail necessary. In addition, there are some structural issues thorughout, e.g. some of the very brief intro (see later comment) reads a little more like methods (paragraph 2) and abstract (paragraph 3). The results section is lacking detail of the supporting evidence from the clever analyses that were clearly performed and the statistics underpinning conclusions are not included.
      2. The intro and discussion both include statements about some recent discoveries that bacteria and mammals share mechanisms of innate immunity - but there is no further detail into what would appear to be important work leading to this study. This context needs to be provided in more detail therefore I would encourage the authors to expand on the intro to include specific detail on these significant prior studies. In addition, more background information on the gene families investigated in detail here would be useful e.g. how the proteins produced influence immunity etc should be a feature of the intro. A clear and concise rationale for why these 3 particular gene families (out of all the possible innate immune genes known) were selected for analysis.
      3. Context: Genome quality is always a concern, and confirming the absence of an element/protein in a genome is challenging given the variation in quality of available genomes. Low BUSCO scores mean that the assessment of gene loss is difficult to evaluate (but we are not provided with said scores). Query: in the results section it states that the BUSCO completeness scores (which need to be provided) etc were insufficient to explain the pattern of gene loss. I would like to know how they reached this conclusion - what statistical analyses (ANOVA?? OTHER??) have been performed to support this statement and please include the associated P values etc. Similarly, throughout the paper, including in the discussion section, the point is brushed over. If, given a statistical test, you find that some of the disparity in gene presence is explained by BUSCO score, most of your findings are still valid. It would just be difficult to make conclusions about gene loss.
      4. In terms of the homolog search strategy - line 394 - can you please state what an "outgroup gene family" means in this context. It is unclear but very important to the downstream interpretation of results.
      5. For reproducibility, the materials and methods section needs to provide more detail/sufficient detail to reproduce these results. E.g the section describing phase 1 of the euk searches the text here repeats what is in the results section for the crystal structure work but doesn't give me any information on how, what method was used to "align the crystal structures", what scoring scheme is used and how the scoring scheme identifies "the core"? What specific parameters are used throughout. Why is MAFFT the method of choice for some of the analyses? Whereas, in other cases both MAFFT and MUSCLE are employed. What are the specific settings used for the MAFFT alignments throughout - is it default (must state if that is the case) or is it MAFFT L-INS-I with default settings etc.
      6. The justification for the number of HMM searches needs to be included. The choice of starting points for the HMMs was cryptic - please provide details. It is likely that you ran the search until no more sequences were found or until sequences were added from a different gene family, and that these happened to be between 3 and 5 searches, but it reads like you wanted to run it 3 or 5 times and that corresponds to the above condition. Something like this would be clearer: "The profile was [...] until no more sequences were found or until sequences from other gene families were found which was between 3 and 5 times in all cases" - the same is true of figure 1.
      7. Why do you limit hits to 10 per species - might this lead to misleading findings about gene family diversity? Info and justification for approach is required (411-412)
      8. The information in Supplementary Figure 3 is quite difficult to assess visually, but I think that is what is expected from that figure. However, this is an important underpinning element of the work and should really be quantitatively assessed. A metric of comparison of trees, with defined thresholds etc there are many out there, even a simple Robinson-Foulds test perhaps? Essentially - comparing the panels in Supplementary Figure 3 by eye is unreliable and in this case not possible given there are no labels. It would also be important to provide these full set of phylogenies generated and associated RF/other scores as supplementary file.
      9. Does domain shuffling mean that phylogenetic reconstruction is less valid? How was the alignment performed in these cases to account for this.

      Minor Comments:

      1. I am not sure about the use of the term "truly ancestral" or variants thereof, same issues with "significant homology" and "inherited since LECA and possibly longer" .. these are awkwardly phrased. E.g. I think perhaps "homologous across the whole length" might be clearer, and elsewhere "present in LECA and possibly earlier" may be more fitting.
      2. Line 75 - "Detecting" rather than discovering?
      3. 132-133 - more justification is needed for the choice of bacterial genes.
      4. For the downsizing from 6000 to 500 what were the criteria and thresholds.
      5. How are you rooting your trees e.g. figure 2? Information is provided for Viperin but not others.
      6. In the results section on CD-NTases I think it would be best to place the second paragraph detailing the role of cGAS earlier in this section, perhaps after the first sentence.
      7. Is FASTtree really necessary to include as it will underperform in all instances? Removing that method and comparing the remaining two (i.e. IQTREE and RAXML) - what level of disagreement do you find between the 2 alignment and 2 tree building methods? The cases that disagree should also be detailed.
      8. Again a structural point - the start to paragraph "To understand the evolutionary history of CD-NTases we used the Pfam domain PF03281 as a starting point", I don't know at this point why or how you have done this. The sentence seems a little premature. I would therefore suggest that you start that paragraph with your motivation, "In order to..." and then finish that paragraph with your sentence in quotes above which actually summarises the paragraph.
      9. Line 148 - "within" change to "before"?
      10. Unclear from text as is whether you found any STING homologs in arthropods (~line 157). Please update the text for clarity. Would also suggest that "agreeing" should be replaced with "aligning".
      11. Line 169 - If clade D is not a clade, maybe it should be called something different.
      12. Line 188-190 - In principle, max likelihood should be able to infer the right tree even with high divergence.
      13. Paragraph starting at 199 - eSMODS - always unknown function or mostly - could be important.
      14. For calling HGT you state that one of the criteria is that the euk and bac sequences branched near one another, what is "near" in this scenario?
      15. In legends be specific about what type of support value, e.g. bootstrap or jack-knife.. I think it is always bootstrap but would be good to have that precision.
      16. Throughout the text if stating e.g. "clustered robustly and with high support" please provide the appropriate values.
      17. It is unclear from the text how the animal origin of the TIR domain is supported (~line 274). Please provide necessary details to support your statements in the results section.
      18. Replace similar with -> similar "to"
      19. Line 266: It was previously shown .. or it is known but not "it was previously known"
      20. The last sentence in paragraph ~line 277: "Our work also identified a number of non-metazoan STINGS...." Please expand on this and provide some of the details on this finding in the text or point to the figure that supports the statement and provide a little more detail here.
      21. Line 294: it is unclear which are the orphan taxa -we are directed to figure 1 but there is no notation for orphan taxa here perhaps add something to the figure to make obvious which these are.
      22. Lines 340-341 - some redundant use of eukaryotic/eukaryotes
      23. Lines 475-480 - some further detail needed - how were sequences trimmed to the TIR domain? - what were your starting sequences? etc.
      24. Check that the colour schemes for branches etc are detailed in the legends of supplementary as well as main.
      25. The threshold set for gaps is very strict at 0.2. This seems quite strict given the sequences are potentially quite highly divergent. What length are the alignments that you are using after trimming - these details need to be included and considered.
      26. How were sequences downsampled with PDA? Line 424.
      27. Please provide adequate descriptions for the materials in the supplementary files for the manuscript, they currently lack description. They are useful and we fully support their inclusion with sufficient information.
      28. The starting sequences, hmm pipeline and scripts would be great to include, apologies if we have missed them.

      Significance

      This study provides us with examples of instances where a medley of different mechanisms have resulted in the emergence of innate immune proteins across eukaryotes. The study is entirely bioinformatic in nature and provides some nice cases for future study. The thorough search strategies are to be commended. The limitations of the work are that we don't know whether the functions have also been conserved across deep time and/or in the independent events described. Nevertheless, this work contributes to a growing body of evidence on the complex, and sometimes shared, nature of the evolution of animal and bacterial immunity. I would classify this nice study as a conceptual advance of our understanding of the evolution of protein families through deep time and would imagine it is of interest to a broad audience of biologists from immunologists to evolutionary biologists and structural biologists.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thanks the reviewers for their critique of our report and our responses to all of their comments are given below.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary Toxoplasma gondii is an obligate intracellular parasite. Intracellular survival critical depends on secretory vesicles named dense granules. These vesicles are predicted to contain >100 different proteins that are released into PV, PV membrane and the host cell to control the parasites intracellular environment and host cell gene expression and immune response. How and where these vesicles are released from the parasite is a long-standing question in the field because T. gondii, and other apicomplexan parasites contained a complex pellicular cytoskeletal structure called the IMC which limits dense granule access to the plasma membrane. In this manuscript by Chelaghma, Ke and colleagues demonstrates for the first time that dense granules are secreted from the parasite at pore structures called the apical annuli. The authors used their previously generated HyperLOPIT data set and identified a plasma membrane protein that is specifically enriched at the apical annuli. Using BioID the authors then identify three SNARE proteins that also localize at the apical annuli. The localization of these proteins is determined using excellent super-resolution structured illumination microscopy. Conditional protein knockdowns for all four proteins were created and both proteomics and microscopy used to demonstrate a reduction in dense granule secretion in the absence of these proteins. Collectively, these data make new and substantial contributions to our understanding of mechanisms of dense granule secretion. Major comments: Overall, these data is convincing and well-described. The text is clear and well written. There are a few instances (see below) where the authors doesn't adequately describe the data or over state the strength of the results. These issues could all be addressed editorially or by process existing data.

      Comment 1.1

      The authors use proteomics and IFA to show that there is a reduction (rather than an inhibition of) in dense granule secretion. However, from the phase images in figure 5, the vacuoles of KD parasites look normal and so not have the phenotypes that one would expect after a significant reduction in dense granule secretion, such as the "bubble" phenotype described for GRA17 and GRA23 knockouts (Gold et al 2015; PMID: 25974303). Authors should describe their findings in the context of the expected phenotypes based on the published literature. The statement on line 369-371 is too strong and should imply a reduction rather than an inhibition of dense granule secretion.

      Authors’ response: It is difficult to compare our results to individual dense granule protein mutants described in the literature because such phenotypes are the result of the loss of only a single protein being exported to the host, whereas we are observing the effects of the reduction of secretion of up to 120+ different proteins. Furthermore, we agree with this reviewer that none of the protein knockdowns appear to completely prevent dense granule secretion, which we implied by ‘inhibition’, and this could be either due to incomplete knockdown of each of these proteins with some residue function, or some redundancy where other proteins can contribute to secretion. We have changed the statement flagged by this reviewer to: ‘Depletion of all four of these proteins affects dense granule secretion*’ to avoid the interpretation of complete loss of function. We now further state that residual secretion may still occur and consider this in the light of possible reasons for this (Discussion, paragraph 4). In any case, none of these considerations change our conclusion that these proteins, at the site of the apical annuli, are implicated in dense granule secretion. *

      __Comment 1.2 __

      The more severe phenotype observed in the AAQa iKD and the additional localizations of AAQa and AAQc suggests an additional role for these protein in protein trafficking that is supported by the authors data. In both AAQa and AAQc there appears to be an accumulation of GRA1 in a post-Golgi compartment and is less vesicular in appearance than the phenotype observed in the AAQb iKD parasites. Additionally, I disagree with the authors assessment that KD of these proteins does not effect microneme localization. In both AAQa and AAQc there appears to be increased number of micronemes at the basal end of the parasites compared with controls. Although this is not a direct focus of the authors papers, a description of these findings should be included in the results and discussion sections.

      Authors’ response: We have included a more complete discussion that considers the differences in phenotypes of the four mutants, including additional locations of two SNAREs, all of which is consistent with known SNARE biology (Discussion, fourth paragraph). These considerations, however, have no impact on our conclusions where all four proteins, including two that are exclusive to the apical annuli, have equivalent effects on dense granule exocytosis.

      Concerning the effects on microneme and rhoptries of the different knockdowns, we have modified and limited our interpretation to overall IFA staining strength and protein organelle protein abundance by proteomics, where we see no differences. This addresses if there is a major post-Golgi trafficking defect that could affect biogenesis of all of micronemes, rhoptries and dense granules, for which we see no evidence. Whether there are subtle differences in the location of these organelles, which are known to show some variability, is beyond the scope or relevance to our central questions. Given that growth phenotypes are seen for all mutants, it is quite possible that secondary effects of retarded cells might present as some disorder within the cell, although we saw nothing conspicuous of this nature in many hundreds of examples observed.

      __ Comment 1.3__

      Presentation of the data in Figure 5. This figure contains images where the fluorescent dense granule signal is overlaid on phase images. However, in some cases (AAQb, AAQc, AAQa, GRA1 KD) the merged imaged looks like a straight merges of the two images, whereas in the rest of the images it looks like a thresholded fluorescent image is merge with phase. Authors need to process the images in consistent manner and provide a description of the image processing in the figure legend and materials and methods.

      Authors’ response: Thank you for this suggestion, we have now processed all of these merges the same way (ImageJ -> merge channels -> Composite Sum). While the merges are only intended to aid in aligning the fluorescence signal with the phase image, we agree that it is better to present them the same way.

      Minor comments:

      Comment 1.4

      The discussion is overly long and could be shorted in some places. Lines 373 and 388 in particularly don't seems directly relevant to the manuscript.

      Authors’ response: The paragraph identified by this reviewer considers the LMBD protein that is the first, and currently only, trans plasma membrane protein specific to the apical annuli that implies that this structure is exposed to the exterior of the cell. It is, therefore, of considerable significance to how we interpret the function and behaviour of these annular structures. We believe that it is very relevant to our study to consider what else is known about these relatively mysterious, but widely conserved, eukaryotic proteins, which is the subject of this paragraph. The other reviewers highlight the relevance of LMBD3 to the interpretation of this structure. This reviewer hasn’t identified any further superfluous discussion elements, and we believe that the current length is not excessive and is justified.

      Comment 1.5

      Line 184 - Remove question mark from this sentence

      Authors’ response: The question mark has been removed.

      Comment 1.6

      Line 321. Should read Figure 7A, not figure 6A.

      Authors’ response: Thank you, corrected.

      Comment 1.7

      Line 139 - should read Figure 1B instead of 2C

      Authors’ response: Thank you, corrected (although to 1C, which is in fact correct).

      Comment 1.8

      Figure 3- Column labels for early, mid, or late endodyogeny would help with the clarity of this figure, especially for readings who are unfamiliar with the field.

      Authors’ response: We have labelled the figure as suggested.

      Comment 1.9

      Figure S2 - the letter n is missing from knockdown labels. And the number 3 from LMBD 3 is covering the word knockdown in the last panel.

      Authors’ response: Thank you, corrected.

      Reviewer #1 (Significance (Required)):

      The manuscript provides, for the first time, insight into the mechanism of dense granule secretion in Toxoplasma and identifies the sites on parasite pellicle where these vesicles can traverse the IMC to reach the plasma membrane. This is a significant conceptual advance in our understanding of this cellular vital process, one that is required for T. gondii intracellular survival. This paper would have broad interest from other research groups studying parasitology, secretion and protein trafficking.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript reports on characterizing the function of the long-known apical annuli, which are pores embedded in the membrane skeleton of Toxoplasma gondii. Since their function has remained long elusive, this manuscript is a major breakthrough.

      Comment 2.1

      It is of note, however, that this breakthrough, using the same three SNAREs, was recently, in parallel, also reported by Fu et al in PLoS Pathogens (PMID 36972314), which work is cited here. The additional novelty here is the finding of LMDB3 in the plasma membrane at the site of the annuli. This is a widely conserved protein for which little function is known except roles in signaling, The connection between LMDB3 and the SNAREs is through BioID, but they are preys quite far down the list. Furthermore, the function of LMDB3 is not explored here. As such, the additional advance compared to the Fu et al report is limited. The function of the SNAREs in dense granule exocytosis is much more robustly done here through the proteomics data displaying an accumulation of DG proteins.

      Authors’ response: While it is true that the discovery of the three SNAREs at the apical annuli was made and reported in parallel by Fu et al (2023), a major difference in their conclusions is that they suggest that dense granules are not secreted at this site (this reviewer has mistakenly thought that this was their conclusion — “In our experiments, none of the SNAREs were shown to be related to the exocytosis of GRAs. Therefore, the mechanism that mediates exocytosis of GRAs at the plasma membrane remains to be elucidated.” Fu et al (2023)*). The failure of Fu et al to detect this was almost certainly because they only tested for dense granule secretion defects by inducing depletion of the apical annuli SNAREs after the parasites had invaded the host cells. It is known that dense granule protein secretion happens rapidly in the initial moments after invasion, so apical annuli perturbation in their assay would have only occurred after these secretion events. We directly discuss this experimental difference in our revised discussion and how it accounts for their different conclusions (Discussion, fourth paragraph). We independently tested for this effect by quantitative proteomics which further supported our conclusions. *

      As this reviewer indicates, we additionally discovered that a protein (LMBD3) also spans the plasma membrane at these structures, and this implicates signalling or events at the cell surface. We show that this protein is also required for normal dense granule secretion. While we have not identified an explicit mechanistic role for LMBD3 in this process, such insight is also lacking for all LMBD proteins, including those in humans where they are implicated in disease. While we continue to pursue this interesting question of LMBD3 function, we are by no means alone in cell biology for these answers to be outstanding still.

      Comment 2.2

      The presentation of the data is very clean and convincing, and the broader evolutionary context is well-presented as well. The discussion on whether maintaining the IMC during cell division is an innovation or ancestral is an open debate where the authors seem to come down on the side of innovation, but the evidence could go either way, so I would caution a bit more.

      Authors’ response: We are puzzled by this reviewer’s comment because we do not make reference to the maintenance of the IMC during cell division in this evolutionary context — ancestral or a recent innovation. We describe the case of Toxoplasma and its close relatives maintaining the maternal IMC during division as ‘unusual’, not ancestral (second sentence of the last paragraph of the Discussion), and this is the only statement that we think might have elicited this query from the reviewer. But this does not imply what the ancestral state might have been which is not a subject of any of our considerations here.

      Major comments: - Are the key conclusions convincing?

      Comment 2.3

      The identification of the three SNARE proteins through BioID is not very convincingly represented in Table S1. These SNAREs were not showing significant changes and were not detected universally across the three bio-reps, and thyn were also present in the controls. Although this does not diminish the message of the work, this appears to be quite Cherry-picked, while other top hits in the BioID were overlooked, e.g. Nd6 and Nd2 are right in the top ten, which have a demonstrated role in rhoptry exocytosis. This certainly piqued my interest, but is not even discussed.

      *Authors’ response: We have used BioID as a protein discovery strategy, not to directly measure protein proximity for which it is an imperfect measure for many technical reasons. Accordingly, discovered ‘candidates’ for proteins that might occur at the annuli were all independently verified by protein reporter tagging. We focused our efforts on discovering apical annuli plasma membrane-tethered proteins and, therefore, parsed our BioID data for those shown previously to be in the plasma membrane by LOPIT spatial proteomics (Barylyuk et al, 2020). It is true that the SNARE proteins were not favoured over many other proteins in the BioID signal, but their verified location at these sites justified our pursuit of them as new apical annuli proteins. *

      Other proteins, including the previously identified apical proteins Nd6 and Nd2 that are implicated in rhoptry secretion, similarly piqued our interest! But when we reporter-tagged them they were revealed as BioID false positives, consistent with published work on these proteins, and other ‘top hits’ included some other false positives. Table S1 is included as a further recourse for the field, but it only served as a first step in functional protein discovery in our study.

      Comment 2.4

      TgAAQa, TgAAQb and TgAAQc were recently also reported to localize to the annuli by Fu et al 2023 (PMID: 36972314; this report is even cited in this manuscript for Rab11a accumulation), who gave them different names: TgStx1, TgStx20, and TgStx21 (not in this order). I see no reason to adopt a new nomenclature here, which will be very confusing in the future literature. Please adopt the Stx names in this manuscript.

      *Authors’ response: We agree that where there is precedent in naming it is better to use the earliest used names. Naming of proteins is also best done to reflect orthologues found between species so that consistent names indicate common functions. The naming system proposed by Fu et al for the Qa, Qb and Qc SNAREs unfortunately does not fulfil this second important criterion. They based their names on ‘Syntaxin’ which was first used for an animal SNARE of the nervous system that is almost exclusively used for Qa paralogues. Furthermore, in animals Stx1-4 are all vertebrate-specific Qa paralogues that have arisen only in this group. So, to name the Qa SNARE of Toxoplasma according to one of these animal-specific nerve proteins (Stx1) implies an evolutionary inheritance that is very unlikely (i.e., lateral gene transfer from an animal) and is unsupported by published phylogenies. Furthermore, Fu et al also give the Qb and Qc SNAREs the animal Qa name ‘syntaxin’, and arbitrarily number them Stx21 and Stx20. So, while they have named these proteins first, we think that the names given provide confusing and misleading labels for these proteins. *

      We initially proposed a simpler system according to the location of the SNARE in Toxoplasma (AA = Apical Annuli) and the Q domain type (Qa, Qb, Qc), e.g., AAQa. But on reflection we propose using precedent and orthology and adopt the existing orthologue names as the most useful solution. Klinger et al (2022) have resolved the phylogeny of the three Toxoplasma SNAREs, and they group with strong phylogenetic support with known eukaryote-wide orthogroups with previous names: Qa=StxPM (Syntaxin Plasma Membrane); Qb=NPSN (Novel Plant ‘Syntaxin’); and Qc=Syp7 (a Qc SNARE family originally thought to be specific to plants). These SNARE types are all known to operate at the plasma membrane, and accordingly the names TgStxPM, TgNPSN, and TgSyp7 would indicate their orthology and similar functional location known in other eukaryotes. We have justified this preferred naming system in the text of our report (Discussion, third paragraph), but making it clear which Fu et al names correspond to these more universally consistent names so that these can be easily cross-referenced.

      Comment 2.5

      No knock-down of LMBD3 is pursued: how would this impact SNARE distribution and/or other annuli proteins? The fitness score is very severe, -4.07, so this is somewhat puzzling. Lower comment is related. This could provide tantalizing insights in the architecture of the annuli, and/or their function as a secretory conduit.

      LMBD3 relative to the SNAREs is not explored: co-IPs or detergent extraction to see if they are all in a physically interacting complex. What keeps them together. Is LBCDR3 interfacing with any annuli proteins Cen2 is suggested through the image in Fig 2A, though there appears to be some separation in some images: AAP2, 3 and 5 were previously shown to have smaller diameters than Cen2 and therefore appear better positioned.

      Authors’ response: LMBD3 knockdowns were pursued in so far as identifying that they also have a phenotype of reduced dense granule secretion as for the SNAREs, but it will indeed require further studies of this intriguing molecule to define its specific function. Our central questions of this study were what is the association of the apical annuli with respect to the IMC and plasma membrane, and what is the overall significance and function of these structures. These core questions have been answered in our study. The questions that this review raises here are further and logical questions specifically related to LMBD3 that we are now pursuing as an independent follow-on study.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      Comment 2.6

      The discussion on whether maintaining the IMC during cell division is an innovation or ancestral is an open debate where the authors seem to come down on the side of innovation, but the evidence could go either way, so I would caution a bit more.

      Authors’ response: This comment (2.2) is already made and addressed above.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      Comment 2.7

      The heavy focus on the LMBD3 in Fig 1 and the evolutionary discussion would warrant a more direct functional dissection. Either through an LMDB3 known-down, or its interface with the SNAREs or annuli more directly.

      Authors’ response: This reviewer has not made it clear that further work on LMBD3 is necessary to support the conclusions of the paper or address the questions that we have asked, only that they would like to see more insight into LMBD3. We would also! But we do present knock-down studies and show that there are functional consequences for dense granule secretion. The question of if LMBD3 is involved in the maintenance of apical annuli structure and/or integrity is an interesting one, but a further question to those that we have presented in this first study. LMBD proteins have poorly characterised molecular functions throughout eukaryotes, and while we are also motivated to understand their role more, this has not proven a straightforward task in other systems also.

      Comment 2.8

      The claim that the annuli are the conduits though which the dense granules travel to get exocytosis is not directly supported by any of the experiments as it is solely based on co-localization studies, not even direct interactions.

      Authors’ response: We agree that we have not directly observed dense granules in the act of secretion at the apical annuli. Dense granules are known to be very mobile in the cell and traffic dynamically on actin networks. So, they do not accumulate at any one site, and their fusion and exocytosis is likely a rapid, transient event. Multiple lines of evidence for them pausing and fusing with the plasma membrane, while indirect, independently support this conclusion:

      • SNARE proteins restricted to the apical annuli in the plasma membrane are required for normal dense granule secretion
      • When these SNAREs are depleted dense granule proteins accumulate in the parasite
      • Rab11A is a further vesicle-tethering molecule that has been shown to be attached to dense granules and its mutation also leads to inhibition of dense granule proteins (Venugopal et al, 2020)
      • When the apical annuli SNAREs are depleted Rab11A accumulates at the annuli (Fu et al, 2023) Collectively, we believe that the claim that the apical annuli are the sites of dense granule secretion is very strongly supported, particularly by the very molecules that would be required for vesicle docking and fusing at these sites, and is justified to be noted in the title. We have, however, made it clear in our report now that these data are indirect and that dense granules are yet to be captured in the act of secreting their contents at these sites (Discussion, paragraph five).

      **Referees cross-commenting**

      The consolidating themes I see (and value) in the reviews:

      Comment 2.9

      1. functional follow up of role of LMDB3 Authors’ response: This work is already part of a follow-up project.

      Comment 2.10

      adopt nomenclature of Fu et al, to avoid confusion in literature

      Authors’ response: Please see our response to Comment 2.4

      Comment 2.11

      better integrate the findings in light of the Fu et al publication throughout this manuscript

      *Authors’ response: We have further acknowledged and compared our findings to those of the parallel study of Fu et al with additional text in the discussion. *

      Comment 2.12

      no direct evidence of dense granules at annuli; attenuate the claims (in title etc), or include supportive data

      Authors’ response: Please see our response to the equivalent Comment 2.8 above.

      Reviewer #2 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field.

      Comment 2.13

      The presented manuscript reports on a novel protein, LMBD3, embedded in the plasma membrane of Toxoplasma gondii at the site of the apical annuli, which are pores across the inner membrane complex (IMC) skeleton. This provides a novel, putative connection between the cytoplasm and plasma membrane, although this is not directly explored here. Through LMDB3 proximity biotinylation, three SNAREs are identified that were recently reported to be involved in dense granule exocytosis, which is is confirmed here through robust proteomic experiments.

      Authors’ response: This reviewer has made an error here in stating that the parallel study of Fu et al implicated the apical annuli SNAREs with dense granule exocytosis. See our response to Comment 2.1 where we describe why the experimental design used for Fu et al was unlikely to test this question effectively.

      • Place the work in the context of the existing literature (provide references, where appropriate). The annuli were first reported in 2006, and understanding of their proteomic composition has expanded over the years, however, a function has remained long elusive. This report, together with another parallel performed work, now uses three SNAREs, named TgAAQa, TgAAQb and TgAAQc in this report but previously named TgStx1, TgStx20, and TgStx21 (not in this orthologous order), localizing to the annuli as tool to assign the function of the annuli to exocytosis of the dense granules during intracellular parasite multiplication. The evolutionary context and concepts of the new findings are very well-embedded in the existing literature and insights.

      • State what audience might be interested in and influenced by the reported findings. The audience comprises people with a specific interest beyond apicomplexan biology, basically all Alveolates as they all share a similar membrane skeleton. Assigning a putative function to widely conserved LMBD3 will be of high interest to this completely different audience as well.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the submitted work "Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma", the authors explore the role of the apical annuli in T. gondii. They identify a number of proteins that localize to the membranes at the annuli, including SNARE proteins that are known players in vesicle fusion. They also shown that knockdown of several annuli localized proteins blocks replication and secretion of dense granule cargo into the parasitophorous vacuole. Overall, the work is well done and an important contribution to the field.

      Major comments

      Comment 3.1

      1. In the title and throughout the manuscript the authors claim that the apical annuli are sites of dense granule secretion (e.g. "firmly implicating the apical annuli as the site of dense granule docking and membrane fusion." or "that the apical annuli are sites of vesicle fusion and exocytosis"). However, there does not appear to be direct evidence of the dense granules docking and fusing at these sites.

      It would be ideal to see vesicles docked via EM at the annuli, either in wildtype or knockdown parasites. This may not be possible - if not, I recommend toning down the conclusions on docking (or "specialized sites of secretion" as this has not been shown) and instead stating that these structures play a critical role in dense granule secretion. Authors’ response: Please see our response to Comments 2.8 & 2.12, and we have toned down this conclusion as requested to make it clear that direct observations of dense granule fusion are yet to be made. Capturing the transient event of dense granule docking by EM would indeed be a very challenging ambition.

      Comment 3.2

      The authors should discuss earlier (in the results) the findings of Fu et al. which:

      Authors’ response: The parallel study of Fu et al (2023) has indeed generated some similar data, but there are also multiple points of difference including their conclusions. We discuss all of these relevant points in the Discussion, and believe that it would make the Results narrative confusing to introduce this element of discussion there. Our study has not been performed in response to theirs, but rather was conducted in parallel.

      • show the localization of some of the same SNAREs at the apical annuli. Fu et al also see localization to the plasma membrane separate from the annuli for some of these proteins. Do you see plasma membrane spots as well upon longer exposures? Can differences be explained by the position or type of tag used?

      Authors’ response: Fu et al have indeed used different reporters and expressed the SNARE fusion proteins with different non-native promoters. They used a very bulky reporter which combined 12 HA tags as well as the large Auxin-Inducible Degron (AID), and together it is possible that they observe some mistargeting artefacts. For our location studies we used the small epitope 3xV5 only. We did not see the additional locations that they report, and this may be due to the larger modification that they made to these proteins.

      • Fu et al also shows similar plaque defects in the knockdowns and loss of trafficking of plasma membrane proteins to the periphery. In general, the studies from this group are very complementary - they should be better acknowledged.

      Authors’ response: We have included more frequent reference and comparison to the Fu et al study now in our Discussion.

      • Fu et al see an invasion defect but no defect in GRA secretion - Do you see an invasion defect? These differences should be discussed

      Authors’ response: See our response to Comments 2.1 & 2.13 regarding why the Fu et al could not detect the GRA secretion defect. We discuss this in our Discussion now (Discussion paragraph four). We also consider the Fu et al study of an invasion defect as flawed. Both our and their study show that depletion of apical annuli SNAREs has a strong replication phenotype of parasites within the host vacuole. Given induced SNARE depletion must occur during this growing stage of the parasites, to ask if apical annuli could be involved directly in invasion processes requires testing for invasion competence of already very sick cells. It is, therefore, not possible to control for secondary effects on invasion incompetence due to general cell malaise. Furthermore, Fu et al report on invasion efficiency using an assay that relies on SAG1 presentation on the cell surface. However, they conclude independently in their study that SAG1 delivery to the surface is inhibited in their SNARE knockdowns. This further confounds any attempt to reliable measure invasion and any role for these SNAREs in this process. Therefore, for biological as well as technical reasons, we have not tested for a possible role of annuli in invasion.

      • It would be helpful for the field to use the same nomenclature whenever possible. Is it possible to use the naming described earlier?

      Authors’ response: Please see our response to Comment 2.4.

      Comment 3.3

      Fig 1C - The authors use trypsin shaving to demonstrate plasma membrane localization of LMBD3. They are probably correct - but it is important to definitively distinguish between plasma membrane and IMC membrane localization. a. The western blot bands for GAP40 should be quantified. It appears that GAP40 is also reduced and it could be reduced to a similar extent as SAG1 without quantification. In addition, this protection from digestion could be confirmed with a second marker in the space between the PM and IMC membranes like GAP45 (whereas cytoplasmic/mito markers like profilin and Tom40 are likely further protected by the IMC membranes and are thus less relevant here).

      Authors’ response: Quantitation of Western blots is notoriously inaccurate and, rather, we use it here as a qualitative indication of trypsin sensitivity of proteins in intact cells. The LMBD3 protein is completely transformed within the first time point (1 hour) to stable products of proteolysis of this polytopic membrane protein — presumably to those now protected within the cell. Known GPI-anchored surface protein SAG1 shows similar immediate sensitivity, although it is known that internalised SAG1 pools are constantly recycled to the surface and hence gradual elimination of the residual SAG1 band over 4 hours. The internal protein markers (GAP40, PRF, TOM40) show no discernible change in the first hour and little if any beyond that (within the variation common to Western blotting). GAP40 shares an equivalent polytopic membrane topology to LMBD3 except it occurs in the IMC membrane directly below the plasma membrane, so we think this is the more suitable control. Thus, this trypsin shaving experiment gives a binary output: sensitive or insensitive. This conclusion is further supported by the published spatial proteomics study (Barylyuk et al. 2020) which shows that LMBD3 segregates with other integral membrane proteins specific to the plasma membrane and not with the IMC proteins. Our super resolution imaging of LMBD3 relative to inner membrane complex markers (Centrin2, GAP45, IMC1) also show it as peripheral to them, further corroborating the plasma membrane location.

      1. Is it possible to N-terminally tag LMBD3 and then examine plasma membrane localization by detection of the tag without permeabilization? (this would also confirm the proposed topology) Authors’ response: We have tried to N-terminally tag LMBD3 with an epitope reporter but this integration was not tolerated by the cell, presumable because it interferes with membrane insertion of this protein that is essential for cell viability. So, this experimental option is not available.

      Comment 3.4

      I think it is important to make clear for the reader what is happening here. The paper sounds as though the dense granules directly dock at the annuli for release. It also seems possible from this work and Fu et al that secretion at the annuli occurs via small vesicles that originate from the dense granules. Perhaps a diagram or model would help the reader here (and discuss why DGs or other vesicles are not routinely seen at the annuli if this is the critical portal - and perhaps why the organelles are not clustered in the apical end of the cell if this is where they are needed)

      Authors’ response: This comment is related to that of review 2 (Comments 2.8/12), although we note again that Fu et al did not conclude that dense granules are exocytosed at this site. It is also unclear why this reviewer envisages that small vesicles arise from the dense granules, rather than the dense granule itself fusing at the annuli to the plasma membrane. Indeed, the occurrence of Rab11A on the dense granules, and the accumulation of this protein at the annuli with SNARE knockdown, supports that it is the dense granules that dock at this site. Why dense granules don’t otherwise cluster at their sites of secretion but are instead motile in the cell, their movement driven by Myosin F on actin filaments, is not known. Perhaps these otherwise bulky organelles would create too much cellular crowding that could interfere with other processes. We have addressed all of these points in additions to the discussion so that these interesting unknowns are transparent to the reader (Discussion paragraph 5).

      Comment 3.5

      Figure 5. The authors state the knockdown results in "strong phenotypes of reduced plaque development" - The plaque assays should be quantified.

      • Are there no plaques or just very small ones here?

      Authors’ response: The reviewer provides no rationale for this request or states what questions could be addressed by doing so. Indeed, none of our conclusions would be affected. We use the plaque assays to test whether each of the proteins tested are independently necessary for some facet of normal parasite growth where the result is binary — no difference in plaque size versus near or complete absence of plaque development. The interpretation of differing plaque sizes between different knockdown mutations is a very inexact science with assumptions of equal rates of protein depletion, sensitivity of relative protein abundance, modes of action of mutation, and kinetics of plaque growth very difficult to validate for meaningful comparisons to be made. Therefore, we don’t see any useful role for plaque quantification in the research questions that we’ve addressed or the conclusions that we present.

      Comment 3.6

      Figure 6 a. Fig 6A - The use of digitonin for semipermeabilization requires controls as there is typically a lot of variability across the monolayer. This is ideally done with something to show that the host plasma membrane has been permeabilized (e.g. host tubulin) and the PVM has not been permeabilized (e.g. SAG1). Otherwise, perhaps the authors could state what percent of cells showed the data like the representative images shown or describe further how selective permeabilization was assessed? (or wider fields with many cells and vacuoles?)

      *Authors’ response: As requested, we have included a supplemental figure showing wider fields of view where multiple vacuoles are seen. These data show that the vacuoles are similarly stained with no evidence of variability of digitonin permeabilization. The reduction in GRA5 secretion shown by microscopy is further supported by this protein being quantified using proteomics as enriched in the parasites when the apical annuli proteins are depleted (Fig 7). *

      Comment 3.7

      1. Fig 6B - "the GRA signal seen within the parasite was increased compared to the control" This is not clear from the AAQb image shown as it appears more is also present in the vacuole (or perhaps residual body?) Can this be clarified? Authors’ response: Yes, in this image it appears that the ‘residual body’, which is also an integral internal compartment of the growing parasite rosette, is a site of dense granule accumulation. We have modified the text to make it clear that the observations of IFA images showing ‘apparent’ increase in dense granule staining were then directly tested by quantitative proteomics. These subsequent data (Fig 7) provided a clear measure of the increase in dense granule proteins in the parasites when apical annuli function was perturbed.

      Minor comments

      Comment 3.8

      1. Line 215-217 The authors state that "Collectively these data imply that the apical annuli provide coordinated gaps in the IMC barrier that forms at the earliest point of IMC development and that they maintain access of the cytosol to these specialised locations in the plasma membrane."
      2. However, their data shows that LMBD3 only recruits once daughters are emerging (not earliest point of IMC development). Please clarify? Is this just referring to Centrin2 or LMBD3 as well? Authors’ response: Yes, the other AAPs indicate that these structures form early, and they were mentioned as such in the sentences preceding this statement — hence ‘collectively’.

      Comment 3.9

      Fig 5. Regarding growth arrest. AAQa appears to show an arrest but is it possible the others just grow slower? Do they arrest later and hence fail to form a plaque? Is there incomplete knockdown which enables a few parasites to persist?

      *Authors’ response: It is true that it is difficult to discern complete growth arrest from *

      *very retarded growth. However, neither alternative would affect our conclusions where we use these phenotypes as an indication of apical annuli participating in process required for normal growth. All plaque assays show strong growth phenotypes. Nevertheless, we have removed the use of the term ‘growth arrest’ with respect to these phenotypes (including in the Abstract) and replaced it with growth impairment. *

      Comment 3.10

      Line 132, Fig 1 A-C. For clarity it may be better for the reader if LMBD3 is named earlier, or if Fig 1 refers to the gene ID for panels A-C before its named.

      Authors’ response: This is a good idea and we have made this change, making note of the rationale for this name when we present the phylogeny.

      Comment 3.11

      Line 30 - "represent a second structure in the IMC specialised for protein secretion" this is confusing - do the authors mean in addition to the micronemes/rhoptries at the apical complex? Maybe "a second structure in the parasite" would be clearer

      Authors’ response: To clarify we have reworded as follows: ‘The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion

      Comment 3.12

      Line 440 - the author states that "these pre- and post-invasion secretion processes are also biochemically separated because both microneme and rhoptry secretion are SNARE-independent" Is this from the Cova and Dubios papers cited a line later? I took a quick scan of these papers and neither appear to show this? Cova claims still this is still unclear and Dubios says SNAREs are likely involved?

      Authors’ response: While both microneme and rhoptry secretion use distinctive molecular machineries for controlling membrane fusion for exocytosis, it is true that it is not formally known that these processes completely lack SNARE involvement, and neither paper cited here can eliminate this possibility. We have therefore, removed this short part of the discussion where we consider that dense granules might be unique amongst these three compartments in relying on SNAREs.

      Text editing

      Comment 3.13

      1. Line 94 - plasma membrane or cell surface. Clarify here - do you mean plasma membrane or under the membrane at the periphery? Authors’ response: We have modified as: ‘plasma membrane including the cell surface’.

      Comment 3.14

      Line 321 refers to Fig 6A but should say 7A. Panel 7B is never referenced in the text.

      Authors’ response: Thank you, we have corrected this and only sited Fig7 because A and B are both relevant to the statement made in the text.

      Comment 3.15

      Line 347-242 and fig 4A - the discussion of Q-SNARES and diagram could use some references for the reader

      Authors’ response: Thank you for this suggestion, we have acted on this request.

      Comment 3.16

      The methods says plaque assays were 7 days, fig 5 legend says 8 days

      Authors’ response: Thank you, this is corrected as 8 days.

      **Referees cross-commenting**

      • I completely agree with Rev 2
      • I also think examining invasion given Rev1 comment on the micronemes and the data from Fu et al would be worthwhile and straightforward to do

      Authors’ response: Please see our response to Comment 3.2 where the validity of measuring invasion competence of poorly growing, and/or arrested, parasites is scientifically questionable. It would require controls of similarly unhealthy parasites where the apical annuli are unaffected, but it is difficult to imagine how one would deliver such a control.

      Reviewer #3 (Significance (Required)):

      This is an excellent study that assesses the role of apical annuli in parasite secretion. It is an important addition to the field (and outstanding imaging that provides a high level of detail to the study). The study could be improved by better integrating a recent similar study noted by the authors and in the review

      Authors’ response: We have provided more direct discussion of the Fu et al paper in our Discussion section.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their critiques of our manuscript and for recognizing the importance of the questions about 3D genome organisation that it addresses. We plan to address most of their comments in our revised manuscript.

      Reviewer #1

      1. The aneuploid karyotype of the MCF-7 cells used is a concern. GREB1 is present in four copies, with two on abnormal chromosomes which may not be regulated in the same way as primary cells. The authors should include caveats to this effect in the text to account for this.

      We indicated (pg 5) that there are 4 copies of GREB1, 2 of which are on re-arranged chromosomes. RNA FISH (Figure 1C) suggests all 4 of these alleles are induced by estrogen. On each allele, the GREB1 enhancer and promoter remain closely apposed by imaging (Figure 2, DNA FISH) indicating no gross chromosomal rearrangements around the GREB1 locus. This is confirmed by our Hi-C data (Figure 2A), where any genomic rearrangements at the GREB1 locus would be detectable when the sequencing data were aligned to the reference genome. In the revised manuscript we highlight these points in the respective results sections (pgs 5 and 6). Our data suggest that all 4 alleles of GREB1 in MCF7 cells are regulated in the same way.

      2. The authors should also include more information on the generation and verification of the enhancer deletion cell lines. An illustration of the PCR primers used for screening, as well as an illustration of the sequenced product traces aligned with the reference genome (as opposed to just showing the deleted regions) should be included in Fig. S1D. This would give the reader more confidence that the designed knockout has occurred in the same way on all alleles. Furthermore, long-range PCRs and sequencing should be considered to confirm that no larger deletions have occurred (e.g. Owens et al., 2019 PMID: 31127293).

      We have replaced FigS1D with a new Figure Supplement (Figure S1.2A) that incorporates a more comprehensive diagram of the strategy used for the generation and screening of the enhancer deletion cell lines. This also includes the sequencing traces aligned to the reference genome for each of the clones used in this work. Additionally, in the revised manuscript, we will check the deletions using the C-TALE sequencing data obtained from the enhancer-deleted clones.

      1. The changes in the measured E-P interaction frequency following gene activation are __weak __at best and make visual interpretation of the results difficult. Showing the reciprocal virtual 4C plots from the promoter would help to reassure the reader that the observed effect is real.

      We thank the reviewer for this suggestion, and we will now include virtual 4C plots from the GREB1 and NRIP1promoters in our revised manuscript. These will be in figures 2B, 2E, 3C, 4C and in the supplementary figures 2B, 4B, 5C and 6C.

      4. Furthermore, the precise 3C method used is not clear. The authors repeatedly refer to "Capture-C" (a commonly used 3C-based approach using biotinylated oligos to pull down targets of interest) but the citation used (Golov et al. 2019) refers to a conceptually similar method called "C-TALE". This should be clarified in the text.

      We thank the reviewer for pointing out this potential confusion. We replace the term Capture-C with C-TALE throughout the revised manuscript.

      5. As for the changes in contact frequency, the observed changes in distance measurements between conditions are very small (although statistically significant). We acknowledge that this is likely due to the relatively small linear distances between enhancers and promoters in this study. However, it would be helpful to see the effects of the induction/treatments on a one or more control loci which is not affected by oestrogen signalling given that global changes in nuclear shape/volume and/or cell cycle effects could occur within this time (e.g. effects of tamoxifen treatment on MCF-7 cell cycle distribution, (Osborne et al. 1983 PMID: 6861130), which could impact nuclear volume.

      Data from DNA FISH control probes are already included in Supplementary Figure S3 showing no change in intra-nuclear distances and thus no general effects on chromatin compaction due to nuclear volume or cell cycle. Virtual 4C data for the entire captured regions around GREB1and NRIP1 are show in Fig S2C, also showing no general effect on the wider capture windows. We will include similar data from the viewpoint of the gene promoters in the revised manuscript. Hi-C and imaging data from the enhancer deletion cell lines (Fig S4) also supports that we are looking at an ER-specific effect, not a global one. With the regard to the comment on the effects of tamoxifen treatment on MCF-7 cell cycle distribution, we see no effects of tamoxifen on 3D genome organisation at GREB1 and NRIP1 by Hi-C or by imaging.

      6. The authors discuss previous studies demonstrating that E2 and 4OH recruit different sets of proteins to their target genes. Given that this is central to the conclusion that the ER ligand (and its recruited co-factors) determines the E-P interaction frequency and 3D distances observed, it would be important to demonstrate this at the GREB1/NRIP1 loci specifically. ChIP data of the co-activators/repressors recruited by E2 and 4OH, respectively, would greatly strengthen this claim.

      We acknowledge that investigating co-activator and co-repressor recruitment to the studied loci will strengthen our interpretation our conclusions. In the revision we will perform and include ChIP-qPCR at NRIP1, GREB1 and control loci assaying for PolII, co-activators such as p300, mediator and SRC-3 and the co-repressors N-CoR in control, estradiol and tamoxifen treated cells. We will also perform ChIP-qPCR of PolII and co-activators in cell treated with flavopiridol and triptolide.

      1. The observed uncoupling of E-P contact frequency and 3D distance upon transcriptional inhibition is interesting and offers clues to the molecular details underlying E-P interactions. However, the use of flavopiridol and triptolide, while common in the field, should be carefully qualified given the potential for their indirect effects on transcription. This is particularly important for flavopiridol given its ability to target multiple cyclin-dependent kinases beyond CDK9 and its role in transcription initiation.

      In the revised manuscript we indicate that “Flavopiridol inhibits several CDKs, including CDK9/PTEF-b”

      Minor comments:

      i. In the introduction and beginning of discussion, it would be helpful to detail previous studies where FISH-based analyses have shown more proximal E-P positioning upon activation, to make it clear that differences in E-P proximity appear to be gene-specific. Some examples include Williamson et al. (2016; PMID 27402708) and Chen et al. (2018; PMID 30038397). Speculation as to why some genes behave in this way while others do not, would also be worthwhile.

      We have followed the reviewer’s suggestion and noted these two studies in the Introduction of a revised manuscript. Given that the focus of this current manuscript is to explore discrepancies between Hi-C and DNA FISH, we do not think that this is the right forum for a wider discussion of why there might be differences in E-P proximity between different biological systems.

      ii. On page 6, the authors state that after deletion of the NRIP1 enhancer there is "almost total loss of NRIP1 induction in response to E2". This does not seem to match the data where in 3 out of 4 replicates (2 for each clone) there is a statistically significant increase in number of RNA FISH foci upon E2 stimulation in the NRIP1 enhancer KOs. This suggests that, as for GREB1, the regulation of these genes is not solely controlled by the deleted enhancers. This should be clarified in the text.

      The reviewer is referring to the data on NRIP1 expression in two NRIP1 enhancer deletion clones in Fig 1D and the replicate data in Supplementary Fig S1 (upper-right panel). These data show almost no induction of NRIP12 by E2 compared to wild-type cells. We stand by our statement.

      iii. The labelling of the FISH probes in Supp. Fig. S2 could be improved as it is currently very difficult to read these.

      We will try to improve this in a revised Figure S2.

      iv Given that the authors have referenced a distance of 200 nm as potentially being an important threshold for gene activation, it would be useful to include the fraction of alleles which are below this distance alongside the cumulative frequency plots in Figure 2D and elsewhere in the paper as the cumulative frequency plots can be hard to read in some cases (e.g. Supp. Fig. S3B e-p). This would also allow the authors to show consistency across replicates.

      We thank the reviewer for this suggestion to make the data easier to interpret. In a revised manuscript, we will incorporate the fraction of alleles below and above 200 nm for the DNA-FISH experiments in Figure 2D and Figure S4A-B.

      v. For clarity, it would be helpful to include the difference map between the vehicle-treated unstimulated/stimulated conditions for the 3C plots in Fig. 4. This would help contextualise the resulting differences observed with the drug treatments. Same for Supp. Fig. S6.

      We will include the difference heatmap between the vehicle- and estradiol treated samples for vehicle, flavopiridol and triptolide treated samples.

      vi. Statistical comparisons are not shown for all 3D FISH-based distance measurements (e.g. Supp. Figs. S3A, S4C, D, S6E). If this is because the tests were done and the results were non-significant this should be indicated.

      We had omitted all non-significant p values (>0.05) from the graphs to stop them getting too cluttered. All p values are documented in the supplementary tables. However, following the reviewer’s comment, we will indicate all non-significant statistical comparisons on the graphs.

      vii. On page 13, the authors state that increased E-P separation occurs "before nascent transcription of the gene is detected by either TT-seq or RNA FISH". This does not appear to be correct given that baseline levels of transcription are observed in the absence of ER stimulation by both methods (Fig. 1). This should be clarified in the text.

      We have amended this statement to now indicate that “This is before an induction of nascent transcription of the gene….”

      Reviewer #2

      1. The authors make strong claims and although these are generally reasonably well supported by the data, it is important to acknowledge that they are based on two loci. This manuscript would be stronger if the authors could include additional loci in their study design. If this is not possible, it would be good to acknowledge that the conclusions are preliminary/speculative at this stage.

      The reviewer makes a fair point, and we emphasized throughout the text – including at the end of the Discussion - that we are examining just two gene loci. In a revised manuscript we will include DNA-FISH data for a third locus comprising the CCND1 gene, for which we have preliminary data.

      *2. It would be helpful if the authors could clarify the strategy they used for their FISH probe design. The enhancer and promoter fosmid probes (which are used for the majority of the experiments) are not centered on the active elements and do not even seem to overlap in the case of the GREB1 enhancer fosmid probe. The 10 kb enhancer probe seems better placed for the GREB1 locus, but the 10 kb enhancer probe does not seem to overlap with the enhancer in the NRIP1 locus. It is conceivable that the exact location of the probes has a big impact on the measurements and it would therefore be helpful if the authors could comment on the location of the probes and add additional probes if required to strengthen their conclusions. In addition, the fosmid probes are very large (40 kb). Although the authors acknowledge this, it would be helpful if they could comment on how overlap between 40 kb probes should be interpreted in relation to a potential rather focal contact between (proteins bound to) regions of In the case of GREB1, the fosmid probes were chosen to maximize the distance between them as the promoter and the enhancer of the gene are genomically relatively close to each other. This was not an issue in the case of the NRIP1 locus where fosmid probes could be placed centered on the TSS and the enhancer region. In the case of the 10 kb probes, these were designed to be centered on the regions where higher E2-induced C-TALE contact frequencies were detected. Virtual 4C plots using the TSS regions as viewpoints (incorporated into the revised manuscript) clearly show that, in the case of NRIP1, the contact frequency peak does not fall on the main ER peak.

      1. It is not clear to me why the authors would choose to work with a locus that is present in 4 copies in their cell line. Is the entire regulatory region (incl. enhancers) preserved for the two additional copies of the gene? Can the authors comment on how this may impact on their measurements?

      See response to Reviewer 1, point 1. Our Hi-C data would have revealed if there were genomic rearrangements in the 600kb window surrounding GREB1.

      4. Figure 2D shows an increase in E-P separation for the NRIP1 locus across all timepoints, with cumulative frequency plots shown for the 10 min timepoint. However, the data for the second replicate shown in Figure S2D are a lot less robust and not significant for the 10 min timepoint. It is important that the authors either provide additional data to support the robustness of this experiment or acknowledge that the results are not fully reproducible.

      We acknowledge this, but we would like to note that there is an increase in the median distance for all time points, although this difference is not significant in some of the timepoints. Additionally, DNA-FISH data obtained using the 10 kb probes confirm these observations.

      5. The data presented in Figure 2F for clone 2 of the GREB1 enhancer deletion still show increased E-P distance upon activation. How do the authors explain this?

      This increase in distance is not statistically significant (p-0.33 – see Table S2) and is not seen for the replicate data in Fig. S4.

      Minor comments:

      i. Could the authors comment on the observation that the NRIP1 promoter is not bound by ERa or p300 upon estrogen activation? Are there ATAC-seq or H3K27ac ChIP-seq data available for these conditions?

      We included ATAC-seq tracks in Figure 1A where a peak on the NRIP1 promoter is clearly seen.

      ii. It is not obvious which timepoint is shown in Figure 1D.

      Pre-mRNA FISH in enhancer deleted clones was done in cells treated with vehicle or E2 for 60 minutes. This will be made clearer in the figure legend.

      iii. Why did the authors choose e-i and p-i instead of e-c and p-c in Supplementary Figure 3B?

      We apologize as it was an oversight not to include the e-c data for this experiment. This is now included in Supplementary figure S4B.

      iv. "We treated hormone starved MCF-7 cells with flavopiridol or triptolide for 5 min before adding E2 for 30 min (Fig. 4A)." Does this mean that the FLV/TRP treatment lasted for 35 min or did the authors wash it out before adding E2? Please clarify.

      This observation is correct, and it was made clear in Figure 4A and in the figure legend.

      v. The authors refer to their Capture-C data as "high-resolution". However, the methods section mentions that the data for the GREB1 and NRIP1 locus are 5 kb and 10 kb resolution, respectively. This is not particularly high for a targeted approach, certainly not in light of the MNase-based approaches that have recently been developed. I therefore think that the "high-resolution" claims should be removed from the paper.

      In line with the reviewer’s suggestion, we have removed the term high-resolution when referring from our own data.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this manuscript, Gómez Acuña and colleagues have investigated changes in enhancer-promoter (E-P) interactions with both 3C and DNA FISH. As a model system, they have used the activation of estrogen receptor-dependent enhancers, which allows for examination of changes in E-P interactions at relatively high temporal resolution. Surprisingly, they find that gene activation is associated with increased E-P interactions as measured by 3C but reduced spatial proximity as measured by DNA FISH. The authors show that both these measurements are dependent on the presence of the enhancer. In contrast, blocking transcription with inhibitors does not have a strong effect on the 3C measurements, but abolishes the increased spatial E-P separation as measured by DNA FISH following estrogen induction.

      Overall, this is an interesting and thought-provoking study. However, the strong conclusions are not fully supported by the data, as explained in further detail below.

      Major comments:

      • The authors make strong claims and although these are generally reasonably well supported by the data, it is important to acknowledge that they are based on two loci. This manuscript would be stronger if the authors could include additional loci in their study design. If this is not possible, it would be good to acknowledge that the conclusions are preliminary/speculative at this stage.
      • It would be helpful if the authors could clarify the strategy they used for their FISH probe design. The enhancer and promoter fosmid probes (which are used for the majority of the experiments) are not centered on the active elements and do not even seem to overlap in the case of the GREB1 enhancer fosmid probe. The 10 kb enhancer probe seems better placed for the GREB1 locus, but the 10 kb enhancer probe does not seem to overlap with the enhancer in the NRIP1 locus. It is conceivable that the exact location of the probes has a big impact on the measurements and it would therefore be helpful if the authors could comment on the location of the probes and add additional probes if required to strengthen their conclusions. In addition, the fosmid probes are very large (40 kb). Although the authors acknowledge this, it would be helpful if they could comment on how overlap between 40 kb probes should be interpreted in relation to a potential rather focal contact between (proteins bound to) regions of <1 kb.
      • It is not clear to me why the authors would choose to work with a locus that is present in 4 copies in their cell line. Is the entire regulatory region (incl. enhancers) preserved for the two additional copies of the gene? Can the authors comment on how this may impact on their measurements?
      • Figure 2D shows an increase in E-P separation for the NRIP1 locus across all timepoints, with cumulative frequency plots shown for the 10 min timepoint. However, the data for the second replicate shown in Figure S2D are a lot less robust and not significant for the 10 min timepoint. It is important that the authors either provide additional data to support the robustness of this experiment or acknowledge that the results are not fully reproducible.
      • The data presented in Figure 2F for clone 2 of the GREB1 enhancer deletion still show increased E-P distance upon activation. How do the authors explain this?

      Minor comments:

      • Could the authors comment on the observation that the NRIP1 promoter is not bound by ERa or p300 upon estrogen activation? Are there ATAC-seq or H3K27ac ChIP-seq data available for these conditions?
      • It is not obvious which timepoint is shown in Figure 1D.
      • Why did the authors choose e-i and p-i instead of e-c and p-c in Supplementary Figure 3B?
      • "We treated hormone starved MCF-7 cells with flavopiridol or triptolide for 5 min before adding E2 for 30 min (Fig. 4A)." Does this mean that the FLV/TRP treatment lasted for 35 min or did the authors wash it out before adding E2? Please clarify.
      • The authors refer to their Capture-C data as "high-resolution". However, the methods section mentions that the data for the GREB1 and NRIP1 locus are 5 kb and 10 kb resolution, respectively. This is not particularly high for a targeted approach, certainly not in light of the MNase-based approaches that have recently been developed. I therefore think that the "high-resolution" claims should be removed from the paper.

      Referees cross-commenting I agree with the comments raised by Reviewer 1

      Significance

      Since 3C and DNA FISH are widely used, the discrepancy between these measurements that is described here is of potential broad interest to the field. Since these claims are rather strong and have potential far-reaching implications, it would be helpful if the authors could strengthen their conclusions further, by improving the robustness of the data and including additional loci and additional probes to show that the measurements are not specific for these two loci or dependent on the location of the probes. I think that the paper is in principle also publishable without these additional experiments, but in that case, it would be very important to explicitly acknowledge the limitations of the data throughout the manuscript and clarify that the conclusions are preliminary/speculative at this stage.

      Expertise: 3D genome organization.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We would like to thank the 3 reviewers for their comments and suggestions for our manuscript. We believe that the revisions we plan to make, based on the comments by the reviewers, will greatly enhance the quality of our manuscript.

      We would like to respond to some reviewer comments here, since they do not fit into any of the subsequent sections.

      Reviewer #3

      In the Results section that describes the delay in gata2b expression (page 4 and Supp. Fig. 4), the authors show that the mutant embryos start expressing more gata2b at 30 - 36hpf after the decreased expression at earlier time points, with no difference at 48hpf. What could explain that recovery?

      We thank reviewer 3 for this question. The partial functionality of the Cx41.8 channel in cx41.8tq/tq mutants may explain why the HSPC program is eventually induced (leading to sufficient mitochondrial ROS production for Hif1/2α stabilisation). However, this could also result from functional redundancy between Cx41.8 and other connexins such as Cx43 or Cx45.6 in the mitochondria, since they are also expressed in zebrafish arterial ECs at 24hpf (Gurung et al, Sci Rep, 2022) and cx43 knockdown has previously been shown to result in an HSPC specification defect in zebrafish (Jiang et al, Fish Physiol Biochem, 2010). Together, these aspects may explain the recovery, although delayed, of gata2b expression in the cx41.8tq/tq mutant, as discussed in detail in our manuscript.

      The authors showed that gata2b expression can be rescued by ROS induction in the dose-dependent manner (page 6 and Fig.3 and Supp. Fig. 6). Is this what rescues gata2b expression at 30hpf in the cx41.8 mutants?

      This is exactly right, we hypothesize that in cx41.8tq/tq mutants, it takes longer for mitochondrial ROS production to reach above the threshold required to stabilise Hif1/2α and hence induce gata2b expression, which is supported by the data referred to by this reviewer.

      Are any vascular defects in the mutant embryos?

      Our lab previously reported that cx41.8tq/tq embryos have faster ISV growth rate (Denis et al, Front Physiol, 2019). However, we found no evidence of a link between the ISV growth rate increase and the HSPC specification defect in these embryos. Importantly, we show that aorta specification is normal in cx41.8tq/tq mutants, as determined by dll4 expression at 24 (Supp. Fig. 1C) and 28 hpf (Supp. Fig. 1D).

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary

      The manuscript by Petzold et al. explores the functions of connexin 41.8 (cx41.8) (mammalian homologue Connexin 40) in hematopoietic stem cell (HSC) formation in the zebrafish dorsal aorta. The authors use a cx41.8 allele that appears to be hypomorphic, as the phenotype is milder than a previous cx41.8 allele that the same group published (Cacialli et al., 2021). cx41.8tq/tq mutants exhibit delayed onset of hemogenic endothelial specification, as marked by gata2b at 24 hpf, but HSPC development proceeds normally from 48 hpf onwards. A new reporter line for cx41.8, Tg(cx41.8:GFP), was generated and is expressed in the floor of the dorsal aorta, consistent with the location of hemogenic endothelial cells. Lower ROS production in the whole cell and in the mitochondria was reported in the cx41.8tq/tq mutants, and treatment with ROS enhancers, H2O2 and menadione, appeared to rescue the mutant phenotype of reduced HSPCs at 28 hpf. Finally, the authors tested a link between cx41.8 and Hif1α by pharmaceutically (DMOG/CoCl2) or genetically (vhl morpholino) inhibiting Hif inhibitors, and observed a rescue of HSPC formation in cx41.8 mutants.

      I think it would be important for the authors to address the mechanisms of why cx41.8tq/tq and the other cx41.8-/- (leot1/t1) mutant phenotypes are different, with the latter allele showing more severe phenotypes of increased HSPC apoptosis and reduced HSPCs during later development. The authors speculate the cx41.8tq/tq allele encodes a missense mutation in one of the channel domains, and as such, might be a hypomorph. The authors cited the original paper by Watanabe et al. (2006); however, this paper actually noted that the cx41.8tq/tq allele is likely to be a dominant negative - and as such, should have exhibited a stronger phenotype than the leot1/t1 mutant allele. From the paper: "leotw28 and leotq270 heterozygotes have phenotypes different from that of WT; thus, they represent dominant-negative alleles." Importantly, no data are shown to provide evidence that the allele is a hypomorph - at minimum, qPCR data should be provided to show whether there is NMD of the mRNA in cx41.8tq/tq mutants.

      We would like to thank the reviewer for this comment and suggestion. As the reviewer has rightly pointed out, the cx41.8tq/tq mutation is thought to result in a protein with dominant-negative function (Watanabe et al, EMBO Rep, 2006; Watanabe et al, J Biol Chem, 2016).

      In fact, we agree that the mutant cx41.8tq/tq protein acts as a dominant-negative and although the reviewer is right to point out that the cx41.8t1/t1 mutant may thus exhibit a stronger phenotype which we found not to be the case (runx1 expression was found to be normal in the cx41.8t1/t1 mutant, Cacialli et al, Nature Commun, 2021), we provided our explanation for this in the discussion of the manuscript:

      “The partial functionality of the Cx41.8 channel in cx41.8tq/tq mutants [14] may explain why the HSPC program is eventually induced. However, this could also result from functional redundancy between Cx41.8 and other connexins such as Cx43 or Cx45.6 in the mitochondria, since they are also expressed in zebrafish arterial ECs at 24hpf [18] and cx43 knockdown has previously been shown to result in an HSPC specification defect in zebrafish [36]. This potential functional redundancy may also provide an explanation as to why HSPCs are specified normally, without any delay, in cx41.8t1/t1 embryos [12]. In these null mutants, cx41.8 expression is completely absent but may be functionally compensated by other connexins, whereas in cx41.8tq/tq mutants, although cx41.8 is expressed, its channel function is reduced [14]. Moreover, as Cx41.8 may form heterotypic channels with Cx43 and/or Cx45.6 (and potentially also with others), the function of these chimeric channels would also be altered”

      We believe this addresses the reviewers concern regarding this, especially given the fact that Cx43 and Cx45.6 have been found to be expressed in arterial ECs at 24 hpf, as cited in the manuscript. With regards to the reviewer’s question about whether there is NMD of the cx41.8 transcript, given that the cx41.8tq/tq mutation is missense and does not result in a premature stop codon (usually required for NMD to be induced, Kurosaki et al, J Cell Sci, 2016), we do not believe that there is NMD of the cx41.8 transcript in cx41.8tq/tq mutants. We will however verify this by carrying out the experiment suggested by this reviewer, qPCR analysis of cx41.8 expression in cx41.8tq/tq embryos and wild-type controls.

      The quantification data in this manuscript are not satisfactory. The authors only provide graphs that show embryos with "low", "medium" and "high" numbers of HSPCs, which is incredibly subjective. Considering that the authors already have the cx41.8tq/tq in the Tg(myb:GFP) background (Figure 1E), they could have quantified the precise numbers of Tg(myb:GFP)-positive cells at different timepoints and with the different pharmaceutical rescue experiments. Ideally, this should be combined with other HSPC markers such as Tg(cd41:GFP) or Tg(runx1:GFP) - although this could be limited by the authors' access to the lines or time it takes to cross the mutants to the transgenes.

      We thank reviewer 1 for their concern regarding this. Indeed the reviewer is correct, it would take us too long (at least 6 months) to generate the cx41.8tq/tq cd41:GFP or cx41.8tq/tq runx1:GFP lines, however, as stated, we do already have the cx41.8tq/tq cmyb:GFP zebrafish line. That said, repeating the pharmacological experiments using the cx41.8tq/tq cmyb:GFP zebrafish line would demand months of work and we do not currently have the personnel to perform all of this. However, we will perform the same experiment as performed previously to generate figure 1E but also at earlier timepoints. The cmyb:EGFP transgene marks nascent HSPCs from 28 hpf, and so we will aim to image, and quantify differences in budding HSPCs in cx41.8tq/tq cmyb:EGFP and cmyb:EGFP controls between 28 hpf and 36 hpf. We agree with the reviewer that this will add depth to our study and will provide evidence to back up our conclusions.

      The link between cx41.8 and Hif1α is tenuous. The authors should perform in situ hybridization for the hif1 genes and their downstream effector notch1 which is known to be important for the HSPC specification (Gerri et al., 2018).

      We thank the reviewer for this point. we do not expect hif1/2α expression to be affected in this mutant. Mitochondrial ROS has been shown to stabilise Hif1/2α at the protein level, not the mRNA level. Our data, and that of others (Harris et al, Blood, 2013), suggest that in the absence of mitochondrial ROS, prolyl hydroxylases are not inhibited by mitochondrial ROS, and they target Hif1/2α for ubiquitination and subsequent destruction in a Vhl-dependent manner (as shown in Fig. 4D). We have changed the text in the manuscript to clarify that Hif is stabilised on the protein level (please see the section below).

      Since we do however expect notch1a and notch1b expression to be altered in our mutant embryos, as they are transcriptionally regulated by Hif1/2α (Gerri, Blood, 2018), we will perform in situ hybridisation and qPCR analysis of these 2 genes at 18-24 hpf in cx41.8tq/tq mutants and controls to clarify this point and solidify our model.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      Petzold et al are here addressing the potential function of the connexin Cx48.1, a protein involved in the structure of gap junctions, in the specification of future hematopoietic stem cells and progenitors (HSPCs). This piece of work is complementing their previous results showing the function of this connexin isoform in HSPC expansion in the transient hematopoietic niche in the caudal tissue of the zebrafish embryo. They explore phenotypes triggered by the expression of a mutant form bearing a single amino-acid substitution in the fourth transmembrane domain of the protein. Using whole mount in situ hybridization (WISH) of the two transcription factors Gata2b and Runx1, a novel transgenic fish line that expresses eGFP under the control of the Cx48.1 promoter region, and a series of drug treatments interfering with, or promoting, the formation of reactive oxygen species (ROS) production and oxidative stress, they propose that Cx48.1 is also involved upstream of HSPC amplification, rather in their specification at the level of the hemogenic endothelium constituting the ventral floor of the dorsal aorta. Mechanistically, they hypothesize that this function relies on mitochondria-derived ROS that would destabilize the VHL protein involved in mediating the degradation of Hif1/2a transcription factors, thereby stabilizing the Hif1/2a-Notch1a/b signaling axis involved in specification of the hemogenic endothelium.

      The WISH and quantitative analyses.

      Most of the quantitative analyses in the work are based on chromogenic WISH, which is not sufficiently accurate because leading to highly variable results, in addition to its lack of linearity. WISH is also subjected to important variations, particularly for transcription factors that are expressed at low levels such as Runx1, and to some extent Gata2b also. One obvious example in the paper is the inconsistency of signals that are observed Fig1C (Gata2b, left, wt, 24hpf) and FigS3B (Gata2b, left, wt, 24hpf) in which the signal is barely visible and is comparable to the signal for the cx41.8tq/tq mutant Fig1C, right.

      In addition, in the timings that are analyzed in FigS3 (Gata2b, 26 and 28hpf) to argue on temporal delay of expression in the cx41.8tq/tq mutant, the Gata2b signal is masked by the strong increase in tissues other than the hemogenic endothelium in the dorsal aorta (including signal in the somites as well as, possibly, increase in background). In this very example, it is legitimate to question the accuracy of the quantification methodology when the signal in the tissue of interest is drowned in the overall signal from surrounding tissues; how can the authors explain the 100% of embryos that have a 'Low' signal in the region of interest (FigS3C, cx41.8tq/tq mutant in comparison to WT)? This point is also valid for the data quantified FigS4 in which the fitting between WISH data and the quantifications appears to be questionable (for all timing points: 30, 32, 36, 48hpf and comparing mutant with the WT.

      My suggestion would be to complement the WISH data and improve the quantitative analyses using another, more accurate approach such as qRT-PCR for example (on dissected trunk regions and, if necessary because of expression in other surrounding tissues (in the case of Gata2b at later time points), after FACS-sorting using a fish line expressing a fluorescent reporter driven by a vascular promoter, ex: the kdrl:mCherry line used in the work). This is particularly important for the expression of the two transcription factors Runx1 and the more upstream Gata2b, the latter being involved in HSPC specification which is taken as a reference. qRT-PCR experiments should be feasible relatively easily and in a reasonable time frame as the technics is not very time consuming and easily accessible.

      We thank reviewer 2 for their concerns regarding the in situ quantifications used during this study. Although the approach we have used is widely used in the field to quantify gene expression differences, we appreciate that our data could be strengthened by complementing it with another approach. As such we will do the following:

      • We will complement our in situ hybridisation characterisation of delayed hemogenic endothelium formation and HSPC specification with qPCR experiments. For this, we will dissect the trunks of 8tq/tq embryos and controls and perform qPCR analysis of gata2b expression at the timepoints analysed during development (Supp. Fig. 3 A-D and Supp. Fig. 4 A-D), whilst also using the same approach to compliment the data for gata2b and runx1 expression at 24 hpf (Figure 1C and D). We agree with the reviewer that this is a feasible approach and would add robustness to the data we already show.

        2- Fluorescence imaging and associated interpretation/conclusions.

      The fluorescence images (Fig1E; Fig2B,D; Fig3A) are very difficult to analyze; they lack resolution because they appear to be epifluorescence images and not confocal images. When the signal is low, which is in particular the case for the novel Cx41.8:EGFP fish line, Fig2B (which is confirmed with the FACS GFP signal in comparison to the mCherry of the kdrl:mCherry fish line), it is not possible to provide convincing images on the vascular/aortic expression because of the high background of diffusion (the authors state 'likely to be the aortic floor', indeed it is not possible to validate the fact that the expression is truly in potential hemogenic cells). The double positive population in the FACS (Fig2C, right) does not resolve the issue because if indeed cx41.8 is expressed in endothelial cells (as expected from previous studies), the double positive population could equally be endothelial cells from inter-somitic vessels, for example (not to mention the underlying vein which is very close to the aorta in the trunk)). Fig2D, images are too small and, again, the resolution is not good enough to say that double positive cells are on the aortic floor. It is recommended to convince the reader that the authors try to confirm their statements by using confocal microscopy and increase the magnification of the relevant regions of interest.

      We thank this reviewer for this point. We will address this concern by using, as they suggest, confocal microscopy to try to get higher resolution images. In particular, we will do the following:

      • We will use confocal microscopy to image the 8:EGFP line as was done previously (Fig 2B), in order to obtain higher resolution images of expression of cx41.8 in the floor of the aorta.
      • We will also use confocal microscopy to image the 8:EGFP;kdrl:mCherry line as was done in Fig 2D, in order to gain higher resolution images.
      • We will also increase the magnification of the relevant regions of our confocal microscopy images as suggested by this reviewer.

        There is an inconsistency in the data between Fig1E (40hpf, in vivo imaging using the cmyb:GFP fish line) and FigS2 (48hpf, WISH cmyb); how can we observe 'HSPCs budding from the dorsal aorta' (see legend Fig1, arrowheads) which seems very much decreased in the imaging experiment for the cx41.8tq/tq mutant in comparison to WT, and have no effect on the cmyb signals FigS2B? What are the GFP+ cells that are aligned along the elongated yolk Fig1E and that appeared to be decreased in number in the mutant?

      We agree that this disparity is confusing for the reader. We believe the disparity between these results is due firstly to the fact that the experiment in Supp. Fig 2C was performed 8 hours after that in Fig 1E and secondly due to the time it takes for GFP to fold (in the case of Fig 1E). It is also important to keep in mind that the phenotype is not a complete absence of HSPC budding, but only a delay in the onset of EHT.

      • We will however address this concern by carrying out the experiment described above - we will perform the same experiment as performed previously to generate figure 1E but also at earlier timepoints. The cmyb:EGFP transgene marks nascent HSPCs from 28 hpf, and so we will aim to image, and quantify differences in budding HSPCs in 8tq/tq cmyb:EGFP and cmyb:EGFP controls at numerous timepoints from 28 hpf to 36 hpf. This will add depth to our study by providing evidence to back up our conclusions.
      • We will remove the 40-hpf timepoint (Fig 1E) to avoid confusion regarding the disparity with cmyb expression by WISH in Supp. Fig 2C.
      • Regarding the GFP+ cells aligned along the yolk in 1E, we thank the reviewer for pointing this out. These cells are multiciliated cells, from the kidney tubules (Wang et al, Development 2013). We will determine whether their numbers do indeed differ between 8tq/tq;cmyb:EGFP and cmyb:EGFP controls in our new confocal experiments and will mention this in the manuscript if they do.

        It would be important to investigate/show, at least with qualitative WISH experiments all along the time-window of HSPC specification as stated by the authors (26-54hpf, see main text third paragraph of Results), that Cx41.8 is detected in arterial endothelial cells (and perhaps enriched in the hemogenic endothelium?), in complement to the work they are referring to on transcriptomic data at 24hpf (Ref18 Gurung et al Sci Rep 2022). Ideally, these WISH data should be resolutive enough to provide clear localization in aortic cells versus cells in the aortic floor to bring significant added value to the work that lacks spatial resolution (ex: fluorescent WISH using confocal microscopy, allowing to superpose signal with cell types (either by double fluorescent WISH (vascular marker + Cx41.8) or superposing fluorescence signals with transmitted light)).

      We agree with this reviewer regarding this point. The way we will address this is to use confocal microscopy at different timepoints from 24-40 hpf using the cx41.8:EGFP; kdrl:mCherry line to show that expression of cx41.8 is indeed present and enriched in the floor of the dorsal aorta during the timeframe of HSPC specification. We believe that imaging this line using confocal microscopy will be sufficient to clearly show this.

      It would be more informative and secure, Fig2D, to show images of the double transgenics (Cx48.1:eGFP;kdrl:mCherry) at 28-30 hpf (rather than 48 hpf) which is more narrowed down to the specification of the hemogenic endothelium thus preventing any risk to visualize the fluorescence signals coming from recently born HSPCs rather than signals from cells embedded in the aortic floor.

      We thank the reviewer for this suggestion, which we believe would indeed improve the manuscript. As discussed above, we will indeed use confocal microscopy at different timepoints, including 28-30 hpf using the cx41.8:EGFP;kdrl:mCherry line to show that expression of cx41.8 is indeed present and enriched in the floor of the dorsal aorta during the timeframe of HSPC specification. We believe that imaging this line using confocal microscopy will be sufficient to clearly show this and so thank the reviewer for this excellent suggestion.

      To make the data more convincing on the ROS production in the ventral side of the cord in wild type embryos (which suggests that future hemogenic cells are already ventralized at that stage), it would be important to obtain confocal images of the region of interest and perform reconstitution of Z-stacks with a sagittal view (rather than longitudinal). It would be nice also to obtain comparable images later on, after lumenization and before initiation of HSPC emergence (before 28hpf).

      We thank the reviewer for this suggestion and agree that the suggested approach will solidify our data. As such, we will carry out the proposed experiment, using confocal imaging to gain longitudinal and sagittal images of mitoSOX staining in WT embryos and cx41.8tq/tq mutants at both 16 hpf and 26 hpf.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer #1

      Related to the above point, the authors should test whether the gap junction function of Cx41.8 is intact in the cx41.8tq/tq mutants by assessing calcium waves in the GCamp transgenic line.

      …we have also now found additional published in vivo evidence that Cx41.8 channel function is reduced in the cx41.8tq/tq mutant, which is now also cited in the new version of the manuscript (please see our full response to this point below).

      Please see the section “Description of analyses that authors prefer not to carry out” for additional information regarding the GCamp experiment suggestion.

      The link between cx41.8 and Hif1α is tenuous. The authors should perform in situ hybridization for the hif1 genes…

      We thank reviewer 1 for making this point. To clarify this, we do not expect hif1/2α expression to be affected in this mutant. Mitochondrial ROS has been shown to stabilise Hif1/2α at the protein level, not the mRNA level. Our data, and that of others (Harris et al, Blood, 2013), suggest that in the absence of mitochondrial ROS, prolyl hydroxylases are not inhibited by mitochondrial ROS, and they target Hif1/2α for ubiquitination and subsequent destruction in a Vhl dependent manner (as shown in Fig. 4D).

      To clarify this in the manuscript, we have adjusted the text in three places (including in the abstract) to clarify that Hif1/2α is stabilised at the protein level, as shown below. We believe these changes have made this important point more understandable for the reader:

      1. “… Mitochondrial-derived reactive oxygen species (ROS) have been shown to stabilise the hypoxia-inducible factor 1/2a (Hif1/2a) proteins, allowing them..”
      2. “Recent research has demonstrated that hypoxia and mitochondrial ROS are required for the stabilisation of the transcription factors Hif1/2a at the protein level”
      3. “… as mitochondrial ROS generation may eventually reach the threshold required to sufficiently stabilise the Hif1/2a proteins for downstream”

        Reviewer #2

      Importantly, it appears also that all over the WISH quantifications, the reader cannot appreciate the accuracy of the categories High/Medium/Low, which is not at all developed in the Methods section (paragraph Image processing and WISH phenotypic analyses).

      We have developed the Methods section (paragraph Image processing and WISH phenotypic analyses), which was highlighted as a concern by this reviewer, in order to detail exactly how we performed our image analysis and statistical analyses using this approach. We believe this will satisfy the concerns reviewer 2 has regarding this and appreciate that they have a point that this was indeed underdeveloped in the original submission.

      Finally, there is a confusion in the quantification regarding the number of HSPCs (see the beginning of the second paragraph of Results 'The HSPC specification defect in cx41.8tq/tq mutants is due to a delay in Gata2b expression') and the % of embryos falling into the 3 categories High/Medium/Low FigS2, cmyb 48hpf. The authors use this argument (based on the WISH cmyb signals) to infer that the deficit in the cx41.8tq/tq mutant is not due to controlling HSPC number (no difference in cmyb between WT and mutant) but rather upstream, at the level of the hemogenic endothelium, which is not a thorough argument at that point.

      We thank reviewer 2 for pointing this out to us and agree that the wording we used is a little confusing. We have therefore added to the first sentence of the second paragraph in the results section “'The HSPC specification defect in cx41.8tq/tq mutants is due to a delay in gata2b expression” which now reads:

      “Hence, since HSPC specification is initially reduced, but then recovers in cx41.8tq/tq embryos, we suspected a delay in the formation of the haemogenic endothelium in these mutants. To test this hypothesis…”

      We believe this change to the manuscript will satisfy the reviewers concern by making this section more logical for the reader.

      The authors should take care of the fact that at 16hpf, it is an overstatement to speak of an aorta when the cord is starting to lumenize at around 18hpf, Jin et al Development 2005 (see Main text referring to Fig3).

      We thank the reviewer for this clarification. We have changed the relevant text to state “vascular cord” instead of “aorta” and have mentioned that it begins to lumenize around 18hpf for clarification. We have also added the suggested reference.

      Reviewer #3

      As Gata2 has been shown to be a positive autoregulator of itself in mice (Nozawa 2009, Katsumura 2016) and might do so in zebrafish (Dobrzycki 2020), so could gata2b recover itself, in a dose-dependent manner, without the Hif-Nocth1 axis once enough of it is expressed?

      We thank reviewer 3 for this suggestion. We believe that our data show that Cx41.8 is required for mitochondrial ROS production, which stabilises Hif1/2α and switches on downstream gata2b via Notch1a/b (which will be added, see previous section). As such, we believe that the Hif1/2α/Notch1a/b axis is required, at least for the initial induction of gata2b expression. However, reviewer 3 makes a very interesting point regarding the potential for gata2b to positively autoregulate itself, which may of course occur once gata2b expression has been induced by the Cx41.8-mitoROS-Hif1/2α-Notch1a/b-gata2b pathway. We thank the reviewer again for this interesting proposition and have added this suggestion into our discussion in the following paragraph:

      “GATA2 has been shown to positively autoregulate its own expression in mice (Nozawa et al, Genes to Cells, 2009; Katsumura et al, Cell Reports 2016), and Gata2b may also act in this way in zebrafish (Dobrzycki et al, Commun Biol, 2020). Therefore, it is interesting to speculate that once gata2b expression has been induced by the Cx-mitoROS-Hif1/2α-Notch1a/b-gata2b pathway, it may also further induce its own expression, which would make the induction of the haematopoietic transcriptional program more robust”

      Is Hif1/2a expression affected in the mutant? Is it expressed normally but then degraded faster due to the absence of mitochondrial ROS or is it less Hif1/2a expressed overall?

      We thank reviewer 3 for this question, which is similar to a point made by reviewer 1. To clarify, we do not expect hif1/2α expression to be affected in this mutant. Mitochondrial ROS has been shown to stabilise Hif1/2α at the protein level, not the mRNA level. Our data, and that of others (Harris et al, Blood, 2013), suggest that in the absence of mitochondrial ROS, prolyl hydroxylases are not inhibited by mitochondrial ROS, and they target Hif1/2α for ubiquitination and subsequent destruction in a Vhl dependent manner (as shown in Fig. 4D).

      To clarify this in the manuscript, we have adjusted the text in three places (including in the abstract) to clarify that Hif1/2α is stabilised at the protein level, as shown below. We believe these changes have made this important point more understandable for the reader:

      1. “… Mitochondrial-derived reactive oxygen species (ROS) have been shown to stabilise the hypoxia-inducible factor 1/2a (Hif1/2a) proteins, allowing them..”
      2. “Recent research has demonstrated that hypoxia and mitochondrial ROS are required for the stabilisation of the transcription factors Hif1/2a at the protein level”
      3. “… as mitochondrial ROS generation may eventually reach the threshold required to sufficiently stabilise the Hif1/2a proteins for downstream”

        Does MO-mediated knockdown of vhl in the wildtype and mutant (page 7and Fig. ) result in more HSPCs, following the increase in gata2b expression from WT baseline? Does that high expression persist, or does it drop?

      This is an important question. We had already clarified this in the case of cx41.8tq/tq, since we showed that the vhl MO results in more HSPCs (as determined by runx1 expression) at 28 hpf (Supp. Fig. 8A) but we have now added data for the same marker at the same timepoint for WT embryos (Supp. Fig. 8B).

      Although the vhl MO results in an increase in runx1 signal in WT embryos, since the majority of WT embryos injected with the control MO already have “high” runx1 WISH signal at 28 hpf, the difference between injected and control MO injected WT embryos is not significant (Supp. Fig. 8B), as can be expected. This is now explained in the manuscript following the relevant data addition.

      4. Description of analyses that authors prefer not to carry out

      Reviewer #1

      One major missing component is experimental data that distinguish the gap junction/plasma membrane- related and the mitochondrial membrane-related functions of Cx41.8. This is critical, as the role of Connexins in the mitochondria remains poorly understood (and Connexin 43 is the best understood one). Thus, it is a big claim by the authors that Cx41.8 primarily acts through the mitochondria and not the gap junctions. Suggested experiment: The authors should generate a fluorophore-tagged Cx41.8 - under a ubiquitous (ubb or actin) or HSPC-/hemogenic endothelium-specific (gata2b) promoter to monitor the protein localization of Cx41.8. Providing data on whether Cx41.8 protein indeed localizes to the mitochondria is important to support their claim.

      We thank the reviewer for this suggestion, which we agree would be a nice experimental approach to try to investigate whether Cx41.8 does indeed localise to the mitochondria in zebrafish endothelial cells.

      However, EGFP fused full-length cx41.8 has previously been generated and was reported to be nonfunctional, and it was suggested that the amount of localised Cx41.8 is also too small to detect using this approach (Watanabe et al, Pigment Cell Melanoma Res, 2012; Usui et al, BBA Advances, 2021). An EGFP tagged CT-truncated Cx41.8 construct has also been generated and shown to rescue the cx41.8t1/t1 mutant (Usui et al, BBA Advances, 2021), but EGFP expression again could not be detected using this construct in zebrafish.

      As such, since efforts to carry out such an approach have failed in previous attempts and since it has already been demonstrated that CX40 (orthologous to cx41.8) localises to the mitochondria of endothelial cells (Guo et al, Am J Physiol Cell Physiol, 2017), we believe that confirmation of Cx41.8 localisation to the mitochondria in vivo in zebrafish endothelial cells will be very difficult and too time-consuming in the context of this manuscript.

      Related to the above point, the authors should test whether the gap junction function of Cx41.8 is intact in the cx41.8tq/tq mutants by assessing calcium waves in the GCamp transgenic line.

      We agree with the reviewer that this would be a very elegant approach in order to analyse whether Cx41.8 channel function is affected in cx41.8tq/tq mutants. However, we feel that this experiment is definitely beyond the scope of this manuscript. Furthermore, carrying out this experiment would require the acquisition of the GCamp line as well as multiple crosses with the cx41.8tq/tq line which, together, we envisage would take at least 9 months before the experiments can be performed, as so this experiment would also be too time consuming for this manuscript. Finally, we believe there is already strong published evidence that the cx41.8tq/tq mutant results in disrupted channel function (Watanabe et al, EMBO Rep, 2006), as already cited in our manuscript. However, since then, we have also now found additional published in vivo evidence that cx41.8tq/tq channel function is reduced, which is now also cited in the new version of the manuscript.

      The authors might also want to consider performing transcriptomic analysis (bulk RNA sequencing) from purified HSCs in wild types and cx41.8 mutants and assess the downstream pathways affected by the loss of this gene.

      Although this is an interesting proposition, we consider this suggestion to be out of the scope of this manuscript, especially since our model involves changes in gene expression upstream of HSPC induction, and, expression of the key genes thought to be affected (notch1a/b and gata2b) can be checked using a much more cost and time efficient approach, by qPCR, which we will do, as discussed above.

      Are the authors sure of their statement on budding HSPCs when the GFP signal pointed by arrows could in majority be hemogenic cells? (which would be in favor of their hypothesis on Cx41.8 being involved rather in hemogenic endothelium/HSPC specification).

      Since cmyb is a marker of HSPCs and not of the haemogenic endothelium as demonstrated in numerous publications (North et al, Nature, 2007; Bertrand et al, Development, 2008; Bertrand et al, Nature, 2010 and others). Hence, we are confident that this transgene is marking nascent HSPCs and not the haemogenic endothelium.

      As mentioned by the authors in the Discussion, the other connexin Cx43 (Ref 36, Jiang et al 2010) is playing a significant role in HSPC specification in the zebrafish and is expressed in zebrafish arterial cells at 24 hpf. Hence there may be some functional redundancy between Cx43 and Cx48.1, as supported by previous work from the authors showing that a null mutant of Cx48.1 does not exhibit any phenotype in HSPC specification (Ref12, Cacialli et al 2021). This may be problematic for the experiments using drug treatments in the present work, because they are not selective for the different connexins (ex: anti-oxydants (NAC), connexin blockers (heptanol, CBX)), thus blurring interpretations on the specific function of Cx48.1 versus the ones exerted by Cx43 (this should be also valid for the vhl MO treatments).

      This comment is strengthened by the fact that the authors do not systematically address, for both WT and mutant embryos (Fig3 E, F; FigS6; FigS8), if expression levels with drugs/H2O2/MO are different for the 2 conditions (if relatively equal, it would indeed indicate that these drugs/conditions possibly act on another connexin, which would help the authors in their analyses and interpretations).

      We thank the reviewer for these comments and we agree with their concerns regarding the possibility of other Connexins being affected by our experiments using drug treatments. However, we do not rule this out in our manuscript and actually discuss it as being a very realistic prospect, as written about in the discussion section.

      Sadly, to the best of our knowledge, no selective Cx41.8 inhibitors have been described for use in zebrafish, otherwise we would of course have used this. Hence, this was the reason for our choice of compounds, many of which we also used in our previous publication (Cacialli et al, Nature Commun, 2021).

      The haemogenic endothelium/HSPC phenotype in cx41.8tq/tq embryos confirms that this connexin plays a role in HSPC specification, whilst we believe disentangling which other connexins are also involved in this process will be interesting to look into in other future studies but is beyond the scope of this one – we believe that together, the data presented in our manuscript, along with the revisions we plan to carry out, will be convincing to demonstrate a role for Cx41.8 in the mechanism we describe.

      The authors may try to rescue the wt phenotype by expressing, in the Cx48.1tq/tq mutants, the mRNA encoding for the wt protein.

      Although we appreciate this suggestion, we do not believe this experiment will add much in terms of value to the conclusions of our manuscript and, as such, we believe this suggestion is surplus to requirements for this manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We have thoroughly revised the manuscript, taking into account all comments from all four reviewers. We have added new data (Supplemental Figure 2 and Supplemental Figure 4) in response to these comments.

      Reviewer 1

      The assessment of data reproducibility is currently uncertain due to the absence of replication and statistical analysis in the dataset. It is essential to provide explicit information regarding sample sizes or replicates for all data and figures, data should be presented as mean +/- SD/SEM, and the interpretation of results should be grounded in rigorous statistical analysis. The lack of experimental replicates and statistical analysis in most of the figures presented raises major concerns regarding the validity of the result.

      We have now added error bars for the graphs in Figure 3D, E, F, G, H; Figure 4 D, F, G, H, I, J; Figure 5 B, C, D, E, F, G; and Figure 6B, C, D. All GTPase assays have repeated three times. The mean ± S.D. (n = 3) is plotted for each condition. For high-speed pelleting assays, all assays have been conducted three times, and a representative assay is shown.

      Why was only one of the MiD proteins, specifically MiD49, studied, while MiD51 was not includedin the investigation?

      This is an excellent point. In our previous work (doi:10.1101/2023.07.31.551267), we found that MiD49 and MiD51 were strikingly similar in their abilities to activate Drp1 after their own activation with fatty acyl-CoA. We feel that the demonstration here with MiD49 suggests that a similar effect would occur with MiD51. Due to time constraints for the lead author, preparing more MiD51 protein was out of the scope of what could be done. We now add a line in the Discussion that results for MiD51 may be different.

      The author suggestion of Drp1 phosphorylation, based on the mobility of protein observed in SDS-PAGE gel (fig 4A, 5A, 6A), is not a sufficiently valid assessment. While western blot analysis is a valid method to assess Drp1 phosphorylation, it is essential to include replicates for semi-quantitation and demonstrate the reproducibility of the results. Moreover, it is recommended to incorporate Western blot analyses to provide additional support for the findings presented in Figures 5 and 6.

      • We agree with the reviewer that additional information on the phosphorylation state of these proteins should be provided. We now include phospho-proteomic analysis for Erk2 phosphorylation of WT Drp1 and Drp1-S600D (Supplemental Table 1), showing that S579 is by far the predominant phosphorylation site. For WT Drp1, three lines of evidence now suggest efficient Erk2 phosphorylation of S579:
      • Western blot using anti-phosphoS579
      • Phosphoproteomic analysis
      • Gel shift

      For the Drp1-S600D phosphorylation, we have phosphoproteomic and gel shift analysis. For isoform 6, we regrettably only have gel shift. However, given the fact that the effect of Erk2 treatment on actin-stimulated GTPase activity mimics what we found for WT-Drp1 and for Drp1-phosphoS579/S600D, we think it is highly likely that the equivalent phosphorylation (S629 in this case) has been affected.

      Data on phosphorylated peptides with replicates experiments should be presented.

      We now present these data, which have been significantly expanded since the initial submission (new Supplemental Table 1). While non-phophorylated S579 is still detected in both the WT and S600D phosphorylation reactions, the phosphorylated peptide is 2.2 and 2.3-fold more abundant, respectively. Our conclusion is that Erk2 efficiently phosphorylates S579, although stoichiometric phosphorylation was not obtained here. We have added statements in the relevant sections of the Result, and in the Methods. We have also added Supplemental Table 1 to show the spectral counts obtained from phospho-proteomic analysis, and have deposited the raw data files with the PRIDE consortium (access information in the Methods).

      Please provide additional context or specific details about the GFP-tagged Drp1 protein, such as the protein site where GFP was attached, as well as whether this tag could potentially impact the Drp1 GTPase activity and oligomerization. Figure 7C and D appear to suggest an increase in the GTPase activity of the GFP-Drp1 protein.

      We have now added these details to the Methods section, and have also added the complete amino acid sequence for the final purified construct in Supplemental Figure 4. We have also added that a previous study (PMID: 32901052) found that inclusion of GFP strongly inhibited Drp1 GTPase activity. We do not observe this effect here or in a previous study (PMID: 27559132), and provide possible reasons for this difference in the Methods. The reviewer points out that the activity of GFP-Drp1 appears higher than that of un-tagged Drp1 (comparing 7C with 7D). We find that the GTPase activity of Drp1 alone varies between 1 and 2 uM/min/uM protein depending on the preparation. This variation occurs for both untagged and GFP-tagged Drp1. This difference in basal activity from prep-to-prep might relate to differences between protein preparations, or exact amount of time required to freeze the aliquots of purified protein (we freeze small aliquots ( An optional experiment that would significantly enhance the biological relevance of the findings presented in the current study is to assess the morphology of mitochondria in cells expressing the phospho-mimetic mutant Drp1 proteins. This experiment would provide valuable insights into the functional consequences of Drp1 S579 and S600 phosphorylation on mitochondrial structure and dynamics.

      We fully agree that these would be valuable experiments. The issue is that a large number of experiments using phospho-mimetic mutants in cells have already been conducted, with varying results (Taguchi et al., 2007; Qi et al., 2011; Yu et al., 2011; Strack et al., 2013; Kashatus et al., 2015; Serasinghe et al., 2015; Xu et al., 2016; Brand et al., 2018; Han et al., 2020, Chang and Blackstone, 2007; Cribbs and Strack, 2007; Cereghetti et al., 2008; Wikstrom et al., 2013, Han et al., 2008,Wang et al., 2012 Jhun BS, Sheu, 2018, J Physiol). To conduct more targeted tests examining specific forms of Drp1 activation in cells (for example, through Mff, MiD proteins, actin, or cardiolipin) will require extensive work that is outside the scope here. Our feeling is that S579 phosphorylation is likely to recruit another molecule (probably a protein) that has an activating effect. We tried to test one possibility (NME3, mentioned in the Discussion) but failed to produce useable NME3 protein for these tests and, given time constraints for the lead author, could not address this further.

      Provide reference for method on actin polymerization.

      We have now added a reference in the ‘Actin preparation for biochemical assays’ section of the Methods (PMID 16472659).

      Rectify the error in referencing figure 3 panels within the figure legends of Supplemental Fig S1.

      Thank you, we have changed this.

      The inclusion of full length isoform 6 is commendable. However, there is no mentioned of isoform6 in the method section.

      Thank you for pointing this out. We have added description of the construct and referenced our previous paper that used it.

      Since papers deposited in bioRxiv have not undergone peer review, reference #7 should not becited as references in scholarly work.

      Reference 7 has so far been reviewed by a peer-review journal. e are addressing reviewers’ concerns and will re-submit soon. We do not know how to rectify the issue of referencing this work, because it describes an extensive amount of groundwork for the MiD proteins. Our hope is that this work will be in press by the time the work reviewed here is ready for publication.

      Please provide details about the calculation of GTPase activity and the distinctions between the specific GTPase activity and total GTPase activity shown in figure 8D-F.

      We now describe these calculations in the “GTPase assay” section of the Methods.

      Reviewer 2

      Overall, the experiments described here are carried out with rigor and the conclusions drawn are of significance to understanding how phosphorylation regulates Drp1 functions.

      Thank you for these kind comments!

      Phosphorylation of both the serine residues appears to elicit a common effect in that they inhibitDrp1's stimulated GTPase activity. This would suggest that phosphorylation affects Drp1's self-assembly as tightly packed helical scaffolds. Instead of sedimentation analysis, an EM analysis of helical scaffolds on cardiolipin-containing membrane nanotubes or in the presence of soluble adaptors causing Drp1 to form filaments would provide a direct readout for defects in self-assembly.

      This is an excellent point, and we would love to conduct this work. Given our current EM infrastructure and expertise, these experiments would take extensive time for us to do. We do have a collaborator who could carry these out, but feel that the time it would take even for them to do this correctly is beyond that which we have (the lead author is transitioning to their next career phase). We have added the point that further EM studies of this type are necessary to test the effect on Drp1 assembly more directly.

      I am not sure of the rationale for experiments reported in Fig. 7 and 8. If the idea was to test if hetero oligomerization with WT Drp1 rescues defects associated with phosphorylated Drp1 then this could be stated explicitly in the manuscript. GFP-Drp1 is used as a WT mimic but a previous report (PMID: 30531964) indicates that this construct is severely defective in stimulated GTPase assays, much like the K38A mutant. But the rationale of using these constructs is not quite apparent. Is the intention to test if defects seen in the phospho-mimetic mutants of Drp1 can be rescued by the presence of a 'seed' of WT Drp1. If so, then this could be stated explicitly in the manuscript. But regardless, I am not quite sure what this data set achieves in terms of addressing mechanism.

      We apologize for not being clearer in our explanation of these experiments. Our goal was to test the effects of partial Drp1 phosphorylation on overall Drp1 activity, which likely mimics more accurately the cellular situation (wherein only a portion of the Drp1 population is likely to be phosphorylated even upon kinase activation). We now discuss these experiments in a clearer manner. For the GFP-Drp1, we do not observe the effect on GTPase activity shown in that previous manuscript by another laboratory, either here or in previous studies (eg, PMID: 27559132). In the Methods, we now provide a discussion of these differences and possible reasons for them, as well as providing the complete amino acid sequence of our GFP-fusion construct in Supplemental Figure 4.

      Finally, it would have been nice to see if the phospho-mimetic mutants of Drp1 produce the same effects on mitochondrial structure as those reported earlier. Reanalyzing their effects in a cellular assay becomes important because it would consolidate this work for the readers to evaluate the'true' effects of phosphorylation on Drp1 functions. If the phospho-mimetic mutants fare in a manner like those previously reported, then it signifies that stimulation in GTPase activity is not a readout that directly correlates with Drp1 functions. If not, then the results presented here would establish a comprehensive analysis of in vitro biochemical activities and in vivo functions of the phospho-mimetic mutants.

      We fully agree that these would be valuable experiments. The issue is that a large number of experiments using phospho-mimetic mutants in cells have already been conducted, with varying results (Taguchi et al., 2007; Qi et al., 2011; Yu et al., 2011; Strack et al., 2013; Kashatus et al., 2015; Serasinghe et al., 2015; Xu et al., 2016; Brand et al., 2018; Han et al., 2020, Chang and Blackstone, 2007; Cribbs and Strack, 2007; Cereghetti et al., 2008; Wikstrom et al., 2013, Han et al., 2008,Wang et al., 2012 Jhun BS, Sheu, 2018, J Physiol). To conduct more targeted tests examining specific forms of Drp1 activation in cells (for example, through Mff, MiD proteins, actin, or cardiolipin) will require extensive work that is outside the scope here. Our feeling is that S579 phosphorylation is likely to recruit another molecule (probably a protein) that has an activating effect. We tried to test one possibility (NME3, mentioned in the Discussion) but failed to produce useable NME3 protein for these tests and, given time constraints for the lead author, could not address this further.

      Previous work reports that the effect of actin on the GTPase activity of Drp1 is biphasic but the binding to actin is not. This is quite confounding, and the authors could perhaps explain why this is the case.

      The reviewer makes an excellent point, which we now explain further in the manuscript. We have also discussed this in doi:10.1101/2023.07.31.551267 (see Figure 2D in that work). Our interpretation is that it is the density of Drp1 bound to the actin that provides the activation, by positioning the GTPase domains in close proximity. As the amount of actin increases, the Drp1 becomes more dispersed on the filaments, and activation decreases. We observe the same effect for MiD49 and MiD51 oligomers (see the above-mentioned reference).

      The manuscript cites PMID: 23798729 for expression analysis of slice variants but PMID:29853636 provides a more compressive analysis. The authors could cite this work.

      Thank you for this reference. We were unaware of it, but are very glad to know of it now. We now include this reference. In particular, in the legend to Figure 1C (table of splice variants), we now state that this table is for human Drp1, and that additional splice variants have been identified for murine Drp1 (PMID 29853636).

      Reviewer 3

      The splendid results of the manuscript willbe interesting to the researchers in the related fields.

      Thank you for this nice comment!

      The manuscript provided well-organized biochemistry results for comparisons between phosphorylation of Drp1 S579 and S600. It is the reviewer's comments that the authors may include experiments that manipulate Drp1 phosphorylation at different amino acids in cells. Such experiments will provide strong support for this manuscript.

      • We fully agree that these would be valuable experiments. The issue is that a large number of experiments using phospho-mimetic mutants in cells have already been conducted (Taguchi et al., 2007; Qi et al., 2011; Yu et al., 2011; Strack et al., 2013; Kashatus et al., 2015; Serasinghe et al., 2015; Xu et al., 2016; Brand et al., 2018; Han et al., 2020, Chang and Blackstone, 2007; Cribbs and Strack, 2007; Cereghetti et al., 2008; Wikstrom et al., 2013, Han et al., 2008,Wang et al., 2012 Jhun BS, Sheu, 2018, J Physiol). To conduct more targeted tests examining specific forms of Drp1 activation in cells (for example, through Mff, MiD proteins, actin, or cardiolipin) will require extensive work that is outside the scope here. Our feeling is that S579 phosphorylation is likely to recruit another molecule (probably a protein) that has an activating effect. We tried to test one possibility (NME3, mentioned in the Discussion) but failed to produce useable NME3 protein for these tests and, given time constraints for the lead author, could not address this further.

        The authors discussed the known factors that involved in Drp1 activation, such as its receptors, actin and cardiolipin. Recent JCB paper (J. Cell Biol. 2023 Vol. 222 No. 10 e202303147) indicates that intermembrane space protein Mdi1/Atg44 may play a role in coordinating mitochondria fission with Dnm1 (Drp1 in yeast cells). It will be valuable if the manuscript could also discuss the potential factor.

      • Thank you for this comment. We now include Mdi1/Atg44 as a possible factor that might be influenced by Drp1 phosphorylation. Two points we would like to make here are: there doesn’t seem to be an Mdi1 homologue in mammals, so the equivalent factor must be identified before testing; and Mdi1 is an inter-membrane space protein, so any effect of Drp1 phosphorylation on coordinated functioning with Mdi1 would either require an intermediary factor or exposure of the IMS in some way.

        Keywords cannot represent the manuscript. It is recommended that the authors use other words to for the current manuscript.

      We have removed K38A from this list. The other key words are not mentioned in the Abstract.

      Reviewer 4

      The authors showed that the binding of Drp1 to actin depends on salt concentrations (Fig. 2Band C). In the presence of 65 mM NaCl, the phosphomimetic mutants showed decreased binding to actin. The GTPase assay is performed with 65 mM KCl, in which actin did not stimulate GTP hydrolysis of the phosphomimetic mutants. In contrast, with 140 mM NaCl, the S579D Drp1 exhibits slightly enhanced actin binding compared to WT Drp1. Could the authors assess the actin-activated GTPase activity in the 140 mM salt condition to test if actin activates GTP hydrolysis ofS579D Drp1 more potently than WT?

      This is a good point by the reviewer. However, with limited time for the first author, we chose to focus on the reviewer’s other comments (see below).

      Both phosphomimetic mutants show reduced activation for GTP hydrolysis in the presence of cardiolipin, Mff, and MiD49. Is this because the mutants have a lower affinity for these interactors? Or do they bind with the same affinity but experience diminished activation? The data suggests the latter scenario, potentially resulting from decreased oligomerization properties. Can the authors provide more insights on this, for example, by measuring their interaction in the presence of GMP- PCP, which fully induces oligomerization in all three forms of Drp1?

      • These are interesting ideas, and we conducted experiments similar to what the reviewer described: co-sedimentation experiments with combinations of Drp1 and Mff under three nucleotide states: no nucleotide, GMP-PCP, and GTP. We used Mff for these experiments because we have this protein in abundance, and have previously characterized this construct as a trimer in PMID 34347505. We use a high concentration of Mff (50 mM) versus Drp1 (1.3 mM) because of the relatively low affinity between the two proteins (shown in PMID 34347505). We find the following:
      • In the absence of nucleotide, Mff does not cause an increase in pelletable Drp1 for any of the Drp1 constructs.
      • In the GTP state, the presence of Mff greatly increases the amount of Drp1 in the pellet, suggestive of increased Drp1 oligomerization. This effect occurs for all Drp1 constructs (WT, S579D and S600D mutants), but the amounts of both Drp1 and Mff in the pellets are about 50% less for both mutants than for the WT construct. This result suggests a decrease in oligomerization for the mutants, but not necessarily a decrease in Mff binding.

      I'm curious what happens to oligomerization if GTP is added instead of nonhydrolyzable GMP-PCP (Fig. 1D). Does this lead to higher oligomerization in the mutants compared to WT since the mutants seem to have lower GTPase activity? This might explain why phosphorylation increases mitochondrial localization of Drp1 in cells seen in some studies.

      This is another interesting thought, and we describe the new experiments we conducted in the response to the previous comment. Essentially, while GTP does cause a slight increase in pelletable Drp1, the increase is somewhat similar for all constructs. As described in the last comment, the addition of Mff causes a substantial increase in pelletable Drp1 for both WT and the mutants. This result suggests that, while the basal oligomeric state of Drp1 (in the absence of nucleotide) is reduced for the mutants (our original analytical ultracentrifugation data), the mutants appear to be capable of responding to GTP and Mff in a similar manner to WT. We acknowledge that the assay used here (pelleting) lacks the precision required to draw detailed conclusions on oligomerization or interaction with Mff, and we try to reflect this in our discussion of the data. We do feel, however, that these data are useful to report, in guiding future study.

      Please include the number of experimental repeats and error bars where applicable.

      We have now added number of experimental repeats and error bars for the graphs in Figure 3D, E, F, G, H; Figure 4 D, F, G, H, I, J; Figure 5 B, C, D, E, F, G; and Figure 6B, C, D.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Replies to Reviewers

      Thank you for inviting us to submit our revised manuscript titled, “Diffusive mediator feedbacks control the health-to-disease transition of skin inflammation.” We appreciate the time and effort the editor and each of the reviewers have dedicated to providing insightful feedback on ways to strengthen our manuscript. The revisions in the main text in response to the detailed comments are highlighted in red and were proofread by professional English editors. We hope that our revision and responses address all the concerns raised by the reviewer, and we look forward to hearing from you regarding this submission.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript provides a model of interacting populations of pro- and anti-inflammatory mediators to explain spatial patterns associated with various inflammatory conditions. The work is robust and articulated well, and is certainly scientifically relevant.

      Authors: Thank you for your positive evaluation and many insightful comments on our manuscript. We have incorporated your feedback, and hope that our revisions satisfy all the comments.

      Minor amendments:

      Personally, I feel that the model should be reported prior to the results, as the choice of model is likely to have great significance on the observations. It would be preferable for the reader to have a clear picture of the governing equations in their mind as they digest the results.

      Au: Following this reviewer's suggestion, we have relocated the Method section including the model description to be written prior to the Result section (p.9-14 lines 152-232; revised manuscript).

      The literature review is largely relatively thorough; however, I think it is important that the previous works of Joanne Dunster (University of Reading) and collaborators are included, as these are very closely related to this work. In particular, the authors should note the following two papers, which take a spatial approach:

      • Bayani, A., Dunster, J.L., Crofts, J.J. et al. Mechanisms and Points of Control in the Spread of Inflammation: A Mathematical Investigation. Bull Math Biol 82, 45 (2020). https://doi.org/10.1007/s11538-020-00709-y

      • Bayani A, Dunster JL, Crofts JJ, Nelson MR (2020) Spatial considerations in the resolution of inflammation: Elucidating leukocyte interactions via an experimentally-calibrated agent-based model. PLoS Comput Biol 16(11): e1008413. https://doi.org/10.1371/journal.pcbi.1008413

      Au: We have incorporated this comment by adding the two suggested papers to the relevant sentences in the literature review (p.6 line 118-119; revised manuscript) as follows: “Previous reaction-diffusion models, including chemotactic cells, have reproduced the resolution of inflammation in the lung [Bayani et al. 2020a, Bayani et al. 2020b]”

      One key point that should be mentioned in the discussion is that the model neglects any immune cells (e.g. neutrophils, macrophages) which contribute greatly to the inflammatory condition. Since these cells are motile, and also can contribute both pro- and anti-inflammatory effects, they are likely to influence spatial patterns significantly. It is not necessarily a problem that these aren't included in the model, but I feel that it is important that their omission be discussed in the manuscript.

      Au: We have now discussed the immune cells in the “Future implications” as the reviewer suggested (p.29 line 477-483; revised manuscript) as follows: “This is probably because the present model focuses on the non-chemotactic cells (e.g., including keratinocytes), whereas chemotactic cells (e.g., macrophages and neutrophils) also contribute to skin inflammation [Zhang and An 2007, Coondoo 2011]. Moreover, the present model focuses on the innate immune response, whereas the skin initiates an acquired immune response in the persistence of the innate immune response. Therefore, incorporating the chemotactic cells and acquired immune response into the model will reproduce the end of the expansion.”

      Reviewer #1 (Significance (Required)):

      The manuscript advances our current understanding of spatially spreading inflammation and corresponding patterns, but needs to be contextualized against existing literature as described above.

      This manuscript will appeal to theoreticians (Mathematicians) and clinicians/experimentalists alike.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors propose a minimal mechanistic mathematical model able to reproduce qualitatively different spatial patterns observed in healthy and disease epidermis. The starting point is a systematic review of medical images of different dermatological conditions, which they classify and successfully capture according to the spatial patterns. It is an interesting piece of work, but I consider that it will gain significance if the theoretical results are compared again with the clinical data. Specifically, the authors show a very interesting map between parameter regions and different spatial patterns; this result should be compared back to clinical data, to confirm that specific changes in spatial patterns indeed result from predicted changes in a specific parameter (e.g., due to a genetic condition that affects a feedback strength).

      Authors: We thank you for providing your valuable comments on our manuscript.

      Following your suggestion about the comparison of theoretical results with the clinical data, we have predicted which specific parameters including the feedback strength cause specific transitions of spatial patterns in the respective diseases. The discussion was added on p.26 lines 415-438 in the revised manuscript as follows: “The parameter-to-patterning correspondence (Fig. 4A, B, S2 Fig., and S3 Fig.) allows us to infer the pathogenesis mechanism in various diseases exhibiting each of diverse expanding patterns (seen in Table 2). For instance, psoriasis exhibits all five expanding patterns (Table 2) and increased levels of pro-inflammatory mediator (TNF-α) [Ringham et al. 2019], which is consistent with our theoretical results. The elevated pro-inflammatory mediator in psoriatic skin has been suggested to be caused by genetic mutations affecting regulatory feedback [Valeyev et al. 2010]. Considering these previous studies, our model predicts a psoriasis progression where fading pattern transits to arcuate, polycyclic, gyrate, annular, and circular pattern where increase in the TNF-α level is possibly due to mutation-induced alteration in the feedback parameters, e.g., increase of the production of pro-inflammatory mediator qa (Fig. 4A). Alternatively, Lyme disease exhibits circular, annular, and polycyclic patterns (Table 2). A clinical report showed that patients in Missouri predominantly exhibit an annular pattern without prognostic symptoms, while those in New York tend to exhibit a circular pattern with prognostic symptoms following the same treatment [Wormser et al. 2005]. Considering our theoretical result that the overproduction of pro-inflammatory mediators and the depletion of anti-inflammatory mediators leads to the annular and circular pattern, respectively (Fig 4, 5A, and B), altered levels of pro-inflammatory and anti-inflammatory mediators may significantly impact the development and prognosis of Lyme disease in Missouri and New York patients, respectively.

      These qualitative parameter estimations will be verified in the future through parameter quantification in each diseased skin exhibiting any expanding patterns. By incorporating this quantitative correspondence between patterns and parameters measured in each disease into the present model, we would develop each disease-specific model with a quantitative predictability of how much change of the skin parameters transit from healthy to diseased pattern or vice versa. Therefore, this study provides the first step to controlling the healthy-to-diseased transition of skin inflammation via diffusive mediator feedback.”

      Another shortcoming of this work is that some of the conclusions are rushed: the parameter-to-spatial patterns analysis would strongly benefit from adding a quantitative to the qualitative description, e.g., mapping how changes in a given parameter value results in gradual changes in fading speed. Along the same line, the stability analysis for the different fading pattens was performed only for selected parameter values, it is not clear how variations in parameter values affect the sizes of the basins of attraction of the different steady states; we want to make sure that the parameter values were not cherry-picked. Further, given that the authors show bistability for some parameter values, then the dependency on initial conditions on the final spatial pattern should be more extensively investigated.

      Au: We have incorporated these comments by adding a quantitative description including new results and future research strategies following each of the three constructive suggestions raised by the reviewer.

      First, regarding “the fading speed” the reviewer suggested, fading speed is affected by changes in parameters involved in mediator production. In particular, the speed is reduced by an increase in the production parameters of pro-inflammatory mediators (pa, qa) and a decrease in those of anti-inflammatory mediators (pi, qi) (Fig.2. C and D). Moreover, “the size of the basins” the reviewer pointed out corresponds to the distance between ST (Threshold) and SH (Healthy state) in the cases with excitability. The distance between ST and SH becomes closer indicating the health state being less stable when pro-inflammatory mediators (pa, qa) increase or anti-inflammatory mediators (pi, qi) decrease from the healthy fading pattern. The imbalance of the mediator production transits the fast fading pattern with a small trajectory into a slow fading pattern with a larger trajectory. As imbalance goes on, the expanding pattern appears in the order of arcuate, polycyclic, and gyrate (Fig. 5). In cases with bistability, the size of basins corresponds to the relative distance ST to SH and ST to SI (Inflamed state). The circular and annular patterns appear when the distance between ST and SH is closer. On the other hand, when the distance between ST and SI was closer, the inflamed area shrank rather than expanded. The shrinking pattern appeared by reducing the production of pro-inflammatory mediators (pa, qa) or increasing the production of anti-inflammatory mediators (pi, qi) under conditions of stability. We have added a new figure and described this finding in Results (p.24 lines 384-388; revised manuscript) as follows: “As a result, we found that the distance between the healthy state (SH) and the threshold state (ST, a closer unstable steady state to SH) was the smallest in the gyrate pattern and increased in the order of polycyclic, arcuate, slow fading pattern, and fast fading pattern (Fig. 5C–F, S4 Fig. B and C). The fast fading pattern showed a smaller trajectory (green curve in S4 Fig. B and C) of change in the mediator concentration than the slow fading pattern.”

      Second, regarding “the dependency on initial conditions”, we have further added a new result (p.24 line 374-382; revised manuscript) as follows: “The number of stable states determines the pattern regardless of the initial condition in the spatial distribution of mediator concentration. Similar to the fading pattern (Fig. 2), the arcuate, polycyclic, and gyrate patterns with the excitability appeared reproducibly, independently of the initial conditions due to a single stable state SH (Fig. 5C-F). Even in circular and annular patterns with bistability where the threshold ST was closer to the inflamed state SI than the healthy state SH (Fig. 5A-B), the final spatial pattern was dominated by the SI independently of the initial condition. On the contrary, when ST was closer to the SH than the SI, the inflamed area shrank rather than fading (S4 Fig. A). These results are general outcomes of the traveling wave of bistable systems [Murray 2002], and consistent with the previous theoretical studies on inflammations [Sudo and Fujimoto 2022, Volpert 2009]. ”

      Finally, we have added “a quantitative to the qualitative description as a future research strategy (p.27 line 432-438; revised manuscript) as follows: “These qualitative parameter estimations will be verified in the future through parameter quantification in each diseased skin exhibiting any expanding patterns. By incorporating this quantitative correspondence between patterns and parameters measured in each disease into the present model, we would develop each disease-specific model with a quantitative predictability of how much change of the skin parameters transit from healthy to diseased pattern or vice versa. Therefore, this study provides the first step to controlling the healthy-to-diseased transition of skin inflammation via diffusive mediator feedback.”

      For reproducibility it is essential that the authors add a much more detailed description of the methods, including the software tools / numerical analysis tools used. Making the code publicly available would also be very beneficial to ensure the reproducibility of the results.

      Au: Following your suggestion, we have added a description of the methods, including the simulation code, to the “Methods” (p.13 lines 231-232; revised manuscript) as follows: “A simulation code written in C language is available from GitHub: https://github.com/MakiSudo/Erythema-Patterns/blob/main/AInondim.c.”

      In conclusion, the work is very interesting and worth publishing, but requires (a) to come back to the clinical data for validation of model predictions, (b) a more thorough and quantitative investigation of the effects of parameter variations on model behaviors, (c) a more rigorous and systematic presentation of the methods, (d) carefully explaining how the proposed model is similar / differs to the classical activator -inhibitor model proposed by Turing, and (e) discussing / showing if the fading patterns result from a turning instability.

      Au: For (a) “validation of model predictions,” (b) “model behaviors,” and (c) “a more rigorous and systematic presentation of the methods,” we have reflected your suggestions in the revised manuscript as described above.

      Regarding (d) and (e), we have added an explanation of “how the proposed model is similar/differs to the classical activator–inhibitor model” and “if the fading patterns result from Turing instability” after the model construction in Methods (p.11-12 line 210-216; revised manuscript) as follows: “Reaction terms of this model are similar to the classical activator-inhibitor model proposed by Turing [Turing 1952], which includes the negative feedback of the activator through the inhibitor and the positive feedback of the activator. These reaction terms potentially result in Turing instability. However, the present model setting does not show Turing instability. The reason is that Turing instability requires a large difference between the diffusion coefficients of the activator and inhibitor [Murray 2002], whereas these coefficients in the present model were set to be equal based on molecular findings that these molecular weights are close in proximity [Coondoo 2011]. ”

      **Referees cross-commenting**

      I agree with the comments from Reviewer #1.

      Reviewer #2 (Significance (Required)):

      The work aims to bridge mathematical modelling to dermatological practice, which is much needed to enable the use of theoretical and computational tools to clinical decision-making. While some mathematical models of skin inflammation have been proposed in the past (refer to papers from the RJ Tanaka group in systems dermatology), most of these do not consider explicitly the spatial component, which is crucial for modelling the clinically visible spatial patterns. Potentially interested audience includes biomathematicians, systems biologists, systems dermatologists, and, if the validation of the model predictions is achieved (as suggested above), also dermatologists.

      I am a systems biologists working on multi-scale mechanistic mathematical modelling of epithelial tissue diseases. The work I just reviewed falls exactly within my area of expertise.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the reviewers for their time and both thoughtful and constructive comments. Their specific points are addressed below but a general point that we would like to comment on is that in the original version it appears we did not make our model clear enough. The dogma in the field is that Rab7 is recruited to endosomes from a cytosolic pool via exchange with Rab5 (mediated by Mon1/Ccz1). Our work instead indicates that the majority of Rab7 is delivered to Dictyostelium phagosomes by fusion with other endocytic compartments. It was not our intention to imply there was no canonical recruitment of Rab7 from a cytosolic pool, and indeed we provide data to show this happens at a low level and discuss this in the manuscript. Nonetheless, we clearly over-stated the exclusivity of Rab7 recruitment to phagosomes via fusion at several points and our original model cartoon, and have tried to better explain or more nuanced model with multiple routes for Rab7 acquisition in this revision, including a completely redrawn model figure (Fig. 7).

      2. Description of the planned revisions

      Reviewer 1:

      1. The observation that macropinosomes undergo retrograde fusion with newly formed phagosomes to facilitate phagosome maturation is an interesting notion that challenges the traditional model. However, not all phagocytes exhibit a high level of macropinocytosis, and axenic Dictyostelium cells used in the study may be an exception. Thus, it remains unclear whether fusion with macropinosomes is universally required for phagosome maturation. WT Dictyostelium cells or axenic cells cultured under SorMC/Ka condition (Paschke et al., PLoS One, 2018) exhibit significantly reduced macropinocytosis. The authors could examine whether the accumulation of Rab7 and V-ATPase on large-sized phagosomes is delayed in these cells. These experiments may help broaden the applicability of the authors’ finding.

      As our previous work (Buckley et al. PloS pathogens 2019) demonstrated that bacterially-grown PIKfyve mutants are also defective in bacterial killing and growth it is highly likely that cells also are defective in V-ATPase and Rab7 acquisition. However, we agree that formally testing this will further support our conclusions and improve the paper and should be quite straightforward.

      We will therefore co-express GFP-V-ATPase and RFP-Rab7 in both Ax2 and non-axenic cells grown on bacteria and repeat our analysis of recruitment to phagosomes – with the caveat that non-axenic cells do not phagocytose large particles such as yeast (Bloomfield et al. eLife 2015), so the imaging and quantification will be more challenging in this case.

      PIKfyve seems to play a specific role in the maturation of phagosomes but not macropinosomes. The differences may be driven by signaling from phagocytic receptors, as the author suggested. Alternatively, the large size of the yeast-containing phagosomes may require additional steps for efficient lysosomal delivery. The authors should consider examining whether PIKfyve is needed for the delivery of Rab7 and V-ATPase to phagosomes of comparable size to regular macropinosomes, such as those containing K. aerogenes or small beads. In addition, whether the process also involves fusion between phagosomes and macropinosomes should be verified.

      Whilst it is possible that large size of yeast-containing phagosomes requires additional mechanisms to process them, our previous data demonstrate that PIKfyve is also required to kill much smaller bacteria such as Klebsiella and Legionella (Buckley et al. PloS pathogens 2019). Furthermore, in this paper we also showed that loss of PIKfyve disrupts phagosomal proteolysis using 3um beads, and showed that V-ATPase recruitment was reduced on purified phagosomes containing 1um beads. We therefore find consistent defects on phagosomes of different size, with different cargos. Nonetheless, the experiments above, observing V-ATPase and Rab7 in cells grown on bacteria should directly address this point.

      As suggested, we will also perform a dextran pulse-chase prior to addition of bacteria to test if we can observe macropinocytic delivery to bacteria-containing phagosomes - perhaps using E. coli as their elongated shape may help phagosome visualisation.

      In the previous study from the authors' group (Buckley et al., PLoS Pathog, 2019), it was shown that the accumulation of V-ATPase on phagosomes begins immediately after internalization in both PIKfyve mutant and WT, although V-ATPase accumulation reaches only half of the levels seen in WT. This partial accumulation of V-ATPase differs from the almost complete absence of Rab7 recruitment found in this study, which raises the question of whether there exists yet another population of fusogenic vesicles that are positive for V-ATPase but negative for Rab7. This could be checked by simultaneously examining the dynamics of V-ATPase and Rab7 during yeast phagocytosis in the PIKfyve mutant.

      We agree with the referee that there are multiple pools of V-ATPase, and we show that there is both a very early PIKfyve-independent recruitment of both V-ATPase and Rab7 as well as a later and more substantial pool delivered in a PIKfyve-dependent manner. It is clear that V-ATPase and Rab7 do not always co-localise however - the clearest example being on the contractile vacuole, which has lots of V-ATPase but no Rab7 (the large bright magenta structure in Fig 2G.).

      We suspect that the dramatically reduced, but not completely absent levels of both V-ATPase and Rab7 recruitment in the absence of PIKfyve are similar, but the challenges with imaging these very small low levels means we cannot formally exclude that there is a pool of V-ATPase vesicles that lack Rab7 which fuse to very early phagosomes. Nonetheless, as we will already be looking at V-ATPase and Rab7 in PIKfyve KO's in the experiments above will also attempt to unequivocally differentiate a pool of V-ATPase positive/Rab7 negative vesicles fusing with phagosomes.

      Reviewer 2:

      (1) The authors show that deletion of PIKfyve results "in an almost complete block in Rab7 delivery to phagosomes" (page 17) indicating that the delivery of Rab7 depends on fusion with Rab7-positive structures. This would suggest that the Rab7-GEF Mon1-Ccz1 is not localized to the membrane of the phagosomes. Could the authors test for the presence of Mon1-Ccz1 in either fluorescence microscopy experiments or on purified phagosomes to exclude the possibility of a "canonical" Rab7 recruitment by its GEF? If the GEF is found on phagosomal membranes it would indicate that a Rab-transition from Rab5 to Rab7 occurs on the phagosome during maturation, but on a low level. The later fusion event might be a homotypic fusion of two Rab7-positive compartments. The observed fusion events could still deliver the bulk of Rab7 and other endolysosomal proteins to the phagosome. If the Rab7-GEF is not found on phagosomes how do the authors envision that the organelle keeps its identity? Is it solely dependent on PI(3,5)P2? What is the fate of the Rab7-negative phagosome in ∆PIKfyve cells if Rab7 is not delivered to the membrane, is there degradation happening over longer periods of time?

      This is an excellent suggestion, for which we thank the reviewer. Mon1 and Ccz1 are highly conserved, with clear Dictyostelium orthologues that have never been studied. Our model is that there is a small proportion of Rab7 driven by this canonical pathway so would expect Ccz1/Mon1 to coincide with loss of Rab5 and be unaffected by loss of PIKfyve - although subsequent Rab7 delivery would be lost. This is easy to test by cloning and expressing GFP-fusions of both Ccz1 and Mon1 and would be highly informative. Note we do not exclude canonical Rab7 recruitment in our model (see discussion), our data just indicate this has a minor contribution.

      Reviewer 3:

      The focus is on their manuscript is loading of Rab7 on phagosomes, but there's no indication about Rab7 activation (GTP-loading). Would the RILP-C33 probe work in Dictyostelium? If not possible, the activation state of Rab7 should still be discussed. Despite Rab7 on other organelles in PIKfyve-inhibited cells, is this active or not?

      The GTP-loading status of Rab7 is a good question, although the general dogma is that membrane-localised Rabs are active. We will try the RILP-C33 probe in Dictystelium as suggested, but as these cells lack an endogenous RILP orthologue there is a high chance it will not work. Sadly, reliable tools to asses active Rab status are a general limitation for the field, so if the RILP-C33 probe does not work we will add this caveat to the discussion.

      The authors need to better address the confusing kinetics of early Rab7 recruitment, followed by SnxA (Fig. 4G, same for VatM - Fig. 4I ) - which is counterintuitive if PIKfyve activity is required to recruit Rab7. How do the authors explain this? Are phagosomes prevented from acquiring Rab7 in PIKfyve deficient cells because of a defect on phagosomes or the endo-lysosomes loaded with Rab7 (but not active).

      We believe this again relates to the over-simplification of our model. Our data indicate both PIKfyve dependent and independent Rab7 recruitment. In contrast to the abrupt recruitment of SnxA at ~120 seconds (Vines et al. JCB 2023), both Rab7 and VatM accumulate gradually over time starting from almost immediately following engulfment (Buckley et al. 2019, and Figure 2F). Our data indicate that the first stage of this is PIKfyve independent, and is responsible for ~10% of the total Rab7/V-ATPase accumulation by both the imaging in this paper, and Western blot for V-ATPase on purified phagosomes in Buckley et al. PLoS pathogens 2019. The arrival of some Rab7/V-ATPase prior to PI(3,5)P2 therefore supports our model where there are multiple sources of Rab7.

      As the reviewer quite rightly points out, interpretation of the defects observed in the absence of PIKfyve becomes complex and we cannot completely differentiate between a defect on the phagosome, or the Rab7 compartments that fuse with them (or indeed both). In fact, we already note that small Rab7 compartments that we observe in wild-type cells are much more sparse in PIKfyve mutants. Therefore whilst the requirement for PI(3,5)P2 in the clustering and fusion of macropinosomes with phagosomes is clear, additional effects on the PI(3,5)P2-independent Rab7 compartments cannot be excluded.

      The experiments above using the RILP-C33 active Rab7 biosensor as well as observation of the Mon1/Ccz complex should further clarify this, but we will also add further discussion of these points.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Reviewer 1:

      Minor comments.

      1. It is unclear how the experiment in Figure 3G was conducted. If microscopic analysis was involved, the corresponding images should be included.

      We apologise that we overlooked this and have now added a full description in the materials and methods (P8 L16-21). Fluorescence measurements were performed using a plate reader, so there are no images.

      Page 11-Line 2, the sentence "there was no obvious clustering around the nascent phagosome (Figure 2D)." It is Figure 2E, not Figure 2D.

      Corrected.

      There is an inconsistency regarding the description of fluorescent fusion proteins. For example, both GFP (RFP)-2xFyve and 2xFyve-GFP (RFP), as well as GFP-Rab5 and Rab5-GFP, were used. Typically, placing GFP (or RFP) before a gene suggests N-terminal tagging, while placing it after the gene implies C-terminal tagging. The authors should clarify the position of the fluorescent tag and ensure consistency in their descriptions.

      We apologise for this oversight, and have been through and corrected all fusion protein references accordingly.

      One of the videos was not referred in the manuscript or described in the Video legends. This video seems to correspond to Figure 5A, albeit with a different pseudo-color scheme.

      This has been corrected. Video 7 does correspond to Fig 5A, and we have corrected the colour scheme to match and added references to the video in the text and figure legend.

      Reviewer 2:

      (2) In their abstract, the authors state that they "...delineate multiple subpopulations of Rab7-positive endosomes that fuse sequentially with phagosomes" (page 2, line 14,15). However, the data provides only evidence for V-ATPase or PI(3,5) P2-containing structures and the authors conclude to my understanding that macropinosomes are the main source for vesicular structures fusing with phagosomes. I would ask the authors to please be clear on the identity of the "Rab7-donor"-structures throughout the manuscript. Saying that they delineate multiple subpopulations of endosomes seems to be overstated.

      We identify that macropinosomes are one source (subpopulation) of Rab7/PI(3,5)P2 vesicles but our data clearly show that they are the only source of Rab7 - there is clearly an additional early Rab positive / PI(3,5)P2-negative subpopulation of vesicles that cluster and fuse too at earlier stages. For example, in Figure 4F we co-express Rab7a/SnxA and show that whilst all the SnxA vesicles also contain Rab7 (and dextran), there is a clear separate population of small and early-fusing population of Rab7-containing vesicles that do not possess PI(3,5)P2. This is further validated in Figure 5B and C. To our mind this clearly demonstrates and defines different Rab7 endosomal populations, although we do not yet know the origins of the initial Rab7-positive/PI(3,5)P2 negative population - as discussed in our response to their point (3) below.

      Minor points:

      (1) The sentence "...which both deactivates and dissociates Rab5, and recruits and activates Rab7 on endosomes" is at least problematic as it suggests that Mon1-Ccz1 directly drives GTP-hydrolysis of Rab5 and dissociates it from the membrane. Indeed, Mon1-Ccz1 is shown to interfere with the positive feedback loop of the Rab5-GEF by interacting with Rabex (Poteryaev et al., 2010), so a rather indirect effect of Mon1-Ccz1. A GAP and the GDI are needed for Rab5 deactivation and dissociation from the membrane. How both are involved in the endosomal Rab-conversion is not clarified.

      We have changed the text to better represent this complexity (P4 L4-6)

      (2) Signals of RFP-labeled proteins are difficult to interpret throughout the experiments. What are the structures that show a strong accumulation of red signal in Fig. 1A,B, Fig 2G and Fig4A (20sec.) If these are fluorescently labeled proteins it would suggest that most of the proteins cluster/accumulate in the cell. Can the authors provide better images?

      We appreciate that some of these reporters with multiple localisations can be difficult to interpret. This is major challenge for these sort of studies and main reason we use the large and easily-identified yeast containing phagosomes for quantification. In Fig. 1 the large structure is the large peri-nuclear cluster of Rab5 previously reported (Tu et al. JCB 2022). In Fig. 2G the bright structure is the recruitment of V-ATPase on the CV. Both these large structures easily distinguished from the phagosomal pool we are interested in. Whilst we would love to provide better images, this is simply not possible - both these other structures are unavoidable and we are already using some of the best microscopy methods available. We have however clarified the additional localisations seen in these images in the revised figure legends.

      (3) On page 11 the authors state "...macropinosomes in ∆PIKfyve cells still appeared much larger. Quantification of their size and fluorescence intensity demonstrated that although macropinosomes started off the same size,...". This statement is not reflected in the data depicted in Fig. 3A,B. The size of the single labeled macropinosome appears to be larger in wildtype than in ∆PIKfyve cells from the beginning on. However, the quantification in Fig 3F is clear. So, are these bad examples in 3A,B, are they swapped or is this due to the additional expression of GFP-Rab7A? Could you please comment on the effect that the (over-)expression of GFP-tagged Rab-GTPases might have on the observations described in this paper in the discussion part?

      As you can see from the error bars in Figure 3F, macropinosomes are extremely variable in size - ranging from ~0.2-5 microns in size in axenic Dicytostelium. The image in Figure 3B is therefore indicative of this heterogeneity, rather than being a "bad example". This is why we designed the experiment to quantify several hundred vesicles in order to make any conclusions - as well as doing it in the absence of any GFP-fusion expression.

      Although we have not noticed any issues (enlarged vesicles are also clear in GFP-Rab7 expressing cells in Figure 1B), we do of course accept that GFP-Rab7 expression itself may have some detrimental effects on maturation and this is why we quantified macropinosome size in untransformed cells. We have clarified this in the results section (P12 L28).

      (4) In Fig. 6E it is hard to distinguish if the dextran is accumulating inside the phagosome. I would suggest conducting a 3D reconstruction of these images to allow judging if macropinosomes fused with the phagosomes or if they cluster around the neck of the phagosome.

      This would be nice, but not possible as these images are from single confocal sections, rather than a complete high-resolution Z-stack. We have however added an enlargement of both Figure 6D and E which we feel now more clearly shows the presence of dextran within the bounding PI(3)P membrane of the phagosome.

      (5) In the discussion, the authors state that the small pool of "PIKfyve-independent Rab7" is "insufficient to for subsequent fusion with other Rab7A-positive compartments, further Rab7 enrichment, and lysosomal fusion." What is the rationale for this conclusion? Is it shown how many Rabs are necessary to induce a tethering and fusion event? It would be good to revise this part of the discussion also in respect of the first major point of my comments above.

      Our data show that in the absence of PIKfyve, phagosomes still remove Rab5 and gain a small pool of Rab7 but progress no further. This is consistent with some block in the HOPS-mediated homotypic fusion of Rab7 compartments. However, we accept that this is not necessarily due to simply not having enough Rab's so have rephrased the discussion accordingly.

      (6) The intention of the paragraph about phagosomal ion channels is for this reviewer somehow out of context. It is not clear to me how the authors relate this to their findings. It would be could to bring this into a broader context.

      __ __We mention ion channels in the background as they represent the main class of PI(3,5)P2 effectors known so far. We feel this is important background context, even if our studies do not directly relate to this.

      Reviewer 3:

      Their disclosure and use of statistics is incomplete and/or inconsistent, and potentially wrong in some cases. For example, the authors disclose the number biological repeats in a few experiments (Fig. 3C, F) but not in the majority. Instead, they state the number of phagosomes without indicating biological repeats (eg. Fig. 2 and others). So, it is not possible to know if their data are reproducible. Despite not indicating independent experiments in some cases, they speak of SEM, which applies to mean of means from biological repeats. In other cases, none of this is disclosed (eg Fig. 3G). Often there is no indication of what statistical test was done OR if a statistical test was done (eg. Fig. 3G, Fig. 4, etc). I would recommend the authors review the excellent resource paper published in JCB on SuperPlots to better follow statistical expectations. This is essential to improve reproducibility and confidence in their observations.

      We apologise if this was unclear for the referee, but we have tried to be clear in each case. The confusion likely lies in the definition of a biological repeat, which depends on the type of experiment. For quantification of phagocytic events over time, we feel it reasonable to take each individual event (each from an individual organism) as a biological repeat. This is because events are relatively rare and taken from multiple different movies, and it is not technically possible to film both mutants and controls simultaneously. In all these sort of experiments (e.g. Figure 2) we have shown standard deviation, which indicates the reproducibility between phagocytic events. We have clarified that these events are from movies obtained on at least 3 independent days in the methods.

      In other cases, such as Figure 3C and F and Figures 5-6, we are able to take measurements across multiple cells simultaneously at each timepoint. It is therefore appropriate to average over multiple independent experimental repeats rather than individual cells. We have therefore used SEM in our analysis, and both the number of individual cells and independent repeats are stated on the graphs and legend. This was incomplete in a few cases but has now been clarified in all cases.

      Regarding statistical tests, which ones were used now been clarified in each figure legend. Note that in Fig 3G, we do not apply any test as both lines essentially overlap and it is clear there would not be any convincing differences. In Figure 4, the graphs all compare co-expression of different reporters rather than different mutants or conditions and are from single events. We therefore feel statistical tests are unnecessary and inappropriate. Comparison of the same reporters between strains averaged across multiple events, with statistical analysis is shown in Fig 2 instead. All these points have now been added to the statistics section of the methods (P9 L1-6)

      Minor Comments

      It is interesting that 2FYVE-GFP stays on phagosomes for 50 min or more - this is distinct from macrophages. Please comment. Have the authors tried other PI(3)P probes to see if the same (PX-GFP).

      We have not used other probes but we have no reason to believe 2xFYVE does not behave as predicted as it is the same probe used for most macrophage studies (FYVE domain from human Hrs), and gets removed from macropinosomes exactly as expected. We did not originally comment in this manuscript but PI3P dynamics are even more interesting as our previous data indicate that latex-bead containing phagosomes lose PI3P after 10 minutes (Buckley et al 2019, Figure 4F-G) This indicates phagosome maturation can be regulated by the cargo (under further investigation). Importantly however, both bead and yeast-containing phagosomes have comparable defects in the absence of PIKfyve. This is more fully discussed in our previous paper (Vines et al. JCB 2023) where we characterise PI(3)P and PI(3,5)P2 dynamics in more detail.

      Fig. 7 model: the macropinosome in the diagram seems like a dead end as depicted - is there any arrow or change that could be added to show that it doesn't just sit there in the middle? Also, the light green on yellow hurts the eyes!

      We apologise, there was actually supposed to be an arrow there but it was lost somewhere in the drafting process. The whole figure has now been updated to more clearly describe our full and more complex model.

      Fig. 3F, could be converted to volume assuming macropinosomes are spheres.

      This is true, however as these images are taken from single planes we cannot know where in the sphere the slices are and therefore what the maximum diameter would be. We therefore prefer to keep it as area so as not to confuse and over-interpret the data.

      Pg. 10, line 10 - Vps34 is Class III PI3K, not Class II.

      Corrected.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      Reviewer 2:

      (3) ("OPTIONAL") Optionally, the authors could also try to clarify these structures' identity by including further colocalization studies with additional early and late endosomal marker proteins. Are they for example positive for early or late endosomal markers like EEA1, ESCRT or Retromer? How about organelle-specific SNAREs? This would give further insights into the character of the "Rab7-donor" structures and would allow to clarify if multiple subpopulations are contributing to phagosome maturation in a sequential order as stated in the abstract. As I am not an expert on Dictyostellium I can`t estimate the effort that would go into such an experimental setup. However, since the time scale of the events in the cell is nicely worked out in this study, these colocalization studies would not need to be conducted as live-cell microscopy experiments.

      This is a sensible suggestion that would in theory help define these populations. However many of these markers are poorly defined with respect to phagosomes and/or Dictyostelium. Dictyostelium does not posses an EEA orthologue, but our data also indicate that these vesicles do not possess PI3P so cannot be canonical early endosomes. We have previously characterised WASH/retromer and whilst it is recruited to phagosomes at around the time of Rab5/7 transition Retromer appears to be recruited from the cytosol and drive recycling rather than being delivered on endosomes that fuse (see King et al. PNAS 2016). We have also previously looked at ESCRT (Lopez-Jimenez et al. PLoS Pathogens 2018) which also does not appear to have any recruitment to early phagosomes that would be consistent with a Rab7-sub-population. The SNAREs are yet to be studied in any detail, as they are often too divergent to assign a direct mammalian orthologue.

      Therefore, whilst this is a sensible suggestion, and something we would like to follow up in the future, this is not straight-forward and we feel outside the scope of the current study. We have however included additional discussion of this in the revised manuscript (P20 L21-26).

      Reviewer 3:

      Major Comments:

      1. Based on the current data, I am not entirely convinced that Rab7 is delivered mostly by fusion with other compartments. At least the data as provided cannot exclude other models. For example, Rab7-containing organelles that cluster with phagosomes may form contact sites that provide a local environment to load cytosolic Rab7. There's also a possibility that some of their Rab7 clusters are membrane sub-domains and not vesicles. Or perhaps, there is a first wave of cytosolic Rab7 recruitment, which then initiates fusion with Rab7 compartments, i.e., there is a two-phase Rab7 recruitment. While this last possibility is consistent with recruitment of Rab7 by fusion (the second phase), the authors present a model that is too simplistic and conclusive based on the data. The authors may be right, but they need to strengthen their evidence towards their claim. Maybe EM could help determine some of these issues. Perhaps better would be the use of FRAP, photo-activation, or optigenetics of Rab7. For example, if Rab7 is acquired on phagosomes after photobleaching clusters of Rab7, this would suggest a cytosolic Rab7 contribution, and if not, this would support their model. I recognize that these experiments are not necessarily trivial, but either the authors augment their data (as suggested or with other approaches) or significantly pare down their conclusions.

      We agree with the Referee that we cannot completely exclude other models, and as we talk about in the discussion, we do not wish to do so. We apologise if the role of fusion was over-stated but the model we propose is as the referee suggests: there is likely an early first wave of canonical Rab7 recruitment from the cytosol that is independent of PIKfyve before the majority of Rab7 is subsequently delivered by fusion in a PIKfyve-dependent manner. Our data indicate that the second wave is both quantitively and functionally more significant (see functional data in Buckley et al. 2019).

      We do however agree with the referee that we cannot formally exclude things such as contact-site mediated recruitment from the cytosol or sub-domains but not fusion however there is no data to support these either. In contrast, the hypothetical clustered Rab7 contacts/subdomains often (but not always) contain the transmembrane V-ATPase complex (Figure 2G) which must be delivered by fusion.

      However we do not wish to over-simplify our conclusions and as we state in the discussion, we do think there is probably a small amount of Rab7 recruited from the cytosol by the canonical pathway. We accept that our cartoon in Figure 7 is over-focussed on fusion so we have substantially revised this, as well as the discussion to give a more balanced and complex view.

      Regarding the proposed experiments, unfortunately, the imaging required to acquire these movies is already at the very limit of what is possible so we do not believe it would be technically feasible to employ methods such as FRAP and optogenetics on these relatively fast-moving phagosomes with the temporal resolution required. Furthermore, to differentiate recruitment from a cytosolic pool, every GFP-Rab7 cluster would need to be photobleached, which could not be reliably achieved.

      However, this point will be largely addressed by the suggestion of Reviewer 2 to look at the Mon1/Ccz complex. The presence or absence of this will give strong evidence for canonical Rab5/7 transition and Rab7 recruitment from the cytosol which would significantly clarify our model and define the two different mechanisms of Rab7 recruitment to phagosomes.

      Early macropinosomes fuse with early phagosomes more readily than 10-min old macropinosomes. Do 10-min old macropinosomes not fuse with older phagosomes? Is this not an issue of mismatched age?

      This is an interesting point that we have clarified in the text. We agree with reviewer that it appears the ages of the macropinosomes and phagosomes must match but our data indicate this only occurs when both parties possess PI(3,5)P2 as macropinosome fusions appears to happen in a single burst at about 240 seconds (Figure 6F) rather than as a continuous process. We also do not start to see any fusion of these older macropinosomes when the phagosomes get past the initial first 10 minutes of maturation (Figure 6G).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1) List of the detailed experiments we plan to perform (including aforementioned experiments):

      • Careful analysis of the daughter cell size by measuring the real volume.

      • Quantifications of PCM (pericentrin and γ-tubulin) proteins and Plk1 with respect to centrosome age in G2 and metaphase (for Plk1) cells.

      • Analysis of the amount of Plk1 of metaphase cells when cenexin protein is absent (siControl vs siCenexin), and measurements of Plk1 in WT-cenexin vs. cenexinS796A mutant to test if Cenexin controls a subpool of Plk1 at centrosomes.

      • Careful analysis of Ctrl and TPX2 depletion experiment data in 1:1 cells. We plan to repeat the experiment to confirm or infirm on the contribution of TPX2 in spindle asymmetry.

      • Measurement of the PCM volume/intensity in 2:2 and 1:1 metaphase cells, to highlight on the contribution of the daughter centrioles in recruiting PCM proteins.

      • Live cell imaging of 2:2 cells and measurements of different parameters; cortex-to-centrosome and spindle pole to metaphase plate (half-spindle (a)symmetry) distances.

      • Long-term live cell imaging of 2:2 cells to investigate whether the asymmetry in centrosome-age dependent daughter cell size also affects the duration of the ensuing cell cycle. While we have carried out such long-term movies in the past, we are aware that they can be challenging due to high cell mobility over longer time courses.

      • Investigation of the microtubule nucleation capacity under different conditions of PCM protein depletion (depletion of Cdk5rap2 and/or pericentrin).

      • Analysis of the effect of the over-expression of PCM protein (Cdk5Rap2) on the (a)symmetry of the mitotic spindle size


      2) detailed answers (in green) to the reviewers’ comments:


      __Reviewer #1: __

      __(Major points) __

      1. The discovery of differences in half-spindle size during symmetric division is intriguing. However, the methodology for quantification of the data remains unclear. Key questions, such as how the center of the metaphase plate is determined from the image data, the definition of exact pole position when centrioles are located at spindle poles, the objective determination of daughter cell diameter and width from the image data, and the referential position of the cortex, need more detailed explanation in the manuscript. Additionally, it's crucial to elucidate the specific index used to quantify differences from the image data, especially when dealing with data that only varies by a few percent. Providing clarity on these aspects and, in some cases, re-quantifying the data should be necessary.

      We have already included clearer explanations in the method parts and results part about our methodology and will include a supplementary figure on how precisely we defined and measured the half-spindle sizes, as well as the index used for the asymmetry (using a methodology that we previously used in Dudka et al., Nature Comm., 2018). In addition, we will use a second method to measure the real daughter cell volume.

      The mechanism behind the difference in half-spindle size, related to the subdistal appendage (SDA), raises questions, especially considering that SDA is believed to disassemble during mitosis. Exploring whether differences in the localization of PCM components and half-spindle size result from disparities in Plk1 and PCM loading during G2/early mitosis, prior to SDA disassembly, necessitates experimental verification.

      As suggested by the reviewer we will quantify the amounts of PCM proteins on the old and young centrosome in G2 cells (and therefore prior SDA reorganization). This will also allow us to test whether the asymmetry depends on the SDA themselves, or the corresponding SDA proteins, which still accumulate specifically on the oldest centrosomes during mitosis

      For investigating the mechanism of half-spindle size asymmetry, many perturbation experiments employ knock-down techniques. To directly address the cause of asymmetry, it might be valuable to artificially localize Plk1 and PCM factors to one spindle pole using optogenetic tools or similar approaches and then quantify half-spindle and daughter cell sizes.

      We thank the reviewers for this suggestion, as it could indeed, be of great interest and provide a direct proof of principle. Unfortunately, based on our experience in establishing such a cell line we know that just the generation of such a light-manipulated stable cell line that contains markers for centrosomes and chromosomes or kinetochores takes 6-9 months, in the best-case scenario. This experiment is therefore not possible within a normal revision round (even if extended to 6 months).

      The asymmetry in Plk1 sub-population recruitment by SDA triggers the observed effects, but the evidence for this is relatively weak, given the small difference in spindle asymmetry. Quantifying the amount of Plk1 in its activated form, particularly in the context of SDA dismantling during metaphase, could strengthen this aspect of the study.

      While the commercial antibodies against the activated form of Plk1 (phospho-T210) work very well by immunoblotting, we have not been able to get it to work by immunofluorescence. We will nevertheless, test whether variation in the fixation methods can solve this issue. Alternatively, we will test to which extend depletion of Cenexin, or the presence of Cenexin WT vs the non-phosphorylatable Cenexin mutant affects the overall population of Plk1 on both spindle poles.

      While the focus on half-spindle size asymmetry during symmetric division is intriguing, it's important to address the broader physiological significance. The primary outcome of this asymmetry is differences in daughter cell size, which limits the broader significance of the study. Furthermore, the quantification method for daughter cell size warrants scrutiny and clarification.

      As mentioned above, we will use different method to measure and investigate daughter cell size (a)symmetry. Moreover, we will attempt with long-term live cell movies to test whether the variation in centrosome-age dependent daughter cell size also affects the duration of the ensuing cell cycle.

      (Minor points)

      1. Table 1 lists factors with asymmetric localization not analyzed in detail in this paper. It would be beneficial to discuss whether these factors play a role in spindle asymmetry, and the authors should address the completeness of the data in Table 1 in terms of selecting factors for analysis.

      We agree with this comment that other factors may participate in the regulation of spindle asymmetry. However, we performed this screening to identify key drivers of spindle (a)symmetry based on an investigation of the Pearson’s correlation coefficient and the value of slope.

      In addition, some of these proteins are known to control spindle size in acting in a same pathway (TPX2/Kif2A/Katanin) and (Pericentrin/CDK5RAP2/ϒ-tubulin). We will incorporate these points and the reasons for our selection in the discussion

      In Figure 1H, the impact of centriolin knock-out on the distribution of unaligned polar chromosomes is different from the effect of cenexin S796A in Figure 6H. This difference should be explained to provide clarity on the observed discrepancies.

      We will better explain this difference.

      In Figure 2A, there is no correlation data presented between daughter cell asymmetry and the presence or absence of cenexin signal. This relationship should be elucidated for a more comprehensive understanding.

      We will clarify this point. Specifically, we plotted the daughter cell symmetry index for 2:2 and 1:1 cells with respect to centrosome age. All the daughter cells display the presence of a cenexin signal at both grandmother and mother centrioles with a difference in fluorescence intensity that enables us to assign them to “old” vs “young centrosomes. We found a significant result indicating that there is a relationship between centrosome age and the formation of daughter cell with different sizes.

      In Figure 4G and H, the mean value of spindle asymmetry increases with siRNA treatment of Cdk5Rap2 or PCNT compared to the control. The possible interpretation of this finding should be discussed.

      This is an interesting observation that needs to be discussed in our revision.

      Figure 4K shows that the asymmetry of PCNT distribution is not eliminated by centriolin knock-down. This observation requires clarification and discussion.

      It has been shown that pericentrin is directly recruited by Plk1 at centriole (Soung et al., 2009). In addition, pericentrin has a PACT-domain that directly targets pericentrin to the centriole (Gillingham and Munro., 2000). Moreover, it has been demonstrated that the grandmother centriole is slightly longer than the mother one (Kong et al., 2020). Altogether, this suggests that the old and young centrosomes, based on this intrinsic property, may recruit different amount of pericentrin.

      We will add this explanation in the discussion.

      It appears that the difference in spindle asymmetry of the control group in Figure 5A is smaller than in other data. This discrepancy should be addressed. Additionally, the influence of TPX2 depletion on spindle formation, and any corresponding spindle staining data, should be included.

      This point will be discussed in the revised version of the manuscript.

      Claiming that the daughter centriole recruits PCM based on Figure 6A data alone may require additional supporting evidence. It is essential to investigate whether there is a clear PCM signal when the daughter centriole disengages in late mitosis and maintain consistency in the interpretation.

      As suggested by the reviewer 2, we will measure PCM volume/intensity in both 2:2 and 1:1 cells to demonstrate that daughter centrioles directly recruit PCM proteins.

      The lack of difference in TPX2 distribution in Figure 7E should be explained, along with a discussion of how this observation aligns with the spindle asymmetry data and any inconsistencies.

      We will discuss this point in the revised manuscript.

      The differing N numbers between samples in all the figures may affect the validity of comparisons. The authors should discuss whether it is necessary to have consistent N numbers in each experiment for more robust conclusions.

      Indeed, this is an important point that must be discussed.

      Reviewer #2____:

      Major comments:

      1) It is not completely clear how the authors determined whether a spindle was asymmetric or not. In the methods, they say that statistical tests are described in the legends. In Figure 1 legend they say: "Each condition was compared to a theoretical distribution centered at 0 (dashed line)". How did they generate this theoretical distribution?

      As explained under point 1 of reviewer 1, we will provide a more thorough explanation of our methodology and how we decide whether a spindle is symmetric or not. In brief, a perfectly symmetric spindle would yield an asymmetry index of 0, as there is no difference between the two half-spindle sizes.

      2) The authors claim that TPX2 depletion results in loss of spindle asymmetry in 1:1 cells, but the difference is very small (1.7% in control vs 1.3% in TPX2 depletion, Fig 5B) and the data is more variable in TPX2 depletion, which makes it less likely that a statistically significant difference from 0 would be found. Firstly, perhaps the authors could check the standard error of the mean, which provides a measure of how accurate the mean is with regard to N and variation. If a dataset is more spread (such as in TPX2 depletion) a higher N is required to attain the same accuracy in the mean value. This is normally not so important when directly comparing two datasets, but in this case the authors are comparing each dataset to 0. So, are the authors measuring enough cells in the TPX2 depletion to be sure that a 1.3% value is not significantly different from 0? Secondly, I don't understand why the control cells have such a low asymmetry index (1.7%), when previous data in the paper shows an asymmetry index of 4.1% (Fig 1D) and 3.4% (Fig 4E) in control 1:1 cells. This suggests that something about the way this experiment was carried out dampens the asymmetry, which could therefore lead the authors to conclude that TPX2 is more important than it really is.

      We agree with this comment, the mean of the control condition is smaller compared to others controls. As mentioned above, we will carefully look at the data (SD vs SEM) and in case add a new replicate to confirm or infirm the involvement of TPX2 in the formation of asymmetric spindles.

      3) The authors claim that daughter centrioles are associated with some Pericentrin and suggest that this may be why 2:2 centrosomes have less of an asymmetry than 1:1 centrosomes (Fig 6A). It is unclear whether the authors consider these daughter centrioles as being prematurely disengaged (they make reference to the fact that they previously showed how disengaged daughters recruit γ-tubulin, but it's unclear if this is related to their current observations). In Figure 6A, the Centrin spots look too far apart for engaged centrioles (~750nm). I appreciate that this may be the only way to dectect Pericentrin around the daughter at this resolution, but it may also force the authors to select cells where the centrioles have prematurely disengaged. For the asymmetry measurements, the authors presumably did not select cells where they could distinguish mother and daughter centrioles. One way to address this issue would be to compare PCM size at centrosomes in 2:2 cells with centrosomes in 1:1 cells. The expectation would be that centrosomes in 2:2 cells would have more PCM, due to the contribution of the daughter centrioles.

      We agree that on those high-resolution images the daughter centrioles seem to be far from the mother ones. The metaphase cells presented in this figure, are wild-type non-treated cells for which the daughter centrioles are engaged. Indeed, our own investigation of the centriole engagement status by expansion microscopy, indicates that over 98% of centriole pairs in metaphase RPE1 cells are engaged.

      Nevertheless, as suggested by the reviewer and to validate that daughter centrioles participate in this process, we will compare PCM size in 2:2 and 1:1 metaphase cells.

      4) The authors show that Plk1 recruitment by Cenexin (via S796 phosphorylation), which happens only at mother centrosomes, is important for asymmetry. Nevertheless, they show that Plk1 is symmetrically distributed between mother and daughter centrosomes (Table 1). This does not really fit, unless daughter centrosomes recruit more cenexin-independent Plk1 than mother centrosomes or if the cenexin-bound pool of Plk1 is only a minor fraction of total Plk1. If so, do the authors think that the Cenexin-bound pool of Plk1 is more potent than the rest of centrosomal Plk1?

      As indicated in point 4 of reviewer 1 we will test which proportion of the Plk1 pool at spindle poles depends on the presence of Cenexin, as we suspect that this Plk1 population is only a subpopulation.

      5) The circles drawn to measure cell size in Figures 2A,E and 7C do not look like a good representation of cell area (as the cells are not perfectly round). The authors use a formular for circle area with an approximation of the radius (based on mean length/width of an oval. It would be much better to use ImageJ to draw a freehand line around the perimeter of the cell and use the in-built tool to measure the area.

      As mentioned in point 1 of reviewer 1 we will use another method to measure daughter cell size.

      Minor comments:

      1) Asymmetry in centrosome size that correlates with centrosome age in apparently symmetrically dividing "cells" has been observed previously in Drosophila syncytial embryos (Conduit et al., 2010a, Curr. Bio.). I think this should be mentioned somewhere given the topic of the study.

      We thank the reviewer for this information. This paper will be discussed in the revised version.

      2) A full description of statistical tests and n numbers for each experiment should be provided in the methods, even if this duplicates information in the Figure legends.

      We will add this information in the method.

      OPTIONAL EXPERIMENTS:

      3) Given that chTOG is very important for microtubule nucleation, it seems strange that this protein was not analysed for a potential asymmetry.

      As suggested by the reviewers we will test for a potential chTOG asymmetry and its impact on spindle size asymmetry.

      4) Cooling-warming experiments could be done using higher concentration of formaldehyde, as it's likely that microtubule nucleation is not immediately halted when using 4% formaldehyde.

      The fixation solution was chilled at 4°C, which should halt any further depolymerization. We will specify this point in the Material and Methods section.

      Reviewer ____#____3:

      Major points:

      1) The evaluation of spindle and cell size asymmetry related to centrosome age only relies on fixed sample preparation. Cells should be followed by time-lapse microscopy as the metaphase plate position relative to the spindle poles and/or the cell cortex may fluctuate over time and as the observed differences remain in a very subtle range. This is an important possibility to consider for 1:1, 1:0 or 0:0 spindle pole configurations where centrosome integrity is impaired.

      We agree with the reviewer that this is a drawback of our approach, but the experiments the reviewer suggests is not possible for 1:0 or 0:0 or only in an approximate manner. Indeed, we do not have a centriole-independent spindle pole marker that would allow us to mark precisely the position of the spindle pole. In the past we used Sir-tubulin, which gave us an approximate position of the spindle poles, and which allowed to us monitor the spindle asymmetry over time of 1:0 cells (see Dudka et al., 2019), a point that we will discuss. Nevertheless, as suggested by the reviewer we will attempt to monitor these asymmetries in 2:2 and/or 1:1 cells expressing GFP-Centrin1 and GFP-CENPA (kinetochore marker) in WT conditions. Indeed, we cannot expand this approach to all the conditions, as the calculation of the spindle asymmetry index is based on a very high number of cells, and the monitoring of spindle asymmetry can only be achieved by selecting mitotic cells one-by-one and then monitoring them over a short period of them (Tan et al., eLife, 2015), which makes such an approach extremely time-consuming.

      2) Cell size asymmetry was evaluated based on cell area at the equator. Volumes will be a better indicator as daughter cell shapes can be different in telophase if they do not re-adhere at the same speed. This evaluation should also be confirmed with another readout, like the position of the cleavage furrow relative to the spindle poles in late anaphase, as again the observed differences are in a very subtle range.

      As indicated in the similar points of reviewer 1 and 2, we will improve our methodology to take this comment in account

      3) The authors propose that differential microtubule nucleation at the spindle poles underlies spindle size symmetry breaking without providing direct evidence. If the observed spindle symmetry in the 1:1 configuration after pericentrin, CDK5RAP2 or g-tubulin siRNA fuels this interpretation (Fig4C), the differential microtubule nucleation capacity at the spindle poles after microtubule-depolymerisation-repolymerisation assays was not evaluated in these conditions, as compared to the control situation.

      As suggested by the reviewer we will analyze the microtubule nucleation capacity after the downregulation of PCM proteins.

      4) If differential microtubule nucleation at the spindle poles is responsible for spindle asymmetry, overexpression of PCM proteins or g-tubulin should be sufficient for re-establishment of symmetric protein distribution, spindle and cell size symmetry in 2:2 or 1:1 configuration. The authors should evaluate whether this is the case or not.

      This is an interesting suggestion, which we will test, although overexpression of these proteins might also lead to other defects in the spindle, such as multipolar spindles.

      5) The authors describe that the cortex-centrosome distance is not changed according to centrosome age (Fig2C), but centrosome-metaphase plate distance is (Fig1D). These observations are difficult to reconcile if differential microtubule-nucleation capacity is at play. Again, time-lapse microscopy would enable to detect over time whether only metaphase plate position relative to spindle poles is changing or if spindle pole position relative to the cell cortex is also fluctuating.

      We plan to give a try to image WT 2:2 cells by time lapse microscopy and to measure several parameters such as half-spindle size, spindle (a)symmetry and the cortex to centrosome distance over time.

      Minor points:

      6) Main PCM and MT nucleation protein "depletion" do not appear to impact spindle assembly, but only spindle symmetry in 1:1 and 1:0 configurations (Fig4A and 4F-H). Can it be explained by the fact that their depletion is not always total (for pericentrin, Fig5F versus FigS2A or Fig7G)? Can they comment on this point?

      Spindles displaying abnormal centriole number at spindle poles (1:1 and 1:0) can still assemble bipolar spindle in absence of the main PCM proteins (Chinen et al., JCB, 2021, and Watanabe et al., JCB, 2020).

      In our study, the depletion of PCM protein is almost total (97% for pericentrin, 98% for Cdk5Rap2).

      7) If centrosome age dictates spindle and cell size asymmetry through differential MT-nucleation capacity at the spindle poles, how can this process be modulated? Indeed, centrosome age is common to all cell types, but cell size asymmetry is more or less pronounced. The authors should further discuss this point based on the literature.

      We will discuss this point in the discussion.

      __ Description of the revisions that we have already carried out in the revised manuscript__


      1. The discovery of differences in half-spindle size during symmetric division is intriguing. However, the methodology for quantification of the data remains unclear. Key questions, such as how the center of the metaphase plate is determined from the image data, the definition of exact pole position when centrioles are located at spindle poles, the objective determination of daughter cell diameter and width from the image data, and the referential position of the cortex, need more detailed explanation in the manuscript. Additionally, it's crucial to elucidate the specific index used to quantify differences from the image data, especially when dealing with data that only varies by a few percent. Providing clarity on these aspects and, in some cases, re-quantifying the data should be necessary.

      We have already included clearer explanations in the method parts and results part about our methodology and will include a supplementary figure on how precisely we defined and measured the half-spindle sizes, as well as the index used for the asymmetry (using a methodology that we previously used in Dudka et al., Nature Comm., 2018). In addition, we will use a second method to measure the real daughter cell volume.


      __ Description of the experiments that we prefer not to carry out:__


      Point 3 of reviewer 1 : For investigating the mechanism of half-spindle size asymmetry, many perturbation experiments employ knock-down techniques. To directly address the cause of asymmetry, it might be valuable to artificially localize Plk1 and PCM factors to one spindle pole using optogenetic tools or similar approaches and then quantify half-spindle and daughter cell sizes.

      We thank the reviewers for this suggestion, as it could indeed, be of great interest and provide a direct proof of principle. Unfortunately, based on our experience in establishing such a cell line we know that just the generation of such a light-manipulated stable cell line that contains markers for centrosomes and chromosomes or kinetochores takes 6-9 months, in the best-case scenario. This experiment is therefore not possible within a normal revision round (even if extended to 6 months).


    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02172

      Corresponding author(s): Philip Elks

      [The “revision plan” should delineate the revisions that authors intend to carry out in response to the points raised by the referees. It also provides the authors with the opportunity to explain their view of the paper and of the referee reports.

      • *

      The document is important for the editors of affiliate journals when they make a first decision on the transferred manuscript. It will also be useful to readers of the reprint and help them to obtain a balanced view of the paper.

      • *

      If you wish to submit a full revision, please use our "Full Revision" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      • *

      In this paper we report the discovery that a member of the tribbles pseudokinase family, TRIB1 is expressed in human monocytes and is upregulated after stimulation with mycobacterial antigen in a human patient challenge model, the first direct link between immune cell Tribbles expression and innate immune response to infection. We then interrogated the mechanisms of Tribbles roles in TB using a human disease relevant whole-organism in vivo zebrafish model of TB. We show that specifically TRIB1 modulation can tip the battle between host and pathogen enhancing the innate immune response and reducing bacterial burden. We then uncover the molecular mechanisms responsible for the host protective effect of TRIB1, with enhanced antimicrobial reactive nitrogen species and il-1beta, via cooperation with Cop1 E3 ubiquitin ligase. Our findings demonstrate, for the first time, TRIB1 as a host moderator of antimicrobial mechanisms, whose manipulation is of benefit to the host during mycobacterial infection and as such, a potential novel therapeutic target against TB infection.

      We thank the reviewers for their positive appraisal of our work and for their helpful suggestions that will improve our manuscript. In particular we would like to highlight the reviewer’s comments on the gap/need for a new zebrafish in vivo model to understand the roles of tribbles in infection that can “be extrapolated into the human system”, and how they feel these findings will be of broad interest and “significance to cross section of the research community” attracting “interest from readers in the fields of infection, immunity, hematology and animal models” alongside “researchers studying all aspects of Tribbles pseudokinase function, especially researchers seeking models to test small molecule agonists and antagonists.”

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      • *

      Reviewer 1

      The major weakness of the manuscript is that the authors do not evaluate C/EBP transcription factors at all. It is rather surprising as they emphasize cooperation between Trib1 and Cop1 in the main title. C/EBP family proteins are key factors of Trib1-mediated modulation of granulocytes and monocytes. Also, slbo, a drosophila homolog of C/EBP, is a target of tribbles, indicating that the pathway is evolutionary conserved. I would request the following experiments and discussions.

      RESPONSE: We agree that possible C/EBP roles should be discussed in detail, and we will add a new discussion section on this.

      We stand by our data that the host protective mechanism of Trib1 acts requires Cop1, but we are not able to directly show a C/EBP mechanism within the scope of the current project due to a lack of tools/knowledge in the zebrafish on this (further points/comments below on this). It is important to note that we have not claimed a C/EBP mechanism in our manuscript, and we think it is possibly unlikely given that monocyte and granulocyte numbers are not altered after TRIB1 manipulation. Indeed, there are many other candidates other than C/EBP that COP1 could be acting through. Some examples include MAPK (Niespolo et al., Front Immunol, 2020), serine threonine kinases (Durzynska et al., Structure, 2017) and beta-Catenin (Zahid et al., Proteins, 2022).

      In response to this comment, we have modified the title from “Tribbles1 and Cop1 cooperate to protect the host during in vivo mycobacterial infection” to “Tribbles1 is host protective during in vivo mycobacterial infection”. We believe our data does show that the protective effect of Tribbles requires Cop1, but changing the title in this way removes any suggestion that they directly cooperate in the potential C/EBP dependent manner, suggested by the reviewer.

      Although the authors found the number of neutrophils and monocytes unchanged by Trib1 overexpression nor knockdown, they did not demonstrate the differentiation status of both cell types. This is quite an important issue, given that Trib1 knockout promotes granulocytic differentiation via C/EBPa accumulation in mice. Also, the analysis of granulocytic/monocytic differentiation will provide the crucial information how Trib1 protects the host from mycobacterial infection regulating hematopoietic cell functions. The authors should perform morphological analysis and examine cell surface marker expression to examine whether Trib1 and Cop1 modulates granulocytic and monocytic differentiation with and without Mm infection.

      RESPONSE: Unfortunately, we do not have the same level of immunology knowledge nor the antibodies to look at cell surface markers in zebrafish larvae (it is noted that the reviewer identifies that they “not have sufficient expertise in zebrafish models.” We agree with the reviewer that this would be an obvious and informative experiment to do in mouse models, but is not currently possible in zebrafish larval models). The transgenic promoters used (mpx for neutrophils and mpeg1) are robust and widely published to look at total neutrophil and macrophage numbers (Renshaw et al., Blood 2006; Ellett et al., Blood 2011). Mpx, encoding myeloperoxidase, is expressed late in neutrophil differentiation. It is also worth noting that the zebrafish larval model is still a developing organism, and neutrophil/macrophage numbers rise every day between 1 and 5 days post fertilisation, therefore any effect/delay in leukocyte differentiation would likely be captured at the 2dpf timepoint we have already quantified. We cannot perform leukocyte counts during Mm infection reliably as neutrophils/macrophages cluster around infected areas making counting challenging.

      However, in response to this comment we will:

      1. Use a new Tribbles 1 stable CRISPR-Cas9 knockout mutant we have generated and assess neutrophil differentiation using Sudan Black (SD). SD stains neutrophil granules the development of which is during a late phase of neutrophil differentiation.
      2. Interestingly, it has been shown that a zebrafish myeloid specific C/EBP (c/ebp1) is not required for initial macrophage or granulocyte development, but knockdown does result in a loss of the secondary granule gene LysC (Su et al., Zebrafish, 2007). Therefore, our findings are not inconsistent with existing literature, even if C/EBPs are regulated by Tribbles. However, to test this further we will use an LysC:mCherry transgenic line (Buchan et al., PLoS One 2019) to assess expression in developing neutrophils after trib1 manipulation.

      It is interesting that Cop1 knockdown zebrafish is viable, given its ubiquitous expression and multiple important targets of protein degradation. The authors should provide the details of phenotype of Cop1 KO larva and discuss on this issue.

      RESPONSE: Zebrafish mutants are much less often embryonic lethal than mice as maternally contributed protein stores allow for basic metabolic functions to occur throughout the short period of embryonic development (Rossant and Hopkins. Genes and Development 1992). However, in the case of Cop1 Crispant, this is a knockdown rather than a knockout, so there may be sufficient remaining Cop1 availability for development if it is indeed a requirement for larval viability. Although Cop1 knockout mice are non-viable, hypomorphs are viable and develop relatively normally (similar to our knockdown zebrafish) but are tumour prone as Cop1 is required for effective tumour suppression (Milgliorini et al., JCI, 2011).

      We had not commented on the Cop1 larvae phenotype as they look like they develop normally eg. normal body axis, development. However, we agree that this is a relevant point to incorporate into the manuscript and thus will add a comment on this in the Results section. Furthermore, we will add wholebody neutrophil counts into supplementary information, which we have performed and there is no change with cop1 knockdown, suggesting no difference in granulopoiesis.

      [Optional] To obtain the more solid evidence for the Cop1 dependent function of Trib1 on mycobacteria infection, it is better to use the Trib1 mutant that loses the Cop1 binding activity. This experiment will strength the authors' conclusion of the Trib1 and Cop1 cooperation.

      RESPONSE: We will address this comment by using a newly generated stable zebrafish CRISPR-Cas9 Tribbles 1 knockout line with a 14 base pair deletion that is predicted to lead a premature stop at 94aa in the middle of the pseudokinase domain, lacking the catalytic loop. This also lacks the predicted COP1 binding area at the C terminal of the protein. We will assess bacterial burden in this model.

      1. Previous studies have shown multiple defects in hematopoietic lineages such as M2-like macrophages and eosinophils in Trib1 KO mice, suggesting that Trib1 affects cellular functions of macrophages upon mycobacteria infection. I would request the authors to mention some ideas on this point in discussion.

      RESPONSE: We will add a section in the discussion to address this.

      • *

      Reviewer 2

      Structural comparisons are relatively descriptive of identity etc. Nowadays it should be relatively straightforward to comment on structural conservation based on Alphafold models. Specific details may not be accurate but gross folds will be, and comparing those may be more informative.

      RESPONSE: We have taken an initial look at Alphafold models and there are indeed structural similarities between zebrafish and human Tribbles. We will incorporate Alphafold structural models and comment on similarities/differences.

      Some discussion of the mechanisms regulating TRIB1/2/3 transcriptionally is probably relevant given the differential upregulation observed during infection. There is quite a bit of characterisation of different Tribble promoter regions in humans-how Edoes this translate to Zebrafish?

      RESPONSE: We will add a discussion point on what is known about Tribbles promoter regions in humans. We will assess whether anything is known about the promoter regions in zebrafish Tribbles (we have not identified literature on this currently). If nothing is known on this in zebrafish we will attempt to search for regulatory regions found in humans in the zebrafish promoters.

      In terms of Crispr use-can it be confirmed that Crispr modified cell lines have effects at the protein level? This is not my specific expertise, but the supplementary evidence shown seems to show some genomic editing is occurring, but not necessarily how it effects protein levels.

      RESPONSE: We do not have antibodies that work on zebrafish Tribbles proteins to assess this directly. However, we will address this comment by using a newly generated stable zebrafish CRISPR Tribbles 1 knockout line with a 14 base pair deletion that is predicted to lead a premature stop at 94aa in the middle of the pseudokinase domain, lacking the catalytic loop. Unlike the “CRISPant” knockdown work in the peer-reviewed version, this represents a full knockout of Tribbles 1. We will assess the trib1 cDNA of the full knockout line to assess the knockout in terms of transcript.

      A major conclusion of the paper seems to be that TRIB1 works with COP1 in Zebrafish to mediate response to infection. However the discussion does not particularly tie this with the other discussed mechanisms. E.g. JAK/STS, and EBP-linked responses are discussed separately from COP1, where they could well be linked?

      RESPONSE: We agree and this comment fits in with some comments from reviewer 1. We will rework areas of the discussion to address this and bring possible mechanisms together into a new discission section.

      • *

      Reviewer 3

      All comments addressed in new revision (see below).

      It is noted that this reviewer has “expertise from genetic studies of model organisms to assess all aspects of the tools and approaches used in the paper.”

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      Reviewer 1

      Figure 1D, E, F is mislabeled in lines 268-271.

      RESPONSE: Apologies for this typo, this has now been changed.

      Typo in line 399.

      RESPONSE: We have changed “suggesting” to “suggest”.

      Figure 6A-B is mislabeled in line 415

      RESPONSE: Apologies for this typo. We have changed this from “Figure 5A-B” to “Figure 6A-B”.

      • *

      Reviewer 2

      • *

      While the protective effect is stated as an effect size 'close to that of HIF-1a', is there additional rationale suggesting that the two may be linked?

      RESPONSE: Yes, there have been a number of studies that link Tribbles and Hif1-alpha. The best characterised link is in different cancer cells where Tribbles 3 has been linked to HIF-1alpha or hypoxia (in breast cancer (Wennemers, Breast Cancer Research 2011), renal cell carcinoma cells (Hong et al., Inj J Biol Sci, 2019) and adenocarcinoma (Xing et al., Cancer Management Research, 2020). In Drosophila Hif-1alpha induces TRIB in fat body tissue (Noguchi et al., Genes Cells 2022). We have now added references to these studies to the relevant section in the results.

      Reviewer 3

      • *

      Minor issues: small problems with clarity and figure panel correlation as detailed below:

      Mycobacterium marinum Lines 363-365 Refers to Fig 2C-D should be 3C-D

      RESPONSE: Apologies for this typo. This has now been changed to 3C-D.

      negative controls DN Hif-1alpha and PR (Figure 4A-B). Similarly, trib1 overexpression increased the levels of anti-nitrotyrosine staining, a proxy for immune cell antimicrobial nitric oxide production (Forlenza et al. 2008), to similar levels of DA Hif-1alpha (Elks et al. 2014; Elks et al) Not seeing this for Trib1

      RESPONSE: We are not completely sure what the reviewer is referring to here. We think possible confusion stems from the increase of nitric oxide in trib1 is compared to the phenol red control, so we have now clarified that in the text.

      As previously observed, overexpression of trib1 significantly reduced bacterial burden compared to phenol red controls when co-injected with tyrosinase guide (Figure 5A-B).

      The Fig 3 A-B is correct, although 6A-B appear to be novel panels showing this result

      RESPONSE: Yes, we agree, 6A-B has new results showing similar results to 3A-B, as it is necessary to include siblings from the same clutch in each graph to make direct comparisons. To avoid unnecessary confusion, we have removed the “as previously observed” for figure 6 as we had not previously had the tyrosinase co-injection so these are indeed new data.

      444 no comma 446 no comma 457 no comma after "activation"

      RESPONSE: We have removed these punctuations.

      472-475 confusing - better structure in particular in 474 what does "this" refer to?

      RESPONSE: We agree, and have clarified in the following new, clarified sentences:

      “Lipid droplets form in macrophages during Mtb infection that are potentially used as source of lipids by Mtb to allow for intracellular growth (Daniel et al. 2011). However, more recent findings suggest that lipid droplets are formed during the immune activation process after macrophage Mtb infection (Knight et al. 2018), that can subsequently influence the dynamics response of macrophage host defence (Menon et al. 2019). This macrophage lipid metabolism and handling could potentially be influenced by Tribbles.”

      525-526 confusing - better structure perhaps begin with 'Because...'

      RESPONSE: We have changed this confusing sentence to:

      “Here, we demonstrate il-1b and NO control by Trib1, suggesting that Trib1 controls multiple immune pathways and that therapeutic Trib1 manipulation may be more effective than targeting individual immune pathways alone.”

      confusing 538 "this and 539 pave the way for further research into TRIB1 as a target for host-derived therapies" Perhaps "further research into TRIB1 as a target for host-derived therapies could potentially improve infection outcome of mycobacterial infection via pharmacological targeted delivery methods and transient manipulation through genetic approaches"

      RESPONSE: We have changed this sentence as suggested.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      • *

      Reviewer 1

      1. The authors should investigate the expression of the C/EBPa protein p42 isoform and/or other C/EBP family proteins such as C/EBPb, and confirm that the p42 is degraded by Trib1 overexpression and recovered by Trib1 and Cop1 knockout. It is also important to determine both p42 and p30 isoforms are preserved in zebrafish.

      RESPONSE: This is a complex point to unpick in zebrafish and we believe this to be out of the scope of the current project. We do not claim a link to C/EBP. As mentioned in above comments we think that a link to C/EBP may be unlikely given that monocyte and granulocyte numbers are not altered after TRIB1 manipulation. We will add more data to look at different markers of neutrophils (see above comments). There are many other candidates other than C/EBP that COP1 could be acting through. Some examples include MAPK (Niespolo et al., Front Immunol, 2020), serine threonine kinases (Durzynska et al., Structure, 2017) and beta-Catenin (Zahid et al., Proteins, 2022). There is also evidence suggesting that COP1 and C/EBP have distinct binding sites on TRIB1, potentially unlinking their activity in some biological situations (Murphy et al., Structure, 2015).

      C/EBPa is found in zebrafish and is involved in myeloid differentiation and haematopoeisis (Yuan et al., Blood 2011). There is not a huge amount in the literature on this, but it has been shown in zebrafish models that the drug Tanshinone IIA reduces C/EBPa (Park et al., In J Mol Sci, 2017) and we know from previous work in our department that Tanshinone IIA does not affect total neutrophil numbers in the zebrafish larvae (Robertson et al., Sci Trans Medicine, 2014). The most involved C/EBP in zebrafish myelopoiesis appears is a zebrafish specific isoform called c/ebp1 that is myeloid expressed (Lyons et al., Blood 2001). This has a highly conserved carboxy-terminal bZIP domain but the amino-terminal domains are unique. Interestingly, reduction of c/ebp1 does not ablate initial macrophage or granulocyte development, but did result in loss of expression of LysC, a secondary granule marker (we are checking expression of this gene after Trib1 modulation using a LysC:mCherry transgenic zebrafish line).

      We do not have antibodies or tools to detect p42 and p30 in zebrafish. As Tribbles1 regulation of C/EBPa appears to be post-translational (Bauer et al., J Clin Invest, 2015), this would be incredibly challenging to unpick in the zebrafish model due to lack of tools to do this. Due to this and the reasons above we believe this to be out of the scope of the current project.

      [Optional] The effect of enhanced ERK phosphorylation by Trib1 for the protective effect against mycobacterial infection is another interesting point. It would be better if the authors could provide the ERK phosphorylation status upon Trib1 overexpression.

      RESPONSE: Unfortunately, we have no method to answer this question to a conclusive level within the scope of this project. There are limited reports of phosphorylated ERK antibodies that work in wholemount zebrafish (eg, Maurer and Sagerström, BMC Developmental Biology, 2018, that use a rabbit antibody), but this is widely expressed in many tissues of the zebrafish and immune cells would be challenging to resolve.

      Reviewer 2

      We have addressed or propose to address all of reviewer 2’s comments.

      • *

      Reviewer 3

      We have addressed or propose to address all of reviewer 3’s comments.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      The mechanisms that differentiate ER from the nuclear envelope (NE) remain to be fully elucidated but likely depend at least in part on junctions between the ER and NE. How such junctions are formed and maintained is the subject of this manuscript where extensive correlative light and electron microscopy is used to observe and characterize ER-nuclear envelope (ER-NE) junctions at distinct phases of the cell cycle. The authors make use of their own electron tomography data as well as publicly available focused-ion beam scanning electron microscopy (FIB-SEM) datasets to compare the morphology of these junctions in different human cell types as well as in budding yeast. The major finding is that ER-NE junctions in human cell lines are more constricted than ER-ER junctions, often to the point of excluding lumen. The examination of mitotic cells suggests that this constriction likely occurs at the end of mitosis as the NE is completing its maturation from ER to NE. The implications of these morphological changes are discussed but there are no mechanistic or functional studies. Overall, the data are well presented, are of high quality and are rigorously evaluated. The manuscript is well written and scholarly, and the speculations as to the function of the constrictions are reasonable. I only have minor comments. *We thank the reviewer for the positive evaluation on our work and for the useful suggestions on how to further improve the manuscript.

      1. * In Figure 2D, the authors present evidence to demonstrate that an hourglass-like constriction occurs at ER-NE junctions. From the side view, it is difficult to interpret this on the plot, particularly for the ER-NE junctions with a lumen. Perhaps, in the supplemental data, the authors could plot both with and without lumen data separately, and color-code individual traces? I believe this would convey the hourglass nature of these constrictions more clearly.* To make it easier to see individual membrane profiles, we will plot the profiles with and without lumen separately and labelled each profile with distinct colour, as the reviewer suggested.

      * In the Methods section, the authors should describe how carbon-coating of sapphire discs was achieved. If these were provided from the manufacturer precoated, this should be specified.*

      We coated the sapphire discs with carbon by ourselves. We will specify how the carbon-coating was done in the revised manuscript.

      * On page 10, Figure 5F callout 9 lines from the bottom likely should be 5E. We will correct this error.

      Reviewer #1 (Significance (Required)):

      Overall, this work provides an important new morphological perspective on the nature of ER-NE junctions in human cells. As the authors describe in their introduction, such junctions have been noted previously in the literature but not in a dedicated study using modern imaging techniques in human cell lines. In describing the morphology of these junctions, the authors lay the groundwork for future mechanistic, functional, and structural studies. We thank the reviewer for appreciating the significance and the impact of our work.

      *

      • *

      • *

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      Summary: In this manuscript, Bragulat-Teixidor et al., use correlative live-cell imaging and electron tomography to study the structure of the endoplasmic reticulum-nuclear envelope (ER-NE) junction in HeLa cells (and also in S. cerevisiae). The authors also make use of publicly available whole-cell FIB-SEM datasets to study ER-NE junctions in mouse pancreatic islet, HeLa, and human macrophage cells to corroborate their findings in other cell types.

      The authors show that the structure of the ER-NE junction in interphase cells adopts an hourglass shape with a constricted neck. Comparing the ER-NE junction to the ER tubule-sheet junction, the authors show that these structures are different: the ER tubule-sheet junction is not constricted. Because the NE forms from the ER during postmitotic NE assembly, the authors compare the structure of the ER-NE junctions in anaphase, telophase, and interphase cells, and find that the junction becomes constricted in telophase. The number of ER-NE junctions increase going from telophase to interphase.

      While the authors do not provide any direct evidence for this, they propose a functional model where the ER-NE junction is constricted because it regulates the supply of certain lipids and proteins from the ER to the NE. One proposed example is that the constriction of the ER-NE junction might prevent the passage of large protein aggregates from entering the NE.

      The general question of how the structure of the ER-NE junction might regulate the passage of lipids and proteins from the ER to the NE is interesting and potentially important. However, the authors should address the following issues to improve the accuracy and completeness of this manuscript for it to be considered for publication. *We thank the reviewer for the appreciation of our work and the thoughtful suggestions for further improvements.

      * Major comments: 1. The authors compare the structure of the ER-NE junction to the structure of the ER tubule-sheet junction in interphase cells. They should instead or in addition be comparing the ER-NE junction to ER sheet-sheet junctions. This is likely a better comparison for two reasons:

      i) The NE is similar to an ER sheet due to its flat and extended structure. The ER membranes surrounding the NE consists mostly of a dense network of sheet-like ER (Zheng et al., 2022, PMID: 34912111). Therefore, the ER-NE junction should be compared to these NE-adjacent ER sheet-sheet junctions and not ER tubule-sheet junctions which are likely to be found in the cell periphery.

      ii) In HeLa cells, the NE assembles from large ER sheets and not ER tubules (Zhao et al., 2023, PMID: 37098350; Otsuka et al., 2018, PMID: 29323269; Lu et al., 2011, PMID: 21825076). Therefore, the ER-ER junctions the authors are already studying in anaphase cells are likely to be ER sheet-sheet junctions, which should be kept the same in their analysis of the ER-ER junctions in interphase cells.

      Related to this point, comparing the side view panels in Figure 2D with 2H, it seems that the width of the ER membranes on either side of the neck region of the ER-NE junction is in fact getting wider (more sheet-like). This is in contrast to the ER-ER junction where the width stays constant for the ER tubule that is fusing onto the ER sheet. This suggests that indeed, the ER-NE junction is more similar to an ER sheet-sheet junction. *It is a very interesting possibility that the ER-NE junction might be similar to the ER sheet-sheet junction. We will inspect whether the ER that forms the ER-NE junction consists of sheet or tubular ER in our EM tomograms, and describe the outcome in the revised manuscript.

      * The authors claim that in late anaphase cells, the ER-ER/NE (written like this because the ER and NE cannot be distinguished like the authors also point out) junctions are not constricted and had a similar morphology to ER-ER junctions in interphase. However, this claim is only qualitative at the moment, as the authors do not provide any quantification of the width of the ER-ER/NE junctions in late anaphase cells. To make the current claim that the ER-NE junction only becomes constricted in telophase, the authors should report the width of the ER-ER/NE junctions in late anaphase cells.

      In late anaphase cells, large ER sheets initially wrap around chromatin at the periphery of the chromosome mass (Zhao et al., 2023, PMID: 37098350; Otsuka et al., 2018, PMID: 29323269; Lu et al., 2011, PMID: 21825076). Therefore, the authors might find it easier to identify ER-ER/NE junctions in the so-called "non-core" regions, instead of in the current regions shown in Figure 3A. *As the reviewer pointed out, we did not provide quantification of the width of ER-ER/NE junctions in late anaphase cells. We will measure them and show the quantification in the revised manuscript.

      * Minor comments: 1. In the Supplementary Figures 1 A-D, make the scale bars white. Currently, the black scale bars are especially difficult to see in the top panels in Supplementary Figure 1C. *We will change the colour of some scale bars to make them more visible in the Supplementary Figure 1.

      * In the Results section entitled "The number of ER-NE junctions per cell increases from telophase to interphase", the authors should tone down this claim because the number of telophase cells examined is low (only 2 telophase versus 9 interphase cells). It would be better to include the word "slightly" in the title to change it to "slightly increases". *We will modify the text accordingly. * In the Results section entitled "The number of ER-NE junctions per cell increases from telophase to interphase", the authors state "These densities were much lower than those of ER-ER junctions...". For sure this is true for ER tubule-tubule junctions in the periphery of the cell as ER tubules form an intricate network by constantly fusing to each other, but it's not clear if this is also the case for ER tubule-sheet or ER sheet-sheet junctions. For clarity, the authors should state that they mean ER tubule-tubule junctions.

      Same comment also for the statement "...although their abundance remains considerably lower than that of ER-ER junctions or nuclear pores at both cell cycle stages". The authors should state that they mean ER tubule-tubule junctions. We will clarify what we mean by ER-ER junctions in the revised manuscript. * In the Results section entitled "The constricted morphology of ER-NE junctions is observed in different mammalian cells, but not in budding yeast", the authors state "...pancreatic islet cells (Figure 5A), HeLa (Figure 5B), and macrophage (Figure 5C) were significantly smaller than most ER-ER junctions (Figure 5F)". The last figure reference here is wrong and should be changed to Figures 5D-E. We will correct this error. * In Discussion, the authors state "Proteins known to form and stabilize junctions in the ER, including Atlastins and Lunapark...". The authors should specify that they mean ER tubule-tubule three-way junctions. Also more generally throughout the manuscript, the authors should be more careful in specifying which ER-ER junctions they mean in each case.*

      As pointed out in the Major comment 3 above, we will clarify this point in the revised manuscript.*

      1. In Discussion, the authors state "Thus, we favour a second scenario in which ER-NE junctions are generated from ER tubules that contact and eventually fuse with the ONM". Given that the ER membranes adjacent to the NE are mostly sheet-like (as pointed out in Major comment 1 above), the authors need to explain how they think an ER tubule (mostly found in the cell periphery) could access and fuse to the NE. As mentioned in the response to Major comment 1 above, we will examine if the ER that forms ER-NE junctions is tubule or sheet in our EM tomograms. Depending on the outcome of the examination, we will rephrase the text.

      *

      * Reviewer #2 (Significance (Required)):

      Although the ER-NE junction has been studied in other organisms before, this study represents the first structural characterisation of the ER-NE junction in mammalian cells. Therefore, this study represents an advance for the field in gaining a better understanding of different ER structures and morphologies. How the ER is remodelled during the cell cycle is also an interesting question and an active field of research (Merta et al., 2021 PMID: 34853314; Zhao et al., 2023, PMID: 37098350) which this study further contributes to. This study would therefore be interesting for anyone interested in ER structure/morphology, ER-NE connections, and cell cycle regulation of such ER-NE connections.

      My field expertise is in ER and NE. I do not have sufficient expertise to evaluate the methodology for the EM tomography part of this paper. We thank the reviewer for appreciating the novelty and the impact of our work.

      *

      *

      *

      * Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Bragulat-Teixidor et al. is a study of the connection of the ER with the nuclear envelope. It uses advanced ultrastructural techniques: high pressure freezing instead of chemical fixation and EM tomography instead of serial sectioning. Synchronized HeLa cell cultures were examined during interphase, late anaphase (4-6 min after anaphase onset) and early telophase (8-10 minutes after anaphase onset).

      The investigators find an unexpected, unusual structure - a constricted neck 7-20 wide and about 10 nm long where the ER connects to the nuclear envelope. The 7 nm connections had no apparent lumen. These are not seen in late anaphase when the NE has not yet formed, but they are seen a few minutes later during early telophase when there is a newly formed NE surrounding the chromosomes. A quantitation was made of their abundance, more was found later during interphase, and with wider lumens.

      It is very nice to show the EM images as uncolored and segmented (colored). The images shown in the figures are presumably the best that were obtained during the study. Heavy metals do not stain membranes uniformly or exclusively, and identification of structures doesn't always seem unambiguous. The three dimensional information can certainly make this easier though this information is difficult or not possible to show in journal format. In the end, the reader must depend on the judgment of the person who did the analysis. Overall, the analysis seems trustworthy. *We thank the reviewer for the comment. To better present the three-dimensional structure of ER-NE junctions, we will provide movies of the EM sub-tomograms containing the junctions. In this way, the readers will be able to inspect the three-dimensional structure of six ER-NE junctions.

      * HeLa cells are very convenient for getting information on cell cycle dependence. However, they are cancer cells in culture, so it is important to look at other cell types as well. The same methodology was used on budding yeast and they saw a wide tentlike connection, which reproduces an earlier study. This seems more consistent with what is known or expected from ER membranes. It is not less interesting but perhaps less puzzling. To get evidence on other mammalian cells, the authors did an analysis of data from OpenOrganelle. These are high pressure frozen cells / tissue imaged by FIB-SEM. The voxels are 4 nm, which is significantly larger than those in EM tomography. Unfortunately, the difficulty of identifying structures is correspondingly more significant. The images shown do not contradict the HeLa results but by themselves (without the HeLa cell data), a convincing case for narrow connections probably couldn't be made. *The reviewer raises a very good point about a limitation of the FIB-SEM datasets in OpenOrganelle. We agree with the reviewer that, as we had mentioned in the manuscript (line 6–11, page 10), the spatial resolution of the FIB-SEM datasets are not enough to gain insights into the exact morphology of the 7–20 nm wide ER-NE junctions because the voxel size is 4 nm. However, the resolution is good enough to examine if ER-NE junctions are narrower than ER-ER junctions, as shown in Figure 5A–E. The fact that we rarely found non-constricted ER-NE junctions in FIB-SEM datasets confirms the tiny nature of ER-NE junctions. To clarify this point, we will modify the text (line 24–25 on page 10) as below:

      Previous: This analysis of FIB-SEM images confirms the hourglass morphology that distinguishes ER–NE from ER–ER junctions as seen in our EM tomograms…

      Revised: This analysis of FIB-SEM images confirms that ER-NE junctions are narrower than ER-ER junctions as seen in our EM tomograms…

      * The work in this manuscript seems to have been done well. Assuming that this structure is confirmed in other mammalian cells, another kind of question comes to mind: is this the final word on ER to NE connections? The lumenless neck does not seem like it would be a stable structure, somehow it seems like a transient one. In the future, it would help if a new structural protein was identified or some theoretical analysis to help explain the shape. *Certainly, this will not be the final word on ER-NE junctions, which are crucial for the ER-to-NE transport of lipids and transmembrane proteins. In the future, it will be important to identify structural proteins regulating the junctions and reveal how their constricted morphology affects the ER-to-NE transport. We believe that, as you kindly mentioned in the last paragraph of your comments, our observations “serve as a starting point for further structural and functional work” for this unique yet fundamental junctions that connect the ER to nucleus.

      * It is generally now assumed that high pressure freezing preserves structure perfectly. However, in this reviewer's mind, there is a possibility that some structures are not. The sample is brought to 2000 atmospheres within a few milliseconds, frozen, then the high pressure is released after a second. Although many intracellular structures do seem well preserved, could the junction be susceptible to high pressure? A second source of uncertainty is that in order to embed the samples in resin, the water was removed by freeze substitution. This is known to cause a small amount of tissue shrinkage and possibly could alter a delicate structure. Another way to look at this kind of structure is cryo-EM tomography on hydrated lamellae from plunge frozen cells. I don't recommend that the authors do another arduous, possibly too arduous set of experiments with a completely different technique, but perhaps another group has data which could support their findings. *We think it is very unlikely that ER-NE junctions were deformed due to the high-pressure freezing. In general, high-pressure freezing allows vitrification of specimens up to 0.5 mm in thickness and the vitrification works better for thinner specimens. Our specimens are only 0.02 mm thick monolayer cells frozen in a chamber with 0.03 mm depth. Thus, the vitrification is expected to occur fast and the ER-NE junctions must have been frozen in the same way as in other regions of the cell.

      However, as the reviewer pointed out, it is possible that the dehydration of the samples due to freeze substitution might cause deformation in ER-NE junctions. To verify the structural preservation of ER-NE junctions in our protocol, we will compare the morphology of the ER and NE in cryo-EM datasets that are available in public databases with ours. We will describe the outcome in the revised manuscript.

      We think that our conclusion from the EM analysis is solid, because we observed significant structural difference between ER-NE junctions and ER-ER junctions in the same cells (Figure 2). In addition, we found the morphology change of ER-NE junctions in late-anaphase, early-telophase, and interphase cells that were high-pressure frozen and freeze-substituted on the same sapphire disc, and found that the ER-NE junctions became progressively constricted from telophase to interphase (Figure 3).

      * The following are suggestions for the Discussion:

      Yeast have many of the same biochemical processes as mammalian cells. Perhaps their lack of narrow connections can be used as a clue to the function of the narrow necks seen in HeLa cells. For instance, the authors speculate that the narrow connection serves to keep phosphatidylserine in the nuclear envelope low. If the yeast nucleus has the same concentration of phosphatidylserine as the ER, it would provide good evidence for this idea. Yes, it is indeed the case. It was shown that the yeast outer nuclear membrane has the same concentration of phosphatidylserine as the ER (Tsuji et al., Proc. Natl. Acad. Sci. U. S. A.*, 2019). We had described this in the discussion on page 14 “this phosphatidylserine enrichment occurs in mammalian cells and not in budding yeast (Tsuji et al., 2019)”, which was probably overlooked by the reviewer. In the revised manuscript, we will rephrase the text to make this point clearer.

      * There might be other instances of lumenless neck structures. Dynamin mutants can cause a stable constricted tubule - are the dimensions of this tubule similar to that of the ER / NE connections? Or possibly some ESCRT related structure? These are very interesting questions. As shown in Figure 2A-D and Supplementary Figure 1B, the inner diameter (an inner leaflet distance) of the lumenless ER-NE junctions is below 1 nm. In contrast, the inner diameter of most constricted membrane tubules that the dynamin mutant K44A Dynamin 1 generates is 3.7 nm (Antonny et al., EMBO J., 2016, doi: 10.15252/embj.201694613). The inner diameter of membrane tubules that ESCRT-III subunits CHMP1B and IST1 form is 4.4 nm (Nguyen et al., Nat. Struct. Mol. Biol.*, 2020, doi: 10.1038/s41594-020-0404-x). Thus, the lumenless ER-NE junctions is unique in their highly-constricted nature and might be regulated by proteins other than dynamin or ESCRT proteins. We will discuss this point in the revised manuscript.

      * There do not seem to be any recent studies of the ER / nuclear membrane connection in fixed cells. However, there is serial section data online which can be inspected. There are connections in mouse brain cortex in the data of Kasthuri et al., 2015 (https://neurodata.io/project/ocp/). Instead of a tubule connection, there seems to be a narrow sheet of ER that connects to the nuclear envelope. But there is something odd about these too. The authors may like to mention something about this or similar work in their manuscript. This reviewer has looked at chemically fixed data from several cell types from his own unpublished data and connections are surprisingly hard to find. Possibly, the connection is particularly sensitive to chemical fixation.* We inspected the serial section data of mouse brain cortex that was chemically fixed. The nuclear envelope in this dataset is deformed and does not seem well preserved. We do not think that we can extract useful information on the ultrastructure of ER-NE junctions from this dataset, and thus will not mention this work in our manuscript.

      It is great to hear that the reviewer tried to look for ER-NE junctions in their own EM data. The frequency of ER-NE junctions is rare (only 0.1 junction per square micrometer, Figure 4). Thus, we think that the reason why it was hard to find the junctions in the reviewer’s data is due to the low-frequent nature of this junction and not due to the chemical fixation.

      • *

      * Reviewer #3 (Significance (Required)):

      This is a careful and thorough study of the connection between the ER and the nuclear envelope. The discovery of reticulons and similar proteins, along with biophysical modeling, made the form of the ER accessible to analysis. The factors that govern ER structure are now much better understood. This is particularly true of sheets versus tubules, the three way tubule junctions and to some extent, the junction of ER tubules coming out of the edge of a sheet. However, with all this activity, the subject of the connection of the ER to the nucleus has not been examined in detail. What makes it different is that the tubule is connected perpendicular to the plane of a sheet.*

      We thank the reviewer for appreciating the quality and novelty of our work.

      * The manuscript uses the best ultrastructural techniques and provides strong evidence for a narrow neck at this connection in HeLa cells. With the same methodology, yeast cells (S. cerevisiae) have a wider connection. OpenOrganelle data from other mammalian cell types was examined. This data has less resolution and although it does not contradict the HeLa cell data, it does not support it strongly. *As mentioned in the response to one of this reviewer’s comments above, the spatial resolution of FIB-SEM datasets is good enough to examine if ER-NE junctions are narrower than ER-ER junctions. We think that our observation of several mammalian cells in FIB-SEM datasets strongly supports the conclusion that ER-NE junctions are narrower than ER-ER junctions and extends our findings in HeLa cells to two other mammalian cell types.

      * This work is of interest to cell biologists specializing in membranous organelles or those interested in nuclear physiology. The connection of ER to nuclear envelope is an interesting problem that has not been studied recently. This manuscript could very well serve as a starting point for further structural or functional work by the authors or other groups. *We thank the reviewer for appreciating the significance and impact of our work.

      *

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary: Membrane bound ribosomes and ER exit sites are present in the cytosolic side of nuclear envelope (NE), suggesting that NE shares protein translocation, folding and quality control functions with the endoplasmic reticulum (ER). Moreover, membrane continuity between the ER and outer NE membrane is evident, and, thus, NE is considered as a subdomain of the ER. To support this, during cell division, NE loses its identity, and participates to daughter cells as part of the ER. However, NE has also membrane proteins and luminal proteins that are enriched to NE and absent from ER during interface, and the segregation of NE specific proteins/lipids occurs concomitantly with NE formation during late anaphase/telophase. In this study, the ultrastructure of the ER-NE junctions is described using high resolution electron tomography. Results show convincingly a specific constriction at the ER-NE neck during interface in several mammalian cell types. This structure is absent during metaphase, and also from the budding yeast. Authors present a model for the formation of ER-NE junctions in higher eukaryotes and speculate about their functional role. *We thank the reviewer for the appreciation of our work and the valuable suggestions for further improvements.

      * Major comments: The main conclusion of the paper is that although the ER and outer NE membranes are continuous, a specific hourglass shaped constriction at the neck is found in higher mammalian cells during interphase. The structure is specific to ER-NE necks, as it is absent during metaphase and ER-ER junctions. For the analysis, authors used high pressure freezing to ensure best structural preservation. Unfortunately, fixation is not the only potential source of artifacts; during tomography at ambient temperature, the thinning of the plastic sections under the beam can be up to 30%. In evaluation of the results, authors should consider how this thinning could affect the measurements of membrane distances and luminal width, and what type of distortions may happen as a consequence of asymmetric shrinkage.*

      In addition to analysis of own samples, authors took advantage of the publicly available whole-cell datasets in OpenOrganelle and used these datasets to expand the number of cell types analyzed. Moreover, the 3D-datasets were generated with different imaging technique, FIB-SEM. Although this technique provides lower resolution in general, it provides isotropic resolution, and the data could be used to eliminate the shortcomings of the tomography, thinning of the sections and the missing wedge. The authors could expand the comparison of the data from these different sources from this perspective, especially since HeLa cells were used in their own tomography studies and FIB-SEM datasets in OpenOrganelle. Similarly, it would be interesting to see if similar approach could be used to compare their results to those obtained by cryo-EM by utilizing the cryo-EM database. Have authors checked if any suitable datasets for analysis of ER-NE junctions could be found from public archives? For the analysis of mitotic cells, double thymidine block was used to synchronize the cell culture. It is not clear, why synchronization was necessary, as CLEM was used to select the cells, and their number was rather low. Do cells continue growing and synthesizing new proteins during thymidine blocks? As one way to control potential artifacts due to the synchronization treatment, authors could compare the average thickness of ER and NE in naturally occurring interphase and mitotic cells vs. synchronized cells. We agree with the reviewer that it is important to clarify the degree of shrinkage and deformation of the sample that our EM protocol might introduce. To access the degree of sample shrinkage and deformation in the plastic sections, we will compare the ONM-INM distance measured in our plastic sections with the one in cryo-EM tomograms of rapidly-frozen and FIB-milled mammalian cells that are publically available (EMPIAR, the Electron Microscopy Public Image Archive, https://www.ebi.ac.uk/pdbe/emdb/empiar/), and describe the outcome in the revised manuscript.

      The reason why we synchronized the cell cycle is to enrich cells in late anaphase and early telophase in the same plastic sections, so that we can compare their ultrastructure side-by-side. In the revised manuscript, we will examine if the double thymidine block affects the ER-NE junction morphology by comparing the morphology of the ER and NE between the synchronised and non-synchronised cells.

      As we described in the response to Reviewer 3, we think that our conclusion from the EM analysis is solid because of the following reasons. (i) We observed a significant structural difference between ER-NE junctions and ER-ER junctions in the same cells (Figure 2). (ii) We discovered a morphology change of ER-NE junctions in late-anaphase, early-telophase, and interphase cells that were freeze-substituted on the same sapphire disc; the ER-NE junctions became progressively constricted from telophase to interphase (Figure 3).

      Minor comments: On page 5, last chapter (+ Fig.1 legend and materials and methods): "the quick tomograms covered the entire NE" is misleading, as the imaging covered a thin layer of the entire NE only. - Authors could have analyzed the entire NE from the FIB-SEM datasets but chose to use stereological approach to minimize their work.

      We will modify the text to make it clear that the quick tomograms covered the NE in a section and not the entire NE of the cell in the revised manuscript.

      * To save time from the readers to follow the reference, authors could describe how the specimens used in OpenOrganelle datasets were fixed and processed, especially as they emphasize the importance of high pressure freezing in their own sample prep. Similarly, in Fig.4 legend, authors refer to measurements done in the previous study without explaining how and from what type of data. *We thank the reviewer for pointing these out. We will describe how the OpenOrganelle datasets were generated and how the nuclear surface area measurement was done.

      • *

      Is there a difference between mesh generation and segmentation, or is it just two different terms used for the same thing by different programs? We apologize our short description of these terms. We will clarify these terms in the revised manuscript.

      *

      Reviewer #4 (Significance (Required)):

      General assessment: ER-NE gates were described earlier in the literature for specific cell types using standard thin-section TEM imaging, and in this study, the analysis was done with modern technology at 3D. The text is fluent and clear, and the quality of the images was excellent. The analysis of the data was thorough, and materials and methods including image analysis part were presented accurately and clearly. Ultrastructural analysis was done systematically, and generated models are beautiful and informative. Much thought has put into planning of the experiments and experimental approach. The shortcoming of the study is its limitation to ultrastructural analysis only without attempts to connect to any mechanism. The discussion part contains lot of speculation of the factors that might be needed for the formation and maintenance of the constriction and present several hypotheses for the function of the constriction. The paper would be much stronger if one of few of the leads would be followed, and if there would be any explanation for the role of these structures, or factors affecting them. *We thank the reviewer for the appreciation of the clarity and quality of our work. The molecular mechanism that regulates the function, shape and biogenesis of ER-NE junctions will be the subject of future studies, for which our discovery of a highly-constricted morphology of the ER-NE junctions lays the groundwork.

      * Advance: The paper provides a very nice example for the reuse of publicly archived imaging datasets to complement own experimental work. Hopefully this paper encourages others to the same path, as the large volumeEM datasets require significant investments and contain wealth of potential for reuse. *We strongly agree with the reviewer. The volume EM datasets that are publically available contain wealth of potential for new discoveries. We also hope that our paper encourages other scientists to make good use of those datasets and also to deposit their own data to the public databases. We will deposit our EM tomograms to EMPIAR, the Electron Microscopy Public Image Archive.

      * The paper strengthens the description of the ER-NE junction structure significantly and convincingly but does not further our understanding of the mechanisms behind the structure nor the function of them and raises more questions than provides answers. For structural analysis of this kind, the state-of-the-art technology is cryo-EM (e.g., preparation of lamella with cryo-FIB-SEM followed by cryo-tomography), and in this study, the technical limitations come from plastic embedding and ambient temperature imaging. The used techniques would be more adequate for cell biological study, where the described structure is somehow connected to the function in cell, or the factor(s) needed to the formation or maintenance are identified. *Indeed, a limitation of our current study is that we did not reveal the underlying molecular mechanism and the functions of the constricted morphology of ER-NE junctions. We do not think that cryo-EM is necessarily required because we have collected evidence that the ER-NE connections are distinct from the ER-ER junctions in not only our EM tomography data (Fig. 2) but also in the EM datasets deposited in public databases (Fig. 5).

      * Audience: This study will be of special interest to cell biology community. The study could be an opening to several lines of research, e.g., identification of the factors forming or maintaining the structure, the potential function of the structure, how the structure affects the dynamics of the NE/ER membrane and luminal proteins. *We thank the reviewer for appreciating the impact of our work.

      * Reviewer's expertise: The reviewer has long experience in electron microscopy, volumeEM techniques and image analysis, and operates mainly in the field of cell biology.*

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript entitled "The Drosophila Tumour Suppressor Lgl and Vap33 activate the Hippo pathway by a dual mechanism, involving RtGEF/Git/Arf79F and inhibition of the V-ATPase." by Portela et al. presents an interesting perspective of the molecular mechanism regulating Hippo pathway, revealing new proteins involved in this process. In this study, the authors try to show us that Lgl activates the Hippo pathway via Vap33 either by interacting with RtGEF/Git/Arf79F or by inhibiting V-ATPase, thus controlling epithelial tissue growth. The methodology used by the authors is adequate but could benefit from further experiments that would allow them to reach the conclusions stated in their research. Thus, based on the interpretation of the results presented by the authors some concerns were raised that should be addressed during the review process and that are explained in the major comments. Major comments: • It is not clear why in "The Hippo signaling pathway is negatively regulated by V-ATPase activity in Drosophila" section, the authors use Vha68-2 RNAi to reduce the activity of V-ATPase and later they use the overexpression of Vha44 to activate V-ATPase. The authors should explain why they used different proteins to regulate V-ATPase. The way the authors wrote their results sounds like different Vha proteins regulate V-ATPase, which means that cells may have different ways to activate V-ATPases, not being clear if regardless that the downstream effect of V-ATPase activation is always reflected in the Hippo pathway. Thus, the authors should state what other Vha proteins may have a similar effect, I would like to see evidence that Vha44 and Vha68 knockdown and overexpression leads to similar results.

      Response: Vha68-2 and Vha44 are both components of the V-ATPase. We have added further details to the results to make this clearer. We have previously shown that knocking down several components of the V-ATPase, which disrupt V-ATPase function, have a similar effect on the Notch pathway (Portela et al., 2018 Sci. Signal., PMID: 29871910). Vha44 overexpression had been documented to result in V-ATPase activation (Petzoldt et al., 2013, Dis Model Mech., PMID: 23335205), and no other Drosophila V-ATPase transgenes were available to conduct experiments with other lines.

      • In "Vap33 activates the Hippo pathway" section, the authors' conclusions represent a big statement considering the results obtained. Though Diap1 is a Hippo pathway target, it does not mean that this protein is solely regulated by this pathway. For example, there are studies that show that this gene can also be transcribed by STAT activity. Though in the following section the authors show how Vap33 activates this pathway, the results obtained in the section "Vap33 activates the Hippo pathway" are not enough to make this assumption. We suggest that the authors rephrase this section. (Optional: To maintain this statement, the authors should have performed, for example, a luciferase assay containing specifically Hippo pathway binding sites in the Diap1 gene, showing that the transcription factor of the Hippo pathway is somehow regulated by Vap33). Response: Whilst Jak-STAT signalling has been shown to induce Diap1 expression in the wing disc during development (PMID: 28045022), however expression profiling after activation of the Jak-STAT signalling in the eye epithelium did not identify Diap1 as a target (PMID: 19504457). Additionally, there are no reports that Lgl depletion in eye disc clones elevates Jak-STAT signalling (Stephens et al., J. Mol. Biol. 2018, PMID: 29409995), but instead loss of cell polarity in scrib mutant cells in the eye disc results in expression of the Jak-STAT pathway ligand, Upd, and non-cell autonomous induction of Jak-STAT signalling in the surrounding wild-type cells (PMID: 25719210, __PMID: __23108407). We have previously shown that Lgl depletion leads to inactivation of the Hippo pathway and elevates expression of the canonical Yki targets, Ex and Diap1 (Grzeschik et al., 2010, Curr Biol., PMID: 20362447). In this current study we show that Vap33 overexpression leads to the downregulation of Diap1 and in lgl mutant tissue reduces the elevated Diap1 expression. Since there is no evidence that either Lgl or Vap33 (VAPB) perturbations affect the Jak-STAT signalling pathway, we conclude from our results that Vap33 acts by reducing Yki activity and thus activating the Hippo pathway. We have added additional explanation to this section of our manuscript.

      • The authors present a highly speculative discussion, raising different hypotheses. Though such hypotheses are well supported by the literature, the authors would enrich the quality of their research if indeed they could prove them. Particularly, testing for vesicle acidification, testing if V-ATPase indeed blocks the interaction of Lgl/Vap33/RtGEF/Git/Arf79F, and alters Hpo localization, testing if Git/RtGEF inhibits Arf79F and consequent Hpo localization. Response: Although it would extend the paper to conduct further experiments, my lab is now closed so this is not possible. We have already published that vesicle acidification is increased in lgl mutant tissue (Portela et al., 2018, Sci. Signal., PMID: 29871910) and that Hpo localization is altered in lgl mutant tissue (Grzeschik et al., 2010, Curr. Biol., PMID: 20362447).

      • The authors should also apply more specific techniques to infer how the Hippo pathway is affected by such genetic manipulation since diap1 can be a target gene of different pathways. Response: We have shown that lgl mutant tissue also shows upregulation of the Hippo pathway target, Ex-LacZ, and affects the phosphorylation of Yki (Grzeschik et al., 2010, Curr. Biol., PMID: 20362447), and RtGEF/Git mutant tissue shows upregulation of the Yki target, Ex-LacZ (Dent et al., 2015, Curr. Biol., PMID: 25484297). Since RtGEF/Git are positive regulators of Hippo, but there is no evidence that they are involved in the regulation of the Jak-STAT pathway, the effect of Vap33 overexpression on Diap1 levels in the context of a RtGEF knockdown (Fig 5) is most likely to be due to effects on the Hippo pathway. Similarly, since Lgl deficiency upregulates Yki targets, Ex-LacZ and Diap1 (Grzeschik et al., 2010, Curr. Biol., PMID: 20362447), the reduction of the elevated Diap1 levels in lgl mutant clones by knocking down or reducing Arf79F activity (Fig 7), is most likely due to inhibition of Yki activity and therefore elevated Hippo pathway signalling.

      Minor comments: • The authors present a well-structured manuscript, that generally is easy to understand. However, at some points, the statements given by the authors seem highly speculative. • The figures presented in this manuscript and the statistical analysis seem adequate and are clearly described.

      Response: We thank the reviewer for their support of our study. We have added more explanation to support our conclusions.

      Reviewer #1 (Significance (Required)):

      The study presented by Portela et al. gives new insights into the regulation of the Hippo pathway with the discovery of new proteins involved in this mechanism, which can be interesting to those working on basic research and focused on studying signal transduction. However, this study lacks some novelty. Throughout the manuscript, the authors only observed the physiological consequences of manipulating this pathway based on the eye phenotypes, and in the discussion, many hypotheses were raised based on the already available literature, which shows that much is already known about the Hippo pathway. The advances shown in this study are limited to the description of the signaling pathway itself and to the eye morphology. As a suggestion, the authors should explore the knowledge of their findings in order to understand how we can use them to achieve advances in other fields and physiological conditions. For example, only at the end of the discussion, did the authors raise the questions that would really push their discoveries a step forward, namely how this mechanism acts during the response to tissue wounding and whether the mammalian orthologs of Lgl and Vap33 also act via these mechanisms to control tissue growth in mammals. It would be interesting if the authors could direct their research efforts to understand if the proteins identified can be targeted to improve wound healing or to delay aging for example. Altogether, the authors present an interesting study but, at this moment, it still lacks the significance and novelty needed for publication. We encourage the authors to keep up their good work to address these suggestions, which will definitely improve the quality of their study.

      Response: We respectfully disagree with the reviewer’s comments regarding the significance of our study. On the contrary, our study is significant since it has discovered a mechanism linking Lgl and Vap33-RtGEF/Git/Arf79F and the V-ATPase to the regulation of the Hippo pathway, an important tissue growth regulatory and tumour suppressor pathway. The Drosophila eye epithelium is a highly validated model for exploring mechanisms that are relevant to human epithelial biology and cancer. Whilst extending our studies of the mechanism by which Lgl controls the Hippo pathway to wound healing and mammalian systems would be the next step, this is beyond the scope of this discovery paper.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary This manuscript investigates potential mechanisms through which the lgl gene might affect the Hippo signaling pathway. The authors employ a combination of physical interaction studies and clonal analysis in Drosophila eye discs to investigate potential links between lgl and other genes. Some of the results are intriguing, but the analysis is rather preliminary, and there are technical concerns with some of the results presented.

      Main issues - The authors propose effects of genes involved in vesicle trafficking and acidification in Hippo signaling, but there is no clear cellular mechanism described by which these effects could be mediated. This deserves further consideration. eg if they think there are effects on the localization of Hippo, this could be directly examined. In the Discussion, the authors suggest that "The V-ATPase might therefore act to inhibit Hippo pathway signalling by blocking the interaction of Lgl/Vap33/RtGEF/Git/Arf79F with Hpo in vesicles, thereby altering Hpo localization and inhibiting its activity." but Hippo is a cytoplasmic protein and has never been reported to be within vesicles.

      Response: Whilst Hpo is a cytoplasmic protein there is evidence that it could also be associated with vesicles, since Hpo pathway components bind to several endocytic proteins by mass spectrometry analysis (Kwon et al., 2013, Science, PMID: 24114784; Verghese and Moberg, 2020, Front. Cell Dev. Biol., PMID: 32010696). We have previously published that Hippo localization is altered in lgl mutant tissue (Grzeschik et al., 2010, Curr. Biol., PMID: 20362447). For a better precision, we have updated the wording to state that the proteins described in our manuscript may alter Hippo localization “on endosomes” as opposed to the previous “in vesicles”.

      • The Yki stains in Fig. 1 are confusing. The nature of the signal throughout the wing disc looks very different in 1A vs 1B vs 1C, this needs to be explained or re-examined. Fig 1C (wts RNAi ) seems to show an elevated Yki signal in some cells, and lower in others in - prior studies have reported that wts affects the nuclear vs cytoplasmic localization of Yki, but not its levels, so this needs to be clarified.

      Response: There are some tissue folds in the eye disc tissues that might be confusing the reviewer, but Yki nuclear staining is lower in Vha68-2 mutant clones, and higher in wts knockdown and Vha44 over-expressing clones (arrowheads). When Yki is concentrated in the nucleus the staining appears more intense, as it does in the wts knockdown clones. Similar results on Yki staining upon Hippo pathway impairment in epithelial tissues have been obtained by other Hippo pathway researchers (eg PMID: 20362445, __PMID: 19900439, PMID: __19913529, __PMID: __26364751).

      • In Fig 1D the clones appear to have different effects in different regions of the eye disc; the authors should clarify. Also, the disc in 1D appears much younger than the discs in 1A-C, but similar age discs should be used for all comparisons.

      Response: All eye discs are from wandering 3rd instar larvae, but the mounting of the samples on the slide and the confocal Z-section could account for apparent different regions of the eye disc showing stronger upregulation of Ex-LacZ and Yki staining. The data has been statistically analysed from multiple eye discs and the effects observed are significantly different to the control (as plotted in Fig 1E).

      • The authors should clarify whether any the manipulations they perform are associated with Jnk activation, as this could potentially provide an alternative explanation for downregulation of Hippo signaling.

      Response: Lgl mutant clones only upregulate the JNK target MMP1 in some cells at the border of the clones but show elevated Yki activity within the clones. Vha44 overexpressing clones do show upregulation of JNK signalling (Petzoldt et al., 2013, Dis Model Mech., PMID: 23335205), but since JNK signalling is known to inhibit Yki activity in the eye epithelium (PMID: 22190496), it is unlikely that the upregulation of Yki activity (downregulation of Hippo signalling) in Vha44 overexpressing clones is due to JNK activation.

      • The authors report in Fig 2C,E that over-expression of Vap33 reduced expression of Diap1, which they interpret as evidence of increased Hippo pathway activity, but this experiment is lacking essential controls, as the apparent reduction of Diap1 could simply reflect increased cell death or a change in focal plane, and indeed the difference in the label stain makes it look like these cells are undergoing apoptosis. Thus it's important to also have a stain for a neutral protein, or at least a DNA stain. Additionally, it is important to stain for at least one additional marker of Hippo pathway activity (eg ex-lacZ or Yki localization), as there are other pathways that regulate Diap1

      Response: We have previously examined the effect of Vap33 overexpressing clones on the Notch signalling pathway and do not see a reduction in Notch target gene expression relative to the control (Portela et al., 2018, Sci. Signal., PMID: 29871910, Fig 3). Thus, although there might be some cell death in Vap33 overexpressing clones (possibly due to lower Diap1 levels), it is unlikely that cell death per se results in lower Diap1 levels. We are unable to conduct further experiments to examine other Hippo pathway activity markers since my lab is now closed.

      • In Fig. 4 the authors perform PLA experiments to examine potential association between various pairs of proteins, but they don't show us key controls. They report in the text using single antibodies as negative controls, but this doesn't control for non-specific localization of antibodies. The better negative control is to do the PLA experiments in parallel on tissues lacking the protein being detected (eg from animals not expressing the GFP- or RFP-tagged proteins they are examining). Also, there is a lot of variation in the apparent signals shown in different PLA experiments in fig 4, the authors should comment on this.

      Response: We have previously used the PLA assay to examine Lgl and Vap33 interactions (Portela et al., 2018, Sci. Signal., PMID: 29871910, Fig 2) and have conducted an experiment expressing Vap33 tagged with HA via the GMR driver in the posterior region of the eye disc and then detected Lgl-HA protein interactions, which only showed PLA foci in the posterior region where Vap33-HA is expressed but not in the anterior region where Vap33-HA is not expressed. This may be thought of as the best possible control since these differentially expressing regions were part of the same tissue sample. Furthermore, in our previous study (Portela et al., 2018, Sci. Signal., PMID: 29871910, Fig S2), we conducted a negative control PLA using the GFP and Vap33 antibodies in eye tissue not expressing GFP-Lgl and observed no PLA foci. We have edited the text to refer to these controls.

      The variation in PLA signal may be due to low levels of expression of certain proteins or lower levels of protein-protein interactions. We have edited the text to add this explanation.

      • The authors claim that RtGEF mutant cells increase Diap1 expression, and that Vap33 over-expression reverses this effect (Fig. 5). The effect of RtGEF looks very subtle and variable, it should be confirmed by examining additional reporters of Hippo pathway activity. It also seems like the disc in 5A is at a different stage &/or the quantitation is done from a different region as compared to the disc in 5C.

      Response: RtGEF mutant cells have also been shown to upregulate the Yki target, Ex-LacZ (Dent et al., 2015). Unfortunately, we were unable to construct an Ex-LacZ RtGEF mutant stock and there was no available Ex antibody.

      For Diap1 quantification, clones were chosen just posterior to the morphogenetic furrow of each eye disc and multiple clones were analysed relative to the adjacent wild-type clones in many samples and quantified and plotted in Fig 5E.

      • The analysis of the influence of Vha68-2 mutant clones, and their genetic interaction with Git, similarly suffers from missing controls and incomplete analysis. Additional Hippo reporters besides just Diap1 should be examined. The Diap1 analysis which shows reduced expression needs examination of neutral controls or nuclear markers to assess potential apoptosis within clones, or changes in focal plane.

      Response: We have also examined the effect of Vha68-2 clones on Ex-LacZ expression (Figure 1) and show that it is also reduced relative to the surrounding wild-type clones.

      We have previously examined Vha68-2 mutant clones for the expression of a Notch pathway target (Portela et al., 2018, Sci. Signal., PMID: 29871910, Fig S1) and show with DAP1 staining that cells are in the same plane and are retained in pupal retina, so are not dying. We now refer to our previous study in the text.

      Similarly, the analysis of Arf79F mutant clones in Fig 7E,G is compromised by lack of controls for viability and tissue layer, and analysis of an additional Hippo reporter is once again essential.

      Response: We don’t believe DAPI stains are necessary as the GFP membrane/cytoplasmic staining clearly shows the outline of the cells and where the nucleus is in the mutant clones and shows that the cells are intact and not dying.

      Reviewer #2 (Significance (Required)):

      The strength of the study is the potential dissection of novel connections between the lgl tumor suppressor and the Hippo pathway. However, there are signifiant limitations due to the preliminary nature of the study, which is incomplete and missing essential controls. If these limitations are overcome the work will be of interest to specialists in the field.

      Response: We are hoping that our explanations and responses to the main issues above alleviate concerns regarding controls.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this study, Portela and colleagues identified new regulators of Hippo pathway downstream of the core apico-basal polarity protein Lgl. While the impact of Lgl depletion of Yki activation was already characterised both in Drosophila and Vertebrates, the mechanism connecting these two pathways was still unclear. Using the Drosophila eye, mosaic analysis, epistatic analysis and mass-spectrometry, they identified two routes through which Lgl depletion can lead to Hippo pathway downregulation and eye overgrowth. This regulation required the previously characterised Lgl interactor Vap33, which on the one hand activates Hippo by inhibiting the V-ATPase, and on the other hand activates Hippo through its interactions with the actin regulators Git, RtGEF (two previously characterised regulators of Hippo, https://pubmed.ncbi.nlm.nih.gov/25484297/) . They also identified another regulator of Hippo downstream of Lgl, Arf79F, whose ortholog interact with Git in mammals and is also in close proximity with Hippo, Git and RtGEF in Drosophila, and whose depletion abolish Hippo downregulation and eye overgrowth in Lgl mutant. This is a well performed study which identified new links between Lgl and regulation of the Hippo pathway. Many of them are conserved in mammals and may be relevant in pathological conditions associated with Lgl loss of function and Yap missregulation. The experiments are well conducted with a quite thorough epistatic analysis combined with many assays to characterize protein interactions. Admittedly, the molecular mechanism remains uncharacterised and some experiments may help to indicate putative mechanisms, but the characterisation of these news regulators and clear genetic interactions results constitute already solid and interesting data. I have some suggestions though that could help to reinforce the conclusions.

      Main suggestions :

      1. While the precise molecular mechanisms is not absolutely necessary, it would be interesting to document the subcellular localisation of these new Hippo regulators in WT and Lgl mutant context (Git, RtGEF Vap33 and Arf79F), either with Antibody if they exist, or with fusion protein (which for a good part were already generated for the PLA results). This may reveal obvious misslocalisation which would support the role of Lgl as a scaffolding protein that maintain proper subcellular localisation of these factors.

      Response: Whilst this experiment would extend the study, we are unable to do this since my lab has now closed.

      Most of the epistatic experiments focus on factors that rescue the overgrowth and increase of diap1 expression in Lgl mutant. Did the author test if any of these core regulators are sufficient to recapitulate Lgl mutant eye phenotype, for instance Vap33 KD in the eye, or Arf79F overexpression. Negative results would still be informative as they would point to the existence of other downstream regulators of the eye phenotype

      Response: Vap33 knockdown by RNAi in clones does not phenocopy the lgl mutant mosaic adult eye phenotype (Portela et al., 2018, Sci. Signal., PMID: 29871910, Fig 2), presumably due to other functions of Vap33. We have added further details regarding this point In the Discussion.

      We have not examined Arf79F overexpressing clones.

      It is at the moment hard to interpret the relevance of the results obtained by PLA. While there are some negative controls based on the absence of secondary antibody, what is the number of particle obtained for two non-interacting cortical proteins ? Since this is based on proximity, I would expect that some positive particles would still appear by chance, but much less than for two physically interacting proteins or subunits of a complex. Could the author provide such a negative control by testing for instance Git/RtGEF with another non-interacting cortical protein ? That would help to assess the relevance of the conclusions based on PLA.

      Response: The PLA is a robust assay to assess protein-protein interactions of proteins that are

      Some of the epistatic links are a bit hard to interpret at the moment, and additional epistatic test may be relevant. For instance, the increase of diap1 upon Git depletion in the Vha68 mutant (Figure 6) is used to conclude that Git is required for the Hippo upregulation upon reduced V-ATPase activity. However this could be compatible with two independent branches regulating Hippo (in an opposite manner), which is more less what is suggested by the authors in their conclusion and the model of figure 8. I would suggest to reformulate this conclusion in the result part. Similarly, there is currently no experimental exploration of the epistatic link between Arf79F, Git and RtGEF (which is based on results in mammals). It would be interesting to check if Git and RtGEF mutant phenotype (Hippo downregulation) can also be suppressed by downregulation of Arf79F.

      Response: We have now added further explanation to the result section regarding Fig 6.

      Unfortunately, we are unable to do further experiments since my lab is now closed.

      Apart from very obvious phenotype (eye in Lgl mutant mosaic) it is a bit hard to interpret the picture of adult eye provided in this study (specially for mild phenotype). Could the authors provide more explanation in the legends, and if possible some quantitative evaluation of the phenotype when relevant? Otherwise, apart from obvious rescue of the Lgl mutant, it is a bit hard to interpret the other genotypes (e.g. : Vap33OE, RtGEF mutant, Vha68 mutant)

      Response: We have added more explanation of the adult eye phenotypes in the text/fig legends.

      Other minor points :

      1. I would recommend when possible to clearly indicate in Figure 8 which part of the pathway are clearly documented in this study, and which part are still hypothetical (eg: link with PAK).

      Response: We have re-drawn the model figure to highlight what we have found in this study by adding orange arrows between Lgl-Vap33-RtGEF/Git-Arf79F-Hpo and Lgl-Vap33-V-ATPase and V-ATPase-Hpo.

      1. Page 4, the sentence "as aPKC's association with the Hpo orthologs, MST1/2, and uncoupling MST from the downstream kinase, LATS (Wts), thereby leading to increased nuclear YAP (Yki) activity [17], consistent with what we observe in Drosophila [5]." may need to be reformulated (at least I had trouble to understand it).

      Response: We have edited the sentence to "In mammalian systems, deregulation of Lgl/aPKC impairs Hippo signalling and induces cell transformation, which mechanistically involves the association of aPKC with the Hpo orthologs, MST1/2, thereby uncoupling MST from the downstream kinase, LATS (Wts) and leading to increased nuclear YAP (Yki) activity [17], consistent with what we observe in Drosophila [5]."

      1. Page 11 : "a decrease in Diap1 expression was observed and clones were smaller than wild-type clones (Fig 7E), suggesting that the Arf79F knockdown clones were being out-competed" I am not sure one can conclude from this that the clone are "outcompeted" (which would suggest at context dependent disappearance of clone, while here the data could be totally compatible with a cell-autonomous decrease of growth and survival). This statement would only make sense if global eye depletion of Ar79F had no adult eye phenotype.

      Response: We have edited the sentence to "a decrease in Diap1 expression was observed and clones were smaller than wild-type clones (Fig 7E), suggesting that the Arf79F knockdown clones have reduced tissue growth ----."

      Reviewer #3 (Significance (Required)):

      This study identifies regulators of Hippo which through their interactions with Vap33 explains for the first time how Lgl depletion leads to Hippo misregulation (without impairing apico-basal polarity). This is an interesting study based on epistatic analysis and mass-spectrometry and identify several regulators conserved in mammals. While the molecular mechanism remained to be explored, it clarifies for the first time how Lgl depletion ( a core regulator of apico-basal polarity) leads to Hippo downregulation and tissue overgrowth, a phenotype also observed in mammals and characterised several years ago in Drosophila. The authors previously characterised the interaction between Vap33 and Lgl and its role in the regulation of Notch signaling through the V-ATPase. This study nicely complement these previous results and connect now Vap33 with Hippo and Lgl while answering a long unresolved question (how Lgl depletion affect Hippo pathway).

      This results will be interesting for the large community studying the hippo pathway, apico-basal polarity and tissue growth. It also outlines interesting factors that could be relevant for tumour neoplasia and hyperplasia.

      I have expertise in epithelial biology, apoptosis, cell competition, Drosophila, cell extrusion, mechanobiology, morphogenesis and growth regulation.

      Response: We thank the reviewer for recognizing the significance of our study.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      In this article, the authors delve into an intriguing topic, aiming to enhance our understanding of the organization of the mitochondrial genome of T. gondii, a parasite of significant importance in both human and animal health contexts.

      In essence, their approach involves enriching mitochondrial material, followed by genome sequencing and the analysis of mitochondrial short RNAs. They achieve a remarkable depth of mitochondrial sequencing and generate valuable RNA data. Furthermore, their efforts lead to the discovery and annotation of new short RNAs.

      Overall, the article is well-crafted and presents compelling results. However, it's worth noting that, at times, the authors appear somewhat self-congratulatory, and certain results might be perceived as overly ambitious. Nevertheless, the discussion is aptly constructed.

      Major comment:

      They assert certain discoveries that had already been reported. Notably, they adapt an existing protocol for mitochondrial enrichment and describe it as 'We developed a protocol to enrich T. gondii mitochondria.' It's worth noting that they neither reference a more recently described protocol (PMC6851545) nor compare the performance of their modified protocol with the original.

      The protocol they employ does not seem to yield exceptionally high success rates, as mitochondrial DNA constitutes less than 10% of the total sequenced DNA.

      Additionally, they frequently mention the identification of specific combinations of sequence blocks previously identified by Namasivayam et al. (PMC8092004), which was also discussed in Namasivayam et al. 2021."

      Missing in the supplementary material are basic details on the sequences performed. Distribution of mitochondrial reads length, depth, etc.

      Further clarification is needed for Figure 2. Specifically, the frequency units or combinations of frequency (A, B, and C) are not clearly explained. While the matrix's asymmetry suggests a 5'- 3' orientation difference, this orientation difference is not explicitly specified (B). Additionally, the fragment Mp does not appear in the block combination figure (C).

      Some points to improve the introduction:

      Provide an evolutionary context for the following phrase: 'An idiosyncratic feature of Apicomplexa is a highly derived mitochondrial genome.' Specify what you intend to emphasize.

      Line56: The sentence must begin with a capital letter

      In line 58 "Nuclear genes encoding proteins with functions in mitochondria contribute strongly to P. falciparum and T. gondii cell fitness" Although it is mentioned later, it would be more effective to introduce the fact that all but three genes are encoded in the nucleus.

      Line68: "Apicomplexan mitogenomes usually code only for three proteins" It seems to me that 'usually' should not be included.

      Line 65-67: The sentence should include that the mitochondrial genome is composed of a total of 20 blocks of repeating sequences organized in multiple DNA molecules of varying length and non-random combinations

      At the end of the introduction, the authors state that they have developed a protocol for mitochondrial enrichment. The text should be modified taking into account that: 1- The new protocol is an adaptation of another existing protocol. In fact, the Methods the authors say the protocol was "slightly" modified. 2- There is already existing mitochondrial enrichment protocol available [Reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851545/#mmi14357-bib-0074]. In any case, they should consider performing a comparative analysis between the proposed protocol and existing ones to determine its relative effectiveness. It should be noted that the proposed protocol enriches in organelles (including the nucleus and apicoplast), but when sequencing DNA, mitochondrial DNA accounts for only 5% of the total reads, which may raise doubts about its overall efficacy.

      Some points related to Results section:

      Lines 113-115: 'To distinguish between NUMTs (nuclear DNA sequences that originated from mitochondria) and true mitochondrial sequences, it is necessary to enrich mitochondrial DNA.' I disagree with this sentence. NUMTs, in general, consist of very short sequences. With long reads, it is relatively straightforward to differentiate mitochondrial sequences from those nuclear sequences that have small mitochondrial fractions. In my opinion, even many Illumina reads can be confidently identified as belonging solely to the mitochondria. I found this article that supports this argument, indicating that the majority of NUMTs are less than 100 nucleotides in length [Reference: https://pubmed.ncbi.nlm.nih.gov/37293002/].

      Lines 166-168: 'A previous sequencing study used Oxford Nanopore sequencing technology (ONT) to identify combinations of sequence blocks in T. gondii mitochondria (Namasivayam et al. 2021).' However, it's important to note that Namasivayam's group did not merely use ONT to identify combinations of blocks; rather, they discovered, identified, and defined these combinations based on sequencing with long reads.

      Line 177: "The length of mitochondrial reads ranged from 87 nt to 17,424 nt" It would be beneficial to include a histogram depicting the length distribution of the obtained reads. It's worth noting that nanopore reads tend to be shorter than Illumina reads

      Line 194-195 "we found that only a small fraction of all possible block combinations are prevalent within the genome" this has been previously described (PMC8092004)

      Line 201. "This indicates that the genome's flexibility is limited and that not all block combinations are realized". This is consistent with the findings published by Namasivayam et al. in 2021, which have already established that the combination of the 21 blocks is non-random.

      Line 205: "All combinations are well covered in our ONT results and helped to refine block borders relative to previous annotations (Fig. S2)" In the supplementary materials the authors say: "However, the blocks Fp, Kp, and Mp frequently occur separately in the mitochondrial genome We therefore treated Fp, Kp and Mp as separate blocks and have shortened the blocks F, K and M accordingly". As far as I understand, for this very reason, Namasivayam and collaborators annotate them as partial fragments, which may appear in other regions but are, in turn, parts of larger F, K, and M fragments. To redefine the segments F, K, and M without the sequences corresponding to Fp, Kp, and Mp, as shown in Figure S2, these fragments should be distinct from the 'partials.' In other words, segments of the type (F minus Fp), (K minus Kp), and (M minus Mp) should appear in the reads, and should be distinguishable from Fp, Kp, and Mp. If this distinction is made, I am satisfied with the new definition.However, if such a separation is not evident, it seems important to clarify it in the text or to reconsider this new definition.

      Lines 221-223: "This suggests that there is no need to postulate mechanisms of genomic or posttranscriptional block shuffling to arrive at full-length open reading frames." The authors argue that invoking mechanisms of genomic or post-transcriptional block shuffling is unnecessary to explain the presence of full-length open reading frames, given that genes represent 2-3% of mitochondrial sequences. However, there is a missing estimate regarding the probability of encountering all three genes within a single molecule or mitochondrial genome, as well as the total number of sequenced mitochondria. Consequently, the statement appears overly assertive. In the absence of alternative mechanisms for generating complete genes, this would mean that at most only 1646 mitochondrial genomes would have been sequenced. To comprehensively address this issue, the authors should consider discussing this scenario further. They should also provide information about how many reads they found containing all three genes and how many contained two of the genes.

      Lines 249-250 "using the block combinations identified here by ONT sequencing " which is the difference between blocks identified here with those on Namasivayam ? The division of M, K and F fragments?

      Line 287: "The six remaining small RNA fragments are specific to T. gondii" I would suggest being more cautious in this sentence by stating that they were not found in other organisms. Given the similarity of the mitochondrial genome between T. gondii, N. caninum, and other coccidians, it would be expected to find them in these organisms as well.

      Line 300 "Among the novel small RNAs identified, there is also a class that was only detectable due to our insights into genome block combinations." A valid strategy is to map the small RNAs to the generated nanopore reads or to an assembly made with these reads, rather than solely relying on the single blocks or combinations of blocks, as this approach would yield the same result.

      Line 444: "Upon closer scrutiny, however, the reshuffling appears limited to specific block borders and is not random" This was already established by Namasivayam et al 2021.

      I would like to highlight the potential for a more comprehensive examination of the mitochondrial genome in the discussion. While the proposed explanations for the presence of sRNAs at the 'block borders' appear plausible, it's worth noting that the definition of these blocks is artificial rather than biological. I think it is interesting to discuss without the concept of block sequences, but of sequences existing in the mitochondrial genome. Therefore, it's important to discuss whether these sequences (the block borders) are consistently present in all mitochondrial genomes. The total cumulative length of the blocks is 5.9 Kb, which is relatively small and comparable to one of the smallest mitochondrial genomes on record. It is conceivable that recombination and the generation of new sequences play a role in expanding genomic space for encoding, such as RNAs.

      Line 535-536 "We developed a protocol to enrich T. gondii mitochondria and used Nanopore sequencing to comprehensively map the genome with its repeated sequence blocks." I find this sentence to be somewhat assertive, especially considering that they modified an existing protocol and obtained results that may not be optimal. Additionally, they have not compared their protocol with other available methods for mitochondrial enrichment.

      Some points related to Method section: In none of the experiments is it specified how many parasites were initially used as a starting point

      "Masking NUMTs in the T. gondii nuclear genome" it's unclear whether the authors utilize all hits or filter the results of BLASTN. It would be helpful if they specify the criteria for filtering, such as identity percentage or query coverage. Additionally, it's not clear how they generate the GFF3 file from the BLAST results, or whether they instead create a BED file. Providing clarification on this process would enhance the reproducibility of their methods. Moreover, it would be beneficial if the authors include information regarding the number of sequences they intend to mask, the average length of the NUMTs, and the total percentage of the genome these masked sequences represent.

      Line 657 "Mapping results were filtered using SAMtools"<br /> The text does not specify the filtering criteria or the parameters used for this process.

      Line 673 establish "No matching reads were found" in the "Sequence comparisons of ONT reads found here with published ONT reads for the T. gondii mitochondrial genome" but in the results the authors say: "While smaller reads of our dataset are found in full within longer reads in the published datasets, we do not find any examples for reads that would be full matches between the dataset. Could you provide a more detailed explanation? Specifically, I would like to know how many reads from the dataset (including their length) are also present in other datasets, and at what minimum length do they cease to coincide?

      689 - The text does not specify the filtering criteria or the parameters used for Samtools filtering process.

      Lines 689-693 Please describe better the methodology used.

      Line 696: the program is fastp not fastq (Chen et al. 2018)

      Line 697: what do you mean only the ends of the reads were mapped? how many bases? Or do they mean that they map the reads fowrards and reverse reads?

      Significance

      In this article, the authors delve into an intriguing topic, aiming to enhance our understanding of the organization of the mitochondrial genome of T. gondii, a parasite of significant importance in both human and animal health contexts.

      In essence, their approach involves enriching mitochondrial material, followed by genome sequencing and the analysis of mitochondrial short RNAs. They achieve a remarkable depth of mitochondrial sequencing and generate valuable RNA data. Furthermore, their efforts lead to the discovery and annotation of new short RNAs.

      Overall, the article is well-crafted and presents compelling results. However, it's worth noting that, at times, the authors appear somewhat self-congratulatory, and certain results might be perceived as overly ambitious. Nevertheless, the discussion is aptly constructed.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02012

      Corresponding author(s): Frederic, Berger

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank reviewers for useful suggestions and comments on our manuscript which helped to improve and strengthen our conclusions. Our point-by-point answers are below. We have answered most of the points raised by the reviewers and added numerous new experimental data including detailed structural and biochemical analyses that led to support further that BCP4 (and not BCP3) is the plant functional counterpart of MDC1 because in response to DNA damage it binds phosphorylated H2A.X and recruits the MRN complex. In addition, we provide further support to the phylogenetic analysis and evidence for the plant counterpart of PAXIP1.

      We believe that our revised manuscript which includes a set of new experimental data strongly support our main conclusion that BCP4 is a functional counterpart of metazoan MDC1.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      MDC1 is a key regulator of DNA damage responses (DDR) in animals. MDC1 has multiple protein domains, in which the BRCT domain binds γH2A.X. However, plants lack the homolog of MDC1. In this study, the authors found that BCP4 binds γH2A.X and proposed that BCP4 is a functional counterpart of MDC1, which will greatly enhance our understanding of plant DDR pathway. I have the following concerns.

      1. The relationship between BCP3 and BCP4 needs to be clarified. Line 255, the authors mentioned that"we conclude that BCP3 and BCP4 have functional properties as human MDC1". In the Abstract, the authors mentioned that "we identified BCP4 as a candidate ortholog of human MDC1". I am confused about the conclusion. Both BCP3 and BCP4 are or only BCP4 is MDC1? In addition, in BCP3 and BCP4, only their BRCT domains share homology with MDC1. They lack other domains of MDC1. Therefore, "ortholog" may not be an appropriate term. I think "functional counterpart" may be a better term.

      Response: Our analysis emphasizes the fact that human MDC1 is very derived from an ancestral form MDC1 that did not share most domains found in MDC1 from mammals. Because it is still difficult to establish with certainly what the ancestral MDC1 was, we agree that functional counterpart is a more correct term, so we changed this accordingly throughout the manuscript.

      BCP1-4 all contains tandem BRCT domains. I am wondering whether it is possible to figure out why only BCP3 and BCP4 bind γH2A.X through sequence analysis. Are there any key residues essential for γH2A.X binding?

      Response: We used AlphaFold models of tBRCT domain of BCP1, BCP2, BCP3, and BCP4. While in Alphafold models the tBRCT domain of each BCP protein largely overlaps with a structure of human MDC1 tBRCT domain, only the tBRCT domain of BCP3 and BCP4 are predicted to make contacts with γH2A.X similar to that of human MDC1. Although residues that are involved are not fully conserved between BCP3/4 and human MDC1 we obtain in vitro data supporting that the interaction of BCP4 is mediated by a comparable pocket of three key residues that contact the phosphate group of γH2A.X. See also answers to comments of Referee #2 and new Figures 3 and 4, corresponding description on page 8-9, and Supporting figure 3.

      Line 183, "On an unrooted phylogenetic tree, these two proteins clustered with MDC1 and PAXIP1 (Figure 1B).". In Figure 1B, MDC1 is closer to BCP3 and BCP4 than PAXIP1 and PAXIP1 is closer to BCP2 than MDC1. If the authors want to include PAXIP1 in Figure 1C, the authors should include BCP2 as well. In the γH2A.X binding assays, I do not understand why the authors tested BCP1 instead of BCP2. In Figure 2D, why bcp2 was not included?

      Response: We created a new alignment for Figure 1C including BCP2 tBRCT domain and the tree that includes all BCP BRCT domain (Figure 1D) does support a close relation between MDC1 and BCP3 and 4 and PAXIP1 and BCP1. As we stated on page 5-6 lines 175-178, BCP2, also contains acetyltransferase domain, which is unique for plant BCP2 protein. Based on its domain organization, BCP2 was not considered as a candidate for MDC1 homolog, and we did not perform mutant complementation. This is why after our initial analysis of bcp mutants (DNA damage sensitivity, formation of gammaH2A.X, and phylogeny), and based on similarities with MDC1 and PAXIP1 we focused on bcp1, 3, and 4 mutants and the corresponding proteins. The function of BCP2 remains to be investigated, but this is out of the scope of this manuscript that is primarily dedicated to find the functional counterparts of MDC1 and PAXIP1.

      The expression level of BCP1-4 in the mutants need to be examined using qRT-PCR. Especially, for the bcp3 mutant, which is a weak allele.

      Response: We did not perform this experiment, because it was done in Vladejic et al., 2022 and expression data are available from various genomic dataset on TAIR.

      The authors used "bleomycin" or "zeocin" in different parts. Please be consistent.

      Response: We consistently use Bleomycin for treatment of seedlings followed by western blotting and Zeocin for true leaf assay. These two agents produce DNA double strand brakes in similar ways, and we could show previously that levels of γH2A.X and γH2A.W.7 are similar when using these two agents (Rosa M, Mittelsten Scheid O Bio. Protoc. 4:e1093. doi: 10.21769/BioProtoc.1093: Lorkovic et al., Curr Biol. 2017, doi: 10.1016/j.cub.2017.03.002). Zeocin was chosen for true leaf assays because we observe lower variation between batches and biological repeats compared with bleomycin.

      1. Figure 3E and 3F, please indicate the treatments of the upper and lower panels.

      Response: Thank you for pointing this out. This has been indicated in the corresponding legend of the new Figure 3 A - C.

      Line 338, "bcp1 mutants show reduced homologous recombination rates (Fan et al., 2022; Vladejić et al., 2022; Yu et al., 2023)". The bcp1 mutant was not reported in Fan et al. paper.

      Response: This sentence has been changed to accurately describe data in each of the mentioned papers.

      Line 40, please add a comma after "In ". Line 331, please add a comma after "In mammals". animal

      Response: This has been corrected.

      Line 123, "only BRCA1 and BARD1 were described in plant lineage". Additional BRCT proteins were described in plants, including XIP1 (Nat. Commun. 13:7942), BCP1/DDRM2 (New Phytol. 238:1073-1084; Front. Plant Sci. 13:1023358), and DDRM1 (PNAS, 119: e2202970119).

      Response: This sentence refers to known BRCT domain mediator/effector proteins. From the published data about XIP1, BCP1/DDRM2, and DDRM1, it is not possible to assign these functions to proteins in question. Nevertheless, we changed this sentence to avoid ambiguous interpretation and we later in the text introduce XIP1, BCP1/DDRM2, and DDRM1 proteins as needed.

      Reviewer #1 (Significance (Required)):

      This study identified BCP4 as a functional counterpart of MDC1, which filled the gap of plant DDR signaling.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __ In this study, Frédéric Berger and colleagues identified BCP4 in Arabidopsis thaliana as a potential plant orthologue of vertebrate MDC1. The conclusions are based on both in silico analysis (phylogenetic analysis) and in vitro biochemical and cell biological experiments. BCP4 loss causes sensitivity of DNA damage. Moreover, BCP4 binds to a phosphopeptide derived from the C-terminus of H2AX, via its C-terminal BRCT domains and forms foci in cells exposed to DNA damage, which co-localize with gammaH2AX foci.

      Major comments: The conclusions are generally supported by the data, but the evidence presented is still quite limited. For example, it is still possible that BCP4 recruitment to sites of DNA damage is mediated by another protein and not by direct interaction with gammaH2AX. To firmly conclude that BCP4 is an MDC1 orthologue, it is in my opinion essential to perform a (limited) mutagenesis analysis. The key amino acids in the BRCT domains that recognize gammaH2AX need to be mutated and it has to be shown that these mutants are defective for H2AX phosphopeptide binding and are not recruited to sites of DNA damage. Such residues may be tricky to identify, but one obvious candidate would be the Ser residue in beta1 (VLFS motif). In vertebrates, this is a Thr that directly interacts with the phosphate in gammaH2AX. Another possible critical site may be shortly before alpha2 (RTRN motif). In vertebrates, it is RTVK, and the K makes direct contacts with the phosphate in gammaH2AX. This function is perhaps carried out by an R. Structure prediction with alphafold may help to identify the most critical residues

      Response: We thank the reviewer for these suggestions. We used AphaFold to predict structures of tBRCT domains of all BCPproteins and compared them with structure of human MDC1 in complex with gamaH2A.X peptide. Based on these analyses we performed mutagenesis of critical amino acids in BCP4 based on their predicted interaction and their conservation. We showed that mutations of critical residues reduced or almost completely abolished binding of BCP4 to γH2A.X. These data are now part of the new Figure 4. See also corresponding description on page 8-9. In addition we provide genetic data that show that the foci formation of BCP4 depends on H2A.X (new Fig 3B and C). We did not attempt genetic complementation experiments with these mutants because it would take nine months to obtain stable transgenic plant lines expressing various mutant versions of BCP4 and the limitation of Arabidopsis transgenesis does not allow to control precisely the expression of transgenes, which could cause a difficult interpretation in this particular case.

      Another critical issue is the introduction of the study. This needs to be revised, because the literature is not correctly cited in several places. For example, the cited paper by Salguero et al., 2019 did not show that the PST repeats of MDC1 constitute a docking site of TP53BP1, but instead, that the PST repeats can bind to chromatin independently of gammaH2AX.

      Response: We thank the reviewer for spotting this mistake. We carefully checked all references and corrected all wrongly associated ones or used original reports instead of reviews.

      Also, we did re-write some parts of the Introduction as referee #1 also asked for some clarification.

      The data are generally well presented and convincing. The only thing that needs to be added is a quantification of the microscopic analysis (e.g. number of foci per cell, or similar).

      Response: We quantified the foci number in all mutants reported in Figure 2C. These data are now included in the new Figure 2D. Optional: it would be interesting to address the question why plants seem to have two MDC1 orthologues. The longer BCP4 and the shorter BCP3. What is the functional difference between those? Do they perhaps distribute functions that are combined in one protein in vertebrate MDC1 on two different proteins? Response: Thank you for prompting us to address this outstanding question. We now provide evidence supporting that only BCP4 is a functional counterpart of MDC1. We show that a specific region of BCP4 but not BCP3 is able to interact with NBS1 of the MRN complex (see new Figure 6). Also, BCP3 is missing the N-terminal TQxϕ repeats present in BCP4. Although the function of these repeats is unknown at this point, these data together suggest some functional diversification between BCP3 and BCP4. We mention this on page 11, lines 372-374.

      Reviewer #2 (Significance (Required)):

      The strength of the study is the detailed phylogenetic analysis. Also, the biochemistry and cell biology is well done.

      Limitations are the lack of evidence that BCP4 carries out functions in the cell (beyond recognising gammaH2AX) that are carried out by MDC1 in vertebrate cells

      Response: We thank the reviewer for pointing out this important point. To address it we performed pull-down assays with TQxϕ and SQ/DWD regions of BCP4 with NBS1 and found that Arabidopsis NBS1 interacts with the SQ/DWD region, and that this interaction is mediated by FHA+tBRCT of NBS1. Based on Alphafold prediction, we performed further deletion and point mutation analysis of the SQ/DWD region and defined that the binding of NBS1 requires an alpha-helix comprising sequence that is not conserved in BCP3. So, we concluded that a sequence specific of BCP4 (not in BCP3) is capable of recruiting the MRN subunit NBS1.

      At this point we could not demonstrate this in vivo by analyzing NBS1 foci in BCP4 mutant background. Unfortunately, commercial antibodies for plant NBS1 or other subunits of the MRN complex are not available, and to get transgenic plants expressing fluorescent protein tagged NBS1 would require a period much longer than the time for reasonable revisions of a manuscript. Nevertheless, our in vitro interaction data strongly argue for BCP4 having function in binding MRN complex as human MDC1, although the mode of interaction of BCP4 with NBS1 is different from that of human MDC1 and NBS1.

      Please see the new Figure 6 and corresponding description on page 11-12.

      The study is of great interest to readers working on chromatin responses to DNA damage in plants.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary The authors set out to find proteins containing BRCT domain to isolate the readers of phosphorylated H2A.X in plants. Using systematic analysis of the BRCT domain proteome, they discovered 21 proteins. Further analysis showed that BCP3 and BCP4 are the ortholog of animal MDC1 and BCP1 is the animal ortholog of PAXIP1. They also extended their work to an evolutionary perspective, finding that BCP1 and BCP4 in plants and PAXIP1 and MDC1 in metazoans evolved independently form a common ancestor. However, this manuscript raises some concerns. Checkout the comments and questions below.

      Major comments: 1) If you think that BCP3 and BCP4 work as a mediator of DDR, can you show us that those mutants have a defect of DDR? The authors only assessed true leaf developing. Leaf developing is affected by not only DNA damage but also other factor. Therefore, authors should show us additional data showing the BCP mutant lines show defective of DNA damage response.

      Response: The “true leaf assay” is a classical assay for testing plant mutants for DNA damage sensitivity (Rosa M, Mittelsten Scheid O Bio. Protoc. 4:e1093. doi: 10.21769/BioProtoc.1093). If DNA damage occurs and is not efficiently repaired, meristematic cells in shoot meristem are arrested and do not divide, hence plants do not produce the first pair of “true” leaves after cotyledons expand. In this assay cotyledons open and grow normally as they are already fully determined and do not undergo any cell division after seed germination.

      In this assay the treated WT seedlings also show a reduction of the number of plants with true leaves as compared with untreated WT (100%). Furthermore, WT and mutant seedlings develop normally and comparably without Zeocin induced DNA damage.

      2) Do you have DNA damage sensitivity data for bcp3 bcp4 double mutants?

      Response: We obtained bcp3bcp4 double mutant and tested it for DNA damage sensitivity. The double mutant is slightly more sensitive than bcp4 single mutant, but not as sensitive as H2A.X mutant. The reason for this is presumably the nature of the bcp3 mutant allele available, with a T-DNA insertion located in the 5’-UTR with some residual expression of BCP3 protein as reported by Vladejic et al., 2022. We did not feel that this would improve the manuscript, so we did not include this data. To obtain a new mutant allele would take time and work beyond the reasonable time required for revision. In addition, since we show that the functional counterpart of MDC1 is BCP4, we did not think that it is relevant to pursue further the characterization of the function of BCP3 in the context of this manuscript.

      3) Some red algae have H2A.X but don't have BCP4 and BCP1 (Figure 4). In this case, how do they read the phosphorylated H2A.X? Can you discuss the point?

      Response: Actually, most red algae do not even have H2A.X. At this point we do not have data that could answer this question and it is difficult to make any prediction about this. Analysis of DDR system in red algae is totally beyond the scope of the current manuscript. See also answer to comment #5.

      4) L307-L312: I thought that the timing of the appearance of SQEF motif in H2A.X differ from the appearance of BCP4 from Figure 4. Why do you say that the evolution of BCP4 and H2A.X coincides?

      Response: we thank the Reviewer for pointing out the need for clarification.

      Histone H2A with a C-terminal SQEF/Y motif is categorized as H2A.X that distinguishes this variant from H2A.Z (not discussed here) and H2A itself. In Archaeplastida many algal species possess either H2A or H2A.X. Only in streptophytes the ancestral gene duplicated leading to neofunctionalization of both H2A and H2A.X and in this case H2A.X form a monophyletic clade. The evolution of BPC1 and 4 are slightly posterior or coincident with this neofunctionalized H2A.X variant, suggesting co-evolution in streptophytes.

      5) Some red algae don't have BCP1, BCP4 and H2A.X. How do they transfer the signal to downstream? Do you have any idea about this?

      Response: To address this interesting question we re-analyzed BRCT domain proteome of the red algae and again could not find any protein containing features of BCP4 present in green algae and land plants or in Opistokont MDC1.

      We did find that red algae without MDC1 do encode MRE11, RAD50 but not NBS1. Also, components of non-homologous end joining DNA repair pathway, Ku70 and Ku80 are conserved in these organisms. So, how some red algae cope with DNA damage remains enigmatic. Similarly unicellular red algae do not have the classical autophagy pathway. This is the result of the very strong genome reduction (Response: Thanks for this comment. We did change title of the manuscript to avoid ambiguity.

      Minor comments: 6) I think you should show us a schematic representation of BAP1 and PAXIP1 to compare both protein features.

      Response: We added schematic presentation of PAXIP1 to Supporting Figure 2B.

      7) L176-L178: Which data support this sentence? Response: The sentence in question: “BCP1 has two tBRCT domains positioned at the N- and C-terminus and a so far unrecognized C-terminal PHD finger which is present in all plant lineages except Brassicaceae (Supporting Figure S1A and S2A).”

      Response: Our data presented on Supporting Figure S1A (schematic presentation of BCP1 protein with indicated PHD finger consensus sequence) and S2A and Source data (alignment of PHD fingers in BCP1 in flowering plants, non-flowering land plants and multicellular green algae) clearly demonstrate the presence of a C-terminal PHD finger in BCP1 except in Brassicaceae. These can also be seen in the full complement of BCP1 sequences that are available in Source data.

      8) L271-L279: There are unreadable characters at "TQx_".

      Response: This very likely appeared during conversion into PDF file. We fixed this now.

      Reviewer #3 (Significance (Required)):

      Significance: General assessment: This study give us an idea how organisms have evolved the upstream system of DDR.

      Advances: This study extend the knowledge of DNA damage response in plants.

      Audience: broad and basic research

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      MDC1 is a key regulator of DNA damage responses (DDR) in animals. MDC1 has multiple protein domains, in which the BRCT domain binds γH2A.X. However, plants lack the homolog of MDC1. In this study, the authors found that BCP4 binds γH2A.X and proposed that BCP4 is a functional counterpart of MDC1, which will greatly enhance our understanding of plant DDR pathway. I have the following concerns.

      1. The relationship between BCP3 and BCP4 needs to be clarified. Line 255, the authors mentioned that"we conclude that BCP3 and BCP4 have functional properties as human MDC1". In the Abstract, the authors mentioned that "we identified BCP4 as a candidate ortholog of human MDC1". I am confused about the conclusion. Both BCP3 and BCP4 are or only BCP4 is MDC1? In addition, in BCP3 and BCP4, only their BRCT domains share homology with MDC1. They lack other domains of MDC1. Therefore, "ortholog" may not be an appropriate term. I think "functional counterpart" may be a better term.
      2. BCP1-4 all contains tandem BRCT domains. I am wondering whether it is possible to figure out why only BCP3 and BCP4 bindγH2A.X through sequence analysis. Are there any key residues essential for γH2A.X binding?
      3. Line 183, "On an unrooted phylogenetic tree, these two proteins clustered with MDC1 and PAXIP1 (Figure 1B).". In Figure 1B, MDC1 is closer to BCP3 and BCP4 than PAXIP1 and PAXIP1 is closer to BCP2 than MDC1. If the authors want to include PAXIP1 in Figure 1C, the authors should include BCP2 as well. In the γH2A.X binding assays, I do not understand why the authors tested BCP1 instead of BCP2.
      4. The expression level of BCP1-4 in the mutants need to be examined using qRT-PCR. Especially, for the bcp3 mutant, which is a weak allele.
      5. The authors used "bleomycin" or "zeocin" in different parts. Please be consistent.
      6. In Figure 2D, why bcp2 was not included?
      7. Figure 3E and 3F, please indicate the treatments of the upper and lower panels.
      8. Line 338, "bcp1 mutants show reduced homologous recombination rates (Fan et al., 2022; Vladejić et al., 2022; Yu et al., 2023)". The bcp1 mutant was not reported in Fan et al. paper.
      9. Line 40, please add a comma after "In animal". Line 331, please add a comma after "In mammals".
      10. Line 123, "only BRCA1 and BARD1 were described in plant lineage". Additional BRCT proteins were described in plants, including XIP1 (Nat. Commun. 13:7942), BCP1/DDRM2 (New Phytol. 238:1073-1084; Front. Plant Sci. 13:1023358), and DDRM1 (PNAS, 119: e2202970119).

      Significance

      This study identified BCP4 as a functional counterpart of MDC1, which filled the gap of plant DDR signaling.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this study, it is shown that cofilin severs actin filaments slowly when fascin is present. Authors show that this is due to slower cluster nucleation of cofilin on fascin-induced actin bundles. Interestingly, the authors show that cofilin binding promotes helicity in actin filament bundles which in turn promotes fascin exclusion and more cofilin clustering in adjacent filament bundles; thus, inducing local transmission of structural changes.

      The authors use an elegant approach, and the data is nicely presented. Overall, I

      consider that this manuscript is in good shape to be published. It might benefit from language editing, though.

      We thank the reviewer for their positive comments. We have edited the manuscript to improve its readability (changes are in blue in the manuscript).

      Reviewer #1 (Significance (Required)):

      According to me the significance of this manuscript is that elegantly shows the molecular details of the cofilin severing effect of fascin-induced actin filament bundles. The authors show that cofilin binding promotes helicity in actin filament bundles which in turn promotes fascin exclusion and more cofilin clustering in adjacent filament bundles; thus, inducing local transmission of structural changes.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this study, Chikireddy et al. perform a series of experiments in which they compare the efficiency of cofilin-mediated severing and actin filament disassembly on individual filaments versus bundles of different sizes from by the actin-bundling protein fascin. The key outcome, quite distinct from previously published conclusions by the authors themselves and other authors, is that fascin bundling actually reduces cofilin-mediated severing mostly because of much slower "nucleation" of cofilin clusters on fascin-bound filament bundles. Cofilin cluster formation is followed by local fascin removal, and the nucleation of a cofilin cluster on an adjacent bundle in the absence of fascin is strongly enhanced. The reason for the latter surprising observation is not entirely clear, but proposed to arise from cofilin-mediated changes in filament helicity of neighboring filaments. To my understanding, the main reason why fascin protects from cofilin severing here rather than enhancing it (as reported previously) is due to the lack of constraining of the induced, cofilin-mediated twist, because if this twist is constrained e.g. by anchoring of the bundles to the surface chamber, then severing by cofilin is accelerated.

      We thank the reviewer for their positive feedback on the manuscript. We have substantially edited the manuscript in light of the insightful comments of the reviewer (changes are in blue).

      Major comments:

      I think the study is very well done, most experiments are super-elegant and controlled; I really don't have any objections against the conclusions drawn, as most of what I have seen is totally justified and reasonable. So from a scientific point of view, I can easily agree with all the major conclusions drawn, and so in my view, this should be published fast.

      Minor comments:

      There are two minor points that could be addressed:

      1) I am not entirely convinced by the conclusions drawn from the EM images shown in Figure 6A, and in particular by the filaments in two-filament bundles locally twisting around each other (without breaking) at spatial sites lacking fascin and decorated by cofilin. This is hard to imagine for me, and the evidence for something like this happening is not very strong, as in the EM, only larger bundles could be observed. In addition, I am not sure that the braiding of filaments seen in the presence of cofilin is really occurring just locally on cofilin-decorated bundle segments and thus indeed coincides with loss of fascin as proposed in the scheme in Fig. 6B.

      Can the authors exclude that the braiding is not caused by some experimental artefact, as induced perhaps by sample preparation for negative staining?

      We thank the reviewer for raising this point. We have repeated the negative staining EM experiments several times and now show new images and quantification (new Supp Fig. 13). In our new series of experiments, the braiding that was previously shown in Fig. 6 proved difficult to reproduce and to quantify. We therefore decided to remove EM observations from the main Fig. 6, and we no longer present them as evidence supporting the mechanism that we propose for inter-filament cooperativity.

      From EM images, we now quantify the frequency of fragmentation of large actin filament bundles. We observed that bundles often terminate with the ends of their filaments in close proximity, consistent with sharp breaks due to co-localized cofilin clusters.

      We have rewritten this part of the result section in the manuscript which now reads : ‘To further investigate larger bundles, we imaged them using negative staining electron microscopy. In the absence of cofilin, filaments in bundles are arranged in a parallel manner, as previously reported in vitro (Jansen et al, 2011). Compared with the control, filament bundles exposed to cofilin show numerous sharp breaks (65 breaks per 122 µm of bundles, versus 4 breaks per 68 µm in the control. Supp. Fig. 13). This is consistent with bundle fragmentation occurring at boundaries of co-localized cofilin clusters.’

      Did the authors quantify the occurrence of such braided bundle segments with and without cofilin?

      How large are these braided segments on average when you quantify them? Would you also see them if you prepared the bundles for an alternative EM-technique, such as Cryo-EM, for instance?

      As mentioned in the answer to the previous point, the braided segments proved difficult to reproduce and quantify, and we have removed EM experiments from the main figure 6. Instead of the braided segments, we now quantify the severing of the bundles, and the distribution of filament ends at the extremities of the bundles (new Supp. Fig. 13).

      We have not tried Cryo-EM due to limited access to such experimental tools within the timeframe of the study.

      This may admittedly all be experimentally challenging, but would it be possible to combine the negative staining of filaments with staining for cofilin and/or fascin using immunogold technology, to prove that the braided segments do indeed correlate with high cofilin and low fascin concentrations? In the absence of such data, and in particular in the absence of a clear quantification, the proposal is too strong in my view. Finally, it would be nice (albeit not essential I guess) to also look at two-filament bundles. The authors stated these can not be easily generated due to the tendency of fascin to promote the formation of larger bundles, but can this not be titrated/tuned somehow by lowering fascin concentrations, to come closer in reality to what is proposed to occur in the scheme in Figure 6B? In any case, the way the data are presented right now appears to constitute a pretty large gap between experimental evidence and theoretical model.

      We agree with the reviewer that EM observations are limited and, alone, do not provide strong evidence in favor of braiding/super-twisting being the mechanism responsible for inter-filament cooperativity (please see our answers to the points above). We have performed negative staining EM assays at higher cofilin-1 concentration (500 nM) compared to microfluidics assays, in order for cofilin to quickly bind to filaments, even in large bundles, so that our chances to capture bundles targeted by cofilin would be high.

      Nevertheless, both microfluidics and EM observations point in the same direction : bundle fragmentation by cofilin is caused by the co-localized cooperative nucleation of cofilin clusters.

      2) I think that the proposal of cofilin-decorated filaments to "transfer" the resulting cofilin-induced changes in filament helicity onto neighboring filaments in the bundle, which is proposed to occur locally and in the absence of fascin is a bit vague, and difficult to understand mechanistically. Can the authors speculate, at least, how they think this would occur? Are there no alternative possibilities for explaining obtained results? Maybe I am missing something here, but with considering cofilin to be monomeric and only harboring one actin-binding site, this proposal of helicity transfer onto neighboring filaments seems inconclusive.

      On single actin filaments, the change of helicity induced by cofilin binding has been observed by many groups using EM and cryoEM (e.g. McGough et al, JBC 1997 10.1083/jcb.138.4.771; Egelman et al, PNAS 2011 10.1073/pnas.1110109108 ; Huehn et al, JBC 2018 10.1074/jbc.AC118.001843). These studies have revealed that actin subunits get ‘tilted’ relative to their original orientation along the filament long axis. This leads to the shortening of the helical pitch for cofilin-saturated actin filament segments.

      In our assays, the progressive binding of cofilin along a single filament creates a cluster where all actin subunits are tilted and the helical pitch of the filaments within the cluster is shortened (from a half pitch of 36 nm down to 27 nm). This change of helicity in a cluster induces the rotation of one end of the filament relative to the other (as we have shown previously in Wioland et al, PNAS 2019). Therefore, if two parallel filaments are stapled together, the local twisting of one filament causes the twisting of the other in the overlapping region.

      We have rephrased this point to more clearly explain this in the last paragraph of the results section:

      “From our kinetic analysis, we propose the following model that recapitulates the binding of cofilin to fascin-induced 2-filament bundles (Fig. 6D). Initially, actin filaments in fascin-induced bundles are in conformations that are less favorable for cofilin binding than isolated actin filaments. Once a cofilin cluster has nucleated, its expansion locally triggers fascin unbinding and prevents it from rebinding. The increase of filament helicity induced by cofilin causes a local twisting of the entire bundle, thereby changing the helicity of the adjacent filament in the fascin-free region facing the cofilin cluster. In this region, the increase in filament helicity enhances cofilin affinity, and thus locally promotes the nucleation of a cofilin cluster (inter-filament cooperativity).”

      We have tried to think of other alternative scenarios that might explain our observations, but none appeared to be valid.

      Reviewer #2 (Significance (Required)):

      General assessment:

      The strength of this study is that owing, at least in part, to the microfluidics devices employed and the careful biochemistry, the experimental setups are super-controlled and clean, and they are used in a highly innovative and elegant fashion. The simulations are also nice! A limitation is that it is not entirely clear how precisely the main observations can be translated to what's happening in vivo. The results are largely dependent on the bundles not being constrained I understand, so to what extent would bundles be unconstrained in vivo? Perhaps this is not so important, because the experimental setup allows the authors to dissect specific biochemical behaviors and inter-dependencies between distinct actin binding proteins, but the latter view (if correct) could be stated more clearly!

      We thank the reviewer for their remarks. We have updated the part where we discuss the biological implications of our in vitro observations to better explain how the twist-constraints expected for fascin bundles in cells would accelerate cofilin bundle disassembly.

      Advance:

      As stated above, the results are opposite to the proposed synergistic activities of fascin and cofilin observed for bundles previously, perhaps because they were not constrained. So although touched in part and in a very polite fashion in the discussion, the authors could specify more clearly what the differences between the studies are, and which of the distinct activities observed either here or in previous literature will be dominant or more relevant to consider in the future? This will be hard to discern as is now, in particular for non-experts.

      We agree with the reviewer that the manuscript will benefit from discussing more in depth the plausible reasons why our experimental observations are in disagreement with the earlier interpretation by Breitsprecher and colleagues. We have extended our discussion on this point, which now reads: “Previously, using pyrene-actin bulk experiments, Breitsprecher and colleagues observed a diminished cofilin binding to fascin-induced filament bundles (Breitsprecher et al, 2011). In spite of this, their observation of fluorescently labeled actin filament bundles seemed to indicate an efficient severing activity. Since cofilin was not fluorescently labeled, they could not observe cofilin clusters, and they proposed that severing was enhanced because fascin served as anchors along filaments and impeded cofilin-induced changes in filament helicity”

      Audience:

      This manuscript will be most influential for a specialized audience interested in the complexities of biochemical activities of specific actin binding proteins when looking at them in combination. Although specialized, this is still a quite relevant audience though, since prominent actin binding proteins like cofilin are highly important in virtually any cell type and various actin structures, hence of broad relevance again in this respect.

      Expertise:

      I am a cell biologist and geneticist interested in actin dynamics and actin-based, motile processes.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      My only major concern that is that although the authors provide data that strongly supports interfilament cooperativity in two filament bundles for cofilin binding, the evidence to support that this induces filament twist on the opposing filament is not strong enough to conclusively establish this as the mechanism for the observed interfilament cooperativity. This is stated as such in the results section as a proposed model, but stated with more certainty than the presented data supports in the discussion. It might be better, based on the data presented, to state this as one possible mechanism for the observed cooperativity.

      We thank the reviewer for their remark. We have edited our discussion section to clearly say that inter-filament cooperativity arises from cofilin-induced filament twisting is a proposed model that would best account for what we observed: “Indeed, we report here the exclusion of fascin from within cofilin clusters, and a strong increase in the nucleation of cofilin clusters on adjacent filaments. This inter-filament cooperativity mechanism leads to the co-localized nucleation of cofilin clusters, and permits bundle fragmentation faster than if the nucleation of cofilin clusters on adjacent filaments were purely random. To our knowledge, this is the first time such inter-filament cooperativity is ever reported. To explain this mechanism, we propose that the cofilin-induced change of helicity produced locally on one filament can be transmitted to the adjacent filaments within the bundle (Fig. 6D).”

      So far, we have been unable to propose alternative mechanisms that could explain our observations in light of what is known for cofilin at the single filament level (a similar point was raised by reviewer #2, please see above).

      Areas within the paper, if addressed, will improve the arguments presented as well as the readability of the paper.

      (1) The authors use both the terms cofilin binding (in section I of the results) as well as cofilin nucleation (in section III of the results). It is unclear if these terms are meant to indicate the same, or different, processes. The manuscript would benefit from a clear explanation of the steps of cofilin-mediated disassembly measured and quantified in the experiments, namely nucleation (or binding), cluster growth, and filament or bundle fragmentation. A clear description of these steps would also allow the reader to follow the logic of the experiments from Figure 3 to Figure 5.

      We have edited the introduction to better describe the different steps of cofilin activity, and to remove any ambiguity whereas we are referring to cofilin binding or cofilin nucleation.

      2) Throughout the paper, the authors move from single filaments, to 2-filament bundles, to multifilament bundles, using different concentrations of fascin and cofilin. Given the biphasic behavior of cofilin, namely that low concentrations favor severing and high concentrations can favor coating and filament stabilization, I think it is important that concentrations for the components are consistent across experiments, and if changes of concentrations of important components (such as cofilin and fascin) are changed, a clear explanation as to why is included.

      As explained in the beginning of the result section, most of our experiments and quantification of cofilin activity using the microfluidics assay were done using 200 nM fascin and 200 nM cofilin as a standard. This is the case, in particular, for all the data shown in Fig 2, 3 and 4, where we compare the behavior of single filaments, 2-filament bundles, and larger bundles, exposed to the same protein concentrations.

      We have also explored higher fascin and cofilin concentrations to document their respective impact, always mentioning any change in concentration. We agree with the reviewer that cofilin activity is biphasic at the single filament level (in the range of 0 to 1 µM for mammalian ADF/cofilin, at physiological pH 7.4). In the case of fascin-induced bundles (already for two-filament bundles), filament saturation by cofilin, and thus their stabilization, will occur at higher cofilin concentration. This is mainly due to the lower nucleation activity of cofilin on fascin-induced bundles, preventing the nucleation of numerous cofilin clusters that will eventually fuse together, thus preventing saturation of filament bundles by cofilin before bundle fragmentation.

      (3) In Figure 2, it is mentioned that for the spectrin seeds with the microfluidics, the filaments consisting of larger bundles were not analyzed along with the single filament and 2-filament bundles. Instead, a different experiment with seeds attached to beads is used to assess larger filament bundles. Why were larger bundles not analyzed in the microfluidic experiment?

      We appreciate the insightful observation by the reviewer. When elongating actin filaments from spectrin-actin seeds, the seeds are randomly located on the glass coverslip of the microfluidics chamber. Upon exposure to fascin, only a subsection of any filament will be in contact with one or multiple filaments, ultimately forming a bundle due to the presence of fascin. In the case of high filament densities leading to large bundles, it is very difficult to identify the exact subsection of each filament which is engaged in a bundle or not. Despite our attempts to image individual filaments before and after exposure to fascin for enhanced clarity, the inherent difficulty persisted.

      This limitation hindered our ability to quantify cofilin activity on large bundles when using spectrin-actin seeds randomly distributed on glass. To address this, we opted for an alternative approach involving micron-sized beads coated with spectrin-actin seeds. This modification not only circumvents the aforementioned limitation but also aids in the formation of larger bundles (up to 10 filaments per bundle). This adjustment significantly enhances our ability to study and quantify cofilin activity on larger bundles, contributing to a more robust and comprehensive understanding of cofilin activity on bundles.

      And conversely, why were 2 filament bundles not assessed with the beads? Comparing the findings on two filament bundles with the findings on multifilament bundles would be easier for the reader if the small and large bundles were evaluated in the same experiments. If this is not experimentally feasible, the authors need to provide clearer explanation as to why this analysis is not included.

      Actually, we did assess 2-filament bundles in the bead assay. The cofilin activity on 2-filament bundles from beads are reported, along with larger bundles, in figure 3E-F for nucleation, and in figure 4C for cofilin cluster growth rates.

      (4) The authors indicate that at increased fascin concentration (1uM) that single filaments decrease the nucleation rate of cofilin clusters. The authors should comment on the mechanism for fascin (at 1uM concentration) for affecting cofilin binding.

      We thank the review for this comment. We now comment on this mechanism in the result section:

      “This observation is consistent with the low affinity of fascin for the side of single actin filaments. Furthermore, this indicates that cofilin and fascin may have overlapping binding sites, or that a more complex competition may exist between the two proteins, where the binding of one protein would induce conformational changes on neighboring actin subunits affecting the binding of the other protein.”

      (5) The authors should determine and include the dissociation rate for the labeled cofilin used in this study, especially given the proposed mechanism for cofilin excluding fascin within the bundles.

      • If the reviewer means that we need to characterize the behavior of the labeled cofilin: in Wioland et al 2017, we have previously reported that cofilin dissociates slowly from cluster boundaries (at 0.7 s-1 for cofilin-1 on alpha-skeletal rabbit actin, as used in the present study) and extremely slowly from inside a cofilin cluster (~2.10-5 s-1).

      • If the reviewer means that we should investigate the competition between fascin and cofilin along bundles: we agree that this is indeed an interesting question. However this is quite complex because many unknown parameters are involved. In addition to the on/off-rates of each protein and how it is affected by the presence or the proximity of the other protein, we need to consider that fascin has fewer binding sites than cofilin, and that their accessibility changes as the helicity of the filament evolves as cofilin binds. Investigating this question would require many experiments, which we would need to confront to a model. We believe that this is out of the scope of this manuscript.

      (6) For Figure 4, D and E, what do the dynamics of fascin and cofilin signal look like on a larger filament bundle? It would be informative to provide the cofilin cluster nucleation rate on larger filament bundles with a range of fascin concentrations (as in 3D for a two filament bundle).

      It would be interesting indeed to investigate the dynamics of fascin and cofilin on larger bundles. However, this experiment is quite challenging due to the fluorescence background of fluorescently-labeled fascin in our microfluidics assay (regardless of bundle size). We have been unable to perform this assay with success on large bundles. Moreover, it is difficult for us to carry out more of these experiments now that the first author of the study has left the lab.

      However, based on our results, we would expect that, for large bundles, increasing fascin concentration would also have a limited impact on the reduction of cofilin nucleation. Indeed, for 2-filament bundles, we can note that the increase of fascin concentration has a more limited impact on the nucleation of cofilin clusters (fig. 3D, roughly ~2 fold decrease for fascin from 100 to 500 nM), than the number of filaments per bundle (fig. 3F, a 10-fold decrease when increasing the size of a bundle from 2 to 10 filaments).

      (7) Additionally, it would be useful to report the cofilin severing rate at a range of cofilin concentrations, at least for the 2 filament bundles.

      Cofilin severing rate is not dependent on cofilin concentration in solution. This has been reported previously by several groups, including ours (e.g. Suarez et al, Current Biology 2011 ; Gressin et al, Current Biology 2015; Wioland et al, Current Biology 2017).

      Below is the comparison of cofilin cluster severing at 100 and 200 nM cofilin, on single actin filaments, which we added to supplementary figure 10.

      At 100 nM cofilin, we measured a similar cofilin cluster severing rate on 2-filament bundles, by measuring the survival fraction of overlapping cofilin clusters that lead to 2-filament bundle fragmentation over time. The figure pasted below is new Supp. Fig. 11.

      When the severing occurs in the two filament bundles, does this severing occur mostly at boundaries with cofilin-actin and bare actin or does this severing occur at cofilin-actin/fascin-actin boundaries?

      This is an interesting point. In the presence of a saturating amount of fascin, on 2-filament bundles, one fascin protein is bound every 13 actin subunits along each filament of a bundle. Most of the time, a cofilin boundary will not be in contact with a fasin-bound actin subunit. The limited spatial resolution of optical microscopy does not allow to say whether fascin was present at the boundary of a cofilin cluster or not when severing occurred. Nonetheless, we show that cofilin cluster severing is unaffected by fascin-bundling (i.e. severing rates per cofilin cluster boundary are similar on single filaments and on 2-filament bundles). Overall, bundling by fascin probably does not change the way cofilin severs, i.e. it occurs at the boundary between cofilin-decorated and bare actin regions.

      (8) For the images of large bundles appearing braided in figure 6A, the lower left panel the braided appearance is not obvious. Additionally, what is the number of filaments in the bundles shown? Finally, given that in Figure 3F it is indicated that cofilin cluster nucleation events are rare on large bundles, and the cluster growth rate is reduced on large bundles (Figure 4C), the authors need to indicate how frequently this braided appearance is observed as well as what the nucleation rate, growth rate and severing rate is for 500nM cofilin on bundles.

      We have repeated the negative staining EM experiments several times and now show new images and quantification (new Supp. Fig. 13). In our new series of experiments, the braiding that was previously shown in Fig. 6 proved difficult to reproduce and to quantify. We therefore decided to remove EM observations from the main fig 6, and we no longer present them as evidence supporting the mechanism that we propose for inter-filament cooperativity.

      As stated in point (7) above, the severing rate is independent of cofilin concentration. We’ve used 500 nM cofilin, which is a rather high cofilin concentration, to investigate bundle fragmentation in EM, as in solution we mostly form large bundles and they are more slowly targeted by cofilin than individual or 2-filament bundles (figure 3F & 4C). At the single filament and 2-filament bundle level, the nucleation of cofilin clusters is extremely fast at 500 nM cofilin (> 10-4 s-1 per binding site).

      (9) The authors indicate that the rapid fragmentation of twist constrained 2-filament bundles prevented them from directly quantifying the nucleation rate of the subsequent cofilin clusters that overlapped the initial ones. I'm unclear why this is the case, and if this is the case, I don't understand how the authors can be sure that a second nucleation event occurred in the twist constrained bundles. From the experimental data in 7C, it appears that the fragmentation rate for two filament bundles is similar to the fragmentation rate for twist constrained single filaments. The authors need to clearly state what they were able to observe and quantify as well as include the timing for this severing. If the authors could not observe a second nucleation event prior to severing, this should be clearly stated.

      Fragmentation of a 2-filament bundle requires the severing of two co-localized cofilin clusters, one on each filament. When 2-filament bundles are twist-constrained the sequence of events leading to bundle fragmentation is fast, thus it is difficult to separate the events within the resolution of our experiment. In this case, cofilin clusters sever quickly, thus the size of the clusters is small, which translates into a low fluorescence intensity. Therefore, the quantification of the increase of cofilin fluorescence intensity along a bundle did not allow us to unambiguously identify the ‘cooperative’ nucleation of two-overlapping cofilin clusters before the bundle is fragmented. So, apart from the quantification of the nucleation of cofilin clusters, which we show is unaffected by twist-constraining the bundles, we were unable to measure the growth rate nor the severing rate of cofilin clusters.

      Numerical simulations, using similar severing rates for cofilin clusters on both twist-constrained single filaments and 2-filament bundles, satisfactorily reproduce our experimental observations (dashed lines in Fig. 3C).

      We have edited the ‘Twist-constrained bundle fragmentation’ section to clearly say what we measured and what could not be measured : “We observed that the nucleation rate of cofilin clusters was similar for both twist-constrained and twist-unconstrained fascin bundles (Supp. Fig. 15), in agreement with observations on single actin filaments (Wioland et al, 2019b).

      The rapid fragmentation of twist-constrained 2-filament bundles prevented us from directly quantifying the nucleation rate of the subsequent cofilin clusters that overlapped with the initial ones, as well as cluster growth and severing rates.”

      This could be due to the rapid fragmentation, but it could also be due to severing occurring in the absence of a second cofilin nucleation event. It would be informative to compare the time from cofilin nucleation to severing event for two filament bundles in twist constrained and unconstrained. Clarification of the dynamics of nucleation and spreading of cofilin and the timing of fragmentation of the twist constrained filament bundles is needed.

      As explained in the previous point, cofilin-induced severing occurs significantly faster on twist-constrained single actin filaments compared to unconstrained filaments.

      For twist-unconstrained filament bundles, we never observed bundle fragmentation that originated from only one cofilin cluster. For twist-constrained bundles, while our observation is limited by the rapid fragmentation of the bundles, it is hard to imagine that a single cofilin cluster on one filament would induce the fragmentation of the neighboring filament. Recently, Bibeau et al, PNAS 2023, using magnetic tweezers to twist single actin filaments, showed that, without cofilin, applying up to 1 rotation/µm to an actin filament does not cause its fragmentation. It is thus reasonable to say that cofilin binding is required to fragment twist-constrained filaments.

      Moreover, in our numerical simulations (without inter-filament cooperativity, faithfully reproducing the kinetic of 2-filament fragmentation observed in microfluidics), 75% of bundle fragmentation resulted from a sequential nucleation of cofilin clusters, with the nucleation of the second cofilin cluster occurring after the first cofilin cluster has already severed one filament of the bundle.

      (10) Discussion of how twist constrained fragmentation dynamics might affect the dynamics of larger bundles in structures such as filopodia would be useful.

      We had substantially edited the discussion section of the manuscript, attempting to better discuss the physiological implications of our in vitro observations (bundle size & twist-constraints).

      Minor changes that would improve the paper:

      (11) In Figure 1C, Figure 2B and Figure 2E, the indication, on the graph, of the fold-change between the rates is confusing as it is not clear from the labeling on the graph that the x15 is referring to the slope of the lines, keeping this information in the legend is appropriate, but if it is to be included on the graph, perhaps adding in the linear fit on the graph is also needed.

      We have edited the figures accordingly, and included fit lines in figure 1.

      (12) Figure 7A, lining up the diagram with the kymographs below would help improve interpretation of the diagram and simulation. Alternatively, if the diagram (upper) in A does not diagram the kymographs below, this needs to be clearly stated, and it would be preferable that the diagram above matches the kymographs below.

      We have edited the figure layout accordingly.

      (13) Despite referencing the Breitsprecher, 2011 paper in the introduction, the authors do not explain how their results showing that cofilin fragments filament bundles slower than single actin filaments correspond with the Breitsprecher findings that fascin bundles favors cofilin filament severing. While the authors do not need to explain the Breitsprecher data, if they reference these findings that run counter to their results, an explanation for the discrepancy would be reasonable to include in the discussion.

      We agree with the reviewer comments, which was also a comment made by reviewer #2. We now more directly discuss possible discrepancies between Breitsprecher and our studies : “Previously, using pyrene-actin bulk experiments, Breitsprecher and colleagues reported a diminished cofilin binding to fascin-induced filament bundles (Breitsprecher et al, 2011). In spite of this, their observation of fluorescently labeled actin filament bundles seemed to indicate an efficient severing activity. Since cofilin was not fluorescently labeled, they could not observe cofilin clusters, and they proposed that severing was enhanced because fascin served as anchors along filaments and impeded cofilin-induced changes in filament helicity. This proposed mechanism bears resemblance to our previously reported findings for artificially twist-constrained single actin filaments (Wioland et al, 2019b). Here, we show that this mechanism does not occur in fascin-induced bundles.”

      Reviewer #3 (Significance (Required)):

      The research presented in "Fascin-induced bundling protects actin filament from disassembly by cofilin" is relevant and of interest to the field as it directly addresses a limitation in our understanding of how cofilin-induced severing occurs in F-actin bundles. Bundled F-actin may constitute the majority of linear F-actin within the cell and is specifically important in F-actin-based structures such as filopodia and stress-fibers. The data supports a model for interfilament cooperativity that provides a molecular mechanism for cofilin-mediated severing of fascin-bundled filaments.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Planned Revisions based on comments from Reviewer #1

      • The introductory material and the title of the paper emphasize the ring canal scaling question. This problem is somewhat obscured in the text by the side problem of nuclear scaling, which comes up frequently even though the results are not as thoroughly explored. Could the authors think about moving these data into a different, single figure for the sake of coherence? This is not a required revision. Just a thought.
      • *We have moved the nuclear scaling data from Fig. 5 into Fig. S3, and once we have analyzed the data from the planned experiments (over-expressing either HtsRC or the active form of myosin), then we will have a better idea of whether we should move the rest of the nuclear scaling data out of the main part of the paper, consolidate it into a single figure (as Reviewer #1 suggests), or keep some of it in the main figures. *

      Planned Revisions based on comments from Reviewer #3

      • I cannot see differences in RC size in the panel A images. More importantly, this method altering ring canal size is limited. A more direct way is overexpression of HtsRC (https://doi.org/10.1534/genetics.120.303629).
      • We have requested and just recently received the line to over-express HtsRC in the germline. We plan to cross this UAS line to the mataTub-GAL4 which expresses GAL4 beginning around stage 3 of oogenesis. Because crossing this UAS line with this GAL4 line produced egg chambers with larger ring canals in the original study2*, we do not anticipate any technical issues with this experiment. We will incorporate the results from analysis of these egg chambers in the revised manuscript. *
      • To further explore the effect of ring canal size on scaling, we will also be testing a condition that we hope will have the opposite effect on ring canal size; expression of a phosphomimetic version of the non-muscle myosin II regulatory light chain, encoded by spaghetti squash (Sqh)(UAS-sqhE20E21). We plan to cross this UAS line to two different GAL4 drivers (nos-GAL4, which expresses GAL4 in a pulse during early oogenesis and then in another pulse in mid-oogenesis and the mataTub-GAL4 which expresses GAL4 beginning around stage 3 of oogenesis). We know that expression of sqhE20E21will reduce the size of the ring canals that connect the nurse cells to each other, but it is possible that the posterior ring canals will not show a strong phenotype. In a study that looked at egg chambers homozygous for a mutation in the myosin binding subunit of the myosin phosphatase, DMYPT, which should also increase sqh phosphorylation, it was shown that the posterior ring canals were larger than those connecting nurse cells 1*. Therefore, it is possible that this condition may not allow us to consistently reduce the size of all ring canal types; however, if we do see a significant reduction in posterior ring canal size in these egg chambers, we will include these data in the revised manuscript. *

      • In panel 2E, it would be helpful to plot the y-intercepts separately, too.

      • Based on the analysis of the data from the proposed experiments, we will consider plotting the y-intercepts separately for the various conditions.

      1. Description of the revisions that have already been incorporated in the transferred manuscript

      Revisions made based on comments from Reviewer #1

      • One way to think about the dhc-64C experiments presented in Figure 2 is that they are meant to test the hypothesis that ring canal size impacts scaling in such a way that transport across the four ring canals tends towards equilibrium over time. One possibility would therefore be that ring canals aren't programmed to grow to a particular final size but rather they grow at different rates until their diameters are the same. This seems to me an important distinction. It might be made by analysis of the arpC2-RNAi cells, since those ring canals are meant to be initially larger. Unfortunately, I can't see the answer.
      • *Reviewer #3 suggested determining the ratio of the diameter of the M1 ring canal to the M4 ring canal. If ring canals grow toward equilibrium (to achieve a similar final size), then we would expect to see this ratio approach 1; when we performed this analysis, we saw that the ratio did decrease as the egg chambers increased in volume, but it never quite reaches a ratio of 1. We have added a supplemental figure (Fig. S1) showing these data and incorporated this idea into the text within the results and discussion sections. *
      • *Although it would be informative to determine whether ring canals that all started with a similar diameter would grow at the same rate, we have not found a condition that would provide the opportunity to test this hypothesis. We hope that the planned experiments will provide us with a way to test this hypothesis; we will determine the M1/M4 ratio in egg chambers over-expressing either HtsRC or sqhE20E21 and see whether this ratio still decreases as egg chamber volume increases. *
      • *Once we perform the planned experiments to either increase or decrease ring canal size, then we can determine whether we need to further modify Fig. 3 to highlight these size differences between ring canals in the arpC2-RNAi egg chambers or whether we will instead focus more on the results of the planned experiments. *

      • The authors write that arpC2-RNAi "ring canals tended to be larger than those in similarly-sized control egg chambers," but that conclusion isn't obvious to me from the data in Figure 3B. The only difference I can see is that the M4 ring canals look to be consistently smaller in the experimental versus control egg chambers, especially at the final timepoint.

      • *To further clarify the difference in ring canal size between the control and the arpC2-RNAi egg chambers, we have added additional explanation to the results section to highlight that the y-intercepts of the lines of best fit are significantly higher in the arpC2-RNAi egg chambers at each stage. This demonstrates that given an egg chamber volume, the ring canals will be larger in egg chambers depleted of ArpC2 than in the controls. *

      • The authors write that "there was a consistent, but not significant decrease in the scaling exponents for the arpC2-RNAi egg chambers compared to controls," but I don't see this in the M1 (identical) or M2 (almost the same) ring canals. The scaling decrease is most pronounced at M4. All the other ring canals seem to reach a final size that's equivalent to controls. What does this tell us about scaling? Is the M4 more sensitive to the effect of arpC2-RNAi? I note and appreciate that the data for M4 show a wide distribution and might have been impacted by outliers, which could be discussed.

      • *We have separated the arpC2-RNAI ring canal scaling data by lineage (Fig. S2), and we have color-coded the data in Fig. 3B (as suggested by Reviewer #3). *
      • We have expanded the discussion of these results and their implications, and we have added a line in the results section to address this wide distribution of the M4 ring canal sizes.

      • The possibility that ring canal scaling "could generate eggs of different sizes" could use some elaboration (at least) as it does not seem to be especially well supported:

      • Only one of the small egg lines had lower scaling exponents than the big egg lines, and it's a struggle for me to understand the extent of that difference based on the data shown. (Is it significant?).
      • *We have restructured this section of the results and modified Fig. 5 to highlight similarities and differences between the four lines. In the results section (and in the figure legend), we have stated that when we compared the slopes of the regression lines for all four lines, there was a significant difference for M1, M2, and M4 (Fig. 5C, D, and F). We have also modified the results section to highlight that although the slopes for line 9.31.4 was not different from the two big egg lines, the intercepts were significantly different for M1, M2, M3, and M4 ring canals. We moved the nuclear scaling data to Fig. S3 to simplify the figure. *

      • The authors conclude that "the effect of lineage on ring canal scaling is conserved, and it suggests that at least in one line, reducing posterior ring canal scaling could provide a mechanism to produce a smaller mature egg." The first part of this sentence is confusing for me since I don't know what is meant here by "conserved." The second part of the sentence is technically correct but disguises what I would consider the more meaningful and exciting finding. The 9.31.4 line produces the smallest eggs but does not demonstrate scaling differences in comparison to the big egg lines examined (1.40.1 and 3.34.1). The authors have therefore avoided/solved a "chicken and egg" ("fruit fly and egg"?) problem by showing that scaling and egg size can be decoupled!

      • We have modified the first part of the sentence to clarify our point. We appreciate this suggestion and have modified the text in the results section to further elaborate on the results.

      • This point is not made very clearly in the discussion, which concludes with the suggestion that scaling could help explain why some insects produce much larger or much smaller eggs that fruit flies. I can only understand this to be the case if - as the authors point out - scaling "affect the directed transfer of materials into the oocyte." That argument seems predicated on the possibility that these insects make the same amount of initial material then regulate how much is transferred. Seems like a costly way to go about it.

      • *We have modified this section of the discussion. *

      • I really had to look very closely to distinguish the little blue boxes from the little blue circles in panels 2C and especially 2D. I suggest using a different color instead of a different shape, or maybe splitting the graphs up.

      • *We have made the shapes larger in Fig. 2C (nuclear sizes), and we have split the ring canal size data into Fig. 2D, E and made the shapes larger. The legend has been modified to reflect this change. *

      • "Depletion of the linker protein, Short stop (Shot), or dynein heavy chain (Dhc64C), significantly reduced the biased transport at the posterior, which reduced oocyte size (Lu et al., 2021)." I suggest this sentence might be clearer if it was rewritten as "Depletion of either dynein heavy chain (Dhc64C) or the linker protein Short stop (Shot) significantly reduces biased transport at the posterior, in turn reducing oocyte size (Lu et al., 2021).

      • We have made this change.

      • "Because nuclear growth has been shown to be tightly coupled to cell growth (Diegmiller et al., 2021), we can use nuclear size as a proxy for nurse cell size." I think it would help the reader to know that the Diegmiller study was performed using germline cysts in the Drosophila ovary; I paused when I got to this sentence because I initially read it as overly broad. I suggest "Recent work in demonstrates that nuclear growth is tightly coupled to cell growth in this system (Diegmiller et al., 2021), and we can therefore use nuclear size as a proxy for nurse cell size" or similar. This is certainly not a required revision, just a suggestion.

      • We have made this change.

      Planned Revisions based on comments from Reviewer #3

      • Reviewer #3 asked: Does the ratio of the diameter of M1 to M4 stay the same?
      • *We have performed this analysis in the control egg chambers (from Fig. 1), and we found that the ratio does not stay the same, but that it tends to decrease as the egg chamber increases in volume. We plotted the log of egg chamber volume versus this ratio, and the equation for the regression line was y = -0.166x + 2.32, which was significantly different from a slope of 0 (included in Fig. S1). *

      • It would be helpful to explain that the log-log plots were used to derive a line equation (y=mx + b) and why that is useful in this context. In the case of a log-log plot, what does the y-intercept mean biologically? Is it simply a way to compare two things or does it indicate real measurements such as volume or ring canal size? Also, the slope of the line is being used as a scaling value. Be careful to define the terms "scaling" and "scaling exponent".

      • We have added additional explanation in the results section.

      • Are four significant digits called for in calculating slope? The figure has 4 significant digits, the text has three.

      • *We have modified all figures and text to include only 3 significant digits. *

      • Why is isometric scaling 0.66 - is that microns squared over microns cubed? Please explain.

      • We have added additional explanation to the results section.

      • Were all four posterior nuclei measured? The figure indicates just M1 and M4.

      • We apologize that it was not clear that all four posterior nuclei were measured in Fig. 1. For the sake of space, we only showed images of the M1, M4, and Anterior ring canals and nuclei (in Fig. 1A), but all four nuclear measurements were included in the graph in Fig. 1B. We have added M1-M4 to the legend to clarify and revised the text of the legend.

      • It is hard to explain why all four posterior nuclei are bigger than anterior when one of the four is the same age as the anterior nucleus.

      • The posterior nuclei are larger than the anterior nuclei due to their proximity to the oocyte. Multiple recent studies have described this hierarchical nurse cell size relationship in which the nurse cells closest to the oocyte are larger than those separated from the oocyte by additional intercellular bridges 3–5*. *

      • In panel D, a conclusion is, "Further, the scaling exponent [slope] for the anterior ring canals, which are also formed during the fourth mitotic division, was not significantly different from that of the posterior M4 ring canals". Anterior is 0.23, M4 is 0.25. These seem different to me. How is significance determined? Were any of the scaling exponents in M1, M2, M3, M4 or Anterior significantly different?

      • *Significance was determined within the Prism software using a method equivalent to an ANCOVA. If the slopes are compared, M1 is significantly different from M2, M3, and M4, and M2 is significantly different from M4. M4 is not significantly different from the slope for the anterior ring canals, which supports the correlation between scaling and lineage. *

      • References are needed for the statements about biased transport to the oocyte.

      • *There was a reference to the Lu (2021) paper in that paragraph, but we have added an additional reference to that paper to this part of the results section. *

      • In panel 2C, why are the scaling exponents (slopes) of the controls bigger than in Figure 1B? The controls look hyper allometric in Fig. 2.

      • *This experiment was done with a different GAL4 driver, so it is possible that there are some differences in scaling based on genetic background. *

      • In panel 2D it is impossible to pick out the control posterior vs anterior lines - use different colors as in Figure 1. Why do the control lines for posterior and anterior merge?

      • *We have split the ring canal scaling data from Fig. 2D into different separate panels (Fig. 2D,E), as suggested by Reviewer #1. *
      • These lines likely approach each other because the slope of the line for the anterior ring canals (M4 type) is always larger than the slope for the combined posterior ring canals.

      • Re: Fig. 3: Scaling of what? RC size?

      • *We assume that this comment is related to the heading for this section of the results, so we have added “ring canal to the end of this title, so that it now reads: “Increasing initial ring canal size does not dramatically alter ring canal scaling” *

      • Since there was no effect, "dramatically" should be deleted from the section title.

      • This change has been made.

      • Clarify this sentence: If ring canal size inversely correlates with scaling, then increasing initial ring canal diameter should reduce the scaling exponent.

      • We have made this change in the text.

      • How does panel B show that RCs are larger in arpC2 KD? Fig. S1A has smaller y-intercept for control. Again, it is impossible to see which lines go with which M and which genotype.

      • *As mentioned above, we have modified Fig. 3 to highlight these differences and added additional explanation to the results section. *

      • Panels 4D & 4G are clear - should include significance indications.

      • *We have added asterisks to indicate significant differences. *

      • The conclusion from panels 5B and 5C that reducing RC scaling could lead to smaller mature eggs is a stretch. Without looking at the rest of the lines these data are preliminary and detract from the rest of the paper.

      • *As suggested by Reviewer #1, we have modified the results and discussion sections, and we have added a statement about the need for analysis of additional lines. *

      2. Description of analyses that authors prefer not to carry out

      Comment from Reviewer #2

      • I am surprised that the author has not considered controlling the impact of cell cycle regulation on this scaling process, especially as the work of Dorherty et al. has shown that this type of regulation is essential for regulating the size of nurse cell nuclei. The authors should test the impact of at least dacapo and cyclin E in this process.
      • We have attempted to deplete Dacapo from the germline by crossing two different RNAi lines to multiple germline drivers; however, we have been unable to see a consistent effect on nurse cell nuclear size, which suggests that these RNAi lines may not effectively reduce Dacapo protein in the germline. Although we agree with the reviewer that this is an obvious mechanism that should be explored, we believe that it is not necessary for it to be included in this manuscript, because altering Dacapo levels in the germline would not provide a mechanism to explain our model that ring canal lineage impacts ring canal scaling. Dacapo has been shown to contribute to the hierarchical pattern of nurse cell size observed in the germline. Dacapo mRNA produced in the nurse cells is transported into the oocyte, where it is translated. Then, the Dacapo protein diffuses back into the nurse cells, producing a posterior to anterior gradient 4. Doherty (2021) showed that reducing the levels of the Dacapo protein using the deGradFP system eliminated the nurse cell size hierarchy. If our data had supported a model in which proximity to the oocyte was a strong predictor of ring canal size and scaling (as shown for the nurse cells and their nuclei3,5*), then this would have been an excellent way to dig further into the mechanism. Instead, our data supported a role for ring canal lineage in predicting ring canal growth, since the M4 ring canals at the posterior and anterior showed similar scaling with egg chamber volume. *
      • We believe that performing the proposed experiments (over-expressing HtsRC to increase ring canal size or expressing the phosphomimetic form of the myosin regulatory light chain, sqhE20,E21 to reduce ring canal size) will allow us to determine how ring canal size affects scaling, which will provide additional mechanistic insight into this scaling behavior.*

      *

      Comment from Reviewer #3

      • Panel 3E is interesting and would fit better in Figure 1.
      • *This panel is from a different genetic background than the data in Fig. 1. Therefore, we do not think it would be appropriate to move it to Fig. 1. *
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      *

      *Major comments: 1. Mirc56_2 and 4 showed lower integration rates, and the authors suggest that this could be due to sgRNA pool imbalance. The authors should validate this by performing sequencing of the input sgRNA and cassettes. *

      →Thank you very much for your comment, and we agree with your suggestion.

      We are going to confirm sgRNA pool imbalance in donor vector library by amplicon short-read NGS.

      In addition, to confirm another possibility that we raised, we re-sequenced sgRNA donor vector for Mirc56_2 and 4, and will add the following sentences:

      “We firstly doubted that their low integration frequencies were caused by any mutations on PB transposon of sgRNA donor vector, on especially ITR or ID that are important for integration efficiency [PMID: 15663772]. Therefore, we sequenced PB transposons for Mirc56_2 and 4 again. However, we could not find any mutations on their PB transposon.” following to “…efficiency or cell growth.” in the Discussion (page14, line 346)

      *2. Clonal analysis in Figure 5c is unclear a. Figure 5c indicates that all changes were homozygous (e.g. both alleles were deleted). Was this the case in all clones? Or were some mutations heterozygous? *

      →Thank you very much for your comment.

      We apologize for the misleading context.

      We targeted mono allele on X chromosome in male mES cells so that all mutations should be hemizygous as mentioned in the Result (page11, line 259-260)

      To enhance our study is monoallelic assessment, we will add the following sentence:

      “This study targeted mono allele on X chromosome in male mES cells so that all genotype on Mirc56 should be hemizygous and these mutations induced might be cis-mutation.” following to“…owing to six tandem repeats [37]” in the Result (page12, line 302)

      *b. Many clones in Figure 5c show that the entire region was deleted (all black dots). Could this be due to some experimental error or misinterpretation of the sequencing data, or could it be validated using some orthogonal method? This is especially surprising for clones in which the final guide (Mirc56_13) was not detected yet the final site (Mirc56_13) was reported as "Regional deletion". *

      →Thank you very much for your comment.

      We apologize for the misleading context.

      Firstly, we just confirmed and sequenced the mature-miRNA genomic regions by amplifying approximately 200 bp around the target sites. Therefore, we defined unamplified regions as “miRNA deletion”. In addition, to make the Figure 5C easy to understand, we added “predicted regional deletion” and each name of clones as attached.

      In fact, only 4 clones harbored entire Mirc56_X deletions on all analysed Mirc56_X genomic region (Mirc56_1 to 13). Besides, these clones could be PCR-amplified by sgRNA cassettes and Sry on Y chromosome so that these results suggested we could successfully obtain their genomic DNA and at least mature-miRNA genomic regions were deleted.

      Moreover, Mirc56_13 deletions without target sites on Mirc56_13 are always within predicted regional deletions that are induced from upstream and downstream of sgRNA target sites. Therefore, it could be estimated that these deletions were induced from the target sites on Mirc56_14, 15, 16, or 17 and upstream of Mirc56_13.

      To clarify them, we will add the following sentences:

      • “Four clones (#2_066, #1_021, #1_029 and #1_046) harboured entire Mirc56_X deletions on all analysed Mirc56_X genomic region. In addition to these clones, only 3 pairs (#2_019 and #2_084, #2_038 and #1_023, #1_016 and #1_027) harboured same combination of mutations.” following to “…combinations of mutations (Figure 5C).” in the Result (page16, line 378-380)
      • “Meanwhile, focusing on relationship between mutations and target sites that targeted by sgRNA cassettes in each clone, all Mirc56_X genomic regions harbouring Indel mutations were target Micr56_X In addition, if sequential Mirc56_Xs on the genome were deleted, the most upstream and downstream of Mirc56_Xs deleted were always on the target Mirc56_X sites except for #2_025 and #1_41.” following to “…combinations of mutations (Figure 5C).” in the Result (page12, line 304)
      • “Genotyping PCR amplified approximately 200 bp around the mature-miRNA genomic region. Unamplified region is defined as miRNA deletion (Black circle) and amplified region was determined as Indel mutation (Gray circle) or Intact by short-NGS. If sequential Mirc56_Xs on the genome were deleted, black translucent square indicates predicted regional deletion assumed that the genomic region flanked by miRNA deletions was also deleted. Besides, if miRNA deletion was induced in Mirc56_13 and the clone have target Mirc56_X on Mirc56_14, 15, 16, or 17” following to “…in each PB mES clone.” in the Figure legend (page23, line 575) Moreover, because we defined “miRNA deletion”, we will change ”regional deletion” to “miRNA deletion” where I mean “deletion of the mature-miRNA genomic regions” in the Result (page13, line 312) and the Discussion (page14, line 363)

      *3. Next-generation targeted sequencing of clones should be made publicly accessible. *

      →Thank you very much for your comment. We apologize for the inconvenience.

      We already informed Review commons that we made publicly available.

      We already described BioProject ID PRJNA996747 in the Data Availability (page16, line 383-384)

      4. OPTIONAL - Cassette integration number is understudied. One important aspect of tiling mutagenesis is the control over how many guides are present in each cell. The authors report an average of 4.7 cassettes/cell. This could be modulated by the amount of donor vector added, and indeed the authors performed titration experiments, but only with a fluorescent reporter readout. It would be very useful to know how the concentration of donor vector corresponds to the number of cassettes/cell - perhaps genotyping of clones from one or two additional experiments would be sufficient.

      → Thank you very much for your suggestion.

      We agree that cassette integration number is one important aspect of tiling mutagenesis.

      To investigate how many copies our concentration of donor vector could integrate, we are going to check actual copy numbers in several clones by qPCR.

      We think that it is other research to confirm “how the concentration of donor vector corresponds to the number of cassettes/cell”. The correlation might not be liner due to transposase overproduction inhibition (OPI) so that it would require huge amounts of experiments to confirm it. Our research is how CTRL-Mutations induce diverse mutations but not how property PB system have.

      Minor comments: 1. The background fails to acknowledge the work of CRISPR-Cas tiling screens (e.g. https://doi.org/10.1038/nbt.3450) or CRISPR-Cas in creating mutagenesis in cell lines (e.g. https://doi.org/10.1007/978-1-0716-0247-8_29*) *

      → Thank you very much for your suggestion, and we agree with your suggestion.

      We will add to acknowledge previous studies for CRISPR-Cas tilling screens.

      • “Recently, targeted mutagenesis combined forward genetics and reverse genetics has been developed such as saturating mutagenesis and tiling mutagenesis that induce random mutation within target gene(s) [PMID: 25141179, 31586052, 27260157, 28118392]. This targeted mutagenesis can construct a mutant library harbouring subtly different mutations within a target gene(s) so that comparative analysis through the mutant library can screen out critical mutation(s) for biological processes. These random mutagenesises have also revealed the function of numerous coding genes” following to “…list of coding genes [6–8].” in the Introduction (page3, line 55-56)
      • “In addition, the saturating mutagenesis are limited in the length of target region due to an approach basing homology-directed repair although it could introduce random mutations on donor template library harbouring any combination and variety of mutations [PMID: 25141179]. On the other hand, the tiling mutagenesis could expand target length in principle because the length depends on multiplex guide RNA (gRNA) designed to target genomic region. Therefore, tiling mutagenesis has been employed to identify critical regions embedded in cis-elements [PMID: 26375006, 30612741, 26751173, 27708057, 28416141, 31784727]. Tiling mutagenesis requires editor such as Cas9 or epigenetic modifier fused to catalytically dead Cas9 (e.g. KRAB-dCas9), and a library containing multiplex gRNA tiling across target genomic region. In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system.” following to “…within a narrow region.” in the Introduction (page4, line 82) However, we do not agree that we have to acknowledge previous report about KI or KO by single or double cut in cell lines (as you suggested that https://doi.org/10.1007/978-1-0716-0247-8_29) because it is obvious knowledge. Therefore, we will not add this paper.

      2. Figure 1 left 'ROI random mutant PB mES cell' should be horizontally aligned so Mir_1, Mir_2 and MirX align with the upper figure.

      → Thank you very much for your kind comment, and we agree with your suggestion.

      Therefore, we changed it in the Figure 1.

      *3. It is interesting and unexpected that some guides never induce indels, even in the absence of a regional deletion (e.g. Mirc56_3, Mirc56_7). Why might this be? Was there perhaps an error in the assignment of these guides to these cells? *

      → Thank you very much for your comment.

      As you mentioned, Mirc56_3, 4 and 7 had no indel. We appreciate that we can correct our mistakes by your suggestion. We corrected Figure 5D as attached. In addition, we will correct average Mirc56_X site as 22.6 from 22.7.

      These sgRNA also induced miRNA deletion with low frequency (Mirc56_3: 38.9%, Mirc56_4: 25.0% and Mirc56_7: 68.0%, Figure 5D). Moreover, every deleted Mirc56_3, 4 and 7 was within predicted regional deletion except for target Mirc56_3 of PB mES clone #2_080 (revised Figure 5C).

      Therefore, we raised why some guides never induce indels even in the absence of a regional deletion, as “In addition to low frequencies, Indel mutation might disappear due to regional deletion if these sgRNAs could induce Indel mutation”.

      To clarify them, we will add the following sentences:

      • “In particularly, middle target sites such as Mirc56_3, 4 and 7 were induced only miRNA deletion or Intact (Figure 5D)” following to “…in our mutant library (Figure 5C, D).” in the Discussion (page14, line 364)
      • “In fact, every deleted Mirc56_3, 4 and 7 was within predicted regional deletion except for target Mirc56_3 of PB mES clone #2_080 (Figure 5C). In addition, these sgRNA induced mutation with low frequency (Mirc56_3: 38.9%, Mirc56_4: 25.0% and Mirc56_7: 68.0%, Figure S6). Therefore, we suspected that regional deletion and their low mutation introduction rate facilitated to disappear Indel mutation.” following to “…induced at target sites.” in the Discussion (page14, line 366)

        *4. Regarding Mirc56_2 and 4 integration, on line 34 the authors suggest that "We suspect this was caused by a technical error, such as an unequal amount of sgRNA donor vector or the sequence in sgRNA cassettes affecting integration efficiency or cell growth." sgRNA library imbalance would be a technical error, but integration affecting cell growth is not a technical error. This sentence should be reworded. *

      → Thank you very much for your comment.

      We apologize for the misleading sentence even though this paper was already English-reviewed by English language editor.

      We will reword that “We suspect this was caused by the sequence in sgRNA cassettes affecting integration efficiency or cell growth, or a technical error such as an unequal amount of sgRNA donor vector.” following to “…PB mES clones via FACS..” in the Discussion (page14, line 344)

      *5. Line 540 "ration" is the incorrect word - perhaps "ratio"? *

      → Thank you very much for your kind comment, and we are sorry for the typo.

      We will correct it in the Figure legend (page22, line 540).

      6. Plot 5b should be shown as a histogram rather than a swarm plot to show how many clones were in each category.

      → Thank you very much for your suggestion.

      In Figure 5B, we aimed to indicate the number of sgRNA cassette varieties in each clone but not distribution of the number of integrated sgRNA cassettes. Distribution of the number of integrated sgRNA cassettes in clone library matched with the frequency of target sites in Figure 5D.

      We already described the distribution data as “In addition, an average of 22.7 Mirc56_X sites … the same frequency except for the Mirc56_2- and 4-targeting cassettes.” in the Result (page13, line 312-315)

      *Reviewer #1 (Significance (Required)):

      1. General assessment: The authors are successful in creating clonal cell lines bearing a variety of mutations. Unfortunately, the cell lines also have transposase-mediated insertion events of the sgRNA cassettes at unknown positions in the genome, which will hamper the interpretability of any experiment using these cell lines. The authors fail to justify the use of the transposase and integration of the sgRNA, especially compared to lentiviral transfection or RNPs which would produce edits at the region of interest. Alternately, integrated sgRNA cassettes could have been excised with Flp recombinase as in https://doi.org/10.1007/978-1-0716-0247-8_29. *

      → Thank you very much for your suggestion.

      We agree that we did not mention why we choose PiggyBac system compared to lentiviral delivery.

      Therefore, we will add the following sentences:

      • “In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system. To identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis [PMID: 23435812].” in the Introduction.
      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction. However, we are not going to mention comparison to RNPs because it is obvious that random sgRNA expressions is important key for random mutagenesis and design of random sgRNA treatments by RNP is difficult. The reason is that the target region might be cleaved by almost all sgRNA incorporated into cells. On the other hand, it is easier to design the number of sgRNA expression variety using the delivery system via integration into the chromosome because only integrate sgRNA are expressed.

      In addition, we could not agree that “integrated sgRNA cassettes could have been excised with Flp recombinase as in https://doi.org/10.1007/978-1-0716-0247-8_29.”

      This paper reports the concept that one EM7>neoR expression cassette flanked by Frt within KI allele could select intended-KI clone and then the cassette could remove by Flp recombinase. However, this approach is not suitable for our method because it causes structural mutation by recombination of multi Frt cassettes that are integrated into nearby genomic regions. Therefore, we will not mention it.

      *2. Additionally, the genotyping analysis is unclear, and seems to indicate that each clone bears homozygous mutations, with several clones showing deletions of the entire region. *

      → Thank you very much for your suggestion.

      We will revise them in Reviewer #1 Major comment 2a and b.

      3. Advance: The authors are motivated to create clones using tiling mutagenesis. Tiling mutagenesis has already been performed without transposases (e.g. https://doi.org/10.1038/nbt.3450, https://doi.org/10.1371/journal.pone.0170445, https://doi.org/10.1038/s41467-019-12489-8*) in the context of a screen, and clones have already been created using CRISPR/Cas9 mutagenesis so the advance presented in this manuscript over previous published work is unclear. *

      →Thank you very much for your suggestion, and we agree with your suggestion.

      We will add to acknowledge previous studies for CRISPR-Cas tilling screens.

      We will add the following sentences:

      • “Recently, targeted mutagenesis combined forward genetics and reverse genetics has been developed such as saturating mutagenesis and tiling mutagenesis that induce random mutation within target gene(s) [PMID: 25141179, 31586052, 27260157, 28118392]. This targeted mutagenesis can construct a mutant library harbouring subtly different mutations within a target gene(s) so that comparative analysis through the mutant library can screen out critical mutation(s) for biological processes. These random mutagenesises have also revealed the function of numerous coding genes” following to “…list of coding genes [6–8].” in the Introduction (page3, line 55-56)
      • “In addition, the saturating mutagenesis are limited in the length of target region due to an approach basing homology-directed repair although it could introduce random mutations on donor template library harbouring any combination and variety of mutations [PMID: 25141179]. On the other hand, the tiling mutagenesis could expand target length in principle because the length depends on multiplex guide RNA (gRNA) designed to target genomic region. Therefore, tiling mutagenesis has been employed to identify critical regions embedded in cis-elements [PMID: 26375006, 30612741, 26751173, 27708057, 28416141, 31784727]. Tiling mutagenesis requires editor such as Cas9 or epigenetic modifier fused to catalytically dead Cas9 (e.g. KRAB-dCas9), and a library containing multiplex gRNA tiling across target genomic region. In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system.” following to “…within a narrow region.” in the Introduction (page4, line 82) The paper you raised as DOI: https://doi.org/10.1038/nbt.3450 applied CRISPRko tiling mutagenesis to find out critical region embedded 2 kb of p53 binding enhancer region by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions. In addition, we expand the length of target region to more than 50 kb. This is one of the advances.

      The paper you raised as DOI: https://doi.org/10.1371/journal.pone.0170445 applied CRISPRko tiling mutagenesis to find out critical mutation on MAP2K1 and BRAF protein coding sequence by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions.

      The paper you raised as DOI: https://doi.org/10.1038/s41467-019-12489-8 applied CRISPRko tiling mutagenesis for to find out critical domain from protein coding sequence by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions.

      To clarify the advantages, we will add the following sentences:

      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction.
      • “CRISPRko tiling mutagenesis is conducted for less than 15 kb target genomic region so far [PMID: 26375006, 30612741], while CRISPRi tiling mutagenesis can target more than 70 kb [PMID: 27708057], it is reported that. Hence, it remains unknown unclear how length CRISPRko tiling mutagenesis could expand” in the Introduction. In addition, we are going to conduct transposon removal by exicision-only-PBase treatment with several PB mES clones, for the proof of concept that CTRL-Mutagenesis can generate mutant library with no sgRNA cassettes.

      *4. Audience: The manuscript is written for the basic research audience, and the method could be applied to the study of regions of interest in many diseases. However, the unexcised use of transposases make the method less desirable than other methods. *

      → Thank you very much for your suggestion.

      We do not agree that the PiggyBac make the method less desirable than other methods.

      As mentioned in our response for reviewer #1 Significance 3, only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. However, sgRNA cassettes by lentiviral delivery is never removed from the genome. In addition, other approaches such as Flp recombinase that reviewer #1 proposed in Significance 1 is not better than PiggyBac because Flp recombinase causes stratal mutation by recombination of multi Frt cassettes that are integrated into nearby genomic regions.

      To clarify them, we will add the following sentences:

      • “However, multiple integration of single guide RNA (sgRNA) cassettes has higher risk of non-targeted endogenous gene disruptions and may impair functional analysis.” in the Abstract.
      • “However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis [PMID: 23435812]. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome.” in the Introduction.
      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction. In addition, we are going to conduct transposon removal by exicision-only-PBase treatment with several PB mES clones, for the proof of concept that CTRL-Mutagenesis can generate mutant library with no sgRNA cassettes.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major concerns:

      1) Concern about the Novelty of Functional Analysis Platforms: The authors claim that there are no established platforms for the study of cis-elements or microRNA clusters. This assertion seems inaccurate, as previous studies have utilized Cas9 tiling screens to investigate cis-regulatory elements (CREs) and large-scale screens to probe microRNA functions, as exemplified by the works of Canver et al. in Nature 2015, Gasperini et al. in Cell 2019, and others. *

      → Thank you very much for your suggestion, and we agree with your suggestion.

      We apologize our false claim so that we will delete the following sentences:

      • “In contrast, no functional analysis platforms have been established for the study of cis-elements or microRNA cluster regions consisting of multiple microRNAs with functional overlap” in the Abstract (page2, line 28-30)
      • “While loss-of-function analysis has been conducted for numerous coding genes, very limited progress has been made on non-coding genes and cis-elements.” in the Introduction (page3, line 47-49) The paper you raised as DOI: https://doi.org/10.1038/nature15521 (Canver et al. in Nature 2015) applied CRISPRko tiling mutagenesis to find out critical region embedded 12 kb of BCL11A enhancer region by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions. In addition, we expand the length of target region to more than 50 kb. This is one of the advances.

      The paper you raised as DOI: https://doi.org/10.1016/j.cell.2018.11.029 (Gasperini et al. in Cell 2019) applied CRISPRko tiling mutagenesis to find out critical region embedded maximum 12 kb enhancer candidates, in addition to CRISPRi tilling candidate screening through one sgRNA by one candidate enhancer, by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions. In addition, we expand the length of target region to more than 50 kb. This is one of the advances. Additionally, to identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome. Thus, to identify combinations of critical region embedded in target regions with no artifact owing to no footprint by removal of sgRNA cassettes, CRISPRko tiling mutagenesis rather than CRISPRi is better method because CRISPRi requires integrated cassettes that stably expressed sgRNA and epigenetic modifier fused to dCas9. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions to find out combinations of critical region embedded in target regions.

      Therefore, to add to acknowledge previous studies and clarify the advantages, we will add the following sentences:

      • “In addition, the saturating mutagenesis are limited in the length of target region due to an approach basing homology-directed repair although it could introduce random mutations on donor template library harbouring any combination and variety of mutations [PMID: 25141179]. On the other hand, the tiling mutagenesis could expand target length in principle because the length depends on multiplex guide RNA (gRNA) designed to target genomic region. Therefore, tiling mutagenesis has been employed to identify critical regions embedded in cis-elements [PMID: 26375006, 30612741, 26751173, 27708057, 28416141, 31784727]. Tiling mutagenesis requires editor such as Cas9 or epigenetic modifier fused to catalytically dead Cas9 (e.g. KRAB-dCas9), and a library containing multiplex gRNA tiling across target genomic region. In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system.” following to “…within a narrow region.” in the Introduction (page4, line 82)
      • “To identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis [PMID: 23435812]. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome. Thus, to identify combinations of critical region embedded in target regions with no artifact owing to no footprint by removal of sgRNA cassettes, CRISPRko tiling mutagenesis rather than CRISPRi is better method because CRISPRi requires integrated cassettes that stably expressed sgRNA and epigenetic modifier fused to dCas9.” in the Introduction.
      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction.
      • “CRISPRko tiling mutagenesis is conducted for less than 15 kb target genomic region so far [PMID: 26375006, 30612741], while CRISPRi tiling mutagenesis can target more than 70 kb [PMID: 27708057], it is reported that. Hence, it remains unknown unclear how length CRISPRko tiling mutagenesis could expand” in the Introduction. On the other hand, we could not find previous studies employing Cas9 tiling mutagenesis to investigate miRNA functions. The application for miRNA cluster is also one of the advances.

      2) Advantages of PiggyBack System Over Lentiviral Integration: The paper does not clearly articulate the advantages of their proposed PiggyBack-based system for sgRNA integration over traditional lentiviral integration. Both methods facilitate the random integration of multiple gRNAs, but the paper lacks a comparative analysis or justification for choosing the PiggyBack system.

      → Thank you very much for your suggestion, and we agree with your suggestion.

      We agree that we did not mention why we choose PiggyBac system compared to lentiviral delivery.

      Therefore, we will add the following sentences:

      • “In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system. To identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis [PMID: 23435812].” in the Introduction.
      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction.

        *3) Lack of Comparative Analysis with Alternative Methods: The authors did not provide a comparison of CTRL-Mutagenesis with other existing screening methods. Such a comparison is crucial for understanding the effectiveness and efficiency of the new method in relation to established techniques. *

      → Thank you very much for your suggestion.

      We agree with the comparison is one of important experiments.

      However, our main claim is validation of tiling mutagenesis using PiggyBac that is only integration system with no footprint. Therefore, we propose our novelty without the comparison and not argue higher / lower efficiency of CTRL-Mutagenesis compared to exiting methods.

      *4) Limitations in Library Resolution: The paper acknowledges the limited resolution of their proposed library. The authors might have explored the use of base editors for enhanced resolution in such screens, as base editing could potentially offer more precise and controlled mutagenesis as briefly mentioned in the discussion. *

      → Thank you very much for your suggestion.

      We agree with your suggestion.

      Base editing is occurred within only editing window. In addition, a major limitation of prime editing is low efficiency (https://doi.org/10.1016/j.tibtech.2023.03.004). Therefore, design of sgRNA for base editor or pegRNA and its editing efficiency requires huge amounts of experiments.

      Our study is proof of concept to validate PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions. Thus, we just discussed limited resolution of our mutant library and proposed the use of base editors for enhanced resolution in the Discussion (page14, line 366-370).

      5) Absence of Functional Data Post-Mutagenesis: A significant limitation of the study is the absence of functional data following the creation of cells with different mutations. While the authors speculate about using differentiation systems or organoids for practical applications, they do not provide empirical data to demonstrate the utility of the CTRL-Mutagenesis approach. This lack of functional validation raises questions about the practical applicability of the method.

      → Thank you very much for your suggestion.

      We agree with your suggestion.

      We would make functional analysis future research.

      In this paper, we just validated PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions.

      To change our tone that claiming usability of our method for functional analysis, we will change the following sentences:

      • Change “to identify functionally important elements in non-coding regions” to “to induce diverse combination and variety of mutations within more than 50 kb non-coding region” in the Title.
      • Add “However, not much loss-of-function screens of non-coding regulatory elements has been conducted due to ambiguous annotations compared with protein-coding genes. Tiling mutagenesis has been employed to identify critical regions embedded in non-coding regulatory elements by comparative analysis through a mutant library harbouring subtly different regions mutated within less than 15 kb region. Conventional tiling mutagenesis construct a mutant library integrated multiple sgRNA cassettes by retroviral delivery. However, multiple integration of single guide RNA (sgRNA) cassettes has higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. Herein, combining tiling mutagenesis and PiggyBac transposon that can be removed with no footprint on integrated sites, we established an expanded tilling mutagenesis method named CRISPR- & Transposase-based RegionaL Mutagenesis (CTRL-Mutagenesis). We demonstrated that PiggyBac system could integrated diverse combinations and varieties of sgRNA cassettes.and then CTRL-Mutagenesis randomly induces diverse combination and variety of mutations within more than 50 kb non-coding region in murine embryonic stem cells. CTRL-Mutagenesis would apply for wider non-coding regulatory elements with no risk of non-targeted endogenous gene disruptions.” in the Abstract.
      • Delete “Comparative analysis of mutants harbouring subtly different mutations within the same region would facilitate the further study of cis-element and microRNA clusters.” in the Abstract (page2, line 38-40).
      • Change “The generated random mutant mES clone library could facilitate further functional analyses of non-coding regulatory elements within the genome.” to “The generated random mutant mES clone library could develop to investigate critical regions of non-coding regulatory elements within the genome.” In the Introduction (page4, line 88-90)

        *Reviewer #2 (Significance (Required)):

        1. In summary, while the idea to integrate sgRNA in the genome by the PiggyBack system is interesting the claim of novelty is questionable due to existing methods in the field. The advantages of their system over existing technologies are not clearly articulated, and a lack of comparative analysis with other methods leaves the efficiency of CTRL-Mutagenesis uncertain. *

      → Thank you very much for your suggestion.

      Previous studies about CRISPRko and CRISPRi tiling mutagenesis employ lentiviral delivery of sgRNA cassettes into the genome. However, multi sgRNA cassette integrations have higher risk to disrupt non-targeted endogenous functions. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome. Nevertheless, lentiviral transposon, one of retrotransposon, cannot be removed from the chromosome. On the other hand, only PiggyBac transposon can be removed with no footprint. Therefore, we aimed to validate PiggyBac system for tiling mutagenesis. Moreover, there is no report that CRISPRko tiling mutagenesis apply for more than 15 kb genomic region. Therefore, we aimed to expand the length of target region.

      Therefore, we will change our claim that our method could expand CRISPRko tiling mutagenesis to more than 50 kb with no risk of non-targeted endogenous gene disruption.

      We will add the novelty and advantage of our method.

      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction.
      • “CRISPRko tiling mutagenesis is conducted for less than 15 kb target genomic region so far [PMID: 26375006, 30612741], while CRISPRi tiling mutagenesis can target more than 70 kb [PMID: 27708057], it is reported that. Hence, it remains unknown unclear how length CRISPRko tiling mutagenesis could expand” in the Introduction. However, our main claim is validation of tiling mutagenesis using PiggyBac that is only integration system with no footprint. Therefore, we will propose our novelty without the comparison and not argue higher / lower efficiency of CTRL-Mutagenesis compared to exiting methods.

      In addition, we are going to conduct transposon removal by exicision-only-PBase treatment with several PB mES clones, for the proof of concept that CTRL-Mutagenesis can generate mutant library with no sgRNA cassettes.

      2. Moreover, the limited resolution of their library and the absence of functional data post-mutagenesis are significant drawbacks that need to be addressed in future research to ascertain the method's practical utility.

      → Thank you very much for your suggestion.

      We agree with your suggestion.

      We would make functional analysis future research.

      Base editing is occurred within only editing window. In addition, a major limitation of prime editing is low efficiency (https://doi.org/10.1016/j.tibtech.2023.03.004). Therefore, design of sgRNA for base editor or pegRNA and its editing efficiency requires huge amounts of experiments.

      Our study is proof of concept to validate PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions. Thus, we just discussed limited resolution of our mutant library and proposed the use of base editors for enhanced resolution in the Discussion (page14, line 366-370).

      Therefore, we just claimed that we validated PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments: 1. Authors claim that "CTRL-mutagenesis randomly induces diverse mutations only within the targeted regions in murine embryonic stem (mES) cells.", however, the outcome of mutations is not entirely random since most of the mutations are regional deletions. For example, despite the random distribution of gRNAs per cell, the inner regions like Mirc56_5 or Mirc56_8 are mutated with >80% efficiency.*

      → Thank you very much for your comment.

      We agree that middle regions are tending to be deleted and mutation type induced is not entirely random. However, we do not agree that “the outcome of mutations is not entirely random since most of the mutations are regional deletions.” Focusing on the combinations of mutations as mentioned in the Result (page12, line 302-304), CTRL-Mutagenesis could induce diverse mutation combinations randomly at a moderate degree. In fact, 79.2% of clones harboring multiple mutations were induced different combinations of mutations. In addition, to confirm how mutations occurred within Mirc56 by CTRL-Mutagenesis, we constructed only 87 mutant clones though single cloning. Therefore, it is not completely understanded due to fewer clones compared with conventional CRISPRko tiling mutant library. Of course, we should improve the randomness of mutation combinations, but we already discussed it and proposed solutions in the Discussion (page14, line 366-370).

      Certainly, CTRL-Mutagenesis would be difficult to identify necessary and sufficient genomic region due to incomplete randomness. Nevertheless, there is no report to induce diverse combination and variety of mutations within more than 50 kb genomic region. Hence, CTRL-Mutagenesis should be worth screening out critical regions within more than 50 kb regions.

      To clarify them, will add the following sentences:

      • “CRISPRko tiling mutagenesis is conducted for less than 15 kb target genomic region so far [PMID: 26375006, 30612741], while CRISPRi tiling mutagenesis can target more than 70 kb [PMID: 27708057], it is reported that. Hence, it remains unknown unclear how length CRISPRko tiling mutagenesis could expand” in the Introduction.
      • “Four clones (#2_066, #1_021, #1_029 and #1_046) harboured entire Mirc56_X deletions on all analysed Mirc56_X genomic region. In addition to these clones, only 3 pairs (#2_019 and #2_084, #2_038 and #1_023, #1_016 and #1_027) were induced same combination of mutations. Besides, 26 clones had only one mutation from Mirc56_1 to Mirc56_13. On the other hand, there was no mutation on Mirc56_1 to 13 in 11 clones including 5 clones (#2_012, #2_015, #2_054, #2_092 and #2_102) carried no sgRNA cassette for Mirc56 _1 to 13 and 6 clones (#2_017, #2_053, #2_098, #1_003, #1_012 and #1_044) even carried any one of sgRNA cassettes for Mirc56 _1 to 13. Among 48 clones carrying multiple mutations except for clones carrying only one mutation or Intact, 38 clones (79.2%) harboured different combinations of mutations. These results suggested that CTRL-Mutagenesis could induce diverse combinations of mutations.” following to “…different combinations of mutations (Figure 5C).” in the Result (page12, line 304)
      • “Note that CTRL-Mutagenesis would be difficult to identify necessary and sufficient genomic region due to incomplete randomness. Nevertheless, CTRL-Mutagenesis should be worth screening out critical regions within more than 50 kb regions” following to “…to induce regional deletions.” in the Discussion (page15, line 378)
      • Change “diverse mutations” to “diverse combination and variety of mutations” in the Title, Abstract (page2, line 37), Introduction (page4, line 87), Result (page13, line 318), Discussion (page13, line 325), (page14, line 363) Additionally, we do not agree with your suggestions that “the inner regions like Mirc56_5 or Mirc56_8 are mutated with >80% efficiency”. We apologize for the misleading context. These high mutation rates were calculated on only the target sites. Actually, maximum mutation rate on all MIrc56_X genomic regions are 44.8% on Mirc56_10, minimum is 14.9% on Mirc56_2 and an average is 30.9% (attached Figure).

      We appreciate that we can recognize our misleading context by your suggestion. It is more important that the analysis focusing all Mirc56_X genomic regions rather than target Mirc56_X. Therefore, we newly made figure about event occurrence in Mirc56_X genomic regions (attached Figure) as Figure 5D and replaced previous Figure 5D about event occurrence in target Mirc56_X to Supplemental Figure S6.

      To clarify them, we will add the following sentences:

      • “As for event occurrences on each Mirc56_X genomic region, miRNA deletions were dominant and an average of 26.7 Mirc56_X genomic region were induced mutations in 87 clones (Figure 5D). Maximum mutation rate on all MIrc56_X genomic regions was 44.8% (39/87) on Mirc56_10, minimum was 14.9% (13/87) on Mirc56_2” following to “…on the same strand” in the Result (page12, line 309)
      • “__D, __Mutations in 87 Mirc56 random mutant clones. The target sites do not include Mirc56_14, 15, 16, and The vertical axis and bar graphs show event occurrence on each Mirc56 genomic region in 87 Mirc56 random mutant clones. The bar colour indicates each event (Black: Regional deletion, Gray: Indel mutation, White: Intact).” in the Figure legend.

        2. Also, although the authors discuss that the lower mutation frequency observed for Mirc56_2 and 4 may be due to a technical error, confirming this by repeating the experiment would be important to prove the usability of this method.

      →Thank you very much for your comment, and we agree with your suggestion.

      We had already constructed bulk PB mES cells twice and showed Figure 4B combined these experimental replicates.

      To clarify that we constructed bulk PB mES cells twice, we changed Figure 4B as attached and will add the following sentences:

      • “Even though these bulk PB mES cells were constructed twice, it seemed that sgRNA cassettes for Mirc56_2 and 4 were difficult to integrate into the genome.” following to “…were rarely detected” in the Result (page11, line 273)
      • “In addition, we suspected technical errors so that we constructed bulk PB mES cells twice. Unfortunately, their low integration frequencies were not improved.” following to “…efficiency or cell growth.” in the Discussion (page14, line 346)
      • “Bulk1 and Bulk2 indicate the experimental replicate.” following to “…next-generation sequencing (NGS).”in the Figure legend (page22 line 563) In addition, we re-sequenced sgRNA donor vector for Mirc56_2 and 4, and will add the following sentences:

      “We firstly doubted that their low integration frequencies were caused by any mutations on PB transposon of sgRNA donor vector, on especially ITR or ID that are important for integration efficiency [PMID: 15663772]. Therefore, we sequenced PB transposons for Mirc56_2 and 4 again. However, we could not find any mutations on their PB transposon.” following to “…efficiency or cell growth.” in the Discussion (page14, line 346)

      Moreover, to confirm the technical error, we are going to confirm sgRNA pool imbalance in donor vector library by amplicon short-read NGS.

      *3. Additionally, the experiments were performed on the haploid X chromosome of a male cell line. It is questionable whether this method can be generalized to other regions located in the other chromosomes. Clarifying These points would be essential especially because the focus of this manuscript is to describe the efficiency of this novel methodology. *

      →Thank you very much for your comment.

      We expect that CTRL-Mutagenesis could be valid on other biallelic locus.

      Therefore, we raised predicted issue such as complex genotyping and proposed one solution.

      When we target other biallelic locus, we must determine whether the combination of mutations induced are cis- or trans-mutations. Haplotype phasing, combined long-read sequencing with SNP markers within ROI on maternal/paternal chromosome, assembles each allele via SNP markers on each read [PMID: 35710642]. Therefore, combining CTRL-Mutagenesis on heterozygotic alleles of cells derived from such as human or murine hybrid with haplotype phasing might simplify genotyping.

      We will add the following sentences:

      “In this study, CTRL-Mutagenesis was validated by genotyping on mono allele in male mES cells to avoid investigating whether the combination of mutations induced are cis- or trans-mutations. All genotypes on Mirc56 should be hemizygous and these mutations induced might be cis-mutations so that we determined the genotypes by amplifying approximately 200 bp around the target sites. However, we did not confirm large mutations such as deletion of the genomic region between target sites and inversion. Long-read sequencing might capture their large mutations. Besides, we also expect that CTRL-Mutagenesis could be valid for ROI on biallelic autosome and X chromosome in female. Therefore, it is required to determine whether the combination of mutations induced are cis- or trans-mutation. Haplotype phasing, combined long-read sequencing with SNP markers within ROI on maternal/paternal chromosome, assembles each allele via SNP markers on each read [PMID: 35710642]. Therefore, combining CTRL-Mutagenesis on heterozygotic alleles of cells derived from such as human or murine hybrid with haplotype phasing might simplify genotyping.” in the Discussion.

      *4. The limitations of the methods seem not to be fully described in the manuscript and must be clarified. Compared to the previous studies (see "significance" section for details), this method is inferior in that (1) it is time-consuming because it requires clonal expansion of single cells and (2) it has low throughput because it requires genome sequencing due to the occurrence of deletions. These points should be described for the potential users of this methodology. For example, it may be useful to detail the time consumption in each experimental step in Fig. 4A. *

      →Thank you very much for your comment.

      We do not agree that (1) it is time-consuming because it requires clonal expansion of single cells.

      To confirm the mutations that CTRL-Mutagenesis induced, we did not conduct phenotyping screening such as dropout screening in this study. For further high-throughput screening, CTRL-Mutagenesis could apply bulk mutant mES cells, that is treated with Cas9 and EGFP-positive, for phenotyping screening.

      Additionally, we do not agree that (2) it has low throughput because it requires genome sequencing due to the occurrence of deletions. In this study, to prove our concept that CTRL-Mutagenesis could induce diverse combinations and varieties of mutations such as Indel and regional deletion, we conducted genotyping in all random mutant clones. On the other hand, there are alternative comparative method to improve throughput without genotyping. Combination of phenotyping screening and gene expression assay for target miRNAs or transcript regulated by target cis-element help us obtain clones harboring mutations on functionally critical regions within target region. Finally, we should conduct genotyping to identify critical regions embedded in non-coding regulatory elements.

      Even so, we will add the time consumption in Figure 4A as attached because the information may be useful for potential users as you mentioned.

      *Minor comments: 1. Data and methods are well-presented for reproducibility. The EGFP-positive ratio may be added to Fig. 4C for clarity. *

      →Thank you very much for your kind comment.

      We added the EGFP-positive ratio to Figure 4C and will add the following sentence:

      “The percentage above the box indicates the EGFP-positive ratio.” following to “…the gates of the EGFP filter.” in the Figure legends (page23, line 567)

      2. Enhance referencing accuracy, rectify DOI format in ref 21, and ensure consistency in citation formatting, e.g., ref 32.

      →Thank you very much for your kind comment.

      Along with the transfer, we will modify the style of references and have already confirmed the referencing accuracy in the Reference.

      3. It seems that the experimental condition (e.g. The amount of vectors used for transfection) should be re-considered every time the researcher wants to set up an experiment changing target genomic regions, cell types etc. If so, this also should be described in the text for potential users of this method.

      →Thank you very much for your comment, and we agree with your suggestion.

      We will add the following sentences:

      “This study just validated CTRL-Mutagenesis for 17 target sites in mES cells. Therefore, it might be better to adjust the number of integrated sgRNA cassettes according to the number of target sites and cell types.” following to “…sgRNA cassettes to be integrated.” in the Discussion (page14, line 355)

      *Reviewer #3 (Significance (Required)):

      There were various methods described in the late 2010's which aimed to screen for the functional non-coding regions using approaches such as KO-based, HDR-based, and epigenetic silencing using dCas9 (for example, PMID: 25141179, 26751173, 27708057, 28416141, 31784727). The authors should summarize what would be the strength of their method compared to these previously described methodologies. The strength of this methodology seems to be moderate complexity and cost-effectiveness compared to these previous techniques. It may be difficult for this methodology to become a state-of-the-art method to evaluate cis-element combinations, but it can be beneficial to researchers wanting to set up a low-cost system that can produce moderately complex cell libraries.*

      →Thank you very much for your suggestion.

      We will add to acknowledge previous studies for CRISPR-Cas tilling screens.

      • “Recently, targeted mutagenesis combined forward genetics and reverse genetics has been developed such as saturating mutagenesis and tiling mutagenesis that induce random mutation within target gene(s) [PMID: 25141179, 31586052, 27260157, 28118392]. This targeted mutagenesis can construct a mutant library harbouring subtly different mutations within a target gene(s) so that comparative analysis through the mutant library can screen out critical mutation(s) for biological processes. These random mutagenesises have also revealed the function of numerous coding genes” following to “…list of coding genes [6–8].” in the Introduction (page3, line 55-56)
      • “In addition, the saturating mutagenesis are limited in the length of target region due to an approach basing homology-directed repair although it could introduce random mutations on donor template library harbouring any combination and variety of mutations [PMID: 25141179]. On the other hand, the tiling mutagenesis could expand target length in principle because the length depends on multiplex guide RNA (gRNA) designed to target genomic region. Therefore, tiling mutagenesis has been employed to identify critical regions embedded in cis-elements [PMID: 26375006, 30612741, 26751173, 27708057, 28416141, 31784727]. Tiling mutagenesis requires editor such as Cas9 or epigenetic modifier fused to catalytically dead Cas9 (e.g. KRAB-dCas9), and a library containing multiplex gRNA tiling across target genomic region. In general, random single guide RNA (sgRNA) expression cassette are integrated into chromosomes of host cells by retrotransposon system.” following to “…within a narrow region.” in the Introduction (page4, line 82) The paper you raised as DOI: https://doi.org/10.1038/nature13695 (PMID: 25141179) applied saturation mutagenesis to find out critical mutation on BRCA1 and DBR1 protein coding sequence by HDR-based strategy using donor template library. This method based homologous recombination repair, so that the length of target region is limited. Our method employs tiling mutagenesis whose target length depends on sgRNA designed. We expand the length of target region to more than 50 kb from less than 15 kb previously reported. This is our strength compared with this report.

      The paper you raised as DOI: https://doi.org/10.1038/nbt.3450 (PMID: 25141179) applied CRISPRko tiling mutagenesis to find out critical region from 2 kb of p53 binding enhancer region by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions. In addition, we expand the length of target region to more than 50 kb. This is one of the advances.

      The paper you raised as DOI: https://doi.org/10.1126/science.aag2445 (PMID: 27708057) applied CRISPRi tiling mutagenesis to find out critical region from 74 kb genomic region around GATA1 and MYC by lentiviral delivery of sgRNA cassettes. Our method employs CRISPRko and PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. To identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome. Thus, to identify combinations of critical region embedded in target regions with no artifact owing to no footprint by removal of sgRNA cassettes, CRISPRko tiling mutagenesis rather than CRISPRi is better method because CRISPRi requires integrated cassettes that stably expressed sgRNA and epigenetic modifier fused to dCas9. PiggyBac system can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions to find out combinations of critical region embedded in target regions.

      The paper you raised as DOI: https://doi.org/10.1016/j.molcel.2017.03.007 (PMID: 28416141) reported applied CRISPRi tiling mutagenesis to find out critical region from TAD scale (about 200 kb) with low magnification by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions.

      The paper you raised as DOI: https://doi.org/10.1038/s41588-019-0538-0 (PMID: 31784727) reported applied CRISPRi tiling mutagenesis to develop method that can find out novel regulatory element around protein coding by lentiviral delivery of sgRNA cassettes. Our method employs PiggyBac system that can remove the sgRNA cassettes from the chromosome with no footprint. Therefore, our method should be novel method that generates mutant library with no risk of non-targeted endogenous gene disruptions.

      To clarify the advantages, we will add the following sentences:

      • “To identify combinations of critical region embedded in target regions, it would require diverse combinations of mutations or inactivation sites. To induce multiple mutations or inactivated sites, it requires multiple sgRNA cassettes integration. However, multiple integration of sgRNA cassettes have higher risk of non-targeted endogenous gene disruptions and may impair functional analysis [PMID: 23435812]. To eliminate the risk that integrated sgRNA cassettes disrupt non-targeted endogenous genes, it is best way to remove the sgRNA cassettes from the chromosome. Thus, to identify combinations of critical region embedded in target regions with no artifact owing to no footprint by removal of sgRNA cassettes, CRISPRko tiling mutagenesis rather than CRISPRi is better method because CRISPRi requires integrated cassettes that stably expressed sgRNA and epigenetic modifier fused to dCas9.” in the Introduction.
      • “Here, we proposed that DNA transposon system rather than retrotransposon system is more suitable to remove sgRNA cassettes from a mutant library. Transposons are genetic elements that can relocate between genomic sites and there are two types of transposons: (1) DNA transposon is transferred by a "cut and paste" mechanism in which the transposon sequence is cut directly from the genome, and (2) retrotransposon is transferred by a "copy and paste" mechanism in which the transposon sequence is transcribed into RNA and then integrated by reverse transcribed [PMID: 21958341]. Therefore, retrotransposon is never removed from the genome. DNA transposon such as PiggyBac, Sleeping Beauty and Tol2 systems are also used as gene transfer tools in vertebrates [PMID: 26481584]. Especially, PiggyBac leaves no footprint on integrated sites after transposons relocated while other DNA transposon system leaves small insertion on integrated sites [PMID: 34064900]. In addition, excision-only-PiggyBac transposase that can remove transposons but not integrate them, is developed [PMID: 27929521]. Only PiggyBac system can remove transposons carrying sgRNA cassettes from mutant library with no footprint. Therefore, we aimed to validate PiggyBac system for CRISPRko tilling mutagenesis.” in the Introduction.
      • “CRISPRko tiling mutagenesis is conducted for less than 15 kb target genomic region so far [PMID: 26375006, 30612741], while CRISPRi tiling mutagenesis can target more than 70 kb [PMID: 27708057], it is reported that. Hence, it remains unknown unclear how length CRISPRko tiling mutagenesis could expand” in the Introduction. In addition, we are going to conduct transposon removal by exicision-only-PBase treatment with several PB mES clones, for the proof of concept that CTRL-Mutagenesis can generate mutant library with no sgRNA cassettes.

      *Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Major concerns, 1, Authors claim "to identify functionally important elements in non-coding regions in the title but there is no evidence of any functional analysis in the manuscript.*

      → Thank you very much for your suggestion, and we agree with your suggestion.

      In this paper, we just validated PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions.

      To change our tone that claiming usability of our method for functional analysis, we will change the following sentences:

      • Change “to identify functionally important elements in non-coding regions” to “to induce diverse combination and variety of mutations within more than 50 kb non-coding region” in the Title.
      • Add “However, not much loss-of-function screens of non-coding regulatory elements has been conducted due to ambiguous annotations compared with protein-coding genes. Tiling mutagenesis has been employed to identify critical regions embedded in non-coding regulatory elements by comparative analysis through a mutant library harbouring subtly different regions mutated within less than 15 kb region. Conventional tiling mutagenesis construct a mutant library integrated multiple sgRNA cassettes by retroviral delivery. However, multiple integration of single guide RNA (sgRNA) cassettes has higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. Herein, combining tiling mutagenesis and PiggyBac transposon that can be removed with no footprint on integrated sites, we established an expanded tilling mutagenesis method named CRISPR- & Transposase-based RegionaL Mutagenesis (CTRL-Mutagenesis). We demonstrated that PiggyBac system could integrated diverse combinations and varieties of sgRNA cassettes.and then CTRL-Mutagenesis randomly induces diverse combination and variety of mutations within more than 50 kb non-coding region in murine embryonic stem cells. CTRL-Mutagenesis would apply for wider non-coding regulatory elements with no risk of non-targeted endogenous gene disruptions.” in the Abstract.
      • Delete “Comparative analysis of mutants harbouring subtly different mutations within the same region would facilitate the further study of cis-element and microRNA clusters.” in the Abstract (page2, line 38-40).
      • Change “The generated random mutant mES clone library could facilitate further functional analyses of non-coding regulatory elements within the genome.” to “The generated random mutant mES clone library could develop to investigate critical regions of non-coding regulatory elements within the genome.” In the Introduction (page4, line 88-90)

        2, Genotypes of mutant library, especially Mirc56, 14,15, 16, 17 were not determined due to six tandem repeats. Thus, analysis of the relationship between genotype and biological functions is not possible. Moreover, the authors did not show any phenotypic analysis.

      → Thank you very much for your suggestion.

      The 6 tandem repeats consisted of each approximately 3.3 kb are hard to determine mutations and are uncommon.

      Therefore, we skipped genotyping Mirc56_14, 15, 16, and 17

      Certainly, it is drawback that we did not determine all mutations induced by CRTL-mutagenesis.

      Even so, we could determine the properties of mutant library within 37 kb genomic region from Mirc56_1 to Mirc56_13.

      Therefore, we could conclude that CTRL-mutagenesis could induce diverse combinations and variations of mutations into more than 50 kb.

      3, Multiple gRNA may cause deletion and inversion to targeted loci. With local PCR based amplification, detection of large deletion and inversion can be very difficult. I think the authors should examine and address this possibility more carefully. The definition of indel in Fig 5C should be explained in more detail.

      → Thank you very much for your comment, and we agree with your suggestion.

      We did not confirm inversion and large deletion.

      To confirm whether inversions were happened, we are going to perform PCR walking in several clones and long-read sequencing.

      4, Although the authors showed a variety of PB cassettes (Max is 17), more importantly would be to determine the actual copy number of PB cassettes. Difference between the highest and the lowest EGFP intensities in Fig 2C (Donor 300ng Effector 350ng) is approximately ~100 fold, thus ES clone bearing highest PB vector may contain ~100 copies of PB vector. PB transposon prefers insertion in active genes compared to other transposon system such as Sleeping Beauty and Tol2 transposon. (Yoshida J et al Sci Rep. 2017 Mar 2;7:43613. doi: 10.1038/srep43613.). Higher integration rates of PB vectors have a higher chance of endogenous gene disruptions and may impair functional analysis.

      → Thank you very much for your suggestion.

      We agree that cassette integration number is one important aspect of tiling mutagenesis. To determine actual copy number of PB transposon is useful information when potential user consider optimizing our method for own target region. However, to confirm whether the relationship between mutations induced and sgRNA cassettes integrated, the number of integrated cassette variety is more important because the diversity of sgRNAs variety expressed is more related to the diversity of mutations induced. Therefore, we identified the number of integrated cassette variety.

      To clarify this point, we will add we the following sentences:

      “rather than the copy number of sgRNA cassettes because the diversity of sgRNAs variety expressed is more related to the diversity of mutations induced” following to “…the number of sgRNA cassette varieties.” in the Result (page12, line 297)

      Certainly, we apologize that it is not accurate that “EGFP signal intensity correlated with the copy number of EGFP cassettes integrated into genomes[23]” in the Result (page11, line 249-250). EGFP expression levels are affected by cell cycle so that the paper reported that “Median EGFP intensities correlated with the copy number of EGFP cassettes integrated into genomes”.

      Therefore, we will delete the following sentence:

      “EGFP signal intensity correlated with the copy number of EGFP cassettes integrated into genomes[23]” in the Result (page11, line 249-250).

      To investigate how many copies our concentration of donor vector could integrate, we are going to check actual copy numbers in several clones by qPCR.

      Besides, we agree with your suggestion that “PB transposon prefers insertion in active genes compared to other transposon system such as Sleeping Beauty and Tol2 transposon. (Yoshida J et al Sci Rep. 2017 Mar 2;7:43613. doi: 10.1038/srep43613.)

      Therefore, we will change the following sentence:

      “random TTAA sites across genomes [24]” to “random TTAA sites of transcribed region rather than intergenic region [PMID: 28252665]” in the Discussion (page14, line 357).

      However, Sleeping Beauty and Tol2 transposon remain footprint at integration sites when these transposons move [PMID: 15133768, 23143102]. Especially, SB transposon leaves canonical 5 bp insertion at integration sites so that the canonical 5bp insertion into coding sequence could disrupt the function of endogenous protein frequently. On the other hand, PB transposon remains no footprint. Therefore, excision-only-PBase can remove the PB transposon from mutant library clearly. Thus, it is no worry about that PB transposon disrupt non-targeted endogenous gene impair functional analysis if PB mutant library is treated with excision-only-PBase.

      In addition, we are going to conduct transposon removal by exicision-only-PBase treatment with several PB mES clones, for the proof of concept that CTRL-Mutagenesis can generate mutant library with no sgRNA cassettes.

      5, Most non-coding regions are located at autosomes. Genotyping would be very difficult or even impossible by the current PCR based strategy.

      → Thank you very much for your comment, and we agree with your suggestion.

      This is one of our issues.

      We expect that CTRL-Mutagenesis could be valid on other biallelic locus.

      Therefore, we raised predicted issue such as complex genotyping and proposed one solution.

      When we target other biallelic locus, we must determine whether the combination of mutations induced are cis- or trans-mutations. Haplotype phasing, combined long-read sequencing with SNP markers within ROI on maternal/paternal chromosome, assembles each allele via SNP markers on each read [PMID: 35710642]. Therefore, combining CTRL-Mutagenesis on heterozygotic alleles of cells derived from such as human or murine hybrid with haplotype phasing might simplify genotyping.

      We will add the following sentences:

      “In this study, CTRL-Mutagenesis was validated by genotyping on mono allele in male mES cells to avoid investigating whether the combination of mutations induced are cis- or trans-mutations. All genotypes on Mirc56 should be hemizygous and these mutations induced might be cis-mutations so that we determined the genotypes by amplifying approximately 200 bp around the target sites. However, we did not confirm large mutations such as deletion of the genomic region between target sites and inversion. Long-read sequencing might capture their large mutations. Besides, we also expect that CTRL-Mutagenesis could be valid for ROI on biallelic autosome and X chromosome in female. Therefore, it is required to determine whether the combination of mutations induced are cis- or trans-mutation. Haplotype phasing, combined long-read sequencing with SNP markers within ROI on maternal/paternal chromosome, assembles each allele via SNP markers on each read [PMID: 35710642]. Therefore, combining CTRL-Mutagenesis on heterozygotic alleles of cells derived from such as human or murine hybrid with haplotype phasing might simplify genotyping.” in the Discussion.

      Moreover, genome-wide NGS and nanopore Cas9-treated sequencing (nCATs) could also help us to read the mutations without PCR-amplification. However, both methods can obtain reads of target regions with low frequency. Therefore, it is difficult to perform multiplex samples for mutant library.

      *6, Fig 4C, large amounts of Cas9 independent EGFP positive cells suggest the current system is not efficient. *

      → Thank you very much for your comment.

      We cannot agree with your indication.

      In fact, by the cutoff set in Cas9-untreated cells, the EGxxFP system successfully selected at least 76 mutant clones (87.4%) harboring mutations within Mirc56_1 to Mirc56_13. Moreover, we could seed 180 single-cells for single cloning by FACS once.

      To enhance this point, we added the following sentences:

      “Moreover, at least 76 out of 87 PB mES clones have mutations within all analysed Mirc56_Xs (Figure 5C). Therefore, the EGxxFP system could selected ROI mutant mES clones efficiently.” following to “…depended on integrated sgRNA cassettes.” in the Discussion (page13, line 355)

      *Reviewer #4 (Significance (Required)):

      The authors claim "Functional analysis" in the manuscript title but there is no evidence of functional analysis in the manuscript.*

      → Thank you very much for your suggestion, and we agree with your suggestion.

      In this paper, we just validated PiggyBac system for CRISPRko tilling mutagenesis and expanded the length of target regions.

      To change our tone that claiming usability of our method for functional analysis, we will change the following sentences:

      • Change “to identify functionally important elements in non-coding regions” to “to induce diverse combination and variety of mutations within more than 50 kb non-coding region” in the Title.
      • Add “However, not much loss-of-function screens of non-coding regulatory elements has been conducted due to ambiguous annotations compared with protein-coding genes. Tiling mutagenesis has been employed to identify critical regions embedded in non-coding regulatory elements by comparative analysis through a mutant library harbouring subtly different regions mutated within less than 15 kb region. Conventional tiling mutagenesis construct a mutant library integrated multiple sgRNA cassettes by retroviral delivery. However, multiple integration of single guide RNA (sgRNA) cassettes has higher risk of non-targeted endogenous gene disruptions and may impair functional analysis. Herein, combining tiling mutagenesis and PiggyBac transposon that can be removed with no footprint on integrated sites, we established an expanded tilling mutagenesis method named CRISPR- & Transposase-based RegionaL Mutagenesis (CTRL-Mutagenesis). We demonstrated that PiggyBac system could integrated diverse combinations and varieties of sgRNA cassettes.and then CTRL-Mutagenesis randomly induces diverse combination and variety of mutations within more than 50 kb non-coding region in murine embryonic stem cells. CTRL-Mutagenesis would apply for wider non-coding regulatory elements with no risk of non-targeted endogenous gene disruptions.” in the Abstract.
      • Delete “Comparative analysis of mutants harbouring subtly different mutations within the same region would facilitate the further study of cis-element and microRNA clusters.” in the Abstract (page2, line 38-40).
      • Change “The generated random mutant mES clone library could facilitate further functional analyses of non-coding regulatory elements within the genome.” to “The generated random mutant mES clone library could develop to investigate critical regions of non-coding regulatory elements within the genome.” In the Introduction (page4, line 88-90).
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Review Commons - Revision Plan

      Manuscript number: RC-2023-02228

      Corresponding author(s): Gatfield, David

      1. General Statements

      We are grateful to the three Reviewers for their detailed assessment of our manuscript and are delighted about their very constructive and positive evaluations, highlighting the study’s novelty and rigor.

      Briefly, the main points raised by Reviewers 1 and 3 do not involve additional experiments and are mostly about rethinking manuscript structure (e.g. moving data/analyses to the supplement or removing them altogether, as they distract from the main thrust of the story) and making the text overall less dense and more readable.

      Reviewer 3 also raises a number of additional interesting points that we should discuss in our manuscript, which would allow us placing our findings more effectively into the context of the existing literature.

      All these points are very well taken and will be implemented (see below, under 2).

      Reviewer 2 is overall also rather positive – speaking of “a very careful and detailed study that addresses an important issue” and the study being “really rigorous and the logic […] very well explained”; moreover, this Reviewer also shares the view of both other Reviewers that parts of the manuscript (i.e., in particular its beginning) should be shortened.

      Importantly, this Reviewer remarks in addition under “Significance”: “Without additional mechanistic insights suggesting that there is something particular different about the regulation of these mRNAs the manuscript is not of extremely high significance.” – an important point of criticism that we wish to address in our revision, as detailed below.

      2. Description of the planned revisions

      In the following, we detail how we plan to address the points raised by the Reviewers. The order in which we treat the points follows their – in our view – relative importance according to the Reviewers’ feedback. In particular the first item below, under (A), is the main point of criticism that we feel we should address carefully for the future revised version.

      (A) Major point raised by Reviewer 2: “However, the study falls short on addressing the mechanism of this regulation and if it is different of other feeding regulated mRNA oscillations. This diminishes the significance of the study unless additional mechanistic details are provided.” , which is cross-commented both by Reviewer 1: “More importantly, clues to the mechanism (e.g. iron, heme) regulating the rhythmic translation of IRP1 and IRP2 IRE-mRNAs in liver would increase the significance of the work.” as well as by Reviewer 3: “Reading the comment from Reviewer #2 over the lack of a mechanism to explain why only four transcripts with IREs amongst a larger pool are subject to circadian regulation by IRPs somehow reduces the significance of the study, one has to agree that a discovery - likely another component in the system - is wanting. I remain of the view that the present work exposes this "weakness" of the entire field in a global as opposed to a partial manner and in doing so, makes a significant contribution, especially by further sub-classifying the IRE-containing transcripts according to their responsiveness in the diurnal occupancy of their IREs.”

      Our response and revision plan: Indeed, in the original version of our manuscript we established the link to feeding, yet we did not pinpoint the precise molecular cue that could underlie the rhythmic regulation observed on certain IRE-containing mRNAs. We did discuss the molecular candidates quite extensively in the Discussion section of the manuscript (Fe2+; oxygen; reactive oxygen species), and it remains quite obviously the main question whether the observed diurnal control could be mediated directly by changes in intracellular iron availability.

      Of note, the preprint by Bennett et al., for which we cite the initial biorXiv version in our manuscript, was updated very recently (https://doi.org/10.1101/2023.05.07.539729 – see version submitted December 18, 2023). It now includes new data that analyses around-the-clock iron levels also in liver. Briefly, the preprint shows, first, that serum iron is rhythmic with a peak during the dark phase at ZT16 (Figure 1D in Bennett et al.) yet loses rhythmicity when feeding is restricted to the light phase (Bennett et al., Figure 2E), indicating both feeding-dependence and circadian gating. Moreover, liver total non-heme iron – quantified using a method that measures both ferrous Fe(II) and ferric Fe(III) – shows low-amplitude diurnal variations which, however, do not meet the threshold for rhythmicity significance (Bennett et al., Figure 3G). Still, the difference between timepoints ZT4 (lower iron; light phase) and ZT16 (higher iron; dark phase) is reported as significant, with a fold-change that is not very pronounced (not compatible with the observed direction of regulation of Tfrc mRNA, whose higher abundance in the dark phase would rather be in line with lower *cytoplasmic iron levels, as pointed out by the authors.

      Thus, at first sight the analyses by Bennett et al. would appear to answer part of the Reviewer’s question and point towards other mechanisms of regulation than iron levels themselves. However, it should be pointed out that the particular methodology for iron measurements used by the authors includes the use of reducing reagents and hence quantifies the sum of Fe2+ and Fe3+ iron. Large amounts of iron are stored in the liver in the form of ferritin-bound Fe3+, yet the bioactive, low-complexity iron that is considered relevant for IRP regulation is in the Fe2+ form. Therefore, the question whether bioactive ferrous iron levels follow a daily rhythm, compatible with the observed IRP/IRE rhythms described in our manuscript, still remains an open question and warrants a dedicated set of experiments that we are proposing to conduct in response to the Reviewers’ comments.

      Briefly, for the revision we propose to use liver pieces from the two relevant timepoints of our study (i.e., ZT5 and ZT12) and apply a method that allows the separate quantification of Fe2+ and Fe3+ (Abcam iron assay ab83366; this assay can be adapted to liver iron measurements, see e.g. PMID31610175, Fig. 4A). This experiment will provide novel and decisive data on the molecular mechanism that may regulate the IRP/IRE system in a rhythmic fashion and therefore add to the significance of our findings, as requested by the reviewers.

      Moreover, we believe that the outcome of the experiment would be very interesting either way, i.e. if we find rhythms in Fe2+ that are compatible with rhythmic IRP/IRE regulation, we would be able to provide excellent evidence in term of likely molecular mechanism and rhythmicity cue. If, by contrast, we find that Fe2+ is not rhythmic, it will point towards a mechanism that is distinct from simple Fe2+ concentrations.

      In the latter case, collecting additional evidence on relevant alternative molecular cues would be beyond our capabilities for this particular manuscript, as it would require quite sophisticated methodological setup and preparation. For example, one could imagine that measuring around-the-clock liver oxygen levels in vivo – another candidate cue – would be highly interesting, yet we would not be able to conduct these experiments in a reasonable time frame (to start with, we would first need to request ethics authorisation from the Swiss veterinary authorities, which would in itself take ca. 4-6 months before we could even start an experiment). Thus, in the case of non-rhythmic iron levels, we would leave the question of other responsible cues open, but still think that with a balanced discussion of the resulting hypotheses we could provide significant added value to our work.

      (B) Major comment raised by Reviewer 1: “Alas2 is expressed mainly in erythroid cells and not liver, whereas Alas1 is ubiquitously expressed. Therefore, it is possible that Alas2 in this study may originate from red cells/reticulocytes in the liver, and not from hepatocytes.”

      Our response and revision plan: We would like to thank the Reviewer for the comment that is indeed pertinent. It is well established that Alas1 is the main transcript encoding delta-aminolevulinate synthase activity in hepatocytes, and Alas2 is about 10-fold less abundant in total liver RNA-seq data (quantified form own RNA-seq data, not shown).

      We are nevertheless relatively sure that the Alas2 signal comes from low expression in hepatocytes; the best argument in support of this hypothesis is the analysis of single-cell RNA-seq data, as shown in the following Revision Plan Figure 1, which we would be happy to include in a revised version of the manuscript if the reviewers wish:

      (C) Minor comment raised by Reviewer 1: “The paper is dense and not easy to read. For example, the section on Tfrc regulation and NMD regulation is lengthy and perhaps not necessary for the paper and the section on "Previous observations in IRE-IRP regulation...." could be included in the discussion rather in than in the Results section. Some figures could be included in a supplement.” continued in Referee cross-commenting “I agree with Reviewer 2 that the first sections in the manuscript are lengthy and not needed.”; moreover, Reviewer 2: “Also, the manuscript first sections (which mainly describe negative results) seem too long and descriptive.”

      Our response and revision plan: We shall reorganize the paper accordingly, with the aim of making it an easier, shorter, clearer read. Many thanks for the input.


      (D) Minor comment raised by Reviewer 1: “A description of the new anti-IREB2 antibody is needed. What IRP2 sequence was used to generate antibodies?”

      Our response and revision plan: The following information will be included in the manuscript: “Rat monoclonal antibodies against ACO1/IRP1 and IREB2/IRP2 were generated at the Antibodies Core Facility of the DKFZ. Briefly, full-length murine ACO1/IRP1 and IREB2/IRP2 proteins, fused to a poly-histidine tag, were expressed in E. coli and purified on Ni-NTA columns using standard protocols. Purified His-tagged proteins were used to immunize rats and generate hybridomas. Hybridoma supernatants were first screened by ELISA against His-tagged ACO1/IRP1 and His-tagged IREB2/IRP2. As an additional control, supernatants were tested against full-length His-tagged murine ACO2 (mitochondrial aconitase), which shares 27 and 26% identity with ACO1/IRP1 and IREB2/IRP2, respectively. Supernatants reacting specifically with ACO1 or IREB2 were validated by western blotting using extracts from wild-type versus ACO1- or IREB2-null mice.”

      (E) Minor comment raised by Reviewer 1: “A model summarizing the data would be useful.”

      • *Our response and revision plan: Thank you for the suggestion – this will be done.

      (F) “Optional” idea raised by Reviewer 3: “One nuance in the field of circadian biology is that a rhythm is deemed to be genuinely "circadian" when it continues in the absence of zeitgebers. In this sense, although all experiments are valuable, the "collapse" of the rhythm in the paradigms where dietary rhythms have been disrupted makes the phenomenology a candidate "epiphenomenon" rather than being closer related to the biological clock(s). Likewise, in the manuscript we never learn how the liver IRE-binding activity behaves in constant darkness.”

      Our response and revision plan: This is an important aspect that we can clarify more specifically in our manuscript. It is true that constant (darkness) conditions are used to call a phenomenon circadian. We would nevertheless argue that for a rhythmic feature that is specifically found in liver, the constant darkness definition to distinguish circadian from non-circadian is not fully valid because even in constant darkness, the liver clocks are not in a free-running state but continue to be entrained by the SCN clock (it is only the latter that is free-running under these conditions).

      In our manuscript, we actually suggest that the observed rhythms are not a core output of the circadian machinery (Fig. 6 of our manuscript), but indirectly engendered through feeding rhythms, which are coupled to sleep-wake cycles and thus connect in an indirect way to the central circadian clock activity in the SCN.

      In wild-type mice we would therefore expect that irrespective of constant darkness or light-dark entrainment (and assuming ad libitum feeding), the hepatic rhythms of the relevant IRE-containing transcripts would persist in a similar fashion.

      (G) “Optional” idea raised by Reviewer 3: “Where the authors mention in a parenthesis "moreover, there are documented links between iron and the circadian timekeeping mechanism itself", I invite them to take a closer look to the paper Konstantinos Mandilaras and I coauthored in 2012 "Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster". In that work, we showed that RNA interference of genes that are required for iron sulfur cluster formation (including on IRP1) in the central clock neurons of the fly result in loss of the circadian rhythm when flies were kept at constant darkness (not so when they were kept under light:dark oscillation). So this point should probably remain open..”

      Our response and revision plan: We would like to thank the Reviewer for pointing out this interesting connection that would fit well into the context of our manuscript. It should be cited in the context of our current Figure 3, where we measure in vivo and in tissue explants whether IRP-deficiency affects the clock itself.

      To follow Reviewer 3’s idea, we have gone a little further in our analyses of around-the-clock expression data to see if any of the components of the Fe-S assembly machinery is rhythmic itself, which could have the potential to add novel information.

      Briefly, we have used for this purpose our around-the-clock RNA-seq and ribo-seq data from PMID 26486724. In summary, we find that the expression at RNA and/or footprint level is non-rhythmic for the vast majority of genes involved in FeS biogenesis, assembly or transport, with the exception of low-amplitude rhythms for Glrx5 and Iba57 (Revision Plan Figure 2).

      By contrast, all of the following other genes are non-rhythmic throughout (list of Fe-S-relevant genes from PMID34660592): Cytoplasmic/nuclear, all non-rhythmic: Cfd1=Nubp2, Nbp35=Nubp1 , Ciapin1, Ndor1, Iop1=Ciao3=Narfl, Ciao1, Ciao2b=Fam96b, Mms19, Ciao2a=Fam96a; mitochondrial, all non-rhythmic: Iscu, Nfs1, Isd11=Lyrm4, Acpm=Ndufab1, Fdx1, Fdx2=Fdx1l, Fxn, Hspa9 Hsc20=Hscb, Abcb7, Alr=Gfer, Isca1, Isca2, Nfu1

      As these are mainly “negative results”, and as we are also unable to propose a solid possible mechanistic connection between the Glrx5 and/or Iba57 rhythms and the rest of the story of our manuscript, we do not intend to include such data in our manuscript, but are only putting it for the record into this rebuttal.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      NONE

      4. Description of analyses that authors prefer not to carry out

      NONE – we think we can address all points as described above.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2023-02224R

      Corresponding author(s): Austin Smith

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for constructive comments and helpful suggestions which we have adopted to clarify and improve the manuscript. In addition, we have added a link to a web portal that will allow readers to visualise gene expression profiles and create their own plots using our early human embryo UMAP embedding (https://bioinformatics.crick.ac.uk/shiny/users/boeings/radley2024umap_app/). Stefan Boeing created this tool and is added to the author list with agreement of other authors.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary In this manuscript, Arthur Radley and Austin Smith designed a new feature selection method for scRNA-Seq, which is a successor to ESFW previously proposed by the same authors. As an evolution of this earlier framework, cESFW is also based on the idea that informative genes share information with other genes, whereas non-informative genes have a more random relative expression. The authors emphasize the key importance of feature selection in the scRNA-Seq workflow and assess the current state of the art for this step. They also propose that better feature selection leads to less data transformation. They show that cESFW outperforms Scran and Seurat feature selection in most cases of synthetic datasets. cESFW is then used in the context of early human development, re-analysing data from several published datasets where they show that they do not require batch correction. They also further strengthen the conclusion that a "2-step" model for TE-ICM and EPI-Hyp differentiation is also present in human embyros. Finally, they map several types of in vitro pluripotent stem cells, in particular primed and naive, to their manifold and study the evolution of the gene signatures during early human development. Overall, the manuscript is well written and presents a solid methodology. The re-analysis of human early development is convincing and justified. The main critic is that the quality of figures can be greatly improved: their resolution is too low and they are hard to read. For instance, more contrasted color schemes could be used to improve clarity, and given the high number of clusters for some UMAPs, indicating the name of some cluster near their centroids should improve clarity.

      We agree that the resolution of the figures should be improved. We had to compress the images to satisfy the size limit for uploaded documents to bioRxiv. Our final submission will be of higher quality (original figures are at 900dpi). With regards to colour schemes, this is a surprisingly difficult problem. We tried multiple colour palettes but could not achieve greater contrast. The suggestion to add key cluster names near to their centroids on the UMAPs is an excellent idea, which we have implemented.

      Comments: Page 2 I think the criticism of PCA is unfair because it is not a true feature selection method, and it is mainly used for computational purposes. I believe that for most workflows, between 30 and 50 PCs are retained, which do not significantly change the results in the downstream analyses. The citation (Yeung and Ruzzo 2001) does not seem appropriate, as they examine cases where only a small number of PCs are retained, outside the context of scRNA-seq.

      We agree that the criticism of PCA is insufficiently justified by the citation. We thank the reviewer for pointing this out and have removed the comment.

      "Furthermore, HVG selection has been found to be biased toward selecting highly expressed genes over low expressed genes." Could the author justify or remove this statement, as the Seurat and Scran methods are specifically designed to consider average expression to determine HVG? The cited article (Yip, Sham, and Wang 2019) raises this issue for methods other than Seurat and scran.

      The reviewer is correct that the provided citation highlights Seurat and Scran HVG selection as relatively insensitive to the average gene expression levels compared with other HVG selection methods. We again thank the reviewer and have deleted the comment.

      More generally, we have shortened the introduction, focusing on cESFW as a new approach to feature selection rather than critiquing alternative methods.

      Page 6 I might have missed it, but I do not understand the number of cells in the early human development dataset also shown in Figure S2B. The Petropoulos et al. dataset alone is larger than the sum of cells from different cell types. Is there some filtering step that is not described?

      We have added text in the data availability section to clarify the cells used in our analysis:

      “The pre-implantation raw counts scRNA-seq data from Yan et al. 2013, Petropoulos et al. 2016, Fogarty et al. 2017, and Meistermann et al. 2021, were compiled into a single gene expression matrix by Meistermann et al. 2021. For information regarding quality control and cell filtering of these 4 datasets, please refer to Meistermann et al. 2021.”

      The unsupervised clustering used to annotate cell types is unconventional (especially with the high number of clusters chosen), which is not a problem, but should be clarified. Improving the figure 3D to make it clearer and providing a cell cluster correlation plot might help to better appreciate the relationship between cell types.

      We agree that the gene expression heatmap in figure 3D contributed little to the interpretation of the data/results. As suggested, we have replaced this heatmap with a cell cluster correlation plot to help appreciate cell state similarities. (Changes in figure 3.)

      It could be emphasized that the ICM/TE branch cell type is a major difference with the mouse topology, as the readers might not be aware that the ICM/TE is an unspecified blastocyst state that only exists in humans.

      There appears to be some misunderstanding around the use of “ICM/TE branch”. The cluster comprises an uncommitted population at the branching point from morula to either ICM or TE, as also described in the mouse embryo. We have adjusted the discussion to make more clear that the two branching point clusters are heterogeneous populations, not unitary cell types or states:

      “The branching populations reside at critical junctures in blastocyst formation, the partitioning of extraembryonic and embryonic lineages. These branchpoint clusters do not define unitary states. On the contrary, cells in these clusters are heterogeneous and may become specified to alternative fates. For example, PDGFRA, a hypoblast marker (Corujo-Simon et al. 2023), and NANOG, an epiblast marker (Allegre et al. 2022), are heterogeneously distributed in the Epi/Hyp branching population. Furthermore, branch cluster boundaries extend beyond the topological bifurcation, potentially indicating that cells remain plastic and may be redirected. This would be consistent with the demonstration in mouse embryos that cells expressing ICM genes remain capable of generating TE up to the late 32-cell stage (Posfai et al. 2017).”

      Page 9 To further substantiate the stepwise ICM/TE and EPI/PrE specification events, authors could project cells from each embryo on the UMAP, and analyze what are the co-occurrence of cells (as performed for instance in Meistermann et al 2021). This should show as reported (and cited by the authors) that some GATA3 positive cells (TE fated) start appearing from late morula stage and that ICM cells almost never co-exist with EPI nor Hyp in embryos.

      We appreciate this suggestion. We have generated the requested plots showing where cells from individual embryos at different developmental timepoints are positioned on our UMAP embedding. (new supplemental figure (New figure, Figure S6). We present a summary heatmap of cell co-occurrence in revised Figure 4. These results offer greater insight than the RNA velocity analysis, which we have moved to supplemental Figure S6. We have added discussion of these analyses in the “Lineage branching blastocyst development” Results section.

      Reviewer #1 (Significance (Required)):

      The presented methodology shows significant value especially in the field of scRNA-Seq, where the critical step of feature selection is often inadequately addressed. Furthermore, this field is characterized by a limited set of feature selection methodologies. cESFW appears to be an important alternative to HVG methods that could improve scRNA-Seq analysis in certain contexts.

      The new findings on early human development are somehow incremental, but a welcome addition to solidify the two-step model and refine the concept of reject cells. The audience for this early development context is specialized, but cESFW will most likely have an impact to the entire field of scRNA-Seq analysis.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Here, Radley and Austin present a novel approach for feature weighting in scRNAseq data based on entropy sorting. Feature selection is a central part of scRNAseq analysis, and it is most likely the case that there is no single approach that outperforms all others across all datasets. Hence, innovation in this space is needed for the field. The cESFW method presented here has several appealing properties from a theoretical point of view, and it also performs well on the synthetic and real datasets considered. Nevertheless, there are several major issues that need to be addressed before I can recommend the manuscript for publication:

      1 The original entropy sorting (eq 1 in SI 1) is based on only two discrete states. However, calculating entropy for continuous distributions can be more tricky and it is unclear to me what assumptions are made regarding the gene expression. Could the authors clarify what properties of the distribution are required for the updated ESE equation to be valid? Is the only assumption that values are drawn from the [0, 1] interval? What happens if values are highly skewed, ie forming a bimodal or power-law distribution rather than something close to a uniform distribution?

      We agree that it is beneficial to clarify these points. We have added a section titled “Assumed properties of underlying sample distributions” to the supplemental information. Briefly, we show that the ESS correlation metric is directly linked to the commonly used correlation metric, Mutual Information (MI). A desirable properly of MI is that it is able to capture non-linear/skewed relationships between features. The ES framework and ESS share this property with MI, allowing the ES framework to be relatively robust to presence of non-uniform distributions.

      The main assumption for applying ES is that the features can be meaningfully scaled between values of 0 and 1. For gene expression, an intuitive way of achieving this is to inspect each gene and designate 0 count values as having 0 expression activity, and the maximum counts as having activities of 1, and all values in between existing within the [0,1] interval. A useful property of ES is that we do not need to assume a particular shape or distribution of the samples within the [0, 1] interval. The ES framework is non-parametric and does not require an assumed distribution to calculate the conditional entropy (CE), even in the continuous form. This is possible because the ES framework is formulated by turning the probabilistic form of CE into an ordinary differential equation (ODE), where the only dependent variable, x, is the overlap between the minority state activities of each individual sample. This calculation is explicitly identifiable/calculable, and is permutation invariant, meaning the shape of the distributions of a reference feature (RF) and query feature (QF) does not need to be assumed/defined. In other words, the ES framework quantifies to what degree active expression states enrich/overlap with one another in a manner that is robust to different distribution shapes.

      2 How robust is the procedure for the choice of percentile for normalizing the gene expression scores? Does one get roughly the same results for 90-99th percentile or is it sensitive to this choice?

      We have carried out a sensitivity analysis on the choice of percentile for each of the synthetic datasets and added it to the manuscript. (New figure, Figure S11). We find that on each of our 4 synthetic datasets the final results of cESFW are robust to a wide range of normalisation percentiles.

      3 Similarly, I am concerned about the procedure for how to choose the number of significant genes. How robust is this process? Also, it is not altogether clear how to generalize the procedure outlined on p19. Most potential users would benefit from more quantitative guidelines. In particular, having to rely on interpretation of GO terms typically requires a considerable amount of understanding about the system at hand which could make it challenging to apply the procedure for others. For most users it would be helpful to know how robust the procedure is to this step and also if there could be more stringent guidelines for how to decide which genes to include.

      We understand the reviewers concern regarding the robustness of feature selection on real scRNA-seq datasets. We have now applied our cESFW workflow to peripheral blood mononuclear cells (PBMC) scRNA-seq data, and found cESFW feature selection to be comparable, and by one metric more robust, than Seurat and Scran HVG selection (New Figure S2).

      As cESFW is applied to more scRNA-seq data, we will learn more about how results compare to highly variable gene selection, and how workflows may be adapted to optimise results in different scenarios. For example, we have found that supervising the selection of gene clusters using a small set of markers known to be important in the system of study can help identify which clusters of genes should be retained during gene selection. We have added this to the materials and methods with the following paragraph:

      “Furthermore, we suggest supervising the selection of gene clusters using a small set of markers known to be important in the system of study. In this work, we found that genes known to be important during early human embryo development (FigS4) are enriched in the dark blue cluster of genes, further suggesting that this cluster of genes is more likely to separate cell type identities in downstream analysis.”

      While gene cluster selection supervision in this manner requires a degree of domain expertise, we believe this is not unreasonable for most applications, and is the case for many scRNA-seq analysis pipelines.

      Our primary software contribution is the cESFW algorithm which calculates the ESS and EP matrices. With this manuscript we provide 6 commented workflows for applying cESFW to different datasets (4 synthetic data, human embryo data, PBMC data). We believe these workflows provide a good balance of documented use cases and user flexibility for cESFW usage. This is important because it is advantageous to be able easily to adapt workflows to incorporate domain expertise and different methodologies. Although workflows such as Seurat and Scran are user-friendly, their rigidity can be difficult when wanting to deviate from their standard workflows. In summary, we believe that our provided workflows are suitable for users to implement cESFW, while providing the flexibility to apply adapted pipelines.

      4 The comparison of the clusterings on p6 is not really fair is it? If I understand it correctly, the 3,012 genes identified by cESFW was used to define clusters in fig 3c through unsupervised clustering. The authors then use HVG methods to identify 3,012 genes and then carries out clustering based on those. To evaluate the methods the silhouette score is used, but the labels from the cESFW clustering is used as ground truth. This does not sound like a fair way to compare. Could the authors please clarify, and if needed come up with an approach where the three methods have a more level playing field if needed.

      The reviewer raises a fair point regarding the comparison of cluster identities and ranked gene lists. This issue is a chicken and egg problem, in that we require a baseline to benchmark different methodologies but lack an explicitly defined ground truth. For that reason we used synthetic datasets for initial comparison.

      For the human embryo data, we have presented substantial evidence that our cluster annotations are biologically coherent and consistent with prior knowledge. We therefore consider it legitimate to compare the ranked lists of Seurat, Scran and cESFW. However, we acknowledge the potential bias and have mentioned this in the “Limitations of the study” section.

      In addition, we have now analysed the peripheral blood mononuclear cells (PBMC) scRNA-seq dataset that is used in the tutorial workflows of Seurat and Scran. This PBMC dataset is arguably better defined since it has more discrete populations of cells, and by using the Seurat generated cell type labels we bias the analysis towards Seurat rather than cESFW. The results show that cESFW performs comparably to Seurat and Scran, and that the cESFW ranked gene list may be more stable than Seurat and Scran. These results suggest that cESFW can be widely applicable as a suitable alternative for feature selection. We have included this analysis in the Results and as a supplemental figure (New figure, Figure S2).

      5 The main cESFW.py file in the github repository is clearly well structured and commented. However, I would like to see a much better documentation so that one does not have to go through the source code to understand what functions there are and what they do. In particular, I would like to see a vignette to make it easier for others to incorporate cESFW into their workflows.

      We thank the reviewer for the positive comments regarding our cESFW.py commenting. We accept that our initial submission failed to point the reader directly towards our example workflows that provide step by step, well commented vignettes for using cESFW to analyse scRNA-seq data. In our initial submission we provided 5 workflows (4 synthetic data and the human embryo data), and in the re-submission we have added a workflow for analysing PBMC data. We have updated our cESFW Github to guide users to these example workflows (https://github.com/aradley/cESFW/tree/main).

      Please note, the embryo workflow will be easily accessible through GitHub, whereas the synthetic data and PBMC workflows will be provided through a Mendeley data link (referenced in the manuscript and on our GitHub). However, the content of the Mendeley link cannot be made public until the paper is finalised, as it cannot be changed after publication. We provide a temporary public Dropbox link for the reviewers so that they may access the additional workflows (https://www.dropbox.com/scl/fo/xr5o9xm6490ftjsa55wxg/h?rlkey=maindrxwdqnirsw1en3my5qsr&dl=0).

      Minor:

      Why are the figures not always in order? For example, fig S10 is mentioned before fig S2 on p 6

      Thank you for pointing this out; we have amended the text.

      I am not sure if the indexing in eq 1 (p 18) is correct. j is both on the LHS and it is also being summed over on the RHS. Should one of these be i instead?

      The indexing is correct. Each column j of a matrix refers to gene/feature on the RHS, and in the calculation on the RHS we take the column averages, leading to vector on the LHS that is still indexed by genes/features j. We have clarified this in the text.

      Reviewer #2 (Significance (Required)):

      The work presents a new method for feature selection in scRNAseq. Feature selection is a very important step and can have a big impact on findings. The method presented here is theoretically sound and it seems to provide interesting result when applied to early embryo development. However, as cESFW is only tested for one dataset it is unclear how well the method generalizes to other problems and datasets.

      Appreciation of the utility of cESFW will grow as it is applied to more datasets. However, we would like to highlight that the human embryo dataset consists of 6 independent scRNA-seq datasets from different laboratories, and that cESFW was able to identify common and differing structure between them without any batch correction, smoothing or feature extraction. We have added to our summary that we propose cESFW may be best suited to analysis of transcriptome trajectories in time course and developmental data. However, we have also now performed comparison of Seurat, Scran and cESFW feature selection in a different context, using a reference PMBC scRNA-seq dataset. The results demonstrate that cESFW is a viable alternative for feature selection in that static system also (New figure, Figure S2).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the three reviewers for their thoughtful and constructive comments. The changes to the text and figures made in response to the questions raised have made this a clearer and stronger manuscript. The additional citations suggested by the reviewers helped to further anchor our study within the growing literature on facultative parthenogenesis. Below we have responded to each comment in blue. We have added new data to the manuscript (Fig. 4C, Fig. S10B and Fig. S10D).

      Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      1. Summary: Here Ho et al. provide strong molecular evidence for the production of facultatively parthenogenetic whiptail lizards, through a gametic duplication. As evidenced through multiple routes, including microsatellites, WGS, RADseq, and RBC ploidy, and lines of evidence from multiple specimens, this study is timely in furthering our understanding of the mechanisms underlying FP. The findings are conclusive.

      That said, I have several comments that should be addressed prior to publication. The introduction which addresses FP in other systems fails to cite several key studies that provide strongly molecular support for terminal fusion automixis. Similarly, the study pushes the idea that this is an adaptive trait, however without proving that the parthenogens can themselves reproduce, this is a moot point at this stage.

      That said, my comments are minor. I found this to be an excellent study, well written, comprehensive in methodology, and one that I strongly advocate for publication.

      We thank reviewer 1 for referring to our manuscript as an excellent study and strongly advocating for its publication. We concur with his/her points that evidence for automixis in other systems was not sufficiently referenced and that the adaptive trait hypothesis for FP is somewhat speculative. The text has been modified accordingly (see below).

      Major comments - None.

      Minor Comments: Should be addressed.

      Line 36 - However, data that supports terminal fusion are no longer restricted to microsat data. Studies utilizing RADseq and whole-genome sequencing in snakes and crocodiles have now provided further evidence supporting terminal fusion.

      See: Booth et al. 2023. Discovery of facultative parthenogenesis in a new world crocodile. Biology Letters. 19, 20230129.

      Card et al. 2021. Genome-wide data implicate terminal fusion automixis in king cobra facultative parthenogenesis. Scientific Reports. 11, 1-9

      Allen et al. 2018. Molecular evidence for the first records of facultative parthenogenesis in elapid snakes. R. Soc. Open. Sci. 5, 171901.

      We have now included that automixis in other systems is supported by both microsatellite and NGS data in the abstract of our manuscript. The references have been included in the main text.

      Ln 42 - Evidence suggesting that isolation from males was not a pre-requisite for FP has previously been reported in snakes.

      See: Booth et al. 2011. Evidence for viable, non-clonal but fatherless Boa constrictors. Biology Letters. 7, 253-256.

      Booth et al. Facultative parthenogenesis discovered in wild vertebrates. Biology Letters. 8, 983-985.

      Booth et al. 2014. New insights on facultative parthenogenesis in pythons. Biol J Linn Soc. 112, 461-468.

      Despite the prior evidence to the contrary cited by the reviewer, it is still a commonly held belief among scientists and science journalists that isolation from males promotes or triggers FP. We have placed our findings in the context of other studies, including those mentioned above, that came to the same conclusion that isolation from mating partners is not a requirement for FP. We thank the reviewer for the additional citations, which are now included in the discussion section.

      Ln 48 - Is this really an argument. While an immediate transition to homozygosity will purge some deleterious alleles, given the genome-wide nature of this, there will also conversely have been strong selection for mildly deleterious alleles.

      Even though many FP animals have congenital defects, our data, combined with that of others, show that seemingly healthy animals arise as well. Even if these healthy animals harbor slightly deleterious alleles, the most detrimental alleles would have therefore been purged especially for subsequent generations. We have modified the abstract to be clearer: “Conversely, for animals that develop normally, FP exerts strong purifying selection as all lethal recessive alleles are purged in one generation.”

      Ln 56 - I would recommend the inclusion of both Allen et al. 2018. R. Soc. Open Sci, and Card et al. 2021. Sci Reports, here, as they are members of the elapids, not represented in the other examples.

      These two citations have been added.

      Ln 60 - Recent studies have highlighted the significance of sperm storage in reptiles. For example, Levine et al. 2021. Exceptional long-term sperm storage by a female vertebrate. PLos ONE. 16(6).e0252049, describe the storage of sperm by a female rattlesnake for ~70 months, with two instances of its utilization to produce healthy offspring during that period. Clearly, molecular tools are providing both support for long-term sperm storage, and an understanding of its utilization.

      Recent work has indeed provided new evidence for instances of long-term sperm storage and the two mechanisms are no longer competing hypotheses, but it is clear that both mechanisms exist in nature. We have modified the text accordingly to include “Nevertheless, clear examples of long-term sperm storage have also been documented in the recent literature (29), underscoring the need for molecular methods such as MS analysis or sequencing data to elucidate the underlying mechanisms.”

      Ln 68 - American Crocodile would also be suitable to include here.

      This has now been included in the list of examples of endangered species.

      Ln71 - The problem with this hypothesis is that parthenogens produced through FP tend to have very low viability. For example, Adams et al. 2023. Endangered Species Research, follow a cohort of sharks produced through FP and all survive. Similarly low levels of survival are reported across other systems for which FP was reported. More likely, FP is simply a neutral trait. The mother is not negatively impacted through producing parthenogens and can go on to produce sexual offspring. Few instances report successful reproduction of a parthenogen. See pers. Comm in Card et al. 2021. And Straube et al. 2016.

      We thank the reviewer for the comment and agree that more data on the successful reproduction of parthenotes are needed to claim that FP is an adaptive trait. We have modified the text to include that studies on “the successful reproduction by FP offspring” are needed to support this hypothesis and have included the Straube et al. 2016 citation. We decided to omit the Card et al. 2021 citation as the reports of second-generation FP was through personal communication mentioned in this study and the results themselves have not yet been published.

      Ln 79 - I doubt that there is a desperate need for this for conservation. However, I think there is a need to simply further our understanding of basic biological function, given that it is not uncommon, and is phylogenetically widespread in species lacking genomic imprinting.

      We agree that understanding FP as a basic biological function is important in light of the realization that it occurs more commonly than previously thought. We have added this aspect to the text: “A better understanding of the triggers and molecular mechanisms underlying FP and the fitness of the resulting offspring are therefore needed in a variety of contexts. These include: to understand a fundamental biological mechanism and its significance in vertebrate evolution, to aid in conservation efforts including captive breeding programs, and to possibly harness FP in an agricultural context (28).”

      Ln 85 - It would be worth citing Card et al. 2021., here given that they used genome-wide ddRAD markers to show support for terminal fusion.

      The citation has been added.

      Ln 91 - Better citations here are Card et al. 2021. Allen et al. 2018, and Booth et al. 2023, which all utilize either RADseq or WGS.

      These citations have been added.

      Ln 95 - The conclusion of genome duplication here was supported only by a small number of microsatellite loci. As such, given that terminal fusion has been supported through genome-wide markers in other species of snakes and crocodiles, the conclusion of genome duplication is likely incorrect.

      In light of the other examples that show terminal fusion in snakes, we have removed this sentence.

      Ln 96 - I would strongly disagree with this statement. Allen et al. 2018, Card et al. 2021, Booth et al. 2023, all provide evidence of heterozygous loci and thus support terminal fusion. While no species-specific chromosome level reference genome is available for any of these species, the fact that levels of heterozygosity are below 33% percent supports terminal fusion. Rates over 33% support central fusion, but have not been reported in any vertebrate to date. AS such, I would recommend the removal of this statement.

      We agree that the studies listed by the reviewer all support terminal fusion in snakes and crocodiles and therefore, we have removed the statement.

      Ln 121 - Recent work in Drosophila mercatorum and D. melanogaster suggest that three genes play a role in the activation of FP in unfertilized eggs. In this case, through the fusion of meiotic products. That said, it is plausible to assume that FP in these lizards has an underlying genomic mechanism that is not related to isolation from males. See Sperling et al. 2023. Current Biology. 33, P3545-P3560.E13.

      Clearly isolation from males is not a key trigger in FP in whiptail lizards and other vertebrate species. With recent work from Sperling et al. 2023 and the fact that selection has led to increases in parthenogenesis in birds, an underlying genetic mechanism may well be at play. We have cited and addressed this in the discussion and propose identifying the genetic basis for FP in whiptail lizards in future studies.

      “Recent work identifying key cell cycle genes inducing FP in two species of Drosophila (71) and selection resulting in higher incidences of parthenogenesis in birds (24, 33) suggest a genetic basis for the initiation of FP. [...] Additional whole-genome sequencing data for species with documented FP will aid in the understanding the genetic basis, propensity, and evolutionary significance of FP.”

      Ln 126 - While these data strongly support FP of the two unusual A. marmoratus appearing offspring, can long term sperm storage be ruled out. Either through captive history or allelic exclusion of other males in the group?

      We have added the following sentence to the text: “Given that all of these offspring are female, inherited only maternal alleles, and animal 122 had no history of being housed with a conspecific male during its lifetime, both interspecific hybridization and long-term sperm storage are all but ruled out and FP is strongly supported.”

      Ln 171 - 191 - Given that the topic of this manuscript is the genomic mechanism underlying FP in this species, are these data necessary? These are not discussed later and as such I would recommend that they are moved supplemental material. Otherwise, they simply clutter that manuscript and detract from the key question. Indeed, they are important to show that the genome constructed is of high quality, but online Supp Mat is the place for that here.

      We chose to keep this section in the main text for the following reasons: There is still a lack of published reference quality genomes for many reptile species and therefore we want to highlight that this A. marmoratus reference adds not only to the understanding of FP, but also expands the small list of reptile genomes and makes the first Aspidoscelis genome available to the community. The high quality and contiguity of the genome (as indicated by the high N50 value and BUSCO score) is important to emphasize in the main text because the absence of any heterozygous regions in FP animals supports a mechanism of post-meiotic genome duplication. We would not want to bury these key points in the supplement.

      Ln 296 - Comparable estimates were made for parthenogenetic production in wild populations of two North American pitviper species. See Booth et al. 2012. Biology Letters.

      In Booth et al. 2012, 2 out of 59 litters of the two pitvipers (3.39%) were identified to contain FP offspring and these results are very similar to our reported rate of FP in whiptail lizards. We have now included this similarity in our discussion. “Interestingly, these rates are similar to what has been reported for wild populations of two North American pitviper species (10)”.

      Ln 312 - Again, can this really be suggested? Above, the authors state that most FP animals that hatched had congenital defects, and a large number failed to hatch. This does not sound like strong support for generating individuals that counter the effects of population bottlenecks and inbreeding depression. The authors need to take this study further and monitor the long-term viability of the FP individuals that survive.

      We agree with the reviewer that the adaptive advantages of FP reproduction are dependent on the fitness and reproductive potential of FP offspring and present data is insufficient to clearly support this notion. We have modified the text to include that long-term studies are needed to support or refute this hypothesis: “However, support for this hypothesis is predicated on the fitness and reproduction of FP offspring and therefore more long-term studies on seemingly healthy individuals of FP origin are needed.”

      Ln 348 - To be able to provide support for this, you need to track animals long term to understand their reproductive competence, and that of their offspring.

      We have added the text: “To assess whether the co-occurrence of sexual and FP reproduction in vertebrates can indeed be considered a reproductive strategy rather than biological noise will require further studies to assess the reproductive competence and fecundity of offspring produced by either mode of reproduction.”

      Ln 358 - But, the caveat is that the parthenogens must themselves reproduce. This must me stated.

      The statement that parthenogens must be able to reproduce to support a hypothesis of FP as an adaptive trait has been added: “One must now consider the possibility that FP is an adaptive trait and that low rates of successful FP could contribute significantly to genome purification. Such a role for FP hinges on further studies demonstrating the ability of parthenogens to reproduce themselves either through further FP or sexually.”

      Ln 359 - Note that FP can also fix mildly deleterious alleles. Only if it is strongly deleterious will it be lost.

      We now make it clearer that selection only applies to strongly deleterious alleles.

      Ln 361 - See above comments.

      We have modified the text to include that “FP offspring will have low genetic load and only pass on neutral and mildly-deleterious alleles to the next generation.”

      Reviewer #1 (Significance (Required)):

      1. Significance:

      While reports of parthenogenesis have been reported as far back as the early 1900's, it has only been over the last decade that reports are become common. Such that facultative parthenogenesis is no longer considered a rarity, but is recognized now as being relatively common and phylogenetically widespread in species that lack genomic imprinting - particularly reptiles, birds, and sharks. Reasons for this are both an increased understanding that the trait can occur, hence recognizing it as an alternative mechanism to long-term sperm storage, and the ease of using molecular approaches.

      The fundamental questions of recent times have been understanding the mechanisms driving FP. Recent papers utilizing whole genome sequencing and ddRADseq have provided support for terminal fusion automixis in snakes and sharks. Here, this study provides evidence of gametic duplication in whiptails, a mechanism with an alternative outcome in regards to the levels of retained heterozygosity. As such, this study compares to the recent work of Card et al. 2021 (Scientific Reports), and Booth et al. 2023 (Biology Letters), in providing substantive advances in the field.

      The audience for this will be broad. Parthenogenesis is a fascinating topic that attracts significant media attention. See the Altmetric score of recent papers on the topic, particularly Booth et al. 2023 (Altmetric score - ~3100). As such, the study will be of interest to both a broad readership, but will also be of great significance to a specialized group working on parthenogenesis. All round, an excellent paper that has promise to advance the field.

      We thank reviewer 1 for this positive assessment and for putting our work into context.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The researchers bring together microsatellite and whole-genome sequencing data from long-term laboratory cultures of lizards to discover occasional production of parthenogenetic offspring by several species of otherwise sexually producing whiptail lizards ("facultative parthenogenesis, "FP") and to show that these FP-produced lizards have patterns of genomic homozygosity that are incompatible with currently held assumptions about mechanisms of FP. Instead, the FP lizards seem to have been produced by a mechanism that results in almost complete homozygosity, likely a consequence of post-meiotic duplication of genomes from haploid unfertilized oocytes. They also show that FP offspring were produced by females housed with males and along with sexually produced offspring, counter to prevailing assumptions that FP offspring are only produced in situations where mates are not available. Many of the FP-produced offspring did not survive to hatching or had major abnormalities, consistent with a situation where this high homozygosity exposes harmful alleles. Finally, the authors used reduced-representation sequencing (RAD-seq) to survey heterozygosity in 321 wild-collected whiptail lizards from 15 species, showing evidence for strikingly low homozygosity in at least one individual and perhaps up to 5, consistent with the potential for FP in nature. These data are of broad interest in demonstrating several exciting new possibilities. Most importantly, the data hint at a different mechanism of FP than previously assumed, and one that causes immediate near-complete homozygosity. This scenario would likely lead to immediate purging of harmful recessive alleles. If the selective load of this purging wasn't insurmountably high, a lineage with a history of purging could produce FP offspring of relatively high fitness. Other exciting possibilities suggested by the data include the existence of FP even in a setting where mating occurs and in natural populations, versus just captivity.

      Major Comments:

      I found it difficult to impossible to sort out exactly what the researchers did and with what lizards. For example, in line 107, they refer to a "systematic MS analysis" for all individuals of gonochoristic species in their laboratory, but where are these data? Indeed, at this early spot in the paper, the introduction from here on out suddenly reads like a discussion. What would be better here would be to summarize what was known and wasn't known about the system and questions involved, why gaps in knowledge were important, and what the researchers actually did for this paper. In my opinion, the paper would be a much easier read if the researchers left the results and interpretation for later in the paper.

      As a consequence of the reviewers’ comments, the text of the manuscript has undergone major revision, and we trust that reviewer 2 will find this new version far more accessible. The MS data collection of more than 1000 individuals is the subject of another ongoing study and was only mentioned peripherally here to put the identification of FP into context. As most of the MS data relates to gonochoristic reproduction and interspecific hybridization, we are only presenting the data that are directly relevant to this manuscript as part of this study. To our knowledge, there is no common repository to upload raw MS data, but we have provided the data for the FP animals and controls discussed in this paper in the Github repository (see section “Data availability”).

      Even with this suggested fix, however, the data are still too inaccessible and analyses too opaque. For example, in line 202, a critical definition is laid out regarding heterozygous sites as those having "equal support" for two alleles. What do the researchers mean by "equal support"? My presumption is that this is something about equal or close to equal numbers of reads, but this definition needs to be spelled out and justified because it underpins much of the downstream analyses. A similar problem occurs in line 208-209, where the authors make a statement about limiting further analysis to positions in the genome where the coverage is "equal" to the mean sequencing depth.

      We have changed the text to “we defined heterozygous sites as those having two alleles supported by an equal number of reads. This stringent requirement was chosen to limit the search to apparent heterozygous sites with strong support, decreasing the chance of false positives.”. We further look at only sites where the coverage is equal to the average sequencing depth to exclude regions where over-assembly and collapse of repetitive elements would artificially increase the coverage.

      Another data/analysis issue emerges with the components of the manuscript that deal with mixoploidy. As far as I can tell, these data come from one sexually produced lizard, one FP A. marmoratus, and one FP A. arizonae. While the reports of bimodality of nuclear size are certainly interesting, the data and discussion are no more than an anecdotal case study in the absence of careful replication across multiple FP lizards and comparison to sexually produced lizards. Without these data, the conclusion that “Animals produced by facultative parthenogenesis are characterized by mixoploidy” (Figure 4 caption; also see lines 324-331) is far too strong.

      We have added animal IDs to figure legends 4 and S10 to clarify that these erythrocyte staining come from two FP A. marmoratus, and one FP A. arizonae. In addition, imaging from two sexually produced control animals (1 A. marmoratus and 1 A. arizonae) have now been included in S10 (as S10B and S10D). We also have included an extra panel of flow cytometry data (new Figure 4C) as a complementary methodology for ploidy determination. Both imaging and flow cytometry support similar amounts of haploid cells. With the additional data and clarification, we hope that the reviewer agrees that the observations of mixoploidy are well beyond “anecdotal”. Nevertheless, we have changed the title for Figure 4 to “Detection of mixoploidy associated with facultative parthenogenesis.” We hope that our observations here will indeed inspire future studies to see if mixoploidy is a widespread phenomenon in FP outside of whiptails as indicated by earlier work in birds.

      I had a similar reaction to the discussion of developmental abnormalities and embryonic lethality of embryos of FP origin presented in lines 263-281 (also lines 307-309). What is the baseline level of such abnormalities and the frequency of lethality in sexually produced eggs/embryos/hatchlings, and especially those produced via inbreeding? These comparisons are needed to interpret the significance of the patterns observed in the FP eggs/embryos/hatchings. Analogously, the comparison of the ovaries and germinal vesicles from one FP individual relative to one sexual individual do not tell us anything nearly so definitive as the text in lines 279-281 (also see Fig. S12 title, which is too broad of a conclusion for N = 1). This overly ambitious conclusion also underpins the discussion regarding the potentially adaptive nature of FP with respect to genome purification (lines 341-363; also see lines 47-50). If FP does not actually increase the rate of purging in FP lizards relative to inbred sexual counterparts (sounds like inbreeding is common from line 339), it seems less likely that we can view FP as adaptive at least from this perspective.

      We have now included a comparison between defects seen in sexually produced animals vs FP animals: “six out of 16 FP animals (37.5%) hatched with no discernable developmental defects (Fig. S11A-B). This is in stark contrast to sexually produced animals, where over 98% of hatchlings showed no abnormalities. Additionally, most of the defects noted in sexually produced animals were less severe than in FP animals including bulges in tails or truncated digits.”

      We agree that our statement on the lack of differences between sexually produced and FP animals was too general. We have modified the title of Fig. S12 from “No differences between ovaries and germinal vesicles of Aspidoscelis marmoratus produced by facultative parthenogenesis or fertilization” to "Ovaries of Aspidoscelis marmoratus FP animal 8450 and germinal vesicles of FP sister 8449 revealed no differences in structure and anatomy compared to fertile sexually reproducing animals.” Due to instant complete homozygosity, FP would indeed have a higher rate of purging than inbreeding. While one hypothesis is that FP is adaptive (in large enough populations), our intentions were to highlight the alternative that FP could be detrimental in smaller populations (that already would likely experience high inbreeding rates). We would expect inbreeding to not be common in whiptails relative to other lizards given that they tend to have large population sizes and actively range across generalist habitats.

      A final data concern is with the use of liver tissue for whole-genome sequencing and reference genome assembly (lines 389-390) and then using these data and the reference genome to make conclusions about ploidy/coverage. Liver tissue is very commonly endopolyploid, meaning that coverage could be artificially high for animals for which liver (vs. tail) tissue was used for DNA extraction. In particular, it would be helpful if the researchers consider whether endopolyploidy could have affected their ability to make accurate estimation of coverage and thus, heterozygosity, when libraries generated from diploid (tail) tissues are aligned to a reference genome generated from a polyploid tissue as was done here.

      This is an interesting point and indeed hepatic cells in various organisms have been documented to be polyploid. The proportion of polyploid cells though vary and as far as we are aware, all published studies on polyploid hepatocytes are in mammals (DOI: 10.1016/j.tcb.2013.06.002). Reference genomes have been generated from a variety of tissue sources and liver is commonly used. As most assemblies are for haploid genomes, polyploidy (unlike aneuploidy) does not impact the assembly quality. The reference genome was also from an animal of FP origin and therefore has genome-wide homozygosity that aids in a more contiguous genome assembly by eliminating the phasing problem. For the 10 animals sequenced, genomic DNA was derived from liver for three animals and the rest from tail tissue. The sequencing data generated from either liver or tail resulted in similar coverage levels (Figure S6) and similar levels of heterozygosity (Figure 2A). Minor Comments:

      Line 410: Please explain why the BLAST cutoff was changed from the default.

      The BLAST cutoff was changed from the default 1e-03 to 1e-06 to be more stringent and thereby increase confidence in the BUSCO results.

      Lines 441-443: Please explain why this dataset was seemingly larger than expected.

      Animal 122 was sequenced on one flow cell without any multiplexing with other samples and therefore yielded more reads than other animals sequenced. We subsampled the reads from this animal for analysis, so it is directly comparable with the other WGS data.

      Line 510: The link to the Github repository was broken, so I was unable to access the code and data denoted as available here.

      We apologize for the unavailability of the link at the time of review. Review Commons did not request a reviewer token. The repository will be made public upon journal acceptance. We would be happy to provide a reviewer token in the meantime upon request by Review Commons.

      Figure 1, and other figures featuring comparisons of MS data across parents and offspring: The authors need to engage here with the alleles that do not match either parent here (e.g., allele 282 at MS7), explaining the likelihood that these alleles indeed represent a binning error (or, perhaps, stepwise mutation from parental allele), and these alleles should be flagged. Instead, they bin these unique alleles with the most similar parental allele without any explanation or flagged. The authors do bring this point up in Figure S1, but this issue needs to be addressed in the main text (related point: the mix of red/green in MS16 offspring appear more green than red. Is this meant to denote a probability different than 50:50? If not, the authors should adjust the shading so that this shape is half green, half red).

      We have added to the figure legend that single nucleotide differences are most likely binning errors and are therefore not considered “de novo” alleles. Instead, they are assigned it to the most similar parental allele, consistent with Figure S1. The shading at MS16 has been removed so that it is consistent with Figure 3.

      Figure 3: Indicate that white background for alleles means that allelic inheritance is not determinable, or use the mix of colors applied in Fig. 1 to indicate as such. Unique offspring alleles should be flagged rather than just automatically assigned to the most similar parental allele. Finally, it would be helpful if the alleles were presented within loci from the shorter to the longer alleles.

      We have included in the figure legend that non-shaded alleles are those for which multiple potential parents share the same allele and the inheritance therefore remains ambiguous for this locus. Single nucleotide differences are also now addressed, and sizes are ordered from smallest to largest.

      Figure S7. Indicate visually which panels indicate FP animals.

      We have now indicated which animals are FP and included this in Figure S6 as well.

      Fig. S13. The 5 animals that had especially low heterozygosity should be flagged. The title of this figure should be toned down in light of the tentative nature of the conclusions regarding FP in nature: low heterozygosity could instead reflect, for example, a long history of inbreeding. My reaction to the data is also that the % heterozygosity distribution for many of the species looks continuous rather than the bimodality one might expect under FP vs. sexual reproduction.

      Since FP has not been further confirmed in these animals, unlike those examples from our captive colony, there could indeed be other reasons for low heterozygosity. We have changed the title of the figure from “Facultative parthenogenesis in whiptail lizards collected in nature” to the more neutral “Heterozygosity estimates of whiptail lizards collected in nature.” Since there are so relatively few animals, one would not necessarily expect a bimodal distribution to be apparent in the current data. We did show that the animal with the lowest calculated level of heterozygosity (deppii LDOR30) was a statistical outlier when compared to other individuals of the same species though. Since these animals were sampled across different locations and habitats, the effective population sizes would be assumed to be different as well, reflecting the range of heterozygosity estimates seen here. This has been made clear in the text.

      Reviewer #2 (Significance (Required)):

      General assessment: strengths and limitations. The paper's strengths include the combination of data from lab and natural populations, the characterization of an unexpected means of achieving FP, with dramatic genetic consequences, and the data suggesting that this type of FP is fairly common and occurs even in the context of mating.

      Audience: The biological questions of relevance to these discoveries are of broad interest, and the paper is likely to garner some attention from the life sciences community as whole and the popular press.

      Advance: These data fill an important knowledge gap regarding the mechanisms potentially driving FP in vertebrates, how often FP is likely to occur, and its genetic consequences. The discoveries are potentially conceptual/fundamental, though the extent to which they are ground breaking is not clear in the absence of functional characterization of how FP occurs as well as the need for more rigorous comparisons and replication that I outlined above.

      We thank reviewer 2 for summarizing the strengths of this manuscript, pointing out the broad interest and stating that this work fills an important knowledge gap.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: The occurrence of facultative parthenogenesis has been described in a number of vertebrate lineages but the underlying cytological mechanism(s) have remained largely speculative due to sparsity of data. Here, Ho & Tormey et al. provide a detailed analysis of facultative parthenogenesis in gonochoristic species of the lizard genus Aspidoscelis. They show that parthenogenesis leads to a complete loss of heterozygosity (LOH) within a single generation. They attribute the LOH to diploidization through duplication of the oocytes haploid genome after completion of meiosis. This mechanism is consistent with their finding of mixoploidy in erythrocytes of asexually produced offspring. Based on LOH the authors additionally show that facultative parthenogenesis in Aspidoscelis is not condition dependent (no developmental switch): it can occur in the presence of males, alongside with sexual reproduction in the same clutch, and both in captivity and the wild. Finally, the authors show that facultative parthenogenesis is associated with developmental aberrations, likely caused by expression of homozygous recessive deleterious mutations.

      Major comments: In my opinion, this study presents a very comprehensive, careful documentation of mechanistic aspects and consequences of facultative parthenogenesis in a vertebrate. The genomic and microsatellite results leave little to no doubt that facultative parthenogenesis has led to complete LOH in Aspidoscelis. I am particularly impressed by the meticulous analysis of genomic coverage to exclude e.g. false positive heterozygosity due to merged paralogs in the assembly. I also follow the authors conclusion that a post-meiotic "gamete duplication"-like mechanism is likely causative for the LOH (and the mixoploidy of erythrocytes; but I am no expert on that). I was wondering if terminal fusion automixis together with a complete absence of recombination would be worth mentioning as an (probably very unlikely) alternative in the discussion. It would be exciting to corroborate the conclusion of diploidization by genome duplication in the future, e.g. via early embryonic DNA stainings to show the duplication "in action" (if that is practically possible)...? As for this manuscript, I suggest emphasizing the indirect nature of the evidence for the mechanism of parthenogenesis a little bit more.

      We thank the reviewer for highlighting the effort that went into the genomic analysis that led us to our conclusions. In terms of terminal fusion without recombination, we argue that this is not an obvious alternative explanation as a large body of work has established that at least one crossover per homologous chromosome pair is required to advance into meiosis I in many organisms (e.g. see https://doi.org/10.3389/fcell.2021.681123) and therefore the absence of recombination would likely not produce the polar bodies necessary for automixis.

      We have added to the text: “In whiptail lizards, we have not been able to examine post-meiotic oocytes as locating the post-meiotic nucleus within a large yolked egg is inherently difficult. The difficulty is compounded by the unpredictability of which eggs will undergo FP development and the need to sacrifice animals to remove eggs.”

      While the genome duplication mechanism we propose is indeed indirect because we are unable to visualize developing FP embryos, the most parsimonious explanation from the whole-genome sequencing analysis is genome duplication because of the lack of heterozygous regions associated with automixis. In the text, we have made sure to state genome-wide homozygosity as the basis for our conclusion.

      I agree that facultative parthenogenesis in the presence of males hints at a baseline rate of parthenogenesis without requiring a developmental switch. However, this makes it difficult to rule out that sperm played a role in activation of embryonal development (gynogenesis; however I am only aware of gynogenesis in fishes and amphibians)... maybe, the authors want to take this up in the discussion. Were the five parthenogenetic individuals for whole genome sequencing actually produced in the presence of males, too?

      FP has been reported to occur in isolated females for other reptile and bird species, suggesting that sperm activation is at least not a general requirement in FP of amniotes. (Watts, et al. 2006, W. W. Olsen, S. J. Marsden 1954). In all cases in this study, the female mothers were housed with conspecific or heterospecific males. While we cannot completely rule out a non-genetic contribution of sperm in these cases, it would seem to be an unlikely explanation in light of the sperm-independent reproduction by obligate parthenogenesis in other species of whiptail lizards (unlike the sperm-dependence of all unisexual reproduction in amphibians and fish). We decided to not include speculation on sperm-dependence in this manuscript as we have no evidence in favor of it, nor is there any evidence for this in the literature relating to other amniotes. In fact, most examples of FP were reported from isolated females, most likely because offspring were not expected in those cases and prompted further analysis as to their origin.

      I agree with the interpretation of the LOH in the RADseq data as a likely case of facultative parthenogenesis in the wild. However, when looking at figure S13 I noticed some bimodal looking distributions (e.g. in A. guttatus). It may be interesting for future studies to look into what factors influence heterozygosity in natural populations of Aspidoscelis (e.g. inbreeding vs parthenogenesis). Could there be different mechanisms of facultative parthenogenesis in different Aspidoscelis species explaining different LOH intensities?

      The continuous nature of the data may reflect natural variation between individuals and collection at various locations with possibly different effective population sizes and levels of hybridization. Low levels of heterozygosity could be indicative of inbreeding or FP in some cases. This is important to note in future studies and we have added this to the manuscript (“Further fieldwork and analysis will be required to assess the level of FP in natural populations of gonochoristic Aspidoscelis species (and other factors that could influence the observed heterozygosity such as population size, levels of hybridization, and inbreeding) …”). While there are different mechanisms of FP in other vertebrate groups, the most parsimonious hypothesis is that within a genus, the mechanism would be the same.

      The manuscript is well written, the introduction nicely explains the significance of the study, the methods are fully appropriate and the results (and supplementary results) displayed comprehensibly and in great detail. The discussion might benefit from going a bit more generally into the occurrence and mechanism of obligate asexuality in Aspidoscelis. One might e.g. speculate on whether the ability for facultative parthenogenesis in gonochoristic species has facilitated the transitions to obligate parthenogenesis in the hybrid lineages and what peculiarities might predispose Aspidoscelis to parthenogenesis (e.g. are centrioles contributed by sperm required?). In addition, I think the occurrence of LOH due to gamete duplication (facultative and obligate) in invertebrates (e.g. due to Wolbachia) is worth mentioning in the discussion: e.g. there is a similar case in facultative asexual Bacillus rossius stick insects, where the early dividing cells are haploid. Some of them diploidize via duplication later and form the embryo.

      Thank you for complimenting each section of the manuscript and referring to it as well-written. Our lab has a long-standing interest in obligate parthenogenesis. While it is interesting that both obligate and facultative parthenogenesis occur alongside each other in this genus, the mechanisms appear to be fundamentally different, and we would like to focus the discussion on FP in a variety of systems and its potential implications in conservation and evolution. Parthenogenesis in general is a fascinating topic for a broad audience and not discussing another form of parthenogenesis (obligate in this case), the focus remains on FP and keeps the manuscript more accessible for non-specialists. We have included the stick insect as another example of diploid restoration through genome duplication in the discussion.

      Minor comments:

      39-41: I am a bit puzzled by the usage of the term "post-meiotic" to contrast the diploidization through duplication with automixis. Wouldn't one consider polar body fusion after completion of meiosis II also post-meiotic? Maybe I am just not aware of how the term is usually used in this context here...

      We use the term “post-meiotic” because the restoration of an entirely homozygous diploid cell can only occur after the completion of both meiotic divisions. It is our understanding that polar body fusion and meiotic restitution after meiosis I or meiosis II are generally considered meiotic mechanisms in the specialized literature, even though polar body fusion would also occur after the meiotic divisions.

      65: isn't that gynogenesis (sperm-dependent parthenogenesis) in the amazon molly?

      While sperm is required for parthenogenesis in the Amazon Molly, it is an all-female species that exclusively reproduces through gynogenesis. In this case, it is considered an example of obligate parthenogenesis rather than FP.

      78: the term "economically viable" may be a bit puzzling for a biologist's audience. "Economically sustainable" could be an alternative.

      This has been changed.

      129: the Arizona male was referred to as ID 4272 above. Here it is ID 4238?

      This has been corrected. The correct ID is 4272.

      218: please define over-assembly (see line 207)

      The definition of “over-assembly” is collapsing paralogous loci into a single representative sequence. This is now explained in the text.

      263-281: please, indicate a hatching rate/ rate of malformations of sexually produced offspring for comparison.

      A comparison has been added: “This is in stark contrast to sexually produced animals, where over 98% of hatchlings had no abnormalities noted.”

      333: in the haploid cells recessive deleterious mutations would be exposed in the hemizygous state but in the diploid cells in the homozygous state.

      The text has been modified to reflect the difference between haploid and diploid cells.

      470: please, provide more detail for the RADseq analyses (variant calling, calculation of heterozygosity etc.)

      We have elaborated on the analysis in the methods.

      Figure 1B: please, mention in the legend that the shown mechanisms are not exhaustive, e.g. first polar body fusion could occur right after meiosis 1 or polar body formation could be skipped completely.

      This has been added.

      Figure 1C: it may be interesting for non-specialists to name the distinctive morphological characters setting apart the three species in the figure legend and highlight them e.g. with arrows in the figure.

      We have now included in the figure legend characteristic color patterns for each species: “(C) Photographs of Aspidoscelis arizonae with characteristic blue ventral coloration (top), A. gularis with light spots in dark fields that separate light stripes on dorsum (middle), and A. marmoratus with light and dark reticulated pattern on dorsum (bottom).” Since the descriptions are specific and apparent, we did not add arrows to the pictures.

      Reviewer #3 (Significance (Required)):

      Significance: The study by Ho & Tormey et al. substantially enhances the understanding of (facultative) asexuality in vertebrates. In particular, while most reports of facultative parthenogenesis in vertebrates have been attributed to a form of automixis, the authors conclusively show an instance of diploidization through genome duplication, a mechanism functionally similar to "gamete duplication". The study is novel, very comprehensive and of interest for a general audience within the field of evolutionary biology.

      We thank reviewer 3 for pointing out that our study substantially enhances the understanding of asexuality in vertebrates, is very comprehensive and of interest for a general audience within

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We appreciate the thoughtful comments of the reviewers. We have revised the manuscript according to these comments as detailed below.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Efficient proteostasis in cells demands efficient clearing of damaged or misfolded proteins, and an important pathway involved in such clearance is the ubiquitin-proteasome pathway. In this system, proteins are tagged with ubiquitin to target them for degradation by the 26S proteasome complex. The conventional 26S proteasome complex consists of a core particle (CP or 20S proteasome) and one or two regulatory particles (RP, or 19S proteasome) to form the singly or doubly-capped proteasome, respectively. Proteasome assembly is a well-orchestrated process that requires proper stoichiometry of proteasome subunits and dedicated proteasome assembly chaperones. This is maintained by fine-tuning their transcriptional and translational regulation.

      This manuscript elucidates an important aspect of how the different proteasome components are transcriptionally regulated upon denervation in mouse muscles for timely and efficiently assembling 26S proteasome. The authors present data that point out towards the model whereby a two-phase transcriptional program (early: day 3-7 and late: day 10-14) activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. This involves the coordinated functions of two transcription factors, PAX4 and alpha-PAL(Nrf1) which were important for both early and late phase of the transcriptional program. Their roles were not redundant as loss of one transcription factor was sufficient to prevent induction of various proteasome genes in muscle after denervation.

      In summary, the authors report a novel bi-phasic mechanism elevating proteasome production in vivo, which involves the coordinated functions of two transcription factors, PAX4 and alpha-PAL(Nrf1).

      Major points: 1) It is not clear why PAX4 and alpha-PAL(Nrf1) are both fully required for the transcriptional induction of some proteasome genes upon denervation (with good overlap), while only PAX4 is important for increased proteasome assembly. The authors speculate that this could be due to a stoichiometry problem but an alternative scenario where translation is increased upon alpha-PAL(Nrf1) inhibition would also be possible. This would explain why, for example, the induction of PSMC1 gene expression upon denervation is abolished upon alpha-PAL(Nrf1) inhibition (Fig. 5C) while the protein level is still increased (Fig. 6H). Is that also true for PSMD5 and Rpn9? Could it also be that the loss of function of alpha-PAL(Nrf1) is too detrimental for the muscle so that they induce an alternative stress response pathway increasing proteasome subunit translation?

      We thank the reviewer for this comment. To better clarify this important point, we conducted further experiments to examine the differential effects between PAX4 vs. α-PALNRF1 on proteasome assembly chaperons (Fig. S4b). Our new data show that PAX4 promotes the induction of the assembly chaperone, PSMD5 (S5b) at 3 days after denervation (Fig. S4B). This induction is critical for the increase in PSMD5 protein levels because PAX4 knockout results in decreased PSMD5 protein levels at both 3 and 10 days after denervation (Fig. 4K). α-PALNRF1, however, does not affect the mRNA levels of this chaperone (Fig. S4A). This new result strengthens our conclusion that induced expression of assembly chaperones by PAX4 is key to raising proteasome levels after denervation.

      We cannot rule out an indirect effect of α-PALNRF1 knock-down on protein synthesis, and therefore this potential alternative mechanism is now discussed in the text. It appears unlikely, however, that α-PALNRF1 knock-down is too detrimental to muscle as we do not find any evidence phenotypically for any type of stress or abnormalities.

      2) Pax4 controls Rpt1-2 transcription and these two Rpt proteins form a pair. As Rpt4 is also regulated by Pax4, is Rpt5 also controlled by Pax4?

      We believe the reviewer meant to request the data for Rpt4, because the data for Rpt5 was already included in original Fig. 4G-H. Therefore, we repeated the RT-PCR analysis of PAX4 KO mouse muscles for Rpt4 and now show that its induction requires PAX4 at 10 d after denervation, just when proteasome content is increased (Fig. 4G). At 3 d after denervation, Rpt4 induction is probably regulated by other transcription factors because its mRNA levels at this early phase were similar in muscles from WT and PAX4 KO mice (Fig. 4H). These data, strengthen our conclusions that coordinated functions of multiple transcription factors control proteasome gene expression in vivo. In future studies, we will investigate the specific mode of cooperation and mechanisms by which various transcription factors and co-factors collaborate to enhance the expression of proteasome genes in the early and delayed stages of gene expression within a living organism.

      What about the assembly chaperone for these two pairs: PSMD5 and p27? It would be very interesting to know if there is a transcriptional coregulation based on proteasome assembly intermediates.

      The referee raises an important point, which we also discuss in the text. We now present data showing that PAX4 promotes the induction of the assembly chaperon PSMD5 at 3 d after denervation (Fig. S4B), correlating nicely with the observed changes in protein levels of this chaperon (Fig. 4K). The expression of PSMD9 (p27) however, does not require neither PAX4 nor α-PALNRF1 (Fig. S4). Consequently, we conclude that PAX4 promotes proteasome biogenesis by promoting PSMD5 induction, and in the absence of α-PALNRF1 proteasome subunits can still efficiently assemble into the proteasomes (even though their expression is reduced), due to the induced expression and increased action of the assembly chaperone PSMD5. Our data highlight the intricacy in controlling proteasome levels, through transcriptional regulation of proteasome genes and assembly chaperones during muscle atrophy. We now further document and discuss the regulation of proteasome biogenesis by these two transcription factors in the text and Discussion (p.28).

      3) Fig. 4J: PSMD5 and PSMD13 are not tested in Fig. 4A, G and H. This needs to be done if the authors want to draw the parallel mRNA-protein levels, as in their conclusion. Moreover, the protein levels seem to be much more induced than the mRNA levels, could that be due to increased translation? This could be discussed.

      We accepted this thoughtful suggestion and now present the mRNA levels for PSMD5 and PSMD13 in Figs. 4A, G and H and Fig. S4. The new data does not change our conclusion that protein abundance largely correlate with the transcript levels (Figs. 2 and 4K).

      The reviewer raises an important question that we hope to resolve in the future. As we point out in the revised Discussion section, “the substantial rise in protein levels compared to mRNA levels after denervation suggests potential increased protein translation due to PAX4 loss. Whether PAX4 regulates protein synthesis and thus can affect protein levels beyond gene expression are intriguing questions for future research”.

      4) The conclusion is not correct in this sentence: "Moreover, analysis of innervated and 10 d denervated muscle homogenates from WT, alpha-PAL(Nrf1) KD or PAX4/alpha-PAL(Nrf1) KD mice by native gels and immunoblotting or LLVY-cleavage indicated that loss of both transcription factors is necessary to effectively block accumulation of active assembled proteasomes on denervation (Fig. 6H)". This is not correct, as the loss of PAX4 is sufficient to block accumulation of active assembled proteasomes on denervation (Fig. 4K). So, it could just be that alpha-PAL(Nrf1) KD has no effect on the induction of proteasome assembly after denervation and that all the effect of the double mutant is due to PAX4 loss. This needs to be corrected.

      We thank the reviewer for this thoughtful comment. The text has been revised accordingly.

      Minor points:

      1) I would rephrase the sentence "baseline at 14 d after denervation and showed a sustained low mRNA levels until 28 d (Fig. 2A-F).", as the mRNA levels are still significantly higher that the basal levels for most proteasome genes. Same for the sentence: "RNA sequencing (RNA-Seq) analysis of TA muscles at 14 d after denervation indicated that expression of most proteasome genes is low at 14 d (Fig. S1)". Expression is low compared to what and not being induced doesn't mean they are low. This needs to be rephrased.

      We revised the text accordingly and thank the reviewer for these suggestions.

      2) Microscopy images need more explanation: define the green and red channel and what they are used for in the legend.

      The legends have been updated as requested.

      3) Columns have moved from the Table 2.

      The tables have now been submitted as separate files.

      4) Fig. S3: RT-PCR on NRF-1(NFE2L1) need to be performed to see the extent of inhibition by shRNA.

      We thank the reviewer for this important comment. The data, which was added as new Fig. S3A, shows an efficient knockdown of NRF-1NFE2L1 with shNFE2L1.

      5) In the sentence: "PAX4 maintaining subunit stoichiometry for increased proteasome assembly.", could it be due to the much higher levels of PSMB8, 9 and 10 immunoproteasome subunits upon alpha-PAL(Nrf1) KD (Fig. 6F)?

      We addressed this aspect in Major Point #1, regarding the difference between PAX4 and α-PALNRF1; please see our response. As for the Reviewer’s comment concerning Fig. 6F, we think that the increased expression of PSMB 8, 9, and 10 in α-PALNRF1-KD compared to the double KD or PAX4 KO further suggests a distinct cooperative interaction between these transcription factors in promoting proteasome expression, assembly, and function, which we plan to thoroughly investigate in future separate studies. However, the increased expression of PSMB 8, 9, and 10 can affect the composition of the CP (by replacing their normal ounterpart), but not the RP assembly. CP and RP are known to assemble separately with their own dedicated chaperones; RP and CP then associate to complete the assembly of proteasome holoenzyme (RP-CP complex). Thus, it is unlikely that increased CP assembly alone would increase overall RP-CP assembly.

      **Referees cross-commenting**

      All other comments are relevant.

      Reviewer #1 (Significance (Required)):

      Overall, the work is impactful and timely, reporting the participation of a novel transcription factor, alpha-PAL(Nrf1), along with PAX4, in regulating the transcription of proteasome genes and the subsequent assembly of conventional proteasomes in mouse muscle upon denervation. One limitation is that alpha-PAL(Nrf1) kockdown is only inhibiting proteasome genes expression but proteasome assembly, the reason being still unknown. Most of the conclusions drawn in the manuscript are supported by the experimental data. Better understanding how proteasome homeostasis is regulated upon stressful conditions is an important fundamental aspect of proteasome biology. I would support publication of this manuscript providing the more specific concerns listed are addressed.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The main limitation of this study is that is based on a single model of muscle atrophy: that induced by cut of the sciatic nerve. Another one will nicely complement the findings as fasting atrophy or cancer cachexia model, to see if the two phase is recapitulated with regard to proteasome modulation.

      The referee raises an interesting point, but as we explained throughout the manuscript, we did not use denervation in this study as a model for atrophy but rather as an in vivo model system to investigate mechanisms of protein degradation and proteasome homeostasis in a whole organism in vivo. The reason we selected denervation as an in vivo model for accelerated proteolysis is due to the gradual nature of muscle loss, which allows us to dissect the various phases of proteasome homeostasis effectively. Fasting, as an alternative model, is too rapid for addressing the specific questions that we asked in this study. In addition, in the rapid atrophy induced by fasting the primary physiological mechanism to increase protein degradation in vivo is believed to be through post-synthetic modification of proteasomes, rather than the production of new proteasomes (VerPlank et al., 2019). In future separate studies, we will thoroughly investigate whether the mechanisms discovered here are applicable to other types of atrophy (e.g. diabetes, aging, cancer). The obtained results will be published and fully discussed separately, in part because covering all types of atrophy within a single paper is impractical and goes beyond the scope of the current manuscript.

      Another major concern is that the author do not measure over time during denervation atrophy the mRNA and protein content expression of the two transcription factors that they found crucial in the proteasome induction and assembly.

      We agree with the reviewer that time course would strengthen our conclusions that the two transcription factors are important for proteasome gene induction and assembly. We have added these data showing that PAX4 (Fig. 4I) and α-PALNRF-1 (Fig. 6E) both accumulate in the nucleus at 7 d after denervation, just when proteasome content is maximal (Fig. 3A) and protein breakdown is accelerated (Cohen 2009; Volodin 2017; Aweida 2021). The mRNA levels of PAX4 were presented as original Fig. 4F and indicate that PAX4 is induced already at 3 d after denervation. We have added new RT-PCR data for α-PALNRF-1 showing that α-PALNRF-1 is induced at 7 d and 10 d after denervation (Fig. 6D).

      Major and minor concerns are as follows:

      Typos now and then are present all over the text, as holoemzyme shall be replaced with holoenzyme on page 9, on page 12 proteasome is misspelled on mid page, as well as cellls. By cotrast shall be corrected on page 19. References on page 22 shall be formatted.

      We have corrected the typographical errors.

      • reference 29 on page 7 seems out of context together with the sentences it is coupled with.

      The reference is appropriately located within the text in terms of context, and precisely aligns with the sentence to which it is associated. Reference 29 (Boos 2019) describes a cellular state in which all proteasome genes rise simultaneously.

      • muscle electroporation of plasmid shall be replaced by AAV9 injection that causes less inflammation and more expressing fibers

      We do not understand and see no basis for the referee’s assertion that the “muscle electroporation of plasmid shall be replaced by AAV9 injection”. On the contrary, the electroporation methodology is widely used by many labs because of its many advantages. This in vivo gene transfection approach is extremely useful to study transient gene (or shRNA) effects in adult muscles, while avoiding the developmental effects of genes (or shRNA) that are often seen in transgenic or knockout animals (e.g., the inducible knockout of α-PALNRF-1 caused lethality, see Fig. 6B-C).

      In addition, the electroporation technique offers great advantages from its speed and major cost savings. We have been using it routinely in our lab for in vivo studies, and articles using it from many laboratories worldwide have appeared in all major journals, e.g. see our papers in Nature Communications, J Cell Biol, PNAS, EMBO rep, and papers from late Alfred Goldberg (Harvard), Marco Sandri (Padova, Italy), Jeff Brault (Indiana Univ.) and others. In all studies included in this manuscript that involve electroporation, contrary to the reviewer’s impression, there was no damage or inflammation to the muscles, and we routinely examined histological sections. Finally, for our studies, we always use muscles that are at least ~70% transfected, which has proven adequate for observing gene effects in mouse muscle. In each experiment, transfected muscles are always compared and analyzed in parallel to control muscles (transfected with scrambled shLacz control). In fact, the validity of the in vivo electroporation technique is further confirmed herein by our investigations of transgenic inducible knock-down mice, showing similar effects on proteasome gene expression.

      • the shGankyrin data shall be complemented with overexpression of the same chaperone to see the effects of proteasome expression and assembly.

      We understand the reviewer’s concern but do not believe that such an experiment is necessary since it is well known and there is already extensive evidence in the literature showing that the chaperon Gankyrin is essential for proteasome assembly (Kaneko et al. Cell 137, 914–925, May 29, 2009 (DOI 10.1016/j.cell.2009.05.008). Thus, various Gankyrin mutants have often been used as an inactive control for proteasome assembly in vitro and in vivo (Kaneko et al. Cell 137, 914–925, May 29, 2009 (DOI 10.1016/j.cell.2009.05.008). In fact, Gankyrin’s known function in ensuring not only the proper subunit composition, but also proper conformation of the proteasome holoenzyme (Lu et al., Mol Cell. 2017 Jul 20;67(2):322-333.e6).

      • another important transcription factor driving MuRF1 expression is Twist and it is totally ignored in the discussion, please add it.

      We regret this oversight. We did not mean to slight any authors, although our major new discoveries and focus is on proteasome genes and not MuRF1. However, to satisfy the reviewer, we now discuss in the text Twist and other transcription factors (including SMAD2/3, glucocorticoid receptors and NFkB) capable of inducing the major atrophy-related genes (among them MuRF1).

      • WB in Fig 2 shall be complemented by one in the Supp with more replicates per timepoint

      We accepted this thoughtful suggestion and now present blots from additional normal and atrophying denervated mouse muscle samples as new Fig. S1B. This approach, however, does not change any of our conclusions.

      • please justify why only PSMD10 (gankyrin) has been silenced and not any of the others (POMP, PSMD5, PSMD9)

      We silenced PSMD10 (Gankyrin) as a representative RP assembly chaperone, since it is better characterized than the other RP assembly chaperones (PSMD5 and PSMD9). We kept POMP (a CP assembly chaperone) intact. Since the formation of one proteasome holoenzyme (RP2-CP) requires two RPs and one CP, increasing proteasome assembly is expected to be more demanding for RP assembly than CP. This led us to predict that disrupting RP assembly should be sufficient to block the induced proteasome assembly. This prediction is supported by our data (Fig. 3), and this justification was also added to the revised text to enhance clarity.

      The originality is limited by the fact that Pax4 was already shown to have a role in muscle atrophy and drives the expression of p97 by the same authors. I would be curious to see if treatments in vitro know to induce the proteasome as starvation etc acts through the biphase mechanism showed in this paper, to understand how extendable to other kinds of atrophy is.

      We respectfully disagree that the originally of the present findings is limited, because previously we validated a single proteasome subunit (Rpt1) as a target gene for PAX4 (Volodin 2017), and here we discover novel global coordination of proteasome gene expression by multiple transcription factors.

      As we mention above, muscle denervation was used here as an in vivo model system of catabolic conditions. Unlike prior reports that were limited to cultured cells, our studies focus on the physiological setting in vivo to reveal mechanisms of proteasome homeostasis. In any case, regulation of proteasome gene expression by multiple transcription factors in other types of atrophy has not been investigated but is possible because common transcriptional adaptations activate protein breakdown in different types of muscle atrophy, including a coordinated induction of numerous components of the ubiquitin proteasome system (Jagoe 2002; Lecker 2004; Gomes 2001). In future independent research, we intend to investigate if the two-phase mechanism reported here can in fact be generalized to other atrophy (or stress) conditions.

      Reviewer #2 (Significance (Required)):

      The authors Gilda and co-workers made a great attempt to dissect the induction of proteasome activity during denervation muscle atrophy and discovered a two-phase process which involves two transcription factors Pax4 and NRF1. The manuscript is clearly written and the experiments fully delineated.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Using denervated mouse muscle as a model, Gilda et al. demonstrated that a two-step transcriptional program operates in the process of muscle atrophy after denervation and that proteasome expression-induced enhancement of protein degradation is important. Gilda et al. clarified that the transcription factors PAX4 and PAL/NRF-1 act on this proteasome expression induction and that the induction of these transcription factors and the expression induction of the proteasome gene cluster after denervation are necessary for muscle atrophy using an in vivo mouse model. The experiments were logically designed, and the results presented are considered clear and reliable. However, some of the descriptions in the text lack accuracy and courtesy, and some experiments require additional data to support and strengthen the author's claims. In particular, it is unclear whether PAX4, FOXO3, and NRF-1 work together or whether they have distinct functions. Although the authors claim that there are two stages of proteasome expression induction after denervation, this remains unclear. The authors should clarify the differences in target sequence or target genes and the substitutability of each transcription factor.

      Major comments: 1: In Figure 3A, the results of the immunoblot of SDS-PAGE against 20S proteasome subunits should also be shown to confirm the increase in proteasome activity and amount.

      We would like to clarify this aspect. We show the increased levels of proteasome holoenzyme complex (RP2-CP) by immunoblotting of the native gel, rather than SDS-PAGE gel. This is because the blots of the native gel can assess the levels of the actual proteasome complex, not simply subunit levels in their denatured state as in SDS-PAGE; SDS-PAGE cannot distinguish between free subunits and ones that are incorporated into the proteasome.

      If proteasome activity was increased due to some other mechanisms, proteasome levels would remain relatively constant, while proteasome activity would have increased. However, this is not the case here since our data demonstrates that both RP2-CP activities and levels peak at day 7. Furthermore, the in-gel peptidase assay (Fig. 3A panel b) directly tests the 20S CP activity within the proteasome holoenzyme (RP2-CP complex) using the fluorogenic model substrate, LLVY-AMC. The 20S CP is activated for substrate degradation, only upon its association with RP (RP2-CP complex), since RP opens the substrate entry gate of the 20S. Free 20S itself is inactive, as its gate for substrate entry is closed; for this reason, free 20S can be detected, only after its substrate entry gate is artificially opened by SDS (see free 20S in panel b, but not in panel a).

      2: In Figure 3, the reviewer assumed the conflict between the results of peptidase activity and SDS-PAGE in 14d. Therefore, quantification and statistical analysis should be performed on the results of proteasome peptidase activity and immunoblots to clarify the relationships between proteasome activity and amounts. Immunoblotting against ubiquitin is also needed to confirm the requirement and efficiency of proteasome induction.

      As the reviewer pointed out, it might seem discrepant that peptidase activity at 14 d denervation is lower than its peak at 7d (Fig. 3A, panel a), but SDS-PAGE signal for proteasome subunits seems still high (Fig. 3A, panel d, Rpn2). SDS-PAGE detects total cellular content of proteasome subunits (free subunits as well as ones assembled within proteasomes). However, at any given moment, these subunits are not only in the proteasome holoenzyme complex, but also in different assembly intermediates. When proteasome subunits are transcriptionally induced as in this study, proteasome assembly process is also increased. However, proteasome assembly is a multi-step process, and the fold-induction for each specific subunit is different (Fig. 2A-B). This means that the rate of a certain assembly step would be differently affected for a given subunit, depending on their fold-induction. For this reason, some subunits seem to exist at a high level at 14d (e.g. Fig. 3A, panel d, Rpn2), but they are not yet incorporated into the proteasome complex, because they might be still undergoing assembly process.

      As for the ubiquitin blot, it can be a good indicator for proteasome activity, when proteasome activity is decreased than normal. In such situations, ubiquitinated proteins accumulate (i.e. their signals increase as compared to control), due to their deficient degradation. However, our present study pertains to the opposite situation, where proteasome activity is increased in degrading ubiquitinated proteins. In normal cells, ubiquitinated proteins are hardly detectable due to their rapid degradation. Thus, when proteasome activity is greater than normal, ubiquitinated protein levels will be further decreased than normal. Data become unreliable when the signals are below the detection threshold. For this reason, we provided functional readouts involving the number of muscle fibers (for example, Fig. 3D).

      3: In Figure 3C, the sample labels of shGankyrin and shLacZ are repeated. Would it be mislabeled? In addition, NATIVE PAGE immunoblot analysis against Gankyrin and proteasome subunits are needed to prove the knockdown efficiency and to reveal the assembly defect of proteasome by Gankyrin knockdown.

      To present our findings more clearly, we show one of each sample in the revised figure, rather than the duplicates as in the previous figure (Fig. 3C). We also included the immunoblot data to show that Gankyrin knockdown disrupts proteasome assembly, as seen by the reduced proteasome complex activity and level (Fig. 3C, panels a, b, c, lane 3, see RP2-CP). In Gankyrin knockdown samples, proteasome holoenzyme complex exhibited smeary appearance (Fig. 3C, panel c, see bracketed region in lane 3), as opposed to a discrete band in the controls (lanes 1, 2). This smeary appearance reflects more heterogeneous proteasome populations, due to defects in their composition and/or conformation. This is in line with Gankyrin’s known function in ensuring not only the proper subunit composition, but also proper conformation of the proteasome holoenzyme (Lu et al., Mol Cell. 2017 Jul 20;67(2):322-333.e6).

      4: In Figures 4A, 4G, 4H, 4J, and 4K, the results of shPAX4 against innervated muscle should be shown to estimate the contribution of PAX4 in steady-state conditions. To clarify the innervated muscle-specific function of PAX4, histological analysis and quantification of proteasome gene expression in multiple organs in PAX4 KO mice are needed.

      The reviewer raises an interesting point, but as we explained above, we concentrate here on the major new discovery that multiple transcription factors increase proteasome content in a catabolic condition in vivo, correlating directly with the accelerated protein loss. Regulation of the basal levels of proteasome in normal conditions in various types of cells and tissues is certainly an important issue meriting in depth study and will be the subject for future studies, but it is beyond the scope of this lengthy paper. This point is now discussed in the revised text.

      The tissue distribution of PAX4 and the detailed description of the phenotype of KO mice are also needed to understand and evaluate the role of PAX4 in muscle.

      We added the requested data about PAX4 distribution as Fig. 4I. These data shows that PAX4 accumulates in the nucleus already at 3 d after denervation. Furthermore, we are happy to add further information about the knock-out mouse model. The requested information and a detailed description of how PAX4 KO mice were generated were added to the text. The PAX4 KO mice showed no abnormalities and did not appear in any way different from the wild type littermates.

      5: In Figure 4C, immunoblot analysis against PAX4 is essential to confirm the PAX4 protein knockout.

      We agree and representative blots were added to Fig. 4C.

      6: In Figure 5, peptidase activity and immunoblotting in NATIVE PAGE are needed to reveal the contribution of FOXO3 and NRF-1 in denervated muscle as shown in Figure 4.

      The requested data for FOXO3 using FOXO3 dominant negative (as in Fig. 5A-B) were added as new Fig. 5C-D, showing no effect on proteasome content by FOXO3 inhibition. These new data are consistent with our findings that the expression of only two proteasome subunit genes was affected by FOXO3 inhibition at 10 d after denervation (Fig. 5B). The data for α-PALNRF-1 and the effects of its knockdown on proteasome content and activity were shown as original Fig. 6H (now Fig. 6J).

      The expression of FOXO3 and NRF-1 should also be shown by RT-PCR and immunoblotting as shown in Figure 4.

      We thank the reviewer for this thoughtful suggestion, and as requested, we now show representative blots of transfected muscles to support the graphical data (Figs. 5C-F). These data confirm the efficient expression of HA-FOXO3ΔC or FLAG-α-PALNRF-1 dominant negative inhibitors in transfected muscles. It is important to note that these inhibitors are mutant forms designed to interfere with the normal function of the wild-type endogenous FOXO3 or α-PALNRF-1 proteins, without affecting their transcript levels. Given this mechanism, we believe that Western blotting is a more appropriate technique for assessing their impact, as it provides direct insights into protein expression. In the revised main text and methods, we have now clarified this point.

      Similar to previous comments, the expression of the dominant negative form of Foxo3 and NRF-1 should be performed in innervated muscles to reveal the significance and specificity of Foxo3 and NRF-1 function in denervated muscles.

      As mentioned above, regulation of the normal basal levels of proteasomes is certainly an important issue meriting in depth study and will be the subject for future studies, but it is beyond the scope of this lengthy paper, which focuses on the mechanisms increasing protein content in catabolic conditions in vivo. With respect to FOXOs, there is a large literature on its regulation and roles in normal muscle (please see papers by late Alfred L Goldberg, Marco Sandri and others). Under normal conditions FOXO3 is largely inactive via phosphorylation by insulin-PI3K-AKT signaling (Stitt 2004; Latres 2005; Zhao 2007).

      7: In Figure 6D, the list of genes should be served especially about 27 genes and 69 genes that show common features between NRF-1 KD and PAX4 KO.

      The requested data is now presented as new Table 4.

      8: In Figure 6F, the list of genes that change expression in PAX4 and NRF-1 KD mice is needed.

      We agree and the requested data has now been added to table 5.

      9: In Figure 6H, immunoblotting against ubiquitin is needed to evaluate the contribution of proteasome induction to protein degradation.

      We clarified this aspect in the Major Point #2. Please see our response.

      10: This study lacks the detailed mechanisms by which PAX4, Foxo3, and NRF-1 regulate the expression of proteasome genes. The contribution of these transcription factors is revealed by experiments, but the specific sequence that these transcription factors bind and how transcription factors are induced in denervated muscles is not clarified. As shown in the figures, the ChIP assay provides convincing results, but the detailed sequence or map of the promoter region of proteasome genes must be shown in the figures to clarify the target sequences of NFE2L1 and PAX4, FOXO3, and NRF-1. In addition, the luciferase assay would support the results of the ChIP assay.

      Again, the reviewer raises an important question that we plan to resolve in the future. As mentioned, our findings strongly suggest a novel coordinated mechanism involving multiple transcription factors that control proteasome content in catabolic states in vivo. The enclosed revised manuscript primarily focuses on elucidating the contributions of individual transcription factors (α-PALNRF-1, PAX4, NRF-1NFE2L1 and FOXO3) to the induction of proteasome genes, revealing a significant overlap in genes regulated by multiple transcription factors. The specific mode of cooperation among these and other transcription factors and cofactors is certainly an important question for future studies, but it is beyond the scope of this lengthy paper. In the revised text we have now clarified this point (page 27). In addition, we agree that clarifying how the transcription factors are induced in denervated muscles merits some considerations and a paragraph was added to the Discussion (page 26) concerning possible mechanisms. For example, it is possible that the transcription factor STAT3 is involved in PAX4 induction because, based on previous microarray and ChIP data in cultured NIH3T3 cells, PAX4 was identified as a target gene of STAT3 (Snyder et al., 2008), and STAT3 becomes activated after denervation (Madaro et al., 2018).

      We are delighted that the reviewer found the results obtained through the ChIP assay convincing. Given the extensive scope of our investigation and rigorous analyses of dozens of genes, it is not feasible to generate luciferase-encoding plasmids for all of them. However, in response to the reviewer's request, we have carried out predictions of the binding sites of the 4 transcription factors within the minimal promoter regions (300 up- and 1000 down-stream to TSS) of the 64 proteasome sequences. The predicted binding sites are now listed in Table 2A-D. These new data further support our key findings that multiple transcription factors control proteasome gene expression in a catabolic physiological state in vivo.

      11: The results of the loss of transcription factors are well done, but the authors should also try to estimate the effect of overexpression of transcription factors in muscle. If the overexpressed transcription factors cause proteasome induction and muscle fiber mass reduction, these results strongly support the importance of transcription factor-mediated proteasome enhancement.

      We understand the reviewer’s comment but do not believe that such an experiment is necessary to support our key findings about proteasome gene induction by multiple transcription factors in vivo. In fact, we have specifically refrained from pursuing overexpression studies in this context due to the apparent coordination and some potential interdependence between the functions of PAX4 and α-PALNRF-1 transcription factors in inducing proteasome genes. Manipulating one specific gene through overexpression could potentially disrupt this delicate coordination and yield misleading results.

      In addition, there are several limitations of gene overexpression in mouse muscle, as it may not be as efficient and does not represent physiological conditions. Therefore, to validate gene functions in a physiological setting in vivo, we generated transgenic animals with the gene of interest specifically knocked-out or knocked-down. Utilizing transgenic mice lacking the gene of interest, though time-consuming, is a widely accepted and common approach that proves to be the most suitable method for specifically demonstrating the involvement of a particular gene in a physiological process, enabling a targeted and controlled investigation of its role and providing valuable insights into its contribution to the observed effects.

      Minor comments:

      12: The authors should describe the inducible KO mice more carefully and correctly. In the Results section on P12, the description of "whole body Cre+ mice" confuses the readers in understanding the mechanism of inducible Cre-mediated KO.

      We agree and have added the information requested about the KO mice to the main text and a detailed description in the methods section.

      13: In Figures 6B and 6C, the number of mice and the meaning of the asterisk should be described correctly. Is it statistically significant?

      We agree. By accident the number of mice and sign for statistical significance were omitted during processing. The correct sign was added to Fig. 6B-C, and the number of mice used, and the meaning of asterisks were added to the corresponding legend. N=10 mice per condition. **, P

      14: There is no description of Figure 6E in the manuscript. The authors should include it.

      In the original version of this paper, we refer to Fig. 6E in the text on pages 21 and 25. Also, the presented illustration is fully described in the corresponding legend.

      Reviewer #3 (Significance (Required)):

      This paper clarified a novel mechanism of proteasome induction by transcription factors in denervated muscles other than Nrf1 (NFE2L1), which has been shown to contribute to the induction of proteasome gene expression in cultured cells. This is an important paper for expanding the understanding of the field. It is also important because it has demonstrated the potential for new therapeutic targets in diseases such as type 2 diabetes and cancer.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We would like to thank all three reviewers for their careful and comprehensive reviews of our manuscript. We have taken on board all the comments and have made appropriate changes to improve the manuscript. The more substantive changes are to the structuring of the text in Introduction section, and to improving the clarity of Figure 2 after reviewers’ comments (we have added extra panels to A, F and G). Other minor changes are individually signposted in each paragraph of the point-by-point response attached below.

      We performed a number of pieces of additional analysis to address reviewer comments. To be as transparent as possible we make these and all other data analyses available in the form of .html files exported by Rmarkdown, hosted at https://joebowness.github.io/YY1-XCI-analysis/.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript uses differentiation of the highly informative inter-specific hybrid mouse ESC to follow features of genes that inactivate slowly. Resistance to silencing is reflected in reduced change in chromatin accessibility and the authors identify YY1 and CTCF as enriched amongst these 'slow' genes. This finding is provocative as these factors have been reported to enrich at both human and mouse escape genes. The authors go on to demonstrate that eviction of YY1 is slowly evicted from the X, and that removal of YY1 increases silencing.

      Minor Comments: Overall, the manuscript's conclusions are well supported; however, the brevity of the presentation in some places made it difficult to follow, and in other places seemed a missed opportunity to more fully examine or present their data.

      1. Introduction is only 2 paragraphs and half of the last is their new findings. First part of results/discussion is then forced to be very introductory. In addition, some discussion of escapees, even if predominantly human, seems warranted in the introduction. There are multiple studies that have tried to identify features enriched at genes that escape inactivation that could be mentioned.

      We have now written the introduction as 3 paragraphs instead of 2. In doing this, we have moved the sentence introducing chromatin accessibility from the results section to the introduction. Additionally, we now discuss the studies that focus on escapees (in mouse XCI) in the second introduction paragraph.

      Variation in silencing rates. 'Comparable rankings' cites multiple studies (oddly previous sentence cites only two) - how concurrent are they? Developing this further (perhaps a supplementary table) would inform whether the genes assessed are ones that routinely behave similarly across different studies/lines; and also serve as a resource for future studies.

      To avoid double-citing, we have made this one sentence and have cited at the end of the sentence 7 studies which describe gene-by-gene variability in rates of silencing. The majority of these studies include comparisons of their categories of fast and slow-silencing gene with previous classifications, and they all conclude that there is substantial concurrence. Some examples:

      • Marks et al, 2015, Table S3,
      • Loda et al, 2017, Figure 5,
      • Barros de Andrade E Sousa et al. 2019, Figure 2
      • Pacini et al. 2021, Figure 6e,i We believe this is sufficient evidence for our claim that these studies report “comparable categories” (“ranking” changed to “categories” as not all studies strictly rank). A comprehensive gene-by-gene comparison table would likely serve only to highlight differences due the various silencing assays/model systems/classification approaches used in the studies. If required, however, we would be willing to include a supplemental table which collates where gene silencing categories are discussed in each publication, and links to any supplemental files which provide full lists of X-linked genes.

      It would be helpful to give insight into informativity of cross - what proportion of ATAC-seq peaks were informative with allelic information (and similarly, what proportion of genes expressed had allelic information?

      Of the 2042 consensus ATAC-seq peaks we defined on ChrX via aggregating macs2 peaks over all time course samples, n = 821 passed our initial criteria for allelic analysis in the iXist-ChrX-Dom model line (ie they are proximal to the Xist locus in ChrX 0-103Mb, overlap SNPs, and contain sufficient allelic reads). A small number of peaks were additionally filtered out during fitting of the exponential decay model, leaving a final ATAC-seq peak set of n = 790 elements (38.6%) which we focus on in this study. We have added this information to the text (first Results paragraph).

      Our collections of ChrX genes amenable to allelic analysis were not redefined for this study. We used lists of genes defined in our previous ChrRNA-seq study (10.1016/j.celrep.2022.110830). In general, allelic analysis of gene expression is not as limited by the frequency of SNPs, because the sequence length of transcripts (including introns, which are a significant fraction of the reads in ChrRNA-seq data) is much greater than for ATAC-seq peaks. Only a few very lowly expressed genes are not amenable to allelic ChrRNA-seq analysis.

      P5: "can be influenced by Xist RNA via a variety of mechanisms" seems like it this sweeping statement could use expansion, or at least a reference. Authors could also clarify that 'distal elements assigned by linear genomic proximity is their definition of nearest gene.

      The statement that “both [chromatin accessibility and gene expression] can be influenced by Xist RNA via a variety of mechanisms” is intentionally broad to support a negative argument that we do not wish to mechanistically over-interpret the observation that Xi chromatin accessibility loss occurs slower than gene silencing. Nonetheless, we have added two references to studies which report mechanisms for how Xist may influence chromatin accessibility; via recruiting PRC1 (Pintacuda et al 2017) or antagonising BRG1 (Jegu et al 2019). That multiple molecular pathways simultaneously contribute towards the effect of Xist RNA on gene silencing is well established in the field (see reviews such as Brockdorff et al 2020, Boeren et al 2021, Loda et al 2022).

      We have clarified in the text that our definition of “distal” is all REs which do not overlap with promoter regions (TSS+/-500bp). We have also made it clearer that our definition of “nearest” gene refers to linear genomic proximity in both the Results and Methods sections.

      Figure S1 - there are 6-8 other regions that fail to become monoallelic - what are they?

      The regions which stand out most by the colour scheme of the heatmap in Figure S1 are those where accessibility increases on Xi, most notably the loci of Firre, Dxz4 and Xist, which are known to have unique features related to the 3D superstructure of the inactive X chromosome. A few other regions which do not become monoallelic harbour classic “escapee” genes. We have now labelled the locations of escapees Ddx3x, Slc25a5 and Eif2s3x in FigS1.

      The other regions noticeable in the heatmap have no obvious features which explain why they fail to become monoallelic. We have highlighted a region containing intragenic peaks within Bcor (a gene which is silenced in iXist-ChrX mESCs), but many other regions are not in the vicinity of genes. Some of the persistently Xi-accessible peaks within these regions contain strong YY1 or CTCF sites, although many others do not.

      It is also possible that some Xi-accessible peaks are artefacts of mismatches between the Castaneous or Domesticus/129Sv strain SNP databases and ground truth iXist-ChrX genome sequence. The number of these cases are small, and if a misannotated SNP is the only SNP present in a single peak, the peak is discarded by our allelic filtering criteria as it will appear monoallelic in uninduced mESCs.

      Is there any correlation between silencing speed and expression (as previously reported)? If yes, then is there also a correlation with YY1 presence - and is this correlation greater than or less than seen on autosomes?

      The data we present here pertaining to gene silencing kinetics is reused from our previous study. In that work we did indeed observe a significant association between silencing rate and initial gene expression levels (10.1016/j.celrep.2022.110830, Supplemental Information Figure S5F), which has also been reported by multiple groups previously.

      To correlate YY1 binding with gene expression levels, we calculated transcripts per million (TPM) for all genes from our genome-wide mRNA-seq data of uninduced iXist-ChrX-Dom cells (GSE185869). It is indeed true that, on average, X-linked genes classified as “direct” YY1-targets in our analysis have higher levels of initial expression (median TPM 70.8, n=64) compared to non-target genes (median TPM 30.7, n=346). Autosomal YY1 targets are also relatively higher expressed (median TPM 29.6, n=1882) than non-YY1 genes (median TPM 8.0, n=9983). Within the list of YY1-targets, there is no additional correlation between quantitative levels of YY1 ChIP enrichment (calculated in this study using BAMscale (Pongor et al, 2020)) and gene expression (R=-0.05, Spearman correlation).

      Therefore, we appreciate that this correlation between YY1-binding and gene expression levels may be a covariate in the correlation we report in this study between YY1-target genes and slow-silencing. This does not invalidate a potential functional role for YY1 in impeding silencing, as it could affect both variables via common or distinct mechanisms. Nevertheless, in an attempt to account for initial expression level as a covariate, we compared the silencing halftimes of YY1-targets versus non-targets within genes grouped by similar expression levels (low, medium and high-expressed genes). YY1-targets have slower halftimes in each comparison, and this difference is highly significant (p=1.9e-05, Wilcoxon test) for the “medium-expressed” gene group. This implies that YY1 contributes towards slower gene silencing kinetics independently of initial gene expression levels. We have added this panel to Fig2 with an associated sentence in the Results section.

      These new analyses are also appended to the documentation of the R scripts used to generate the main figures in this study (Figure2_YY1association.Rmd), which will all be published to Github.

      It is also important to note that this analysis approach is complicated by the methodology we use to classify YY1 target genes. In this study, we define YY1 targets based on the presence of ChIP-seq peaks overlapping the gene promoters, which is reasonable and widely accepted practice when defining targets of transcription factors. However, as briefly discussed in the Methods, in YY1 ChIP-seq data samples with very high signal:noise (eg Fig3), minor peaks of YY1 enrichment can be detected at almost every active promoter. As enrichment at these peaks is typically much less than at peaks with occurrences of the YY1 consensus DNA motif, we hypothesise that these small peaks result from secondary YY1 cofactors enriched at promoters (eg P300, BAF, Mediator) rather than direct sites of binding to DNA/chromatin. Therefore, for annotating genes as “direct” YY1 targets, we chose to use the YY1 peak set defined from lower signal:noise ChIP-seq data in iXist-ChrX produced with the endogenous YY1 Ab. Nevertheless, this behaviour is likely to confound any analysis correlating YY1 ChIP binding with gene expression.

      Figure 2: Have the authors considered using quartiles rather than an arbitrary division into depleted and persistent?

      We primarily chose this binary classification of REs as either Xi-“persistent” or Xi-“depleted” to maximise the numbers of sequences that could be used in each group as input for the HOMER motif enrichment software.

      It is also not trivial to separate REs into quartiles because our “Xi-persistent” classification includes peaks defined as “biallelically accessible in NPCs”, as well as peaks with slow accessibility halftimes. This is explained in both the Results and Methods but we now have edited Fig2A to make it clearer. Instead of quartiles, we have performed an analysis which keeps “biallelically accessible REs” as a separate category and subdivides the remaining peaks into three groups by halftimes (slow, intermediate and fast accessibility loss). The same trends are evident with this four-category approach as with the two-category approach.

      Importantly, our follow-up analyses which confirm the association between YY1 binding and slow Xi accessibility loss (Fig2E) and slow silencing (Fig 2F-H) are independent from categorisations of REs which rely on arbitrary thresholds.

      1. Could simplify secondary labels to solely YY1 and CTCF. D & F do not print in black and white. Overall the mESC versus NPC can be confusing, perhaps mESC (no diff) would be helpful?

      We have simplified the secondary labels in Fig2B and modified the colour scheme of FIg2D and Fig2F as suggested. “mESC” is now modified to “mESC no diff” in Fig2H, FigS2B, Fig3C and Fig3E to reduce the potential for confusion.

      The numbers appear to suggest YY1 is generally enriched on X, but not at promoters?? Is this true?

      The explanation for this is that clear peaks of YY1 ChIP are found at young LINE1 elements in iXist-ChrX mESCs (specifically over L1Md_T subfamilies). These elements are highly enriched (>2-fold) on the mouse X chromosome compared to autosomes (Waterston 2002), and the majority are not promoter-associated. We chose not to include a discussion of YY1 enrichment at repetitive LINE1 elements in this study primarily because of a) issues related to multiple-mapping reads, such as difficulties distinguishing ChrX vs autosomal reads, and b) the absence of strain-specific SNPs within annotated ChrX L1Md_Ts means that none of these elements are amenable to allelic analysis so we cannot compare Xi versus Xa. However, these LINE1 peaks are a significant fraction (262/521) of the numbers of YY1 ChIP-seq peaks in Fig2C.

      For Figure 2f, it might be helpful to show autosomal genes - are Fast depleted or Slow enriched for YY1 relative to autosomes?

      We have calculated these numbers as part of the analysis of gene expression on ChrX and autosomes above. Overall, the fraction of genes defined as YY1-targets is the same on ChrX as on autosomes (~0.16). Accordingly, fast-silencing genes are depleted for YY1 compared to autosomes, whereas slow-silencing genes are enriched for YY1 compared to autosomes. Fig2F is now redesigned to include the total numbers of YY1-target genes on ChrX and autosomes.

      More generally, is YY1 binding on the X lost more slowly than YY1 binding on autosomes, or is the slow loss a feature of YY1. While I agree YY1 could have direct up or down-regulatory roles, Figure S3 could also be reflecting a secondary impact.

      We agree that many of the differentially regulated genes after 52 hours of YY1 degradation could be secondary effects and have added a sentence on this to the relevant paragraph in the text.

      Figure 3, 4 and supplementary - the chromosome cartoon introduces the LOH in iXist, but this needs to be described in text. Describing the reciprocal as a biological replicate seems challenging given this LOH.

      It is true that the reciprocal lines iXist-ChrX-Dom and iXist-ChrX-Cast are not true biological replicates, and we try to avoid referring to them as such. Writing this in the legend of Fig3 was an error which we have corrected. We have now also mentioned the recombination event in the iXist-ChrX-Dom cell line at the point where data from this line is first discussed (paragraph 1 of Results section).

      For the latter parts this work (Figs 3 and 4), we made the conscious decision to proceed with two YY1-FKP12F36V cell lines from different reciprocal iXist-ChrX backgrounds (aF1 in iXist-ChrX-Dom, cC3 in iXist-ChrX-Cast), rather than “biological replicate” clones from either iXist-ChrX-Dom or iXist-ChrX-Cast. Our reasoning was to control against potential confounding effects of strain background on our experiments related to the role of YY1. Although there were some minor differences between the clones, aF1 and cC3 demonstrated essentially equivalent phenotypes in all analyses we performed.

      Could a panel of TFs be used rather than OCT4 which has its own unique properties to emphasize that YY1 is unique?

      This would indeed be worthwhile, and we did consider attempting to perform ChIP-seq for additional TFs other than OCT4 in order to collect more points of comparison for the slow rate of loss of YY1 binding to Xi. However, it is admittedly hard to identify appropriate candidate TFs in mESCs which a) have similar numbers of discrete peaks of binding in promoters and distal elements on ChrX and b) it is possible to reliably perform ChIP-seq for at sufficiently high signal:noise to allow for quantitative allelic analysis.

      We have changed the text to acknowledge that our comparison only to OCT4 limits the scope of the statements we can make about unique properties of YY1 binding.

      Figure 4 - by examining 'late' genes, a change in allelic ratio is observed, but what about escape genes (e.g. Kdm5c, Kdm6a)? Do they now become silent? It would be helpful to have all this data as a supplementary table so people could query their 'favourite' gene.

      YY1 degradation experiments performed for Figure 4 were performed on mESCs without cellular differentiation (YY1-ablated cells do not survive in our mESC to NPC differentiation protocol). In undifferentiated mESCs, silencing of the inactive X does not reach completion, and in fact all X-linked genes are residually expressed at a higher level than in equivalent timepoints of Xist induction with NPC differentiation (see Figure 4D, Bowness et al 2022). We write in the text “slow-silencing genes are residually expressed from Xi” because genes of this category account for the majority of expression under these conditions, and indeed almost all slow genes would all be classed as “escape genes” in this setting by a conventional definition of >10% residual expression from Xi (see also Figure 4D, Bowness et al 2022). Our analysis in Fig4D (of this study) includes all genes, and we share processed .txt files of allelic ratio and allelic fold changes in GEO, so querying the behaviour of a favourite gene would be easy (GSE240680).

      Incidentally, when we do perform NPC differentiation of iXist-ChrX NPC, at late stages very few genes show any expression from Xi (Ddx3x, Slc25a5, Eif2s3x and Kdm5c clearly escape, but even Kdm6a is entirely silenced). Unfortunately, with such a small number of “super” escapees it is hard to make any general conclusions, so in this study we can only make inferences about escape via the transitive property that many “slow-silencing” genes are facultative escapees in other settings without induced Xist overexpression. We now write about this consideration in the introduction and final paragraph of the main text.

      It seems surprising that loss of YY1 has no demonstrative impact on the Xa. Figure S3B suggests that over 1000 genes are significantly impacted - primarily down regulated. How many of those are X-linked? Perhaps they could be colored differently?

      For the broad-brush differential expression testing in FigS3B, we use all the ChrRNA-seq samples (6 x untreated, 6 x dTAG) as “pseudo-replicates”, disregarding any confounding effects related to induced Xist-silencing as effecting untreated and dTAG sample groups equivalently. We did specifically investigate the behaviour of X-linked genes in this volcano plot, however only a very small number of genes were differentially expressed (n=22 X-linked genes appeared significantly downregulated compared to n=4 genes upregulated). This can be seen in our analysis records uploaded to Github.

      Additionally, there is actually a minor effect of YY1 loss on expression of YY1-target genes on Xa. This can be seen in Fig4F, where the median lines of YY1-target boxes lie below the horizontal line of 0-fold change.

      Since XIST+/undifferentiated cells retain YY1, is YY1 binding sensitive to DNAme? Indeed, are X chromosome bound sites in islands that become methylated? Figure S4 shows YY1-targetted X genes in SMCHD1 knockout; can CTCF targets also be shown? While identified in Figure 2, CTCF was not examined the way YY1 was, although it has also been identified in somatic studies of genes that escape X inactivation.

      Binding of YY1 is indeed sensitive to DNA methylation; specifically it is reported to be blocked by CpG methylation (see refs (Kim et al, 2003; Makhlouf et al, 2014; Fang et al, 2019). Thus, crosstalk with the DNA methylation pathways, which deposit de novo CpG island methylation as a late event of XCI (Lock 1987, Gendrel 2012), did appeal to us as a potential mechanism of YY1 “eviction”. However, preliminary analysis we performed to investigate this revealed limited overlap between YY1 binding sites and de novo meythlated CpG islands in the iXist-ChrX model cell line.

      FigS4 presents ATAC-seq data from two iXist-ChrX SmcHD1 KO clonal cell lines, comparing the accessibility loss kinetics between YY1-binding and non-YY1 REs in these cells.

      Although FigS4 in this paper does not show genes, we have previously published ChrRNA-seq data from these SmcHD1 KO lines over a similar Xist induction + NPC differentiation time course (Figure 6, Bowness et al, 2022). A reanalysis of this ChrRNA-seq data by YY1-target vs non-target genes shows a similar trend to the accessibility data, although this is expected from the strong overlap of both “YY1-target” and “SmcHD1-dependent” genes with slow-silencing genes in our model.

      With respect to CTCF, we have performed a similar analysis of this data separating ATAC-seq peaks by CTCF-binding rather than YY1-binding. This shows a similar trend to YY1, but is overall less pronounced, and is now included in our analysis records. We have reported previously that loss of CTCF from many binding sites on Xi requires SmcHD1 (Gdula et al, 2019).

      When the authors use cf. do they simply mean see also, or as wikipedia suggests: "the cited source supports a different claim (proposition) than the one just made, that it is worthwhile to compare the two claims and assess the difference". Perhaps it would be worth spelling out to clarify for the audience.

      We used “cf.” in the text to mean “compare with”, when referring to a plot/observation/piece of data outside of the figure being immediately discussed (either in another study or different section of the paper). We were not aware of the recommendation to only use the cf abbreviation when the two items are intended to be contrasted. We do not believe this to be a universal grammatical convention, but nevertheless have changed incidences of cf. to “see also”.

      Reviewer #1 (Significance (Required)):

      General assessment: An important question in human biology is how much the sex chromosome contributes to sex differences in disease frequency. Genes that escape X inactivation in humans seem to have considerable impact on gene expression genome-wide. While there are not as many genes in mouse that escape inactivation, the use of the mESC cell differentiation approach allows detailed assessment of the timing of silencing during inactivation. The authors utilize an inter-specific cross and it would be interesting to know the limitations of such a system (in terms of informative DHS/genes that are informative).

      Advance: As the authors note, there are multiple studies of similar systems that have revealed differences in the speeds of silencing of genes. However, this is the first study to my knowledge that has then tried to assess timing with gene-specific factors. There are multiple studies in humans comparing escape and subject genes for TFs, but lacking the developmental timing that this study incorporates.

      Audience: While generally applicable to a basic research audience interested in gene regulation, the applicability to human genes that escape inactivation may interest cancer researchers or clinical audiences interested in sex differences.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The authors studied the molecular basis of a variation in the rate of individual gene silencing on the X undergoing inactivation. They took advantage of ATAC-seq to observe the kinetics of chromatin accessibility along the inactive X upon induction of Xist expression in mESCs. They demonstrated a clear correspondence between the decrease in chromatin accessibility and the silencing of nearby genes. Furthermore, they found that persistently accessible regulatory elements and slow-silencing were associated with binding of YY1. YY1 tended to associate longer with genes that required more time to be silenced than those that became silenced fast on the inactive X during XCI. The acute loss of YY1 facilitated silencing of slow genes in a shorter period. They suggest that whether or not the transcription factors stay associated longer is another factor that impacts the variation in the rate of gene silencing on the Xi.

      Reviewer #2 (Significance (Required)):

      It has been suggested that the rate of gene silencing during XCI is varies depending on the distance of individual genes from the Xist locus or the entry site of Xist RNA on the X, as well as their initial expression levels before silencing. This study provides another perspective on this issue. The persistent association of transcription factors during XCI affects the rate of gene silencing. Although the issued addressed here might draw attention from only the limited fields of specialists, their finding advances our understanding of how the efficiency of silencing is controlled during the process of XCI. The experimental data essentially support their conclusion, and the manuscript was easy to follow. However, I still have some comments, which I would like the authors to consider before further consideration.

      Major concerns 1. Based on the results shown in Figure 3E and F, the authors concluded that YY1 was more resistant than other TFs against the eviction from the X upon Xist induction. I am not still convinced with this. YY1 binds DNA via the zinc finger domain, while Oct4 binds DNA via the homeodomain. The difference in the binding module between them might affect their dissociation or the response to Xist RNA-mediated chromatin changes. In addition, given that YY1 has been reported to bind RNA, including Xist, as well, Oct4 might not be a good TF to compare.

      We acknowledge and agree that our singular comparison between YY1 and OCT4 is insufficient to support a general conclusion that YY1 is unique with respect to its binding properties on Xi. This was also alluded to by Reviewer #1 (see 10.), where in response we write about the difficulties of selecting other appropriate/feasible candidate TFs for ChIP-seq in order to widen the comparison beyond OCT4. In consideration of this concern, we have re-phrased our conclusions regarding this point in the text, both at the point where it is first presented (Fig3F) and in the first discussion paragraph.

      Furthermore, the difference in allelic ratio change between YY1 and OCT4 is admittedly not dramatic, and this metric can be influenced somewhat by the properties of the sets of peaks used (which is also why we have not tried to add statistical significance to this comparison in Fig3F). In order to make the comparison with OCT4 (a classic pluripotency factor), we were also limited to using mESC culture without differentiation conditions. It is possible that more pronounced differences between YY1 and other TFs would be observed under conditions where XCI is able to proceed further.

      Even so, we contend that our observation that YY1 binding is lost from the Xi relatively slowly likely stands without a requirement for a comparison with OCT4 or other transcription factors. The decrease in allelic ratio for YY1 ChIP occurs more slowly than overall loss of chromatin accessibility from REs, which is arguably a more general proxy for TF binding, and much slower than kinetics of gene silencing (Fig3D and FigS2C). In addition, no other TF motifs (except CTCF, which has its own unique properties) were found significantly enriched within persistently-accessible REs, which would be an expectation if a different factor had similar properties of late-retained Xi binding as YY1.

      Thus, overall we have tried to write the paper without overstating in isolation the importance of our claim that YY1 binding on Xi is relatively resistant to Xist-mediated inactivation, instead emphasising that it should be considered alongside the other pieces of data in the study.

      I don't think that Kinetics of YY1 eviction upon Xist induction in SmcHD1 KO cells during NSC differentiation fit the phenotype of Smchd1mutant cells. Although their previous study by Bowness et al (2022) showed that Smchd1-KO cells fail to establish complete silencing of SmcHD1-dependnet genes, their silencing still reached rather appreciable levels according to Figure 6 of Bowness et al (2022). This is, in fact, consistent with the idea that XCI initially takes place in the mutant embryos, at least to an extent that does not compromise early postimplantation development. On the other hand, a significant portion of YY1 appears to remain associated with the target genes on both active and inactive X (Figure S4), which I think suggests that the presence of YY1 is compatible with silencing of SmdHD1-dependent genes. This is contradictory to the proposed role of YY1 that sustains the expression of X-linked genes in this context.

      At any given timepoint of XCI, our data sets of gene silencing (ChrRNA-seq) consistently show a more pronounced allelic skew compared to chromatin accessibility (ATAC-seq). This behaviour is discussed in relation to Figure 1 in the text (see Results paragraph 2). We do not wish to overinterpret this quantitative difference because the assays are technically different and accessibility is not linearly correlated with gene expression. With this in consideration, we interpret the ATAC-seq data presented in Figure S4 to be fully consistent with the iXist-ChrX SmcHD1 KO ChrRNA-seq data in Figure 6 of our previous publication ie. a small increase in residual Xi gene expression from SmcHD1 KO NPCs is accompanied by a more appreciable increase in residual Xi chromatin accessibility. In line with this, it would not be contradictory for substantially increased Xi YY1 binding to sustain a quantitively small (but nonetheless meaningful) increase in residual gene expression from Xi.

      Additionally, the context in which we include this SmcHD1 KO ATAC-seq data in the current paper is to hypothesise a potential role for SmcHD1 in contributing towards the eventual removal of YY1 binding from Xi. This hypothesis is essentially based on two observations; 1.) There is substantially more residual YY1 binding to Xi in mESC no diff conditions (Figure 3) and 2.) One difference between no diff and diff conditions is absence of SmcHD1 recruitment in the former (Figure 5 in our previous study). The new SmcHD1 KO ATAC-seq data adds a third observation which supports the hypothesis - that YY1-bound REs are appreciably more accessible from Xi in SmcHD1 KO. However, none of these observations are direct evidence of a link between SmcHD1 and YY1, and more experiments would be required to substantiate this potential mechanism. If confirmed, it would be logically reasonable to suggest a role for YY1 in contributing towards the residual expression of X-linked in the context of SmcHD1 KO, but we do not yet claim this, and a potential link with SmcHD1 KO is not the main focus of the paper.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Bowness and colleagues describe the interesting finding that the transcription factor YY1 is associated with slow silencing genes in induced X-Chromosome Inactivation (XCI). The authors have conducted a comprehensive characterization of X-linked gene silencing and the loss of chromatin accessibility of regulatory elements in induced XCI in ESCs and during NPC differentiation. X-linked gene silencing was classified into four categories, ranging from fast-silenced genes to genes that escape silencing. Motif enrichment analysis of regulatory elements associated with slowly silenced genes identified YY1 as the transcription factor most significantly enriched. The separation of YY1-target and non-target genes confirmed that most genes bound by YY1 indeed exhibit slower silencing kinetics. A comparison of the binding kinetics of YY1 to another transcription factor, OCT4, during XCI revealed that YY1 is evicted more slowly compared to OCT4 on the inactive X, suggesting that slower eviction is a unique property of YY1. Conditional knock-outs of YY1 using protein degradation during induced XCI in mESCs demonstrated that the loss of YY1 at target genes enhances silencing. This supports the hypothesis that YY1 serves as a crucial barrier for slow-silenced genes during XCI. Finally, the authors propose a hypothesis regarding the mechanism of YY1 eviction, suggesting a potential connection to the role of SmcHD1 during XCI.

      The authors provide an in-depth analysis of the role of YY1 in gene silencing kinetics during induced XCI and believe this manuscript should be published if our comments are addressed.

      Major comment:

      Based on the allelic ratio in figure 3C only minor loss of YY1 binding occurs in induced XCI in mESCs on the Xi, while silencing is established properly as shown in figure 4C (left panel, red boxplots). This suggests that YY1 eviction is not necessarily required for these genes to be effectively silenced. Could the authors explain this discrepancy in the data regarding their manuscript conclusions? It seems this is true for XCI happening during differentiation towards NPCs, but not if cells are stuck in the pluripotency stage?

      Whilst indeed substantial, we do not consider the silencing seen for 6-day mESCs in Fig4C to be “established properly”. We refer to our previous publication (Figure 4 Bowness et al., 2022), which shows that silencing at equivalent timepoints under differentiation conditions (d5-d7) is significantly more pronounced (near-“complete”). Indeed, the level of silencing reached by YY1-FKBP mESCs (Xist induced but no dTAG treatment) aligns with the plateau of silencing in undifferentiated mESCs we describe in our previous study (median allelic ratio of approximately 0.1).

      We conclude that YY1 contributes somewhat to sustaining this residual expression in mESCs, because a) substantial YY1 binding remains on Xi at these timepoints in mESCs and b) silencing increases with degradation of YY1 (the latter is more direct evidence). Notably, silencing does not progress to completion (allelic ratio of 0) in the absence of YY1, so we do not claim that YY1 is the only factor sustaining residual Xi gene expression in mESCs.

      We interpret this comment to be a fundamentally similar concern to that raised by Reviewer #2 (2.), but in the context of undifferentiated mESCs rather than SmcHD1 KO. As stated above, we do not think it inherently contradictory for substantially increased Xi YY1 binding to sustain a quantitively small (but nonetheless meaningful) increase in residual gene expression from Xi.

      Minor comments:

      1. In the abstract lines 7-8, the authors state that the experiments were performed in mouse embryonic stem cell lines, but much of the data shown is acquired in NPC differentiations. Please adjust abstract.

      We have adjusted this sentence in the abstract to include that many of the experiments in the paper involved differentiation of iXist-ChrX mESCs.

      The last sentence of the abstract states that YY1 acts as a barrier to silencing but as stated in my major comment, that does seem to be the case in ESC differentiation towards NPCs, but not in ESCs themselves. Please tone down this sentence. Moreover, we do not fully understand where the 'is removed only at late stages' comes from? Is this because of the Smchd1 link? We find this link quite weak with the data presented. We would tone down that last abstract sentence.

      We have toned down the final sentence of the abstract accordingly. We agree that “removed only at late stages” is unsubstantiated since YY1 binding on Xi decreases over the entire time course (albeit slowly). However, we maintain that a connection between YY1 and late stages of the XCI process is reasonable to infer from the various pieces of evidence we provide in the study (egs YY1 is persistently enriched in accessible REs, it is associated with slow-silencing genes, and it remains bound to Xi in undifferentiated mESCs).

      Several comparisons to human XCI have been made in the article. We do agree that there are similarities between mouse and human XCI. However, there is insufficient data that substantiates that these genes are regulated in a similar manner in humans. We believe the comparisons should be removed altogether or attenuated.

      We agree that there is nothing in our data that directly pertains to human XCI. Comparisons to human are only made twice in the paper: Initially in the introduction to make a broad statement that many mechanisms of Xist function are conserved between species, and finally as speculation in the last discussion paragraph. We think it is relevant to acknowledge the parallels between our study, which links YY1 binding with resistance to Xist-silencing in a mouse ESC model, and literature describing a similar association between YY1 and XCI escape in humans.

      At bottom of page 4, the authors say that for any given gene, the allelic ration of accessibility at its promoter decreased more slowly than it silenced and then write Fig 1B. They probably mean S1C? Since 1B only shows 4 genes.

      The phrase “any given” was used colloquially (ie imprecisely), so we have replaced it with “individual”.

      Figure 1B shows the average allelic ratio of multiple clones for genes representing different silencing speeds. Each data point is the average of multiple clones for these representative genes, could the authors show the individual data points or the standard deviation?

      Fig1B predominantly shows the averages of only two replicate time-courses of Xist induction with NPC differentiation using the same parental clonal cell line, iXist-ChrX-Dom, but performed on different dates and passages. We regenerated the panel without merging the replicate data points, but this has little effect on the plot (see the Rmarkdown html file of Figure 1 on Github).

      Figure 1B. Loss of promoter accessibility lags behind loss of chromatin-associated RNA expression for these 4 genes. What about distal REs? Do the allelic ratios for the distal REs more closely follow chromatin-associated RNA expression? Could the authors show this in a supplemental figure?

      We comment from FigS1C on the general trend that accessibility decrease from Xi occurs slower than gene silencing (measured by ChrRNA-seq). We then find in FigS1D that distal elements lose accessibility slightly faster than promoters. Although overall the allelic ratio decrease of distal (non-CTCF) RE accessibility is slightly closer to the trajectory to that of gene silencing, it remains substantially slower (see again the Rmarkdown .html file of Figure 1 on Github).

      An equivalent plot to Fig1B showing distal REs would rely on our simplistic assignment of distal elements to their nearest genes. We believe this is reasonable generalisation for investigating chromosome-wide trends but unlikely to be sufficiently accurate at the level of specific genes.

      Figure 1B: gene silencing trajectory is depicted left while the legend says right. Same for promoter accessibility.

      The legend is now corrected.

      Figure S1A shows only part of the X chromosome. The area downstream of Xist is missing. Is this because the iXist-ChrXDom cell line is missing allelic resolution as shown in figure S2A? Could the authors explain in the figure legend that part of the X-Chromosome is missing?

      We have now included a reference to the recombination event in the iXist-ChrXDom cell line both when we present data from this background in the first paragraph of the Results section, and in the legend of FigS1A.

      Figure 2C shows that 94 TSSs bear a YY1 peak, yet Fig 2F shows 62 are targets of YY1. Is this because the rest are not properly silenced or are escapees?

      Fig2C shows the numbers of ChrX YY1 ATAC-seq peaks which overlap with “promoters” (ie regions +/- 500bp of a TSS). By contrast, Fig2F shows ChrX genes classified as direct YY1-targets for allelic silencing analysis. The discrepancy between these numbers is due to a number of reasons:

      1. It is possible for multiple YY1 peaks to overlap the same promoter (eg one peak overlaps 500bp upstream, a separate peak overlaps 500bp downstream).
      2. The count in Fig2C is not restrictive to one TSS per gene in cases where there are multiple transcript isoforms in the gene annotation, thus multiple YY1 peaks can overlap different promoters for the same gene.
      3. A few genes do not pass our filters for allelic silencing analysis (eg they are too lowly expressed). Some YY1 peaks may overlap these genes. We hope the revised version of Fig2F, which includes numbers of direct YY1 target genes on autosomes and ChrX, makes the distinction between these two numbers clearer.

      Moreover, YY1 has ~4-fold more peaks on the X chromosome on distal elements compared to promoters. Yet figure 2F exclusively shows the proportion of YY1 binding sites on TSSs. Would distal REs show similar proportions for the silencing categories? Could the authors show the differences in a Supplemental figure?

      As discussed in the response to Reviewer #1 (point 8.), a large fraction of distal YY1 peaks on ChrX are at LINE1 elements, which are not amenable to allelic analysis. Excluding these peaks results in a smaller number of distal elements bound by YY1. The application of our filters for allelic analysis reduces the number of distal YY1-bound REs even more, and our assignment of distal REs to their nearest gene is imprecise. For these reasons, we do not think a comparison of genes classified by whether they are putative targets of distal YY1-bound enhancers is informative.

      The authors switch between different model systems in the figures, which makes quite confusing which type of XCI is being discussed. We would like to see clearly stated above all panels which cell culture condition is being studied (mESCs or NPCs).

      We have tried to improve this potential source of confusion by modifying “mESC” to “mESC no diff” in the relevant figure panels (see response to Reviewer #1 comment 7B), and adding “in mESCs without differentiation” to the title of Figure 4.

      In Figure 3E and 3F the authors look at the binding retention of OCT4 during XCI in ESCs. However, it is not clear why the authors choose OCT4. Could the authors explain why specifically OCT4 was chosen for these analyses?

      In our responses to the other reviewers, we discuss the limitations of only having one other TF to compare to YY1. The choice of OCT4 was primarily dictated by our experience and confidence in being able to generate high quality ChIP-seq data of this factor.

      As it was essentially arbitrary for the purposes of this paper, we have added a comment to this effect in the text (“with that of a different arbitrary TF, OCT4”).

      What is the expression level of YY1 in NPCs compared to mESCS? In Supplemental S2A, it seems that YY1 protein levels decrease over time during NPC differentiation. Is part of the increased eviction a result of lower protein levels of YY1? Probably not since you calculate ratios between Xi and Xa. Can you please comment on this?

      We were similarly intrigued by this apparent decrease in YY1 protein levels in NPCs (there is no decrease on the RNA level) and initially considered if it could contribute to the relative.

      In FigS2A specifically, the d18 NPC band is probably just a poor quality sample extraction. Our ChIP-seq data generated from the same sample is similar poor compared to the others (FigS2B). In other YY1-FKBP12F36V clones we derived and characterised by Western (not described further in this study, but will likely be published as raw source data for the cropped blots we show in FigS2A), the apparent difference in YY1 protein levels in NPCs is less pronounced. Although a minor decrease in YY1 protein in NPCs seems to be robust, we do not think it relevant in the context of our analysis of YY1 and XCI, as we almost always use Xa as internal comparison for any observations made about Xi.

      On page 7 the authors state that degrading YY1 does not affect Xist spreading and/or localisation. Indeed, it has been previously shown by other groups that YY1 is required for Xist localisation during XCI. Could the authors elaborate further on the why their cells behave differently compared to the Jeon 2011 paper?

      We are working with a mouse ESC model of inducible Xist from its endogenous locus on ChrX and using the dTAG system to degrade YY1 protein. By contrast, Jeon 2011 worked with an Xist transgene integrated at random in the genome of mouse embryonic fibroblasts (MEFs) and siRNA knockdown of YY1. The difference in our observations could be linked to any of these 4 differences (ie cellular context, Xist genomic location, Xist introns, knockdown strategy), but we cannot identify a specific explanation.

      In figure 4G and figure S3D elevated levels of Xist are observed in the dTAG conditions. As the authors point out, this could then result in accelerated silencing of the X seen upon YY1 loss. Are these elevated Xist levels that result in enhanced silencing in figure 4 relevant for the kinetics of silencing? Moreover, YY1 could act as transcriptional regulator of those genes in the X and by removing YY1, one would expect decreased transcription, which would be read as accelerated silencing. The authors could see whether the genes that show accelerated silencing are regulated by YY1 in ESCs (+ dTAG, - Dox).

      We agree that these points are important to consider when interpreting the results of the YY1-FKBP12F36V ChrRNA-seq we present in Figure 4. However, we believe they are covered in the text during our discussion of the data.

      In relation to the final suggestion, the silencing of almost all X-linked genes is increased upon YY1 removal so separating a specific set of genes which show accelerated silencing would be difficult. Nevertheless, in Fig4F we report that the increases in Xi silencing are strongest for direct YY1 target genes. In fact, these genes also show a minor decrease in expression in the + dTAG - Dox condition (see response to Reviewer #1 point 12.). However, by-and-large the differences in Xa log2FCs between YY1-target and non-target genes are less statistically significant. Non-significant p-values are not shown on Fig4F, but can be found in our Rmarkdown analysis records.

      Can the authors explain why they decided to put the Smchd1 part after the conclusion? Before the conclusion would have been better? The probable link between YY1 and SmcHD1 is definitely something important to investigate.

      Supplemental FigS4 relating to SmcHD1 is more speculative and we lack direct mechanistic evidence linking YY1 and SmcHD1. It would require more experiments to substantiate this as a mechanism. We think these experiments could potentially be very interesting, but are beyond the scope of this study.

      In the paper the authors cite Bowness et al., 2022. In it, Figure 5F studies silencing times with respect to silencing dependency on SmcHD1. What is the overlap between SmcHD1 target genes and YY1 target genes? This would provide more data about the correlation between YY1 and SmcHD1.

      There is an association between YY1 target genes and our previous categories of genes based on SmcHD1 dependence (13/56 SmcHD1_dependent genes are YY1 targets compared to only 8/101 of SmchD1_not_dependent genes). However, this enrichment of YY1 targets in SmcHD1 dependent genes is not so striking to warrant inclusion into the (very short) discussion of SmcHD1 in this paper. This association is also expected from the fact that both YY1-target genes and SmcHD1-dependent genes associate with the set of slow-silencing genes.

      Of note, our categories of SmcHD1 dependency were in fact defined in a previous study (Gdula et al., 2019) from a different cellular model (SmcHD1 KO MEFs).

      The authors hypothesise that SmcHD1 might play a role in the eviction of YY1 in NPC differentiation. The current data shows impaired silencing of slow silencing genes and YY1-dependent genes in the SmcHD1 knock-out. However, it doesn't show SmcHD1 is required for YY1 eviction. Could the authors provide direct evidence for their hypothesis by performing NPC differentiation in wild type and SmcHD1 knock-out cells and investigate YY1 binding using ChIP-seq?

      The data we show in FigS4 is ATAC-seq data. It shows that YY1 target REs are particularly more accessible from the Xi in SmcHD1 KO, which is not direct evidence but does align with a potential role for SmcHD1 in mediating removal of YY1 binding from Xi (see our response to Reviewer #2’s comment 2.). We agree that YY1 ChIP-seq over the same time course would be an interesting experiment, but arguably this would also only be indirect evidence (ie increased Xi YY1 enrichment may be due to a confounding consequence of SmcHD1 KO). We therefore believe the full suite of experiments needed to rigorously test the hypothesis are beyond the scope of this paper.

      In figure S4A and S4B no significance is indicated among the different conditions across the different differentiation days. Could the authors add this?

      At all timepoints, differences of Xi accessibility between YY1-binding vs non-YY1 REs are significant. P values are now added to FigS4 and the statistical test is described in the legend.

      Finally, we would like the authors to elaborate in the conclusion about the order of events. As they correctly state at the top of page 5 (and we agree), delayed loss of promoter accessibility compared to gene silencing does not automatically mean that it is downstream of gene silencing. Can you elaborate on this? Also, in light of Fig S2C where loss of YY1 binding seems to happen after gene silencing.

      We mention in the text and in the above response to Reviewer #2 (point 2.) that we do not wish to overinterpret this quantitative difference because the assays are technically different and accessibility is not linearly correlated with gene expression.

      It is possible to speculate plausible biological explanations for this discrepancy in kinetics between accessibility loss, TF binding and gene silencing. For example, a change in the landscape of histone modifications at a promoter may have little effect on its accessibility to TFs but directly hinder RNA Polymerase II in initiation and/or elongation of transcription of the gene. However, we prefer to keep this speculation out of the main text of the paper.

      Reviewer #3 (Significance (Required)):

      This manuscript highlights a novel role for YY1 in XCI. The manuscript provides an analysis of the correlation and causation of YY1 in gene silencing during XCI. There is a clear correlation between YY1 and delayed silencing of genes on the Xi. To our knowledge, this is the first time such an analysis has been performed for YY1. It advances our conceptual and mechanistic understanding of gene silencing kinetics and what the factors involved in it are. We believe it is an important contribution to the XCI field and will be of great value to the XCI community.

      Strength:

      This study presents a comprehensive and in-depth characterization of X-linked gene silencing during XCI.

      Two different types of inducible XCI are studied and compared (ESCs vs differentiation towards NPCs), which we are grateful for.

      Systematic and stepwise analysis of the data is very strong.

      Many data points have been collected which provide stronger conclusions.

      Weakness:

      Some sentences in the abstract should be toned down.

      YY1 eviction on the inactive X doesn't seem crucial to establish X-linked gene silencing in mESCs.

      The mechanistic approach at the end of the manuscript with relation to SmcHD1 could be studied further.

      This paper will be suited for a specialised audience in XCI and transcription factor control of gene expression, i.e. basic research.

      Field of expertise: XCI, epigenetics, Xist, gene silencing, X chromosome biology.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statement We very much appreciate the reviewers' thorough comments and are sincerely grateful for their kind remarks on the novelty and interest of our manuscript. We are confident to have addressed all the points that they have raised including new data, as well as revised figures and text.

      Point-by-point description of revisions All the revisions have been already carried out and included in the transferred manuscript.

      Reviewer #1

      Major comments:

      > The number of the replicates/animals for the experiments described in Figures 1 and 2 should be reported either in the figure legends or in the methods (statistical analysis). We have added the required numbers to the corresponding revised figures, as requested.

      > A relevant part of the discussion repeats what the authors have already said in the results. I would recommend to reorganize this section, emphasizing the importance of these results in the context of human brain tumors.

      Following our own style, we have written a very short (46 lines in length!) Discussion. We dedicate a few lines to highlighting two points: (1) the suggestion, derived from our allograft experiments, that the initial stages of tumour development and long-term tumour growth may be molecularly distinct events, and (2), the unique effect of the combined loss of TrxT and dhd on mbt tumour transcriptomics -unique because none of the suppressors of mbt reported before are as effective in erasing both the MBTS and SDS mbt signatures. Neither of these points are raised in Results. In the remaining few lines we put our results in the context of human Cancer/Testis and elaborate on the fact that the TrxT and dhd pair qualify as head-to-head, CT-X genes, like those reported in human oncology. This is as far as we are willing to go at this stage at emphasizing the importance of our results in the context of human tumours.

      Reviewer #2

      > 1. Figures should include information regarding the sex of the larvae, particularly as there has been a previously reported sex-linked effect in the phenotypes analysed. (e.g. in Figure 2 and Figure S1, where Indication of the sex of the animals should be provided in the figure OK and not just in the figure legend). We fully agree. Sex must always be taken into account as a biological variable. All the experiments reported in the manuscript were carried out with sexed samples, and were annotated accordingly in the original text. In compliance with the reviewer's request we have added this information also to the revised figure.

      *> 2. Data regarding fertility. Can this be shown in a table format? Are dhdKO females fully sterile? What are the fertility levels of Df(1)J5? * Please note that we are not discovering anything here but merely corroborating what has been published before: the lack of TrxT does not affect fertility in either sex; the lack of Dhd results in female sterility (Torres-Campana et al., 2022, Tirmarche et al., 2016, Svensson et al., 2003, Pellicena-Palle et al., 1997). Adding a table would not be justified. Moreover, it would be a rather simple table: all single-pair mating tests (n=10 for each genotype) with Trxt KO and Dhd KO males, and TrxT KO females were as fertile as control flies, while all single-pair mating tests (n=10) with Dhd KO females were sterile.

      > 3. Are dhd and TrxT the only genes affected by Df(1)J5? Is there transcriptional data from Df(1)J5 animals to suggest that nearby genes are not affected by the deficiency? Of particular interest would be to assess if snf is affected or not as it is a known regulator of gene expression and splicing. Yes dhd and TrxT are the only genes affected by Df(1)J5. That is the case according to Flybase (citing Svensson et al., 2003, and Salz et al., 1994) and confirmed by our own RNAseq data. No other transcripts, including snf, are affected by Df(1)J5.

      > 4. In Figure 1C, statistical test plus indication of significance is not presented. The requested statistical test and significance data have been added as required to the revised figure and figure legend.

      > 5. Related to Figure 1D. Additional neural markers could be assessed in dhdKO and TrxTKO flies. Whilst the gross morphology of the brain does not seem to be affected, there is a possibility that cell specification is affected. Specific markers for the NE, MED and CB could be used to assess this in more detail, particularly as the DE-cad images shown for dhdKO and TrxTKO flies seem to differ slightly from the control. We believe that there may be a small misunderstanding here. We have made this point clear in the revised version by referring to substantial published data showing that expression of these two genes is restricted to the germline and that, female fertility aside, TrxT and dhd deficient flies' development and life span are perfectly normal. If anything, Figure 1D is redundant. However, we would rather keep it as a control that our CRISPR KO mutants behave as expected.

      > 6. Related to Figure 2A, images from TrxTKO; l(3)mbtts1, dhdKO and l(3)mbtts1 should be added at the very least in a supplementary figure. Additionally, data for NE/BL ratio should be provided for dhdKO, TrxTKO and Df(1)J5 in the absence of l(3)mbtts1 tumours. Related to Figure S1, quantification of NE/BL ratio for female lobes should be added to the figure. All the requested images and data have been included in the revised version in new figures Figure S2B, Figure S2A, and Figure S1A.

      > 7. Related to Figure 2B and Figure S1, three rows of images are presented for each genotype. It is unclear whether these correspond to brain lobes from different larvae or different confocal planes from the same animal. This should be clarified in the figure and/or figure legend. This point has been clarified as requested in the revised figure legend. Each group of three rows correspond to brain lobes from different larvae of the same genotype.

      > 7 cont. Related to this, in addition to the anti-DE-cadherin data, it would be informative to include immunofluorescence data using antibodies such as anti-Dachshund (lamina), anti-Elav (medulla cortex) and anti-Prospero (central brain and boundary between central brain and medulla cortex) (as assessed in e.g. Zhou and Luo, J Neurosci 2013) in the mbt tumour situation to accurately describe regions disrupted by the tumours. There is no denying that taking advantage of the many cell-type specific markers that are readily available in Drosophila could be of interest. The same applies to cell cycle markers like PH3, FUCCI, and many others. However, we believe that interesting as they may be, none of this markers will give us the clue on the molecular basis of TrxT and Dhd tumour function that is, of course, the open burning question that we are trying to address now.

      > 8. Authors should clarify how the NE was defined when mbt tumours are generated, as it is severely affected. From the images provided, it is unclear which region corresponds to NE or how the NE/BL ratio was measured. It would be helpful to outline these regions in the images or, as mentioned above, use antibodies to define them. The figure has been modified to include the requested outlines defining the NE that indeed is correspond to the channel showing DE-Cadh staining.

      > 9. Figure 2C does not have indication of statistical significance for the comparisons stated in the text. Potential explanations for the different roles of Dhd and TrxT in long-term tumour development should be explored in the discussion. The requested statistical significance data for these comparisons were stated in the second last paragraph of that section. To make these data more prominent we have also added this information to revised Figure 2C.

      >9 cont. Related to this, does the analysis of the RNA-seq data from TrxTKO; l(3)mbtts1 and dhdKO; l(3)mbtts1 animals reveal why they have similar effect on mbt tumour development but do not synergistically contribute to long-term growth? Unfortunately our analysis of the RNA-seq data from TrxTKO; l(3)mbtts1 and dhdKO; l(3)mbtts1 animals does not give us any clue that could help us understand why they have similar effect on mbt tumour development, but not in long-term growth (allografts). To further explore this point, we have added new Figure S3 that includes a Venn diagramme showing the overlap between the affected mMBTS genes in TrxTKO; l(3)mbtts1 and dhdKO; l(3)mbtts1, together with the lists of enriched GOs among overlapping and non-overlapping genes. GO differences are tantalising, indeed, However, they do not immediately suggest any direct explanation for the different roles of Dhd and TrxT in long-term tumour development.

      > 10. Authors should clarify if there is any overlap between the affected M-tSDS and F-tSDS in the TrxTKO; l(3)mbtts1 and dhdKO; l(3)mbtts1 conditions. Would the limited overlap suggest that TrxT and dhd act in parallel rather than synergistically? This might also explain the differential effects on long-term tumour development. Additionally, the stronger effect observed in Df(1)J5 animals may be due to TrxT and dhd functional redundancy. Currently, there is limited evidence to suggest that TrxT and dhd act synergistically to regulate mbt tumour growth based on the presented data. See below.

      > 11. Authors should include a Venn diagram depicting affected genes (M-tSDS and F-tSDS) in the TrxTKO; l(3)mbtts1, dhdKO; l(3)mbtts1 and Df(1)J5; l(3)mbtts1 genotypes as this could clarify the percentage of overlap of gene signatures in these different conditions. Related to this point, authors could provide results from GO analysis to investigate whether specific functional clusters are altered in the different conditions. We have taken the liberty of fusing points 10 and 11 that are conceptually similar. The requested Venn diagrams showing the overlap between the affected M-tSDS and F-tSDS genes in the TrxTKO; l(3)mbtts1, dhdKO; l(3)mbtts1, and Df(1)J5; l(3)mbtts1 conditions, and GO analysis are now shown in new Figure S5. Unfortunately, these new data do not suggest any obvious explanation for the differential effects of these two genes, nor do they allow us to derive any further conclusions regarding the nature of the pathways through which TrxT and dhd cooperate to sustain mbt tumour growth. However, our analyses demonstrate that efficient suppression of mbt phenotypic traits (in larval brains) and transcriptome requires the combined elimination of both germline thioredoxins, while the effect of individual removal of either of them is only partial. These data demonstrate the synergistic nature of TrxT and dhd function in mbt tumour growth.

      > 12. In Figure 3E, authors should indicate more explicitly in the figure panel and/or figure legend which genes display significant differences in expression in the different samples. We apologise for not having made this point clear in the original version: All (21) genes shown in this Table are significantly downregulated in DfJ5;ts1 vs ts1. From these, nanos and Ocho are also significantly downregulated in TrxTKO;ts1 vs ts1, and Ocho, HP1D3csd, hlk, fj, Lcp9, CG43394, and CG14968 are significantly downregulated in dhdKO;ts1 vs ts1. These data have been included in the revised figure legend. Data on all other comparisons are included in Table S1.

      > 13. In Figure S2C-F it is not clear if the graphs represent data from all tissues or data from male and female tissues separately, as shown in Figure 4. Apologies for the confusion. All samples were from male tissues as indicated in the original figure legend. To make it more clear, we have labelled all four panels in the revised figure.

      > 14. Are TrxT and dhd also deregulated in other tumour types? Or is this specific for mbt tumours? This information could be provided to enhance the scope of the manuscript. Thank you for raising this point. TrxT and dhd are not dysregulated in the other tumour types that were analysed in Janic et al., 2010 (i.e pros, mira, brat, lgl and pins).

      > 15. Authors conclude that TrxT and dhd cooperate in controlling gene expression between wild-type and tumour samples and that they act synergistically in the regulation of sex-linked gene expression in male tumour tissue. However, the link between the two observations (if indeed there is a link) has not been well explained. Is the effect on gene expression in tumours simply a result of the regulation of sex-linked transcription? Our data show that TrxT and dhd synergistically contribute to the emergence of both the MBTS (i.e tumour versus wild type) and SDS (i.e. male tumour versus female tumour). The only certainty at this time regarding the interconnection between both signatures is that they overlap, but only partially, which answers one the questions raised by the reviewer: the effect on gene expression in tumours is not simply a result of the regulation of sex-linked transcription. Beyond that, the link (if indeed there is a link) between these two signatures has not been investigated. The lack of insight on this issue is not surprising taking into account that, in contrast to classical tumour signatures (tumour versus healthy tissue), the concept of sex-linked tumour signatures is relatively new and only a handful of such signatures have been published. Moreover, the vast majority of classical tumour signatures have not been worked out in a sex-dependent manner.

      Reviewer #3 Comments: > - In the first section of the results, as a first step to study the role of TrxT and dhd genes on mbt tumors the authors generate CRISPR knock outs of these genes and correctly validate them. However, afterwards, the experiment where the authors test the KO of these genes in a wild-type larva brain is not contextualized with the rest of the section. It might be best to first address the role of these genes in a tumor context and only then complement with the experiments in wild-type (in supplementary material). We do appreciate the reviewer's view, but respectfully disagree. In our opinion, the manuscript flows better by presenting the tools that we have generated in Figure 1, By corroborating published data showing that these two germline genes do not affect soma development (Torres-Campana et al., 2022, Tirmarche et al., 2016, Svensson et al., 2003, Pellicena-Palle et al., 1997) this first figure not only validates our CRISPR KO mutants, but also sets the stage to highlight their significant effect on a somatic tumour like mbt.

      > - Fig 2 B - To back up the quantifications in Fig 2A the authors could include images of l(3)mbt ts1 tumors with TrxT KO and dhd KO also. The requested images are shown in new figure Figure S2B.

      > Fig 2 B and C - Indeed, the results suggest that TrxT seems to be responsible for most tumor lethality upon l(3)mbt allografts, but not dhd. This is curious since l(3)mbt; dhd KO brain tumors have the same partial phenotype as l(3)mbt; TrxT KO (fig 1A). It would be interesting to further explore these phenotypes by staining l(3)mbt; TrxT KO and l(3)mbt; dhd KO brains with, for instance, PH3 to understand if the number of dividing cells of these tumors could be different. In addition, to back up this information, the authors could look at what happens to l(3)mbt tumors with TrxT KO and dhd KO at a later stage of development (or to larva or pupa lethality if that is the case) and compare it with l(3)mbt brains. We did explore the possibility of looking at later stages. Unfortunately, the onset of the lethality phase compounded by major tissue reshaping from larval to adult brain make these stages unsuitable to reach any meaningful conclusion. With regards to staining for PH3, we think that like FUCCI and a long list of other useful labels that could be explored, it is potentially interesting, but hardly likely to give us the clue on the molecular basis of TrxT and Dhd tumour function, that is of course the one important question that we are addressing now.

      > - Fig 2 B - What happens to the medulla in a l(3)mbt brain tumor? Although the ratio of NE/BL is the same for wild-type and D(1)J5; l(3)mbt, it still seems that the medulla in D(1)J5; l(3)mbt brains is substantially bigger, although quantifications would be required. Do the authors know if the NE in D(1)J5; l(3)mbt brains is either proliferating less or differentiating more? There are no significant differences in medulla/BL nor in CB/BL ratios. The corresponding quantifications have been added to the revised version. As for the question on proliferation versus differentiation, the simple answer is that we do not know.

      > Figure S1 - Although the effects of TrxT KO and dhd KO in male mbt tumors seem to be enhanced in relation to female tumors, the authors should include some form of tumor quantification for female tumors like in Fig 2 A. We have carried out the requested quantifications and added the results in a new panel in revised Figure S1A.

      Moreover in the 2nd section of the results, relative to Fig 1S in "...Df(1)J5; l(3)mbtts1 female larvae although given the much less severe phenotype of female mbt tumours, the effect caused by Df(1)J5 is quantitatively minor." to say "quantitatively" minor, the authors should include not only quantifications, but a form of comparison between female tumors vs. male tumors. The requested quantification was published in Molnar et al., 2019. However, we agree on the convenience of doing it again with our new samples. The new data, that confirm published results, are now shown as a new panel in revised Figure S1C.

      > - Fig 3D - The hierarchical clustering was done according to which parameters? A brief explanation could help a better interpretation of this results section. The requested information has been added to the Methods section. Hierarchical clustering was done using the function heatmap.2 in R to generates a plot in which samples (columns) are clustered (dendogram); genes (rows) are scaled by “rows"; distance = Euclidean; and hclust method = complete linkage. Expression levels are reported as Row Z-score.

      > - Fig 3D - It could be beneficial for the authors to include an analysis of the downregulated genes shared between TrxT KO mbt tumors and dhd KO mbt tumors, as well as the genes that are not shared (besides MBTS genes). Could be something like a Venn diagram. Thanks for pointing this out. New Figure S3 shows the requested Venn diagram, as well as the list of enriched GOs for each group.There are no enriched GOs in the list of overlapping genes. TrxTKO; l(3)mbtts1-specific genes are enriched for GOs related to game generation, sexual reproduction, germ cell development and simlar GOs. dhdKO; l(3)mbtts1 -specific genes are enriched for GOs related to chitin, molting and cuticle development. Tantalising as they are, these observations do not immediately suggest any direct explanation for the different roles of Dhd and TrxT in long-term tumour development. We are happy to add these supplemental information, but we do not deem it worth of any further discussion at this point.

      > - Results section 3 - "Expression of nanos is also significantly down-regulated upon TrxT loss, but remains unaffected by loss of dhd" - to corroborate the idea that TrxT and dhd work as a pair, but contribute to different functions within the tumor, it would be interesting for the authors to do an allograft experiment of dhd KO; l(3)mbt male tissue with nanos knock down in the brain, if genetically possible. The suggested experiment is published. The gene in question (nanos) is a suppressor of mbt tumour growth: In a nanos knock down background, l(3)mbt allografts do not grow (Janic 2010).

      Minor comments: * > - In the first section of the results, the authors claim that "Consistent with the reported phenotypes of Df(1)J5...", but then the study is not mentioned.* The corresponding references (Salz et al., 1994; Svensson et al., 2003; Tirmarche et al., 2016) have been added.

      > - Fig 1 B - It is a bit confusing to follow where TrxT and dhd are in the Genome browser view. I am guessing we should follow the TrxT-dhd locus from A, but the authors could make it clearer. Figure 1 has been changed to make this point more clear.

      > - In the same section, in the next sentence, the homozygous and hemizygous is a bit confusing. "...homozygous TrxTKO females, dhdKO males, and TrxTKO males", should be corrected. We appreciate the suggestion, but would rather stick to classical terminology and refer to KO/KO females as homozygous and to KO/Y males as hemizygous.

      >- In the same section (Fig 1C): "RNA-seq data also shows that TrxT is significantly upregulated in l(3)mbtts1 males compared to females (FC=7.06; FDR=1.10E-44) while dhd is not (FC=1.89; FDR=2.00E-14)." - But dhd is nevertheless upregulated, although less, in l3mbt males, right? The authors might need to rephrase. We refer to comparing males versus females, not wild type versus tumours. The text has been rephrased in the revised version to make this point clear.

      > - Fig 2 A (quantifications), should be after the confocal images (Fig 2 B). We respectfully disagree on this minor point. We initially organised this figure in the order recommended by the reviewer, but we eventually found it easier to write the article using the order shown in the submitted figure. We would rather stick to this version.

      > - Fig 2 B and Fig S1 - Please include an outline of at least neuroepithelia and, if possible, Central brain or medulla so that these regions can more clearly identified. Moreover, these results will be easier to interpret if you add a male symbol in this image and a female symbol in Figure S1, otherwise, it might seem like the same figure Outlines and symbols have been added to the revised figure, as required.

      > - In results, section 2, "Consequently, in spite of the strong sex dimorphism of mbt tumours, the phenotype of Df(1)J5; l(3)mbtts1 larval brains is not sexually dimorph" - to back this up, quantifications of Df(1)J5; l(3)mbtts1 female vs male tumor size, as well as statistical analysis are needed, like previously said. The requested the new data is now shown in revised Figure S1C.

      > - In results section 2 - "For allografts derived from, female larvae, we found that differences in lethality rate caused by TrxTKO; l(3)mbtts1, dhdKO; l(3)mbtts1, Df(1)J5; l(3)mbtts1, and l(3)mbtts1 tissues (7-23%) were not significant (Figure 2C)" - there is no statistical analysis to conclude that the lethality rate is not significant, from 7% to 23% still seems like a difference. Thanks for pointing this out. We did of course generate the requested statistical analysis data, but failed to include it in the manuscript. Chi-square statistical test gives a p value=0.2346. These data have been added to the revised version.

      > - Last paragraph of section 2 of results - very long and confusing sentence. Please rephrase text. We have rephrased this sentence to make it shorter and clearer.

      > - On section 3 of results: "The vas, piwi and CG15930 transcripts are not significantly down-regulated following either TrxT or dhd depletion alone." - in Fig 3E, not only these transcripts seem to suffer a slight downregulation, but there is also no statistical analysis supporting this. There seems to be a misunderstanding here. The requested statistical data for each gene were shown in Table S1

      > - First paragraph of section 3 results - the first sentence is written in a confusing way. Moreover, more context is needed in the sentence afterwards: "we first focused on transcripts that are up-regulated in male mbt tumour samples compared to male wild-type larval brains (mMBTS)." but using which data? The RNA seq data? Agreed; this paragraph has been amended in the revised version.

      > - Brief conclusion missing on the second paragraph of the last section of results. As far as the results presented in this paragraph are concerned, we can only mention the two potentially interesting observations, which were pointed out in the original version: (i) the suggestion that nanos upregulation could be critical for sustained mbt tumour growth upon allograft, and (ii) the fact that three genes (vas, piwi and CG15930), also known to be required for mbt tumour growth, are downregulated in Df(1)J5; l(3)mbtts1, but remain unaffected following either TrxT or dhd depletion alone. We are unable to derive any other conclusion from these observations.

      > - In the end of 3rd paragraph of last section of results: "...M-tSDS and F-tSDS genes is partially reduced in l(3)mbtts1 brains lacking either TrxT or dhd, but it is completely suppressed upon the lack of both." - "completely" might not be a correct word to use in this case, as there is still some small differences As requested, we have changed "completely" for "strongly".

      > - 4th paragraph of last section of results: Either mention the male results and then female (to be in order with the figure, as the female graphs come after the male graphs) or change the order in the figure. Also, this paragraph is not very clear, could benefit from a better explanation of the results and conclusions. Point taken. Figure 4 has been changed and female graphs come before male graphs. The paragraph is clearer now. The conclusion from this paragraph is included in the final paragraph of this section.

      > - Fig 4 C,D,E,F: to make it more clear, please write the name of the genotypes in question in the figure. At the reviewer's request, the genotypes in question are now written in each panel. Please note that we did not do so before because all four panels correspond to the same genotype: Df(J5); l(3)mbtts1 vs l(3)mbtts1, as we mentioned in the original figure legend.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      The paper by Yammine et al addresses a major problem in peculiarities of genotype to phenotype manifestation in collagen II and chondrodysplasia. It is a lucid and comprehensive study detailing what they see as the fundamental mechanism of Gly1170 Ser mutated Col2a1 gene.

      At the heart of the matter is the debunking of the results from a mouse model generated by liang et al (Plos one 2014) paper in which the authors suggested that the phenotype seen only homozygous mice (heterozygous mice appear normal), was related to ER stress -UPR-apoptosis cascade resulting in the chondrodysplasia. Yammine et al paper uses a different model, a robust human iPSC-based tissue, with a CRISPRed variant show that despite the ability of the variant chondrocytes to deposit a Gly1170Ser-substituted collagen II in both the hetero- and homozygous models, is not accompanied by any substantive UPR. The authors of this current paper also argue that their model system is most closely resemble the human context, where heterozygous individual show pathology.

      We appreciate the Reviewer highlighting the significance of this manuscript addressing a major issue in the field.

      I have sieved all the data related to this topic and have gone back to examine the data and what struck me was the repeated use of the phrase "slow to fold" in the current paper and wondered whether the element of "TIME" is as important in the chondrogenesis of either models and it is this element that generate the difference between the two results? While iPSC-based tissue takes up to 44 days, a female mouse would have had two litters in this time and made many more growth plates. Could it be by "slowing" the chondrogenesis pathway, which is part of the procedure of differentiation of iPS cells into chondrocytes, the ER is not as "stressed" as in mouse development? I would like the authors to reflect and comment and put forward their view given UPR signaling pathways play a crucial role in chondrocytes in phases of high protein synthesis, e.g., during bone development by endochondral ossification (Journal of Bone Metabolism, vol. 24, no. 2, pp. 75-82, 2017).

      The Reviewer here emphasizes a likely benefit of the human model that we had not previously considered, as differentiation and growth in our model are indeed far more similar to humans than the rapid timeline in mice. We also note that the evidence that collagen is slow to fold comes from the gold standard assay in the field for collagen folding rate, a point discussed in greater detail in response to Reviewer 2’s query (see below).

      The literature evidence does indicate that transient UPR signaling is relevant for chondrogenesis. We selected UPR timepoints that do not interface with the differentiation process, but rather the tissue deposition process while chondrocytes are still actively depositing and maintaining the extracellular matrix, to be able to distinguish a physiological transient UPR during differentiation from a potential chronic and possibly pathologic one. We now clarify this point in the manuscript (see text below).

      “These timepoints were selected to reflect an early and a late stage of cartilage maturation, but with both timepoints harvested post-chondrogenesis so as not to interfere with the physiologic transient UPR activation that can be important in that process.”

      This is not withstanding the good argument given by the authors in defending their robust results, namely that the there is no evidence that the hydrophilic triple-helical domain of pro-collagen binds BiP, the main detector of accumulated misfolded proteins. What then do they make out of the immunostaining and qPCR with ER stress related genes in Liang et al paper?? I know that the data is not theirs but a comment on the indisputable data gives the reader a better understanding.

      It is critical to note that the evidence for ER stress that induces the UPR is, at best, exceptionally weak for heterozygotes in the Liang et al paper, and arguably also weak for homozygotes. Liang et al observed, via quantitative PCR, that the mRNA levels of just Chop (which is also a marker of the integrated stress response and not a good readout for UPR activity) and ATF6 (whose RNA-level upregulation is not a standard marker of the UPR) were significantly upregulated in the disease-relevant heterozygous mice – given that other (more valid) UPR markers were not altered, this is not so different from our observation of a lack of UPR in the disease-relevant heterozygotes.

      A somewhat more comprehensive set of UPR markers, including Chop, Xbp1(Total and Spliced), Grp78 (BiP), ATF4, and ATF6, was significantly upregulated only in homozygous mice compared to wild-type. PERK is one of many kinases upstream of ATF4 and Chop that can be activated by a variety of processes (the pathway is part of the integrated stress response, for example). Moreover, transcriptional upregulation of ATF4 (which is actually induced translationally, not transcriptionally) and ATF6 (which is actually induced proteolytically, not transcriptionally) are not normally used to read out UPR activation, so it is not so clear to us that a robust UPR was induced even in homozygotes. Moreover, there was not a substantial increase in Xbp1-S (S = spliced) relative to Xbp1-T (T= total) in the study of homozygous mice, which is the most appropriate measure of UPR activation – rather than change in Xbp1-T and Xbp1-S. The use of mostly non-standard genes to assess UPR induction, the weak upregulation of BiP (2.5-fold), and the unchanged ratio of Xbp1-S to Xbp1-T raise some questions regarding UPR induction even in the homozygotes. Regardless of these homozygote data, as noted above, the evidence for a UPR in heterozygotes is very weak, despite ER stress being the focus of the Liang et al paper.

      With respect to immunostaining, Liang et al observed that tissue from homozygous mice (but not heterozygotes) contained significantly more apoptotic cells. Apoptosis could be a result of chronic, unresolved UPR signaling, but it could also result from any number of other pathways and is certainly not direct evidence for UPR-inducing ER stress. Additionally, for the homozygote apoptosis assay, Liang et al do not note how many mice were analyzed for each genotype, a value they did report for their other assays. While examining multiple sections for each genotype is valuable (they state ≥10), the assessment of biological replicates (additional mice) seems critical to confidently reach a conclusion.

      Although I understand the choice of cell lines for overexpression, the transfection of the HT-1080 cells using wild-type and Gly1170Ser COL2A1encoding plasmids are not a match to the in vivo model (variation of efficiency, etc.) the appearance of BiP even at a lower fold increase does not negate ER stress, as the authors acknowledge but more important is what other paracrine signals which triggers the UPR signally pathway which is not linked to BiP? or an iPS system may lack? Is there anything else not only ATF6α (activating transcription factor 6 alpha), but IRE1α (inositol-requiring enzyme 1 alpha), and PERK (protein kinase RNA-like endoplasmic reticulum kinase).

      Our finding that the UPR is not activated is based on comprehensive RNA-sequencing performed in the physiologically more relevant iPSC-derived chondrocyte, as opposed to the tumor cell line HT-1080. Our interactomic finding that BiP interacts to the same extent with wild-type and Gly1170Ser procollagen-II (in HT-1080 cells) strongly supports our proposal that the reason the UPR is not activated is that BiP fails to recognize unfolded triple-helical domains.

      We note that, although HT-1080 cells are not a perfect match, they are the most accessible option for interactome-based studies. Because there is no MS-grade antibody for collagen-II IP, we need to IP a transfected, tagged collagen. We cannot do this in chondronoids, or in isolated chondrocytes that transfect poorly and rapidly dedifferentiate. Critically, Prockop and co-workers extensively validated HT-1080 cells as a platform for fibrillar collagen biochemical studies in Matrix 1993, 13, 399. Our own lab further characterized their capacity to properly handle fibrillar collagen variants in great molecular detail in ACS Chem Biol 2016, 11__, __1408.

      Since our chondronoid system contains only chondrocyte cells, as is the case in cartilage, the cells can receive paracrine signals from other chondrocytes, but not other cell types. In joints within a whole animal, it is true that paracrine crosstalk occurs between different cell types of different tissues, including inflammatory cells for example. The chondronoid is very useful for elucidating the defects that occur at the chondrocyte-level, without confounding secondary effects. At the chondrocyte-level, Gly1170Ser-substituted procollagen-II does not activate the UPR.

      The Reviewer’s comment regarding the absence of paracrine signals in an iPSC-based system is well-taken, and we added discussion as follows:

      “These observations indicate that the chondrocytes were not raising such stress responses, at least when examined in the absence of paracrine signals from other cell types in the joint.”

      The authors have given us plenty of alternatives that are relevant, and they prepared us for yet another paper on articular cartilage using iPS tissue model which I am looking forward to.

      We are also excited about the upcoming potential of this model system!

      Significance

      I think this paper is publishable and it is important in understanding the mechanism by which mutation in collagen type II affect chondrogenesis and therefore bone formation. This paper will appeal to musculoskeletal scientist especially those who are interested in bone and its pathology. It would be important for the authors to respond to the critique of "TIME" and speed of protein synthesis which create a duress in the ER pathway.

      We greatly appreciate the Reviewer’s comment again on the significance of this work, and their scholarly input which has substantially improved the paper. We hope they will agree that the manuscript is now ready for publication.

      Reviewer #2

      Evidence, reproducibility and clarity

      *System: The investigators have used a human iPSC chondrocyte model system to investigate the biochemistry of the Chondrodysplasia caused by the p.Gly1170Ser mutation in the type II collagen gene (COL2A1). They studied presumably homogeneous chondronoids formed by 3 cell lines they previously reported in which the chondrocytes were either homozygous wild type for the gene, homozygous for the Cas Crispr induced mutation or heterozygous for the two alleles (their refs 42-45). In addition, they utilized cultured HT1080 human fibrosarcoma cells transfected with wild type and mutant Col2A1 to study differences in the interactomes of the two proteins.

      *

      *Analytic Parameters: They investigated the extracellular matrix formed by the three cells using collagen and proteoglycan staining and TEM and the transcriptional responses in chondronoids expressing the wild type and mutant genes.

      *

      *Observations: matrix formation was defective in the two mutation bearing cell populations, reflecting defective fibril formation proportional to the abnormal gene dose. They found increased accumulations of post-translational modifications (hydroxylation, and O-glycosylation) on the mutant collagen extracted from the chondronoids and EM evidence of collagen retention in the ER. They studied the comparative transcriptional profiles in the three phenotypes and failed to find a profound UPR response late in culture and only a mild upregulation of UPR genes in the young cultures. They could not find evidence for activation of the ISR except in the homozygous mutant cells.

      *

      *Using transfected HT-1080 cells (previously shown by these investigators not to express endogenous pro-collagen II but able to synthesize transfected pro-collagen genes) they were able to study the comparative wt and mutant pro-collagen interactomes.

      *

      Conclusions: They conclude that the p.gly1170ser mutation in Col2A1 results in abnormal folding which results in trapping of the protein in the ER and some interaction with cellular elements of the proteostatic response. They concluded that the cellular proteostasis machinery can recognize slow-folding Gly1170Ser through increased interactions with certain ER network components but not in the same fashion that has been described for liver cells producing mutated versions of high volume secreted proteins.

      We appreciate this careful summary of our work.

      *Major comments:

      *

      Their first conclusion, stated in the abstract, "Biochemical characterization reveals that Gly1170Ser procollagen-II is notably slow to fold and secrete." that the mutant polypeptide chain is slower folding than the wild type chain is based on the premise that the longer the chains are in the ER the greater the degree of lysine hydroxylation and O-glycosylation. Although this may be true, they do not provide a reference and I could not find a definitive description of the phenomenon. Their reference 48 only discusses the occurrence of intracellular post-translational modification of the lysines and continuing modification extracellularly but does not relate these phenomena to the rate at which the peptides traverse the cell. I think the reader would benefit from seeing experiments in which the rate of folding and secretion of the wild type and mutant chains are measured and the degree of post-translational modification are compared. Cabral WA et al showed differences in collagen folding and secretion rates in cyclophilin wt, knockouts and heterozygotes osteoblasts and fibroblasts by western blots. (2014) Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. PLoS Genet 10(6): e1004465. doi:10.1371 / journal.pgen. 1004465). Performing such experiments in their chondronoids would confirm the authors' interpretation that the increased post-translational modification portrayed in their figure 4 reflects slowed folding and secretion related to the mutation.

      We apologize for failing to provide essential background references and information to assess our assay for slow folding/secretion of procollagen. In fact, slow migration on SDS-PAGE is not only a widely used assay for comparing the rate of folding of procollagens, it has also remained the gold standard in the field for the past forty years. The studies cited below are some of the seminal papers in the field linking collagen’s rate of folding with its extent of posttranslational modifications and its electrophoretic mobility. We have now updated our citations accordingly.

      1. Bateman, J.F.; Mascara, T.; Chan, D.; Cole, W.G. “Abnormal type I collagen metabolism by cultured fibroblasts in lethal perinatal osteogenesis imperfecta” Biochem J 1984, 217, 103.
      2. Bonadio, J.; Holbrook, K.A.; Gelinas, R.E.; Jacob, J.; Byers, P.H. “Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta” J Biol Chem 1985, 260, 1734.
      3. Bateman, J.F.; Chan, D.; Mascara, T.; Rogers, J.G.; Cole, W.G. “Collagen defects in lethal perinatal osteogenesis imperfecta” Biochem J 1986, 240, 699.
      4. Godfrey, M.; Hollister, D.W. “Type II achondrogenesis-hypochondrogenesis: Identification of abnormal type II collagen” Am J Hum Genet 1988, 43, 904. The basis for this collagen-specific assay of folding rate is that the ER-localized procollagen proline and lysine hydroxylases require monomeric collagen strands as substrates, and cannot accommodate a folded triple helix in their active sites. Thus, accumulation of post-translational modifications on collagen depends on the procollagen triple-helical domain’s residence time as an unfolded monomeric region of the assembling triple-helical trimer within the ER. Some fraction of the hydroxylated lysines are later glycosylated, which slows migration on SDS-PAGE gels. We have now clarified our slow folding conclusion with more precise references and discussion in the manuscript.

      Pulse-chase experiments like those suggested by the Reviewer would indeed be beneficial if they were possible in this system, but they simply are not. Although it might be possible to soak in a radiolabeled amino acid over a short time period, the assay still relies on separating the cell fraction from the secreted fraction. This is possible in monolayer cultures, but in a chondronoid composed of complex cartilage and cells we have no way to do it. One could propose that we extract the chondrocytes and then do the pulse-chase in a monolayer culture, but this unfortunately is also not possible as chondrocytes do not behave well outside the tissue setting and rapidly differentiate into other cell types. Fortunately, the procollagen overmodification assay is a widely used and well-accepted measure of slow folding, and thus addresses the issue.

      I think Figure 4 needs more explanation for the reader. While, as expected, the homozygous mutant band is much slower than the homozygous wild type band, in the heterozygotes the band is intermediate rather than showing a discrete mixture of wild type and mutant proteins, reflecting different degrees of post-translational modification. Is this a function of mixed triple helices with heterogeneous degrees of post-translational modification? It deserves more comment, since the argument relating the degree of post-translational modification to the rate of folding is dependent on this observation. It would also be helpful to show the whole gel with collagen II markers.

      We modified Figure 4 __to show the whole gel (in the SI, see __Fig. S3) and molecular weight markers. It also shows the wild-type collagen-II band. Most of the procollagen produced by the heterozygote is heterotrimeric for the disease-causing substitution (>87% of trimers will contain at least one mutant chain and thus experience delayed folding) and, therefore, the diffuse banding structure is to be expected. Further, we would speculate that in these challenged ER, even the folding of wild-type only trimers is impaired. The Reviewer’s comment suggests there may be some basis for that speculation. We added a note to this effect.

      “The presence of a single broad, slow-migrating band as opposed to distinctive overmodified mutant versus normally modified wild-type strands is due to fact that the vast majority of trimers formed in heterozygotes (>85%) contain at least one Gly1170Ser strand that delays triple-helix folding.”

      Another approach to the question of intracellular accumulation due to a slow rate of folding of the mutant collagen would be to perform pulse chase labeling of the three types of chondronoids with radiolabeled amino acids and sugars and processing the media and lysates with analysis using antibodies specific for the two collagen chain types. Given the authors extensive experience in studying collagen biosynthesis (e.g. Chan et al J. Biochem. Biophys. Methods 36 (1997) 11-29), such a supporting study would firmly establish whether the rate of folding/secretion differs between the wt and the homozygous and heterozygous chondroidinomas. Until the slow folding can be directly demonstrated in a quantitative fashion rather than by monitoring the secondary phenomenon of post-translational modification the hypothesis remains unproven.

      Discussed above in response to the Reviewer’s earlier suggestion of pulse-chase and question regarding the post-translational modification assay, unfortunately the pulse-chase experiment is infeasible. Fortunately, the modification-based assay is already the gold standard in the collagen field.

      Another issue that does not appear to be addressed is the consequence of having misfolded collagen chains in the dilated ER. Liang et al, using mice transgenic for one or two copies of the mutant human gene showed apoptosis in the homozygotes but not in the hets a finding similar to that of Kimura et al using transgenics carrying a different human COL2A1 mutation. Okada et al, using chondrocytes converted from human fibroblasts with clinical collagenopathy (heterozygous), although not the same mutation as in the present study, showed dilated ER and some level of apoptosis in the cultured cells. Hintze et al, examining chondrocytes expressing different mutants associated with different forms of spondyloepiphyseal dysplasia, suggested that the degree of stability of the mutations might determine whether apoptosis occurred, i.e. the thermolabile p.R989C was associated with apoptosis while cells expressing the more thermostable mutants p.275C, P.719C and p.G853E did not reveal any evidence for ongoing apoptosis R989. Is it possible that the smaller size of the homozygous chondronoids reflect fewer cells rather than less matrix (or both) as result of apoptosis? Examination of the chondronoids with reagents for caspase 3 or Tunel staining. One could also measure by Col/DNA ratio in wt, hets and homos. It might also have been useful for these experiments been more quantitative, i.e. by cell sorting rather than by eye. Would ImageJ software been helpful?

      We greatly appreciate this suggestion. We now added results of TUNEL assays performed on sections of the chondronoids (see Fig. 8), including quantification of the results. Notably, we do not observe a significant difference in apoptosis between genotypes at the timepoint considered. This result is also supported by our transcriptional data, where we do not observe upregulation of apoptosis-related pathways, via the UPR or otherwise.

      It is also unclear as to the conformation of chains trapped in the ER. There are many examples in which the natural tendency of misfolded proteins is to aggregate. This is certainly true in the neurodegenerative diseases. While at the magnification used here in the TEM's the ER inclusions appear homogeneous and amorphous, perhaps at higher magnification/resolution a more discrete structure might be seen.

      From collagen-II immunohistochemistry confocal images, the intracellular collagen appears sometimes as aggregated puncta, and in other cases more diffuse and amorphous. Given this heterogeneity, we were not able to readily obtain clear additional structural characterization of the intracellular procollagen-II fraction.

      *While the choice of time points for the transcriptional analysis, i.e. early and late seems well thought out, the lack of a significant response may be due to the timing and it might have been useful to do earlier or later time points or intermediate time points in case the response was transient, particularly since other laboratories have reported UPR activation and abnormalities in the context of the silencing of Xbp1, the spliced form of which is a major driver of at least one arm of the UPR. *

      While our RNA-sequencing results at the specific timepoints we chose cannot rule out a transient activation of the UPR, they do indicate that chronic, unresolved UPR signaling is not the underlying cause of pathology, which is the main point we are making.

      The notion that pro-collagen is largely hydrophilic without the potential for exposure of hydrophobic regions that might engage BiP, thus is not sensitive to BiP sensing, is interesting. Is it possible that the tendency of the mutant polypeptides to form the triple helix which in itself acts as kind of a self chaperoning structure? Looking at the kinetics of assembly inside the cell, see suggestions above, might provide further insight into the process beyond that obtained by looking at the modified state of the lysines.

      We believe this notion is very strongly supported by the interactomic experiment showing that BiP fails to preferentially engage the poorly folding triple-helical variant. There are, however, many other chaperones and folding enzymes that assist collagen folding, including prolyl isomerases and Hsp47. Hence, it is not clear to us that substantial self-chaperoning occurs. Still, the self-chaperoning idea is intriguing, and we will note that prior work does indicate that triple-helical domains of individual procollagen polypeptides are strongly pre-organized for triple-helix formation (for a review, see Annu Rev Biochem 2009, 78, 929). That said, we hesitate to speculate here on the self-chaperoning idea without additional evidence.__

      __Minor comments:

      As I mentioned above, while the transcriptional interactome experiments are computationally sophisticated the cell biology and biochemistry would benefit from more and better quantitation.

      We have included quantitation of the extent of intracellular procollagen accumulation and the extent of apoptotic cells, which we hope helps to address this point.

      The paper is written in a style in which results and discussion are intermingled. Personally I prefer that the introductions are short, the results clearly and briefly presented and the discussion deals with the interpretation and conclusions. I thought that whole paragraphs could have been omitted. e.g. in the introduction *Omit paragraph "The fibrillar.........achondrogenesis type II" Omit paragraph "Conventional and... for example." Omit "Excitingly........in vitro and in vivo (36)." Results: First paragraph repeats last paragraph of introduction and not necessary in one place or the other, condense. *

      We appreciate this feedback and have accordingly edited the manuscript for clarity and brevity, which includes deleting or significantly shortening all the paragraphs indicated by the Reviewer. These improvements are indicated in the track-changes version of the manuscript we resubmitted.

      Figure 2 by eye MGP (Matrix gla protein inhibits vascular calcification of type II collagen) seems highly over-expressed in the homozygous mutants; MGP is supposedly an inhibitor of calcification, does its over-expression here reflect something about the adequacy of the matrix

      Overexpression of MGP could indeed reflect a defect in the matrix of the homozygous variants. It is also likely a reflection of the delayed hypertrophy and maturation observed in the homozygous variants, as matrix calcification is a step in the endochondral ossification process. We did not follow-up on this particular observation, as it is exclusively observed in the less clinically relevant homozygous variant. We added a note to the manuscript to capture the Reviewer’s point about MGP, as below:

      “The upregulation in the homozygous system of Matrix Gla Protein (MGP) (Fig. 2A), which inhibits vascular calcification of the matrix in vivo, further supports the delay in hypertrophy, and could lead to differences in the biomechanical properties of the matrix.”

      Figure 5 is good but can it be confirmed by quantitative biochemistry?

      We have included quantitation of the extent of intracellular procollagen accumulation and the extent of apoptotic cells.

      __ __Did you stain with antibodies to other ER resident chaperones other than calreticulin?

      Yes, we also stained the ER with PDI. However, the chondronoids require extensive optimization for immunostaining and we could obtain much better images using the ER marker for calreticulin, hence our choice of images to present in the manuscript.__

      __Do cells with large amounts of intracellular G1170S die?

      As indicated by the newly included TUNEL data, interestingly, even cells expressing exclusively the Gly1170Ser variant of procollagen-II do not seem to apoptose at a significantly higher rate than wild-type, at least at the timepoint considered. As mentioned above, we added these data as Fig. 8, and added discussion of these results and methodology in the relevant sections of the manuscript.__

      __Does higher magnification EM reveal any structure of the material within the dilated ER?

      We have so far not been able to use EM to obtain higher-resolution insight into intracellular procollagen structures, but we will work on this idea in future studies.__

      __Are there any inflammatory cells in the Chondronoids? To respond to aberrant proteins?

      There should not be any such cells present in the chondronoids, and we indeed do not observe any inflammatory response. As noted in the response to Reviewer 1, we added discussion regarding the absence of paracrine signals in this type of model system, which we do believe has major advantages for biochemical studies like those performed here.__

      __Paragraph

      * "Bypassing the UPR.......often do not" Is discussion not results*

      Corrected, thanks.

      Significance

      The experimental system described here is clearly the wave of the present. Generating human ipSC's of different lineages is now being exploited to study a variety of disorders, to achieve better understanding of pathogenesis at the molecular level to serve as appropriate models for drug development, particularly in the context of high throughput screening. In addition, as in this case, relatively rare autosomal dominant disorders with phenotypes that resemble more common sporadic disease, may allow the development of treatments that are relevant for the sporadic disorder. While it is likely that the osteoarthritis that develops in the carriers of the COL2A1 mutations is a function of the host response to the aberrant mechanics resulting from the defective extra-cellular matrix caused by the mutation, having a pure system in which the primary defect can be corrected and the predisposing matrix deficit reversed, could allow normal reparative processes to mitigate the functional joint disability. While the transgenic mice are useful as a disease model, they represent not only the expression of the primary defect but the host pathophysiologic response to that defect, i.e. in this case how the mouse responds to the defective matrix state and whether those responses add additional pathogenic factors to the disease course. Having a tool in which to relatively assess the pure chondrocyte effect should allow more granular analysis of the primary process.

      We appreciate the Reviewer’s careful and enthusiastic assessment of the significance of our work.__

      __

      Their findings reinforce the notion that involvement of the UPR as well as the other arms of the proteostatic response in chondrocytes expressing a variety of mutant collagens suggests a degree of heterogeneity, perhaps depending on the mutation involved. While I do not believe that their current data prove or rigorously test their proposed hypothesis, i.e. that "perhaps due to the pathologic substitution occurring within a triple-helical domain that lacks hydrophobic character, this ER protein accumulation is not recognized by cellular stress responses, such as the unfolded protein response", it is worth considering.

      We provide that hypothesis as a reasonable explanation for the absence of a UPR, and it is strongly supported by our interactomic studies. Furthermore, neither we nor others have found evidence for BiP binding the triple helical domain of procollagen in any other studies. Still, that hypothesis is not the core point of the paper and we do appreciate the Reviewer’s perspective.

      Given the fact that this is a relatively small field with a variety of observations concerning the role of proteostasis and the UPR in particular which seem to vary depending on the system, i.e. transgenic mice, transfected fibroblasts, the chondroidomas, these observations particularly with additional biochemistry to confirm their notions regarding folding rates etc, represent a useful technical addition to the field and should be interesting for people working on collagen biology, arthritis and protein folding.

      I am not a collagen biologist hence my knowledge of some of the nuances of collagen biology may not be extensive. My own areas of interest include the assembly of multi-peptide proteins (such as immunoglobulins) for secretion; the mechanisms that allow them to exit the cell and the aggregation of misfolded proteins as exemplified by the amyloidoses and other forms of clinically relevant protein aggregation. Hence, I am very familiar with tissue culture, transgenic animals as disease models, studies of protein aggregation, and as a former rheumatologist, osteoarthritis.

      We greatly appreciate the Reviewer providing such valuable and scholarly input from the perspective of a scientist with deep expertise in the secretory pathway and other diseases of protein misfolding, as well as from rheumatology. Specifically from the perspective of expertise in collagen biology/biochemistry, we hope that our detailed explanations of assays that are possible versus not possible with collagen in this system, the additional context for why our assessment of the modification of procollagen is correlated with folding/secretion rate, and the further analyses added to the paper, now make a convincing case that the improved manuscript is of high significance and is ready for publication.