6,780 Matching Annotations
  1. Feb 2024
    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Cell polarization in dividing cells, including stem cells, is typically coupled such that polarity can inform the architecture, orientation, and/or asymmetry during cell division. In Drosophila neural stem cells (neuroblasts/SOP), Par polarity is coupled to the cell cycle, but the nature of this coupling remains unclear. In this work, Loyer and colleagues report on impacts of CDK1 inhibition on Bazooka/Par3 localization and basal fate determinant localization. They provide evidence for a novel phosphorylation site that appears unique to asymmetrically dividing cells and may be involved in regulation of asymmetric division. Finally, they show that CDK1 can, at least in principle, phosphorylate human Par3 in vitro.

      Overall, the major claims of the abstract appear supported by the experimental work; however, we think the title overstates the overall conclusions that can be drawn from the work.

      Major comments:

      1. The major claim of the paper is the role of specific phosphorylation of S180 in asymmetrically dividing cells in polarization and sensory organ formation, which relies heavily on interpretation of S180A/D phosphomutants. The experiments are carefully performed and quantified, and are consistent with the conclusions drawn. However, we wondered if it possible that the phenotypes are not linked to phosphorylation (the authors acknowledge this in the Discussion)? In other words could the A/D mutants simply be weak Baz mutants? This could this potentially explain the extra-SOP phenotype if Baz function is generally altered, especially given that it is difficult to rationalise a role for SOP-specific phosphorylation in the processes that specify SOP cells in the precursor epithelial cells. The authors speculate that these early precursors may exhibit also phosphorylation, but this isn't examined. Chasing this down seems key to support the core titular claim of the paper.
      2. Implicit in the core message of the paper is the elucidation of CDK1 regulation of polarity and specifically Baz. However, the connection between CDK1 and S180 (and Baz regulation overall) is relatively tenuous in this work. First, the S180A mutant does not phenocopy CDK1 inhibition with respect to basal determinant phenotypes, though obviously CDK1 may be more pleiotropic. Second, whether the CDK1 inhibition phenotype is linked to any effect on Baz/PAR behaviour is not really explored. Third, they do not test whether S180 phosphorylation is CDK1-dependent.
      3. The method for quantifying domain signal only references prior work and should be described in this work. From our search of the cited reference, it appears to be peak signal intensity at a user specified point on the cortex. While this does not undermine the core findings as presented, it may not capture additional features that may be informative (domain size, fluorescence distribution, total signal etc.). For example domain coalescence would imply smaller, brighter domains, but similar total protein amounts, which appears to be the case from images, but isn't quantified per se.
      4. The phosphospecific antibody signal is relatively weak, leading to relatively low signal to noise, which could compromise the ability to detect phospho-S180 in non-asymmetrically dividing cells or generally in cells in which Baz is not polarised and thus signal would be diffused around the cell rather than concentrated. Similar caveats could also apply to the lack of signal in interphase cells, where Baz may be less enriched at the cortex and not polarized. We are inclined to believe the authors conclusions, particularly given their examination of multiple cell types and tissues. However, it is a potential caveat as it may be most visible in polarised cells where it is asymmetrically enriched.
      5. Examination of in vitro phosphorylation of human Par3D (Figure 6) seems out of place and does not add much. It is human, not Bazooka. They reveal 30 sites, 18 of which in both replicates, but most are not obvious CDK sites and the S180 equivalent site is missing. None of these sites is validated in vivo, at least in this work.

      Minor comments:

      • Figure 1: Uses metaphase arrested cells, presumably colcemid, but colcemid is only noted in Figure 2.
      • Figure 2A: Scale bar is truncated
      • Figure 2A: Example images of control neuroblasts could be useful to readers.
      • Figure 2G' vs H': Because G' has two panels and H' has only one, we often confused the PKC and Mira box plots when comparing to Numb. Perhaps Mira could be in a separate sub panel or be more closely juxtaposed with Numb?
      • Whereas both Numb/Mira were examined in CDK1(as), only Mira is reported for the S180A/D experiments. Is there a Numb phenotype as well?
      • The discussion of the notch / Baz phenotypes (Figure 5) is rather complicated and a bit difficult to follow.
      • Figure 5A: captions should indicate that RFP RNAi is depleting Baz.
      • Box plots are used, but not described. i.e. outliers seem to be marked, but criteria unclear. Mean vs median, etc.

      Some grammatical mistakes:

      • Title: neuroblast (no 's'),
      • Page 1: Cell fate difference(s?) in the resulting daughter cells
      • Page 4: (As) CDK1 inhibition with 10 μM 1-NA-PP1 prevents neuroblasts from cycling and causes metaphase- arrested neuroblasts to slip out of mitosis. (Reword)
      • Page 6: increased levels of basal fate(no 's') determinants

      Significance

      The links between cell cycle and cell polarity are clearly important and remain poorly understood. Hence, the work addresses key conceptual/mechanistic questions relevant to our fundamental understanding of stem cell biology and regulation of polarity and asymmetric cell division. In our opinion, there are clearly some interesting observations in the manuscript, the experiments are performed carefully, and the data are generally well described. That said, overall, the work seems somewhat premature.

      1. The direct impact of CDK1 on Baz behaviour remains somewhat unclear. The authors do a good job of limiting the concentration of inhibitor to decouple effects of cell cycle progression from CDK1 levels per se, but this does potentially impact the strength of the phenotypes they can detect and hence the observed phenotypes are relatively minor. Note that driving cells out of mitosis with stronger CDK1 inhibition clearly impacts Baz localization, so the 'real' effect of CDK1 inhibition on Baz could be stronger than reported here. It is also unclear whether the phenotypes observed are directly linked to CDK1 regulation of PAR polarity or an indirect effect of cell cycle control of other processes. The authors' suggestion that it could be related to defects in cortical actin organization, which is known to be cell cycle controlled, seems most likely, but neither this or other models are explored further.
      2. Using phosphospecific antibodies, they report on a novel putative CDK1 phosphorylation site, but aside from looking like a consensus CDK1 site, whether this site is CDK1 dependent is not examined. Notably, the corresponding phosphomutants have modest effects and don't obviously account for the CDK1 inhibition phenotype, leaving it somewhat unclear whether it is under cell cycle regulation.
      3. The observation that S180 phosphorylation appears unique to asymmetrically dividing cells is very curious, but this observation is not followed up extensively. Again phenotypes of phosphomutants are quite modest, and while one can propose models to rationalise the phenotypes observed, these models are not fully explored.
      4. The findings that human Par3D can be phosphorylated by CDK1 in vitro do not add much paritcularly as they obtain a very large number of putative sites raising questions of specificity, the sites are not validated, and an S180 equivalent site was not identified.

      In summary, the individual findings of this work are interesting and generally solid. Each could be followed up to provide mechanistic insight into cell cycle- or cell type-dependent regulation of Par polarity. However, in their current state, the results seem more like a loosely connected set of observations.

      Expertise: Cell polarity and asymmetric cell division

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thorough reading and helpful comments which has allowed us to further improve the manuscript. Following the suggestions of the reviewers we have run a number of new simulations including mutations of the PIP binding residues and with an elastic network allowing more mobility of the linker. Together these excellent ideas have allowed us to strengthen the conclusions of the study. Below, we provide point-by-point responses to their suggestions.

      Reviewer #1 (Public Review):

      Summary:

      Here, the authors were attempting to use molecular simulation or probe the nature of how lipids, especially PIP lipids, bind to a medically-important ion channel. In particular, they look at how this binding impact the function of the channel.

      Strengths:

      The study is very well written and composed. The techniques are used appropriately, with plenty of sampling and analysis. The findings are compelling and provide clear insights into the biology of the system.

      Weaknesses:

      A few of the analyses are hard to understand/follow, and rely on "in house" scripts. This is particularly the case for the lipid binding events, which can be difficult to compute accurately. Additionally, a lack of experimental validation, or coupling to existing experimental data, limits the study.

      Our analysis scripts have now been made publicly accessible as a Jupyter notebook on Github https://github.com/etaoster/etaoster.github.io/tree/main/nav_pip_project

      It is my view that the authors have achieved their aims, and their findings are compelling and believable. Their findings should have impacts on how researchers understand the functioning of the Nav1.4 channel, as well as on the study of other ion channels and how they interact with membrane lipids.

      Reviewer #2 (Public Review):

      Summary:

      Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete and lacks the expected confirmatory studies which are relevant to such proposals.

      Strengths:

      The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation.

      Weaknesses:

      However, the study lacks the expected confirmatory studies which are relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker, an interaction that is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      Following the reviewers suggestion we have conducted new simulations demonstrating that there are many fewer protein-PIP interactions after mutating the positive residues as shown in the new Supplementary Fig S6.

      The reviewer mentions that if PIPs interact with the VSD-DIV and DIII-DIV linker in the resting state that it could delay fast inactivation. However, as described in the original manuscript and depicted in the schematic (Fig 7) the C-terminal domain impeded PIP binding at the position in the resting state (but not the inactivated state), meaning that PIP does not bind in the resting state to delay fast inactivation. We have clarified this statement in the text on page 14 lines 1-2.

      Following the reviewer’s suggestion we have examined PIP binding to a model of the resting state of Nav1.4 (in addition to the resting state of Nav1.7 described in the original manuscript) as described on page 12 lines 28-30 (and in Fig S12). Similar to what we saw for Nav1.7, PIP binding to VSDI-III can impair activation of the channel.

      Major concern:

      (1) Lack of confirmatory experiments, e.g., mutating the positive residues that show a high affinity towards PIPs to a neutral and negative residue and assessing the effect of mutagenesis on binding.

      Done as described above

      (2) Nav1.4 is the only channel that has been studied in terms of the effect of PIPs on it, therefore the authors should build a resting state model of Nav1.4 and study the effect of PIPs on it.

      Done as described above

      Minor points:

      There are a lot of wrong statements in many areas, e.g., "These diseases 335 are associated with accelerated rates of channel recovery from inactivation, consistent with our observations that an interaction between PI(4,5)P2 and the residue corresponding to R1469 in other Nav 337 subtypes could be important for prolonging the fast-inactivated state." Prolonging the fast inactivated state would actually reduce recovery from inactivation and not accelerate it.

      We disagree with this statement from the reviewer which may have come from a misreading of the mentioned sentence. Our statement in the original manuscript is consistent with the original experiments that show that the presence of PIP prolongs the time spent in the fast inactivated state. Mutations at the PIP binding site are likely to reduce PIP binding, and with less PIP bound the channel is expected to recover from inactivation more quickly. We have reworded this sentence for clarity on page 13 line 27-30.

      Reviewer #3 (Public Review):

      Summary:

      This work uses multiscale molecular dynamics simulations to demonstrate molecular mechanism(s) for phosphatidylinositol regulation of voltage gated sodium channel (Nav1.4) gating. Recent experimental work by Gada et al. JGP 2023 showed altered Nav1.4 gating when Nav1.4 current was recorded with simultaneous application of PI(4,5)P2 dephosphorylate. Here the authors revealed probable molecular mechanism that can explain PI(4,5)P2 modulation of Nav1.4 gating. They found PIP lipids interacting with the gating charges - potentially making it harder to move the voltage sensor domain and altering the channels voltage sensitivity. They also found a stable PIP binding site that reaches the D_IV S4-S5 linker, reducing the mobility of the linker and potentially competing with the C-terminal domain.

      Strengths:

      Using multiscale simulations with course-grained simulations to capture lipid-protein interactions and the overall protein lipid fingerprint and then all-atom simulations to verify atomistic details for specific lipidprotein interactions is extremely appropriate for the question at hand. Overall, the types of simulation and their length are suitable for the questions the authors pose and a thorough set of analysis was done which illustrates the observed PIP-protein interactions.

      Weaknesses:

      Although the set of current simulations and analysis supports the conclusions drawn nicely, there are some limitations imposed by the authors on the course-grained simulations. If those were not imposed, it would have allowed for an even richer set and more thorough exploration of the protein-lipid interactions. The Martini 2 force field indeed cannot change secondary structure but if run with a properly tuned elastic network instead of backbone restraints, the change in protein configuration can be sampled and/or some adaptation of the protein to the specific protein environment can be observed. Additionally, with the 4to1 heavy atoms to a bead mapping some detailed chemical specificity is averaged out but parameters for different PIP family members do exist - including specific PIP(4,5)P2 vs PIP(3,4)P2, and could have been explored.

      We thank the reviewer for their excellent suggestions and have run new simulations with an elastic network instead of backbone restraints which have generated new insights. Indeed, as shown in the new panel Fig 4E, the new data allows us to demonstrate that the presence of PIP in the proposed binding site stabilises binding of the DIII-DIV linker to the inactivation receptor site, strengthening the conclusions of the paper.

      We thank the reviewer for pointing out that there do exist parameters for different PIP sub-species and have corrected our statement on page 14 line 16 to reflect this. We have not run additional CG simulations with each of these parameters but use the all-atom simulations to examine the interactions of phosphates at specific positions.

      In our atomistic simulations, we backmapped both PI(4,5)P2 and PI(4)P in the binding site to study their specific interactions. We chose to focus on PI(4,5)P2 given its physiological significance. However, we agree that differences in binding with PI(3,4)P2 would be interesting and warrants future investigation. We also note that the newer Martini3 forcefield would be useful in further work to differentiate between PIP subspecies interactions.

      Detailed Comments

      We thank the reviewers for their thorough reading and helpful comments which has allowed us to further strengthen the manuscript. Below, we provide point-by-point responses to their suggestions.

      Reviewer #1 (Recommendations For The Authors):

      I don't have many suggestions for the manuscript, just a few text edits. Of course, experimental analysis would bolster the claims made in the text, but I don't believe that this is necessary, given the quality of the data.

      I understand the focus on the PIP lipids, but it's a shame that the high binding likelihood of glycosphingolipid isn't considered or analysed in any way. This is an especially interesting lipid from the point-of-view of raftlike membrane domains. Given the potential role of raft-like domains in sodium channel function, I feel this would be worth a paragraph or two in the discussion.

      We thank the reviewer for bringing our attention to this interesting point. Glycolipids accumulate around Nav1.4 in our complex membrane simulations, however, given reports that carbohydrates tend to interact too strongly in the Martini2.2 forcefield (Grünewald et al. 2022, Schmalhorst et al. 2017) and there are no specific residues on Nav1.4 that interact preferentially with glycolipid species, we chose not to focus on this. However, we have noted that interactions with other lipids deserve further attention in our revised discussion.

      The analyses have been run using Martini 2. I don't suggest the authors repeat using the Martini 3 force field, but some mention of this in the discussion would be good.

      We have added the following statement to the discussion: “Our coarse grain simulations were carried out using the Martini2.2 forcefield, for which lipid parameters for many plasma membrane lipids have been developed. We expect that future investigations of lipid-protein interactions will benefit from use of the newer, refined Martini 3 forcefield (Souza et al. 2021) as parameters become available for more lipid types.

      This might just be an oversight, but no mention is made of an elastic network applied to the backbone beads.

      Lack of a network has been known to cause the protein to collapse, so if this is missing, I'd like to see an RMSD to show that the protein dynamics are not compromised.

      While no elastic network was used in our original CG simulations, weak protein backbone restraints (10 kJ mol-1 nm-2) used in our simulations allowed us to maintain the structure while allowing some protein movement. However, following the suggestion of reviewer 3, we conducted additional simulations with an elastic instead of backbone restraints as described in the results on page 9 line 30-37 (and in Fig 4E) of the revised manuscript.

      Minor

      •In Fig 3B, are these lipids binding to the channel at the same time? And therefore do the authors see cooperativity?

      The Fig 3B caption has been amended in the revised manuscript to read “Representative snapshots from the five longest binding events from different replicates, showing the three different PIP species (PIP1 in blue, PIP2 in purple and PIP3 in pink) binding to VSD-IV and the DIII-IV linker.” We cannot comment on PIP cooperativity based on these simulations shown in Fig 3, due to the artificially high concentrations used here; however, in model complex membrane simulations we see co-binding of PIPs at the binding site. This is likely due to PIP’s ability to accumulate together and the high density of positively charged residues in the region, attracting and supporting multiple PIP bindings.

      •What charges were used for the atomistic PIP lipids? Does this match the CG lipids?

      We used the CHARMM-GUI PIP parameters for the atomistic simulations. SAPI24 (PIP2) has a headgroup charge of –4e which is one less negative charge than the CG PIP2; whereas SAPI14 (PIP1) has a charge of –3e which is the same as the CG PIP1. We have explicitly included this charge information in the updated Methods of the manuscript (on page 15-16).

      •Line 259-260: "we performed embedded three structures"

      Corrected in the revised manuscript.

      •Line 272: "us" should be "µs"

      Corrected in the revised manuscript.

      •Line 434: kJ/mol should probably also have 'nm-2' included

      Corrected in the revised manuscript.

      •What charge state titratable residues were set to, and were pKa analyses done to decide this?

      Charge states were assigned to default values at neutral pH. We appreciate that future studies could examine this more carefully using constant pH simulations or similar.

      •It's stated that anisotropic scaling is used the AT sims - is this correct? If so, is there a reason this was chosen over semi-isotropic scaling?

      Anisotropic scaling was used for the atomistic simulations allowing all box dimensions to change independently.

      •I would recommend in-house analysis scripts are made available on GitHub or similar, just so the details can be seen.

      Per the reviewer’s request, the Jupyter notebooks used for analysis has been made available on GitHub (https://github.com/etaoster/etaoster.github.io/tree/main/nav_pip_project ).<br /> -One coarse grained notebook:

      • Lipid DE

      • Contact occupancy + outlier plots

      • Binding duration plots

      • Minimum distance plots

      • Number of ARG/LYS plots

      • PIP Occupancy, binding duration, gating charge residues

      • One atomistic notebook:

      • RMSD, RMSF and distance between IFM and its binding pocket (using MDAnalysis)

      • Atomistic PIP headgroup interaction analyses and plots (using ProLIF)

      As a final note, I am NOT saying this needs to be done for the current study, but I recommend the authors try the PyLipID package (https://github.com/wlsong/PyLipID) if they haven't yet, as it might be useful for similar projects they run in the future (i.e. for binding site identification, accurate binding kinetics calculations, lipid pose generation etc.).

      We thank the reviewer for this suggestion and will keep this in mind for future projects.

      Reviewer #2 (Recommendations For The Authors):

      Lin Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete lacks the expected confirmatory studies which are relevant to such proposals.

      The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation. However, the study lacks the expected confirmatory studies which are relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker, an interaction that is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      Major concern:

      (1) Lack of confirmatory experiments, e.g., mutating the positive residues that show a high affinity towards PIPs to a neutral and negative residue and assessing the effect of mutagenesis on binding.

      (2) Nav1.4 is the only channel that has been studied in terms of the effect of PIPs on it, therefore the authors should build a resting state model of Nav1.4 and study the effect of PIPs on it. Minor points:

      Following the reviewer’s suggestion we have conducted new simulations demonstrating that there are notably fewer protein-PIP interactions after performing charge neutralizing and charge reversal mutations to the positive residues as shown in the new Fig S6.

      The reviewer mentions that if PIPs interact with the VSD-DIV and DIII-DIV linker in the resting state that it could delay fast inactivation. However as described in the original manuscript and depicted in the schematic (Fig 7) the C-terminal domain impeded PIP binding at the position in the resting state (but not the inactivated state), meaning that PIP does not bind in the resting state to delay fast inactivation. We have clarified this statement in the text on page 14 lines 1-2.

      Following the reviewers suggestion we have examined PIP binding to a model of the resting state of Nav1.4 (in addition to the resting state of Nav1.7 described in the original manuscript) as described on page 12 lines 28-30 (and in Fig S12). Similar to what we saw for Nav1.7 PIP binding to VSDI-III can impair activation of the channel.

      There are a lot of wrong statements in many areas, e.g., "These diseases 335 are associated with accelerated rates of channel recovery from inactivation, consistent with our observations that an interaction between PI(4,5)P2 and the residue corresponding to R1469 in other Nav 337 subtypes could be important for prolonging the fast-inactivated state." Prolonging the fast inactivated state would actually reduce recovery from inactivation and not accelerate it.

      We disagree with this statement from the reviewer which may have come from a misreading of the mentioned sentence. Our statement in the original manuscript is consistent with the the original experiments that show that the presence of PIP prolongs the time spent in the fast inactivated state. Mutations at the PIP binding site are likely to reduce PIP binding, and with less PIP present the channel will recover from inactivation more quickly. We have reworded this sentence for clarity on page 13 line 27-30.

      Reviewer #3 (Recommendations For The Authors):

      As mentioned in the public review, overall, I am impressed with the manuscript and do think the conclusions are supported. There are, however, quite a few mistakes, mostly minor (listed below). Additionally, I do have a few questions and several extensions that could be done and I mention a few but fully realize many of those could be outside of the scope of the current manuscript.

      We greatly appreciate the time taken by Reviewer 3 to carefully review our manuscript and provide detailed comments. We believe their suggestions have helped to improve our manuscript.

      First comments are in general about the PIP subtype.

      • In the paper you claim:

      L196, "However, this loss of resolution prevents distinction between phosphate positions on the inositol group and does not permit analysis of protein conformational changes induced by PIP binding"

      L367, "it does not distinguish between phosphate positions within each charge state (e.g. PI(3,4)P2 vs PI(4,5)P2)."

      This is not true the PIP2 most commonly used in Martini 2 is from dx.doi.org/10.1021/ct3009655 and is a PI(3,4)P2 subtype. Also other extensions and alternative parameters exist for PIPs in Martini 2 e.g. http://cgmartini.nl/index.php/tools2/other-tools - Martini lipid .itp generator has all three main variants of both PIP1 and PIP2.

      As described in the response to the public review we are grateful for the reviewer for pointing out that there do exist parameters for different PIP sub-species and have corrected our statement on page 14 to reflect this, and clarified the parameters chosen in the methods section (page 16 line 2-3). We have not run additional CG simulations with each of these parameters in the current work but use the all-atom simulations to examine the interactions of phosphates at specific positions.

      • One detail that is missing in the manuscript is some mention of the charge state of the PIPs e.g. Fig.1D does not specify and Fig.4D PIP2 looks like -2 on position 5 and -1 on position 4. Which I think fits the used SAPI24, please specify. Also, what if you use SAPI25 with the flipped charges would that significantly alter the results?

      The charge state of PIP2 is -2e on the 5’ phosphate and -1e on the 4’ phosphate, using the SAPI24 CHARMM lipid parameters. We have ensured that this charge information is stated clearly in the revised manuscript in the methods section on page 16 (line 21). We considered looking at SAPI25, however we expected that it would behave quite similarly, given that the PIP headgroup can adopt slightly different poses and orientations within the binding site across replicates and does fluctuate over simulations (Fig S8). We have noted this in the revised discussion on page 14 line 15-17.

      • I was very intrigued and puzzled by the lower binding of PIP3 vs PIP2 in the Martini simulations. Could it be that PIP3 has a harder time fully entering the binding site, or maybe just sampling? i.e. and its lower number of binding events is a sampling issue.

      We agree with the reviewer that PIP3 is less able to access the binding site than PIP2, likely because of its larger size. This might also be why we see PIP1 binding at the location via a more buried route (since it has the smallest headgroup size). However, PIP1 does not have enough negative charge to keep it in the binding site. It seems to be a Goldilocks-like situation where PIP2 has the optimal size and charge to allow access and stable binding at the site. We also see that when PIP3 enters the binding site it leaves before the end of the simulations. While it is hard to prove statistical significance given the number of binding and dissociation events even with the high and equal concentrations of all three PIP species in the enriched PIP membrane CG simulations, the data strongly suggests preferential binding of PIP2 over PIP3.

      Also the same L196 sentence as above "However, this loss of resolution prevents distinction between phosphate positions on the inositol group and does not permit analysis of protein conformational changes induced by PIP binding". The later part is also wrong, there are no conformational changes due to the restraints on the protein backbone, from methods "backbone beads were weakly restrained to their starting coordinates using a force constant of 10 kJ mol−1nm−2". Martini in general might have a hard time with some conformational changes and definitely cannot sample changes in secondary structure, but conformational changes can, and have on many occasions, been successfully sampled (even full ion channel opening and closing).

      On a similar note, in L179 you mention "owing to the flexibility of the linker." Hose does this fit with simulation with position restraints on all backbone atoms?

      We applied fairly weak restraints to the backbone only – therefore we still observe some flexibility in the highly flexible loop portion of the linker, where sidechains are able to flip between membrane-facing and cytosol-facing orientations.

      However, after reading the comments from the reviewer we have run additional simulations with an elastic network rather than backbone restraints on the DIII-DIV linker which have given further insight. As seen in Fig 4E and described in the results paragraph on page 9 line 30-37 of the revised manuscript, we can see that the presence of PIP does stabilise the linker in its receptor site. To accentuate this effect, we also ran simulation of the ‘IQM’ mutant known to have a less stable fast inactivated state due to weaker binding to the receptor. Without backbone restraints we can see partial dissociation of the DIII-DIV linker from the receptor that is partially rescued by the presence of PIP.

      I know the paper focuses on PIPs, also very nicely in Fig.2B and Fig. S1-2 the lipid enrichment is shown for other lipids, but why show all lipid classes except cholesterol? And, for the left-hand panels in Fig. S1-2 those really should be leaflet specific - as both the membrane and protein are asymmetric.

      The depletion/enrichment of Cholesterol is shown in Fig 2B and as are the Lipid Z-Density maps and contact occupancy structures a (in row 5 of Fig S2, labeled as CL in yellow). The Z-density maps are meant to provide an overall summary of lipid distribution. The contact occupancy structures showing the transverse views and intracellular/ extracellular views provide a better indication of the occupancy across the different leaflets.

      In L237 for the comparison of Cav2.2 and Kv7.1 bound to PI(4,5)P2 structures: They do agree well with the PIP1 simulations but not as much for the main PIP2 binding site. If you look in the CG simulations, is there another (not the main) PIP2 binding site at that same location (which might also be stable in AA simulations)?

      In some replicates of the CG simulations, we identify stable PIP1 binding via the other orientation (i.e. the one that overlaps with the Cav2.2 and Kv7.1 structures). Since we did not directly observe any PIP2 binding events from the other orientation, we did not run any backmapped atomistic simulations with PIP2 at this position. However, the binding site residues that the PIP1/2 headgroup binds to are the same regardless of which side PIP1/2 approaches from. We would expect that PIP2 bound from the alterative position is also stable.

      Two references I want to put for consideration to the authors, for potential inclusion if the authors find their inclusion would strengthen the manuscript. This one gives a good demonstration of using the same PM mixture to define lipid protein fingerprints with Martini:

      https://pubs.acs.org/doi/10.1021/acscentsci.8b00143.

      And this one https://pubmed.ncbi.nlm.nih.gov/33836525/ shows how Nav1.4 function could also be affected by general changes in bilayer properties (in addition to the specific lipid interactions explored here).

      We thank the reviewer for bringing to our attention these two relevant references that will help to respectively substantiate the use Martini to study membrane protein-lipid interactions, as well as, why Nav channels are interesting to study in the context of their membrane environment (and also the potential implications with drugs that can bind from within the membrane). We have added these citations to the introduction and discussion.

      Minor comments and fixes:

      L2, Title: A binding site for phosphoinositide modulation of voltage-gated sodium channels described by multiscale simulations

      The title reads very strangely to me, should it be "A binding site for phosphoinositide" ; "modulation". We thank the reviewer for this comment - title has been updated to: A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage gated sodium channels.

      L25, Abstract, "The phosphoinositide PI(4,5)P2 decreases Nav1.4 activity by increasing the difficulty of channel opening, accelerating fast activation and slowing recovery from fast inactivation." Assuming this is referring to results from Gada et al JGP, 2023 should this not be "accelerating fast inactivation"?

      Corrected in the revised manuscript.

      L71 maybe good to write the longer version of IFM on first use e.g. Ile-Phe-Met (IFM), as to not mistake it for some random three letter acronym.

      Corrected in the revised manuscript.

      L109, Fig.2. Maybe change the upper and lower leaflet to intracellular and cytoplasmic leaflets (or outer / inner). In D "(D) Distribution of PIP binding occupancies (left)" something missing can I assume, for/over all lipids exposed residues. Also, for D I am a little confused how occupancy is defined as the total occupancy per residue dose not add up to 100.

      The figure has been updated with intracellular and cytoplasmic leaflet labels. The binding occupancy distribution boxplot shows binding occupancies for all lipid exposed residues. In our analysis, we define contact occupancy as the proportion of simulation time in which a lipid type is within 0.7 nm of a given residue. It is possible for more than one lipid to be within this cut in any given frame – that is, both a PIP and PE can be simultaneously bound.

      L160 "occurring the identified site" in the

      Corrected in the revised manuscript.

      L170 "PIP3 (headgroup charge: -7e) has interacts similarly to PIP1," - remove has Corrected in the revised manuscript.

      L194, "reducing system size" the size does not change, I am assuming you want to say reducing the number of particles?

      Corrected in the revised manuscript.

      L252, Fig.6 "(B) Occupancy of all PIPs (PIP1, PIP2, PIP3) at binding site residues in the three systems" A little confusing, initially was expecting 3x3 data points per residue, maybe change to, Combined occupancy of all PIPs...

      Corrected in the revised manuscript.

      L253, Fig.6 D, I don't really have a good suggestion for improvement here, so this is just a FYI that this panel was very confusing for me and took some time to figure out what is shown.

      We have added to the caption of Fig. 6D to try to clarify this panel.

      L257, Fig.6 (F) not in bold

      Corrected in the revised manuscript.

      L259 "PIP binding, we performed embedded three structures of Nav1.7" something missing?

      Corrected in the revised manuscript.

      L272, "In triplicate 50 us coarse-grained simulations" us instead of (micro_greek)s

      Corrected in the revised manuscript.

      L272, that paragraph how long/many simulations only reported for the inactivated Nav1.7 system not the Nav1.7-NavPas chimera, which I am assuming is the same?

      Corrected in the revised manuscript.

      L297, "marked by both shortened inactivation times", can I assume this is: shortened times to inactivation (i.e. to get inactivated not times in the inactivated states)?

      Corrected in the revised manuscript.

      L331, "are conserved in Nav1.1-1.9 (Fig. 5D)," Fig.5C Corrected in the revised manuscript.

      L353, "channel opening []" [] maybe a missing reference?

      Thank you for pointing out this oversight - Goldschen-Ohm et al. has been cited here.

      L394, "The composition of the complex mammalian membrane is as reported in Ingólfsson, et al. (38)." Ref 38 is the "Computational lipidomics of the neuronal plasma membrane" which indeed uses the 63 component PM but the original reference for the average 63 lipid mixture PM is dx.doi.org/10.1021/ja507832e.

      Corrected in the revised manuscript.

      L404, "Additionally, a model Nav1.7 with all four VSDs in the deactivated state using Modeller (40)." Something missing, e.g. was also built and simulated for ...

      Corrected in the revised manuscript.

      Table S1 "Disease information", I am guessing this should be Disease information; mechanism? Of the x5 entries two have mechanism, one has "; unknown significance ", one has "; unknown" maybe clarify in title and make same if unknown.

      Corrected in the revised manuscript.

      Table S1 and S2 have different styles.

      The tables have been amended to have the same style.

      Fig. S3 "for all 12 lipid types in the mammalian membrane " there are many more lipid types in a typical PM (hundreds) and 63 in the PM mixture simulated here, so maybe write: 12 lipid classes?

      Corrected in the revised manuscript.

      Fig.S6 PIP headgroup, can I assume that is for the bound PIP only, please specify.

      Only a single PIP at the identified binding site was backmapped into all cases of atomistic simulations. We have now clarified this point in the methods, results and the FigS6 caption.

      Writing of PI(4,5)P2 and PI(4)P1 most of the time use 1 and 2 as subscripts but not always (at least not in SI), also the same with Nav vs Na_v (v subscript) and even NAV (in Table S1).

      Subscripts have been implemented in the updated Supplementary Information (as well as within various figures and throughout the manuscript).

    1. O now in danger tri'd, now known in Armes Not to be overpowerd, Companions deare, Found worthy not of Libertie alone, [ 420 ] Too mean pretense, but what we more affect, Honour, Dominion, Glorie, and renowne, Who have sustaind one day in doubtful fight (And if one day, why not Eternal dayes?) What Heavens Lord had powerfullest to send [ 425 ] Against us from about his Throne, and judg'd Sufficient to subdue us to his will, But proves not so: then fallible, it seems, Of future we may deem him, though till now Omniscient thought. True is, less firmly arm'd, [ 430 ] Some disadvantage we endur'd and paine, Till now not known, but known as soon contemnd, Since now we find this our Empyreal form Incapable of mortal injurie Imperishable, and though pierc'd with wound, [ 435 ] Soon closing, and by native vigour heal'd. Of evil then so small as easie think The remedie; perhaps more valid Armes, Weapons more violent, when next we meet, May serve to better us, and worse our foes, [ 440 ] Or equal what between us made the odds, In Nature none: if other hidden cause Left them Superiour, while we can preserve Unhurt our mindes, and understanding sound, Due search and consultation will disclose. [ 445 ]

      In this section Satan is attempting to boost the confidence of his council. The speaker says that they will gain more than they have suffered, that it's not all for loss (ll. 429-45). The speaker goes on to say that the council must prepare with "weapons more violent" (6.439) than before. The speaker seems to be describing his plans for revenge in hopes to boost the council's confidence. Sadly, knowing that one cannot win fighting fire with fire, this could foreshadow Satan and all of Hell's population to continue to suffer eternally.

    2. Whom the grand foe with scornful eye askance Thus answerd. Ill for thee, but in wisht houre [ 150 ] Of my revenge, first sought for thou returnst From flight, seditious Angel, to receave Thy merited reward, the first assay Of this right hand provok't, since first that tongue Inspir'd with contradiction durst oppose [ 155 ] A third part of the Gods, in Synod met Thir Deities to assert, who while they feel Vigour Divine within them, can allow Omnipotence to none. But well thou comst Before thy fellows, ambitious to win [ 160 ] From me som Plume, that thy success may show Destruction to the rest: this pause between (Unanswerd least thou boast) to let thee know; At first I thought that Libertie and Heav'n To heav'nly Soules had bin all one; but now [ 165 ] I see that most through sloth had rather serve, Ministring Spirits, traind up in Feast and Song; Such hast thou arm'd, the Minstrelsie of Heav'n, Servilitie with freedom to contend, As both thir deeds compar'd this day shall prove. [ 170 ]

      Lines 149-170 are Satan speaking to the seraph Abdiel. The passage begins with Satan telling Abdiel that he will be the first to face his wrath, saying he will be victim to "the first assay / of this right hand provok'd" (6.153-154). As we discussed earlier in class, before Christ, Satan was God's right hand, so the use of "right hand provok'd" works both physically with the image of an attack, as well as in the sense of his former title. Satan then goes on to reference a group or "Synod" of gods who agreed that "while they feel / Vigor divine within them, can allow / Omnipotence to none" (6.158-159). This is an important part of Satan's speech, both because of his rejection of singular omnipotence, as well as his assertion of multiple gods. This reminded me of a key pillar of Christianity: a singular God. It is important to note, though, the biblical quote "Thou shalt have no other gods before me" (Exodus 20:3), which can be interpreted as there being multiple gods, but a more powerful, singular God. So, when Satan mentions other gods rejecting omnipotence and implies that God embraced it, his portrayal of a more sinister, power-hungry God can be understood.

      Further in this section, Satan says that Abdiel has only confronted him out of a desire to be praised by God. He states, "But well thou com'st / Before thy fellows, ambitious to win / From me some Plume, that thy success may show / Destruction to the rest" (6.159-162). According to the OED, "Plume" in this instance refers to an adornment received for an accomplishment or merit (as opposed to the modern definition of colourful feathers). Following his assertion about Abdiel's motivations, Satan explains that he used to think that freedom could exist in Heaven, but that he realized that servitude to God removes the possibility for true freedom. He mocks those who have remained faithful to God, saying "Minist'ring Spirits, train'd up in Feast and Song; / Such hast thou arm'd, the Minstrelsy of Heav'n, / Servility with freedom to contend" (6.167-169). These lines serve the dual purpose of mocking the power of God's army, and making Satan's followers represent the positive attribute of freedom, as opposed to the [generally] negative attribute of servitude.

    1. To whom the Angel. Therefore what he gives (Whose praise be ever sung) to man in part [ 405 ] Spiritual, may of purest Spirits be found No ingrateful food: and food alike those pure Intelligential substances require As doth your Rational; and both contain Within them every lower facultie [ 410 ] Of sense, whereby they hear, see, smell, touch, taste, Tasting concoct, digest, assimilate, And corporeal to incorporeal turn. For know, whatever was created, needs To be sustaind and fed; of Elements [ 415 ] The grosser feeds the purer, Earth the Sea, Earth and the Sea feed Air, the Air those Fires Ethereal, and as lowest first the Moon; Whence in her visage round those spots, unpurg'd Vapours not yet into her substance turnd. [ 420 ] Nor doth the Moon no nourishment exhale From her moist Continent to higher Orbes. The Sun that light imparts to all, receives From all his alimental recompence In humid exhalations, and at Even [ 425 ] Sups with the Ocean: though in Heav'n the Trees Of life ambrosial frutage bear, and vines Yield Nectar, though from off the boughs each Morn We brush mellifluous Dewes, and find the ground Cover'd with pearly grain: yet God hath here [ 430 ] Varied his bounty so with new delights, As may compare with Heaven; and to taste Think not I shall be nice. So down they sat,

      the speaker is describing the hierarchy of Earth, starting with humans, then animals, and then slowly moving down the line to the inanimate, "Corporeal to incorporeal" (413) as the poem says. The speaker goes on to say that there needs to be some type of food chain in the world and relates the chain to the elements as it lists which element feeds another as the cycle continues. They then compare the moon and the sun and state how the moon does not give or take from anything, "unpurg'd / Vapors not yet into her substance turn'd. / Nor doth the Moon no nourishment exhale" (419-421), while the sun both gives and takes from the world, "The Sun that light imparts to all, receives / From all his alimental recompense / In humid exhalations" (423-425). In the last bit of the passage the speaker describes the food in heaven and is comparing them with the new foods that God has created on earth.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of this study seek to visualize NS1 purified from dengue virus infected cells. They infect vero cells with DV2-WT and DV2 NS1-T164S (a mutant virus previously characterized by the authors). The authors utilize an anti-NS1 antibody to immunoprecipitate NS1 from cell supernatants and then elute the antibody/NS1 complex with acid. The authors evaluate the eluted NS1 by SDS-PAGE, Native Page, mass spec, negative-stain EM, and eventually Cryo-EM. SDS-PAGE, mas spec, and native page reveal a >250 Kd species containing both NS1 and the proteinaceous component of HDL (ApoA1). The authors produce evidence to suggest that this population is predominantly NS1 in complex with ApoA1. This contrasts with recombinantly produced NS1 (obtained from a collaborator) which did not appear to be in complex with or contain ApoA1 (Figure 1C). The authors then visualize their NS1 stock in complex with their monoclonal antibody by CryoEM. For NS1-WT, the major species visualized by the authors was a ternary complex of an HDL particle in complex with an NS1 dimer bound to their mAB. For their mutant NS1-T164S, they find similar structures, but in contrast to NS1-WT, they visualize free NS1 dimers in complex with 2 Fabs (similar to what's been reported previously) as one of the major species. This highlights that different NS1 species have markedly divergent structural dynamics. It's important to note that the electron density maps for their structures do appear to be a bit overfitted since there are many regions with electron density that do not have a predicted fit and their HDL structure does not appear to have any predicted secondary structure for ApoA1. The authors then map the interaction between NS1 and ApoA1 using cross-linking mass spectrometry revealing numerous NS1-ApoA1 contact sites in the beta-roll and wing domain. The authors find that NS1 isolated from DENV infected mice is also present as a >250 kD species containing ApoA1. They further determine that immunoprecipitation of ApoA1 out of the sera from a single dengue patient correlates with levels of NS1 (presumably COIPed by ApoA1) in a dose-dependent manner.

      In the end, the authors make some useful observations for the NS1 field (mostly confirmatory) providing additional insight into the propensity of NS1 to interact with HDL and ApoA1. The study does not provide any functional assays to demonstrate activity of their proteins or conduct mutagenesis (or any other assays) to support their interaction predications. The authors assertion that higher-order NS1 exists primarily as a NS1 dimer in complex with HDL is not well supported as their purification methodology of NS1 likely introduces bias as to what NS1 complexes are isolated. While their results clearly reveal NS1 in complex with ApoA1, the lack of other NS1 homo-oligomers may be explained by how they purify NS1 from virally infected supernatant. Because NS1 produced during viral infection is not tagged, the authors use an anti-NS1 monoclonal antibody to purify NS1. This introduces a source of bias since only NS1 oligomers with their mAb epitope exposed will be purified. Further, the use of acid to elute NS1 may denature or alter NS1 structure and the authors do not include controls to test functionality of their NS1 stocks (capacity to trigger endothelial dysfunction or immune cell activation). The acid elution may force NS1 homo-oligomers into dimers which then reassociate with ApoA1 in a manner that is not reflective of native conditions. Conducting CryoEM of NS1 stocks only in the presence of full-length mAbs or Fabs also severely biases what species of NS1 is visualized since any NS1 oligomers without the B-ladder domain exposed will not be visualized. If the residues obscured by their mAb are involved in formation of higher-order oligomers then this antibody would functionally inhibit these species from forming. The absence of critical controls, use of one mAb, and acid elution for protein purification severely limits the interpretation of these data and do not paint a clear picture of if NS1 produced during infection is structurally distinct from recombinant NS1. Certainly there is novelty in purifying NS1 from virally infected cells, but without using a few different NS1 antibodies to purify NS1 stocks (or better yet a polyclonal population of antibodies) it's unclear if the results of the authors are simply a consequence of the mAb they selected.

      Data produced from numerous labs studying structure and function of flavivirus NS1 proteins provide diverse lines of evidence that the oligomeric state of NS1 is dynamic and can shift depending on context and environment. This means that the methodology used for NS1 production and purification will strongly impact the results of a study. The data in this manuscript certainly capture one of these dynamic states and overall support the general model of a dynamic NS1 oligomer that can associate with both host proteins as well as itself but the assertions of this manuscript are overall too strong given their data, as there is little evidence in this manuscript, and none available in the large body of existing literature, to support that NS1 exists only as a dimer associated with ApoA1. More likely the results of this paper are a result of their NS1 purification methodology.

      Suggestions for the Authors:

      Major:

      (1) Because of the methodology used for NS1 purification, it is not clear from the data provided if NS1 from viral infection differs from recombinant NS1. Isolating NS1 from viral infection using a polyclonal antibody population would be better to answer their questions. On this point, Vero cells are also not the best candidate for their NS1 production given these cells do not come from a human. A more relevant cell line like U937-DC-SIGN would be preferable.

      We performed an optimization of sNS1 secretion from DENV infection in different cell lines (Author response image 1 below) to identify the best cell line candidate to obtain relatively high yield of sNS1 for the study. As shown in Author response image 1, the levels of sNS1 in the tested human cell lines Huh7 and HEK 293T were at least 3-5 fold lower than in Vero cells. Although using a monocytic cell line expressing DC-SIGN as suggested by the reviewer would be ideal, in our experience the low infectivity of DENV in monocytic cell lines will not yield sufficient amount of sNS1 needed for structural analysis. For these practical reasons we decided to use the closely related non-human primate cell line Vero for sNS1 production supported by our optimization data.

      Author response image 1.

      sNS1 secretion in different mammalian and mosquito cell lines after DENV2 infection. The NS1 secretion level is measured using PlateliaTM Dengue NS1 Ag ELISA kit (Bio-Rad) on day 3 (left) and day 5 (right) post infection respectively.

      (2) The authors need to support their interaction predictions and models via orthogonal assays like mutagenesis followed by HDL/ApoA1 complexing and even NS1 functional assays. The authors should be able to mutate NS1 at regions predicted to be critical for ApoA1/HDL interaction. This is critical to support the central conclusions of this manuscript.

      In our previous publication (Chan et al., 2019 Sci Transl Med), we used similarly purified sNS1 (immunoaffinity purification followed by acid elution) from infected culture supernatants from both DENV2 wild-type and T164S mutant (both also studied in the present work) to carry out stimulation assay on human PBMCs as described by other leading laboratories investigating NS1 (Modhiran et al., 2015 Sci Transl Med). For reader convenience we have extracted the data from our published paper and present it as Author response image 2 below.

      Author response image 2.

      (A) IL6 and (B) TNFa concentrations measured in the supernatants of human PBMCs incubated with either 1µg/ml or 10µg/ml of the BHK-21 immunoaffinity-purified WT and TS mutant sNS1 for 24 hours. Data is adapted from Chan et al., 2019.

      Incubation of immunoaffinity-purified sNS1 (WT and TS) with human PBMCs from 3 independent human donors triggered the production of proinflammatory cytokines IL6 and TNF in a concentration dependent manner (Author response image 2), consistent with the published data by Modhiran et al., 2015 Sci Transl Med. Interestingly the TS mutant derived sNS1 induced a higher proinflammatory cytokines production than WT virus derived sNS1 that appears to correlate with the more lethal and severe disease phenotype in mice as also reported in our previous work (Chan et al., 2019). Additionally, the functionality of our immune-affinity purified infection derived sNS1 (isNA1) is now further supported by our preliminary results on the NS1 induced endothelial cell permeability assay using the purified WT and mutant isNS1 (Author response image 3). As shown in Author response image 3, both the isNS1wt and isNS1ts mutant reduced the relative transendothelial resistance from 0 to 9 h post-treatment, with the peak resistance reduction observed at 6 h post-treatment, suggesting that the purified isNS1 induced endothelial dysfunction as reported in Puerta-Guardo et al., 2019, Cell Rep.) It is noteworthy that the isNS1 in our study behaves similarly as the commercial recombinant sNS1 (rsNS1 purchased from the same source used in study by Puerta-Guardo et al., 2019) in inducing endothelial hyperpermeability. Collectively our previous published and current data suggest that the purified isNS1 (as a complex with ApoA1) has a pathogenic role in disease pathogenesis that is also supported in a recent publication by Benfrid et al., EMBO 2022). The acid elution has not affected the functionality of NS1.

      Author response image 3.

      Functional assessment of isNS1wt and isNS1ts on vascular permeability in vitro. A trans-endothelial permeabilty assay via measurement of the transendothelial electrical resistance (TEER) on human umbilical vascular endothelial cells (hUVEC) was performed, as described previously (Puerta-Guardo et al., 2019, Cell Rep). Ovalbumin serves as the negative control, while TNF-α and rsNS1 serves as the positive controls.

      We agree with reviewer about the suggested mutagnesis study. We will perform site-directed mutagenesis at selected residues and further structural and functional analyses and report the results in a follow-up study.

      (3) The authors need to show that the NS1 stocks produced using acid elution are functional compared to standard recombinantly produced NS1. Do acidic conditions impact structure/function of NS1?

      We are providing the same response to comments 1 & 2 above. We would like to reiterate that we have previously used sNS1 from immunoaffinity purification followed by acid elution to test its function in stimulating PBMCs to produce pro-inflammatory cytokines (Chan et al., 2019; Author response image 2). Similar to Modhiran et al. (2015) and Benfrid et al. (2022), the sNS1 that we extracted using acid elution are capable of activating PBMCs to produce pro-inflammatory cytokines. We have now further demonstrated the ability of both WT and TS isNS1 in inducing endothelial permeability in vitro in hUVECs, using the TEER assay (Author response image 3). Based on the data presented in the rebuttal figures as well as our previous publication we do not think that the acid elution has a significant impact on function of isNS1.

      We performed affinity purification to enrich the complex for better imaging and analysis (Supp Fig. 1b) since the crude supernatant contains serum proteins and serum-free infections also do not provide sufficient isNS1. The major complex observed in negative stain is 1:1 (also under acidic conditions which implies that the complex are stable and intact). We agree that it is possible that other oligomers can form but we have observed only a small population (74 out of 3433 particles, 2.15%; 24 micrographs) of HDL:sNS1 complex at 1:2 ratio as shown in the Author response image 4 below and in the manuscript (p. 4 lines 114-117, Supp Fig. 1c). Other NS1 dimer:HDL ratios including 2:1 and 3:1 have been reported by Benfrid et al., 2022 by spiking healthy sera with recombinant sNS1 and subsequent re-affinity purification. However, this method used an approximately 8-fold higher sNS1 concentration (400 ug/mL) than the maximum clinically reported concentration (50 ug/mL) (Young et al., 2000; Alcon et al., 2002; Libraty et al., 2002). In our hands, the sNS1 concentration in the concentrated media from in vitro infection was quantified as 30 ug/mL which is more physiologically relevant.

      We conclude that the integrity of the HDL of the complex is not lost during sample preparation, as we are able to observe the complex under the negative staining EM as well as infer from XL-MS. Our rebuttal data and our previous studies with our acid-eluted isNS1 from immunoaffinity purification clearly show that our protein is functional and biologically relevant.

      Author response image 4.

      (A) Representative negative stain micrograph of sNS1wt (B) Representative 2D averages of negative stained isNS1wt. Red arrows indicating the characteristic wing-like protrusions of NS1 inserted in HDL. (C) Data adapted from Figure 2 in Benfrid et al. (2022).

      (4) Overall, the data obtained from the mutant NS1 (contrasted to WT NS1) reveals how dynamic the oligomeric state of NS1 proteins are but the authors do not provide any insight into how/why this is, some additional lines of evidence using either structural studies or mutagenesis to compare WT and their mutant and even NS1 from a different serotype of DENV would help the field to understand the dynamic nature of NS1.

      The T164S mutation in DENV2 NS1 was proposed as the residue associated with disease severity in 1997 Cuban dengue epidemic (Halsted SB. “Intraepidemic increases in dengue disease severity: applying lessons on surveillance and transmission”. Whitehorn, J., Farrar. J., Eds., Clinical Insights in Dengue: Transmission, Diagnosis & Surveillance. The Future Medicine (2014), pp. 83-101). Our previous manuscript examined this mutation by engineering it into a less virulent clade 2 DENV isolated in Singapore and showed that sNS1 production was higher without any change in viral RNA replication. Transcript profiling of mutant compared to WT virus showed that genes that are usually induced during vascular leakage were upregulated for the mutant. We also showed that infection of interferon deficient AG129 mice with the mutant virus resulted in disease severity, increased complement protein expression in the liver, tissue inflammation and greater mortality compared to WT virus infected mice. The lipid profiling in our study (Chan et al., 2019) suggested small differences with WT but was overall similar to HDL as described by Gutsche et al. (2011). We were intrigued by our functional results and wanted to explore more deeply the impact of the mutation on sNS1 structure which at that stage was widely believed to be a trimer of NS1 dimers with a central channel (~ X Å) stuffed with lipid as established in several seminal publications (Flamand et al., 1999; Gutsche et al., 2011; Muller et al., 2012). In fact “This Week in Virology” netcast (https://www.microbe.tv/twiv/twiv-725/) discussed two back-to-back publications in Science (Modhiran et al., 371(6625)190-194; Biering et al., Science 371(6625):194-200)) which showed that therapeutic antibodies can ameliorate the NS1 induced pathogenesis and expert discussants posed questions that also pointed to the need for more accurate definition of the molecular composition and architecture of the circulating NS1 complex during virus infection to get a clearer handle on its pathogenic mechanism. Our current studies and also the recent high resolution cryoEM structures (Shu et al., 2022) do not support the notion of a central channel “stuffed with lipid”. Even in the rare instances where trimer of dimers are shown, the narrow channel in the center could only accommodate one molecule of lipoid molecule no bigger than a typical triglyceride molecule. This hexamer model cannot explain the lipid proeotmics data in the literature.

      In our study we observed predominantly 1:1 NS1 dimer to HDL (~30 μg/mL) mirroring maximum clinically reported concentration of sNS1 in the sera of DENV patients (40-50 μg/mL) as we highlighted in our main text (P. 18, lines 461-471). What is often quoted (also see later) is the recent study of Flamand & co-workers which show 1-3 NS1 dimers per HDL (Benfrid et al, 2022) by spiking rsNS1 (400 μg/mL) with HDL. This should not be confused with the previous models which suggested a lipid filled central channel holding together the hexamer. The use of physiologically relevant concentrations is important for these studies as we have highlighted in our main text (P. 18, lines 461-471).

      Our interpretation for the mutant (isNS1ts) is that it is possible that the hydrophilic serine at residue 164 located in the greasy finger loop may weaken the isNS1ts binding to HDL hence the observation of free sNS1 dimers in our immunoaffinity purified (acid eluted sample). The disease severity and increased complement protein expression in AG129 mice liver can be ascribed to weakly bound mutant NS1 with fast on/off rate with HDL being transported to the liver where specific receptors bind to free sNS1 and interact with effector proteins such as complement to drive inflammation and associated pathology. Our indirect support for this is that the XL-MS analysis of purified isNS1ts identified only 7 isNS1ts:ApoA1 crosslinks while 25 isNS1wt:ApoA1 crosslinks were identified from purified isNS1wt (refer to Fig. 4 and Supp. Fig. 8).

      Taken together, the cryoEM and XL-MS analysis of purified isNS1ts suggest that isNS1ts has weaker affinity for HDL compared to isNS1wt. We welcome constructive discussion on our interpretation that we and others will hopefully obtain more data to support or deny our proposed explanation. Our focus has been to compare WT with mutant sNS1 from DENV2 and we agree that it will be useful to study other serotypes.

      Reviewer #2:

      CryoEM:

      Some of the neg-stain 2D class averages for sNS1 in Fig S1 clearly show 1 or 2 NS1 dimers on the surface of a spherical object, presumably HDL, and indicate the possibility of high-quality cryoEM results. However, the cryoEM results are disappointing. The cryo 2D class averages and refined EM map in Fig S4 are of poor quality, indicating sub-optimal grid preparation or some other sample problem. Some of the FSC curves (2 in Fig S7 and 1 in Fig S6) have extremely peculiar shapes, suggesting something amiss in the map refinement. The sharp drop in the "corrected" FSC curves in Figs S5c and S6c (upper) indicate severe problems. The stated resolutions (3.42 & 3.82 Å) for the sNS1ts-Fab56.2 are wildly incompatible with the images of the refined maps in Figs 3 & S7. At those resolutions, clear secondary structural elements should be visible throughout the map. From the 2D averages and 3D maps shown in the figures this does not seem to be the case. Local resolution maps should be shown for each structure.

      The same sample is used for negative staining and the cryoEM results presented. The cryoEM 2D class averages are similar to the negative stain ones, with many spherical-like densities with no discernible features, presumably HDL only or the NS1 features are averaged out. The key difference lies in the 2D class averages where the NS1 could be seen. The side views of NS1 (wing-like protrusion) are more obvious in the negative stain while the top views of NS1 (cross shaped-like protrusion) are more obvious under cryoEM. HDL particles are inherently heterogeneous and known to range from 70-120 Å, this has been highlighted in the main text (p. 8, lines 203 and 228). This helps to explain why the reviewer may find the cryoEM result disappointing. The sample is inherently challenging to resolve structurally as it is (not that the sample is of poor quality). In terms of grid preparation, Supp Fig 4b shows a representative motion-corrected micrograph of the isNS1ts sample whereby individual particles can be discerned and evenly distributed across the grid at high density.

      We acknowledge that most of the dips in the FSC curves (Fig S5-7) are irregular and affect the accuracy of the stated resolutions, particularly for the HDL-isNS1ts-Fab56.2 and isNS1ts-Fab56.2 maps for which the local resolution maps are shown (Fig S7d-e). Probable reasons affecting the FSC curves include (1) the heterogeneous nature of HDL, (2) preferred orientation issue (p 7, lines 198 -200), and (3) the data quality is intrinsically less ideal for high resolution single particle analysis. Optimizing of the dynamic masking such that the mask is not sharper than the resolution of the map for the near (default = 3 angstroms) and far (12 angstroms) parameters during data processing, ranging from 6 - 12 and 14 - 20 respectively, did not help to improve the FSC curves. To report a more accurate global resolution, we have revised the figures S5-7 with new FSC curve plots generated using the remote 3DFSC processing server.

      Regardless, the overall architecture and the relative arrangement of NS1 dimer, Fab, and HDL are clearly visible and identifiable in the map. These results agree well with our biochemical data and mass-spec data.

      The samples were clearly challenging for cryoEM, leading to poor quality maps that were difficult to interpret. None of the figures are convincing that NS1, Ab56.2 or Fab56.2 are correctly fit into EM maps. There is no indication of ApoA1 helices. Details of the fit of models to density for key regions of the higher-resolution EM maps should be shown and the models should be deposited in the PDB. An example of modeling difficulty is clear in the sNS1ts dimer with bound Fab56.2 (figs 3c & S7e). For this complex, the orientation of the Fab56.2 relative to the sNS1ts dimer in this submission (Fig 3c) is substantially different than in the bioRxiv preprint (Fig 3c). Regions of empty density in Fig 3c also illustrate the challenge of building a model into this map.

      We acknowledge the modelling challenge posed by low resolution maps in general, such as the handedness of the Fab molecule as pointed out by the reviewer (which is why others have developed the use of anti-fab nanobody to aid in structure determination among other methods). The change in orientation of the Fab56.2 relative to the sNS1ts dimer was informed by the HDX-MS results which was not done at the point of bioRxiv preprint mentioned. With regards to indication of ApoA1 helices, this is expected given the heterogeneous nature of HDL. To the best of our knowledge, engineered apoA1 helices were also not reported in many cryoEM structures of membrane proteins solved in membrane scaffold protein (MSP) nanodiscs. This is despite nanodiscs, comprised of engineered apoA1 helices, having well-defined size classifications.

      Regions of weak density in Fig 3c is expected due to the preferred orientation issue acknowledged in the results section of the main text (p. 9, line 245). The cryoEM density maps have been deposited in the Electron Microscopy Data Bank (EMDB) under accession codes EMD-36483 (isNS1ts:Fab56.2) and EMD-36480 (Fab56.2:isNS1ts:HDL). The protein model files for isNS1ts:Fab56.2 and Fab56.2:isNS1ts:HDL model are available upon request. Crosslinking MS raw files and the search results can be downloaded from https://repository.jpostdb.org/preview/14869768463bf85b347ac2 with the access code: 3827. The HDX-MS data is deposited to the ProteomeXchange consortium via PRIDE partner repository51 with the dataset identifier PXD042235.

      Mass spec:

      Crosslinking-mass spec was used to detect contacts between NS1 and ApoA1, providing strong validation of the sNS1-HDL association. As the crosslinks were detected in a bulk sample, they show that NS1 is near ApoA1 in many/most HDL particles, but they do not indicate a specific protein-protein complex. Thus, the data do not support the model of an NS1-ApoA1 complex in Fig 4d. Further, a specific NS1-ApoA1 interaction should have evidence in the EM maps (helical density for ApoA1), but none is shown or mentioned. If such exists, it could perhaps be visualized after focused refinement of the map for sNS1ts-HDL with Fab56.2 (Fig S7d). The finding that sNS1-ApoA1 crosslinks involved residues on the hydrophobic surface of the NS1 dimer confirms previous data that this NS1 surface engages with membranes and lipids.

      We thank the reviewer for the comment. The XL-MS is a method to identify the protein-protein interactions by proximity within the spacer arm length of the crosslinker. The crosslinking MS data do support the NS1-ApoA1 complex model obtained by cryo-EM because the identified crosslinks that are superimposed on the EM map are within the cut-off distance of 30 Å. We agree that the XL-MS data do not dictate the specific interactions between specific residues of NS1-ApoA1 in the EM model. We also do not claim that specific residue of NS1 in beta roll or wing domain is interacting with specific residue of ApoA1 in H4 and H5 domain. We claim that beta roll and wing domain regions of NS1 are interacting with ApoA1 in HDL indicating the proximity nature of NS1-ApoA1 interactions as warranted by the XL-MS data.

      As explained in the previous response on the lack of indication of ApoA1 helical density, this is expected given the heterogeneous nature of HDL. It is typical to see lipid membranes as unstructured and of lower density than the structured protein. In our study, local refinement was performed on either the global map (presented in Fig S7d) or focused on the NS1-Fab region only. Both yielded similar maps as illustrated in the real space slices shown in Author response image 5. The mask and map overlay is depicted in similar orientations to the real space slices, and at different contour thresholds at 0.05 (Author response image 5e) and 0.135 (Author response image 5f). While the overall map is of poor resolution and directional anisotropy evident, there is clear signal differences in the low density region (i.e. the HDL sphere) indicative of NS1 interaction with ApoA1 in HDL, extending from the NS1 wing to the base of the HDL sphere.

      Author response image 5.

      Real Space Slices of map and mask used during Local Refinement for overall structure (a-b) and focused mask on NS1 region (c-d). The corresponding map (grey) contoured at 0.05 (e) and 0.135 (f) in similar orientations as shown for the real space slices of map and masks. The focused mask of NS1 used is colored in semi-transparent yellow. Real Space Slices of map and mask are generated during data processing in Cryosparc 4.0 and the map figures were prepared using ChimeraX.

      Sample quality:

      The paper lacks any validation that the purified sNS1 retains established functions, for example the ability to enhance virus infectivity or to promote endothelial dysfunction.

      Please see detailed response for question 2 in Reviewer #1’s comments. In essence, we have showed that both isNS1wt and isNS1ts are capable of inducing endothelial permeability in an in vitro TEER assay (Rebuttal Fig 3) and also in our previous study that quantified inflammation in human PBMC’s (Rebuttal Fig 2).

      Peculiarities include the gel filtration profiles (Fig 2a), which indicate identical elution volumes (apparent MWs) for sNS1wt-HDL bound to Ab562 (~150 kDa) and to the ~3X smaller Fab56.2 (~50 kDa). There should also be some indication of sNS1wt-HDL pairs crosslinked by the full-length Ab, as can be seen in the raw cryoEM micrograph (Fig S5b).

      Obtaining high quality structures is often more demanding of sample integrity than are activity assays. Given the low quality of the cryoEM maps, it's possible that the acidification step in immunoaffinity purification damaged the HDL complex. No validation of HDL integrity, for example with acid-treated HDL, is reported.

      Please see detailed response for question 3 in Reviewer #1’s comments.

      Acid treatment is perhaps discounted by a statement (line 464) that another group also used immunoaffinity purification in a recent study (ref 20) reporting sNS1 bound to HDL. However the statement is incorrect; the cited study used affinity purification via a strep-tag on recombinant sNS1.

      We thank the Reviewer for pointing this out and have rewritten this paragraph instead (p 18, line 445-455). We also expanded our discussion to highlight our prior functional studies showing that acid-eluted isNS1 proteins do induce endothelial hyperpermeability (p 18-19, line 470-476).

      Discussion:

      The Discussion reflects a view that the NS1 secreted from virus-infected cells is a 1:1 sNS1dimer:HDL complex with the specific NS1-ApoA1 contacts detected by crosslinking mass spec. This is inconsistent with both the neg-stain 2D class average with 2 sNS1 dimers on an HDL (Fig S1c) and with the recent study of Flamand & co-workers showing 1-3 NS1 dimers per HDL (ref 20). It is also ignores the propensity of NS1 to associate with membranes and lipids. It is far more likely that NS1 association with HDL is driven by these hydrophobic interactions than by specific protein-protein contacts. A lengthy Discussion section (lines 461-522) includes several chemically dubious or inconsistent statements, all based on the assumption that specific ApoA1 contacts are essential to NS1 association with HDL and that sNS1 oligomers higher than the dimer necessarily involve ApoA1 interaction, conclusions that are not established by the data in this paper.

      We thank the Reviewer and have revised our discussion to cover available structural and functional data to draw conclusions that invariably also need further validation by others. One point that is repeatedly brought up by Reviewer 1 & 2 is the quality and functionality of our sample. Our conclusion now reiterates this point based on our own published data (Chan et al., 2019) and also the TEER assay data provided as Author response image 3.

      Reviewer #1 (Recommendations For The Authors):

      Minor:

      (1) Fig. S3B, should the label for lane 4 be isNS1? In figure 1C you do not see ApoA1 for rsNS1 but for S3B you do? Which is correct?

      This has been corrected in the Fig. S3B, the label for lane 4 has been corrected to isNS1 and lane 1 to rsNS1, where no ApoA1 band (25 kDa) is found.

      (2) Line 436, is this the correct reference? Reference 43?

      This has been corrected in the main text. (p 20, Line 507; Lee et al., 2020, J Exp Med).

      Reviewer #2 (Recommendations For The Authors):

      The cryoEM data analysis is incompletely described. The process (software, etc) leading to each refined EM map should be stated, including the use of reference structures in any step. These details are not in the Methods or in Figs S4-7, as claimed in the Methods. The use of DeepEMhancer (which refinements?) with the lack of defined secondary structural features in the maps and without any validation (or discussion of what was used as "ground truth") is concerning. At the least, the authors should show pre- and post-DeepEMhancer maps in the supplemental figures.

      The data processing steps in the Methods section have been described with improved clarity. DeepEMhancer is a deep learning solution for cryo-EM volume post-processing to reduce noise levels and obtain more detailed versions of the experimental maps (Sanchez-Garcia, et al., 2021). DeepEMhancer was only used to sharpen the maps and reduce the noise for classes 1 and 2 of isNS1wt in complex with Ab56.2 for visualization purpose only and not for any refinements. To avoid any confusion, the use of DeepEMhancer has been removed from the supp text and figures.

      Line 83 - "cryoEM structures...recently reported" isn't ref 17

      This reference has been corrected in to Shu et al. (2022) in p 3, line 83.

      Fig. S3 - mis-labeled gel lanes

      This has been corrected in the Fig. S3B, the label for lane 4 has been corrected to isNS1 and lane 1 to rsNS1.

      Fig S6c caption - "Representative 2D classes of each 3D classes, white bar 100 Å. Refined 3D map for classes 1 and 2 coloured by local resolution". The first sentence is unclear, and there is no white scale bar and no heat map.

      Fig S6c caption has been corrected to “Representative 3D classes contoured at 0.06 and its particle distribution as labelled and coloured in cyan. Scale bar of 100 Å as shown. Refined 3D maps and their respective FSC resolution charts and posterior precision directional distribution as generated in crysosparc4.0”.

    1. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man's physical powers rather than the powers of his mind.

      Interesting to read this after just watching Oppenheimer on the plane to London.

    2. an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility.

      Definitely my activity page!

    1. 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset. 13.1.1. Digital Detox?# Some people view internet-based social media (and other online activities) as inherently toxic and therefore encourage a digital detox, where people take some form of a break from social media platforms and digital devices. While taking a break from parts or all of social media can be good for someone’s mental health (e.g., doomscrolling is making them feel more anxious, or they are currently getting harassed online), viewing internet-based social media as inherently toxic and trying to return to an idyllic time from before the Internet is not a realistic or honest view of the matter. In her essay “The Great Offline,” Lauren Collee argues that this is just a repeat of earlier views of city living and the “wilderness.” As white Americans were colonizing the American continent, they began idealizing “wilderness” as being uninhabited land (ignoring the Indigenous people who already lived there, or kicking them out or killing them). In the 19th century, as wilderness tourism was taking off as an industry, natural landscapes were figured as an antidote to the social pressures of urban living, offering truth in place of artifice, interiority in place of exteriority, solitude in place of small talk. Similarly, advocates for digital detox build an idealized “offline” separate from the complications of modern life: Sherry Turkle, author of Alone Together, characterizes the offline world as a physical place, a kind of Edenic paradise. “Not too long ago,” she writes, “people walked with their heads up, looking at the water, the sky, the sand” — now, “they often walk with their heads down, typing.” […] Gone are the happy days when families would gather around a weekly televised program like our ancestors around the campfire! But Lauren Collee argues that by placing the blame on the use of technology itself and making not using technology (a digital detox) the solution, we lose our ability to deal with the nuances of how we use technology and how it is designed: I’m no stranger to apps that help me curb my screen time, and I’ll admit I’ve often felt better for using them. But on a more communal level, I suspect that cultures of digital detox — in suggesting that the online world is inherently corrupting and cannot be improved — discourage us from seeking alternative models for what the internet could look like. I don’t want to be trapped in cycles of connection and disconnection, deleting my social media profiles for weeks at a time, feeling calmer but isolated, re-downloading them, feeling worse but connected again. For as long as we keep dumping our hopes into the conceptual pit of “the offline world,” those hopes will cease to exist as forces that might generate change in the worlds we actually live in together. So in this chapter, we will not consider internet-based social media as inherently toxic or beneficial for mental health. We will be looking for more nuance and where things go well, where they do not, and why. { requestKernel: true, binderOptions: { repo: "binder-examples/jupyter-stacks-datascience", ref: "master", }, codeMirrorConfig: { theme: "abcdef", mode: "python" }, kernelOptions: { kernelName: "python3", path: "./ch13_mental_health" }, predefinedOutput: true } kernelName = 'python3' previous 13. Mental Health next 13.2. Unhealthy Activities on Social Media By Kyle Thayer and Susan Notess © Copyright 2022.

      This paragraph talks about how social media, especially Instagram, might affect mental health, especially for teenage girls. It mentions different opinions, a study by Meta, anecdotes from cosmetic surgeons, and thoughts from comedian Bo Burnham. The passage acknowledges the complexity of measuring social media's impact and mentions a "digital detox." It doesn't label social media as entirely good or bad, aiming for a more nuanced view. I find it interesting, but the whole social media and mental health issue is really complicated.

    2. 13.1. Social Media Influence on Mental Health# In 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset.

      The examination of social media's impact, particularly its detrimental effects on the mental health of teenage girls, highlights a critical area of concern within the digital age's societal framework. The revelation from Meta's internal study about Instagram underscores the ethical dilemma faced by social media corporations: the responsibility to safeguard the mental health of their users while balancing the inherent drive for engagement and growth. This conundrum is further complicated by the rising trend of individuals seeking to emulate digitally altered self-images, which distorts perceptions of body image and exacerbates mental health issues.

    3. 13.1. Social Media Influence on Mental Health# In 2019 the company Facebook (now called Meta) presented an internal study that found that Instagram was bad for the mental health of teenage girls, and yet they still allowed teenage girls to use Instagram. So, what does social media do to the mental health of teenage girls, and to all its other users? The answer is of course complicated and varies. Some have argued that Facebook’s own data is not as conclusive as you think about teens and mental health. Many have anecdotal experiences with their own mental health and those they talk to. For example, cosmetic surgeons have seen how photo manipulation on social media has influenced people’s views of their appearance: People historically came to cosmetic surgeons with photos of celebrities whose features they hoped to emulate. Now, they’re coming with edited selfies. They want to bring to life the version of themselves that they curate through apps like FaceTune and Snapchat. Selfies, Filters, and Snapchat Dysmorphia: How Photo-Editing Harms Body Image Comedian and director Bo Burnham has his own observations about how social media is influencing mental health: “If [social media] was just bad, I’d just tell all the kids to throw their phone in the ocean, and it’d be really easy. The problem is it - we are hyper-connected, and we’re lonely. We’re overstimulated, and we’re numb. We’re expressing our self, and we’re objectifying ourselves. So I think it just sort of widens and deepens the experiences of what kids are going through. But in regards to social anxiety, social anxiety - there’s a part of social anxiety I think that feels like you’re a little bit disassociated from yourself. And it’s sort of like you’re in a situation, but you’re also floating above yourself, watching yourself in that situation, judging it. And social media literally is that. You know, it forces kids to not just live their experience but be nostalgic for their experience while they’re living it, watch people watch them, watch people watch them watch them. My sort of impulse is like when the 13 year olds of today grow up to be social scientists, I’ll be very curious to hear what they have to say about it. But until then, it just feels like we just need to gather the data.” Director Bo Burnham On Growing Up With Anxiety — And An Audience - NPR Fresh Air (10:15-11:20) It can be difficult to measure the effects of social media on mental health since there are so many types of social media, and it permeates our cultures even of people who don’t use it directly. Some researchers have found that people using social media may enter a dissociation state, where they lose track of time (like what happens when someone is reading a good book). Researchers at Facebook decided to try to measure how their recommendation algorithm was influencing people’s mental health. So they changed their recommendation algorithm to show some people more negative posts and some people more positive posts. They found that people who were given more negative posts tended to post more negatively themselves. Now, this experiment was done without informing users that they were part of an experiment, and when people found out that they might be part of a secret mood manipulation experiment, they were upset. 13.1.1. Digital Detox?# Some people view internet-based social media (and other online activities) as inherently toxic and therefore encourage a digital detox, where people take some form of a break from social media platforms and digital devices. While taking a break from parts or all of social media can be good for someone’s mental health (e.g., doomscrolling is making them feel more anxious, or they are currently getting harassed online), viewing internet-based social media as inherently toxic and trying to return to an idyllic time from before the Internet is not a realistic or honest view of the matter. In her essay “The Great Offline,” Lauren Collee argues that this is just a repeat of earlier views of city living and the “wilderness.” As white Americans were colonizing the American continent, they began idealizing “wilderness” as being uninhabited land (ignoring the Indigenous people who already lived there, or kicking them out or killing them). In the 19th century, as wilderness tourism was taking off as an industry, natural landscapes were figured as an antidote to the social pressures of urban living, offering truth in place of artifice, interiority in place of exteriority, solitude in place of small talk. Similarly, advocates for digital detox build an idealized “offline” separate from the complications of modern life: Sherry Turkle, author of Alone Together, characterizes the offline world as a physical place, a kind of Edenic paradise. “Not too long ago,” she writes, “people walked with their heads up, looking at the water, the sky, the sand” — now, “they often walk with their heads down, typing.” […] Gone are the happy days when families would gather around a weekly televised program like our ancestors around the campfire! But Lauren Collee argues that by placing the blame on the use of technology itself and making not using technology (a digital detox) the solution, we lose our ability to deal with the nuances of how we use technology and how it is designed: I’m no stranger to apps that help me curb my screen time, and I’ll admit I’ve often felt better for using them. But on a more communal level, I suspect that cultures of digital detox — in suggesting that the online world is inherently corrupting and cannot be improved — discourage us from seeking alternative models for what the internet could look like. I don’t want to be trapped in cycles of connection and disconnection, deleting my social media profiles for weeks at a time, feeling calmer but isolated, re-downloading them, feeling worse but connected again. For as long as we keep dumping our hopes into the conceptual pit of “the offline world,” those hopes will cease to exist as forces that might generate change in the worlds we actually live in together. So in this chapter, we will not consider internet-based social media as inherently toxic or beneficial for mental health. We will be looking for more nuance and where things go well, where they do not, and why.

      I think the discussion concerning social media and mental health is not about deciding between blatant rejection and unquestioning acceptance. It is about achieving a balanced relationship with digital technology, in which the advantages are maximized while the hazards are actively addressed through informed use, supporting communities, and responsible platform administration.

    1. Facial expressions can help bring a speech to life when used by a speaker to communicate emotions and demonstrate enthusiasm for the speech. As with vocal variety, we tend to use facial expressions naturally and without conscious effort when engaging in day-to-day conversations. Yet I see many speakers’ expressive faces turn “deadpan” when they stand in front of an audience. Some people naturally have more expressive faces than others—think about the actor Jim Carey’s ability to contort his face as an example.

      When you have an animated face, it conveys that you take interest in what you are saying, even if that may not be the case. It also makes it easier to connect with your audience. Jim Carey is a good exaggerated example of this. In a speech, it's easy to get so caught up in what you have to say. How you present yourself is just as important in getting your message across.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Responses to the reviewers

      We thank the editor and reviewers for their insightful feedback and valuable suggestions on our revised manuscript. In this reply, we provided further clarifications and made changes accordingly. Reviewers’ comments are in bold, and our responses are immediately below. Changes in the main text are presented in italics, accompanied by the specific line numbers in the revised manuscript where these changes can be found. Below, we respond to each reviewer’s comments in turn.

      Reviewer #1 (Public Review):

      Ps observed 24 objects and were asked which afforded particular actions (14 action types). Affordances for each object were represented by a 14-item vector, values reflecting the percentage of Ps who agreed on a particular action being afforded by the object. An affordance similarity matrix was generated which reflected similarity in affordances between pairs of objects. Two clusters emerged, reflecting correlations between affordance ratings in objects smaller than body size and larger than body size. These clusters did not correlate themselves. There was a trough in similarity ratings between objects ~105 cm and ~130 cm, arguably reflecting the body size boundary. The authors subsequently provide some evidence that this clear demarcation is not simply an incidental reflection of body size, but likely causally related. This evidence comes in the flavour of requiring Ps to imagine themselves as small as a cat or as large as an elephant and showing a predicted shift in the affordance boundary. The manuscript further demonstrates that ChatGPT (theoretically interesting because it's trained on language alone without sensorimotor information; trained now on words rather than images) showed a similar boundary.

      The authors also conducted a small MRI study task where Ps decide whether a probe action was affordable (graspable?) and created a congruency factor according to the answer (yes/no). There was an effect of congruency in posterior fusiform and superior parietal lobule for objects within body size range, but not outside. No effects in LOC or M1.

      The major strength of this manuscript in my opinion is the methodological novelty. I felt the correlation matrices were a clever method for demonstrating these demarcations, the imagination manipulation was also exciting, and the ChatGPT analysis provided excellent food for thought. These findings are important for our understanding of the interactions between action and perception, and hence for researchers from a range of domains of cognitive neuroscience.

      The major element that limits conclusions is that an MRI study with 12 P in this context can really only provide pilot data. Certainly the effects are not strong enough for 12 P to generate much confidence. The others of my concerns have been addressed in the revision.

      Reviewer #1 (Recommendations For The Authors):

      I think that the authors need to mention in the abstract that the MRI study constitutes a small pilot.

      Response: We appreciate the reviewer’s positive evaluation and constructive suggestions. In response to the concern about the limited number of participants in the fMRI study, we fully acknowledge the implications this has on the generalizability and robustness of our findings related to the congruency effect. To clarity, we have explicitly stated its preliminary nature of the MRI study in the abstract [line 22]: “A subsequent fMRI experiment offered preliminary evidence of affordance processing exclusively for objects within the body size range, but not for those beyond.”

      Reviewer #2 (Public Review):

      Summary

      In this work, the authors seek to test a version of an old idea, which is that our perception of the world and our understanding of the objects in it are deeply influenced by the nature of our bodies and the kinds of behaviours and actions that those objects afford. The studies presented here muster three kinds of evidence for a discontinuity in the encoding of objects, with a mental "border" between objects roughly of human body scale or smaller, which tend to relate to similar kinds of actions that are yet distinct from the kinds of actions implied by human-or-larger scale objects. This is demonstrated through observers' judgments of the kinds of actions different objects afford; through similar questioning of AI large-language models (LLMs); and through a neuroimaging study examining how brain regions implicated in object understanding make distinctions between kinds of objects at human and larger-than-human scales.

      Strengths 

      The authors address questions of longstanding interest in the cognitive neurosciences -- namely how we encode and interact with the many diverse kinds of objects we see and use in daily life. A key strength of the work lies in the application of multiple approaches. Examining the correlations among kinds of objects, with respect to their suitability for different action kinds, is novel, as are the complementary tests of judgments made by LLMs. The authors include a clever manipulation in which participants are asked to judge action-object pairs, having first adopted the imagined size of either a cat or an elephant, showing that the discontinuity in similarity judgments effectively moved to a new boundary closer to the imagined scale than the veridical human scale. The dynamic nature of the discontinuity hints that action affordances may be computed dynamically, "on the fly", during actual action behaviours with objects in the real world.

      Weaknesses 

      A limitation of the tests of LLMs may be that it is not always known what kinds of training material was used to build these models, leading to a possible "black box" problem. Further, presuming that those models are largely trained on previous human-written material, it may not necessarily be theoretically telling that the "judgments" of these models about action-object pairs shows human-like discontinuities. Indeed, verbal descriptions of actions are very likely to mainly refer to typical human behaviour, and so the finding that these models demonstrate an affordance discontinuity may simply reflect those statistics, rather than providing independent evidence for affordance boundaries.

      The relatively small sample size of the brain imaging experiment, and some design features (such as the task participants performed, and the relatively narrow range of objects tested) provide some limits on the extent to which it can be taken as support for the authors' claims.

      Response: We thank the reviewer for the positive evaluation and the constructive comments. We agree that how LLMs work is a “black box”, and thus it is speculative to assume them to possess any human-like ability, because, as the reviewer pointed out, “these models demonstrate an affordance discontinuity may simply reflect those statistics.” Indeed, our manuscript has expressed a similar idea [line 338]: “We speculated that ChatGPT models may have formed the affordance boundary through a human prism ingrained within its linguistic training corpus.” That is, our intention was not to suggest that such information could replace sensorimotor-based interaction or achieve human-level capability, but rather to highlight that embodied interaction is necessary. Additionally, the scope of the present study does not extend to elucidating the mechanisms behind LLMs’ resemblance of affordance boundary, whether through statistical learning or actual comprehension. To clarify this point, in the revised manuscript, we have clarified that the mechanisms underlying the observed affordance boundary in LLMs may be different from human cognitive processes, and advocated future studies to explore this possibility [line 415]: “Nevertheless, caution should be taken when interpreting the capability of LLMs like ChatGPT, which are often considered “black boxes.” That is, our observation indicates that certain sensorimotor information is embedded within human language materials presumably through linguistic statistics, but it is not sufficient to assert that LLMs have developed a human-like ability to represent affordances. Furthermore, such information alone may be insufficient for LLMs to mimic the characteristics of the affordance perception in biological intelligence. Future studies are needed to elucidate such limitation.”

      Regarding the concern about the models’ results not “providing independent evidence for affordance boundaries”, our objective in employing LLMs was to explore if an affordance boundary could emerge from conceptual knowledge without direct sensorimotor experience, rather than to validate the existence of the affordance boundary per se.

      As for the concern about the limitations imposed by the small sample size and certain design features of our brain imaging experiment, please see our reply to Reviewer #1.

      Reviewer #3 (Public Review):

      Summary:

      Feng et al. test the hypothesis that human body size constrains the perception of object affordances, whereby only objects that are smaller than the body size will be perceived as useful and manipulable parts of the environment, whereas larger objects will be perceived as "less interesting components."

      To test this idea, the study employs a multi-method approach consisting of three parts:

      In the first part, human observers classify a set of 24 objects that vary systematically in size (e.g., ball, piano, airplane) based on 14 different affordances (e.g., sit, throw, grasp). Based on the average agreement of ratings across participants, the authors compute the similarity of affordance profiles between all object pairs. They report evidence for two homogenous object clusters that are separated based on their size with the boundary between clusters roughly coinciding with the average human body size. In follow-up experiments, the authors show that this boundary is larger/smaller in separate groups of participants who are instructed to imagine themselves as an elephant/cat.

      In the second part, the authors ask different large language models (LLMs) to provide ratings for the same set of objects and affordances and conduct equivalent analyses on the obtained data. Some, but not all, of the models produce patterns of ratings that appear to show similar boundary effects, though less pronounced and at a different boundary size than in humans.

      In the third part, the authors conduct an fMRI experiment. Human observers are presented with four different objects of different sizes and asked if these objects afford a small set of specific actions. Affordances are either congruent or incongruent with objects. Contrasting brain activity on incongruent trials against brain activity on congruent trials yields significant effects in regions within the ventral and dorsal visual stream, but only for small objects and not for large objects.

      The authors interpret their findings as support for their hypothesis that human body size constrains object perception. They further conclude that this effect is cognitively penetrable, and only partly relies on sensorimotor interaction with the environment (and partly on linguistic abilities).

      Strengths:

      The authors examine an interesting and relevant question and articulate a plausible (though somewhat underspecified) hypothesis that certainly seems worth testing. Providing more detailed insights into how object affordances shape perception would be highly desirable. Their method of analyzing similarity ratings between sets of objects seems useful and the multi-method approach is original and interesting.

      Weaknesses:

      The study presents several shortcomings that clearly weaken the link between the obtained evidence and the drawn conclusions. Below I outline my concerns in no particular order:

      (1) It is not entirely clear to me what the authors are proposing and to what extent the conducted work actually speaks to this. For example, in the introduction, the authors write that they seek to test if body size serves not merely as a reference for object manipulation but also "plays a pivotal role in shaping the representation of objects." This motivation seems rather vague motivation and it is not clear to me how it could be falsified.

      Overall, the lack of theoretical precision makes it difficult to judge the appropriateness of the approaches and the persuasiveness of the obtained results. I would strongly suggest clarifying the theoretical rationale and explaining in more detail how the chosen experiments allow them to test falsifiable predictions.

      (2) The authors used only a very small set of objects and affordances in their study and they do not describe in sufficient detail how these stimuli were selected. This renders the results rather exploratory and clearly limits their potential to discover general principles of human perception. Much larger sets of objects and affordances and explicit data-driven approaches for their selection would provide a more convincing approach and allow the authors to rule out that their results are just a consequence of the selected set of objects and actions.

      (3) Relatedly, the authors could be more thorough in ruling out potential alternative explanations. Object size likely correlates with other variables that could shape human similarity judgments and the estimated boundary is quite broad (depending on the method, either between 80 and 150 cm or between 105 to 130 cm). More precise estimates of the boundary and more rigorous tests of alternative explanations would add a lot to strengthen the authors' interpretation.

      (4) While I appreciate the manipulation of imagined body size, as a clever way to solidify the link between body size and affordance perception, I find it unfortunate that it is implemented in a between-subjects design, as this clearly leaves open the possibility of pre-existing differences between groups. I certainly disagree with the authors' statement that their findings suggest "a causal link between body size and affordance perception."

      (5) The use of LLMs in the current study is not clearly motivated and I find it hard to understand what exactly the authors are trying to test through their inclusion. As it currently stands, I find it hard to discern how the presence of perceptual boundaries in LLMs could constitute evidence for affordance-based perception.

      (6) Along the same lines, the fMRI study also provides little evidence to support the authors' claims. The use of congruency effects as a way of probing affordance perception is not well motivated. Importantly (and related to comment 2 above), the very small set of objects and affordances in this experiment heavily complicates any conclusions about object size being the crucial variable determining the occurrence of congruency effects.

      Overall, I consider the main conclusions of the paper to be far beyond the reported data. Articulating a clearer theoretical framework with more specific hypotheses as well as conducting more principled analyses on more comprehensive data sets could help the authors obtain stronger tests of their ideas.

      Response: We appreciate the insightful inquiries regarding our manuscript. Below, we explained the theoretical motivation and rationale of each part of our experiments.

      In response to the reviewer’s insights, we have modified the expression “plays a pivotal role in shaping the representation of objects” in the revised manuscript and have restated the general question of our study in the introduction. Our motivation is on the long-lasting debate over the representation versus direct perception of affordance, specifically examining the “representationalization” of affordance. That is, we tested whether object affordance simply covaried directly with continuous constraints such as object size, a perspective aligned with the representation-free (direct perception) view, or whether affordance became representationalized, adhering to the representation-based view, constrained by body size. Such representationalization would generate a categorization between objects that are affordable and the environment that exceeds affordance.

      To test these hypotheses, we first delineated the affordance of various objects. We agree with the reviewer that in this step a broader selection of objects and actions could mitigate the risk of our results being influenced by the specific selection of objects and actions. However, our results are unlikely to be biased, because our selection was guided by two key criteria, rather than being arbitrary. First, the objects were selected from the dataset in Konkle and Oliva's study (2011), which systematically investigated object size’ impact on object recognition, thus providing a well-calibrated range of sizes (i.e., from 14 cm to 7,618 cm) reflective of real-world objects. Second, the selected actions covered a wide range of daily humans-objects/environments interactions, from single-point movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing) based on the kinetics human action video dataset (Kay et al., 2017). Thus, this set of objects and actions is a representative sampling of typical human experiences.

      Upon demonstrating a trough in perceived affordance similarity, we recognized the location of the affordance boundary coincidentally fell within the range of human body size. We agree with the reviewer that this observation of the coincidence between body size and the location of boundary alone is not sufficient for a mechanistic explanation, because variables co-varying with object sizes might also generate this coincidence. The identification of a more precise location for the boundary unlikely rules out alternative explanations of this kind. To establish a causal link between body size and the affordance boundary, we opted for a direct manipulation of body sizes through imagination, while keeping all other variables constant across conditions. This approach allowed us to examine whether and how the affordance boundary shifts in response to body size changes.

      Regarding the between-subjects design of the imagination experiment, we wish to clarify that this design aimed to prevent carryover effects. Although a within-subjects design indeed is more sensitive in detecting manipulation effects by accounting for subject variability, it risks contamination across conditions. Specifically, transitioning immediately between different imagined body sizes poses a challenge, and sequential participation could induce undesirable response strategies, such as deliberately altering responses to the same objects in different conditions. The between-subjects design, which susceptible to participant variability (e.g., “pre-existing differences between groups” suggested by the reviewer), avoids such contamination. In addition, we employed random assignment of participants to different conditions (cat-size versus elephant-size).

      The body imagination experiment provided causal evidence of an embodied discontinuity, suggesting the boundary is tied to the agent’s motor capacity, rather than amodal sources. The LLMs experiment then sought to test a prediction from the embodied theories of cognition: the supramodality of object perception. Especially, we asked whether the embodied discontinuity is supramodally accessible, using LLMs to assess whether affordance perception discretization is supramodally accessible beyond the sensorimotor domain through linguistic understanding. From this perspective, our LLM experiment was employed not to affirm affordance-based perception but to examine and support a prediction by the embodied theories of cognition.

      Finally, our preliminary fMRI study aimed to conceptually replicate the perceptual discontinuity and explore it neural correlates using a subset of objects and actions from the behaviour experiments. This approach was chosen to achieve stable neural responses and enhance study power, employing the congruent effect (congruent - incongruent) as a metric for affordance processing (e.g., Kourtis et al., 2018), which reflects facilitated responses when congruent with objects’ affordances (e.g., Ellis & Tucker, 2000). Nevertheless, we recognize the limitation of a relatively small sample sizes, for details please see our reply to the reviewer #1.

      In summary, our findings contribute to the discourse on computationalism’s representation concept and influence of these representations, post-discretization, on processes beyond the sensorimotor domain. We hope that these additional explanations and revisions effectively address the concerns raised and demonstrate our commitment to enhancing the quality of our work in light of your valuable feedback. By acknowledging these limitations and directions for future research, we hope to further the discourse on affordance perception and embodied cognition.

      References

      Ellis, R., & Tucker, M. (2000). Micro‐affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451-471.

      Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., ... & Zisserman, A. (2017). The kinetics human action video dataset. arXiv preprint arXiv:1705.06950.

      Konkle, T., & Oliva, A. (2011). Canonical visual size for real-world objects. Journal of Experimental Psychology: human perception and performance, 37(1), 23.

      Kourtis, D., Vandemaele, P., & Vingerhoets, G. (2018). Concurrent cortical representations of function-and size-related object affordances: an fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 18, 1221-1232.


      The following is the authors’ response to the original reviews.

      Responses to the reviewers

      We deeply appreciate the reviewers’ comments. In response to the concerns raised, we have revised the manuscript accordingly. Below we address each of the reviewers’ comments in turn. Reviewers’ comments are in bold, and our responses are immediately below. Changes in the main text are presented in italics, followed by corresponding page and line numbers in the revised manuscript. We also highlighted tracks of change in the revised manuscript.

      Reviewer #1 (Public Review):

      (1) The main behavioural work appears well-powered (>500 Ps). This sample reduces to 100 for the imagination study, after removing Ps whose imagined heights fell within the human range (100-200 cm). Why 100-200 cm? 100 cm is pretty short for an adult. Removing 80% of data feels like conclusions from the imagination study should be made with caution.

      R1: Sorry for the confusion. We did not remove 80% of the participants; instead, a separate sample of participants was recruited in the imagination experiment. The size of this sample (100 participants) was indeed smaller than the first experiment (528 participants), because the first experiment was set for exploratory purposes and was designed to be over-powered. Besides, inspection of the data of the first sample showed that the affordance pattern became stable after the first 50 participants. We explained this consideration in the revised manuscript:

      (p 21, ln 490) “…, another one hundred and thirty-nine participants from the same population were recruited from the same platform. We chose a smaller sample size for the imagination experiment compared to that for the object-action relation judgement task, because inspection of the data of the first sample showed that the affordance pattern became stable after the first 50 participants.”

      The average adult human height ranges from 140-170 cm for women and 150180 cm for men (NCD-RisC, 2016). Accordingly, the criterion of 100-200 cm covered this range and was set to ensure that participants unambiguously imagined a body schema different from that of human, as the tallest domestic cat below 100 cm according to the Guinness World Records and an elephant above 200 cm according to Crawley et al. (2017). We clarified these considerations in the revised manuscript:

      (p 21, ln 494) “To maximize the validity of the manipulation, data from participants whose imagined height fell within the average human size range (100cm - 200cm) were excluded from further analysis. Consequently, 100 participants (49 males, aged from 17 to 39 years, mean age = 23.2 years) remained in the analysis. This exclusion criterion was broader than the standard adult human height range of 140cm to 180cm (NCD-RisC, 2016). This approach ensured that our analysis focused on participants who unambiguously imagined a body schema different from humans, yet within the known height range of cats and elephants.”

      In addition, we also reanalysed the data with a more conservative criterion of 140cm to 180cm, and the results remained.

      (2) There are only 12 Ps in the MRI study, which I think should mean the null effects are not interpreted. I would not interpret these data as demonstrating a difference between SPL and LOC/M1, but rather that some analyses happened to fall over the significance threshold and others did not.

      R2: We would like to clarify that the null hypothesis of this fMRI study is the lack of two-way interaction between object size and object-action congruency, which was rejected by the observed significant interaction. That is, the interpretation of the present study did not rely on accepting any null effect.

      Having said this, we admit that the fMRI experiment is exploratory and the sample size is small (12 participants), which might lead to low power in estimating the affordance effect. In the revision, we acknowledge this issue explicitly:

      (p 16, ln 354) “…, supporting the idea that affordance is typically represented only for objects within the body size range. While it is acknowledged that the sample size of the fMRI study was small (12 participants), necessitating cautious interpretation of its results, the observed neural-level affordance discontinuity is notable. That is, qualitative differences in neural activity between objects within the affordance boundary and those beyond replicated our behavioral findings. This convergent evidence reinforced our claim that objects were discretized into two broad categories along the continuous size axis, with affordance only being manifested for objects within the boundary.”

      (3) I found the MRI ROI selection and definition a little arbitrary and not really justified, which rendered me even more cautious of the results. Why these particular sensory and motor regions? Why M1 and not PMC or SMA? Why SPL and not other parietal regions? Relatedly, ROIs were defined by thresholding pF and LOC at "around 70%" and SPL and M1 "around 80%", and it is unclear how and why these (different) thresholds were determined.

      R3: Our selection of these specific sensory and motor regions was based on prior literature reporting their distinct contribution to affordance perception (e.g., Borghi, 2005; Sakreida et al., 2016). The pFs was chosen as a representative region of the ventral visual stream, involved in object identification and classification, and the SPL was chosen as a representative region of the dorsal visual stream, involved in object perception and manipulation. The primary motor cortex (M1) has also been reported involved in affordance processing (e.g., McDannald et al., 2018), and we chose this region to probe the affordance congruency effect in the motor execution stage of the sense-think-act pathway. We did not choose the premotor cortex (PMC) and the supplementary motor area (SMA) because they were proposedly also involved in processes beyond motor execution (e.g., Hertrich et al., 2016; Kantak et al., 2012), and if any effect was observed, one cannot exclusively attribute the effect to motor execution. As for the parietal regions, our choice of the SPL not IPL/IPS is based on the meta-analysis of affordance processing areas where only the SPL shows consistent activation for both stable and variable affordances (Sakreida et al., 2016). We chose the SPL to capture effects on either type of affordances. In revision, we explained these considerations in the revised manuscript:

      (p 14, ln 280) “In addition to the pFs and SPL, we also examined the congruency effect in the lateral occipital cortex (LO), which is involved in object representation (e.g., Grill-Spector et al., 2000; Konkle & Caramazza, 2013) and provides inputs to both the pFs and SPL (Hebart et al., 2018). Meanwhile, the primary motor cortex (M1), which receives inputs from the dorsal stream (Vainio & Ellis, 2020), is involved in affordance processing (e.g., McDannald et al., 2018) and action executions (Binkofski et al., 2002).”

      (p 29, ln 684) “We chose the pFs, LO, SPL, and M1 as ROIs based on existing literature highlighting their distinct contributions to affordance perception (Borghi, 2005; Sakreida et al., 2016).”

      Regarding ROI thresholding, we apologize for the lack of clarity in reporting the thresholds in the original manuscript. The thresholds were different between ventral regions (from Zhen et al., 2015) and dorsal regions (from Fan et al., 2016) because they are from two different atlases. The former was constructed by probability maps of task-state fMRI activity during localizer contrast with stationary images and the latter by a parcellation of the brain's functional connectivity; therefore, the numerical values in these two atlases are not comparable. To extract ROIs with comparable sizes, we selected a threshold of 55% for the pFs, 90% for the LO, 78% for the SPL, and 94% for the M1 in the original manuscript.

      To rule out the possibility that the results were distorted by the specific choice of thresholds, we re-ran the analysis with a threshold 80% for all ROIs (resulting in 456 voxels in the lpFs, 427 voxels in the rpFs, 1667 voxels in the lLO, 999 voxels in the rLO, 661 voxels in the lSPL, 310 voxels in the rSPL, 231 voxels in the lM1, and 327 voxels in the rM1) with the 2-by-2 repeated-measures ANOVA. Our results remained the same qualitatively. A significant interaction between object type and congruency was observed in the pFs (F(1,11) = 24.87, p <.001, 𝜂2=.69) and SPL (F(1,11) = 14.62, p =.003, 𝜂2=.57). The simple effect analysis revealed the congruency effect solely for objects within body size range (pFs: p =.003; SPL: p <.001), not for objects beyond (ps >.30). For the M1 and LO, neither significant main effects (ps >.11) nor interactions were found (ps >.20).

      We clarified our choice of thresholds in the methods section in the revised manuscript:

      (p 29, ln 686) “Eight ROIs depicted in Fig. 3b were constructed based on the overlap between the whole-brain map activated by both objects within and beyond and corresponding functional atlases (the pFs and LO from Zhen et al., 2015; the SPL and M1 from Fan et al., 2016). To achieve ROIs of similar sizes, we applied varying thresholds to each cortical area: for the pFs and LO, the atlases were thresholded at 55% and 90%, resulting in 266 voxels in the lpFs, 427 in the rpFs, 254 in the lLO and 347 in the rLO; for the SPL and M1, the atlases were thresholded at 78% and 94%, resulting in 661 voxels in the lSPL, 455 in the rSPL, 378 in the lM1, and 449 in the rM1. In the subsequent analysis, homologous areas spanning both cortical hemispheres were merged.”

      (4) Discussion and theoretical implications. The authors discuss that the MRI results are consistent with the idea we only represent affordances within body size range. But the interpretation of the behavioural correlation matrices was that there was this similarity also for objects larger than body size, but forming a distinct cluster. I therefore found the interpretation of the MRI data inconsistent with the behavioural findings.

      R4: We speculated that the similarity in action perception among objects beyond the body size range may be due to these objects being similarly conceptualized as ‘environment’, in contrast to the objects within the body size range, which are categorized differently, namely as the ‘objects for the animal.’ Accordingly, in cortical regions involved in object processing, objects conceptualized as ‘environment’ unlikely showed the congruency effect, distinct from objects within the body size range. We have explained this point in the revised manuscript:

      (p 17, ln 370) “…which resonates the embodied influence on the formation of abstract concepts (e.g., Barsalou, 1999; Lakoff & Johnson, 1980) of objects and environment. Consistently, our fMRI data did not show the congruency effect for objects beyond the body size range, distinct from objects within this range, suggesting a categorization influenced by objects’ relative size to the human body.”

      (5) In the discussion, the authors outline how this work is consistent with the idea that conceptual and linguistic knowledge is grounded in sensorimotor systems. But then reference Barsalou. My understanding of Barsalou is the proposition of a connectionist architecture for conceptual representation. I did not think sensorimotor representation was privileged, but rather that all information communicates with all other to constitute a concept.

      R5: We are sorry for the confusion. We do not intend to argue that the sensorimotor representation is privileged. Instead, we would like to simply emphasize their engagement in concept. According to our understanding, Barsalou’s Perceptual Symbol Theory proposes that grounded concepts include sensorimotor information, and conceptual knowledge is grounded in the same neural system that supports action (Barsalou, 1999). This is consistent with our proposal that the affordance boundary locked to an animal’s sensorimotor capacity might give rise to a conceptual-ish representation of object-ness specific to the very animal. We have clarified this point in the introduction and discussion on the conceptual knowledge and sensorimotor information:

      In the introduction (p 2, ln 59) “…, and the body may serve as a metric that facilitates meaningful engagement with the environment by differentiating objects that are accessible for interactions from those not. Further, grounded cognition theory (see Barsalou, 2008 for a review) suggests that the outputs of such differentiation might transcend sensorimotor processes and integrate into supramodal concepts and language. From this perspective, we proposed two hypotheses...”

      In the discussion (p 18, ln 392) “Indeed, it has been proposed that conceptual knowledge is grounded in the same neural system that supports action (Barsalou, 1999; Glenberg et al., 2013; Wilson & Golonka, 2013), thereby suggesting that sensorimotor information, along with other modal inputs, may be embedded in language (e.g., Casasanto, 2011; Glenberg & Gallese, 2012; Stanfield & Zwaan, 2001), as the grounded theory proposed (see Barsalou, 2008 for a review).”

      (6) More generally, I believe that the impact and implications of this study would be clearer for the reader if the authors could properly entertain an alternative concerning how objects may be represented. Of course, the authors were going to demonstrate that objects more similar in size afforded more similar actions. It was impossible that Ps would ever have responded that aeroplanes afford grasping and balls afford sitting, for instance. What do the authors now believe about object representation that they did not believe before they conducted the study? Which accounts of object representation are now less likely?

      R6: We thank the reviewer for this suggestion. The theoretical motivation of the present study is to explore whether, for continuous action-related physical features (such as object size relative to the agents), affordance perception introduces discontinuity and qualitative dissociation, i.e., to allow the sensorimotor input to be assigned into discrete states/kinds, as representations envisioned by the computationalists; alternatively, whether the activity may directly mirror the input, free from discretization/categorization/abstraction, as proposed by the Replacement proposal of some embodied theories on cognition.

      By addressing this debate, we hoped to shed light on the nature of representation in, and resulted from, the vision-for-action processing. Our finding of affordance discontinuity suggests that sensorimotor input undergoes discretization implied in the computationalism idea of representation. Further, not contradictory to the claims of the embodied theories, these representations do shape processes out of the sensorimotor domain, but after discretization.

      We have now explained our hypotheses and alternatives explicitly in the revised introduction and discussion:

      In the introduction (p 2, ln 45) “However, the question of how object perception is influenced by the relative size of objects in relation to the human body remains open. Specifically, it is unclear whether this relative size simply acts as a continuous variable for locomotion reference, or if it affects differentiating and organizing object representation based on their ensued affordances.”

      In the discussion (p 14, ln 295) “One long-lasting debate on affordance centers on the distinction between representational and direct perception of affordance. An outstanding theme shared by many embodied theories of cognition is the replacement hypothesis (e.g., Van Gelder, 1998), which challenges the necessity of representation as posited by computationalism’s cognitive theories (e.g., Fodor, 1975). This hypothesis suggests that input is discretized/categorized and subjected to abstraction or symbolization, creating discrete stand-ins for the input (e.g., representations/states). Such representationalization would lead to a categorization between the affordable (the objects) and those beyond affordance (the environment), in contrast to the perspective offered by embodied theories. The present study probed this ‘representationalization’ of affordance by examining whether affordance perception introduces discontinuity and qualitative dissociation in response to continuous action-related physical features (such as object size relative to the agents), which allows sensorimotor input to be assigned into discrete states/kinds, in line with the representation-based view under the constraints of body size. Alternatively, it assessed whether activity directly mirrors the input, free from discretization/categorization/abstraction, in line with the representation-free view.

      First, our study found evidence demonstrating discretization in affordance perception. Then, through the body imagination experiment, we provided causal evidence suggesting that this discretization originates from sensorimotor interactions with objects rather than amodal sources, such as abstract object concepts independent of agent motor capability. Finally, we demonstrated the supramodality of this embodied discontinuity by leveraging the recent advances in AI. We showed that the discretization in affordance perception is supramodally accessible to disembodied agents such as large language models (LLMs), which lack sensorimotor input but can access linguistic materials built upon discretized representations. These results collectively suggest that sensorimotor input undergoes discretization, as implied in the computationalism’s idea of representation. Note that, these results are not contradictory to the claim of the embodied theories, as these representations do shape processes beyond the sensorimotor domain but after discretization.

      This observed boundary in affordance perception extends the understanding of the discontinuity in perception in response to the continuity of physical inputs (Harnad, 1987; Young et al., 1997).”

      Reviewer #1 (Recommendations For The Authors):

      a) I would recommend providing further justification for why 100-200 cm were used as the cut-offs reflecting acceptable imagined body size. Were these decisions preregistered anywhere? If so, please state.

      Ra: Please see R1.

      b) I would encourage the authors to call the MRI a small pilot study throughout, including in the abstract.

      Rb: We completely agree and have indicated the preliminary nature of this study in the revised version:

      (p 11, ln 236) “To test this speculation, we ran an fMRI experiment with a small number of participants to preliminarily investigate the neural basis of the affordance boundary in the brain by measuring neural activity in the dorsal and ventral visual streams when participants were instructed to evaluate whether an action was affordable by an object (Fig. 3a).”

      c) Please provide much further justification of ROI selection, why these thresholds were chosen, and therefore why they are different across regions.

      Rc: Please see R3.

      d) Further elucidation in the discussion would help the reader interpret the MRI data, which should always be interpreted also in light of the behavioural findings.

      Rd: Please see R4.

      e) The authors may wish to outline precisely what they claim concerning the nature of conceptual/linguistic representation. Is sensorimotor information privileged or just part of the distributed representation of concepts?

      Re: This is a great point. For details of corresponding revision, please see R5.

      f) There are some nods to alternative manners in which we plausibly represent objects (e.g. about what the imagination study tells us) but I think this theoretical progression should be more prominent.

      Rf: We thank the reviewer for this suggestion. For details of corresponding revision, please see R6.

      Reviewer #2 (Public Review):

      (1) A limitation of the tests of LLMs may be that it is not always known what kinds of training material was used to build these models, leading to a possible "black box" problem. Further, presuming that those models are largely trained on previous human-written material, it may not necessarily be theoretically telling that the "judgments" of these models about action-object pairs show human-like discontinuities. Indeed, verbal descriptions of actions are very likely to mainly refer to typical human behaviour, and so the finding that these models demonstrate an affordance discontinuity may simply reflect those statistics, rather than evidence that affordance boundaries can arise independently even without "organism-environment interactions" as the authors claim here.

      R1: We agree that how LLMs work is a “black box”, and thus it is speculative to assume them to possess any human-like ability, because, as the reviewer pointed out, “these models demonstrate an affordance discontinuity may simply reflect those statistics.” Indeed, our manuscript has expressed a similar idea: “We speculated that ChatGPT models may have formed the affordance boundary through a human prism ingrained within its linguistic training corpus. (p 16 ln 338)”. That is, we did not intend to claim that such information is sufficient to replace sensorimotor-based interaction, or to restore human-level capability, for which we indeed speculated that embodied interaction is necessary. In the revised manuscript, we have clarified our stand that the mechanism generating the observed affordance boundary in LLMs might be different from that in human cognition, and urged future studies to explore this possibility:

      (p 18, ln 413) “…, as well as alignment methods used in fine-tuning the model (Ouyang et al., 2022). Nevertheless, caution should be taken when interpreting the capabilities of LLMs like ChatGPT, which are often considered “black boxes.” That is, our observation indicates that some degree of sensorimotor information is embedded within human language materials presumably through linguistic statistics, but it is not sufficient to assert that LLMs have developed a human-like ability to represent affordances. Furthermore, such information alone may be insufficient for LLMs to mimic the characteristics of the affordance perception in biological intelligence. Future studies are needed to elucidate such limitation.”

      Indeed, because of this potential dissociation, our LLM study might bear novel implications for the development of AI agents. We elaborated on them in the revised discussion on LLMs:

      (p 19, ln 427) “…, represents a crucial human cognitive achievement that remains elusive for AI systems. Traditional AI (i.e., task-specific AI) has been confined with narrowly defined tasks, with substantial limitations in adaptability and autonomy. Accordingly, these systems have served primarily as tools for humans to achieve specific outcomes, rather than as autonomous agents capable of independently formulating goals and translating them into actionable plans. In recent years, significant efforts have been directed towards evolving traditional AI into more agent-like entities, especially in domains like navigation, object manipulation, and other interactions with the physical world. Despite these advancements, the capabilities of AI still fall behind human-level intelligence. On the other hand, embodied cognition theories suggest that sensorimotor interactions with the environment are foundational for various cognitive domains. From this point of view, endowing AI with human-level abilities in physical agent-environment interactions might provide an unreplaceable missing piece for achieving Artificial General Intelligence (AGI). This development would significantly facilitate AI’s role in robotics, particularly in actions essential for survival and goal accomplishment, a promising direction for the next breakthrough in AI (Gupta et al., 2021; Smith & Gasser, 2005).

      However, equipping a disembodied AI with the ability for embodied interaction planning within a specific environment remains a complex challenge. By testing the potential representationalization of action possibilities (affordances) in both humans and LLMs, the present study suggests a new approach to enhancing AI’s interaction ability with the environment. For instance, our finding of supramodal affordance representation may indicate a possible pathway for disembodied LLMs to engage in embodied physical interactions with their surroundings. From an optimistic view, these results suggest that LLM-based agents, if appropriately designed, may leverage affordance representations embedded in language to interact with the physical world. Indeed, by clarifying and aligning such representations with the physical constitutes of LLM-based agents, and even by explicitly constructing an agent-specific object space, we may foster the sensorimotor interaction abilities of LLM-based agents. This progression could lead to achieving animal-level interaction abilities with the world, potentially sparking new developments in the field of embodied cognition theories.”

      (2) The authors include a clever manipulation in which participants are asked to judge action-object pairs, having first adopted the imagined size of either a cat or an elephant, showing that the discontinuity in similarity judgments effectively moved to a new boundary closer to the imagined scale than the veridical human scale. The dynamic nature of the discontinuity suggests a different interpretation of the authors' main findings. It may be that action affordance is not a dimension that stably characterises the long-term representation of object kinds, as suggested by the authors' interpretation of their brain findings, for example. Rather these may be computed more dynamically, "on the fly" in response to direct questions (as here) or perhaps during actual action behaviours with objects in the real world.

      R2: We thank the reviewer for pointing out the dynamic nature of affordance perception in our study. This feature indeed reinforced our attribution of the boundary into an affordance-based process instead of a conceptual or semantic process, the latter of which would predict the action possibilities being a fixed belief about the objects, instead of being dynamically determined according to the feature of the agent-object dyads. In addition, this dynamic does not contradict with our interpretation of the observed boundary in affordance perception. With this observation, we speculated that continuous input was abstracted or representationalized into discontinued categories, and the boundary between these categories was drawn according to the motor capacity of the agent. The finding of the boundary adapting to manipulation on body schema suggests that the abstraction/representationalization dynamically updates according to the current belief of motor capacity and body schema of the animal. In addition, we agree that future studies are needed to examine the dynamics of the abstraction/representationalization of affordance, probably by investigating the evolvement of affordance representation during ongoing actual interactions with novel objects or manipulated motor capability. These points are now addressed in the revision:

      (p 17, ln 380) “Therefore, this finding suggests that the affordance boundary is cognitively penetrable, arguing against the directness of affordance perception (e.g., Gibson, 1979; Greeno, 1994; Prindle et al., 1980) or the exclusive sensorimotor origin of affordances (e.g., Gallagher, 2017; Thompson, 2010; Hutto & Myin, 2012; Chemero, 2013). Further, this finding that the boundary adapted to manipulation on body schema suggests that the abstraction/representationalization may be dynamically updated in response to the current motor capacity and body schema of the agent, suggesting that the affordance-based process is probably determined dynamically by the nature of the agent-object dyads, rather than being a fixed belief about objects. Future studies could explore the dynamics of affordance representationalization, probably by investigating how affordance representations evolve during active interactions with novel objects or under conditions of altered motor capabilities. Finally, our findings also suggest that disembodied conceptual knowledge pertinent to action likely modulates affordance perception.”

      Reviewer #2 (Recommendations For The Authors):

      a) As described, I think the authors could improve their discussion of the LLM work and consider more deeply possible different interpretations of their findings with those models. Are they really providing an independent data point about how objects may be represented, or instead is this a different, indirect way of asking humans the same questions (given the way in which these models are trained)?

      Ra: Please see R1.

      b) Some of the decisions behind the design of the fMRI experiment, and some of the logic of its interpretation, could be made clearer. Why those four objects per se? What kinds of confounds, such as familiarity, or the range of possible relevant actions per object, might need to be considered? Is there the possibility that relative performance on the in-scanner behavioural task may be in part responsible for the findings? Why were those specific regions of interest chosen and not others? The authors find that the dorsal and ventral regions make a univariate distinction between congruent and incongruent trials, but only for human-scale objects, but it was not clear from the framework that the authors adopted why that distinction should go in that direction (e.g. congruent > incongruent) nor why there shouldn't also be a distinction for the "beyond" objects? Finally, might some of these brain questions better be approached with an RSA or similar approach, as that would seem to better map onto the behavioural studies?

      Rb: We thank the reviewer for the detailed suggestions.

      Regarding the fMRI study, we have provided further justification on its rationale in the revised manuscript:

      (p 11, ln 231) “The distinct categories of reported affordances demarcated by the boundary imply that the objects on either side of the boundary may be represented differently in the brain. We thus speculated that the observed behavioral discontinuity is likely underpinned by distinct neural activities, which give rise to these discrete ‘representations’ separated by the boundary.”

      The objects used in the fMRI study were selected by taking into account the objective of the fMRI study, which was to provide the neural basis for the affordance discontinuity found in behaviour experiments. In other words, the fMRI study is not an exploratory experiment, but a validation experiment. To this end, we deliberately selected a small range of common objects to ensure that participants were sufficiently familiar with them, as confirmed through their oral reports. Furthermore, to ensure a fair comparison between the two categories of objects in terms of action possibility range, we predetermined an equal number of congruent and incongruent actions for each category. This arrangement was intended to eliminate any bias that might arise from different amount of action choices associated with each category. Therefore, the present object and action sets in the fMRI study, which were based on the behavior experiments, are sufficient for its purpose.

      Regarding the possibility that the performance of the in-scanner behavioural task may be in part responsible for the findings, we analysed participants’ performance. Not surprisingly, participants demonstrated high consistency and accuracy in their responses:

      𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡_𝑂𝑏𝑗𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑖𝑛 = 0.991, SD = 0.018;

      𝑀𝑒𝑎𝑛𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡_𝑂𝑏𝑗𝑒𝑐𝑡𝑊𝑖𝑡ℎ𝑖𝑛 = 0.996, SD = 0.007;

      𝑀𝑒𝑎𝑛𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡_𝑂𝑏𝑗𝑒𝑐𝑡𝐵𝑒𝑦𝑜𝑛𝑑 = 0.996, SD = 0.004;

      𝑀𝑒𝑎𝑛𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝐵𝑒𝑦𝑜𝑛𝑑 = 0.998, SD = 0.002

      in all conditions, suggesting constant active engagement with the task. Thus, the inscanner behaviour unlikely resulted in the lack of congruency effect for the ‘beyond’ objects observed in the brain.

      Regarding the selection of ROIs, our decision to focus on these specific sensory and motor regions was based on existing literature highlighting their distinct contribution to affordance perception (Borghi, 2005; Sakreida et al., 2016). The pFs was chosen for its role in object identification and classification, while the SPL was chosen for its involvement in object manipulation. Additionally, the primary motor cortex (M1) is known to be engaged in affordance processing (e.g., McDannald et al., 2018), which was included to investigate the affordance congruency effect during the motor execution stage of the sense-think-act pathway. These considerations are detailed in the revised manuscript:

      (p 14, ln 280) “In addition to the pFs and SPL, we also examined the congruency effect in the lateral occipital cortex (LO), which is involved in object representation (e.g., Grill-Spector et al., 2000; Konkle & Caramazza, 2013) and provides inputs to both the pFs and SPL (Hebart et al., 2018). Meanwhile, the primary motor cortex (M1), which receives inputs from the dorsal stream (Vainio & Ellis, 2020), is involved in affordance processing (e.g., McDannald et al., 2018) and action executions (Binkofski et al., 2002).”

      (p 29, ln 684) “We chose the pFs, LO, SPL, and M1 as ROIs based on existing literature highlighting their distinct contributions to affordance perception (Borghi, 2005; Sakreida et al., 2016).”

      Regarding the congruency effect, in our study, we followed the established fMRI research paradigm of employing the congruent effect as a measure of affordance processing (e.g., Kourtis et al., 2018), and the rationale behind the directionality of the distinction in our framework (congruent > incongruent) is grounded in the concept of affordance, in which the mere perception of a graspable object facilitates motor responses that are congruent with certain qualities of the object (e.g., Ellis & Tucker, 2000). From the interaction of congruency by object type, we observed only congruency effect for objects within rather than objects beyond. We speculate that the objects beyond the affordance boundary is generally beyond the motor capacities of the very animal, being too large for the animal to manipulate, thus no congruency effect was found. We have added these clarifications in the revised manuscript:

      (p 11, ln 244) “The congruency effect, derived from the contrast of Congruent versus Incongruent conditions, is a well-established measure of affordance processing (e.g., Kourtis et al., 2018).”

      (p 16, ln 340) “In contrast, objects larger than that range typically surpass the animal’s motor capabilities, rendering them too cumbersome for effective manipulation. Consequently, these larger objects are less likely to be considered as typical targets for manipulation by the animal, as opposed to the smaller objects. That is, they are perceived not as the “objects” in the animal’s eye, but as part of the background environment, due to their impracticality for direct interactions.”

      Regarding the RSA analysis, we agree with the reviewer that RSA may offer a more direct comparison with similarities among objects. However, our primary objective in this fMRI study was to explore the neural basis of the affordance boundary observed in the behavioural study, rather than explaining the similarities in neural responses between different objects. For this reason, we did not conduct RSA analysis.

      c) Page 4 Re statistical evaluation of the discontinuity in judgments, the authors might consider a Bayesian approach, which would be stronger than using "all ps > 0.05" to argue that within-boundary similarities are consistent and high.

      Rc: We thank the reviewer for the suggestion on the Bayesian approach for significance tests, which has been now added in the revised manuscript:

      In the results (p 4, ln 105) “This trough suggested an affordance boundary between size rank 4 and 5, while affordance similarities between neighboring ranks remained high (rs > 0.45) and did not significantly differ from each other (ps > 0.05, all 𝐵𝐹10 < 10) on either side of the boundary (Fig. 1d, left panel, green lines).”

      In the methods (p 25, ln 597) “Pearson and Filon’s (1898) Z, implemented in R package “cocor” (Diedenhofen & Musch, 2015) was used to evaluate the significance of these similarities (alpha level = .05, one-tail test). For significance tests, Bayesian statistical analyses were conducted using the web version of the “bayesplay” R package (Colling, 2021). Specifically, the data (likelihood) model was specified as a normal distribution, where the correlation coefficients were transformed to Fisher’s z. The null hypothesis was specified as a standard normal distribution centred at zero. Conversely, the alternative hypothesis was specified as a normal distribution centred at 2. Bayes factors (BF10) were calculated and interpreted using the classification scheme suggested by Wagenmakers et al. (2011), wherein a Bayes factor greater than 10 is considered strong evidence for accepting H1 over H0.”

      d) Page 4 One question I had about the big objects is whether their internal similarity and dissimilarity to smaller objects, might largely arise if most of the answers about actions for those larger objects are just "no"? This depends on the set of possible actions that were considered: the authors chose 14 from a previous study but did not describe these further or consider possible strengths/limitations of this selection. This is a very important point that needs addressing - to what extent are these findings "fragile" in that they relate only to that specific selection of 14 action kinds?

      Rd: The action judgements for objects beyond body size were not mostly “no”; in fact, there was no significant difference between average action possibilities related to objects beyond (25%) and within (26%). Rather, the dissimilarity between objects within and those beyond likely arose from the difference in most-plausible action set they related. For example, the top three actions related to objects within are “grasp”, “hold” and “throw”, while those related to objects beyond are “sit”, “lift” and “stand”, as stated in our original manuscript: “A further analysis on the affordances separated by the boundary revealed that objects within human body size range were primarily subjected to hand-related actions such as grasping, holding and throwing. These affordances typically involve object manipulation with humans’ effectors. In contrast, objects beyond the size range of human body predominantly afforded actions such as sitting and standing, which typically require locomotion or posture change of the whole body around or within the objects (p 11 ln 229)”.

      Regarding the validity of action selection, the selection of the objects and affordances in this study was guided by two key criteria. First, the objects were selected from the dataset published in Konkle and Oliva's study (2011), which systematically investigates the effect of object size on object recognition. Therefore, the range of object sizes, from 14 cm to 7,618 cm, is well-calibrated and represents a typical array of object sizes found in the real world. Second, the actions were selected to cover a wide range of daily humans-objects/environments interactions, from singlepoint movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing), based on the kinetics human action video dataset (Kay et al., 2017). Thus, this set of objects and actions is a sufficiently representative of typic human experiences. In revision, we have clarified these two criteria in the methods section:

      (p 22, ln 517) “The full list of objects, their diagonal size, and size rankings were provided in Supplementary Table S6. The objects were selected from the dataset in Konkle and Oliva’s study (2011) to cover typic object sizes in the world (ranging from 14 cm to 7,618 cm), and actions related to these objects were selected to span a spectrum of daily humans-objects/environments interactions, from single-point movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing), based on the Kinetics Human Action Video Dataset (Kay et al., 2017).”

      Having said this, we agree with reviewer that a larger set of objects and actions will facilitate finer localization of the representational discontinuity, which can be addressed in future studies

      (p 16, ln 344): “…, due to their impracticality for direct interactions. Future studies should incorporate a broader range of objects and a more comprehensive set of affordances for finer delineation of the representational discontinuity between objects and the environment.”

      e) Page 12 "no region showed the congruency effect for objects beyond the body size" in a whole brain analysis. What about a similar analysis for the humanscale objects? We must also keep in mind that with N=12 there may be relatively little power to detect such effects at the random-effects level, so this null finding may not be very informative.

      Re: We thank the reviewer for this advice. The whole brain analysis on the congruency effect for human-scale objects (objects within) has now been included in the supplementary materials (please see Author response figure 1d (New Supplementary Fig. S4d) and Author response table 1 (New Supplementary Table S5) below).

      Author response image 1.

      Significant brain activations of different contrasts in the whole-brain level analysis. a, the effect of object type, positive values (warm color) indicated higher activation for objects within than objects beyond and negative values (cold color) indicated the opposite. b, the effect of congruency, positive values indicated higher activation in congruent than incongruent condition. c, the effect of interaction between object type and congruency, positive values indicated the larger congruency effect for objects within than beyond. d, the congruency effect for objects within. All contrasts were corrected with cluster-level correction at p < .05. The detailed cluster-level results for each contrast map can be found in Supplementary Table S2 to S5.

      Author response table 1.

      Cortical regions showing significant congruency effect (congruent versus incongruent) for objects within, whole-brain analysis (R = right hemisphere, L = left hemisphere; Z > 2.3, p = 0.05, cluster corrected)

      Regarding the power of the fMRI study, we would like to clarify that, the critical test of this fMRI study is the two-way interaction of congruency effect by object size instead of the (null) congruency effect for the object beyond. Having said this, we agree that the sample size is small which might lead to lack of power in the fMRI study. In the revision we have now acknowledged this issue explicitly:

      (p 16, ln 354) “…supporting the idea that affordance is typically represented only for objects within the body size range. While it is acknowledged that the sample size of the fMRI study was small (12 participants), necessitating cautious interpretation of its results, the observed neural-level affordance discontinuity is notable. That is, qualitative differences in neural activity between objects within the affordance boundary and those beyond replicated our behavior findings. This convergent evidence reinforced our claim that objects were discretized into two broad categories along the continuous size axis, with affordance only being manifested for objects within the boundary.”

      f) Page 14 [the fMRI findings] "suggest that affordance perception likely requires perceptual processing and is not necessarily reflected in motor execution". This seems a large leap to make from a relatively basic experiment that tests only a small set of (arbitrarily chosen) objects and actions. It's important to keep in mind too that none of the studies here actually asked participants to interact with objects; that objects were shown as 2D images; and that the differences between real-world sizes of objects were greatly condensed by the way they are scaled for presentation on a computer screen (and such scaling is probably greater for the larger-than-human objects).

      Rf: The action-congruency judgement task is widely used in the studies of affordance processing (e.g., Kourtis et al., 2018; Peelen & Caramazza, 2012), so does the practice of not including actual interaction with the objects and using 2D instead of 3D objects (e.g., Peelen & Caramazza, 2012; Matić et al., 2020). However, we are aware that alternative practice exists in the field and we agree that it would be interesting for future studies to test whether actual interactions and 3D objects presentation may bring any change on the affordance boundary observed in our study.

      Our inference “affordance perception likely requires perceptual processing and is not necessarily reflected in motor execution” was based on the fMRI finding that the congruency effect only in cortical regions proposedly engaged in perceptual processing, but not in the M1 which is associated with motor execution. This significant two-way interaction pointed to a possibility that affordance processing may not necessarily manifest in motor execution.

      We acknowledge the scaling issue inherent in all laboratory experiments, but we doubt that it significantly influenced our results. In fact, it is a common practice in studies on object size to present objects of different physical sizes as constantly sized images on a screen (e.g., Konkle & Oliva, 2012; Huang et al., 2022). Moreover, scaling does not change the smoothness of object sizes, whereas the affordance boundary represents a singularity point that disrupts this smoothness. Finally, regarding the limited variety of objects and actions, please see Rd.

      g) Page 15 Why are larger objects "less interesting"? They have important implications for navigation, for example?

      Rg: We are sorry for the confusion. Our intention was to express that objects beyond the affordance boundary are generally beyond motor capacities of the animal in question. As such, compared to smaller objects within the environment, these larger objects may not typically be considered as potential targets for manipulation. We have now corrected the wording in the revised text:

      (p 16, ln 340) “In contrast, objects larger than that range typically surpass the animal’s motor capabilities, rendering them too cumbersome for effective manipulation. Consequently, these larger objects are less likely to be considered as typical targets for manipulation by the animal, as opposed to smaller objects in the environment. That is, they are perceived not as the “objects” in the animal’s eye, but as part of the background environment, due to their impracticality for direct interactions.”

      h) Page 15 At several places I wondered whether the authors were arguing against a straw man. E.g. "existing psychological studies...define objects in a disembodied manner..." but no citations are given on this point, nor do the authors describe previous theoretical positions that would make a strong counter-claim to the one advocated here.

      Rh: We are sorry for not presenting our argument clearly. Previous studies often define the object space based on object features alone, such as absolute size or function, without reference to the knowledge and the abilities of the agent (e.g., de Beeck et al., 2008; Konkle & Oliva, 2011). This perspective overlooks the importance of the features of the animal-object pairs. Gibson (1979) highlighted that an object’s affordance, which includes all action possibilities it offers to an animal, is determined by the object’s size relative to the animal’s size, rather than its real-world size. Under this embodied view, we argue that the object space is better defined by the features of the agent-object system, and this is the primary assumption and motivation of the present study. We have now clarified this point and added the references in the revision:

      (p 2, ln 35) “A contemporary interpretation of this statement is the embodied theory of cognition (e.g., Chemero, 2013; Gallagher, 2017; Gibbs, 2005; Wilson, 2002; Varela et al., 2017), which, diverging from the belief that size and shape are inherent object features (e.g., de Beeck et al., 2008; Konkle & Oliva, 2011), posits that human body scale (e.g., size) constrains the perception of objects and the generation of motor responses.”

      (p 17, ln 365) “Existing psychological studies, especially in the field of vision, define objects in a disembodied manner, primarily relying on their physical properties such as shape (e.g., de Beeck et al., 2008) and absolute size (e.g., Konkle & Oliva, 2011).”

      Reviewer #3 (Public Review):

      (1) Even after several readings, it is not entirely clear to me what the authors are proposing and to what extent the conducted work actually speaks to this. In the introduction, the authors write that they seek to test if body size serves not merely as a reference for object manipulation but also "plays a pivotal role in shaping the representation of objects." This motivation seems rather vague motivation and it is not clear to me how it could be falsified.

      Similarly, in the discussion, the authors write that large objects do not receive "proper affordance representation," and are "not the range of objects with which the animal is intrinsically inclined to interact, but probably considered a less interesting component of the environment." This statement seems similarly vague and completely beyond the collected data, which did not assess object discriminability or motivational values.

      Overall, the lack of theoretical precision makes it difficult to judge the appropriateness of the approaches and the persuasiveness of the obtained results. This is partly due to the fact that the authors do not spell out all of their theoretical assumptions in the introduction but insert new "speculations" to motivate the corresponding parts of the results section. I would strongly suggest clarifying the theoretical rationale and explaining in more detail how the chosen experiments allow them to test falsifiable predictions.

      R1: We are sorry for the confusion about the theoretical motivation and rationale. Our motivation is on the long-lasting debate regarding the representation versus direct perception of affordance. That is, we tested whether object affordance would simply covary with its continuous constraints such as object size, in line with the representation-free view, or, whether affordance would be ‘representationalized’, in line with the representation-based view, under the constrain of body size. In revision, we have clarified the motivation and its relation to our approach:

      In the introduction (p 2, ln 45): “However, the question of how object perception is influenced by the relative size of objects in relation to the human body remains open. Specifically, it is unclear whether this relative size simply acts as a continuous variable for locomotion reference, or if it affects differentiating and organizing object representations based on their ensued affordances.”

      In the discussion (p 14, ln 295): “One long-lasting debate on affordance centers on the distinction between representational and direct perception of affordance. An outstanding theme shared by many embodied theories of cognition is the replacement hypothesis (e.g., Van Gelder, 1998), which challenges the necessity of representation as posited by computationalism’s cognitive theories (e.g., Fodor, 1975). This hypothesis suggests that input is discretized/categorized and subjected to abstraction or symbolization, creating discrete stand-ins for the input (e.g., representations/states). Such representationalization would lead to a categorization between the affordable (the objects) and those beyond affordance (the environment). Accordingly, computational theories propose the emergence of affordance perception, in contrast to the perspective offered by embodied theories. The present study probed this ‘representationalization’ of affordance by examining whether affordance perception introduces discontinuity and qualitative dissociation in response to continuous action-related physical features (such as object size relative to the agents), which allows sensorimotor input to be assigned into discrete states/kinds, in line with the representation-based view under the constraints of body size. Alternatively, it assessed whether activity directly mirrors the input, free from discretization/categorization/abstraction, in line with the representation-free view.

      First, our study found evidence demonstrating discretization in affordance perception. Then, through the body imagination experiment, we provided causal evidence suggesting that this discretization originates from sensorimotor interactions with objects rather than amodal sources, such as abstract object concepts independent of agent motor capability. Finally, we demonstrated the supramodality of this embodied discontinuity by leveraging the recent advances in AI. We showed that the discretization in affordance perception is supramodally accessible to disembodied agents such as large language models (LLMs), which lack sensorimotor input but can access linguistic materials built upon discretized representations. These results collectively suggest that sensorimotor input undergoes discretization, as implied in the computationalism’s idea of representation. Note that, these results are not contradictory to the claim of the embodied theories, as these representations do shape processes beyond the sensorimotor domain but after discretization.

      The observed boundary in affordance perception extends the understanding of the discontinuity in perception in response to the continuity of physical inputs (Harnad, 1987; Young et al., 1997).”

      We are also sorry for the confusion about the expression “proper affordance representation”. We intended to express that the neural responses to objects beyond the boundary in the whole brain failed to reflect affordance congruency, and therefore did not show evidence of affordance processing. We have clarified this expression in the revised manuscript:

      (p 12, ln 265) “Taken together, the affordance boundary not only separated the objects into two categories based on their relative size to human body, but also delineated the range of objects that evoked neural representations associated with affordance processing.”

      Finally, we agree with the reviewer that the expressions, such as “not…inclined to interact” and “probably considered a less interesting component of the environment”, may be misleading. Rather, we intended to express that the objects beyond the affordance boundary is generally beyond the motor capacities of the very animal, being too large for the very animal to manipulated, as comparing to the smaller objects in the environment, may not be a typical target object for manipulation for the animal. We have revised these expressions in the manuscript and clarified their speculative nature:

      (p 16, ln 340) “In contrast, objects larger than that range typically surpass the animal’s motor capabilities, rendering them too cumbersome for effective manipulation. Consequently, these larger objects are less likely to be considered as typical targets for manipulation by the animal, as opposed to the smaller objects. That is, they are perceived not as the “objects” in the animal’s eye, but as part of the background environment, due to their impracticality for direct interactions.”

      (2) The authors used only a very small set of objects and affordances in their study and they do not describe in sufficient detail how these stimuli were selected. This renders the results rather exploratory and clearly limits their potential to discover general principles of human perception. Much larger sets of objects and affordances and explicit data-driven approaches for their selection would provide a far more convincing approach and allow the authors to rule out that their results are just a consequence of the selected set of objects and actions.

      R2: The selection of the objects and affordances in this study was guided by two key criteria. First, the objects were selected from the dataset published in Konkle and Oliva's study (2011), which systematically investigates the effect of object size on object recognition. Therefore, the range of object sizes, from 14 cm to 7,618 cm, is well-calibrated and represents a typical array of object sizes found in the real world. Second, the actions were selected to cover a wide range of daily humans objects/environments interactions, from single-point movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing), based on the kinetics human action video dataset (Kay et al., 2017). Thus, this set of objects and actions is a sufficiently representative of typic human experiences. In revision, we have clarified these two criteria in the methods section:

      (p 22, ln 517) “The full list of objects, their diagonal sizes, and size rankings were provided in Supplementary Table S6. The objects were selected from the dataset in Konkle and Oliva’s study (2011) to cover typic object sizes in the world (ranging from 14 cm to 7,618 cm), and actions related to these objects were selected to span a spectrum of daily humans-objects/environments interactions, from single-point movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing), based on the Kinetics Human Action Video Dataset (Kay et al., 2017).”

      Having said this, we agree with reviewer that a larger set of objects and actions will facilitate finer localization of the representational discontinuity, which can be addressed in future studies

      (p 16, ln 344): “…, due to their impracticality for direct interactions. Future studies should incorporate a broader range of objects and a more comprehensive set of affordances for finer delineation of the representational discontinuity between objects and the environment.”

      (3) Relatedly, the authors could be more thorough in ruling out potential alternative explanations. Object size likely correlates with other variables that could shape human similarity judgments and the estimated boundary is quite broad (depending on the method, either between 80 and 150 cm or between 105 to 130 cm). More precise estimates of the boundary and more rigorous tests of alternative explanations would add a lot to strengthen the authors' interpretation.

      R3: We agree with the reviewer that correlation analyses alone cannot rule out alternative explanations, as any variable co-varying with object sizes might also affect affordance perception. Therefore, our study experimentally manipulated the imagined body sizes, while keeping other variable constant across conditions. This approach provided evidence of a causal connection between body size and affordance perception, effectively ruling out alternative explanations. In revision, the rationale of experimentally manipulation of imagined body sizes has been clarified

      (p 7, ln 152): “One may argue that the location of the affordance boundary coincidentally fell within the range of human body size, rather than being directly influenced by it. To rule out this possibility, we directly manipulated participants’ body schema, referring to an experiential and dynamic functioning of the living body within its environment (Merleau-Ponty & Smith, 1962). This allowed us to examine whether the affordance boundary would shift in response to changes in the imagined body size. This experimental approach was able to establish a causal link between body size and affordance boundary, as other potential factors remained constant. Specifically, we instructed a new group of participants to imagine themselves as small as a cat (typical diagonal size: 77cm, size rank 4, referred to as the “cat condition”), and another new group to envision themselves as large as an elephant (typical diagonal size: 577 cm, size rank 7, referred to as the “elephant condition”) throughout the task (Fig. 2a).”

      Meanwhile, with correlational analysis, precise location of the boundary cannot help ruling out alternative explanation. However, we agree that future studies are needed to incorporate a broader range of objects and a more comprehensive set of affordances. For details, please see R2.

      (4) Even though the division of the set of objects into two homogenous clusters appears defensible, based on visual inspection of the results, the authors should consider using more formal analysis to justify their interpretation of the data. A variety of metrics exist for cluster analysis (e.g., variation of information, silhouette values) and solutions are typically justified by convergent evidence across different metrics. I would recommend the authors consider using a more formal approach to their cluster definition using some of those metrics.

      R4: We thank the reviewer for the suggestion. We performed three analyses on this point, all of which consistently indicated the division of objects into two distinct groups along the object size axis.

      First, a hierarchical clustering analysis of the heatmaps revealed a two-maincluster structure, which is now detailed in the revised methods section (p 25, ln 589) “A hierarchical clustering analysis was performed, employing the seaborn clustermap method with Euclidean distance and Complete linkage (Waskom, 2021).”

      Second, the similarity in affordances between neighbouring size ranks revealed the same two-main-cluster structure. In this analysis, each object was assigned a realworld size rank, and then Pearson’s correlation was calculated as the affordance similarity index for each pair of neighbouring size ranks to assess how similar the perceived affordances were between these ranks. Our results showed a clear trough in affordance similarity, with the lowest point approaching zero, while affordance similarities between neighbouring ranks on either side of the boundary remained high, confirming the observation that objects formed two groups based on affordance similarity.

      Finally, we analysed silhouette values for this clustering analysis, where 𝑎𝑖 represents the mean intra-cluster distance, and 𝑏𝑖 represents the mean nearest-cluster distance for each data point i. The silhouette coefficient is calculated as (Rousseeuw, 1987):

      The silhouette analysis revealed that the maximum silhouette value coefficient corresponded to a cluster number of two, further confirming the two-cluster structure (please see Author response table 2 below).

      Author response table 2.

      The silhouette values of a k-means clustering when k (number of clusters) = 2 to 10

      (5) While I appreciate the manipulation of imagined body size, as a way to solidify the link between body size and affordance perception, I find it unfortunate that this is implemented in a between-subjects design, as this clearly leaves open the possibility of pre-existing differences between groups. I certainly disagree with the authors' statement that their findings suggest "a causal link between body size and affordance perception."

      R5: The between-subjects design in the imagination experiment was employed to prevent contamination between conditions. Specifically, after imagining oneself as a particular size, it can be challenging to immediately transition to envisioning a different body size. In addition, participating sequentially participate in two conditions that only differ in imagined body sizes may lead to undesirable response strategies, such as deliberately altering responses to the same objects in the different conditions. The reason of employing the between-subjects design is now clarified in the revised text (p 7, ln 161): “A between-subject design was adopted to minimize contamination between conditions. This manipulation was effective, as evidenced by the participants’ reported imagined heights in the cat condition being 42 cm (SD = 25.6) and 450 cm (SD = 426.8) in the elephant condition on average, respectively, when debriefed at the end of the task.”

      Further, to address the concern that “pre-existing differences between groups” would generate this very result, we adhered to standard protocols such as random assignment of participants to different conditions (cat-size versus elephant-size). Moreover, experimentally manipulating one variable (i.e., body schema) to observe its effect on another variable (i.e., affordance boundary) is the standard method for establishing causal relationships between variables. We could not think of other better ways for this objective.

      (6) The use of LLMs in the current study is not clearly motivated and I find it hard to understand what exactly the authors are trying to test through their inclusion. As noted above, I think that the authors should discuss the putative roles of conceptual knowledge, language, and sensorimotor experience already in the introduction to avoid ambiguity about the derived predictions and the chosen methodology. As it currently stands, I find it hard to discern how the presence of perceptual boundaries in LLMs could constitute evidence for affordance-based perception.

      R6: The motivation of LLMs is to test the supramodality of this embodied discontinuity found in behavioral experiments: whether this discontinuity is accessible beyond the sensorimotor domain. To do this, we leveraged the recent advance in AI and tested whether the discretization observed in affordance perception is supramodally accessible to disembodied agents which lack access to sensorimotor input but only have access to the linguistic materials built upon discretized representations, such as large language models (LLM). The theoretical motivation and rationale regarding the LLM study are now included in the introduction and discussion:

      In the introduction (p 2, ln 59) “…, and the body may serve as a metric that facilitates meaningful engagement with the environment by differentiating objects that are accessible for interactions from those not. Further, grounded cognition theory (see Barsalou, 2008 for a review) suggests that the outputs of such differentiation might transcend sensorimotor processes and integrate into supramodal concepts and language. From this perspective, we proposed two hypotheses...”

      In the introduction (p 3, ln 70) “Notably, the affordance boundary varied in response to the imagined body sizes and showed supramodality. It could also be attained solely through language, as evidenced by the large language model (LLM), ChatGPT (OpenAI, 2022).”

      For details in the discussion, please see R1.

      (7) Along the same lines, the fMRI study also provides very limited evidence to support the authors' claims. The use of congruency effects as a way of probing affordance perception is not well motivated. What exactly can we infer from the fact a region may be more active when an object is paired with an activity that the object doesn't afford? The claim that "only the affordances of objects within the range of body size were represented in the brain" certainly seems far beyond the data.

      R7: In our study, we followed the established fMRI research paradigm of employing the congruent effect as a measure of affordance processing (e.g., Kourtis et al., 2018). The choice of this paradigm has now been clarified in the revised manuscript (p 11, ln 244): “The congruency effect, derived from the contrast of Congruent versus Incongruent conditions, is a well-established measure of affordance processing (e.g., Kourtis et al., 2018).”

      The statement that “only the affordances of objects within the range of body size were represented in the brain” is based on the observed interaction of congruency by object size. In the revised text, we have weakened this statement to better align with the direct implications of the interaction effect (p 1 ln 22): “A subsequent fMRI experiment revealed evidence of affordance processing exclusively for objects within the body size range, but not for those beyond. This suggests that only objects capable of being manipulated are the objects capable of offering affordance in the eyes of an organism.”

      (8) Importantly (related to my comments under 2) above), the very small set of objects and affordances in this experiment heavily complicates any conclusions about object size being the crucial variable determining the occurrence of congruency effects.

      R8: The objective of the fMRI study was to provide the neural basis for the affordance discontinuity found in behaviour experiments. In other words, the fMRI study is not an exploratory experiment, and therefore, the present object and action sets, which are based on the behaviour experiments, are sufficient.

      (9) I would also suggest providing a more comprehensive illustration of the results (including the effects of CONGRUENCY, OBJECT SIZE, and their interaction at the whole-brain level).

      R9: We agree and in revision, we have now included these analyses in the supplementary material (p 30, ln 711): “For the whole-brain analyses on the congruency effect, the object size effect, and their interaction, see Supplementary Fig. S4 and Table S2 to S5.” Please see Author response image 2 (New Supplementary Fig. S4) and Author responses tables 3 to 5 (New Supplementary Table S2 to S4) below.

      Author response image 2.

      Significant brain activations of different contrasts in the whole-brain level analysis. a, the effect of object type, positive values (warm color) indicated higher activation for objects within than objects beyond and negative values (cold color) indicated the opposite. b, the effect of congruency, positive values indicated higher activation in congruent than incongruent condition. c, the effect of interaction between object type and congruency, positive values indicated the larger congruency effect for objects within than beyond. d, the congruency effect for objects within. All contrasts were corrected with cluster-level correction at p < .05. The detailed cluster-level results for each contrast map can be found in Supplementary Table S2 to S5.

      Author response table 3.

      Cortical regions reaching significance in the contrasts of (A) objects within versus object beyond and (B) objects beyond versus objects within, whole-brain analysis (R = right hemisphere, L = left hemisphere; Z > 2.3, p = 0.05, cluster corrected).

      Author response table 4.

      Cortical regions reaching significance in contrasts of (A) congruent versus incongruent and (B) incongruent versus congruent, whole-brain analysis (R = right hemisphere, L = left hemisphere; Z > 2.3, p = 0.05, cluster corrected).

      Author response table 5.

      Review Table 5 (New Supplementary Table S4). Cortical regions showing significant interaction between object type and congruency, whole-brain analysis (OW = Objects within, OB = Objects beyond; R = right hemisphere, L = left hemisphere; Z > 2.3, p = 0.05, cluster corrected)

      Reviewer #3 (Recommendations For The Authors):

      a. >a) Clarify all theoretical assumptions already within the introduction and specify how the predictions are tested (and how they could be falsified).

      Ra: Please see R1.

      b. >b) Explain how the chosen experimental approach relates to the theoretical questions under investigation (e.g., it is not clear to me how affordance similarity ratings can inform inference about which part of the environment is perceived as more or less manipulable).

      Rb: We thank the reviewer for the suggestion, and the theoretical motivation and rationale are now clarified. For details, please see R1.

      c. >c) Include a much larger set of objects and affordances in the behavioural experiments (that is more generalizable and also permits a more precise estimation of the boundary), and use a more rigorous methodology to justify a particular cluster solution.

      Rc: Please see R2 for the limited variance of objects and actions, and R4 for more analyses on the boundary.

      d. >d) Clearly motivate what the use of LLMs can contribute to the study of affordance perception.

      Rd: Please see R6.

      e) Clearly motivate why congruency effects are thought to index "affordance representation in the brain" Re: Please see R7.

      e) Include a much larger set of objects and affordances in the fMRI study.

      Re: Please see R7.

      f) Consider toning down the main conclusions based on the limitations outlined above.

      Rf: We have toned down the main conclusions accordingly.

      We are profoundly grateful for the insightful comments and suggestions provided by the three reviewers, which have greatly improved the quality of this manuscript.   References

      Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 637-660.

      de Beeck, H. P. O., Torfs, K., & Wagemans, J. (2008). Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway. Journal of Neuroscience, 28(40), 10111-10123.

      Borghi, A. M. (2005). Object concepts and action. Grounding cognition: The role of perception and action in memory, language, and thinking, 8-34.

      Colling, L.J. (2021). ljcolling/go-bayesfactor: (Version v0.9.0).Zenodo. doi: 10.5281/zenodo.4642331

      Crawley, J. A. H., Mumby, H. S., Chapman, S. N., Lahdenperä, M., Mar, K. U., Htut, W., ... & Lummaa, V. (2017). Is bigger better? The relationship between size and reproduction in female Asian elephants. Journal of Evolutionary Biology, 30(10), 1836-1845.

      Ellis, R., & Tucker, M. (2000). Micro‐affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451-471.

      Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., ... & Jiang, T. (2016). The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508-3526.

      Fodor, J. A. (1975). The Language of Thought (Vol. 5). Harvard University Press.

      Gibson, J. J. (1979). The ecological approach to visual perception: Classic edition.

      Hertrich, I., Dietrich, S., & Ackermann, H. (2016). The role of the supplementary motor area for speech and language processing. Neuroscience & Biobehavioral Reviews, 68, 602-610.

      Huang, T., Song, Y., & Liu, J. (2022). Real-world size of objects serves as an axis of object space. Communications Biology, 5(1), 1-12.

      Kantak, S. S., Stinear, J. W., Buch, E. R., & Cohen, L. G. (2012). Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilitation and Neural Repair, 26(3), 282-292.

      Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., ... & Zisserman, A. (2017). The kinetics human action video dataset. arXiv preprint arXiv:1705.06950.

      Konkle, T., & Oliva, A. (2011). Canonical visual size for real-world objects. Journal of Experimental Psychology: human perception and performance, 37(1), 23.

      Kourtis, D., Vandemaele, P., & Vingerhoets, G. (2018). Concurrent cortical representations of function-and size-related object affordances: an fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 18, 1221-1232.

      Matić, K., de Beeck, H. O., & Bracci, S. (2020). It's not all about looks: The role of object shape in parietal representations of manual tools. Cortex, 133, 358-370.

      McDannald, D. W., Mansour, M., Rydalch, G., & Bolton, D. A. (2018). Motor affordance for grasping a safety handle. Neuroscience Letters, 683, 131-137.

      NCD Risk Factor Collaboration (NCD-RisC). (2016). A century of trends in adult human height. Elife, 5, e13410.

      Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. Journal of Neuroscience, 32(45), 15728-15736.

      Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.

      Sakreida, K., Effnert, I., Thill, S., Menz, M. M., Jirak, D., Eickhoff, C. R., ... & Binkofski, F. (2016). Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neuroscience & Biobehavioral Reviews, 69, 89-112.

      Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5), 615-628.

      Wagenmakers, E.-J., Wetzels, R., Borsboom, D. & van der Maas, H. L. J. Why psychologists must change the way they analyze their data: the case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100(3), 426–432.

      Zhen, Z., Yang, Z., Huang, L., Kong, X. Z., Wang, X., Dang, X., ... & Liu, J. (2015). Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. NeuroImage, 113, 13-25.

    1. Author Response

      Public reviews:

      Reviewer 1:

      Weaknesses:

      While I generally agree with the author's interpretations, the idea of Saccorhytida as a divergent, simplified off-shot is slightly contradictory with a probably non-vermiform ecdysozoan ancestor. The author's analyses do not discard the possibility of a vermiform ecdysozoan ancestor (importantly, Supplementary Table 4 does not reconstruct that character),

      Reply: Thanks for the comments. Saccorhytids are only known from the early Cambrian and their unique morphology has no equivalent among any extinct or extant ecdysozoan groups. This prompted us to consider them as a possible dead-end evolutionary off-shot. The nature of the last common ancestor of ecdysozoan (i.e. a vermiform or non-vermiform animal with capacities to renew its cuticle by molting) remains hypothetical. At present, palaeontological data do not allow us to resolve this question. The animal in Fig. 4b at the base of the tree is supposed to represent an ancestral soft-bodied form with no cuticle from which ecdysozoan evolved via major innovations (cuticular secretion and ecdysis). Its shape is hypothetical as indicated by a question mark. Our evolutionary model is clearly intended to be tested by further studies and hopefully new fossil discoveries.

      and outgroup comparison with Spiralia (and even Deuterostomia for Protostomia as a whole) indicates that a more or less anteroposteriorly elongated (i.e., vermiform) body is likely common and ancestral to all major bilaterian groups, including Ecdysozoa. Indeed, Figure 4b depicts the potential ancestor as a "worm". The authors argue that the simplification of Saccorhytida from a vermiform ancestor is unlikely "because it would involve considerable anatomical transformations such as the loss of vermiform organization, introvert, and pharynx in addition to that of the digestive system". However, their data support the introvert as a specialisation of Scalidophora (Figure 4a and Supplementary Table 4), and a pharyngeal structure cannot be ruled out in Saccorhytida. Likewise, loss of an anus is not uncommon in Bilateria. Moreover, this can easily become a semantics discussion (to what extent can an animal be defined as "vermiform"? Where is the limit?).

      Reply: We agree with you that “vermiform” is an ill-defined term that should be avoided. “Elongated” might be a better term to designate the elongation of the body along the antero-posterior axis. Changes have been made in the text to solve this semantic problem. Priapulid worms or annelids are examples of extremely elongated, tubular animals. In saccorhytids, the antero-posterior elongation is present (as it is in the vast majority of bilaterians) but extremely reduced, Saccorhytus and Beretella having a sac-like or beret-shape, respectively. That such forms may have derived from elongated, tubular ancestors (e.g. comparable with scalidophoran worms) would require major anatomical transformations that have no equivalent among modern animals. We agree that further speculation about the nature of these transformations is unnecessary and should be deleted simply because the nature of these ancestors is purely hypothetical. We also agree that the loss of anus and the extreme simplification of the digestive system is common among extant bilaterians. The single opening seen in Saccorhytus and possibly Beretella may result from a comparable simplification process. In Figure 4b, the hypothetical pre-ecdysozoan animal is slightly elongated (antero-posterior axis and polarity) but in no way comparable with a very elongated and cylindrical ecdysozoan worm (e.g. extant or extinct priapulid).

      Therefore, I suggest to leave the evolutionary scenario more open. Supporting Saccorhytida as a true group at the early steps of Ecdysozoa evolution is important and demonstrates that animal body plans are more plastic than previously appreciated. However, with the current data, it is unlikely that Saccorhytida represents the ancestral state for Ecdysozoa (as the authors admit), and a vermiform nature is not ruled out (and even likely) in this animal group. Suggesting that the ancestral Ecdysozoan might have been small and meiobenthic is perhaps more interesting and supported by the current data (phylogeny and outgroup comparison with Spiralia).

      Reply: We agree the evolutionary scenario should be more open, especially the evolutionary process that gave rise to Saccorhytida. Again, we know nothing about the morphology of the ancestral ecdysozoan (typically the degree of body elongation, whether it had a differentiated introvert or not, whether it had a through gut or not). Simplification appears as one possible option, but which assumes that the ancestral ecdysozoan was an elongated animal with a through gut. Changes will be made in Fig.4A accordingly. Alternatively, the ancestral ecdysozoan might have been small and meiobenthic.

      Reviewer 2:

      Weaknesses:

      The preservations of the specimens, in particular on the putative ventral side, are not good, and the interpretation of the anatomical features needs to be tested with additional specimens in the future. The monophyly of Cycloneuralia (Nematoida + Scalidophora) was not necessarily well-supported by cladistic analyses, and the evolutionary scenario (Figure 4) also needs to be tested in future works.

      Reply: Yes, we agree that our MS is the first report on an enigmatic ecdysozoan. Whereas the dorsal side of the animal is well documented (sclerites), uncertainties remain concerning its ventral anatomy (typically the mouth location and shape). Additional better-preserved specimens will hopefully provide the missing information. Concerning Cycloneuralia, their monophyly is generally better supported by analyses based on morphological characters than in molecular phylogenies. I

      Reviewer 3:

      Weaknesses: I, as a paleontology non-expert, experienced several difficulties in reading the manuscript. This should be taken into consideration when assuming a wide range of readers including non-experts.

      Reply: We have ensured that the text is comprehensible to biologists. Our main results are summarized in relatively simple diagrams (e.g. Fig. 4). We are aware that technical descriptive terms may appear obscure to non-specialists. However, we think that our text-figures help the reader to understand the morphology of these ancient animals.

    1. Author Response

      eLife assessment

      The manuscript explores the ways in which the genetic code evolves, specifically how stop codons are reassigned to become sense codons. The authors present phylogenetic data showing that mutations at position 67 of the termination factor are present in organisms that nevertheless use the UGA codon as a stop codon, thereby questioning the importance of this position in the reassignment of stop codons. Alternative models on the role of eRF1 would reflect a more balanced view of the data. Overall, the data are solid and these findings will be valuable to the genomic/evolution fields.

      Public Reviews:

      Reviewer #1 (Public Review):

      The issue:

      The ciliates are a zoo of genetic codes, where there have been many reassignments of stop codons, sometimes with conditional meanings which include retention of termination function, and thus > 1 meaning. Thus ciliate coding provides a hotspot for the study of genetic code reassignments.

      The particular issue here is the suggestion that translation of a stop (UGA) in Blastocritihidia has been attributed to a joint change in the protein release factor that reads UGA's and also breaking a base pair at the top of the anticodon stem of tRNATrp (Nature 613, 751, 2023).

      The work:

      However, Swart, et al have looked into this suggestion, and find that the recently suggested mechanism is overly complicated.

      The broken pairing at the top of the anticodon stem of tRNATrp indeed accompanies the reading of UGA as Trp as previously suggested. It changes the codon translated even though the anticodon remains CCA, complementary to UGG. A compelling point is that this misreading matches previous mutational studies of E coli tRNA's, in which breaking the same base pair in a mutant tRNATrp suppressor tRNA stimulated the same kind of miscoding.

      This is a fair characterization, and we would also note the additional positive aspect: that we observed there is consistency in the presence of 4 bp tRNA-Trp anticodon stems in those ciliates which translate UGA as tryptophan, and generally 5 bp anticodon stems in those that do not (including Euplotes with UGA=Cys).

      But the amino acid change in release factor eRF1, the protein that catalyzes termination of protein biosynthesis at UGA is broadly distributed. There are about 9 organisms where this mutation can be compared with the meaning of UGA, and the changes are not highly correlated with a change in the meaning of the codon. Therefore, because UGA can be translated as Trp with or without the eRF1 mutation, Swart et al suggest that the tRNA anticodon stem change is the principal cause of the coding change.

      We do think multiple lines of evidence support the shorter tRNA anticodon stem promoting UGA translation, but also think other changes in the translation system may be important. For instance, structural studies suggest interaction of ribosomal RNA with extended stop codons (particularly the base downstream of the triplet) during translation termination (Brown et al. 2015, Nature). As we noted, previous studies have sought to correlate individual eRF1 substitutions with genetic code changes, but the proposed correlations have invariably disappeared once new tranches of eRF1 sequences and alternative genetic codes for different species became available. This is why we concluded that there needs to be more focus on obtaining and understanding molecular structures during translation termination, particularly in the organisms with alternative codes.

      The review:

      Swart et al have a good argument. I would only add that eRF1 participation is not ruled out, because finding that UGA encodes Trp does not distinguish between encoding Trp 90% of the time and encoding it 99% of the time. The release factor could still play a measurable quantitative role, but the major inference here seems convincing.

      We agree that eRF1 may participate and compete with the tRNA, but we question the hypothesis that the particular amino acid position/substitution proposed by Kachale et al. 2023 is the key. There is experimental evidence in the form of Ribo-seq for the ciliate Condylostoma magnum (A67), which does appear to efficiently translate UGA sense codons (Swart et al. 2016, Figure S3: https://doi.org/10.1016/j.cell.2016.06.020): we observed no dip in ribosome footprints downstream of these codons, as there would be in the case of classical translational readthrough in standard genetic code organisms (which is usually relatively inefficient - certainly well below 50% of upstream translation from our reading of the literature). Ribo-seq also supports efficient termination at those Condylostoma UGA codons that are stops.

      Of course, the entire translation system may have evolved to be as efficient as what we currently observe, and it is not unreasonable to consider that it may have been less efficient in the past. However, not so inefficient that the error rate incurred would have been strongly deleterious. Importantly also, we believe the role of multiple eRF1 paralogs in translation termination in the ciliates really needs to be investigated, given that translation is inherently probabilistic with any of these proteins potentially being incorporated into the ribosome.

      Reviewer #2 (Public Review):

      The manuscript raises interesting observations about the potential evolution of release factors and tRNA to readdress the meaning of stop codons. The manuscript is divided into two parts: The first consists of revealing that the presence of a trp tRNA with an AS of 5bp in Condylostoma magnum is probably linked to contamination in the databases by sequences from bacteria. This is an interesting point which seems to be well supported by the data provided. It highlights the difficulty of identifying active tRNA genes from poorly annotated or incompletely assembled genomes.

      We will consider adding subheadings in revising the manuscript to make the structure more explicit, as it really has three parts to it, with the third largely in the supplement. The “good” was that there is a range of support for the 4 bp AS stem, with new evidence we supplied from ciliates and older studies with E. coli tRNAs. The “bad” is that scrutiny of eRF1 sequences, with the addition of ones we provided, contradicts the hypothesis by Kachale et al. that a S67A/G substitution is necessary for genetic code evolution in Blastocrithidia and certain ciliates. The “ugly” is that a tRNA shown in a main figure in Kachale et al. 2023, and which was investigated in a number of subsequent experiments, is almost certainly a bacterial contaminant.

      Proper scrutiny of the bacterial tRNA should have led to its immediate recognition and rejection, as one of us did years ago in searches of tRNAs in a preliminary Condylostoma genome assembly (only predicted 4 bp AS tRNA secondary structures were shown in Swart et al. 2016, Fig S4B and C). Evidence for the bacterial nature of this tRNA was placed in the supplement of the present manuscript, as the meat of the critique was the consideration of the evidence for and against its good and bad aspects. The bacterial tRNA secondary structure has been removed from the main figure by Kachale et al. 2023, and downstream experiments based on synthetic constructs for this tRNA have also been revised (https://www.nature.com/articles/s41586-024-07065-0).

      Much of the rest of the supplement served to correct multiple errors in genetic codes in public sequence databases that led to additional errors and difficulties in interpreting the eRF1 substitutions in Kachale et al. 2023. It is important that these codes get corrected. If not they create multiple headaches for users besides those investigating genetic codes, as we found out in communications with authors and a colleague of Kachale et al. 2023 (in particular, leading to thousands of missing genes in the macronuclear genome of the standard code ciliate Stentor coeruleus that were removed in automated GenBank processing due to incorrectly having an alternative genetic code specified).

      Recently the NCBI Genetic Codes curators reinstated a genetic code incorrectly attributed to the ciliate Blepharisma (“Blepharisma nuclear genetic code”) (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG15), despite us requesting a reasonable fix years ago. This would be very confusing for those that are not in the know. We have explained this confusion in our supplement too. Thus we also hope that this paper will aid in communication with the genetic code database curators and in correcting such issues.

      The second part criticises the fact that a mutation at position S67 of eRF1 is required to allow the UGA codon to be reassigned as a sense codon. As supporting evidence, they provide a phylogenetic study of the eRF1 factor showing that there are numerous ciliates in which this position is mutated, whereas the organism shows no trace of the reassignment of the UGA codon into a sense codon. While this criticism seems valid at first glance, it suffers from the lack of information on the level of translation of UGA codons in the organisms considered.

      Firstly, we not only showed that there are organisms with the S67 substitution but no UGA reassignment, but also provided evidence for the converse: organisms with a UGA=Trp reassignment but without the S67 substitution (both ciliates and a non-ciliate). So, two related lines of substitutions were not consistent with the eRF1 substitution hypothesis proposed.

      Secondly, we disagree that there is a “lack of information about UGA translation in the organisms considered”. Evolution has already supplied information as to whether UGA codons are translated at an appreciable level in the organisms of interest, in the form of codon frequencies within their protein-coding sequences and those ending them. If UGA was translated at appreciable levels, it would be found at a corresponding frequency in coding sequences. In genomes with thousands of genes, if not predicted as amino acids, they likely primarily serve as stops. Low levels of potential readthrough of actual stops would not change the arguments. With the exception of selenocysteine translation (which is restricted to a limited number of genes by the condition of requiring a specific mRNA secondary structure) there is no expectation of meaningful levels of UGA translation when this codon is missing from the bulk of coding sequences (CDSs).

      This is well illustrated by the heterotrichs, a clade of ciliates that use a variety of genetic codes. In heterotrichs that use the standard code, UGA is virtually absent from coding sequences, only appearing at the 3’ end of transcripts in the predicted stop codon and 3’-UTR (Seah et al. 2022, Figure 5). This contrasts notably with other genera like Blepharisma where appreciable levels of UGA codons occur throughout coding sequences, upstream of the predicted UAA and UAG stops (Seah et al. 2022, Figure 5: https://www.biorxiv.org/content/biorxiv/early/2022/07/12/2022.04.12.488043/F5.large.jpg). The difference in the UGA, UAG and UAA codon frequencies in 3’ UTRs compared to the upstream frequencies in CDSs of standard genetic code heterotrichs is stark. Frequencies of all three codons are elevated in the 3’ UTRs of all heterotrich ciliates, irrespective of their genetic codes (Seah et al. 2022, Figure 5), according with these codons not being deleterious in this region and strongly selected against upstream, within CDSs.

      The reviewer raises the possibility that UGA may appear to be a stop codon but still have biologically significant translational readthrough. We think that this is unlikely in the heterotrich ciliate species discussed here, which have extremely short (median 21-26 bp) and AU-rich 3’-UTRs compared to yeast and animals (Seah et al. 2022). Therefore, in heterotrichs where UGA is predicted to be a stop, translational readthrough would lead to extensions of only a few amino acids and be relatively inconsequential, as there are plenty of secondary UAA, UAG and UGA codons downstream of the typical stop.

      If one were to consistently pursue the reviewer’s line of argumentation, one would also have to argue against the very reasoning used in Kachale et al. 2023 about all the stop codon predictions/reassignments in protists for which experiments were not conducted in S. cerevisiae or other translation systems, as well as decades of prior work using sequence conservation in multiple sequence alignments to infer alternative genetic codes.

      Furthermore, experimental information for UGA translation levels is available for the ciliate Condylostoma magnum, predominantly in the form of Ribo-seq (Swart et al. 2016). Similarly to Condylostoma’s UAA and UAG codons, Ribo-seq shows that the UGA codons are generally either efficiently translated when present in the bodies of CDSs or terminate translation as actual stops close to mRNA 3’ termini/poly(A) tails (Swart et al. 2016). Thus, irrespective of the presence of the hypothesized eRF1 substitution there is an example of relatively discrete reading of UGA codons in ciliates as either stops or amino acids. This contrasts with Kachale et al 2023’s experiments in yeast with yeast eRF1 S67G or Blastocrithida eRF1 which also has glycine at the equivalent position that appear to lead to modest readthrough. In addition, efficient reading of codons in either of two ways also occurs in the ciliate genus Euplotes in which “stop” codons can either serve as frameshift sites during translation within coding sequences or be actual stops when they are close to 3’ mRNA termini (Lobanov et al. 2017), as verified by Ribo-seq and protein mass spectrometry.

      It has been clearly shown that S67G or S67A mutations allow a strong increase in the reading of UGA codons by tRNAs, so this point is not in doubt. However, this has been demonstrated in model organisms, and we now need to determine whether other changes in the translational apparatus could accompany this mutation by modifying its impact on the UGA codon. This is a point partly raised at the end of the manuscript.

      There is no doubt that S67G or S67A mutations lead to increased translational readthrough, but this is restricted to experiments with or in baker’s yeast or other standard genetic code surrogate model organisms. Experiments introducing eRF1 sequences from alternative genetic code eukaryotes into translation systems of such standard genetic code eukaryotes are not compelling because the rest of the associated translation system has also evolved tremendously. As far as we are aware, no in vivo experiments with ciliate eRF1s have been conducted to determine if position 67 or other substitutions have any effect. These considerations are critical given the vast evolutionary distances between yeasts, Blastocrithidia, the ciliates and Amoebophrya sp. ex Karlodinium veneficum. On the other hand, the evolutionary information presented contradicts the importance of this substitution in the Amoebophyra species and ciliates. We will consider how to incorporate these ideas in the revised version of the manuscript.

      Indeed, it is quite possible that in these organisms the UGA codon is both used to complete translation and is subject to a high level of readthrough. Actually, in the presence of a mutation at position 67 (or elsewhere), the reading of the UGA can be tolerated under specific stress conditions (nutrient deficiency, oxidative stress, etc.), so the presence of this mutation could allow translational control of the expression of certain genes.

      As explained a couple replies above, it is not constructive to invoke the additional complexity of conditional translation or any other kinds of factors that lead to enhanced readthrough, because the translation of UGA sense codons in the ciliate Condylostoma, where we have supporting experimental evidence, does not resemble translational readthrough. These codons occur in constitutively expressed single-copy genes, like a tryptophan tRNA synthetase and an eRF1 protein (Swart et al. 2016), not ones that might be expected to be conditionally translated.

      On the other hand, it seems obvious to me that there are other ways of reading through a stop codon without mutating eRF1 at position S67. So the absence of a mutation at this position is not really indicative of a level of reading of the UGA codon.

      It may seem obvious to the reviewer, but that is neither what Kachale et al. originally proposed nor what we questioned. Kachale et al. hypothesized that mutation of S67 to A or G is necessary for UGA=Trp translation, but we provided evidence that it is not: multiple organisms with S67 or C67 that translate UGA as tryptophan. Kachale et al. also originally suggested that the S67 to A/G substitution is also necessary in Condylostoma for UGA translation as tryptophan by weakening its recognition of this codon as a stop (from their abstract: “Virtually the same strategy has been adopted by the ciliate Condylostoma magnum.”). However, as we have stated, Condylostoma (A67) is both able to efficiently terminate at UGA stop codons and to efficiently translate (other) UGA sense codons, which does not fit this hypothesis.

      Before writing such a strong assertion as that found on page 3, experiments should be carried out. The authors should therefore moderate their assertion.

      Experiments should be carried out in the organisms in which stop codon reassignments have readily occurred and their close relatives that have not, not distantly related ones where they rarely, if ever, occur, like yeasts. We made this point in the conclusion. There is too much emphasis on models for investigation of genetic code evolution via stop codon reassignments in questionable models and too little investigation in the really good ones, particularly the ciliates. This clade has genera that are amenable to molecular experiments including Paramecium, Tetrahymena and Oxytricha. We plan to add some text about these considerations in revision.

      To make a definitive conclusion, we would need to be able to measure the level of termination and readthrough in these organisms. So, from my point of view, all the arguments seem rather weak.

      We reiterate: there is experimental information about translation and termination in two ciliate species worth considering, including one that translates UGA codons depending on their context. If one chooses to ignore the evolutionary information presented, this not only ignores all prior approaches to infer genetic codes, but also the fact that there is experimental verification and other lines of evidence supporting these approaches.

      Moreover, the authors themselves indicate that the conjunction between a Trp tRNA that is efficient at reading the UGA codon and an eRF1 factor that is not efficient at recognising this stop codon could be the key to reassignment.

      This does not convey well what we wrote, since the main consideration was overall eRF1 structure, rather than individual amino acid substitutions. Here are the key sentences:

      “Instead, in a transitional evolutionary phase, codons may be interpreted in two ways, with potential eRF1-tRNA competition. With time, beneficial mutations or modifications in either the tRNA or eRF1 (or other components of translation) that reduce competition may be selected.

      Instead of focusing on individual eRF1 substitutions, we propose future investigations should more generally explore the structure of non-standard genetic code eRF1’s captured in translation termination in the context of their own ribosomes.”

    1. When social media users work together, we can consider what problem they are solving. For example, for some of the Tiktok Duet videos from the virality chapter, the “problem” would be something like “how do we create music out of this source video” and the different musicians contribute their own piece to the solution.

      I think this collaborative problem-solving dynamic not only fosters a sense of community but also demonstrates the versatility of social media platforms as spaces for collective creativity. It goes beyond mere individual expression and taps into the collective intelligence of the user base. By identifying a problem or challenge, users can come together to contribute unique perspectives, skills, or talents, ultimately leading to the co-creation of content that may not have been possible without the collaborative efforts of the community.

    1. Author Response

      The authors' responses to the public reviews can be found here


      The following is the authors’ response to the most recent recommendations.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I appreciate the effort that the authors have put into this revised version of the manuscript. Before going into details, I would suggest that, in the future, the authors include enough information in their response to allow reviewers to follow the changes made. Not simply "Fixed", but instead "we have modified the description of these results and now state on lines XXX to XXX (revised text)".

      We greatly apologize, we certainly did not wish to cause more work for the reviewer to find the necessary changes. We will list the line number and our changes in the following response.

      The authors' response to my comments was confined to the minor points, with no attention to more important questions regarding speculations about mechanism which were (and still are) presented as factual conclusions. I do not consider the responses adequate.

      We responded to each of your comments and where we disagree, we have explained in detail.

      With respect to the meaning of "above" and "below" in the context of an intracellular organelle, I think that referring to up and down in a figure is fine, provided that the cytoplasmic and luminal sides are indicated in that figure. I think that labeling to that effect in each figure would be immensely helpful for the reader.

      We agree with this point and have updated all the figures to include these labels.

      The statement on lines 333-335 about non-competitive inhibition is a bit naïve. The only thing ruled out by this type of inhibition is that substrate and TBZ binding do not share the same binding process, in which case they would compete. It doesn't show that TBZ gets to its binding site from the lumen or from the bilayer, or by any other process that isn't shared with substrate. It also doesn't rule out kinetic effects, such as slow inhibitor dissociation, that result in non-competitive kinetics. Please rewrite this sentence to indicate that one explanation of the non-competitive nature of TBZ inhibition would be that TBZ diffuses into the vesicle and binds from the lumen. It's not the only explanation.

      We have changed this sentence lines 334-336 to be more speculative and not include any statement about non-competitive inhibition. Please see, “Studies have proposed that TBZ first enters VMAT2 from the lumenal side, binding to a lumenal-open conformation.”

      The revised version integrates the MD simulations into a plausible mechanism for luminal release of substrate. A key element in this mechanism is the protonation of D33, E312 and D399, which allows substrate to leave following water entry into the binding site. The acidic interior of synaptic vesicles should facilitate such protonation, but the fate of those protons needs to be considered. Are any of them predicted to dissociate prior to the return to a cytoplasm-facing conformation? If so, are all 3 released in that conformation? Postulating protonation events at one point in the reaction cycle requires some accounting for those protons - or at least recognition of the problem of reconciling their binding with the known stoichiometry of VMAT.

      We completely agree with this point and while we cannot account for all protons with a single structure and simulation of neurotransmitter release, some discussion of the fate of the protons is warranted. We have included a highly speculative statement in the discussion on this point, see lines 462-465, “Given the known transport stoichiometry of two protons per neurotransmitter, we speculate that two protons may dissociate back into the lumen, perhaps driven by the formation of salt bridges between D33 and K138 or R189 and E312 for example in an cytosol-facing state.”

      Reviewer #3 (Recommendations For The Authors):

      On page 13, line 238, the statement "The protonation states of titratable residues D33, E312, D399, D426, K138 and R189, which are in close proximity to TBZ, also impact its binding stability (Table 4)" is misleading. Table 4 only shows that D426 is charged and what the pKa values are. This should be rephrased to separate out which residues are in close proximity from what is known about how their protonation states affect TBZ stability.

      We agree with this statement and have rephrased this on line 290-294 on page 13 to read, “Several titratable residues, including D33, E312, D399, D426, K138, and R189, line the central cavity of VMAT2 and impact TBZ binding stability (Table 4). We found that maintaining an overall neutral charge within the TBZ binding pocket, as observed in system TBZ_1, most effectively preserves the TBZ-bound occluded state of VMAT2. Residues R189 and E312 in particular are within close proximity of TBZ and participate directly in binding.” We note that given the acidic pH of the vesicle lumen (5.5), it is likely all four residues may be protonated to a significant degree in this state.

      Typos:

      • luminal is another name for the drug generically known as phenobarbital, lumenal means in the lumen. (This typo seems to have crept into the published literature now too).

      Thank you for pointing this out. Indeed, we had considered carefully whether to use ‘lumenal’ or ‘luminal’ in our revised text. In fact, both are used interchangeably throughout the scientific literature and luminal is the more commonly used term. Please also see: https://www.merriam-webster.com/medical/luminal we do agree that there may be confusion because ‘Luminal’ is a trademark of phenobarbital. Therefore, we have changed the text to read ‘lumenal’ throughout.


      The following is the authors’ response to the original recommendations.

      Reviewer #1 (Recommendations For The Authors):

      I congratulate the authors on this study, which I enjoyed reading. Overall, the study reports a novel and exciting new structure for a member of the SLC18 family of vesicular monoamine transporters. Associated MD, binding and transport assays provide support for the hypothesis and firm up the modelled pose for the TBZ drug. The main strengths of the study largely sit with the structure, which, as the authors say, provides additional and essential insights above those available from AF2. The structures also reveal several potentially interesting observations concerning the mechanism of gating and proton-driven transport. The main weakness lies in the limited mutational data and studies into the role of pH in regulating ligand binding. As detailed below, my main comment would be to spend a little extra time expanding the mutational data (perhaps already done during the review?) to enable more evidence-based conclusions to be drawn.

      We thank reviewer #1 for their helpful comments and suggestions. We agree that mutational analysis specifically of neurotransmitter transport would strengthen the mechanistic conclusions of the work. We also agree with reviewer #1 and #3 that the role of pH and the protonation state of charged residues was a weakness in the first version of the manuscript. Therefore, we have expanded our mutational and computational data as detailed below and we believe that this has further solidified our findings.

      Specific comments & suggestions:

      It is an interesting strategy to fuse the mVenus and anti-GFP nanobody to the N-/C-termini. The authors should also include in SI Fig. 1 a full model for the features observed in these maps and deposit this in the PDB.

      Great point, we have made a main text panel describing the construct. Figure S1 includes a full description of the construct. The reviewer will note that the PDB entry contains the entire amino acid sequence of the construct and while the GFP and GFP-Nb cannot be well modeled into the density, we have included all of the relevant information for the reader.

      Difficult to make out the ligand in Fig. 2b, I would suggest changing the color of the carbon atoms.

      Fixed.

      It is difficult to make out the side chains in ED Fig. 5d.

      This is now its own supplemental figure and is presented larger.

      ED Figures are called out of order in the manuscript. For example, in line 143 ED Fig.6 is called before ED Fig. 5d (line 152), and then ED 5d is called before ED 5a. This makes it rather confusing to follow the description, analysis, and data when reading the paper. Although there are other examples. I would suggest trying to order the figure callouts to flow with the narrative of the study.

      Agreed. Fixed.

      It wasn't clear to me what the result was produced by just imaging the ligand-free chimaera protein. It would be useful to say whether this resulted in low-resolution maps and whether the presence of the TBZ compound was essential for high-resolution structure determination.

      The ligand is likely required for structure determination. We have not, however, made such a statement largely because we have yet to determine an apo reconstruction.

      The role of E127 and W318 on EL1 in gating the luminal side of the transporter is very intriguing. As the authors suggest, this may represent an atypical gating mechanism for the MFS (line 182). I did wonder if the authors had considered providing more insight into this potentially novel mechanism. Additional experiments would be further mutations of W318 to F, Y, V, and I to see if they can identify a non-dead variant that could be analysed kinetically. They may have more luck with variants of E127, as they suggest this stabilises W318. If these side chains are important for gating and transport regulation, one might expect to see interesting effects on the transport kinetics.

      This is a fantastic suggestion. We have done this, and we think that the reviewer will find the results to be quite interesting. Some VMAT2 sequences have an R or an H at position 318 while VPAT has an F at the equivalent position. We have made these mutants including the E127A mutant and analyzed them using TBZ binding and transport experiments. Interestingly the W318R, H, and F mutants preserve activity in varying degrees with the R mutant closely resembling wild type. W318A has no transport activity. Only the W318F mutant retains some TBZ binding. The E127A mutant also has little transport activity but nearly wild type like TBZ binding which we believe suggests a role for this residue also in stabilizing W318.

      The authors identify an interesting polar network, which is described in detail and shown in Fig. 2d. However, the authors present no experimental data to shed further mechanistic insight into how these side chains contribute to monoamine transport or ligand binding. Additional experiments that would be helpful here might include repeating the binding and competition assays shown in Fig. 1c under different pH conditions for the WT and different mutations of this polar network. At present, this section of the manuscript is very descriptive without providing much novel insight into the mechanism of VMAT transport. I did wonder whether a similar analysis of pH effects on DTBZ binding might also provide insight into the role of E312 and the role of protons in the mechanism.

      Thank you, we have addressed this point in several different ways. The first is that many of these residues have already been characterized in several earlier studies, see refs 31, 32, and 42 and we have incorporated this into our discussion where appropriate. With respect to E312, the reviewers’ comments are again very appropriate. We have addressed this using computational experiments exploring the protonation status of E312 and other residues as well as TBZ. Our simulations and Propka calculations clearly show that E312 must be protonated and TBZ must be deprotonated to maintain TBZ binding. We have also extended these computational studies toward understanding the protonation status of residues which orchestrate dopamine binding and release.

      The authors then describe the binding pose for TBZ. This section also provides some biochemical characterisation of the binding site, in the form of the binding assay introduced in Fig. 1. However, the insights are again somewhat reduced as the mutants were chosen to show reduced binding. Could the authors return to this assay and try more conservative mutations of the key side chains to illuminate more detail? For example, does an R189K mutant still show binding but not transport? Similarly, what properties does an E312D have? The authors speculate that K138 might play a role in coupling ligand binding/transport to the protonation, possibly through an interaction with D426 and D33 (line 236). Given the presence of D33 in the polar network described previously, I was left wondering how this might occur. I feel that some of the experiments with pH and conservative mutants might shed some light on this important aspect. Please label the data points in Fig. 3d.

      Indeed, alanine mutants at these positions while valuable do not provide the level of detailed insight into mechanism that we also would have liked to obtain. Thus, we have made more conservative and targeted mutants like the R189K mutant and various mutants at N34 for example and tested them in both transport and binding assays. We have also made a mutant at K138 and found that it is not transport competent or able to bind TBZ to a significant degree. With respect to labels and color codes, we have made the color codes consistent between the bar graphs and the curves. We have also labeled the data points in the figure legends.

      The manuscript currently doesn't present a hypothesis for how TBZ induces the 'dead-end' complex compared to physiological ligands. Does the MD shed any light on this aspect of the study? If the authors place the physiological ligand in the same location as the TBZ and run the simulation for 500ns, what do they observe? 100ns is also a very short time window. I appreciate the comment about N34 in line 303, but is this really the answer? It would be very interesting to provide more evidence on this important aspect of VMAT pharmacology.

      MD with a natural ligand (dopamine) provides substantial insight into why TBZ is a dead-end complex. Since water cannot penetrate into the binding site in the TBZ bound complex, this does not allow for substantial luminal release. In contrast, simulations conducted in the presence of DA bound to the occluded VMAT2 show the propensity of that structure to accommodate an influx of water molecules that promote the release of DA to the lumen. The new results are illustrated in Figure 5 (main text) as well as supplemental figure 8 panels d-h. The new simulations further emphasized the importance of the protonation state of acidic residues near the substrate-binding pocket.

      Reviewer #2 (Recommendations For The Authors):

      Line 68, "both sides of the membrane" -> "alternately to either side of the membrane".

      Fixed. Thanks.

      Transmembrane proteins in intracellular organelles present unique issues of nomenclature. I suggest the authors refer to cytoplasmic and luminal faces of the protein (not intracellular or extracellular (line 124)) and adhere to these names to avoid confusion. This creates problems for loops called IL and EL, but they could be defined on first use.

      We agree with this point and had initially gone with the conventional definitions used in the literature. We have now changed this throughout the text to be luminal and cytosolic.

      Lines 135-6, are these residue numbers correct? The pdb file lists 126 as Asp and 333 as Ala.

      Thank you. This is fixed.

      ED Fig. 6 is not clear. A higher-resolution figure is needed.

      We have updated this figure and hope that the reviewer will find it to be much clearer.

      Lines 158-9, Is there any data to support effects on dynamics or folding? If not, please indicate that this is speculation.

      Fixed.

      Line 174, Should "I315" be "L315"?

      Fixed.

      Line 179, Please indicate what is meant by "inner" and "below" (also lines 183 and 258).

      We have added Figure calls here where needed.

      Line 192, S197 is listed as part of polar network 1, but not discussed further. Is it actually involved, or just in the neighborhood?

      It is part of the network, but we did not discuss in further detail because we do not have data indicating its precise function and thus have left this as a description.

      Line 199, E312, and N388 are fairly distant from each other. Do you want to clarify why they represent a network?

      While they are not within hydrogen bonding distance, we nevertheless include them as part of the same network because they may come into closer proximity in a different conformational state.

      Line 206, Protonation of all 3? VMAT2 doesn't transport 3 protons per cycle. Please clarify.

      We believe that these residues may be protonated, but they may not necessarily all be involved in proton transport.

      Line 219, Do you mean the aspartate unique to DAT, NET, and SERT? This is Gly in all the amino acid transporters in the NSS family. Please be specific.

      Fixed. Thank you.

      Line 224, "mutation of E312 to Q" or "mutation of Glu312 to Gln".

      Fixed. Thank you.

      Fig. 3d, Normally, one would expect full saturation curves for each mutant. How can a reader distinguish between low affinity or a decrease in the number of binding sites? Would full binding curves be prohibitive for the mutants because of the cost or availability of the ligand? These points should be addressed. A couple of the curves are not visible. Would an expanded scale inset show them more clearly? Also, would it be possible to include chemical structures for all ligands discussed?

      Many if not most of these mutants bind TBZ with such low affinity that it is not possible to measure a full saturation curve either because of ligand availability (radioactive ligand concentration is only in µM) or due to technical issues with being able to measure such low affinity binding. We have changed the presentation of the curves and have split the gating and binding site mutants into their own figures. We feel this improves the readability of these curves. We have also included a table with the respective Kd values determined for each of the mutants where possible.

      Line 235, The distances are long for a direct interaction between K138 and the TBZ methoxy groups. The unusual distances should be mentioned if an interaction is being proposed.

      We do not think that K138 is directly involved in TBZ binding, however this was written in a confusing way and has been now changed.

      Line 243, Please give a quantitative estimate of the affinity difference. "modestly" is vague.

      It is an approximately 2-fold difference. Fixed in the text.

      Line 248, 150 nM is, at best, a Kd, not an affinity.

      Agreed, this is changed.

      Reviewer #3 (Recommendations For The Authors):

      The (3 x ~100ns-long) molecular dynamics simulations provided suggest some instability of the pose identified by cryo-EM. While it is not unreasonable that ligands shift around and adopt multiple conformations within a single binding site (in a reversible manner), the present results do raise questions about the assumptions made when starting the simulations, in particular (1) the protonation states of charged residues in the TBZ binding sites; (2) the parameters used for tetrabenazine; (3) the conformations of acidic side chains that are notoriously difficult to resolve in cryoEM maps; and (4) any contributions of the truncated regions truncated in the simulated structure, namely the cysteine cross-linked loop and the terminal domains. The authors should examine and/or discuss these contributions before attributing mechanistic insights into the newly observed binding orientation.

      In order to estimate the effects of protonation states on TBZ binding, we now added three new systems with altered protonation on TBZ and binding pocket lining residues (see Table 3 in the revised vision); and for each system, we performed multiple MD runs to address the question and concerns raised by reviewer.

      Regarding the protonation states: Propka3.0 was used to determine the protonation states, finding that E312 and D399 should be protonated. If I am not mistaken, this version of ProPka cannot account for non-protein ligands (https://github.com/jensengroup/propka). Given their proximity to the binding site, these protonation states will be critical factors for the stability of the simulations. The authors could test their assumption by repeating the calculations with Propka 3.1 or higher, to establish sensitivity to the ligand. Beyond this, showing the resultant hydrogen bond networks will help to reassure the reader that the dynamics in the lumenal gates do not arise from an artifact.

      We thank the reviewer for suggestion of using higher version of Propka. We used the most recent Propka3.5 and carried out protonation calculations in the presence and absence of TBZ. The new calculations are presented in Table 4 and SI Figure 8c of the revised version.

      It should be possible to assess whether waters penetrate the ligand binding site during the simulations if that is of concern.

      We now added the number of waters within the ligand binding pockets for all MD simulations we performed, which are presented in Table 3 and Table 5 of the revised version.

      Finally, I didn't fully understand the conclusion based on the simulations and the "binding affinity" calculations: do they imply that the pose identified in the EM map is not stable? What is the value of the binding affinity histogram?

      We apologize for this confusion. For each MD snapshot, we calculated TBZ binding affinity using PRODIGY-LIG (Vangone et al., Bioinformatics 2019), which is a contact-based tool for computing ligand binding affinity. The binding affinity histogram shown in the original submission was the histogram of those binding affinities calculated for MD snapshots. In the revision, we replaced binding affinity histogram by time evolution of binding affinity changes (SI Fig 6c in the revision). The simulations confirmed that the pose identified in the EM map is stable, with a flattened binding affinity of -9.4 ± 0.3 kcal/mol in all three runs.

      Recommendations regarding writing/presentation:

      The authors use active tense terminology in attributing forces to elements of structure (cinching, packing tightly, locking). While appealing and commonplace in structural biology, this style frequently overstates the understanding obtained from a static structure and can give a rather misleading picture, so I encourage rephrasing.

      We appreciate this point; the use of these words is not meant to overstate or provide a misleading picture but rather to aid the reader in mechanistic understanding of the proposed processes.

      I would also recommend replacing the terms "above" and "below" for identifying aspects of the structure; the protein's location in the vesicular membrane makes these terms particularly difficult to follow.

      These terms refer specifically to the Figures themselves which we have always oriented with the luminal side at the top of the page and the cytosolic on the bottom. We have indicated in Figure 1 the orientation of VMAT2. The Figures are the point of reference which we refer to, and the ‘above’ and ‘below’ terms have been used to assist the reader to make the manuscript easier for a more casual or non-expert reader to follow.

      Minor corrections:

      • the legend in Figure 2 lacks details, e.g. how many simulation frames are shown, how were the electrostatic maps calculated?

      We revised Figure 2 and moved simulation frames to SI figure 6e. A total of 503 simulation frames are shown.

      • how were the TBZ RMSDs calculated? using all atoms or just the non-hydrogen atoms?

      For TBZ RMSDs, we used non-hydrogen atoms. This information is presented in the Methods section.

      MD simulation snapshots and input files can be provided via zenodo or another website.

      We will upload snapshots and input files to Zenodo upon acceptance of the manuscript.

      Reviewing editor specific points:

      Specific points

      L.97: Remove "readily available"

      Fixed.

      L.99: The authors are not measuring competition binding. It is well known that reserpine and substrates inhibit TBZ binding only at concentrations 100 times higher than their respective KD and KM values. It is, therefore, surprising that the authors use this isotherm and refrain from commenting on the significance of the finding. Moreover, the presentation of results as "Normalized Counts" does not provide any information about the fraction of VMAT molecules binding the ligand. At least, the authors should provide the specific activity of the ligand, and the number of moles bound per mole of protein should be calculated.

      The point was not to infer any details about the conformations that TBZ and reserpine bind but merely to point out that both constructs have a similar behavior with respect to their Ki for reserpine. We have added a sentence to say that reserpine binding stabilizes cytoplasmic-open so the reader is aware of the significance of this competition experiment.

      L.102: The characterization of serotonin transport activity needs to be more satisfactory. The Km in rVMAT2 is 100-200 nM, so why are the experiments done at 1 and 10 micromolar? Is the Km of this construct very different? The results provided (counts per minute at the steady state) need to give more information.

      The Km of human VMAT2 varies somewhat according to the source but has generally been reported to be between 0.6 to 1.4 µM for serotonin according to these references.

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019297/ https://www.cell.com/cell/pdf/0092-8674(92)90425-C.pdf https://www.pnas.org/doi/abs/10.1073/pnas.93.10.5166

      Fig 1B could be more informative. I suggest adding a cartoon model with TMs labeled, similar to ED Fig6a.

      This panel is to aid the reader in accessing the overall map quality and thus we do not wish to add additional labels/fits which would distract from that point. Instead, we have added overall views of the model in Figs 2,3.

      L.179: The authors claim that the inner gate is located "below" (whatever this could mean) the TBZ ligand. In L.214, they claim that TBZ adopts a pose.....just "below" the location of the luminal gating residues. Please clarify and use appropriate terminology.

      This refers to the position of these residues in the Figures themselves. We have added figure calls where appropriate here.

      Fig. 4: The cartoon could be more informative.

      We have added more information to the mechanism cartoon which is now Figure 6. This incorporates some of our new data and we believe it will be more informative.

      L. 213: The paragraph describes residues involved in TBZ binding. Mutagenesis is used to validate the structural information. However, the results (ED fig. 5B) must be corrected for protein expression levels. In the Methods section, the authors state (L.444), "Mutants were evaluated similarly from cell lysates of transfected cells." Without normalization of protein expression levels, the results are meaningless even if they agree with predictions.

      In fact, we have normalized the concentrations of protein in our binding experiments. This was noted in the methods section. And to account for these differences, experiments were conducted using 2.5 nM of VMAT2 protein as assessed by FSEC.

      L.220: The referral to ED Fig.7 is not appropriate here. The figure shows docking-predicted poses of dopamine and serotonin.

      Figure call has been changed.

      L.226: The referral to Fig. 3b needs to be corrected. The figure shows TBZ and not the neurotransmitter.

      This has been corrected.

      L. 337: "The neurotransmitter substrate is bound at the central site." What do the authors mean in this cartoon? Do they have evidence for this? Tetrabenazine is not a substrate.

      This cartoon drawing is meant to illustrate the elements of structure. Similar drawings are presented throughout the literature such as here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940252/ Figure 3 and here: https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00983 Figure 2.

      The same compound is mentioned with different names: 3H-dihydrotetrabenazine and 3H-labeled DTBZ.

      Fixed.

      ED fig 1d is illegible.

      The high-resolution figure is completely legible. We will provide this to the journal upon publication.

      Figure 2d: A side view would be more visual.

      We have updated this figure and believe that it is much easier to understand now.

      L. 179: The inner gate is located 'below' the TBZ ligand

      Please see above response, this refers to the figures themselves. The figures are our point of reference.

      L. 213-215: Tetrabenazine binding site just 'below' the location of the luminal gating residues.

      See above.

      Throughout the paper, results are given as cpm or counts. The reader can only estimate the magnitude of the binding/transport by knowing the specific activity of the radiolabel. I recommend switching to nano/picomoles or supplying enough information to understand what the given cpm values could mean.

      Binding experiments were done using scintillation proximity assays and therefore converting the CPMs to values in pmol of bound ligand is simply not possible. For the transport experiments (now Fig 1d) the point was to show that the wild type was similar in activity to the chimera. In our new transport experiments we have presented for the mutants, many experiments were combined together and therefore, we have normalized the counts to the relative activity of wild type VMAT2.

    1. When the focus is shifted from leadership as individual direction to leadership as freely chosen collective work, the shared moral purpose of that work becomes prominent, and it is work to which all may contribute regardless of role or positional status.

      I believe my very first school held true to this. We had our principal and five teachers. That was the whole staff and we truly worked as a team. Not once did my principal ever feel like a "boss" and the team of teachers I was a part of really steered the school. And I like to think that that model was for the better. The students were at the heart of every decision made and many of the things we engaged in came from a collective decision we made as a team rather than an order given from the top down. I felt as if being a first year teacher, I had just as much respect from my principal and colleagues as the veteran teacher of twenty-five years had. Unfortunately, I have since learned that this is not the culture of many schools and is very hard to achieve. Why? I'm not quite sure. I think the small nature of the school is what kept the team so close and respectful.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The manuscript from Richter et al. is a very thorough anatomical description of the external sensory organs in Drosophila larvae. It represents an important tool for investigating the relationship between the structure and function of sensory organs. Using improved electron microscopy analysis and digital modeling, the authors provide compelling evidence offering the basis for molecular and functional studies to decipher the sensory strategies of larvae to navigate through their environment.

      Public Reviews:

      Summary

      This is a very meticulous and precise anatomical description of the external sensory organs (sensillia) in Drosophila larvae. Extending on their previous study (Rist and Thum 2017) that analyzed the anatomy of the terminal organ, a major external taste organ of fruit fly larva, the authors examined the anatomy of the remaining head sensory organs - the dorsal organ, the ventral organ, and the labial organ-also described the sensory organs of the thoracic and abdominal segments. Improved serial electron microscopy and digital modeling are used to the fullest to provide a definitive and clear picture of the sensory organs, the sensillia, and adjacent ganglia, providing an integral and accurate map, which is dearly needed in the field. The authors revise all the data for the abdominal and thoracic segments and describe in detail, for the first time, the head and tail segments and construct a complete structural and neuronal map of the external larval sensilla.

      Strengths

      It is a very thorough anatomical description of the external sensory organs of the genetically amenable fruitfly. This study represents a very useful tool for the research community that will definitely use it as a reference paper. In addition to the classification and nomenclature of the different types of sensilla throughout the larval body, the wealth of data presented here will be valuable to the scientific community. It will allow for investigating sensory processing in depth. Serial electron microscopy and digital modeling are used to the fullest to provide a comprehensive, definitive, and clear picture of the sensory organs. The discussion places the anatomical data into a functional and developmental frame. The study offers fundamental anatomical insights, which will be helpful for future functional studies and to understand the sensory strategies of Drosophila larvae in response to the external environment. By analyzing different larval stages (L1 and L3), this work offers some insights into the developmental aspects of the larval sense organs and their corresponding sensory cells.

      Weaknesses

      There are no apparent weaknesses, although it is not a complete novel anatomical study. It revisits many data that already existed, adding new information. However, the repetitiveness of some data and prior studies may be avoided for easy readability.

      We would like to thank the reviewers for their respective reviews. The detailed comments and efforts have helped us to improve our manuscript. In the following, we have listed the comments one by one and provide the respective information on how we addressed the concerns.

      Recommendations for the authors:

      We have tried to address every single comment as far as possible. In order to structure our response a little better, we have listed the relevant page number and the original comments once again. Directly following this you will find our response and a description of what we have changed in the manuscript.

      REVIEWER #1 (Recommendations For The Authors):

      I have a few comments that will help the reader navigate this long and detailed paper.

      REVIEWER 1.1. page 4

      The final section of "the Structural organization of Drosophila larvae" needs some reorganization.

      Specifically:

      "The DO and the TO are prominently located on the tip of the head lobes" Can the authors rewrite the sentence in a way that it is clear that there is one DO and one VO on each side of the head? Check at the beginning of each section, please. There is a mention about hemi-segments but it is still confusing.

      Done – replaced with “The largest sense organs of Drosophila larvae are arranged in pairs on the right and left side of the head.”

      REVIEWER 1.2. page 5

      "The sequence of sensilla is always similar for and different between T1, T2-T3, and A1-A7" This sentence is not clear, please break it into two sentences.

      Done – replaced with: “We noticed varying arrangements for T1, T2-T3, and A1-A7, with a consistent sequence of sensilla in each configuration.”

      REVIEWER 1.3. figures page 4

      Double hair can't be found in Figure 1B or C (is it h3, h4?) - please clarify.

      Done - changed to double hair organ in page 11, included double hair sketch in legend in figure 1B. We changed the name of the structure to double hair organ, to clarify that this is a compound sensillum consisting of two individual sensilla.

      REVIEWER 1.4. page 5

      The authors go back and forth in their descriptions of the different sensory organs. Knob sensilla and then papilla sensilla are discussed and then a few lines later a further description is done. Please unify the description of each separately.

      Done – we restructured the whole section.

      REVIEWER 1.5. figures page 6

      "We found three hair sensilla on T1-T3, and "two" on A1-A7" - in the figure there seem to be "four" on A1-A7.

      Done – we included the two hair sensilla of the double hair organ

      REVIEWER 1.6. figures page 6

      DORSAL ORGAN:

      Can the authors explain the colour map meaning in Figure 2A? It is explained in 2C but the image already has colours. Add your sentence "Color code in A applies to all micrographs in this Figure".

      Done – we added a sentence to explain that the color code in A applies to the whole figure.

      REVIEWER 1.7. page 6

      Page 10: which comprises seven olfactory sensilla "composing" three dendrites each: replace this with"with". At the end, we want to think 7 X 3= 21 ORNs.

      Done – replaced.

      REVIEWER 1.8. page 9

      CHORDOTONAL ORGANS:

      "We find these these DO associated ChO (doChO).. .". Please remove one "these"

      Done – removed.

      REVIEWER 1.9. page 8

      Is the DO associated ChO part of the dorsal ganglion???? It does not look like it. Could you clarify?

      Done – we added a sentence that clarifies that the ChO neuron is not iside the DOG.

      REVIEWER 1.10. page 9 VENTRAL ORGAN: A figures page 12

      Please add to the Figure 8 legend the description of 8c' and 8c'?

      Done – added description in figure legend.

      B page 9

      8H, what are the *, arrows? Please clarify - it is hard to interpret the figure.

      Done – we added parentheses in the figure legend that state which structures the asterisks and arrows indicate.

      C page 9

      "Three of them are innervated by a single neuron () and one by two neurons () (Figure 8F-I). Please add which are innervated by 1 (VO1, VO2-VO4) and which by 2 (VO3).

      Done – we added parentheses that clarify which sensilla are innervated by 1 or 2 neurons.

      REVIEWER 1.11. page 9

      Can you add something (or speculate) about the difference in sensory processing of the different types of sensilla?

      Done – new sentence in discussion:

      ‘Their different size and microtubule organization likely correlate with processing of different stimulus intesities applied to the mechanotransduction apparatus (Bechstedt et al. 2010).’

      REVIEWER 1.12. figures page 16

      PAPILLA AND HAIR SENSILLA:

      FIGURE 10a, please add the name of each sensillum from p1, p2, px py, etc... (if not we have to go back to figure 1 when you describe specific ps.)

      Thanks for the comment, it really makes it a lot easier for the reader.

      REVIEWER 1.13. figures page 18 Figure 11, can you add the name of each hair, please?

      Done – updated figure.

      REVIEWER 1.14. figures pages 16, 18, 20

      In Figures 10, 11, and 12 you clearly draw an area on the internal side that I assume is what you call the "electron-dense sheath". It is wider in papilla sensilla than in hair sensilla, most likely due to the difference in stimuli sensed that you explain in detail in the discussion. Can you say in the figure what this "internal" thing is? Can you add this difference to your list "Apart from the difference in outer appearance and structure of the tubular body"?

      This is the basal septum, but it is not certain that it is wider in the papillae sensillae, at least we could not observe this in our data sets. The impression could have been created by different scales in the 3D reconstructions and a perspective view. Therefore, we do not want to list this as a difference here, as we are not sure.

      However, we have now specified the socket septum in the figure legends and in Figures 10A, 11A and 12A.

      REVIEWER 1.15. page 11

      KNOB SENSILLA:

      Page 25;" Knob sensilla have been described under "vaious" names such as": add various.

      Done

      REVIEWER 1.16. page 12

      "reveals that the three hair and the two papilla sensilla are associated with a single dendrite." Can you write that "reveals THAT EACH OF the three hair and the two papilla sensilla" if not it seems that there is only one dendrite.

      Done

      REVIEWER 1.17. figures page 25 TERMINAL SENSORY CONES:

      Please name the t1-t7 cones in Figure 15A.

      Done – we updated the figure.

      REVIEWER 1.18. page 13

      The spiracle sense organ deserves a new paragraph. As does the papilla sensillum of the anal plate.

      Done – we added subtitles before the prargraphs.

      Discussion:

      REVIEWER 1.19. page 15

      Page 38: "v'entral" correct typo

      PAGE 15

      Done – we have updated the nomenclature  ventral 1 (v), ventral 2 (v’) and ventral 3 (v’’)

      REVIEWER #2 (Recommendations For The Authors):

      I have only a few comments:

      REVIEWER 2.1. page 5

      p.5, right column, middle: the use of trichoid, campaniform, and basiconical (sensilla) in previous works were based on even older papers and reviews that attempted to link EM architecture to function (e.g., KEIL, T. A. & STEINBRECHT, R. A. (1986). Mechanosensitive and olfactory sensilla of insects. In Insect Ultrastructure, vol. 2. (ed. R. C. King & H. Akai), pp. 477-516. New York/London: Plenum Press). Trichoid sensilla can be mechano-sensitive, olfactory, or gustatory; trichoid simply refers to the shape (hair). The same applies to basiconical sensilla. The use of "campaniform", which Ghysen et al called "papilla sensilla", was the only really problematic case, because these (Drosophila larval) sensilla did not really resemble closely the classical campaniform sensilla (e.g., adult haltere). The only reason we called them campaniform is because they were not more similar to any other type of (previously named) sensillum.

      Thank you for the explanation. The nomenclature of structures is generally always a complex topic with often different approaches and principles. We are aware of this and have therefore tried to be as careful as possible. We were not sure from this comment whether you were suggesting to change the text or whether you wanted to explain how these names were assigned to the sensilla in the past. However, we hope that the current version is in line with your understanding, but could of course make changes if necessary (see also comments of reviewer 1).

      REVIEWER 2.2. page 9

      p.21, Labial Organ: the ventral lip is the labium; the dorsal one is the labrum.

      Done – replaced labrum with labium.

      REVIEWER 2.3. page 9

      p.20/21, Ventral organ and labial organ: here, the projection of the axons could be mentioned as an ordering principle. In the previous literature, for larva and embryo, a labial organ (lbo) was described that most likely corresponds to the labial organ presented here. This (previously mentioned) lbo characteristically projects along the labial nerve to the labial segment (hence the name). It fasciculates with axons of another sensory complex, also generated by the labial segment, namely the ventral pharyngeal sensory organ (VPS). Does the labial organ described here share this axonal path?

      Yes, it has the same axonal pathway and is the same organ as the lbo. We have tried to standardise the nomenclature for all important external head organs (DO, TO, VO, LO) and have therefore used abbreviations with two letters. However, to avoid confusion, we have now added that the LO was also called lbo in the past.

      For the ventral organ, the segmental origin (to my knowledge) was never clarified. The axons of the ventral organ project along the maxillary nerve (which carries axons of the terminal=maxillary organ). This nerve, closely before entering the VNC, splits into a main branch to the maxillary segment (TO axons) and a thinner branch that appears to target the mandibular segment. This branch could contain the axons of the ventral organ (as described previously and in this paper). Could the authors confirm this axonal projection of the VO?

      In this work, we did not focus on the axonal projections into the SEZ. This is also not a simple and fast process, as in the entire larval dataset, the large head nerves unfortunately exhibit a highly variable quality of representation. Therefore, the reconstruction of nerves and individual neurons within it is often challenging and very time-consuming. The research question is, of course, very intriguing, and one could also attempt to match each sensory neuron of the periphery with the existing map of the brain connectome. However, this is a project in itself, exceeding the scope of this work, and is therefore more feasible as a subsequent project.

      REVIEWER #3 (Recommendations For The Authors):

      Minor suggestions that the authors might consider:

      REVIEWER 3.1. figures all

      Recheck the scale bar in figures and figure legends. Missing in a few places.

      Done – we replaced or added some (missing) scale bars in figures and figure legends (see annotated figure document).

      REVIEWER 3.2. figures page 4

      The color schematic in Figure 1 can be improved for readability.

      Done – we changed the color schematic, especially for the head region to improve readability.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript titled "Coevolution due to physical interactions is not a major driving force behind evolutionary rate covariation" by Little et al., explores the potential contribution of physical interaction between correlated evolutionary rates among gene pairs. The authors find that physical interaction is not the main driving of evolutionary rate covariation (ECR). This finding is similar to a previous report by Clark et al. (2012), Genome Research, wherein the authors stated that "direct physical interaction is not required to produce ERC." The previous study used 18 Saccharomycotina yeast species, whereas the present study used 332 Saccharomycotina yeast species and 11 outgroup taxa. As a result, the present study is better positioned to evaluate the interplay between physical interaction and ECR more robustly.

      Strengths & Weaknesses:

      Various analyses nicely support the authors' claims. Accordingly, I have only one significant comment and several minor comments that focus on wordsmithing - e.g., clarifying the interpretation of statistical results and requesting additional citations to support claims in the introduction.

      We are pleased the reviewer found the analyses to support the claims. We have addressed comments related to clarifying interpretations as suggested in the Recommendations to the Authors. For example, we have added discussion and clarification on the other parameters that could affect the strength of ERC correlations.

      Reviewer #2 (Public Review):

      Summary:

      The authors address an important outstanding question: what forces are the primary drivers of evolutionary rate covariation? Exploration of this topic is important because it is currently difficult to interpret the functional/mechanistic implications of evolutionary covariation. These analyses also speak to the predictive power (and limits) of evolutionary rate covariation. This study reinforces the existing paradigm that covariation is driven by a varied/mixed set of interaction types that all fall under the umbrella explanation of 'co-functional interactions'.

      Strengths:

      Very smart experimental design that leverages individual protein domains for increased resolution.

      Weaknesses:

      Nuanced and sometimes inconclusive results that are difficult to capture in a short title/abstract statement.

      We appreciate the reviewer’s acknowledgement of the experimental design. We have addressed the nuance of the results by changing the title and clarifying other statements throughout the manuscript as suggested in the reviewer’s recommendations. We have also addressed reviewer comments asking for further explanation on using Fisher transformations when normalizing the Pearson correlations for branch counts.

      Reviewer #3 (Public Review):

      Summary:

      The paper makes a convincing argument that physical interactions of proteins do not cause substantial evolutionary co-variation.

      Strengths:

      The presented analyses are reasonable and look correct and the conclusions make sense.

      Weaknesses:

      The overall problem of the analysis is that nobody who has followed the literature on evolutionary rate variation over the last 20 years would think that physical interactions are a major cause of evolutionary rate variation. First, there have been probably hundreds of studies showing that gene expression level is the primary driver of evolutionary rate variation (see, for example, [1]). The present study doesn't mention this once. People can argue the causes or the strength of the effect, but entirely ignoring this body of literature is a serious lack of scholarship. Second, interacting proteins will likely be co-expressed, so the obvious null hypothesis would be to ask whether their observed rates are higher or lower than expected given their respective gene expression levels. Third, protein-protein interfaces exert a relatively weak selection pressure so I wouldn't expect them to play much role in the overall evolutionary rate of a protein.

      We thank the reviewer for their comments and suggestions. A point to immediately clarify is that the methods studied in this manuscript deal with rate variation of individual proteins over time, and if that variation correlates with that of another protein.. The numerous studies the reviewer refers to deal with explaining the differences in average rate between proteins. These are different sources of variation. It has not, to our knowledge, been shown that variation in the expression level of a single protein over time is responsible for its variation in evolutionary rate over time, let alone to a degree that allows its variation to correlate with that of a functionally related protein. That question interests us, but it is not the focus of this study.

      In our study, we sought to test for a contribution of physical interaction to the correlation of evolutionary rate changes as they vary over time, i.e. between branches. We made many changes to clarify this distinction in our revisions.

      We agree that the manuscript would be more clear to define the forces proposed to lead to difference in rate in general, which includes expression levels. We had generally considered expression level as one of the many potential non-physical forces, but failed to make that explicit and instead focused on selection pressure. In our revision we describe expression level as another potential driver of evolutionary rate variation over time. References to previous literature have been made in the introduction. We also added a more explicit explanation of the rate covariation over time that we are measuring in contrast with the association between expression level and rate differences between proteins that was studied in previous literature.

      On point 3, the authors seem confused though, as they claim a co-evolving interface would evolve faster than the rest of the protein (Figure 1, caption). Instead, the observation is they evolve slower (see, for example, [2]). This makes sense: A binding interface adds additional constraint that reduces the rate at which mutations accumulate. However, the effect is rather weak.

      The values in Fig 1B are a measure of correlation, specifically a Fisher transformed correlation coefficient. They are not evolutionary rates, so they are not reflecting faster or slower evolution, rather more or less covariation of evolutionary rates over time. We are not predicting that physically interacting interfaces evolve faster than the rest of the protein, but rather that if physical interaction drives covariation in evolutionary rates over time, their correlation would be stronger between pairs of physically interacting domains. In response, we have used clearer language in the figure caption and reorganized labels in Figure 1B to clearly show that the values are correlations. Revised Figure 1 Legend:

      “Overview of experimental schema and hypotheses. Proteins that share functional/physical relationships have similar relative rates of evolution across the phylogeny, as shown in (A) with SMC5 and SMC6. The color scale along the bottom indicates the relative evolutionary rate (RER) of the specific protein for that species compared to the genome-wide average. A higher (red) RER indicates that the protein is evolving at a faster rate than the genome average for that branch. Conversely, a lower (blue) RER indicates that protein is evolving at a slower rate than the genome average. The ERC (right) is a Pearson correlation of the RERs for each shared branch of the gene pair. (B) Suppose the correlation in relative evolutionary rates between two proteins is due to compensatory coevolution and physical interactions. In that case, the correlation of their rates (ie. ERC value) would be higher for just the amino acids in the physically interacting domain. (C) Outline of experimental design. Created with Biorender.com

      All in all, I'm fine with the analysis the authors perform, and I think the conclusions make sense, but the authors have to put some serious effort into reading the relevant literature and then reassess whether they are actually asking a meaningful question and, if so, whether they're doing the best analysis they could do or whether alternative hypotheses or analyses would make more sense.

      [1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523088/

      [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854464/

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      (1) Numerous parameters influence ECR calculation. The authors note that their use of a large dataset of budding yeast provides sufficient statistical power to calculate ECR. I agree with that. However, a discussion of other parameters needs to be improved, especially when comparing the present study to others like Kann et al., Hakes et al., and Jothi et al.. For example, what is the evolutionary breadth and depth used in the Kann, Hakes, Jothi and other studies? How does that compare to the present study? Budding yeast evolve rapidly with gene presence/absence polymorphisms observed in genes otherwise considered universally conserved. Is there any reason to expect different results in a younger, slower-evolving clade such as mammals? There is potential to acknowledge and discuss other parameters that may influence ECR, such as codon optimization and gene/complex "essentiality," among others.

      More discussion of these parameters is a good idea. We have added the number and phylogeny of species used in the previous studies in the discussion paragraph starting with “Previous studies attributed varying degrees of evolutionary rate covariation signal to physical interactions between proteins.” We also like the idea of studying the effect of younger and more slowly evolving clades as opposed to the contrary, but currently we lack the required number of datasets to do this.

      We have also added more discussion and clarification of potential non-physical forces leading to ERC correlations in the introduction.

      Minor comments

      (1) It would be good to add a citation to the second sentence of the first paragraph, which reads, "It has been observed that some genes have rates that covary with those of other genes and that they tend to be functionally related."

      Added citation to Clark et al. 2012

      (2) In the last sentence of the first paragraph of the introduction, ERC is discussed in the context of only amino acid divergence, however, there is no reason that DNA sequences can't be used, especially if ERC is being calculated among species that are less ancient than, for example, Saccharomycotina yeasts. Thus, it may be more accurate to suggest that ERC measures how correlated branch-specific rates of sequence divergence are with those of another gene.

      Nice suggestion to generalize. We have made this change.

      (3) ERC was not calculated in reference #2. For the sentence "Protein pairs that have high ERC values (i.e., high rate covariation) are often found to participate in shared cellular functions, such as in a metabolic pathway2 or meiosis3 or being in a protein complex together," I think more appropriate citations (including inspiring work by the corresponding author) would be

      a) Coevolution of Interacting Fertilization Proteins (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000570)

      b) Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007720)

      c) An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function (https://www.science.org/doi/10.1126/sciadv.abn0105)

      d) PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data (https://academic.oup.com/bioinformatics/article/37/16/2325/6131675)

      Thank you for pointing out these works. We agree that there are more appropriate citations and we have referenced your suggested b-d.

      (4) The dataset of 343 yeast species also includes outgroup taxa. Therefore, indicating that 332 species are Saccharomycotina yeast and 11 are closely related outgroup taxa may be more accurate.

      Thank you for the suggestion, the following sentence has been added, citing the Shen et. al 2018 paper that the dataset was derived from:

      “To investigate the discrepancy between contributions to ERC signal from co-function and physical interaction, we used a dataset of 343 evolutionarily distant yeast species. 332 of the species are Saccharomycotina with 11 closely related outgroup species providing as much evolutionary divergence as humans to roundworms3”

      (5) Are there statistics/figures to support the claim that "Almost all complexes and pathways had mean ERC values significantly greater than a null distribution consisting of random protein pairs"?

      This is shown in supplementary figure 1. A reference to this figure was added as well as quantification within the text.

      (6)Similar to the previous comment, can quantitative values be added to the statement "While protein complexes appear to have higher mean ERC scores than the pathways..."?

      The median of the mean ERC scores for protein complexes is 5.366 while the median for the mean ERC score in pathways is 4.597. This quantification has been included in the text: “While protein complexes have higher mean ERC scores (median 5.366) than the pathways (median 4.597), the members of a given complex are also co-functional, making interpretation of the relative contribution of physical interactions to the average ERC score difficult”

      These quantifications are were also added to the figure caption for figure 2A

      (7) A semantic point: In the sentence "The lack of significance in the global permutation test shows that the...", I recommend saying that the analysis suggests, not shows, because there is potential for a type II error.

      Good suggestion, we have made this change.

      (8) The authors suggest that shared evolutionary pressures, "and hence shared levels of constraint," drive signatures of coevolution. The manuscript does not delve into selection measures (e.g., dN/dS). Perhaps it would be more representative to remove any implication of selection.

      We have added better language to clarify that discussion of selection is purely a hypothesis and that selection is not probed in our analyses.

      “Previous work finds evidence that relaxation of selective constraint can lead to drastic rate variation and hence covariation6. Rather, the greater and consistent contribution comes from non-physical interaction drivers that could include variation in essentiality, expression level, codon adaptation, and network connectivity. These non-physical forces would be under shared selective pressures and hence shared levels of constraint, the result of which was elevated ERC between non-interacting proteins, as visible in our study of genetic pathways that do not physically interact (Figure 2).”

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      -Title: In my opinion, the title of the manuscript is a somewhat misleading summary of the results of this paper. In the majority of the analyses in this paper, physical interactions do account for a significantly outsized portion of the ERC signature. The current title downplays the consistent (although sometimes small effect-sized) result that physically interacting domains do show higher ERC than non-physically interacting domains by every statistical measure employed in this paper to compare physical vs non-physical interactions. The authors' interpretation of their results within the manuscript body is that the effect of physical interactions is an inconsistent, weak, and non-generalizable driver of ERC. I generally agree with the authors' interpretations, but the nuance of these interpretations is lost in the title of the paper. I would suggest rewording the title to try to capture the nuance or at least be subjectively accurate. For example, stating that "...physical interactions are not the sole driving force.." is inarguably accurate based on these results.

      As an alternative title, I would suggest focusing on an important takeaway from the paper: ERC is a reliable predictor of co-functional interactions but not necessarily physical interactions. I agree with the statement that "there is not a strong enough signal to confidently call an interaction physical or not and would be of little value to an experimentalist wanting to infer interacting domains" and I think that a title that emphasizes this idea would be more accurate and impactful.

      Great suggestion. We agree that the current title is downplaying the minutiae of the method and the signal we capture with it, we have used your suggested title.

      There are an outsized number of complexes that had ROC-AUCs greater than 0.5 which is why we performed the permutation tests to determine how significant each of the individual ROC-AUCs were given the differing number of protein/domain pairs in each complex. Between the statistical methods used only 3 of the 17 complexes ranked physical interactions significantly higher than non-physically interacting domains in every analysis. Even among the 3 that were statistically significant some of the physically interacting domains still fell among the bottom portion of the ERC scores for that complex (Figure 5: MCM and CUL8 complexes) This is why we concluded that physical interactions are not the sole driving force of the signal captured by ERC.

      -Abstract: related to my preceding comment, the word "negligible" in the abstract is misleading. If physical interactions were truly entirely negligible, the comparisons of physically interacting vs non-physically interacting domains would yield 0.5. Instead, these comparisons always yielded results greater than 0.5. Consider rewording.

      Thank you for the suggestion this phrasing has been changed to “Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC”

      We agree that “negligible” may be too strong of a word, however, the comparisons do not always yield results greater than 0.5.

      5 of the 17 complexes do not reach the 0.5 threshold for the initial ROC analysis and even among those that do, only 4 had significantly high ROC-AUCs. You are correct that the signal is not completely negligible which is why we continued by determining if the physical interaction was driving high ERC only within proteins (Figure 5)

      -Figure 3: I think there may be an error in the domain labeling in Figure 3. The comparison between OKP1_2 and AME1_3 is the highest ERC value in the matrix. From the complex structure, it appears that OKP1_2 and AME1_3 are two helix domains that appear to physically interact. However, in the ERC matrix, they are not shaded to indicate they are a physical interaction pair. Please double-check that the interacting domains are properly annotated, since mis-annotation would have a large impact on the interpretation of this figure with respect to the overall question the paper addresses.

      Thank you for catching this - fixed.

      Minor comments:

      -Methods: "The full ERC pipeline can be found at (Github)." Provide github URL here? Thanks for the catch, fixed

      -Discussion: "Evidence for physical coevolution however was tempered by a global permutation test, which did not reach significance, indicating that this inference is sensitive to approach and further underlines the relatively weak contribution of physical coevolution." The word "relatively" may not be a good choice of words. In comparison to what? As is, the phrasing could be interpreted as implying "in comparison to non-physical interactions". This would not be accurate, because the results show that in general, physical interactions are a stronger contributor to ERC (consistent trend but varied significance, depending on methodology) than non-physical interactions.

      Thank you for your help with clarification. The word relatively was removed.

      However, we do not agree that in general physical interactions are a stronger contributor to ERC than non-physical interactions (such as gene expression, codon adaptation, etc.). In all of our statistical tests a maximum of 5 of the 17 complexes ranked physical interactions significantly higher than non-physical interactions. While the ROC-AUC is greater than 0.5 for 12 of the 17 complexes only 4 of those were significant.

      -I have not seen Fisher-transformed correlation coefficients used in the context of ERC. I understand that it's helpful in normalizing the results so that they are comparable between ERC comparisons with differing numbers of overlapping branches (i.e. points on a linear correlation plot). A reference of where the authors got this idea or a little more verbiage to describe the rationale would be helpful. On a related note, I would expect that using linear correlation p-value instead of R-squared would account for differences in overlapping branches, eliminating the need to apply fisher-transformation. It would be helpful for the authors to outline their rationale for using a correlation coefficient rather than a P-value.

      We agree that this method could be made clearer. We made a methodological choice to use Fisher transformation over linear correlation p-value. Both methods should achieve the same end result by taking the number of branches into consideration. We have added additional explanation to the results section “Both protein pathways and complexes have elevated ERC”:

      “ERC was calculated for all pairs of the 12,552 genes. For each pair the correlation is Fisher transformed to normalize for the number of shared branches that contribute to the correlation. This normalization is necessary to reduce false positives that have high correlation solely due to a small number of data points. This normalization also allows for direct comparison of ERC between gene pairs that have differing numbers of branches contributing to the score.”

      We also added additional explanation in the methods section including the formula used to calculate the Fisher transformation

      -Did the authors use Pearson or Spearman correlation coefficient?

      Pearson. We clarified this in the methods section, “Calculating evolutionary rate covariation” : “Evolutionary rate covariation is calculated by correlating relative evolutionary rates (RERs) between two gene trees using a Pearson correlation.”

      -Did the authors explore ERC between domains within a single protein? Do domains within a protein exhibit ERC? I would expect that they do. If they do, this could likely be attributed to linkage/genetic hitchhiking, representing a new angle/factor beyond physical interaction that could lead to ERC. This is just an idea for a future analysis, not necessarily a request within the scope of the present paper.

      We did calculate the ERC between domains of a single protein but did not include them in the analysis since they didn’t address the specific question we posed. As expected they are highly correlated, and past unpublished studies in the lab do find a very weak, but detectable genome-wide, signature of rate covariation between neighboring colinear genes on a chromosome. That signal was however so weak as to be eclipsed by true functional relationships, when present.

      Reviewer #3 (Recommendations For The Authors):

      Please read the literature and revise accordingly.

      We understand the confusion surrounding previous literature on the relationship between expression levels and evolutionary rates when comparing between different proteins. Those studies clearly showed how expression level is highly predictive of a given protein’s average evolutionary rate. However, we are studying the change in evolutionary rate over branches for single proteins. This is inherently different because we’re following rate fluctuations in the same protein over time. To our knowledge it has not yet been shown that expression level commonly varies enough over time to produce large rate variations over time in the same protein, and if it is responsible for the correlations of rate we observe between co-functional proteins. It is however reasonable to expect that what governs between-protein differences in rate could also contribute to between-branch differences (over time for a single protein). In fact, our earlier study approached this (Clark et al. Genome Research 2012). We expect expression level could influence rate over time and lump its effect together with general non-physical forces, such as selection pressures. We recognize we could do better in defining more of the non-physical forces and the past literature. We added the following section to the introduction and many other clarifying statements throughout the manuscript:

      “For the purposes of this study, the forces that contribute to correlated evolutionary rates are grouped into two bins, physical and non-physical. The physical force is coevolution occurring at physical interaction interfaces. Non-physical forces include gene co-expression, codon adaptation, selective pressures, and gene essentiality. There is a well accepted negative relationship between gene expression and rate of protein evolution where genes that are highly expressed generally have slower rates of evolution14,15. However, Cope et al.16 found that there is a weak relationship between both gene expression and the number of interactions a protein has with the coevolution of expression level. Conversely, they found a strong relationship between proteins that physically interact and the coevolution of gene expression. These findings illuminate the difference between the strong relationship of gene expression level on the average evolutionary rate of a protein and the weak contribution of gene expression level to correlated evolutionary rates of proteins across branches. The finding that physically interacting proteins have strong expression level coevolution brings to question how much coevolution of physically interacting proteins contributes to overall covariation in protein evolutionary rates.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript provides novel and important findings regarding the impact of noradrenergic signaling from the locus coeruleus on hippocampal gene expression. The locus coeruleus is the sole source of noradrenaline to the hippocampus and many rapid molecular changes induced by stress are regulated by noradrenaline. This manuscript provides a rigorous investigation into hippocampal genes uniquely regulated by noradrenaline in the presence or absence of stress. Data were collected and analyses were performed using solid methodology, and the results mostly convincingly support the conclusion made with few weaknesses. The study would benefit from a more comprehensive analyses of sex differences.

      Response: We thank the reviewers and the editors for the positive evaluation of our work and for the constructive feedback. To address some of the key criticisms, we have performed several new experiments and analyses. Importantly, we now provide a much more rigorous comparison of males and females, which strongly suggests that there are no major sex differences in the transcriptomic response to stress and noradrenaline in the hippocampus. We think that these - and other additions discussed below - significantly strengthen the manuscript. We provide detailed responses to all the reviewers comments. We have added numbers to the reviewers’ comments for easier referencing.

      Reviewer #1 (Public Review):

      Comment 1: Privitera et al., provide a comprehensive and rigorous assessment of how noradrenaline (NA) inputs from the locus coeruleus (LC) to the hippocampus regulate stress-induced acute changes in gene expression. They utilize RNA-sequencing with selective activation/inhibition of LC-NA activity using pharmacological, chemogenetic and optogenetic manipulations to identify a great number of reproducible sets of genes impacted by LC activation. It is noteworthy that this study compares transcriptomic changes in the hippocampus induced by stress alone, as compared with selective circuit activation/inhibition. This reveals a small set of genes that were found to be highly reproducible. Further, the publicly available data will be highly useful to the scientific community.

      Response: We are very grateful for this positive evaluation.

      Comment 2: A major strength of the study is the inclusion of both males and females. However, with this aspect of the study also lies the biggest weakness. While the experiments tested males and females, they were not powered for identifying sex differences. There are vast amounts of literature documenting the inherent sex differences, both under resting and stress-evoked conditions, in the LC-NA system and this is a major missed opportunity to better understand if there is an impact of these sex-specific differences at the genetic level in a major LC projection region. There are many instances whereby sex effects are apparent, but do not pass multiple testing correction due to low n's. The authors highlight one of them (Ctla2b) in supplemental figure 6. This gene is only upregulated by stress in females. It is appreciated that the manuscript provides an incredible amount of novel data, making the investigation of sex differences ambitious. Data are publicly available for others to conduct follow up work, and therefore it may be useful if a list of those genes that were different based on targeted interrogation of the dataset be provided with a clear statement that multiple testing corrections failed. This will aid further investigations that are powered to evaluate sex effects.

      Response: The assessment of the reviewers and the editorial feedback encouraged us to look more thoroughly into potential sex differences, because we believe it would indeed be a major additional strength if our manuscript could make a firm statement on this important issue. To this end, we have expanded the manuscript in two major ways:

      (1) To expand the analysis of sex effects also to the dorsal hippocampus, and to increase robustness of the data, we have performed RNA-seq in 32 additional samples of male and female mice exposed to stress (or control) and propranolol (or saline) injection. Figure 1fh and Supplementary Figure 1d-f have been updated to reflect this new addition, and the results are presented in a new section on Pages 3-4 (pasted below for ease of reviewing). In summary, the strongly support our initial observation that the effects of stress on gene expression, as well as the effects of propranolol on blocking stress-induced effects, are highly similar in both sexes.

      (2) To further increase the power for detection of sex-effects, we have performed a small meta-analysis. For this, we combined several RNAseq datasets from the current manuscript and published datasets from our previous work (Floriou-Servou et al., 2018; von Ziegler et al., 2022), which also investigated transcriptomic sex-differences in the hippocampus 45 min after cold swim stress exposure in the same setup as used for the current manuscript. This approach increased our sample size to 51 males and 20 females. In summary, this well-powered approach shows no evidence for sex differences in the transcriptional response to stress, even when more lenient analyses were applied. These results are described in a new section on page 4, and summarized in Supplementary Figures 1f+g. This section is pasted below for ease of reviewing.

      "While blocking β-adrenergic receptors was able to block stress-induced gene expression, we did not test whether propranolol might decrease gene expression already at baseline, independent of stress. Additionally, all tests had thus far been conducted in male mice, raising the question about potential sex differences in NA-mediated transcriptomic responses. To address these two issues, we repeated the experiment in both sexes and included a group that received a propranolol injection but was not exposed to stress (Fig. 1f). Combining the data from both experiments, we repeated the analysis for each region, to identify genes whose response to stress was inhibited by propranolol (Figure 1g). As in the previous experiment, we found that many of the stress-induced gene expression changes were blocked by propranolol injection in both dHC (Figure 1g, left panel) and vHC (Figure 1g, right panel). Importantly, propranolol did not change the expression level of these genes in the absence of stress. We then directly compared the genes sensitive to stress and propranolol treatment in both dHC and vHC. To this end, we plotted the union of genes showing a significant stress:propranolol interaction in either region in one heatmap across both dHC and vHC (Supplementary Figure 1d). This showed again that the stress-induced changes were very similar in dHC and vHC, and that propranolol similarly blocked many of them. Finally, we asked whether the response differs between males and females. Despite clear sex differences in gene expression at baseline (data not shown), we found no significant sex differences in response to stress or propranolol between male and female mice (FDR<0.05; Fig. 1g). To more directly visualize this, we compared females and males by plotting the log2-fold changes of the stress:propranolol interaction across all stress-induced genes that were blocked by propranolol. We find very similar regulation patterns in both sexes (Figure 1h). Although none of these sex differences are significant, some genes seem to show quantitative differences, so we plotted the expression patterns of the 5 genes showing the largest difference in interaction term as box-plots, which suggest that these spurious differences are likely due to noisy coefficient estimates (Supplementary Fig. 1e). To address concerns that our analysis of sex differences might not have been sufficiently powered, we performed a meta-analysis of the experiments shown here along with previously published datasets from our lab (Floriou-Servou et al. 2018; von Ziegler et al. 2022). In all these experiments, the vHC of male and female mice was profiled 45 min after exposure to an acute swim stress challenge. This resulted in a sample size of 51 males and 20 females. Despite this high number of independent samples, we could not identify any statistically significant interaction between sex and the stress response. To identify candidates that might not reach significance while discounting differences due to noise in fold-change estimates, we reproduced the same analysis using DESeq2 with Approximate Posterior Estimation for generalized linear model (apeglm) logFC shrinkage (A. Zhu, Ibrahim, and Love 2018). This analysis also did not reveal any sex differences in the stress response (Supplementary Fig. 1f). We then tailored the meta-analysis specifically to the set of stress-responsive genes that were blocked by propranolol, and also for these genes the response to stress was strikingly similar in both sexes (Supplementary Fig. 1g). Altogether, we conclude that there are no major sex differences in the rapid transcriptomic stress response in the hippocampus, and that blocking beta-receptors prevents a large set of stress-induced genes in both females and males."

      To put these findings in context with existing literature, we agree with the reviewer that there are many studies that have reported sex differences in the LC-circuitry as summarized by Bangasser and colleagues (Bangasser et al., 2016, 2019). However, these studies primarily focus on the LC itself, suggesting that female rats have more LC neurons, denser LC-dendrites in the peri-LC region, and that LC neurons are more readily activated by stress in females because of heightened sensitivity to CRF-signaling. A recent study in mice reports, in contrast, that females have fewer TH-positive neurons in the LC, but they also find enhanced excitability of LC neurons in females (Mariscal et al., 2023). Similarly, one study has suggested molecular differences in the makeup of the LC (Mulvey et al., 2018). Our experiments, however, focus on the impact of NA release in a projection region (hippocampus). Further, we use a strong stress induction protocol (swim stress) and various potent modes of direct LC activation, so differences in "LC-excitability" are likely less relevant in this context. We added evidence showing that we trigger powerful NA release in both sexes (Supplementary Figure 2c-h; see response to Reviewer #2, Comment #3 for more details). In addition, we show that the intensity or pattern of LC stimulation does not appear to alter the molecular response (Figure 3a-b), and that various stressors (mild or intense) all trigger the same NA-dependent molecular changes (Figure 4a-b). Therefore, our results suggest that once NA is released (in the hippocampus), the molecular downstream effects on gene expression are very similar - independent of stimulation intensity, sex, or hippocampal subregion (dorsal/ventral). This does not mean that there are no sex differences for activation of LC, but rather that the transcriptional response to NA release in the hippocampus is robust across sexes, and that propranolol seems to block NA-dependent effects similarly in both sexes. This does not rule out quantitative differences between sexes that only emerge with targeted analyses of individual genes, or once fluctuations in ovarian hormones are taken into account. We have updated the section in the discussion to summarize these considerations in light of the new results (see pages 20-21, section: "A uniform molecular response to stress and noradrenaline release in both sexes").

      Comment 3: A major finding of the present study is the involvement of noradrenergic transcriptomic changes occurring in astrocytic genes in the hippocampus. Given the stated importance of this finding within the discussion, it seems that some additional dialogue integrating this with current literature about the role of astrocytes in the hippocampus during stress or fear memory would be important.

      Response: We thank the reviewer for giving us an opportunity to add a more detailed discussion about the role of astrocytes and thyroid hormones in the hippocampus during learning and memory formation. We have added these statements to the discussion:

      “Within the hippocampus, astrocytic pathways are emerging as important players for learning and memory processes (Gibbs, Hutchinson, and Hertz 2008; Bohmbach et al. 2022). In fact, it is well-known that NA enhances memory consolidation (Schwabe et al. 2022; McGaugh and Roozendaal 2002), and recent work suggests that these effects are mediated by astrocytic β-adrenergic receptors (Gao et al. 2016; Iqbal et al. 2023). Our transcriptomic screens revealed Dio2 as the most prominent target influenced by LC activity. Dio2 is selectively expressed in astrocytes and encodes for the intracellular type II iodothyronine deiodinase, which converts thyroxine (T4) to the bioactive thyroid hormone 3,3',5-triiodothyronine (T3) and therefore regulates the local availability of T3 in the brain (Bianco et al. 2019). Enzymatic activity of DIO2 has further been shown to be increased by prolonged noradrenergic transmission through desipramine treatment in LC projection areas (Campos-Barros et al. 1994). This suggests that the LC-NA system and its widespread projections could act as a major regulator of brain-derived T3. Notably, T3-signaling plays a role in hippocampal memory formation (Rivas and Naranjo 2007; Sui et al. 2006), raising the possibility that NA-induced Dio2 activity in astrocytes might mediate some of these effects.”

      Comment 4: The comparison of the candidate genes activated by the LC in the present study (swim) with datasets published by Floriou-Servou et al., 2018 (Novelty, swim, restraint, and footshock) is an interesting and important comparison. Were there other stressors identified in this paper or other publications that do not regulate these candidate genes? Further, can references be added to clarify to the reader, that prior studies have identified that novelty, restraint and footshock all activate LC-NA neurons.

      ponse: Thank you for the positive feedback. We have only tested the stressors reported in Figure 4a-b (novelty, swim, restraint, and footshock). It is known that all these stressors trigger noradrenaline release, in fact we are not aware of stressors that do not trigger NA release. This reproducible finding supports the notion that the identified set of genes is indeed highly NAresponsive. As suggested, we have now included references that show increased NA release in response to all these stressors:

      “Therefore, we assessed their expression in a dataset comparing the effect of various stressors on the hippocampal transcriptome (Floriou-Servou et al., 2018). The stressors included restraint, novelty and footshock stress, which have all previously been shown to increase hippocampal NA release (HajósKorcsok et al., 2003; Lima et al., 2019; Masatoshi Tanaka et al., 1982).”

      Comment 5: Comparisons are made between chemogenetic studies and yohimbine, stating that fewer genes were activated by chemogenetic activation of LC neurons. There is clear justification for why this may occur, but a caveat may need to be mentioned, that evidence of neuronal activation in the LC by each of these methods were conducted at 90 (yohimbine) versus 45 (hM3Dq) minutes, and therefore it cannot be ruled out that differences in LC-NA activity levels might also contribute.

      Response: The reviewer raises an important point about some inconsistencies between the time points chosen in our study, an aspect that was also pointed out by Reviewer #2. We have chosen the 45 and 90 min time points for two different reasons. On the one hand, cFos changes on the protein level are known to peak 90 min after neuronal activation, and we wanted to capture the strongest possible cFos signal in the LC. On the other hand, we wanted to measure gene expression changes triggered by NA release, which already occur 45 min after noradrenergic activation (Roszkowski et al., 2016). Thus, when the experimental design allowed separate experiments (e.g. systemic yohimbine injection), we chose to measure gene expression after 45 min, but to validate cFos activation in the LC separately after 90min. In response to DREADD activation, however, we wanted to confirm within the same animal that LC activation was successful, and thus we collected LC and hippocampus simultaneously (Figure 2c,d). While the cFos increase is already very pronounced at the 45min time point (Figure 2g), the quality of IHC is slightly lower because the tissue cannot be perfused in this experimental design. Therefore, we do not think that the time point for cFos sampling matters in this context. However, we agree with the reviewer that it remains unclear whether yohimbine and DREADDs activate the LC with similar potency. To directly compare NA release would require a set of photometry-based experiments to measure NA release using genetically-encoded NA-sensors. While we have added such experiments for LC activation with DREADDs and optogenetics to show rapid NA release indeed occurs in the hippocampus (see Reviewer #2, Comment 3; Supplementary Figure 2c-h), yohimbine interferes with the NA-sensors as explained in detail in response to Reviewer 2, Comment 3. Thus, it was too challenging for us to directly compare the release dynamics in response to DREADDs and yohimbine, which was also not the main focus of our work. To explicitly address this caveat, we have extended the corresponding section in the discussion:

      "Finally, our observation that systemic administration of the α2-adrenergic receptor antagonist yohimbine very closely recapitulates the transcriptional response to stress stands in contrast to the much more selective transcriptional changes observed after chemogenetic or optogenetic LC-NA activation. This difference could be due to various factors. First, it remains unclear how strong the LC gets activated by yohimbine versus hM3Dq-DREADDs. However, given the potent LC activation observed after DREADD activation, it seems unlikely that yohimbine would lead to a more pronounced LC activation, thus explaining the stronger transcriptional effects. Second, contrary to LC-specific DREADD-activation, systemic yohimbine injection will also antagonize postsynaptic α2-adrenergic receptors throughout the brain (and periphery). More research is needed to determine whether this could have a more widespread impact on the hippocampus (and other brain regions) than isolated LC-NA activation, further enhancing excitability by preventing α2-mediated inhibition of cAMP production. Finally, systemic yohimbine administration and noradrenergic activity have been shown to induce corticosterone release into the blood (Johnston, Baldwin, and File 1988; Leibowitz et al. 1988; Fink 2016). Thus, yohimbine injection could have broader transcriptional consequences, including corticosteroid-mediated effects on gene expression."

      Comment 6: Please add information about how virus or cannula placement was confirmed in these studies. Were missed placements also analyzed separately?

      Response: Pupillometry recordings were performed with all animals involving optogenetic or chemogenetic manipulations of the LC, before subjecting them to stress experiments. These assessments account for both correct optic fiber placement and virus expression (Privitera et al., 2020). If an animal did not show a clear pupil response, it was not included any further in the study. To demonstrate correct cannula placement for drug infusion of isoprotenerol in the dorsal hippocampus, we added a representative image of cannula placement in Supplementary Figure 1h.

      Comment 7: Time of day for tissue collection used in genetic analysis should be reported for all studies conducted or reanalyzed.

      Response: Thank you for pointing out this omission. Tissue collection for RNA-seq analysis was always performed between 11am and 5pm during the dark phase of the reversed light-dark cycle. We have added this information to the corresponding method section (“Tissue collection”).

      Reviewer #1 (Recommendations For The Authors):

      Comment 8: This is a well written, comprehensive and rigorous manuscript that will be of great interest to those in the scientific community.

      Response: Thank you for the positive evaluation of our work and for the constructive feedback.

      Reviewer #2 (Public Review):

      Comment 1: The present manuscript investigates the implication of locus coeruleus-noradrenaline system in the stress-induced transcriptional changes of dorsal and ventral hippocampus, combining pharmacological, chemogenetic, and optogenetic techniques. Authors have revealed that stress-induced release of noradrenaline from locus coeruleus plays a modulatory role in the expression of a large scale of genes in both ventral and dorsal hippocampus through activation of β-adrenoreceptors. Similar transcriptional responses were observed after optogenetic and chemogenetic stimulation of locus coeruleus. Among all the genes analysed, authors identified the most affected ones in response to locus coeruleus-noradrenaline stimulation as being Dio2, Ppp1r3c, Ppp1r3g, Sik1, and Nr4a1. By comparing their transcriptomic data with publicly available datasets, authors revealed that these genes were upregulated upon exposure to different stressors. Additionally, authors found that upregulation of Ppp1r3c, Ppp1r3g, and Dio2 genes following swim stress was sustained from 90 min up to 2-4 hours after stress and that it was predominantly restricted to hippocampal astrocytes, while Sik1 and Nr4a1 genes showed a broader cellular expression and a sharp rise and fall in expression, within 90 min of stress onset.

      Overall, the paper is well written and provides a useful inventory of dorsal and ventral hippocampal gene expression upregulated by activation of LC-NA system, which can be used as starting point for more functional studies related to the effects of stress-induced physiological and pathological changes.

      Response: We thank the reviewer for the careful assessment of our work.

      Comment 2: However, I believe that the study would have benefited of a more comprehensive analyses of sex differences. Experiments in females were conducted only in one experiment and analyses restricted to the ventral hippocampus.

      Response: In response to the comments by the reviewer, as well as Reviewer #1 and the editors, we have sequenced an additional 32 brain samples to expand the comparison of sex effects in females and males across dorsal and ventral hippocampus, and we included a new meta-analysis of 3 experimental datasets (51 male and 20 female) samples, to thoroughly assess sex differences in the transcriptomic response to stress. We refer the reviewer to our detailed response provided above to Reviewer #1, comment #2, and the updated results section on pages 3-4.

      Comment 3: Although, the experiments were overall sound and the results broadly support the conclusion made, I think some methodological choices should be better explained and rationalized. For instance, the study focuses on identifying transcriptional changes in the hippocampus induced by stress-mediated activation of the LC-NA system, however NA release following stress exposure and pharmacological or optogenetic manipulation was mostly measured in the cortex.

      Response: Because the hippocampus was used for RNA-sequencing, we could not assess NA release in the hippocampus (as this would require fiber implants that would interfere with molecular measures, or different tissue processing for HPLC). Nonetheless, we wanted to assess the transcriptional changes in the hippocampus, while simultaneously measuring successful stimulation of the LC-NA system in the same animals. To achieve this, we pursued 3 routes: 1) we used pupillometry to confirm functional LC activation; 2) we measured cFOS in the LC to directly demonstrate LC activation; 3) we assessed NA release using uHPLC (which requires larger tissue samples) and we chose the cortex because both cortex and hippocampus receive NA predominantly from the LC (Samuels & Szabadi, 2008). Importantly, we had previously shown that chemogenetic LC activation leads to a similar NA turnover in both the cortex and hippocampus, as measured by uHPLC (Zerbi et al., 2019). The relevant figure from that paper is inserted below to quickly show the striking similarity between hippocampus and cortex.

      Author response image 1.

      Levels of noradrenaline (NE) turnover (MHPG/NE ratio) in the cortex (CTX) and hippocampus (HC), measured in whole tissue with uHPLC 90min after hM3Dq-DREADD activation of the LC (copied and cropped from Zerbi et al, 2019, Neuron).

      In response to the reviewers comment, we performed additional experiments to directly demonstrate that LC-activation with DREADDs as well as optogenetics causes an increase in hippocampal NA-release. We recorded NA release in the hippocampus (using fiber photometry combined with genetically encoded NA sensors). For DREADD activation, we observed a strong increase in hippocampal noradrenaline that started a few minutes after clozapine administration, and this increase was sustained throughout the duration of the 21 minute recording (see Supplementary Figure2c-e). For optogenetic LC activation, we find a rapid and immediate sharp increase in NA levels in the hippocampus (Supplementary Figure 2f-h). These experiments were performed in females and males and triggered similar responses. An adapted and cropped version of Supplementary Figure 2 is pasted below for ease of reading.

      Please note that we could not perform a similar experiment using yohimbine, because the GRABNE sensors are based on the alpha-2 adrenergic receptor, thus yohimbine administration interferes with the photometry recording. However, we believe that it is clear from this response that strong activation of the LC leads to uniform release of NA in the hippocampus and cortex.

      Author response image 2.

      c, Schematic of fiber photometry recording of hippocampal NA during chemogenetic activation of the LC. After 5 min baseline recording in the homecage animals were injected with clozapine (0.03mg/kg, i.p.) and placed in the OFT for 21min. d, Average ΔF/F traces of GRABNE2m photometry recordings in response to chemogenetic activation of the LC (mean±SEM for hM3DGq+ and hM3DGq- split into females and males, n=3/group/sex). e, Peak ΔF/F response of fiber photometry trace. f, Schematic of fiber photometry recording of hippocampal NA during optogenetic activation of the LC. Animals were lightly anesthetized (1.5% isoflurane) and recorded in a stereotaxic frame. After 1 min baseline recording, animals were stimulated three times with 5Hz for 10s (10ms pulse width, ~8mW laser power) and recorded for 2 min post-stimulation. g, Average ΔF/F traces of the NA sensors GRABNE1m and nLightG in response to optogenetic activation of the LC (mean±SEM for females and males, n(females)= 10, n(males)=5. h, Peak ΔF/F response of fiber photometry trace.

      Comment 4: Furthermore, behavioral changes following systemic pharmacologic or chemogenetic manipulation were observed in the open field task immediately after peripheral injections of yohimbine or CNO, respectively. Is this timing sufficient for both drugs to cross the blood brain barrier and to exert behavioral effects?

      Response: We have previously shown that chemogenetic activation of the LC through clozapine elicits pupil responses within 1-2 minutes after injection (Privitera et al., 2020; Zerbi et al., 2019). This indicates that clozapine rapidly crosses the blood brain barrier and affects LC activity within a few minutes after injection. Our additional experiments using genetically encoded sensors in the hippocampus show this even more directly (Supplementary Figure 2d), see also the response to Comment 3 above.

      Similarly, yohimbine also rapidly crosses the blood brain barrier within the same time frame (Hubbard et al., 1988). These observations are consistent with the rapid behavioral effects that can be detected within a few minutes after injection of clozapine for LC-DREADD activation (Zerbi et al., 2019), and for yohimbine as well (von Ziegler et al., 2023). In response to another comment of this reviewer, we have also re-analyzed the behavior presented in the current manuscript in time-bins of 3 minutes, which also shows the rapid onset of effects in response to yohimbine (within the first 3 min) and DREADDs (within 6 min), see Supplementary Fig. 3.

      Comment 5: Finally, the study shows that activation of noradrenergic hippocampus-projecting LC neurons is sufficient to regulate the expression of several hippocampal genes, although the necessity of these projection to induce the observed transcriptional effects has been tested to some extent through systemic blockade of beta-adrenoceptor, I believe the study would have benefited of more selective (optogenetic or chemogenetic) necessity experiments.

      Response: We understand the reviewer's point that blocking the LC during stress exposure would be an interesting experiment. However, it is very hard to completely silence the LC during intense stressors. In fact, despite intense efforts, we have not been able to silence the LC during swim stress exposure using DREADDs or other chemogenetic approaches (PSAM/PSEM). We were in fact able to silence the LC with the optogenetic inhibitor JAWS (and others have reported successful LC silencing with GtACR2), but there is a major issue involving the "rebound effect", where more NA is released once the inhibition is stopped. We would thus have had to optogenetically silence the LC for 45-90 min, which would create heat artifacts, and require challenging control experiments to draw firm conclusions. Given all these issues, we reasoned that blocking adrenergic receptors is a simple and elegant solution, which provides clear evidence for the necessity of beta-adrenergic signaling.

      Reviewer #2 (Recommendations For The Authors):

      Major concerns:

      Comment 6: The study focuses on the identification of transcriptional changes in the hippocampus induced by stress-mediated activation of the LC-NA system, however, noradrenaline release following stress exposure or yohimbine injection was measured in the cortex. Authors should consider measuring NA concentrations in the hippocampus after exposure to swim stress or administration of yohimbine, or at least explain their choice to analyse to cortex in the manuscript.

      Response: We have addressed this issue in detail in Response to "Reviewer 2, Comment #3", where we provided an overview of the additional data that support our approach. As mentioned before, measuring NA release after yohimbine is not compatible with our GRABNE-photometry approach, as the GRAB-sensor is based on alpha2-adrenoceptor. Here, we would like to add that measuring NA release using photometry during swim stress is also challenging. The challenge is the vigorous movement (swimming, typically in one direction), which creates pressure on the cables/implants. We felt that overcoming these experimental challenges (setup, troubleshooting and controls) would be beyond the scope of the paper, given that it is already known that this stressor leads to strong NA release in the hippocampus. We have now included references that demonstrate that all the stressors used in our work trigger NA increase in the hippocampus (see response to Reviewer 1, Comment 3): “Therefore, we assessed their expression in a dataset comparing the effect of various stressors on the hippocampal transcriptome (Floriou-Servou et al., 2018). The stressors included restraint, novelty and footshock stress, which have all previously been shown to increase hippocampal NA release (Hajós-Korcsok et al., 2003; Lima et al., 2019; Masatoshi Tanaka et al., 1982).”

      Comment 7: Concerning the experiment aimed at investigating sex differences in gene expression, it is not clear the reason why authors decided to restrict their analyses in females to the ventral hippocampal only. The explanation that in males they did not detect major differences between the dorsal and ventral hippocampus is not sufficient, because there could have been different effects in females. Therefore, the conclusion made by the authors that their "results suggest that the transcriptomic response is independent of sex" is not entirely correct, since sex differences were only evaluated in the ventral hippocampus.

      Response: We appreciate the reviewer's critique. As described above, we have now also sequenced the dorsal hippocampal tissue from the propranolol experiment (males and females, 32 samples) and additionally added an extensive meta-analysis of three large datasets (n=71) to compare transcriptional sex differences in response to stress. A detailed description of these experiments and how they have extended/supported our conclusions have been provided in response to Reviewer #1, Comment #2.

      Comment 8: Besides the effects on females, the same experiment examined whether propranolol by itself (in the absence of stress) would have been able to alter gene expression: such effects were not examined in the dorsal hippocampus. In contrast, in a different experiment, the effects of isoproterenol on genes expression were restricted to the dorsal hippocampus only. Furthermore, related to this latter experiment, intra-dorsal hippocampal injection of isoproterenol should presumably mimic the rise in NA observed after stress exposure, why was gene expression measured 90 min after isoproterenol central injections while in the other experiments gene expression was determined 45 min after stress, that is when authors observe the peak NA concentration?

      Response: We have addressed the reviewer's critique of dorsal vs ventral hippocampus by reanalyzing 32 additional samples from dorsal hippocampus of male and female mice after propranolol (or saline) injection. Please see response to Reviewer #1, comment #2.

      Regarding the time points: We have chosen the 45 and 90 min time points mainly for two reasons. First, cFos protein changes are known to be strongest 90 min after neuronal activation. Second, because we wanted to capture gene expression changes triggered by NA release, we reasoned that these effects must be fast and should thus be measured at an early transcriptional time-point (45min). However, after performing the time-course experiment after swim stress exposure (Figure 4d,c), we observed that the LC-NA-sensitive genes (e.g. Dio2 and several PP1-subunits) show the strongest changes 90 min after stress exposure. Therefore, in some of our experiments we opted to analyze gene expression changes at 90min, converging with the time-point we typically use for cFos staining. Contrary to the reviewer's statement, peak NA concentrations are not observed 45 min after the various interventions, but rather the peak in the main metabolite (MHPG) is observed then, due to the temporal dynamics of NA release and breakdown. NA release occurs immediately upon stress exposure (or direct LC activation), which we also show in the new photometry data described above. Thus, rapid NA release triggers intracellular cascades that lead to downstream transcriptional changes, which peak presumably between 4590 min later.

      Comment 9: Behavioral changes following systemic pharmacologic or chemogenetic manipulation were observed in the open field task immediately after peripheral injections of yohimbine or CNO, respectively. Is this timing sufficient for both drugs to cross the blood brain barrier and to exert behavioral effects? It is also not immediately clear the reason why the open field tasks have different durations depending on the experiments, which can also impact the results. Authors might also consider to split the open field data analyses in 2 or 3 min time-bins, to allow for a better comparison across the different results.

      Response: We thank the reviewer for the suggestion to plot the behavior data as time-bins. We have implemented this change for the yohimbine and DREADD experiments, and updated the corresponding figure accordingly (Supplementary Figure 3, pasted below for ease of reading). The new visualization clearly shows that yohimbine injection triggers rapid behavioral effects already in the first three minutes, whereas the LC-DREADD activation triggers behavioral changes within 3-6 minutes after injection. Thus, clear drug effects are visible in the first 10 minutes, which is comparable to the standard OFT test (10min testing) shown in response to swim stress exposure (Suppl. Figure 3a). The choice to expose mice to the OFT for 21 minutes in total was due to the fact that we based our experimental approach on the optogenetic LC-stimulation protocol first published by McCall and colleagues (McCall et al, Neuron, 2015), in which the LC is stimulated for 3 min followed by 3 min pauses (see Suppl. Figure 3d). Because of this on-off design, we decided to keep the optogenetic analysis simple and show the overall effect (Supplementary Figure 3d), particularly as we know that NA dynamics do not recover rapidly enough after 3 min continuous stimulation to justify a bin-analysis (unpublished data).

      Author response image 3.

      Effects of acute stress and noradrenergic stimulation on anxiety-like behaviour in the open field test. a, Stress-induced changes in the open field test 45 min after stress onset. Stressed animals show overall reductions in distance traveled (unpaired t-test; t=3.55, df=22, p=0.0018), time in center (welch unpaired t-test; t=3.50, df=13.61, p=0.0036), supported rears (unpaired t-test; t=3.39, df=22, p=0.0026) and unsupported rears (unpaired t-test; t=5.53, df=22, p = 1.47e-05) compared to controls (Control n = 12; Stress n = 12). This data have been previously published (von Ziegler et al., 2022). b, Yohimbine (3 mg/kg, i.p.) injected animals show reduced distance traveled (unpaired t-test; t=2.39, df=10, p=0.03772), reduced supported rears (unpaired t-test; t=6.56, df=10, p=0.00006) and reduced unsupported rears (welch unpaired t-test; t=3.69, df=4.4, p = 0.01785) compared to vehicle injected animals (Vehicle n = 6; Yohimbine n = 7). c, Chemogenetic LC activation induced changes in the open field test immediately after clozapine (0.03 mg/kg, i.p.) injection. hM3Dq+ animals show reduced distance traveled (unpaired t-test; t=6.28, df=13, p=0.00003), reduced supported rears (unpaired t-test; t=4.28, df=13, p=0.0009), as well as reduced unsupported rears (welch unpaired t-test; t=4.28, df=13, p = 0.00437) compared to hM3D- animals (hM3Dq- n = 7; hM3Dq+ n = 8). d, Optogenetic 5 Hz LC activation induced changes during the open field test. ChR2+ animals show reduced supported rears (unpaired t-test; t=2.42, df=64, p=0.0185) and reduced unsupported rears (unpaired ttest; t=2.91, df=64, p = 0.00499) compared to ChR2- animals (ChR2- n = 32; ChR2+ n = 36). Data expressed as mean ± SEM. p < 0.05, p < 0.01, p < 0.001, **p < 0.0001.

      Comment 9: The study shows that activation of noradrenergic hippocampus-projecting LC neurons is sufficient to regulate the expression of several hippocampal genes. I believe the study would have benefited of more selective necessity experiments. Authors might consider adding optogenetic (or chemogenetic) experiments aimed at inhibiting LC-NA hippocampal projections during stress exposure (or, alternatively, perform intrahippocampal pharmacological blockade of β-adrenoreceptors during stress exposure), and determine the effects on gene expression.

      Response: We kindly refer the reviewer to our previous response to Comment #2 above.

      Minor concerns:

      There is a typo in the abstract. Please correct "LN-NA" with "LC-NA"

      Response: Thank you, we have corrected it.

      References

      Bangasser, D. A., Eck, S. R., & Ordoñes Sanchez, E. (1/2019). Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 44(1), 129–139.

      Bangasser, D. A., Wiersielis, K. R., & Khantsis, S. (06/2016). Sex differences in the locus coeruleusnorepinephrine system and its regulation by stress. Brain Research, 1641, 177–188.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      All comments made in the public section.

      We would like to thank the reviewer for their assessment of our study and for suggestions for additional experiments to follow up our studies.

      Reviewer #2 (Recommendations For The Authors):

      ‐ Preparation of spike proteins and VLPs. Although Triton‐X114 extraction was done to remove endotoxin from the recombinant spike protein preparations, its removal efficiency depends on the levels of endotoxin in the samples. Therefore, the residual endotoxin levels in each of the test samples and batches should be measured. Even very low but varying levels of residual endotoxin would substantially impact the reported results, as they create inconsistent data that are not interpretable.

      Certainly, endotoxin contamination in instilled materials is always an issue. Established protocols for inducing acute inflammatory responses using endotoxin outline specific ranges of endotoxin levels in the instillation materials. To induce acute lung inflammation in mice at least 2 µg of endotoxin must be instilled. We have endeavored to reduce the possibility of endotoxin contamination in our recombinant proteins by using a mammalian expression system; careful aseptic culture and protein purification techniques; and a final Triton-X114 partitioning protocol. We assessed the possibility of endotoxin contamination using the Pierce™ Chromogenic Endotoxin Quant Kit, which is based on the amebocyte lysate assay. Our analysis revealed that the endotoxin level in the purified recombinant protein preparation is below 1.0 EU/ml, which closely aligns with the levels specified for recombinant proteins. An endotoxin concentration of 1.0 EU/ml is equivalent to approximately 0.1 ng/ml. Throughout all mouse nasal instillation experiments, the total volume of recombinant protein administered did not exceed 6 µl. The amount of contaminant endotoxin instilled did not exceed 1 pg (50 µl of 0.02 ng/ml of endotoxin). Consequently, we can confirm that the extent of endotoxin contamination is at trace levels. Moreover, our study reveals multiple results indicating that the level of endotoxin contamination in the recombinant protein was inadequate to independently induce neutrophil recruitment in the cremaster muscle, lymph nodes, and liver. For further insights, refer to Figure 5.

      ‐ Doses of spike and VLPs: The amount of spike protein incorporated into HIV Gag‐based VLPs should be determined and compared to that found in the native SARS‐CoV‐2 virus particles. This should provide more physiologic doses (or dose ranges/titration) of spike than the arbitrary doses (3 ug or 5 ug) used in the mouse experiments.

      To visualize the acquisition of spike protein and track cells that have acquired the spike protein, we conducted a series of tests and optimizations using different concentrations of Alexa 488 labeled spike protein, ranging from 0.5 to 5 µg. During the processing of lung tissue for microscopic imaging, it was of utmost importance to preserve the integrity of the labeled spike protein in the tissue samples. We determined that instillation of 3 µg of Alexa 488 labeled spike protein yielded the optimal signal strength across the lung sections. Notably, in many mouse models employing intra-nasal instillation protocols for SARS-CoV2 spike protein or RBD domain-only recombinant proteins, a dosage of approximately 3 µg or higher were commonly used. Regarding the titer of spike-incorporated VLPs, it is important to highlight that we did not directly compare the quantity of spike protein present in NL4.3 VLPs to that of the naïve SARS-CoV-2 virus. HIV-1 and SARS-CoV-2 viruses typically carry around 70 gp120 spikes and 30 spikes, respectively. We estimated that SARS-CoV-2 spike-incorporated NL4.3 VLPs may display twice the number of spikes compared to naïve SARS-CoV-2. Notably, our measurements of SARS-CoV-2 spike on NL4.3 VLPs demonstrated similar behavior to SARS-CoV-2 in terms of specific binding to ACE2-expressing 293T cells, indicating their functional similarity in this context.

      Author response image 1.

      Spike protein-incorporated NL4.3 VLPs test with human ACE2-transfected HEK293 cells. The wild-type spike protein-incorporated VLPs and delta envelope NL4.3 VLPs were analyzed using human ACE2-transfected HEK293 cells. The first plot shows ACE2 expression levels in HEK293 cells. The second plot displays the binding pattern of Delta Env NL4.3 VLPs on ACE2-expressing HEK293 cells. The third plot illustrates the binding pattern of wild-type spike protein-incorporated NL4.3 VLPs on ACE2expressing HEK293 cells. The histogram provides a comparison of VLP binding strength to ACE2expressing HEK293 cells.

      ‐ The PNGase F‐treated protein was not studied in Fig 1. In Fig 2, glycan‐removal by PNGaseF has little effects on cell uptake and cell recruitment in the lung. If binding to one of the Siglec lectins is a critical initial step, experiments should be designed to evaluate this aspect of the spike‐cell interaction in a greater depth.

      As the reviewer states results with the PNGase F-treated protein were not shown in Fig. 1 although we showed results in Figs. 2 & 3. See discussion below about our preparation of the PNGase F-treated protein. Perhaps because we elected to use a purified fraction that retained ACE2 binding, the protein we used likely retained some complex glycans. As the reviewer notes the PNGase F treated protein had similar overall cellular recruitment and uptake profiles compared to the untreated spike protein. The PNGase Ftreated fraction we used no longer bound Siglec-F in the flow-based assay, shown in Fig. 7. This argues that the initial uptake and cellular recruitment following intranasal instillation of the Spike protein did not depend upon the engagement of Siglec-F. While Siglec-F on the murine alveolar macrophage can likely efficiently capture the spike proteins other cellular receptors contribute and the overall impact of the spike protein on alveolar macrophages likely reflects its engagement of multiple receptors.

      • Enzymatic removal of sialic acids from spike may be one parameter to explore. The efficiency of enzymatic removal should also be verified prior to experiments. Finally, the authors need to assess whether the proteins remained functional, folded properly, and did not aggregate.

      To obtain the de-glycosylated form of the SARS-CoV-2 spike protein, we employed PNGase F enzymatic digestion to remove glycans. Subsequently, the spike protein was purified using a size exclusion column. During this purification process, the PNGase F-treated spike protein segregated into two distinct fractions, specifically fraction 6 to 8 and fraction 9 to 11 (see revised Figure 1- figure supplement 1).

      Author response image 2.

      Size exclusion chromatography. The peak lines represent the absorbance at 280 nm. PNGase F-treated spike proteins were loaded onto a Superdex 26/60 column, resolved at a flow rate of 1.0 ml/min, and collected in 1 ml fractions.

      The Coomassie blue staining of an SDS-PAGE gel revealed that fractions 6 to 8 likely underwent a more pronounced de-glycosylation by PNGase F compared to fractions 9 to 11. Additionally, during the size column purification, we noticed that fraction 6 to 8 exhibited a faster mobility than the untreated spike protein, implying a potentially substantial modification of the protein's conformation. To probe the functional characteristics of the de-glycosylated spike protein in fraction 6 to 8, we conducted binding tests with human ACE2. Strikingly, the spike protein in fraction 6 to 8 completely lost its binding affinity to ACE2, indicating a loss of its ACE2-binding capability. Conversely, the protein in fraction 9 to 11 showed partial de-glycosylation but still retained its original functionality to bind to ACE2 and its antibody.

      Author response image 3.

      FACS analysis of various spike protein-bound beads. Protein bound beads were detected with labeled spike antibody, recombinant human ACE2, and recombinant mouse Siglec-F.

      Based on these results, we concluded that fraction 9 to 11 would be the most suitable choice for further studies as the de-glycosylated spike protein, considering its retained functional properties relevant for ligating ACE2 and antibody motifs yet had lost Siglec-F binding. In the revised manuscript we have describe in more detail the purification of the PNGase F treated Trimer and its functional assessment.

      ‐ Increases in macrophages and alveolar macrophages by Kifunensine Tx spike in Fig 2A suggest effects that are not related to Siglec lectins. These effects are not seen with the wild type or D614 spike trimers, so the relevance of high‐ mannose spike is unclear. On the other hand, there were clear differences between Wuhan and D614 trimers seen in Fig 2A and 2B, but there was no verification to ascertain whether these differences were indeed due to strain differences and not due to batch‐to‐batch variability of the recombinant protein production. The overall glycan contents of the Wuhan and D614 spike protein samples should be measured. If Siglec interaction is the main interest in this study, the terminal sialic acid contents should be determined and compared to those in the corresponding strains in the context of native SARS‐CoV‐2 virions.

      Our initial observation that Siglec-F positive alveolar macrophages (AMs) avidly acquired spike proteins followed by a rapid leukocyte recruitment provided the rational for us to examine the impact of modifying the glycosylation pattern on the spike protein (de-glycosylated and spike variants) on their binding tropism and their cellular recruitment profiles in the lung. In this context, we examined the influence of several glycan modification on spike proteins, hypothesizing that these modifications would alter the acquisition of the spike protein by mouse AMs compared to the wild-type trimer. While we did not conduct an indepth analysis of the glycan composition and terminal sialic acid contents of the SARS-CoV-2 spike proteins we used we did verify that the different proteins behaved as expected. Most of the biochemical studies were performed in Jim Arthos’ laboratory, which has a long interest in the glycosylation of the HIV envelope protein. On SDS-PAGE the SARS-CoV-2 spike protein purified from the Kifunesine treated CHO cells exhibited a 12 kDa reduction. It bound much better to L-Sign, DC-Sign, and maltose binding lectin, and poorly to Siglec-F. In the cellular studies it bound less well to most of the cellular subsets examined including murine alveolar macrophages. In studies with human blood leukocytes, it relied on cations for binding. However, it retained its toxicity directed at mouse and human neutrophils and it elicited a similar cytokine profile when added to human macrophages. The D614G mutation increased the spike protein binding to P-Selectin, CD163, and snowdrop lectin (mannose binding) suggesting that the mutation had altered the glycan content of the protein. We used the D614G spike protein in a limited number of experiments as it behaved like the wild-type protein except for a slightly altered cellular retention pattern 18 hrs after intranasal instillation. In the revised manuscript we have included its binding to peripheral blood leukocytes. The D614G mutation conferred stronger binding to human monocytes than the original Spike protein. As discussed above, we recovered two fractions following the PNGase F treatment, one with a 40 kDa reduction on SDS-PAGE and the other a 60 kDa decrease and we chose to evaluate the fraction with a 40 kDa reduction in subsequent experiments. Consistent with a loss of N-linked glycans the PNGase F treatment reduced the binding to the lectin PHA, which recognizes complex carbohydrates, and it resulted in a sharp reduction in Siglec-F binding. The lower molecular weight fraction recovered after PNGase F treatment no longer bound ACE2. While our studies showed that alveolar macrophages likely employ Siglec-F as a capturing receptor they possess other receptors that also can capture the spike protein. The downstream consequences of engaging SiglecF and other Siglecs by the SARS-CoV-2 spike protein will require additional studies.

      While acknowledging the possibility of some batch-batch variation in recombinant protein preparation, we don’t think this was a major issue. We have noted some batch-batch variations in yield- efficiency, however the purified proteins consistently gave similar results in the various experiments.

      ‐ Fig 3: The same concern described above applies to the hCoV‐HKU1 spike protein. In Panel D, the PNGase and Kifunensine treatment did not appear to abrogate the neutrophil recruitment. Panel A did not include PNGase and Kif Tx spike proteins. Quantification of images in panel D is missing and should be done on many randomly selected areas.

      We analyzed the neutrophil count of images in panel D and the results are presented. (Figure 3-figure supplement 1C). The Kifunensine treatment reduced the neutrophil recruitment at 3 hours, while the PNGase F treated Spike protein recruited as well or slightly more neutrophils. The hCoV-HKU1 S1 domain did not differ much from the saline control.

      ‐ Fig 4: Kifunensine Tx spike caused more increase in neutrophil damage after intrascrotal injections. PNGase Tx spike was not tested. Connection between Siglec‐spike binding and neutrophil recruitment/damage is lacking.

      Exteriorized cremaster muscle imaging functions as a model system for monitoring neutrophil behavior recruited by spike proteins within the local tissue, distinct from Siglec F-positive alveolar macrophages residing in lung tissue. Hence, our primary focus was not on investigating the Siglec/Spike protein interaction. Consequently, we did not utilize PNGase F-treated spike protein in these experiments. To clarify this issue, we added a sentence in main text ‘Although this model lacks Siglec F-positive macrophages, it is worth monitoring the effect of the SARS-CoV-2 Spike protein on neutrophils recruited in the inflammatory local tissue.’

      ‐ Fig 5. Neutrophil injury was also seen after inhalation (intranasal) of spike protein in mice and in vitro with human neutrophils. Panel B shows no titrating effects of spike (from 0.1 to 2) on Netosis of murine neutrophils. Panel C: Netosis was seen with human neutrophils at 1 but not 0.1. Is this species difference important?

      Given the observation of neutrophil NETosis in the mouse imaging experiment, our objective was to characterize the direct impact of the spike protein on human and murine neutrophils. The origins of the neutrophils are different as the murine neutrophils were purified from mouse bone marrow while the human neutrophils were purified from human blood. Both purification protocols led to greater than 98% neutrophils. However, the murine neutrophils contain many more immature cells (50-60%) because the bone marrow served as their source. Furthermore, the murine neutrophils are from 6–8-week-old mice while the human neutrophils are from 30-50 year-old humans. More work would be needed to sort out whether there is any difference between human and mouse neutrophils in their propensity to undergo netosis in response to Spike protein.

      ‐ Kifunensine Tx again did not cause any reduction, indicating the lack of involvement of sialic acid. How was this related to Siglec participation directly or indirectly? There was no quantification for Panel D.

      We do not think that Siglecs play a role in the induction of neutrophil netosis as the Spike proteins lacking Siglec interactions induced similar levels of netosis. Likely other neutrophil receptors are important. As noted in the text,

      "human neutrophils express several C-type lectin receptors including CLEC5A, which has been implicated in SARS-CoV-2 triggered neutrophil NETosis." Our goal with the data in Panel D was to visualize human neutrophil NETosis on trimer-bearing A549 cells we relied on the flow cytometry assays for quantification.

      ‐ The rationale for testing cation dependence is unclear and should be described. What is the significance of "cations enhanced leukocyte binding particularly so with the high mannose protein"? Are there cationdependent receptors for spike independent of glycans and huACE‐2? If so, how is this relevant to the main topic of this paper?

      It is well known that many glycan bindings by C-type lectins are calcium-dependent, involving specific amino acid residues that coordinate with calcium ions and bind to the hydroxyl groups of sugars. As discussed in our previous draft, the C-type lectin receptor L-SIGN has been suggested as a calciumdependent receptor for SARS-CoV-2, specifically interacting with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. Therefore, it was worthwhile to investigate the calcium-dependent manner of spike protein binding to various types of immune cells. We added some data to this figure. It now includes the binding profile of the D614G protein. In addition, we corrected the binding data by subtracting the fluorescent signal from the unstained control cells.

      ‐ Fig 7: human Siglec 5 and 8 were studied in comparison with mouse Siglec F. Recombinant protein data are not congruent with transfected 293 cell data. Panel A, the best binding to hSiglec 5 and 8 are the PNGase F Tx spike protein; how to interpret these data? Panel B: only the WT and D614G spike proteins binding to Siglec 5 and 8 on transfected cells. It made sense that kif Tx (high‐mannose) and PNGaseF Tx (no glycan) spike would not bind to the Siglecs, but they did not bind to ACE2 either, indicative of nonfunctional spike proteins.

      We discussed this as follows: ‘The closest human paralog of mouse Siglec-F is hSiglec-8 (reference 40). While expressed on human eosinophils and mast cells, human AMs apparently lack it. In contrast, human AMs do express Siglec-5 (reference 37). Along with its paired receptor, hSiglec-14, Siglec-5 can modulate innate immune responses (reference 41). When tested in a bead binding assay, in contrast to Siglec-F, neither hSiglec-5 or -8 bound the recombinant spike protein, yet their expression in a cellular context allowed binding. The in vitro bead binding assay we established demonstrated the specific binding of the bait molecule to target molecules. However, it does have limitations in replicating the complexities of the actual cellular environment. As discussed previously the PNGase Tx fraction we used in these experiments retained ACE2 binding, but loss binding to Siglec-F in the bead assay. In a biacore assay, not shown, the PNGase Tx fraction bound L-Sign and DC-Sign better than the untreated trimer, and it retained human ACE2 binding although it bound less well than wild type-trimer. Why the PNGase Tx fractions bound poorly to the human ACE2 transfected HEK293 cells is unclear. A higher density of recombinant ACE2 on the beads compared to that expressed on the surface of HEK293 may explain the difference. Alternatively in the bead assay we used a recombinant human ACE2-Fc fragment fusion protein purified from HEK293 cells, while in the transfection assay, we expressed human full length ACE2. The biacore, the bead binding, and the functional assays we performed all suggest that we had used intact recombinant proteins.

      ‐ Fig 8: This last set of experiment was to measure cytokine release by different types of macrophage cultures treated with spike from different cells with vs without Kifunensine Tx. The connection of these experiments to the rest is tenuous and is not explained. This is one of the examples where bits of data are presented without tying them together.

      Dysregulated cytokine production significantly contributes to the pathogenesis of severe COVID-19 infection. Since we had observed strong binding of the spike protein to human monocytes and murine alveolar macrophages, we tested whether the spike protein altered cytokine production by human monocyte-derived macrophages. Depending on the culture conditions human monocytes can be differentiated M0, M1, or M2 phenotypes. Each type of macrophage responds differently to stimulants, often leading to distinct patterns of cytokine secretion. These patterns offer valuable insights into the immune response. The cytokine profiling conducted in this study enhances our understanding of how distinct macrophage types react to the spike protein.

      ‐ Discussion section did not describe how the various experiments and data are tied together. The authors explained the interactions of spike with different cell types in each paragraph separately, leaving this reviewer really confused as to what the authors want to convey as the main message of the paper.

      We have modified discussion to address this issue.

      Reviewer #3 (Recommendations For The Authors):

      ‐ The authors may want to refer to "intranasal instillation" to distinguish it from inhalation of an aerosolised liquid. How was the dose of the spike protein selected? There is some dose information in different settings, but usually between 0.1‐1 µg/ml or 0.1 µg‐5 µg range for in vivo injection, but the rationale for these ranges should be discussed. Is this mimicking a real situation during infections or a condition that might be used for vaccines?

      While inhalation of aerosolized liquid closely mimics the natural route of human exposure to respiratory infectious materials, intranasal instillation with a liquid inoculum remains a widely accepted standard approach for virus or vaccine inoculation across various laboratory species. To clearly define our mouse model, we are changing the term 'inhalation' to 'instillation'. We previously answered to Reviewer #2 as following: To visualize the acquisition of spike protein and track cells that have acquired the spike protein, we conducted a series of tests and optimizations using different concentrations of Alexa Fluor 488 labeled spike protein, ranging from 0.5 to 5 µg. During the processing of lung tissue for microscopic imaging, it was of utmost importance to preserve the integrity of the labeled spike protein on the tissue samples. Through our investigations, we determined that an instillation of 3 µg of Alexa Fluor 488 labeled spike protein yielded the most optimal signal strength across the lung sections. Notably, in many mouse models employing intra-nasal instillation protocols for SARS-CoV-2 spike protein or RBD domain-only recombinant proteins, a dosage of approximately 3 µg or higher was commonly used. Hence, based on these references and our preliminary studies, we selected 3 µg as the optimal concentration of instilled spike protein per mouse.

      ‐ Controls are not evenly applied. In some cases, the control for the large and complex SARS‐CoV2 spiker trimer is PBS. This seems insufficient to control against effects of injecting such complex proteins that can undergo significant conformational changes after uptake by a cell. In some cases, human coronavirus spike proteins from different viruses are used, but not much is said about these proteins and the different glycoforms are not explored. Are these prepared in the same way and do they have similar glycoforms. For example, if the Siglecs bind sialic acid on N‐linked glycans, then why do the purified Siglecs or Siglecs expressed in cells not bind the HKU‐1 spike, which would have such sialic acids if expressed in the same way as the CoV2 spike?

      We have taken careful consideration to select an appropriate control material for these experiments. Initially, we opted to employ Saline or PBS for intranasal instillation as a vehicle control, a choice aligned with the approach taken in numerous previous studies involving lung inflammation mouse models. However, as the reviewer pointed out, we share the concern for achieving more meaningful and comparable control materials, particularly considering the size and complexity of the recombinant protein. In accordance with this perspective, we introduced glycan-modified spike proteins and the HCoV-HKU1 S1 subunit. Figure 3 illustrates our comprehensive evaluation of various spike proteins in terms of their impact on neutrophil recruitment. The diversity of sialic acid structures observed on recombinant proteins expressed within the same cell emerges from the intricate interplay of multiple factors within the cellular glycosylation machinery. This complex enzymatic process empowers cells to finely modulate glycan structures and sialic acid patterns, tailoring them to suit the diverse biological functions of distinct proteins. Despite structural similarities between the HCoV-HKU1 and SARS-CoV-2 spike proteins, their glycan modifications vary, thereby leading to distinct binding properties with various Siglec subtypes. All recombinant proteins used in this study except for the S1 subunits were generated within our laboratory. These include the wild-type spike protein, the D614G Spike protein, the Kifunensine-treated high mannose spike proteins, and the PNGase F-treated deglycosylated spike proteins. All the proteins were produced using the same protocol using CHO cells or on occasion HEK293F cells. We have indicated in the manuscript where we used HEK293F cells for the protein production otherwise they were produced in CHO cells.

      ‐ Figure 1 F‐I, there should be a control for VLP without SARS‐CoV2 spike as the VLP will contain other components that may be active in the system.

      We tested the delta Env VLP for alveolar macrophage acquisition and neutrophil recruitment. We found a similar alveolar macrophage acquisition of the VLPs, but significantly less neutrophil recruitment compared to the free Spike protein. Since the uptake pattern with the VLPs matched that of the spike protein we did not consider adding a non-spike bearing VLP as a control. The rapid VLPs clearance into the lymphatics shortly after instillation may account for the reduced neutrophil recruitment following their instillation (Figure 1 figure supplement 2B, C).

      ‐ In Figure 1H, that do they mean by autofluorescence? Is this the cyan signal?

      Is the green signal also autofluorescence as this is identified as the VLP?

      We appreciate reviewer pointing out the typo regarding autofluorescence in the figure image. To provide clarity regarding the background in all lung section images, we have included additional supplemental data. During the fixation process of lung tissue, various endogenous elements in the tissue sample contribute to autofluorescence when exposed to lasers in the confocal microscope. Specifically, collagen and elastin present in the lung vasculature, including airways and blood vessels, are dominant structures that generate autofluorescence. To address this issue, we have implemented optimizations to distinguish between real signals and the noise caused by autofluorescence. We inadvertently failed to indicate the source of the strong cyan signal. The signal is due to Evans Blue dye delineating lung airway structures, which contain collagen and elastin—known binding materials for Evans Blue dye. This explains the strong fluorescence signals observed in the airways. We conjugated the recombinant spike protein with Alexa Fluor 488, and viral-like particles (VLPs) were visualized with gag-GFP. (Figure 1 figure supplement 2A, D)

      ‐ The control for SARS‐CoV2 spike trimer is PBS, but how can the authors distinguish patterns specific to the spike trimer from any other protein delivered by intranasal instillation. Could they use another channel with a control glycoprotein to determine if there is anything unique about the pattern for spike trimer?

      Alveolar macrophages employ numerous receptors to capture glycoproteins that have mannose, Nacetylglucosamine, or glucose exposed. Galactose-terminal glycoproteins are typically not bound. We do not think that the Spike protein is unique in its propensity to target alveolar macrophages.

      ‐ What is the parameter measured in Figure S2B?

      The percentage of the different cell types that have retained the instilled Spike protein at the three-hour time point. .

      ‐ The Spike trimer with high mannose oligosaccharides may gain binding to the mannose receptor. It may be helpful to state the distribution of this receptor and comment is it could be responsible for this having the largest effect size for some cell types.

      We agree that the spike trimer with high mannose should target cells bearing the mannose receptor. We have modified the discussion to address this point and have mentioned some of the cell types likely to bind the high mannose bearing spike protein.

      ‐ A key experiment is the Evans Blue measure of lung injury in Figure 3A. A control with the HKU‐1 spike is also performed, but more details on the matching of this proteins production to the SARS‐CoV2 spike trimer and the quantification of these comparative result should be provided. To show that the SARSCoV2 spike trimer can cause tissue injury on its own seems like a very important result, but the impact is currently reduced by the inconsistent application of controls and quantification of key results. Furthermore, if these results can be repeated in the B6 and B6 K18‐hACE2 mouse model it might further increase the impact by demonstrating whether or not hACE2 contributes to this effect.

      We repeated the lung permeability assay using the S1 subunit from the original SARS-CoV-2 and the S1 subunit from HCoV-HKU1. Both proteins were made by the same company using a similar expression system and purification protocol. Consistent with our original data, the instillation of the SARS-CoV-2 S1 subunit led to an increase in lung vasculature permeability, whereas the HCoV-HKU-1 S1 subunit had a minimal impact. (Figure 3 figure supplement 1A). This experiment suggests that it the S1 subunit that leads to the increase in vascular permeability. To address the contribution of hACE2 in this phenomenon, we conducted a lung permeability assay using K18-hACE2 transgenic mice. The K18-hACE2 transgenic mice exhibited a slight increase in lung vasculature permeability upon SARS-CoV-2 trimer instillation compared to the non-transgenic mice. This suggests that the hACE2-Spike protein interaction may contribute to an increase in lung vascular permeability during SARS-CoV-2 lung infection (Figure 3 figure supplement 1B).

      ‐ For Figure 4A, could they provide quantification. The neutrophil extravasation with Trimer appears quite robust, but the authors seem to down‐play this and it's not clear without quantification.

      To address this issue, we analyzed and graphed the neutrophil numbers in each image. Injection of the trimer along with IL-1β significantly increased neutrophil infiltration. (Figure 4 figure supplement 1)

      ‐ In Figure 4B, there are no neutrophils at all in the BSA condition. Is this correct? Intravascular neutrophils were detected with PBS injection in Figure 4A.

      We demonstrated that the neutrophil behaviors occur within the infiltrated tissue rather than within the blood vessels. Even when examining the blood vessels in all other images, it is challenging to identify neutrophils adhering to the endothelium of the blood vessels. Neutrophils observed in the PBS 3-hour control group are likely acute responders to the local injection, as a smaller number of neutrophils were observed in the 6-hour image.

      ‐ In Figure 5A the observation of neutrophil response in lung slices seems to be presented an anecdotal account. The neutrophil appears to polarize, but is this a consistent observation? How many such observations were made?

      We have consistent observations across three different experiments. In addition, highly polarized and fragmented neutrophils were consistently observed in the fixed lung section images.

      ‐ The statement: "human Siglec‐5 and Siglec‐8 bound poorly despite being the structural and functional equivalents of Siglec F, respectively (37)". How can one Siglec be the structural and the other the functional equivalent of Siglec‐F? It might help to provide a little more detail as to how these should be seen.

      Mouse Siglec-F has two distinct counterparts in the human Siglec system, both in terms of structure and function. In the context of domain structure, human Siglec-5 serves as the counterpart to mouse Siglec-F. However, it's important to note that while human Siglec-8 is not a genetic ortholog of mouse Siglec-F, it is expressed on similar cellular populations and functions as a functional paralog.

      ‐ The assay using purified proteins and proteins expressed in cells don't fully agree. For example, it's very surprising that recombinant Siglec 5 and 8 bind better to the non‐glycosylated form than to the glycosylated trimer. It appears from Figure S1 that the PNGaseF treated Spike contains at least partly glycosylated monomers and it also appears that the Kifunesine effect may be partial. PNGaseF may have a hard time removing some glycans from a native protein.

      We were also surprised by the results using the PNGase F treated Spike protein in that it lost binding to Siglec-F and retained binding to human Siglec-5 and 8 in the bead assay, shown in Figure 7A. As explained above we used a purified fraction of the PNGase F treated protein that retained some functional activity as assessed in the ACE2 binding assay and in biacore assays not shown. The persistent binding of Siglec-5 and Siglec-8 suggests that removal of some of the complex glycans had revealed sites capable of binding Siglec-5 and 8. We would agree with the reviewer that the PNGase treatment we used only removed some of the glycans from the native protein. In data not shown the high mannose spike protein behaved as predicted in biacore assays, binding better to DC-SIGN and maltose binding lectin, but less well to PHA and less well to ACE2. The high mannose trimer also bound less to the HEK293 cells expressing ACE2, Siglec-5, or Siglec-8 as well as peripheral blood leukocytes.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      In this study, Yan et al. investigate the molecular bases underlying mating type recognition in Tetrahymena thermophila. This model protist possesses a total of 7 mating types/sexes and mating occurs only between individuals expressing different mating types. The authors aimed to characterize the function of mating type proteins (MTA and MTB) in the process of self- and non-self recognition, using a combination of elegant phenotypic assays, protein studies, and imaging. They showed that the presence of MTA and MTB in the same cell is required for the expression of concavalin-A receptors and for tip transformation - two processes that are characteristic of the costimulation phase that precedes cell fusion. Using protein studies, the authors identify a set of additional proteins of varied functions that interact with MTA and MTB and are likely responsible for the downstream signaling processes required for mating. This is a description of a fascinating self- and non-self-recognition system and, as the authors point out, it is a rare example of a system with numerous mating types/sexes. This work opens the door for the further understanding of the molecular bases and evolution of these complex recognition systems within and outside protists.

      The results shown in this study point to the unequivocal requirement of MTA and MTB proteins for mating. Nevertheless, some of the conclusions regarding the mode of functioning of these proteins are not fully supported and require additional investigation.

      Strengths:

      (1) The authors have established a set of very useful knock-out and reporter lines for MT proteins and extensively used them in sophisticated and well-designed phenotypic assays that allowed them to test the role of these proteins in vivo.

      (2) Despite their apparent low abundance, the authors took advantage of a varied set of protein isolation and characterization techniques to pinpoint the localization of MT proteins to the cell membrane, and their interaction with multiple other proteins that could be downstream effectors. This opens the door for the future characterization of these proteins and further elucidation of the mating type recognition cascade.

      Weaknesses:

      The manuscript is structured and written in a very clear and easy-to-follow manner. However, several conclusions and discussion points fall short of highlighting possible models and mechanisms through which MT proteins control mating type recognition:

      (1) The authors dismiss the possibility of a "simple receptor-ligand system", even though the data does not exclude this possibility. The model presented in Figure 2 S1, and on which the authors based their hypothesis, assumes the independence of MTA and MTB proteins in the generation of the intracellular cascade. However, the results presented in Figure 2 show that both proteins are required to be active in the same cell. Coupled with the fact that MTA and MTB proteins interact, this is compatible with a model where MTA would be a ligand and MTB a receptor (or vice-versa), and could thus form a receptor-ligand complex that could potentially be activated by a non-cognate MTA-MTB receptor-ligand complex, leading to an intracellular cascade mediated by the identified MRC proteins. As it stands, it is not clear what is the proposed working model, and it would be very beneficial for the reader for this to be clarified by having the point of view of the authors on this or other types of models.

      We are very grateful that Reviewer #1 proposed the possibility that MTA and MTB form a receptor-ligand complex in which one acting as the ligand and the other as the receptor. We considered this hypothesis when asking how dose MTRC function, too. However, our current results do not support this idea. For instance, if MTA were a ligand and MTB a receptor, we would expect a mating signal upon treatment with MTAxc protein, but not with MTBxc. Contrary to this expectation, our experiments revealed that both MTAxc and MTBxc exhibit very similar effects (Figure 5, green and blue), and their combined treatment produces a stronger effect (Figure 5, teal). This suggests a mixed function for both proteins. (We incorporated this discussion into the revised version [line 120-121, 240-244].) It is pity that our current knowledge does not provide a detailed molecular mechanism for this intricate system. We are actively investigating the protein structures of MTA, MTB, and the entire MTRC, hoping to gain deeper insights into the molecular functions of MTA and MTB.

      Additionally, we also realized that the expression we used in the previous version, “simple receptor-ligand model”, is not clearly defined. As Reviewer #1 pointed out, in this section, we examined whether the individual proteins of MTA and MTB act as a couple of receptor and ligand. We think this is the simplest possibility as a null hypothesis for Tetrahymena mating-type recognition. We have clarified it in the revised version (line 90-91, 104-106). According to this section, we proposed that MTA and MTB may form a complex that serves as a recognizer (functioning as both ligand and receptor) (line 117-118).

      (2) The presence of MTA/MTB proteins is required for costimulation (Figure 2), and supplementation with non-cognate extracellular fragments of these proteins (MTAxc, or MTBxc) is a positive stimulator of pairing. However, alone, these fragments do not have the ability to induce costimulation (Figure 5). Based on the results in Figures 5 and 6 the authors suggest that MT proteins mediate both self and non-self recognition. Why do MTAxc and MTBxc not induce costimulation alone? Are any other components required? How to reconcile this with the results of Figure 2? A more in-depth interpretation of these results would be very helpful, since these questions remain unanswered, making it difficult for the reader to extract a clear hypothesis on how MT proteins mediate self- and non-self-recognition.

      Several factors could contribute to the inability of MTA/Bxc to induce costimulation. It is highly likely that additional components are necessary, given that MTA/B form a protein complex with other proteins. Moreover, the expression of MTA/Bxc in insect cells, compared with Tetrahymena, might result in differences in post-translational modifications. Additionally, there are variations in protein conditions; on the Tetrahymena membrane, these proteins are arranged regularly and concentrated in a small area, while MTA/Bxc is randomly dispersed in the medium. The former condition could be more efficient. If there is a threshold required to stimulate a costimulation marker, MTA/Bxc may fail to meet this requirement. Much more studies are needed to fully answer this question. We acknowledged this limitation in the revised version (line 244-248).

      Reviewer #2:

      This manuscript reports the discovery and analysis of a large protein complex that controls mating type and sexual reproduction of the model ciliate Tetrahymena thermophila. In contrast to many organisms that have two mating types or two sexes, Tetrahymena is multi-sexual with 7 distinct mating types. Previous studies identified the mating type locus, which encodes two transmembrane proteins called MTA and MTB that determine the specificity of mating type interactions. In this study, mutants are generated in the MTA and MTB genes and mutant isolates are studied for mating properties. Cells missing either MTA or MTB failed to co-stimulate wild-type cells of different mating types. Moreover, a mixture of mutants lacking MTA or MTB also failed to stimulate. These observations support the conclusion that MTA and MTB may form a complex that directs mating-type identity. To address this, the proteins were epitope-tagged and subjected to IP-MS analysis. This revealed that MTA and MTB are in a physical complex, and also revealed a series of 6 other proteins (MRC1-6) that together with MTA/B form the mating type recognition complex (MTRC). All 8 proteins feature predicted transmembrane domains, three feature GFR domains, and two are predicted to function as calcium transporters. The authors went on to demonstrate that components of the MTRC are localized on the cell surface but not in the cilia. They also presented findings that support the conclusion that the mating type-specific region of the MTA and MTB genes can influence both self- and non-self-recognition in mating.

      Taken together, the findings presented are interesting and extend our understanding of how organisms with more than two mating types/sexes may be specified. The identification of the six-protein MRC complex is quite intriguing. It would seem important that the function of at least one of these subunits be analyzed by gene deletion and phenotyping, similar to the findings presented here for the MTA and MTB mutants. A straightforward prediction might be that a deletion of any subunit of the MRC complex would result in a sterile phenotype. The manuscript was very well written and a pleasure to read.

      Thanks for the valuable comments and suggestions. We are currently in the process of constructing deletion strains for these genes. As of now, we have successfully obtained ΔMRC1-3 and MRC4-6 knockdown strains. Our preliminary observations indicate that ΔMRC1-3 strains are unable to undergo mating. However, we prefer not to include these results in the current manuscript, as we believe that more comprehensive studies are still needed.

      Reviewer #3:

      The authors describe the role, location, and function of the MTA and MTB mating type genes in the multi-mating-type species T. thermophila. The ciliate is an important group of organisms to study the evolution of mating types, as it is one of the few groups in which more than two mating types evolved independently. In the study, the authors use deletion strains of the species to show that both mating types genes located in each allele are required in both mating individuals for successful matings to occur. They show that the proteins are localized in the cell membrane, not the cilia, and that they interact in a complex (MTRC) with a set of 6 associated (non-mating type-allelic) genes. This complex is furthermore likely to interact with a cyclin-dependent kinase complex. It is intriguing that T. thermophila has two genes that are allelic and that are both required for successful mating. This coevolved double recognition has to my knowledge not been described for any other mating-type recognition system. I am not familiar with experimental research on ciliates, but as far as I can judge, the experiments appear well performed and mostly support the interpretation of the authors with appropriate controls and statistical analyses.

      The results show clearly that the mating type genes regulate non-self-recognition, however, I am not convinced that self-recognition occurs leading to the suppression of mating. An alternative explanation could be that the MTA and MTB proteins form a complex and that the two extracellular regions together interact with the MTA+MTB proteins from different mating types. This alternative hypothesis fits with the coevolution of MTA and MTB genes observed in the phylogenetic subgroups as described by Yan et al. (2021 iScience). Adding MTAxc and/or MTBxc to the cells can lead to the occupation of the external parts of the full proteins thereby inhibiting the formation of the complex, which in turn reduces non-self interactions. Self-recognition as explained in Figure 2S1 suggests an active response, which should be measurable in expression data for example. This is in my opinion not essential, but a claim of self-recognition through the MTA and MTB should not be made.

      We express our gratitude to Reviewer #3 for proposing the occupation model and have incorporated this possibility into the manuscript. We believe it is possible that occupation may serve as the molecular mechanism through which self-recognition negatively regulates mating. If there is a physical interaction between mating-type proteins of the same type, but this interaction blocks the recognition machinery rather than initiating mating, it can be considered a form of self-recognition. This aligns with the observation that strains expressing MTA/B6 and MTB2 mate normally with WT cells of all mating types except for VI and II (line 203-204). A concise discussion on this topic is included in the manuscript (line 288-293, 659-661). We are actively investigating the downstream aspects of mating-type recognition, and we hope to provide further insights into this question soon.

      The authors discuss that T. thermophila has special mating-type proteins that are large, while those of other groups are generally small (lines 157-160 and discussion). The complex formed is very large and in the discussion, they argue that this might be due to the "highly complex process, given that there are seven mating types in all". There is no argument given why large is more complex, if this is complex, and whether more mating types require more complexity. In basidiomycete fungi, many more mating types than 7 exist, and the homeodomain genes involved in mating types are relatively small but highly diverse (Luo et al. 1994 PMID: 7914671). The mating types associated with GPCR receptors in fungi are arguably larger, but again their function is not that complex, and mating-type specific variations appear to evolve easily (Fowler et al 2004 PMID: 14643262; Seike et al. 2015 PMID: 25831518). The large protein complex formed is reminiscent of the fusion patches that develop in budding or fission yeasts. In these species, the mating type receptors are activated by ligand pheromones from the opposite mating type that induce polarity patch formation (see Sieber et al. 2023 PMID: 35148940 for a recent review). At these patches, growth (shmooing) and fusion occur, which is reminiscent (in a different order) of the tip transformation in T. thermophilia. The fusion of two cells is in all taxa a dangerous and complex event that requires the evolution of very strict regulation and the existence of a system like the MTRC and cyclin-dependent complex to regulate this process is therefore not unexpected. The existence of multiple mating types should not greatly complicate the process, as most of the machinery (except for the MTA and MTB) is identical among all mating types.

      We are very grateful that Reviewer #3 provide this insightful view and relevant papers. In response to the feedback, we removed the sentences regarding “multiple mating types greatly complicate the process” in the revised version. Instead, we have introduced a discussion section comparing the mating systems of yeasts and Tetrahymena (line 279-286).

      The Tetrahymena/ciliate genetics and lifecycle could be better explained. For a general audience, the system is not easy to follow. For example, the ploidy of the somatic nucleus with regards to the mating type is not clear to me. The MAC is generally considered "polyploid", but how does this work for the mating type? I assume only a single copy of the mating type locus is available in the MAC to avoid self-recognition in the cells. Is it known how the diploid origin reduces to a single mating type? This does not become apparent from Cervantes et al. 2013.

      In T. thermophila, the MIC (diploid) contains several mating-type gene pairs (mtGP, i.e., MTA and MTB) organized in a tandem array at the mat locus on each chromosome. In sexual reproduction, the new MAC of the progeny develops from the fertilized MIC through a series of genome editing events, and its ploidy increases to ~90 by endoreduplication. During this process, mtGP loss occurs, resulting in only one mtGP remaining on the MAC chromosome. The mating-type specificity of mtGPs on each chromosome within one nucleus becomes relatively pure through intranuclear coordination. After multiple assortments (possibly caused by MAC amitosis during cell fission), only mtGPs of one mating-type specificity exist in each cell, determining the cell’s mating type.

      It is pity that the exact mechanisms involved in this complicated process remain a black box. The loss of mating-type gene pairs is hypothesized to involve a series of homologous recombination events, but this has not been completely proven. Furthermore, there is no clear understanding of how intranuclear coordination and assortment are achieved. While we have made observations confirming these events, a breakthrough in understanding the molecular mechanism is yet to be achieved.

      We included more information in the revised version (line 672-683). Given the complexity of these unusual processes, we recommend an excellent review by Prof. Eduardo Orias (PMID: 28715961), which offers detailed explanations of the process and related concepts (line 685-686).

      Also, the explanation of co-stimulation is not completely clear (lines 49-60). Initially, direct cell-cell contact is mentioned, but later it is mentioned that "all cells become fully stimulated", even when unequal ratios are used. Is physical contact necessary? Or is this due to the "secrete mating-essential factors" (line 601)? These details are essential, for interpretation of the results and need to be explained better.

      Sorry that we didn’t realize the term “contact” is not precise enough. In Tetrahymena, physical contact is indeed necessary, but it can refer to temporary interactions. Unlike yeast, Tetrahymena cells exhibit rapid movement, swimming randomly in the medium. Occasionally, two cells may come into contact, but they quickly separate instead of sticking together. Even newly formed loose pairs often become separated. As a result, one cell can come into contact with numerous others and stimulate them. We have clarified this aspect in the revised version (line 50-51, 57).

      Abstract and introduction: Sexes are not mating types. In general, mating types refer to systems in which there is no obvious asymmetry between the gametes, beyond the compatibility system. When there is a physiological difference such as size or motility, sexes are used. This distinction is of importance because in many species mating types and sexes can occur together, with each sex being able to have either (when two) or multiple mating types. An example are SI in angiosperms as used as an example by the authors or mating types in filamentous fungi. See Billiard et al. 2011 [PMID: 21489122] for a good explanation and argumentation for the importance of making this distinction.

      We have clarified the expression in the revised version (line 20, 38, 40, 45).

      Recommendations for the authors:

      Reviewer #1:

      I really enjoyed reading this manuscript and I think a few tweaks in the writing/data presentation could greatly improve the experience for the reader:

      (1) The information about your previous work in identifying downstream proteins CDK19, CYC9, and CIP1 (lines 170-173) could be directly presented in the introduction.

      We have moved this information in the introduction in the revised version (line 74-77).

      (2) For a reader who is not familiar with Tetrahymena, a few more details on how reporter and knock-out lines are generated would be beneficial.

      We introduced the knock-out method in Figure 2 – figure supplement 1B, HA-tag method in Figure 3A, and MTB2-eGFP construction method in Figure 4E. In addition, we introduced how co-stimulation markers observed in Materials and Methods (line 404-410)

      (3) Figures 5 and 6: clarify the types of pairing and treatments that were done directly in the figure (eg. adding additional labels). As of now, it is necessary to go through the text and legend to try and understand in detail what was done.

      Cell types and treatments were directly introduced in the revised figure (Figure 5 and 6).

      (4) The logical transition in lines 136-142 is hard to follow.

      We rewrote this paragraph in the revised version (lines 143-156). Additionally, we added a figure to illustrate the theoretical mating-type recognition model between WT cells and ΔCDK19, ΔCYC9 cells, MTAxc, MTBxc proteins, and ΔMTA, ΔMTB cells (Figure 2 – figure supplement 1D-G).

      (5) Lines 191-196: the fact that cells expressing multiple mating types can self goes against an active self-rejection system - if this is the case there should be self-rejection among all expressed mating types. Unless non-self recognition is an active process and self-recognition is simply the absence of non-self recognition. The authors briefly mention this in lines 263-265, but it would be interesting to expand and clarify this.

      We appreciate that Reviewer #1 notice the interesting selfing phenotype of the MTB2-eGFP (MTVI background) strain. We further discussed it in the revised manuscript (line 298-306).

      (6) The authors briefly mention the possibility of different mating types using different recognition mechanisms (lines 255-260), based on the big differences in the size of the mating-specific region of MT proteins. Following this and the weakness nr. 2, I think it would be pertinent to gather and present more information on the properties and structures of the mating-type specific regions of MT proteins. Simple in silico analysis of motifs, structure, etc. could help clarify the role of these regions. It seems more parsimonious that MT proteins would have variable mating type specific regions that account for the recognition of the different mating types, and conserved cytoplasmic functions that could trigger a single downstream signaling cascade. It would be interesting to know the authors' opinion on this.

      We are very grateful for this suggestion. Actually, we are currently working on determining the 3D structure of MTRC. The Alphafold2 prediction indicates that the MT-specific region is comprised of seven global β-sheets, resembling the structure of immunoglobulins (Ig). Our most recent cryo-EM results have revealed a ~15Å structure, aligning well with the prediction. However, the main challenge lies in the low expression levels, both in Tetrahymena and insect/mammal cells. We anticipate obtaining more detailed results soon. Therefore, we prefer to present the MT recognition model with robust experimental evidence in the future, and didn’t discuss too much on this aspect in the current manuscript.

      (7) Adding a figure including a proposed model, as well as expanding the discussion on the points presented as "weaknesses" would help clarify the ideas/hypothesis on how the mating recognition works. I think this would really elevate the paper and help highlight the results.

      We added a figure to introduce the model and the weaknesses in the revised version (Figure 7, line 656-665).

      (8) Line 202-203: It is far-fetched to infer subcellular localization based on the data presented here, couterstaining with other dyes and antibodies specific to certain cell components, as well as negative control images, are required.

      Thanks for the suggestion. We attempted to stain cell components using various dyes and antibodies. Unfortunately, we found that cell surface and cilia (especially oral cilia) is very easy to give a false positive signal. We think this issue seriously affects the credibility of the results. It may seem like splitting hairs, but we are trying to be precise.

      Meanwhile, we still believe the mating-type proteins localizes to cell surface because MTA-HA is identified in the isolated cell surface proteins.

      Regarding negative control, as shown in Fig. 4G, where a MTB2-eGFP cell is pairing with a WT cell, no GFP signal is observed in the WT cell.

      (9) Lines 131: clarify the sentence - expression of Con-A receptors requires both MTA and MTB (MTA to receive the signal).

      We modified the sentence in the revised version (line 139-140).

      Reviewer #2:

      Minor points.

      (1) Line 194-196. Why are these cells able to self?

      These cells able to self may because the MTRC contain heterotypic mating-type proteins (MTA6 and MTB2), which activate mating when they interact with another heterotypic MTRC (line 207-208).

      (2) Line 232. What do the authors mean by the term synergistic effect here? Definition and statistics?

      Sorry about the confusion. The synergistic effect refers to the effect of MTAxc and MTBxc become stronger when using together. We clarified it in the revised version (line 232).

      (3) For Figure 4 panel D, are there antibodies that are available as a control for cilia? If so, then blotting this membrane would show that cilia-associated proteins are in the cilia preparation, which is a standard control for sub-cellular fractionation.

      Thanks for the suggestion. Unfortunately, we didn’t find a suitable cilia-specific antibody yet. Instead, we employed MS analysis to confirm the presence of cilia proteins in this sample (line 195-196, Figure 4–Source data 1). We also observed the sample under the microscope, which directly revealed the presence of cilia (Figure 4C).

      (4) At least one reference cited in the text was not present in the reference list. The authors should go through the references cited to ensure that all have made it into the reference list.

      We have checked all the references.

      Some minor edits:

      (1) MTA and MTB are presented in both roman and italics (e.g. line 209) in the manuscript. Maybe all should be in italics? Or is this a distinction between the gene and the protein?

      The italics word (MTA) refers to gene, and non-italics word (MTA) refers to protein.

      (2) Line 251. Change "achieving" to "achieve".

      We have corrected this word (line 266).

      Reviewer #3:

      Line 101. It would help to explain this expectation earlier in this paragraph.

      We explained the expectation in the revised version (line 92-97, 104-106).

      Line 109. How is a co-receptor different from the MTRC complex?

      We have rewritten the relevant sentences to enhance clarity (line 116-119). The molecular function of the MTRC complex could involve acting as a co-receptor or recognizer (functioning as both ligand and receptor). Based on the results presented in this section, we propose that MTA and MTB may function as a complex, but the confirmation of this hypothesis (MTRC) is provided in a later section. Therefore, we did not use the term “MTRC” here. These sentences briefly discuss the molecular function of this complex and explain why MTRC does not appear to function as a co-receptor.

      Line 251: which "dual approach" is referred to?

      Dual approach is referred to both self and non-self recognition. We explained it in the revised version (line 265-266).

      Line 258: what "different mechanisms" do the authors have in mind? Why would a different mechanism be expected? The different sizes could have evolved for (coevolutionary?) selection on the same mechanism.

      Sorry about the confusion. We clarified it in the revised version (line 269-278).

      What we intended to express is that we are uncertain whether the mating-type recognition model we discovered in T. thermophila is applicable to all Tetrahymena species due to significant differences in the length of the mating-type-specific region. We believe it is important to highlight this distinction to avoid potential misinterpretations in future studies involving other Tetrahymena species. At the same time, we look forward to future research that may provide insights into this question.

      Fig 2 C&D. Is it correct that these figures show the strains only after 'preincubation'? This is not apparent from the caption of the text. Additionally, the order of the images is very confusing. Write in the figures (so not just in the caption) what the sub-script means.

      These panels are re-organized in the revised version (Fig. 2C&D). There are three kinds of pictures: “not incubated”, “WT pre-incubated by mutant” and “mutant pre-incubated by WT”.

      The methods used to generate Figure 5 are not clearly described. I understand that the obtained xc proteins were added to the cells, and then washed, after which a test was performed mixing WT-VI and WT-VII cells. Were both cells treated? Or only one of the strains? The explanation for the reused washing medium is not clear and the method is not indicated.

      Both cells are treated. More details are provided in the revised manuscript (line 230-231, 633-634, 637-639, Fig. 5). To prepare the starvation medium containing mating-essential factors, cells were starved in fresh starvation medium for ~16 hours. Subsequently, cells were removed by three rounds of centrifugation (1000 g, 3 min) (line 330-332).

      In general, the figures are difficult to understand without repeated inquiries in the captions. Give more information in the figures themselves.

      More information is introduced in the figure (Fig. 2C, Fig. 3B, Fig. 4A, B, D, Fig. 5 and Fig. 6).

  2. mail-attachment.googleusercontent.com mail-attachment.googleusercontent.com
    1. Similarly, it is a constitutive featureof the concept 'correct' that, if you judge that it is correct for you to disbelieveq and not correct for you to believe q, you are thereby committed to not believ?ing q

      Given the author's thesis, I was wondering if it is a reasonable task to determine/ define the correctness of a belief in such a sense, since many people hold beliefs to be deeply personal and private. Not all beliefs that a person has may necessarily be true, and this knowledge may be possessed by the person themselves as well, but that does not make the belied any less of one. A belief is not fact, and facts are not beliefs--normatively too, when we speak of beliefs, there is an aspect of the personal attached to it. We do not use "believes" as a placeholder for "knows", nor is it a moniker for fact--and i think that inherently suggests that the nature of the correctness of a belief is more subjective, and thus cannot really be said to be determined through the truth value of its propositions. A belief may seem irrational on the surface, but if it holds great value for the person who upholds said belief, it seems uncharitable to suspend judgement on the correctness of it--especially if it a belief that does not have to do with how things are in the world.

    1. Activity: Value statements in what goes viral# 12.7.1. Choose three scenarios# When content goes viral there may be many people with a stake in it’s going viral, such as: The person (or people) whose content or actions are going viral, who might want attention, or get financial gain, or might be embarrassed or might get criticism or harassment, etc. Different people involved might have different interests. Some may not have awareness of it happening at all (like a video of an infant). Different audiences might have interests such as curiosity or desire to bring justice to a situation or desire to get attention for themselves or their ideas based on engaging the viral content, or desire to troll or harass others. Social networking platforms might have interests such as increased attention to their platform or increased advertising, or increased or decreased reputation (in views of different audiences). List at least three different scenarios of content going viral and list out the interests of different groups and people in the content going viral. 12.7.2. Create value statements# Social media platforms have some ability to influence what goes viral and how (e.g., recommendation algorithms, what actions are available, what data is displayed, etc.), though they only have partial control, since human interaction and organization also play a large role. Still, regardless of whether we can force any particular outcome, we can still consider of what you think would be best for what content should go viral, how much, and in what ways. Create a set of value statements for when and how you ideally would want content to go viral. Try to come up with at least 10 value statements. We encourage you to consider different ethics frameworks as you try to come up with ideas.

      As we engage with viral content, whether as creators, participants, or observers, these value statements require us to reflect on the broader implications of online interactions. Behind every viral phenomenon lies a complex web of human stories, aspirations and responsibilities that deserve our thoughtful consideration.

    1. What does the individual badger‘hear’ as a result of the changing pressures on its tympanum that we choose to calla sound?

      Its interesting how he put the word hear in quotes because it shows that we have no way of knowing if badgers perceive sound the way that we do and process it in the way that we can. What we think of as hearing may not be the same process for animals. Even though we can scientifically know the hearing levels of a badger, we can't ever really know what hearing is like for them

    Annotators

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: #RC-2023-02281

      Corresponding author(s): Maurizio Molinari

      Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript from Fasana et al., the authors present data that investigates potential compensatory degradation pathways for misfolded glycoproteins in the ER - postulating that the ER-to-lysosome associated degradation (ERLAD) pathway becomes employed in the absence of a path for substrates to reach the ER-associated degradation (ERAD) mechanism. Using the classic ERAD substrate alpha1-antitrypsin NHK variant (NHK), the authors first demonstrate that pharmacologically preventing access of NHK to ERAD either with KIF (early) or PS-341 (late) elevates the number of LAMP-1 positive endolysosomes also immunoreactive for NHK (via HA), similar to what is observed for the ATZ variant that forms polymers in the ER (Fig 2). The authors next use shRNAs that silence essential ERAD factors (EDEM1, OS-9) involved in glycan recognition to demonstrate comparable enrichment of NHK in endolysosomes through genetic disruption (Fig 3). Next, the authors employ FAM134B-deficient MEFs to demonstrate the requirement for this ER-phagy receptor when ERAD is unavailable (Fig 4). Reconstituting FAM134B-/- MEFs treated with KIF/PS-341 + Baf, with a full length FAM134B rescue plasmid restores endolysosomal accumulation of NHK while a FAM134B-∆LIR does not, providing supporting evidence for substrate rerouting to ERLAD. Finally, the authors use knockouts of Atg7 and Atg13 to demonstrate dependence on LC3 lipidation and independence from macro-ERphagy (Fig 6), that points towards a pathway that is like that used to remove ATZ polymers. From these data, the authors conclude that ERLAD is increasingly engaged for substrate degradation when ERAD is impaired.

      MAJOR COMMENTS 1. All assays rely on quantification of the NHK-HA substrates by microscopy. Would it be possible for the authors to also include biochemical analysis of NHK - potentially including data assessing its changing abundance and glycosylation state?

      To consider this, and other comments, the new submission includes biochemical data (pulse-chase analyses) on NHK (new panels A-D in Fig. 2) and on BACE457delta, an additional ERAD substrate (new Fig. 6). Please also refer to Comment 3.

      In Figure 3D, the knockdown of OS-9.1/2 is modest compared to that of EDEM1 (Fig 3A). Moreover, there is only data from single shRNAs presented. Could the authors please at least include another shRNA to confirm and demonstrate whether the targeting to ERLAD is accordingly scaled to loss of access to ERAD (based on the degree of OS-9 or EDEM1 remaining)?

      __The reviewer is right. The phenotype (i.e., lysosomal delivery of NHK, Figs. 3B, 3C) is quite modest upon EDEM1 silencing. However, one has to consider that in contrast to OS9 lectins, EDEM1 is an enzyme, and residual protein may partially facilitate NHK de-mannosylation and access to the ERAD pathways and therefore reduce the ERLAD contribution for NHK clearance in these cells. Moreover, cells also express EDEM2 and 3 that may partially compensate the loss of EDEM1. __

      While degradation is implied, it is not specifically demonstrated at any point in the manuscript. Perhaps the authors might include some demonstration of NHK stabilization in one of the figures via a translational shutoff or pulse-chase assay.


      __In the new submission, we show biochemical analyses (pulse-chase) that reveal the decay of radiolabeled NHK (Fig. 2A, lanes 1-3) and BACE457delta (Fig. 6A, lanes 1-3), the inhibition by PS341 (lanes 4, 5) and by KIF (lanes 8, 9), and the intervention of lysosomal enzymes when ERAD is inhibited (lanes 6, 7 and 10, 11). Moreover, we confirm that the protein delivered to the endolysosome is eventually degraded by performing a Bafilomycin washout experiment (new Fig. 2J-2O). __

      10-30% of NHK-HA positive endolysosomes are detected even with Baf alone (e.g. Fig 2E)? Does this mean that Baf impairs ERAD to some extent since or is it evidence for continuous ERLAD involvement when ERAD is intact? If so, how much is its contribution?

      Pulse-chase analyses (new Fig. 2D) and published data show that BafA1 or chloroquine do not inhibit clearance of the ERAD substrates NHK and BACE457delta (e.g., Liu et al 1999, Molinari et al 2002, references in the manuscript). A basal level of endolysosomal delivery between the 20 and 30% as quantified with LysoQuant is observed in all experiments (Figs. 2I, 2O, 3C, 3F, 4C, 4K, 5H, 6G, 6O), which have been performed in 3 different cell lines (3T3, HEK293, MEF). We measure similar basal levels also when ER-phagy is monitored on quantification of lysosomal delivery of endogenous ER marker proteins (e.g., CNX), possibly to be ascribed to constitutive ER phagy that controls physiologic ER turnover.


      An accounting of how much ERLAD is contributing to NHK degradation with or without ERAD impairment is not really present.. Effectively, how much degradation capacity is ERLAD making up? These would be interesting data to include if possible as they would speak to the "division of labour" for ER substrate degradation its potentially dynamic nature.

      The biochemical analyses show the contribution of ERLAD on NHK (new Figs 2B, 2C, grey zones) and BACE457delta (new Figs. 6B,C, grey zones) clearance, when ERAD is dysfunctional.

      MINOR COMMENTS 1. In Figure 4, an increase is observed for the rescue of FAM134B-/-MEFs with WT FAM134B that is 50% greater that of WT MEFs, suggesting that its availability might be rate limiting. Could the authors compare the relative levels of FAM134B for the WT and KO-rescue MEFs to address this possibility?

      __The referee is right in assuming that FAM134B, expressed at low levels in these cells, is limiting. We now show the levels of endogenous FAM134B and of recombinant FAM134B in WB (new Fig. 4A). __

      In Figures 1 and 6, the terms siOS9 and siEDEM1 are used but Figure 3 shows data from shRNAs and not siRNAs.

      We apologize for the mistake. We have corrected this in the new Figures 1 and 7.

      Samples from Figure 3 treated with Baf but this is not indicated in the figure or figure legend.


      We have corrected this, thank you.

      VCP/p97 inhibitors typically stabilize ERAD glycoprotein substrates better than proteasome inhibitors do. Is the same degree of endolysosomal targeting present ?


      __For the convenience of the reviewer (we did not put these data in the new manuscript). In our experiments, the p97 inhibitor DBeQ is less efficient in deviating NHK to the endolysosomal degradative compartments, if compared with KIF (see below). At higher doses, DBeQ also inhibits other AAA-ATPases (e.g., VPS4, which plays a role in certain types of autophagy). This, or other cross-reactivities of DBeQ could explain the moderate capacity to activate ERLAD pathways as a response of ERAD inhibition, if compared with the phenotypes observed when ERAD is inhibited with KIF or PS341. __

      Reviewer #1 (Significance (Required)):

      Deconvolution of the different pathways taken by misfolded proteins to escape the ER is of great interest not only to the ER community but also represents consequences to consider for those interested in therapeutics involving UPS inhibition. While concise, this manuscript does a good job of trying to demonstrate the principal of substrate rerouting and the prioritisation of degradation pathways. Overall, the manuscript is well written, the experiments presented are performed to a sufficient standard, the data are lean but of good quality, and the appropriate statistical analyses have mostly been included where necessary and are described. The Methods and Materials is brief but describes the experiments that have been performed. The manuscript is brief in its results and would obviously benefit from additional complementary assays that would strengthen and broaden the authors arguments for rerouting. But too their credit, the authors do not grossly overstate their findings and merely present the culmination of a set of experiments to answer a single question - what happens to a misfolded glycoprotein substrate when ERAD is impaired. This is a key question with broad implications.

      While their limited data clearly demonstrates an acquired dependence on ERLAD, one can't help but wonder how broadly these findings hold true, as only a single glycoprotein substrate example is used.

      We have now added a complete set of experiments (imaging + biochemical to monitor clearance of the model polypeptides by pulse-chase analyses) performed with a second ERAD substrate (BACE457delta, Fig. 6). These data fully recapitulate the results obtained with NHK.


      Moreover, it is not clear what percentage ERLAD contributes to overall NHK degradation (with or without ERAD) as the total NHK amount remaining is not assessed or measured.


      Pulse-chase analyses (new Fig. 2D) and published data (e.g., Liu et al 1999, Molinari et al 2002, references in the manuscript) show that BafA1 or chloroquine do not inhibit clearance of the ERAD substrates NHK and BACE457delta. The biochemical analyses now show the contribution of ERLAD on NHK (new Figs 2B, 2C, grey zones) and BACE457delta (new Figs. 6B,C, grey zones) clearance, when ERAD is dysfunctional.

      Nevertheless, the manuscript is an advancement of understanding of the fate of substrates unable to access ERAD and raises many future questions of interdependency between the ERAD and ERLAD pathways. The data just need a bit of shoring up.

      Expertise - ERAD, UPS, protein quality control

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The endoplasmic reticulum (ER) is a crucial site for protein synthesis and folding within the cell, and strict protein quality control is essential for maintaining ER homeostasis. In this context, ER-associated degradation (ERAD) and the unfolded protein response (UPR) play pivotal roles. Recent researches have highlighted the significance of ER-phagy in protein quality control. In this manuscript, the authors demonstrate the role of FAM134B in degrading misfolded proteins such as ATZ through the ER-phagy pathway when the ERAD pathway is obstructed. This work partially addresses a prominent issue in the field, unveiling the interconnections between different regulatory pathways in maintaining ER homeostasis.

      Major issues: 1: In a multitude of experiments, the authors employed Bafilomycin A1 (BafA1) to block the fusion between autophagosomes and lysosomes, attempting to demonstrate that the clearance of misfolded proteins mediated by FAM134B is independent of autolysosomes. However, in Figure 4, the lack of rescue of FAM134B knockout by overexpressing FAM134B△LIR suggests a dependence on the interaction between FAM134B and LC3. The conclusions drawn before and after appear contradictory.

      We apologize if our explanations were unclear. We have now modified the text and performed new experiments to clarify these issues.

      __The inhibitor of the V-ATPase BafA1 is used here to inhibit the activity of lysosomal hydrolases and to accumulate undegraded material in the LAMP1-endolysosomes (note that these endolysosomes also display RAB7 at their limiting membrane) (Fregno et al 2018, Forrester et al 2019, Fregno et al 2021, …). __

      __In Figs. 2A-2D, we now monitor the lack of NHK stabilization by cell exposure to BafA1 (Fig. 2D), which correlates with lack of accumulation of NHK in the LAMP1-positive compartment (e.g., Fig. 2F, 2J, and quantifications in 2I and 2O). The biochemical data also show that BafA1 stabilizes NHK in cells where ERAD has been inactivated with PS341 or KIF (Fig. 2A, lanes 6, 7, 10, 11 and grey zones in Figs. 2B and 2C), which correlates with accumulation of NHK in LAMP1-positive organelles (Figs. 2G, 2H, 2I, 2K, 2M, 2O). __

      __In Figs. 2J-2O, we have now added panels showing that NHK clearance from the LAMP1-positive endolysosome lumen is restored upon BafA1 washout. __

      Importantly, the involvement of the lipidation machinery, of the ER-phagy receptor FAM134B and of the LC3-binding function of FAM134B (the LIR), does not necessarily imply the involvement of autophagosomes in the process under investigation, as the comment by the referee seems to suggest. For example, both the clearance from the ER of ATZ polymers and of mutant forms of procollagen rely on the LC3 lipidation machinery and on the LC3-binding function of FAM134B, but ERLAD of ATZ polymers does not rely on autophagosomes intervention (new Fig. 1B, arrow 1 and Fregno et al 2018), whereas ERLAD of procollagen relies on intervention of autophagosomes (new Fig. 1B, arrow 2 and Forrester et al 2019).

      2: Some Western blot data are insufficient to substantiate the author's conclusions. For instance, in Figure 5D, the ATG7 KO line is inadequately supported

      The WB show____s the absence of ATG7 in the ATG7-KO cells (a well-established cell line generated in the lab of Masaaki Komatsu (____Komatsu M, et al. J Cell Biol 169: 425-434_) and used in many_ laboratories, including our lab in Fumagalli et al 2016, Fregno et al 2018, Fregno et al 2021, Loi et al 2019, Kucinska et al 2023). We agree with the reviewer that the anti-Atg7 shows cross-reactions. We have now added a WB showing the lack of LC3 lipidation in the Atg7-KO cells exposed to nutrient deprivation (new Fig. 5D).

      3: The author employed Lamp1 antibody for lysosomal staining in cells and observed a significant abundance of lysosomes in some experiments, as depicted in Figure 2C, 2D, 4I, etc. Is the phenomenon of lysosomes extensively filling the entire cell a common occurrence? Is it indicative of a normal physiological state?

      There may be variations depending on the cell type used for the experiments. In the new version of the manuscript, we now present imaging data for 3 cell lines (NIH 3T3 with stable expression of NHK and ATZ (Figs. 2E-2H), MEF (Figs. 2J-2N, 4, 5, 6) and HEK293 with transient expression of ERAD clients (Figs. 3).

      Minor issues: 1: Some immunofluorescence experimental data are unclear. Please request the authors to replace these with more distinct images, as seen in Figure 3B and 3E.


      We hope that the quality of the new images will be considered sufficient for publication.

      2: Some expressions appear to be questionable. For instance, the necessity of utilizing endolysosomes requires clarification.

      For the use of endolysosomes (lysosome would be incorrect in our opinion to indicate these LAMP1/RAB7-positive degradative organelles), we now refer to the papers by Bright et al ____Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity_ Curr Biol 2016, and the original definition by Huotari and Helenius _Endosome maturation EMBO J 2011 (Introduction, page 2).

      3: Some writing lacks precision, such as referring to FAM134B as FAM134.

      __Corrected, thank you____ __ Reviewer #2 (Significance (Required)):

      o General assessment: o Advance: provide an meaningful evidence that how two degradative pathways are coordinated in maintaining ER homeostasis. o Audience: cell biologist o Reviewer's expertise: autophagy, vesicle trafficking, organelle biolgy Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In their study, Fasana and colleagues investigate protein quality control in the ER. Specifically, they test whether folding-incompetent proteins that are normally cleared by ER-associated degradation (ERAD) can also be targeted for degradation by direct vesicular transport from the ER to lysosomes in case ERAD is blocked. They show that blocking ERAD pharamacologically or genetically indeed leads to re-rerouting of an ERAD model substrate (the NHK variant of alpha-antitrypsin) to lysosomes and that this pathway requires the reticulon-like protein FAM134B, the ability of FAM134B to interact with the ubiquitin-like protein LC3 and the machinery for LC3 lipidation.

      The paper is, for the most part, easy to follow. There are, however, a few minor issues and I think the authors could do more to connect their work with similar studies in the literature. Accordingly, I have some general and specific suggestions to make the manuscript more accessible for the reader.

      General suggestions

      1. To avoid confusion, it would be helpful to more clearly distinguish between vesicular transport to endolysosomes and autophagy. Previous work by the authors has defined a trafficking pathway from the ER to endolysosomes that appears to rely on conventional vesicle-mediated transport (Fregno et al, EMBO J 2018). This pathway delivers material from the ER lumen to the lumen of endolysosomes, which are both topologically equivalent to the extracellular space. Hence, this pathway is distinct from autophagy, which is the transport of cytoplasmic components to endolysosomes and thus the transport of material from intracellular to extracellular space. This distinction is particularly important as both vesicular ER-to-lysosome transport and autophagy of the ER involve LC3 and FAM134B, which is typically referred to as an ER-phagy receptor. To make this less confusing, it may be helpful to explain that FAM134B appears to be a multifunctional molecule that can function as a receptor for macroautophagy but also in the vesicular transport pathway studied here. In addition, it would be helpful to point out that LC3 appears to also have roles unrelated to autophagosome formation.

      The reviewer is referring to the original definition of ERLAD to describe the mechanisms of clearance of ATZ polymers (Fregno et al 2018). The definition of ERLAD has now been expanded and is given, for example, in Klionsky DJ, et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17: 1-382 and is explained in detail in our recent review Rudinskiy M, Molinari M (2023) ER-to-lysosome-associated degradation in a nutshell: mammalian, yeast, and plant ER-phagy as induced by misfolded proteins. Febs Letters: 1928-1945.

      __Notably, the acronym ERAD for ER-associated degradation has originally been used to describe ____the proteasomal clearance from the ER of misfolded pro-alpha factor in a reconstituted yeast system in McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. The Journal of cell biology 132: 291-298. Only later on, the acronym has been used as an umbrella term that now covers all the pathways that control proteasomal clearance of misfolded proteins from the ER. A short historical excursus is presented in the new introduction to better explain these issues. __

      It is well established that LC3 and the LC3 lipidation machinery have functions that go beyond macroautophagy (which involves double membrane autophagosomes). Micro-autophagy (or micro-ER-phagy to remain on the topic of our paper) is an example of autophagic pathway relying on ER-phagy receptor that engage LC3, on the LC3 lipidation machinery, without involving autophagosomes. This is schematically represented in the new Fig. 1B.

      Several recent papers that appear relevant to the present study are not mentioned. In particular, Sun et al., Dev Cell 2023 (PMID: 37922908) appears worthy of discussion, as does Gonzalez et al., Nature 2023 (PMID: 37225996).

      Thank you. Both papers are not directly linked to our study addressing the intervention of ERLAD pathways when ERAD activity is impaired. In particular the work of Gonzales et al describes post-translational modification of ER-phagy receptors for their activation. The Sun et al paper is not really related to the topic covered in our manuscript, but we cite it as an alternative pathway that removes ATZ from the ER (page 8).

      Specific suggestions

      1. Abstract: The abstract begins with "About 40% of the eukaryotic cell's proteome is synthesized ... in the ER." Similar statements can be found in many papers and purportedly reflect common knowledge. However, it is unclear where the figure of 'about 40%' comes from. It would be proper to provide a reference and demonstrate that giving such a fairly precise estimate is supported by experimental data. Alternatively, the statement could be modified to avoid being precise than is justified.

      No reference is allowed in the abstract. We therefore modified the sentence as suggested by the reviewer.

      1. p2: "The ER is site of gene expression in nucleated cells and ... native proteins to be delivered at their site of activity ...". There is something missing at the beginning of this sentence. Also, it should be 'delivered to their site of activity', not 'delivered at'.

      Thank you

      1. p2: "... by mechanistically distinct ER-phagy pathways collectively defined as ER-to-lysosome-associated degradation ERLAD." This statement suggests that all pathways subsumed under the term ERLAD are ER-phagy pathways, which I believe is misleading (see comment above on the distinction between autophagy and vesicular transport pathway).

      See point 1.

      1. p2: "KIF selectively ...". Please spell out KIF and explain what kind of compound it is.

      Thank you, we changed to “_The alkaloid kifunensine (KIF) is a cell permeable selective inhibitor of the members of the glycosyl hydrolase 47 family of a____1,2-mannosidases_”____ __ 5. p3: "Notably, ERAD inhibition delays, rather than blocking degradation of ERAD clients ...". Please correct, for example: Notably, ERAD inhibition delays rather than blocks degradation of ERAD clients ...

      Thank you

      Figures 2 - 5: The number of quantified cells is given but it is not clear if experiments were done once or in biological replicates. Please indicate this in the figure legends.

      __N is now given for all panels in the corresponding figure legends.____ __ 7. p4: "To verify if ERAD inactivation ..." sounds odd. Less ambiguous would be 'To test whether' or 'To ask if'.

      Thank you

      1. p7, beginning of discussion: Please correct "delivered at" to 'delivered to'.

      Thank you

      Reviewer #3 (Significance (Required)):

      This is a concise and convincing manuscript with a clear message. The idea that proteins that cannot be processed by ERAD can be eliminated by other means, for instance by autophagy, is not new. Similarly, the FAM134B- and LC3-dependent pathway for ER-to-lysosome transport has been described by the authors before (Fregno et al, EMBO J 2018). Furthermore, the study exclusively relies on microscopy and does not attempt to tackle new mechanistic questions. Still, this study presents a definite functional advance in our understanding of the interplay of various ER quality control pathways.

      The findings presented here will be of interest mainly to molecular cell biologists working on protein quality control and organelle homeostasis. However, given the disease-relevance of misfolded proteins, and alpha-antitrypsin in particular, the impact of this study may eventually go beyond basic research and may also interest translational researchers.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This is significant work, and you should certainly make the best case you can on the weaknesses discussed.

      We thank reviewer for this positive comment on the significance of our work. The referee indicates as weaknesses (i) that the force involving the bent or straight αI-helix is not readily apparent, (ii) the residue types were not varied in the helix mutations, and (iii) that the chemical shift perturbations are indirect observations.

      We think we have tried to address a large part of these questions by being very careful in our analysis and by the discussion in the manuscript. The following remarks may help to clarify this further:

      (i) The force emanating from the helix is e.g. visualized in the PC2 loadings in Figure 6E of the PCA carried on all observed SH3-SH2-KD resonances for all apo forms of the helix mutants. The SH2 residues identified by these loadings are in direct vicinity to the αI-helix. The respective PC2 scores correlate to 98% with the vmax of the catalytic reaction and to 94 % with the PC1 scores found for imatinib-induced opening. Importantly, the structure of the KD with the straight αI-helix indicates that mostly residues F516, Q517, S520, and I521 would clash with the SH2 domain in a closed core (Figure 6F). Thus, the expected clashes are in direct vicinity of the SH2 residues identified by the PC2 loadings as correlated to vmax and imatinib-induced opening. These data are completely orthogonal and show that most of the force is coming from residues F516, Q517, S520, and I521 in the αI-αI’ turn.

      (ii) We agree that we mainly used truncations of the αI-helix to study its involvement in activation. Point (i) makes it clear that a larger part of the αI-helix effects is caused by steric clashes of the residues in the αI-αI’ turn. In the latter region, we don’t expect strong amino acid type-specific effects besides excluded volume. Due to expression problems, we could not vary the helix length between residues 519 and 534. However, in this region we introduced the amino acid type mutation E528K. The latter showed a clear specific effect. Further amino acid type-specific effects may be possible in this region. However, we expect that the identified electrostatic E528-R479 interaction is one of the most important interactions in this region.

      (iii) We agree that chemical shift changes of individual resonances are often hard to interpret. However, we want to stress that our conclusions are all drawn from principal component analyses, which in all cases had as input well over 100 if not over 200 1H-15H resonances. The first two principal components of these analyses are robust averages over many residues, which reveal general correlated structural trends.

      We assume that chemical shift deposition etc will be pursued.

      We are currently depositing a larger collection of our Abl data to the “Biological Magnetic Resonance Data Bank (BMRB)”, which includes the NMR chemical shift data of the present work. A ‘collection’ will be a new feature of the BMRB, and we are in discussion with their staff. We will provide the accession codes as soon as possible (probably within the next month) to be included into the final version of the manuscript. We have amended the Data Availability Section accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1) The overall discussion of the implications of the described allostery on kinase activation is provided through lenses of imatinib binding, which is used as an experimental trigger to disassemble the autoinhibited core. Can the authors elaborate in the Discussion on what event would play this role in the kinase catalytic cycle, communicating to helix I? Would dissociation of the myristate from the active site be hypothesized to be the first step in kinase activation? While I understand that certainty may be challenging to attain, it would be good to introduce some ideas into the Discussion.

      We appreciate the reviewer’s suggestions for the discussion and added the following text to the Conclusion section:

      "We have used here imatinib binding to the ATP-pocket as an experimental tool to disassemble the Abl regulatory core. Our previous analysis (Sonti et al., 2018) of the high-resolution Abl transition-state structure (Levinson et al., 2006) indicated that due to the extremely tight packing of the catalytic pocket, binding and release of the ATP and tyrosine peptide substrates is only possible if the P-loop and thereby the N-lobe move towards the SH3 domain by about 1–2 Å. This motion is of similar size and direction as the motion of the N-lobe observed in complexes with imatinib and other type II inhibitors (Sonti et al., 2018). From this we concluded that substrate binding opens the Abl core in a similar way as imatinib. The present NMR and activity data now clearly establish the essential role of the αI-helix both in the imatinib- and substrate-induced opening of the core, thereby further corroborating the similarity of both disassembly processes.

      Notably, the used regulatory core construct Abl83-534 lacks the myristoylated N-cap. Although we have previously demonstrated that the latter construct is predominantly assembled (Skora et al., 2013), the addition of the myristoyl moiety is expected to further stabilize the assembled conformation in a similar way as asciminib.

      Considering this mechanism, dissociation of myristoyl from the native Abl 1b core may be a first step during activation. However, it should be kept in mind that the Abl 1a isoform lacks the N-terminal myristoylation, and it is presently unclear whether other moieties bind to the myristoyl pocket of Abl 1a during cellular processes."

      2) Can the authors comment more on the differentiation between assembled conformations induced by type I inhibitor binding vs apo forms (or AMP-PNP and allosteric inhibitor) reported in Figure 3B? The differences are clearly identified by PCA but not sufficiently discussed.

      As indicated in the text, we think two structural effects are intermingled within PC2. Due to this admixture, it is hard to draw strong conclusions and we don’t want to expand on this too much. We have slightly modified the respective paragraph (p.7) as follows):

      "As the affected residues react differently to perturbations by type I inhibitors and truncation of the αI’-helix (Figure 3A, right), we attribute this behavior to two effects intermixed into the PC2 detection: (i) a minor rearrangement of the SH3/KD N-lobe interface caused by filling of the ATP pocket with type I inhibitors, which in contrast to the stronger N-lobe motion induced by type II inhibitors does not yet lead to core disassembly and (ii) a small rearrangement of the SH2/KD C-lobe interface caused by shortening and mutations of the αI-helix."

      3) The allosteric connection between active site inhibitor binding and the myristate/allosteric inhibitor binding has been observed in the past and noted before, in papers such as Zhang et al, Nature 2010. While the authors reference this paper, they do not acknowledge its specific findings or engage in a broader discussion of how their conclusions relate to this work.

      We have modified the beginning of the Conclusion section:

      "The allosteric connection between Abl ATP site and myristate site inhibitor binding has been noted before, albeit specific settings such as construct boundaries and the control of phosphorylation vary in published experiments. Positive and negative binding cooperativity of certain ATP-pocket and allosteric inhibitors has been observed in cellular assays and in vitro (Kim et al., 2023; Zhang et al., 2010). Furthermore, hydrogen exchange mass spectrometry has indicated changes around the unliganded ATP pocket upon binding of the allosteric inhibitor GNF-5 (Zhang et al., 2010). Here, we present a detailed high-resolution explanation of these allosteric effects via a mechanical connection between the kinase domain N- and C-lobes that is mediated by the regulatory SH2 and SH3 domains and involves the αI helix as a crucial element.

      Specifically, we have established a firm correlation between the kinase activity of the Abl regulatory core, the imatinib (type II inhibitor)-induced disassembly of the core, which is caused by a force FKD–N,SH3 between the KD N-lobe and the SH3 domain, and a force FαI,SH2 exerted by the αI-helix towards the SH2 domain. The FαI,SH2 force is mainly caused by a clash of the αI-αI’ loop with the SH2 domain. Both the FKD–N,SH3 and FαI,SH2 force act on the KD/SH2SH3 interface and may lead to the disassembly of the core, which is in a delicate equilibrium between assembled and disassembled forms. As disassembly is required for kinase activity, the modulation of both forces constitutes a very sensitive regulation mechanism. Allosteric inhibitors such as asciminib and also myristoyl, the natural allosteric pocket binder, pull the αI-αI’ loop away from the SH2 interface, and thereby reduce the FαI,SH2 force and activity. Notably, all observations described here were obtained under nonphosphorylated conditions, as phosphorylation will lead to additional strong activating effects."

      4) Figure 6 could do a better job of providing an illustration of steric clashes.

      We have revised Figure 6, panel F, in order to better illustrate the steric clashes, and modified the legend accordingly.

      5) There is a typo in line 5 from the top on page 11 (dash missing from "83534" superscript).

      Thank you. This was fixed.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the researchers aimed to investigate the cellular landscape and cell-cell interactions in cavernous tissues under diabetic conditions, specifically focusing on erectile dysfunction (ED). They employed single-cell RNA sequencing to analyze gene expression patterns in various cell types within the cavernous tissues of diabetic individuals. The researchers identified decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in several cell types, including fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. They also discovered a newly identified marker, LBH, that distinguishes pericytes from smooth muscle cells in mouse and human cavernous tissues. Furthermore, the study revealed that pericytes play a role in angiogenesis, adhesion, and migration by communicating with other cell types within the corpus cavernosum. However, these interactions were found to be significantly reduced under diabetic conditions. The study also investigated the role of LBH and its interactions with other proteins (CRYAB and VIM) in maintaining pericyte function and highlighted their potential involvement in regulating neurovascular regeneration. Overall, the manuscript is well-written and the study provides novel insights into the pathogenesis of ED in patients with diabetes and identifies potential therapeutic targets for further investigation.

      Reviewer #2 (Public Review):

      Summary: In this manuscript, the authors performed single cell RNA-sequencing of cells from the penises of healthy and diabetes mellitus model (STZ injection-based) mice, identified Lbh as a marker of penis pericytes, and report that penis-specific overexpression of Lbh is sufficient to rescue erectile function in diabetic animals. In public human single cell RNA-sea datasets, the authors report that LBH is similarly specific to pericytes and down regulated in diabetic patients. Additionally, the authors report discovery of CRYAB and VIM1 as protein interacting partners with LBH.

      The authors contributions are of interest to the erectile dysfunction community and their Lbh overexpression experiments are especially interesting and well-conducted. However, claims in the manuscript regarding the specificity of Lbh as a pericyte marker, the mechanism by which Lbh overexpression rescues erectile function, cell-cell interactions impaired by diabetes, and protein-interaction partners require qualification or further evidence to justify.

      Major claims and evidence:

      1) Marker gene specificity and quantification: One of the authors' major contributions is the identification of Lbh as a marker of pericytes in their data. The authors present qualitative evidence for this marker gene relationship, but it is unclear from the data presented if Lbh is truly a specific marker gene for the pericyte lineage (either based on gene expression or IF presented in Fig. 2D, E). Prior results (see Tabula Muris Consortium, 2018) suggest that Lbh is widely expressed in non-pericyte cell types, so the claims presented in the manuscript may be overly broad. Even if Lbh is not a globally specific marker, the authors' subsequent intervention experiments argue that it is still an important gene worth studying.

      Answer: We appreciate this comment. In our scRNAseq data for the mouse cavernosum tissues, previously known markers such as Rgs5, Pdgfrb, Cspg4, Kcnj8, Higd1b, and Cox4i2 were found to be expressed not exclusively in pericytes, while Lbh exhibited specific expression patterns in pericytes (Fig. 2 and Supplementary Fig. 5). LBH expression was easily distinguishable from α-SMA, not only in mouse cavernosum but also in dorsal artery and dorsal vein tissues within penile tissues. This distinctive expression pattern of LBH was also observed in the human cavernous pericytes (Fig. 5). Then, we examined Lbh expression patterns in various mouse tissues using the mouse single-cell atlas (Tabula Muris), although endothelial and pericyte clusters were not subclustered in most tissues from Tabula Muris. To identify pericytes, we relied on the expression pattern of known marker genes (Pecam1 for endothelial cells, Rgs5, Pdgfrb, and Cspg4 for pericytes). Lbh was expressed in pericytes of the bladder, heart and aorta, kidney, and trachea but not as specifically in penile pericytes (Supplementary Fig. 6A-D). However, it is worth noting that other known pericyte markers were also did not exhibit exclusive expression in pericytes across all the tissues we analyzed. Therefore, in certain tissues, particularly in mouse penile tissues, Lbh may be a valuable marker in conjunction with other established pericyte marker genes for distinguishing pericytes.

      2) Cell-cell communication and regulon activity changes in the diabetic penis: The authors present cell-cell communication analysis and TF regulon analysis in Fig 3 and report differential activities in healthy and DM mice. These results are certainly interesting, however, no statistical analyses are performed to justify claimed changes in the disease state and no validations are performed. It is therefore challenging to interpret these results, and the relevant claims do not seem well supported.

      Answer: In response to these helpful suggestions, we calculated statistical significance and performed experimental validation. CellphoneDB permutes the cluster labels of all cells 1000 times and calculates the mean(mean(molecule 1 in cluster X), mean(molecule 2 in cluster Y)) at each time for each interaction pair, for each pairwise comparison between two cell types. We only considered interactions in which the difference in means calculated by these permutations were greater than 0.25-fold between diabetes and normal. Also, we considered that the interactions with P-value < 0.05 were significant.

      To assess differential regulon activities of transcription factor (SCENIC) between diabetic and normal pericytes, we utilized a generalized linear model with scaled activity scores for each cell as input. These scaled regulon activity values for angiogenesis-related TFs exhibited differences between diabetic and normal pericytes. The results of the generalized linear model revealed that Klf5, Egr1, and Junb were TFs with significantly altered regulon activities in diabetic pericytes. Experimental data indicated that the expression level of Lmo2, Junb, Elk1, and Hoxd10 was higher (Hoxd10) or lower (Lmo2, Junb, Elk1) in diabetic pericytes compared to normal pericytes (Supplementary Fig. 9). We have added the scaled regulon activity values and statistical significance in Fig. 3E.

      3) Rescue of ED by Lbh overexpression: This is a striking and very interesting result that warrants attention. By simple overexpression of the pericyte marker gene Lbh, the authors report rescue of erectile function in diabetic animals. While mechanistic details are lacking, the phenomenon appears to have a large effect size and the experiments appear sophisticated and well conducted. If anything, the authors appear to underplay the magnitude of this result.

      Answer: We appreciate this comment. Therefore, we have added relevant clarification in the revised manuscript discussion section to emphasize the importance of LBH overexpression on rescuing ED as follows: “To test our hypothesis, we utilized the diabetes-induced ED mouse model, commonly employed in various studies focusing on microvascular complications associated with type 1 diabetes. We observed that the overexpression of LBH in diabetic mice led to the restoration of reduced erectile function by enhancing neurovascular regeneration. However, this study primarily demonstrated the observed phenomenon without delving into the detailed mechanisms. Nonetheless, these results of LBH on erections provide us with new strategies for treating ED and should be of considerable concern.” (Please see revised ‘Discussion’)

      4) Mechanistic claims for rescue of ED by Lbh overexpression: The authors claim that cell type-specific effects on MPCs are responsible for the rescue of erectile function induced by Lbh overexpression. This causal claim is unsupported by the data, which only show that Lbh overexpression influences MPC performance. In vivo, it's likely that Lbh is being over expressed by diverse cell types, any of which could be the causal driver of ED rescue. In fact, the authors report rescue of cell type abundance in endothelial cells and neuronal cells. Therefore, it cannot be concluded that MPC effects alone or in principal are responsible for ED rescue.

      Answer: We agree with these claims. Therefore, we have added relevant clarifications in the discussion section of the revised manuscript. Our findings suggest that LBH can affect the function of cavernous pericytes, although we cannot definitively specify which particular cavernous cell types are affected by the overexpressed LBH, whether it be cavernous endothelial cells, smooth muscle cells, or others. Subsequent research will be required to conduct more comprehensive mechanistic investigations, such as in vitro studies using cavernous endothelial cells, smooth muscle cells, and fibroblasts to address these knowledge gaps. (Please see revised ‘Discussion’)

      5) Protein interaction data: The authors claim that CRYAB and VIM1 are novel interacting partners of LBH. However, the evidence presented (2 blots in Fig. 6A,B) lack the relevant controls. It is possible that CRYAB and VIM1 are cross-reactive with the anti-LBH antibody or were not washed out completely. The abundance of bands on the Coomassie stain in Fig. 6A suggests that either event is plausible. Therefore, the evidence presented is insufficient to support the claim that CRYAB and VIM1 are protein interacting partners of LBH.

      Answer: We agree with these claims. Therefore, we have added the relevant controls(Input) and performed Co-IP (IP: CRYAB or VIM, WB: LBH) to demonstrate CRYAB and VIM1 are not simply cross-reactive antigens to their LBH antibody. Our results show that we can detect the expression of CRYAB and VIM after LBH IP, and we also detect the expression of LBH after CRYAB and VIM IP. In addition, it can be seen from our results that the binding of LBH to VIM is higher than that of CRYAB. Regardless, these results indicate that the binding of CRYAB or VIM to LBH is not a random phenomenon. (Please see revised ‘Result’ and ‘Figure 6B’)

      Impact: These data will trigger interest in Lbh as a target gene within the erectile dysfunction community.

      Reviewer #3 (Public Review):

      Bae et al. described the key roles of pericytes in cavernous tissues in diabetic erectile dysfunction using both mouse and human single-cell transcriptomic analysis. Erectile dysfunction (ED) is caused by dysfunction of the cavernous tissue and affects a significant proportion of men aged 40-70. The most common treatment for ED is phosphodiesterase 5 inhibitors; however, these are less effective in patients with diabetic ED. Therefore, there is an unmet need for a better understanding of the cavernous microenvironment, cell-cell communications in patients with diabetic ED, and the development of new therapeutic treatments to improve the quality of life.

      Pericytes are mesenchymal-derived mural cells that directly interact with capillary endothelial cells (ECs). They play a vital role in the pathogenesis of erectile function as their interactions with ECs are essential for penile erection. Loss of pericytes has been associated with diabetic retinopathy, cancer, and Alzheimer's disease and has been investigated in relation to the permeability of cavernous blood vessels and neurovascular regeneration in the authors' previous studies. This manuscript explores the mechanisms underlying the effect of diabetes on pericyte dysfunction in ED. Additionally, the cellular landscape of cavernous tissues and cell type-specific transcriptional changes were carefully examined using both mouse and human single-cell RNA sequencing in diabetic ED. The novelty of this work lies in the identification of a newly identified pericyte (PC)-specific marker, LBH, in mouse and human cavernous tissues, which distinguishes pericytes from smooth muscle cells. LBH not only serves as a cavernous pericyte marker, but its expression level is also reduced in diabetic conditions. The LBH-interacting proteins (Cryab and Vim) were further identified in mouse cavernous pericytes, indicating that these signaling interactions are critical for maintaining normal pericyte function. Overall, this study demonstrates the novel marker of pericytes and highlights the critical role of pericytes in diabetic ED.

      Reviewer #1 (Recommendations For The Authors):

      1) The methods are poorly written. It lacks specific information on the sample size, experimental design, and data analysis methods employed. The absence of these crucial details makes it difficult to evaluate the robustness and reliability of the findings.

      Answer: We agree with the reviewer’s suggestion, now we revised the methods of our manuscript, and added detailed information or references. For sample size we have added detailed information in Figure legend (Please see revised ‘Method’ , Figure Legend, and Supplementary information.)

      2) The cell number in the scRNA-seq analysis is small (~12000) and some minor cell types are probably underrepresented. It is not clear whether the authors pooled the cells from different mice as one sample, or replicates in different groups have been included. It will be helpful to label different samples in the UMAP. The authors should repeat the experiments with more replicates to increase the cell number and validate the findings.

      Answer: We understand the reviewer's concern, but due to the small size of mouse penile tissue, we had to pool 5 corpus cavernosum tissues for each group (using pooled samples) for scRNA-seq analysis. Moreover, owing to the unique nature of mouse penile tissue, which is highly resistant, it posed challenges for the dissolution and isolation of single cells using conventional single-cell separation methods. Consequently, we had to increase the concentration of the enzyme to finally obtain 12,894 cells. Rather than conducting a repetitive scRNAseq analysis on the same mouse model, we validated our findings in human cavernous single-cell transcriptome data. This analysis allowed us to confirm the presence of pericyte in human corpus cavernosum, specific expression of LBH in human cavernous pericytes, and the identification of relevant GO terms associated with pericyte functions (Figure 5). We have add these information in ‘Method’ (Please see revised ‘Method’).

      3) Functional studies are lacking to justify how manipulating LBH expression or its interacting proteins might lead to effective therapeutic approaches for diabetic ED.

      Answer: We have performed the functional study to evaluate LBH expression might lead to effective therapeutic approaches for diabetic ED as showed in Figure 4G. Assessment of intracavernous pressure (ICP) is the most representative test for evaluating erectile function. Therefore, we modulated LBH expression in the penis of diabetic mice and assessed the erectile function of the mice by intracavernous pressure. However, we have not performed ICP studies and relative in vitro studies (migration, survival experiment) to assess whether LBH-interacting proteins have the same effect.

      4) Although the abstract identifies novel targets for potential interventions, such as LBH and its interacting proteins, the clinical relevance of these findings remains uncertain. The authors should include a discussion regarding the translation of these discoveries into therapeutic strategies or their potential impact on patients with diabetes and ED.

      Answer: We appreciate the reviewer's suggestion and have added a discussion as per the reviewer’s recommendation (Please see revised ‘Discussion’).

      5) While the study highlights the importance of pericytes in penile erection, it fails to mention the broader context of other cell types involved in the pathogenesis of ED. Neglecting to discuss potential contributions from endothelial cells, smooth muscle cells, or neural elements limits the comprehensive understanding of the cellular interactions underlying diabetic ED.

      Answer: We agree with the reviewer's suggestion and have added a discussion regarding the significance of other cell populations in penile tissues, such as endothelial cells, smooth muscle cells fibroblasts, and neural elements, along with the rationale for our focus on pericytes. (Please see revised ‘Discussion’).

      Reviewer #2 (Recommendations For The Authors):

      We congratulate the authors on an interesting study. We were especially excited to see their Lbh overexpression results. However, we felt other claims in the paper could benefit from additional investigation, analysis, and statistical rigor. We have provided a set of suggestions for improvement below.

      Major points:

      1) Pericyte marker gene proposal: See public review for commentary on the following suggested experiments. The authors should perform binary classification analysis using Lbh and report the performance of this gene as a marker (e.g. using the area under the receiver operating characteristic, accuracy, precision and recall). Further, they should consider performing this analysis for all other genes in their data to determine whether Lbh is the best marker gene.

      Answer: We appreciate this comment. AUC scores of Rgs5, Pln, Ednra, Npylr, Atp1b2, and Gpc3 for ability of a binary classifier to distinguish between pericyte and the other cell types in mouse penile tissues were measured by using FindMarkers function. Rgs5 had the highest AUC, but Rgs5 was also expressed in SMCs in our data. Pln, Ednra, Gpc3, and Npy1r also seemed to be candidate markers, but the literature search excluded these genes as they are also expressed in the SMCs of other tissues or different cell types. The AUC score of Lbh was over 0.7, and expression in SMC was not identified in previous studies, and ultimately, we experimentally identified that Lbh is penis pericyte specific. We have added this to the manuscript.

      Author response table 1.

      Robust differential expression analysis should also be performed for this gene (if not all) and the statistics should be reported, given known issues with the statistical approach used by the authors for differential expression (see: Squair 2021, 10.1038/s41467-021-25960-2). The authors' should also report the number of cells involved in these comparisons, as the number of pericytes in the data (Fig 1B) appears quite small.

      Answer: We appreciate this comment. We used “MAST” to identify differentially expressed genes. This test is often used to find DEGs in single-cell RNA data. However, because the pseudobulk method has advantages over the single cell DEG method (Squair 2021, 10.1038/s41467-021-25960-2), we additionally performed DEG analysis with DESeq2 to confirm whether Lbh can distinguish pericytes from other cell types in the penile. As a result, even when tested with DESeq2, Lbh expression was significantly higher in pericytes than in other cell types in penile (adjusted p-value = 2.694475e-07 in Pericyte vs SMC, adjusted P-value = 3.700118e-58 in Pericyte vs the other cell types). Mouse penile tissue is small in size, and the number of pericytes in mouse penile tissue is relatively smaller compared to fibroblasts and chondrocytes. In our mouse penile scRNAseq data, the number of pericytes is as follows: normal: 58, diabetes: 116. Despite the limited number of cells, we were able to establish statistical significance in our analyses.

      Immunostaining results in Fig. 2D, E should likewise be quantified. At present, it's unclear that LBH and aSMA are mutually exclusive as claimed. The authors should also investigate Lbh expression in public single cell genomics data, rather than performing candidate gene literature searches. For example, the Tabula Muris suggests Lbh is expressed widely outside pericytes.

      Answer: For Figure 2D and E, the aim of these analyses was to assess the distribution of LBH and other cellular markers to see if they overlap and if they can be distinguished. We think that some of the overlapping staining in the tissue may be caused by multilayered cellular structures, so staining within cells would be more convincing. Therefore, we quantified the percentage of LBH- or α-SMA-expressed pericytes and relative expression in smooth muscle cells in cell staining (Supplementary Fig. 5E). We found that only 3% of smooth muscle cells expressed LBH, 67% of mouse cavernous pericytes (MCPs) expressed α-SMA, and more than 97% of MCPs expressed LBH. Therefore, these results may illustrate the specific expression of LBH in MCPs. These information was added as ‘Supplementary Fig. 5E’ (Please see revised ‘Supplementary information’). We also examined Lbh expression patterns in various mouse tissues using the public mouse single-cell atlas (Tabula Muris), and provided a detailed response in reviewer 2’s public review 1.

      Even if Lbh is not the best marker, the authors' intervention experiment still motivates study of the gene, but these analyses would help contextualize the result for readers.

      2) Statistical anslyses for cell-cell communication and TF regulon analysis: See public review for context on these comments. The authors should perform statistical tests to evaluate the significance of differences detected for each of these analysis. For example, generalized linear models can be used to assess the significance of TF regulon activity scores from SCENIC, and permutation tests can be used to measure the significance of cell-cell interaction score changes. Without these statistical tests, it's challenging for a reader to interpret whether the results reported are meaningful or within the realm of experimental noise.

      Answer: We appreciate this comment. We calculated statistical significance TF regulon analyses as suggested by the reviewer and described a detailed statistical calculation method for cell-cell communication. We provided a detailed response in reviewer 2’s public review 2.

      3) Mechanism of ED rescue by Lbh overexpression: To support this claim, the authors would need to perform an experiment where Lbh is over expressed specifically in MPCs (using e.g. a specific promoter on their LTV construct, or a transgenic line with a cell type-specific Cre-Lox system). Absent these data, the claim should be removed.

      Answer: We agree with the reviewer's suggestion and we have reworked the claim that ‘LBH overexpression is affected by pericytes during ED recovery’ and have added relevant clarification in the Discussion section to clearly state that LBH overexpression may affect many cavernosum cells, such as cavernous endothelial cells, smooth muscle cells, fibroblasts, and pericytes (Please see revised ‘Result’ and ‘Discussion’)

      4) Protein interaction claims: This experiment would require that the authors perform a similar pull-down with LBH KO cells and or a reciprocal Co-IP (e.g. IP: CRYAB or VIM1, WB: LBH) to demonstrate CRYAB and VIM1 are not simply cross-reactive antigens to their LBH antibody. Further, these experiments appear to only have a single replicate for each condition. The authors should either remove associated claims, or perform a Co-IP experiment with the relevant controls with sufficient replication.

      Answer: We agree with the claims. Therefore, we have included the necessary controls (Input) and performed Co-IP (IP: CRYAB or VIM1, WB: LBH) to demonstrate that CRYAB and VIM1 are not simply cross-reactive antigens to their LBH antibody. Our results show that we can detect the expression of CRYAB and VIM after LBH IP, and we also detect the expression of LBH after CRYAB and VIM IP. In addition, it can be seen from our results that the binding of LBH to VIM is higher than that of CRYAB. Regardless, these results indicate that the binding of CRYAB or VIM to LBH is not a random phenomenon. Additionally, all IP experiments were replicated at least three times. (Please see revised ‘Result’ and ‘Figure 6B’)

      Minor Points:

      • The reference "especially in men" on line 56 seems odd given that only males can experience penile erectile dysfunction.

      Answer: We agree with the reviewer's suggestion and have removed the description 'especially male' (Please see revised ‘Introduction’)

      • Line 109, it's unclear what genes showed altered expression in Schwann cells.

      Answer: We apologize for the confusion. There was no significant differentially expressed genes between normal and diabetes in Schwann cells. We revised this part in the manuscript. (Schwann cells showed an increased expression compared to normal cells in diabetes, though not significant. In Schwann cells, there were no significant DEGs between diabetic and normal cells.)

      • It would be helpful for readers to see an analysis of the cell types that are transduced in the Lbh overexpression experiment in vivo. At present, some pericyte specificity is implied, but not demonstrated.

      Answer: We appreciate this comment. Our findings suggest that LBH can affect the function of cavernous pericytes, although we cannot definitively conclude which specific-cavernous cell types are affected by the overexpressed LBH, whether it be cavernous endothelial cells, smooth muscle cells, or others. Subsequent research will be required to conduct more comprehensive mechanistic investigations, such as in vitro studies using cavernous endothelial cells, smooth muscle cells, and fibroblasts to address these knowledge gaps. These were also mentioned in the manuscript.

      • To improve clarity and enhance readability, define abbreviations before their initial usage in the text. For instance, in the second paragraph of the Introduction, the abbreviation 'ECs' is used without prior definition. It can be inferred that it is referring to endothelial cells, mentioned in parentheses in the subsequent sentence.

      Answer: We agree with the reviewer's suggestion to expand acronyms and ensure that all acronyms are defined in the revised manuscript before they are used for the first time in the text (Please see revised Manuscript).

      • It is important to include relevant references that align with the content being discussed. For example, in the Introduction, pericytes are described as being involved in various processes such as angiogenesis, vasoconstriction, and permeability. The text refers to a single reverence, a review by Gerhardt and Besholtz, which primarily focuses on pericyte's role in regulating angiogenesis. Adding additional sources, such as the review by Bergers and Song (Neuro Oncol., 2005) is recommended.

      Answer: We agree with the reviewer's suggestion, and have added the reference as reviewer recommended (Please see revised Manuscript and reference).

      • Figure 3E: it is stated that a panel of 53 angiogenesis factors were tested, it is stated that only MMP3 showed increased expression. However, various unlabeled spots appear to show changed expression patterns. It would be helpful to show a summary graph with the relative intensities of the full array of factors tested.

      Answer: We agree with the reviewer’s suggestion, now we showed all spots density in angiogenesis array as Supplementary Table 1. The condition of the spots we selected was that the expression density was at least above 1500, and the change ratio was greater than 1.2. (Please see revised ‘Supplementary information’)

      Reviewer #3 (Recommendations For The Authors):

      Detailed statistical power calculation

      Data availability statement( were both mouse and human scRNA deposited in GEO with a taken and when will they be released to the public?)

      Answer: Human scRNA data have been deposited in GEO under accession number GSE206528. Our mouse scRNA dataset has been uploaded to KoNA and is available for download (https://www.kobic.re.kr/kona/review?encrypt_url=amlod2FucGFya3xLQUQyMzAxMDEz)

      Major concerns about this work

      1) The single cell RNAseq data collected for mouse diabetic ED(Fig 1B), FB are the most abundant cell population compared to PC, EC, SMC and other clusters. The rationale for studying FB clusters (in Figure 1, D-F) instead of PC cluster is unclear. Which cluster DEG did the authors annotate for Fig 1G-H?

      Answer: We understand the reviewer's suggestion and confusion. Although other major cell populations in penile tissue such as smooth muscle cells, endothelial cell, and fibroblasts have been extensively studied, pericytes have mainly been investigated in the context of the central nervous system (CNS). For example, in the CNS, pericytes are involved in maintaining the integrity of the brain's blood-brain barrier (BBB) [PMID: 27916653], regulating blood flow at capillary junctions [PMID: 33051294], and promoting neuroinflammatory processes [PMID: 31316352], whose dysfunction is considered an important factor in the progression of vascular diseases such as Alzheimer's disease [PMID: 24946075]. But little is known about the role of pericytes in penile tissue [PMID: 35865945; PMID: 36009395; PMID: 26044953]. In order to explore the role of pericytes in repairing the corpus cavernosum vascular and neural tissues damaged by DM, we focused on pericytes, which are multipotent perivascular cells that contribute to the generation and repair of various tissues in response to injury. Although recent studies have shown that pericytes are involved in physiological mechanisms of erection, little is known about their detailed mechanisms. We have also added this rationale in discussion.

      Single cell level study has not been conducted in mouse penile tissues. Therefore, before delving into pericytes, we aimed to identify overall transcriptome differences between normal and diabetic conditions in mouse penile tissues. We presented the analyses of FB, which make up the largest proportion among the cell types in the mouse penis, in Fig. 1D-F. The analysis of other cell types is provided in Supplementary Fig. 1-4. Fig. 1G-H are GO terms for Fibroblasts clusters. We added this information in the figure.

      2) Fig 2 is the critical data to show Lbh is a cavernous PC specific marker. More PC violin plots to identify PC cluster such as Cspg4, Kcnj8, Higd1b, Cox4i2 and more SMC violin plots to identify SMC cluster such as Acta2, Myh11, Tagln, Actg2 should be used for inclusion and exclusion of PC( the same concern applied to human scRNAseq in Fig 5B).

      Answer: We appreciate this comment. We examined the expression of other marker genes of pericytes and SMCs. Although some marker genes were rarely expressed in the mouse penis data (Kcnj8, Higd1b), the expression of marker genes tended to be relatively high in each cluster. The expression of Cspg4 and Cox4i2 was higher in pericytes than in SMCs, while the expression of Acta2, Myh11,and Tagln was higher in SMCs than in pericytes. Actag2 was specifically expressed in SMCs. Through the gene set enrichment test as well as the expression of known cell type marker genes, we identified that the annotation of pericyte and SMC was appropriate (Fig. 2B and Fig. 5C). We added the violin plots of these marker genes in Supplementary Fig. 5.

      Author response image 1.

      (Mouse)

      In human penis data, ACTA2 and MYH11 were expressed in SMCs, pericytes, and myofibroblasts, as in the previous paper [PMID: 35879305]. Among pericyte markers, the number of cells expressing KCNJ8 and HIGD1B was small. The cluster we annotated as pericyte was double positive for pericyte markers CSPG4 and COX4I2. ACTG2, a marker for SMC, was expressed more highly in SMC than in pericytes and myofibroblasts. As in the mouse penis data, we identified that the annotation of each cell type was appropriate through the gene set enrichment test in the human penis data. We added the violin plots of CSPG4, COX4I2, and ACTG2 in Supplementary Fig. 11.

      Author response image 2.

      (Human)

      When exploring Lbh expression levels in "Database of gene expression in adult mouse brain and lung vascular and perivascular cells" from https://betsholtzlab.org/VascularSingleCells/database.html, Lbh is not uniquely expressed in PC, suggesting its tissue-specific expression level. This difference should be discussed in the Discussion section.

      Answer: We appreciate this valuable comment. For the answer to this comment, we extensively analyzed Lbh expression patterns in various mouse tissues using the public mouse single-cell atlas (Tabula Muris) as also suggested by Reviewer 2. Please see our detailed response in reviewer 2’s public review 1.

      3) In prior studies on PC morphology and location (PMID: 21839917), they reside in capillaries (diameter less than 10um) or distal vessels (diameter less than 25um) and have oval cell body and long processes. Due to the non-specificity of Pdgfrb, SMC are positive for Pdgfrb staining (this has been shown in many publications that SMC are Pdgfrb+; unfortunately, NG2 antibody also stains for both PC and SMC). Therefore, the LBH immunostaining (in Fig 2D and 2E of large-sized vessels) are very likely for SMC identity, not PC. PC should be in close contact with CD31+ ECs in healthy conditions. The LBH immunostaining of PC in both mouse and human tissues (Fig 4) must be replaced and better characterized.

      Answer: We agree with the reviewer's suggestion. As it is widely known, peicytes are primarily located in capillaries, where they surround endothelial cells of blood vessels. However, recent discoveries have identified cells with pericyte-like characteristics in the walls of large blood vessels, challenging the traditional concept [PMID: 27268036]. In our study, we observed minimal overlap in staining between LBH and α-SMA, suggesting that the cells expressing LBH were not smooth muscle cells but possibly pericyte-like cells in large vessels. In small vessels within the bladder, kidney, and even the aorta, we found LBH-expressing cells surrounding CD31-expressing vessels, consistent with the known characteristics of pericytes. Further research is needed to comprehend the differences in LBH expression and its characteristics in both large and small blood vessels. We have added discussions and references for this issue (Please see revised ‘Discussion’ and ‘Reference’)

      4) How do mouse cavernous pericytes isolate? How is purity?

      Answer: As the reviewer points out, we isolated mouse spongiform pericytes following our and other previously published methods. We used pigment epithelium-derived factor (PEDF), which removes non-pericytic cells [PMID: 30929324, 23493068]. Although there are no purity study results such as FACS, other staining results thoroughly support the notion that this method yields pericytes with a notably high level of purity. (Please see ‘Method’ section).

      5) Can mouse scRNAseq cell-cell communication in Fig 3 be reproducible in human scRNAseq cell-cell communication? The results in human ED are more clinically significant than in mouse data.

      Answer: In human scRNAseq data, the difference between angiogenesis-related interactions between normal and diabetes was not as significant as that in mouse data. Because the cell type composition of the human and mouse penis is not completely identical, there are limitations in comparing cell-cell interactions. However, in the human penis data, some interactions related to angiogenesis between pericytes and other cell types were decreased in diabetes compared to normal (boxed parts).

      Author response image 3.

      6) Fibroblasts also express Vim. Murine PC VIM/CRYAB( should be written as Vim/Cryab as mouse proteins) direct interaction with Lbh is unclear from Lbh IP as Fig 6A red boxes showed a wide range of sizes. Where is the band for Lbh? Do human PC LBH interact with VIM/CRYAB?

      Answer: We agree with the reviewer's comment. VIM is a type III intermediate filament protein expressed in many cell types. We have added the relevant controls (Input) and performed Co-IP (IP: CRYAB or VIM, WB: LBH) to demonstrate CRYAB and VIM are not simply cross-reactive antigens to their LBH antibody. In western blot study, the LBH band was expressed between 35 kDa-48 kDa. From Figure 6A, we detected CRYAB in band 1 and VIM in bands 2 and 3. This may be due to the formation of dimers or multimers by VIM. We did not use human PCs for IP studies because IP requires large amounts of protein, making IP studies using human pericyte challenging. Nevertheless, the interaction between LBH and CRYAB in humans has been reported through fluorescent resonance energy transfer assay and affinity chromatography technology assay [PMID:34000384, PMID:20587334].

      7) In Fig 6H and I, why does CRYAB expression significantly reduce in vitro and in vivo under diabetic conditions, whereas VIM expression significantly increases?

      Answer: As the reviewer pointed out, and we have discussed on this issue in the manuscript, CRYAB is known to promote angiogenesis. Diabetes reduces CRYAB expression, so angiogenesis may be impaired. Furthermore, since VIM is a multifunctional protein, it interacts with several other proteins with multiple functions under various pathophysiological conditions. There are many relevant literatures showing that VIM expression is increased under diabetic conditions [PMID: 28348116 and PMID: 32557212]. And VIM deficiency protects against obesity and insulin resistance in patients with type 2 diabetes. Therefore, we hypothesize that exogenous LBH may have the ability to bind to the increased VIM in diabetic conditions and inactivate the effects of VIM. Thereby achieving the protective effect. This needs to be proved in further studies.

      8) The therapeutic strategies targeting (Lbh-Cryab-Vim) on mouse diabetic ED model is not investigated and need to be further validated and discussed.

      Answer: As the reviewers pointed out, in this study, we did not evaluate the targeted therapeutic strategy for LBH-CRYAB-VIM in a mouse diabetic ED model. We only identified the binding potential of these three proteins. Evaluation of this treatment strategy requires further study. For example, we can employ shRNA lentivirus, either alone or in combination, to downregulate CRYABexpression [PMID: 31612679] in normal mice, utilize a lentiviral vector CMV-GFP-puro-vimentin to overexpress Vimentin [PMID: 36912679], and then treat it with LBH to evaluate whether the LBH effect still exists (in vivo erectile function study and in vitro angiogenesis assay). We include this information in the Discussion section as a limitation of this study (Please see revised ‘Discussion’).

      9) The Discussion of current knowledge of pericytes in diabetic ED and other diseases and the significance of this study as well as clinical implications, should be expanded.

      Answer: As the reviewers pointed out, we have expanded the current knowledge of pericytes in diabetic ED and other diseases (CNS disease) and clinical implications as follows: “Although other major cell populations in penile tissue such as smooth muscle cells, endothelial cell, and fibroblasts have been extensively studied, pericytes have mainly been investigated in the context of the central nervous system (CNS). For example, in the CNS, pericytes are involved in maintaining the integrity of the brain's blood-brain barrier (BBB), regulating blood flow at capillary junctions, and promoting neuroinflammatory processes, whose dysfunction is considered an important factor in the progression of vascular diseases such as Alzheimer's disease. But little is known about the role of pericytes in penile tissue.” (Please see revised ‘Discussion’).

      10) How many clinical samples were used? How many times did each experiment repeat?

      Answer: As the reviewers pointed out, the clinical samples’ information was added in ‘method’ section. A total four human samples were used in this study (‘human corpus cavernosum tissues were obtained from two patients with congenital penile curvature (59-year-old and 47-year-old) who had normal erectile function during reconstructive penile surgery and two patients with diabetic ED (69-year-old and 56-year-old) during penile prosthesis implantation.’). For in vivo study, we quantified four different fields from human samples.

      Minor concerns

      1) Fig 1A, why normal mouse's body size is the same as DM?

      Answer: As the reviewer pointed out, in Figure 1A, while the size of normal mice and DM mice may not appear significantly different, there are indeed notable difference in body weight and size. The normal mice body weigh we used was about 30 grams, while DM mice body weigh was generally less than 24 grams. We found that we missed information on physiological and metabolic parameters from in vivo studies (ICP function study). Therefore, we have added it in Supplementary Table 2 (Please see revised ‘Supplementary information’)

      2) The label and negative, and positive controls for Fig 6B are missing.

      Answer: We thank for pointing out this. We have added the relevant controls (Input) and performed Co-IP (IP: CRYAB or VIM1, WB: LBH) to demonstrate CRYAB and VIM1 are not simply cross-reactive antigens to their LBH antibody and all IP was replicated for at least 3 times. (Please see revised ‘Result’ and ‘Figure 6B’)

      3) The limitation of this study and future work should be discussed.

      Answer: As the reviewer pointed out, we have added the limitation of this study and future direction in the discussion section (Please see revised ‘Discussion’).

    1. Author Response

      The following is the authors’ response to the original reviews.

      REVIEWER 1

      The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.

      Thanks for your suggestions. Yes, we agree with you that the ancestral swimming medusae may appear before the early Cambrian, even at the Neoproterozoic deposits. However, discussions on the affinities of Ediacaran cnidarians are severely limited because of the lack of information concerning their soft anatomy. So, it is hard to detect the mechanics due to absent preservation. Olivooids found from the basal Cambrian Kuanchuanpu Formation can be reasonably considered as cnidarians based on their radial symmetry, external features, and especially the internal anatomies (Bengtson and Yue 1997; Dong et al. 2013; 2016; Han et al. 2013; 2016; Liu et al. 2014; Wang et al. 2017; 2020; 2022). The valid simulation experiment here was based on the soft tissue preserved in olivooids.

      While the lack of ambient flow made these simulations computationally easier, these organisms likely did not live in stagnant waters even within the benthic boundary layer. The absence of ambient unidirectional laminar current or oscillating current (such as would be found naturally) biases the results.

      Many thanks for your suggestion concerning the lack of ambient flow in the simulations. We revised the section “Perspectives for future work and improvements” (lines 381-392 in our revised version of manuscript). Conducting the simulations without ambient flow can reduce the computational cost and, of course, making the simulation easier, while adding ambient flow can lead to poorer convergency and more technical issues. Meanwhile, we strongly agreed that these (benthic) organisms did not live in stagnant waters, as discussed in Liu et al. 2022. However, reducing computational complexity is not the main reason that the ambient flow was not incorporated in the simulations. As we discussed in section “Perspectives for future work and improvements”, our work focuses on the theoretical effect caused by the dynamics (based on fossil observation and hypothesis) of polyp on ambient environment (i.e., how fast the organism inhales water from ambient environment) rather than effect caused by ambient flow on organism (e.g., drag forces), which was what previous palaeontological CFD simulations mainly focused based on fossil morphology and hydrodynamics. To this end, we mainly concern the flow velocity above or near peridermal aperture (and vorticity computed in this paper) generated only by polyp’s dynamics itself without the interference of ambient flow (as many CFD simulations for modern jellyfish, i.e., McHenry & Jed 2003; Gemmell et al. 2013; Sahin et al. 2009. All those simulations were conducted under hydrostatic conditions). Adding ambient flow to our simulations “biases” the flow velocity profiles we expect to obtain in this case.

      Nevertheless, we do agree that the ambient unidirectional laminar current or oscillating current plays an important role in feeding and respiration behavior of Quadrapyrgites. Further investigations need to be realized by designing a set of new insightful simulations and is beyond the scope of this work. We conducted CFD simulations incorporated with a randomly generated surface that imitated uneven seabed, where unidirectional laminar current and oscillating current (or vortex) were formed and exerted on Quadrapyrgites located in different places on the surface (Zhang et al. 2022). We assumed that combining the method we used in Zhang et al. 2022 and the velocity profiles collected in this work to conduct new simulations may be a promising way to further investigate the effect of the ambient current on organisms’ active feeding behavior.

      There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.

      Thanks for your suggestion. We revised the section “Perspectives for future work and improvements” (lines 396-404 in our revised version of manuscript).

      Conducting simulations of gregarious active feeding behavior generally need to model multi (or clustered) organisms, which is beyond the present computational capability. However, exploiting the simulation result and thus building a simplified model can be possible to realize that, as we may apply an inlet or outlet boundary condition to the peridermal aperture of Quadrapyrgites with corresponding exhale or inhale flow velocity profiles collected in this work. By doing this we can obtain a simplified version of an active feeding Quadrapyrgites model without using computational expensive moving mesh feature. Such a model can be used solely or in cluster to investigate gregarious feeding behavior incorporated with ambient current. Those above are explicit explanations for how this work could be a “breakthrough” in simulation gregarious feeding. However, we modified the corresponding description in section “Perspectives for future work and improvements” to make it more appropriate.

      Throughout the manuscript there are portions that are difficult to digest due to grammar, which I suspect is due to being written in a second language. This is particularly problematic when the reader is attempting to understand if the authors are stating an idea is well documented versus throwing out hypotheses/interpretations.

      Thanks. Our manuscript was checked and corrected by a native speaker of English again.

      Line-by-line:

      L023: "Although fossil evidence suggests..."

      L026: "demonstrated" instead of "proven"

      We corrected them accordingly.

      L030: "The hydrostatic simulations show that the..." Maybe I'm confused by the wording, but shouldn't this be the case since it's a set part of the model?

      As is demonstrated in our manuscript, all the simulations were conducted under “hydrostatic” environment. We originally intend to use the description “hydrostatic” here to emphasize the simulation condition we set in our work. However, it can literally lead to misunderstanding that some of the simulations we conducted are “hydrostatic” while the others are not. To this end, deleting the word “hydrostatic” here (line 30) may be appropriate to eliminate confusion.

      L058: "lacking soft tissue" Haootia preservation suggests it is soft tissue (Liu et al., 2014), unless the preceding sentence is not including Haootia, in which case this section is confusingly worded

      Thank you. We deleted the sentence “However, their affinities are not without controversy as the lacking soft tissue.”

      L085: change "proxy"

      Yes, we changed to “Considering their polypoid shape and cubomedusa-type anatomy, the hatched olivooids appear to a type of periderm-bearing polyp-shaped medusa (Wang et al. 2020) (lines 86-88).”

      L092: "assist in feeding" has this been stated before? Citation needed, else this interpretation should primarily be in the discussion

      Yes, you are right. We cited the reference at the end of the mentioned sentence (lines 91-94).

      L095: Remove "It is suggested that"

      Thanks for your suggestions. We corrected it.

      L100: "Probably the..." here to the end belongs in the discussion and not introduction.

      Thanks for your suggestions. We corrected the sentences.

      L108: "an abapical"

      Thanks for your suggestions. We revised it in line 107.

      L112: "for some distance" be specific or remove

      Yes, we deleted “for some distance” in line 111.

      L133: I can't find a corresponding article to Zhang et al., 2022. Is this the correct reference?

      The article Zhang et al. 2022 (entitled “Effect of boundary layer on simulation of microbenthic fossils in coastal and shallow seas”.) was in press at the time when we first submitted this manuscript. We complemented the corresponding term in References with the doi (10.13745/j.esf.sf.2023.5.32), which may help readers to locate this article easier.

      L138: You can't be positive that your simulations "provide a good reproduction of the movement." You have attempted to reconstruct said movement, but the language here is overly firm - as is "pave a new way"

      Thanks for your suggestions. We corrected the corresponding description (lines 138-140) to make it more rigorous.

      L149: "No significant change" implies statistics were computed that are not presented here.

      The statistics were computed by using built-in function of Excel and presented in Table supplement 2 (deposited in figshare, https://doi.org/10.6084/m9.figshare.23282627.v2) rather than in manuscript. To be specific, the error computations are followed by the formula of relative error, which is defined by:

      where u_z denotes the velocity profile collected on each cut point z with the current mesh parameters, u_z^* denotes the velocity profile collected on each cut point z with the next finer mesh parameters, i denotes each time step (from 0.01 to 4.0). In this case, the total average error was computed by averaging the sum of each 〖error〗_i on corresponding time step. The results are red marked in Table supplement 2. We revised the corresponding description in lines 140-146

      L152: "line graphs" >> "profiles"

      Thanks for your suggestions. We corrected it in line 144.

      L159: remove "significant" unless statistics are being reported, in which case those need to be explained in detail.

      Thanks for your suggestions. We removed "significant" and corrected the corresponding sentences in lines 150-153 to make them more rigorous.

      L159: I would recommend including a supplemental somewhere that shows how tall the modeled Quadrapyrgites is and where the cut lines exist above it.

      Many thanks for your suggestions. Corresponding complementation was made in the last paragraph of section “Computational fluid dynamics” (line 455 and line 535). We agree that it is appropriate to elucidate the height of modeled Quadrapyrgites and the position of each cut point. Hence, we add a supplementary figure (entitled Figure supplement 1) to illustrate those above.

      L183: "The maximum vorticity magnitude was set..." I do not follow what this threshold is based on the current phrasing.

      The vorticity magnitude mentioned here is the visualisation range of the color scalebar, which can be set manually set in the software. The positive number represent the vortex rotated counterclockwise, while the negative number represent that rotated clockwise on the cut plane. In this case, the visualisation range is [-0.001,0.001] (i.e., the absolute value of 0.001 is the threshold), as the color scalebar in Figure 7. Decreasing the threshold, for example, setting the visualisation range to [-0.0001,0.0001], can capture smaller vorticity on the cut plane, as the figure below on the left. Otherwise, setting the range to [-0.01,0.01] will focus on bigger vorticity, as the figure below on the right. We found [-0.001,0.001] could be an appropriate parameter to visualize the vortex near periderm based on our trial. To be more rigorous and to avoid confusion, we modified the description in the corresponding place of the manuscript (lines 172-174).

      Author response image 1.

      L201: "3.9-4 s"

      Thanks, we corrected it in line 191.

      L269: "Sahin et al.,..." add to the next paragraph

      Yes, we rearranged the corresponding two paragraphs (lines 258-289).

      L344: "Higher expansion-contraction..." this needs references and/or more justification.

      Thanks. We deleted the sentence.

      L446: two layers of hexahedral elements is a very low number for meshing boundary layer flow

      Many thanks for your question. We agree that an appropriate hexahedral elements mesh for boundary layer is essential to recover boundary flow, especially in cases where turbulence model incorporated with wall function is adopted such as the standard k-epsilon model. In this case, the boundary flow is not the main point since the velocity profile was collected above periderm aperture rather than near no-slip wall region. What else, we do not need drag (related to sheer stress and pressure difference) computations in this case, which requires a more accurate flow velocity reconstruction near no-slip walls as what previous palaeontological CFD simulations have done. Thus, we think two layers of hexahedral elements are enough. What else, hexahedral elements added to periderm aperture domain, as illustrated in figure below, can let the velocity near wall vary smoothly and thus can benefit the convergency of simulations.

      Author response image 2.

      L449: similar to comments regarding lines 146-148, key information is missing here. Figure 3C appears to be COMSOL's default meshing routine. While it is true that the domain is discretized in a non-uniform manner, no information is provided as to what mesh parameters were "tuned" to determine "optimal settings" or what those settings are (or how they are optimal).

      Many thanks for your question. Specific mesh parameters were listed in Table supplement 3 and corresponding descriptions and modifications were made both in lines 475-479 and lines 542-549. In most CFD cases, the mesh parameters need to be tuned to ensure a balance between computational cost and accuracy. If the difference of the result obtained from present mesh and that obtained from the next finer mesh ranges from 5% -10%, the present mesh is expected to be “optimal”. To achieve this, we prescribed several sets of different mesh (mainly concerning maximum and minimum element size) to each subdomain (domain of the inner cavity, domain of the peridermal aperture and domain outside of fossil model) of the whole computational domain in the test model. Subsequently, we refined the mesh step by step as much as possible and adjust the element size of subdomains to find suitable mesh parameters, that is how the mesh parameters were "tuned". We agree that we should explicit what mesh parameters were tuned and what those settings are.

      Figure 7 should have the timesteps included and the scaling of the arrows should be explicit in the caption

      Many thanks for your suggestions. We intended to use the white arrows to represent the velocity orientation rather than true velocity scale in Figure 7 (Instead, the white arrows in Animation supplement 1 represent a normalized velocity profile). To avoid confusion, we revised Figure 7 with timesteps and arrows represent a normalized velocity profile, making it consistent with Animation supplement 1. Corresponding modification is also made in the caption of Figure 7.

      The COMSOL simulation files (raw data) are missing from the supplemental data. These should be posted to Dryad or here.

      We uploaded the files to Dryad (https://datadryad.org/stash/share/QGDSqLh8HOll7ofl6JWVrqM57Rp62ZPjvZU0AQQHwTY), and added the corresponding link to section “Data Availability Statement”.

      REVIEWER 2

      Lines 319-334: The omission in this paragraph of Paraconularia ediacara Leme, Van Iten and Simoes (2022) from the terminal Ediacaran of Brazil is a serious matter, as (1) the medusozoan affinities of this fossil are every bit as well established as those of anabaritids, Sphenothallus, Cambrorhytium and Byronia, and (2) P. ediacara was a large (centimetric) polyp, the presence of which in Precambrian times is thus a problem for the simple evolutionary scenario (very small polyps followed later in evolutionary history by large polyps) outlined in the paragraph. Thus, Paraconularia ediacara must be mentioned in this paper, both in connection with the early evolution of size in cnidarian polyps and in other places where the early evolution of cnidarians is discussed.

      Thanks for your important suggestions. We added some sentences in lines 323-326 as following: “Significantly, the large-bodied, skeletonized conulariids-like Paraconularia found from the terminal Ediacaran Tamengo Formation of Brazil confirmed their ancient predators like the extant medusozoans and suggested the origin of cnidarians even farther into the deep evolutionary scenario (Leme et al. 2022).”

      Line 23. Delete the word, been.

      Line 25. Replace conjecture with conjectural.

      Line 26. Delete the word, the before calyx-like.

      Line 32. Replace consisting with consistent.

      Thanks for your suggestions. We all corrected them.

    2. Reviewer #1 (Public Review):

      Summary:<br /> The authors utilize fluid-structure interaction analyses to simulation fluid flow within and around the Cambrian cnidarian Quadrapyrgites to reconstruct feeding/respiration dynamics. Based on vorticity and velocity flow patterns, the authors suggest that the polyp expansion and contraction ultimately develop vortices around the organism that are like what modern jellyfish employ for movement and feeding. Lastly, the authors suggest that this behavior is likely a prerequisite transitional form to swimming medusae.

      Strengths:<br /> While fluid-structure-interaction analyses are common in engineering, physics, and biomedical fields, they are underutilized in the biological and paleobiological sciences. Zhang et al. provide a strong approach to integrating active feeding dynamics into fluid flow simulations of ancient life. Based on their data, it is entirely likely the described vortices would have been produced by benthic cnidarians feeding/respiring under similar mechanisms. However, some of the broader conclusions require additional justification.

      Weaknesses:

      1. The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.<br /> 2. While the lack of ambient flow made these simulations computationally easier, these organisms likely did not live in stagnant waters even within the benthic boundary layer. The absence of ambient unidirectional laminar current or oscillating current (such as would be found naturally) biases the results.<br /> 3. There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.

      Despite these weaknesses the authors dynamic fluid simulations convincingly reconstruct the feeding/respiration dynamics of the Cambrian Quadrapyrgites, though the large claims of transitionary stages for this behavior are not adequately justified. Regardless, the approach the authors use will be informative for future studies attempting to simulate similar feeding and respiration dynamics.

      The following text is directly in response to the revised version of the manuscript.<br /> Dynamic simulations of feeding and respiration of the early Cambrian periderm-bearing cnidarian polyps

      Revision 1

      I think this manuscript has been improved by the authors, and I appreciate their time and effort in considering my earlier comments. While most of my line by line comments have been incorporated, I do feel that some of my larger points have been insufficiently addressed. Those are repeated with additional clarifications below.

      Original comment: The claim that olivooid-type feeding was most likely a prerequisite transitional form to jet-propelled swimming needs much more support or needs to be tailored to olivooids. This suggests that such behavior is absent (or must be convergent) before olivooids, which is at odds with the increasing quantities of pelagic life (whose modes of swimming are admittedly unconstrained) documented from Cambrian and Neoproterozoic deposits. Even among just medusozoans, ancestral state reconstruction suggests that they would have been swimming during the Neoproterozoic (Kayal et al., 2018; BMC Evolutionary Biology) with no knowledge of the mechanics due to absent preservation.

      Author response: Thanks for your suggestions. Yes, we agree with you that the ancestral swimming medusae may appear before the early Cambrian, even at the Neoproterozoic deposits. However, discussions on the affinities of Ediacaran cnidarians are severely limited because of the lack of information concerning their soft anatomy. So, it is hard to detect the mechanics due to absent preservation. Olivooids found from the basal Cambrian Kuanchuanpu Formation can be reasonably considered as cnidarians based on their radial symmetry, external features, and especially the internal anatomies (Bengtson and Yue 1997; Dong et al. 2013; 2016; Han et al. 2013; 2016; Liu et al. 2014; Wang et al. 2017; 2020; 2022). The valid simulation experiment here was based on the soft tissue preserved in olivooids.

      Reviewer response: This response does not sufficiently address my earlier comment. While the authors are correct that individual Ediacaran affinities are an area of active research and that Olivooids can reasonably be considered cnidarians, this doesn't address the actual critique in my comment. Most (not all) Ediacaran soft-bodied fossils are considered to have been benthic, but pelagic cnidarian life is widely acknowledged to at least be present during later White Sea and Nama assemblages (and earlier depending on molecular clock interpretations). The authors have certainly provided support for the mechanics of this type of feeding being co-opted for eventual jet-propulsion swimming in Olivooids. They have not provided sufficient justifications within the manuscript for this to be broadened beyond this group.

      Original comment: There is no explanation for how this work could be a breakthrough in simulation gregarious feeding as is stated in the manuscript.

      Author response: Thanks for your suggestion. We revised the section "Perspectives for future work and improvements" (lines 396-404 in our revised version of MS). Conducting simulations of gregarious active feeding behavior generally need to model multi (or clustered) organisms, which is beyond the present computational capability. However, exploiting the simulation result and thus building a simplified model can be possible to realize that, as we may apply an inlet or outlet boundary condition to the peridermal aperture of Quadrapyrgites with corresponding exhale or inhale flow velocity profiles collected in this work. By doing this we can obtain a simplified version of an active feeding Quadrapyrgites model without using computational expensive moving mesh feature. Such a model can be used solely or in cluster to investigate gregarious feeding behavior incorporated with ambient current. Those above are explicit explanations for how this work could be a "breakthrough" in simulation gregarious feeding. However, we modified the corresponding description in section "Perspectives for future work and improvements" to make it more appropriate.

      Reviewer response: I think I understand where the authors are trying to take this next step. If the authors were to follow up on this study with the proposed implementation of inhalant/exhalent velocities profiles (or more preferably velocity/pressure fields), then that study would be a breakthrough in simulating such gregarious feeding. Based on what has been done within the present study, I think the term "breakthrough" is instead overly emphatic.<br /> An additional note on this. The authors are correct that incorporating additional models could be used to simulation a population (as has been successfully done for several Ediacaran taxa despite computational limitations), but it's not the only way. The authors might explore using periodic boundary conditions on the external faces of the flow domain. This could require only a single Olivooid model to assess gregarious impacts - see the abundant literature of modeling flow through solar array fields.

      Original comment: L446: two layers of hexahedral elements is a very low number for meshing boundary layer flow

      Author response: Many thanks for your question. We agree that an appropriate hexahedral elements mesh for boundary layer is essential to recover boundary flow, especially in cases where turbulence model incorporated with wall function is adopted such as the standard k-epsilon model. In this case, the boundary flow is not the main point since the velocity profile was collected above periderm aperture rather than near no-slip wall region. What else, we do not need drag (related to sheer stress and pressure difference) computations in this case, which requires a more accurate flow velocity reconstruction near no-slip walls as what previous palaeontological CFD simulations have done. Thus, we think two layers of hexahedral elements are enough. What else, hexahedral elements added to periderm aperture domain, as illustrated in figure below, can let the velocity near wall vary smoothly and thus can benefit the convergency of simulations.

      Reviewer response: As the authors point out in the main text, these organisms are small (millimeters in scale) and certainly lived within the boundary layer range of the ocean. While the boundary layer is not the main point, it still needs to be accurately resolved as it should certainly affect the flow further towards the far field at this scale. I'm not suggesting the authors need to perfectly resolve the boundary layer or focus on using turbulence models more tailored to boundary layer flows (such as k-w), but the flow field still needs sufficient realism for a boundary bounded flow. The authors really should consider quantitatively assessing the number of hexahedral elements within their mesh refinement study.

    1. Reviewer #1 (Public Review):

      Questions and concerns:

      The abstract is hard to follow. The authors there refer to a previous experiment showing that "overnight fasting diminishes excessive avoidance and speeds up fear extinction by decreasing subjective relief during threat omissions" (L26). They go on to say that "relief tracks the reward prediction error signal that governs safety learning" (L28). This is puzzling. While getting less relief/safety from avoidance actions will surely diminish avoidance (because avoidance actions are less reinforced), getting less relief/safety from omissions of an unconditioned stimulus (US) in fear extinction should slow down (not speed up) fear extinction. In the same vein, why are "lower activations [in fMRI] in the ventromedial prefrontal cortex and nucleus accumbens in response to threat omissions signaled by a safe cue" (L34) associated with "increased effective avoidance and sped up fear extinction" (L33)? This clearly goes against the existing literature on reward prediction errors (PEs) in fear learning paradigms, where these PEs in the mesolimbic dopamine system drive extinction, that is, they are associated with better extinction (and should therefore also be associated with more avoidance). For instance, in the rodent, Luo et al., 2018 (DOI: 10.1038/s41467-018-04784-7) and Salinas-Hernandez et al., 2018 (DOI: https://doi.org/10.7554/eLife.388181 of 25RESEARCH ARTICLE) and 2023 (https://doi.org/10.1016/j.neuron.2023.08.025ll) have in various constellations optogenetically enhanced and diminished, respectively, the PE signal at the time of US omission in extinction in either VTA or nucleus accumbens and thereby sped up and slowed down, respectively, extinction learning. If the results of the current experiment contradict established knowledge, the reader must be clearly informed about this. By contrast, the abstract gives the impressions as if the current results were to be expected and in line with the literature ("since relief tracks the reward prediction error signal ..., we hypothesized ...").

      It would also help the reader if it was clarified that the finding of "increased effective avoidance" (L33) went counter to the hypothesis, e.g., by saying "Contrary to our hypothesis, we observed ...".

      Introduction:

      L51: The presentation of exposure therapy is a bit misleading and may create confusion. While it is probably correct that exposure works by "promoting safety learning", this is generally thought to be the case only for Pavlovian associations (CS-US), that is, for extinction (where safety learning creates the new association of CS and "no US"). It is, however, not generally considered to be the case for the instrumental action-outcome associations that underlie avoidance learning ("I do this or that, then I do not have to experience the feared object or situation"). Therapists try to prevent this type of learning from happening, exactly by promoting the confrontation with fear objects or situations in the absence of any avoidance action.

      Generally, I think the introduction suffers from the absence of a short explanation of what avoidance and extinction learning are, behaviorally, and what types of mechanisms are believed to drive them, and that the one (avoidance) is thought to contribute to the maintenance of fears whereas the other (extinction) reduces fear. The non-specialist reader is somehow left in the dark.

      In the same vein, on L63, presenting the results of their previous fasting study that serves as a discovery study for the present experiment, the authors make a distinction between "unnecessary avoidance during a signal of safety" and "effective avoidance during a signal of upcoming threat". It is really expecting too much from the reader that they will understand at this stage that a CS can become a signal of safety through extinction or that a CS not paired with a US during conditioning (a "CS-") is a safety signal and that it is not necessary to avoid such a signal, whereas a non-extinguished CS (signaling threat) may well be avoided. (At least, this is how I understood the distinction.)

      I was then really confused by the following statement (L65) that "the decrease in unnecessary avoidance was mediated by lower levels of relief ... during omissions of threat". If a CS is already extinguished (has no remaining or only little threat value, that is, is a safety stimulus), there is no longer threat omission when the US does not occur, and no relief. There should also be no relief to US omission after a CS-. More importantly even, if fasted participants reported lower levels of relief from threat omission, why did they not also show less effective avoidance (which is driven by the reinforcement provided by the relief that occurs when a successful avoidance action has prevented a US from occurring after or during the CS)?

      L69: Also the statement "a faster decline in relief ... ratings during ... extinction, suggesting faster decrease of threat expectancies" can only be understood by the reader if they already know what a PE is and by what rules PE-driven learning is governed (that is, essentially, if they know Rescorla-Wagner). I think the authors must explain, in order to allow a non-specialist reader to follow their text, that the PE (supposed to be indexed by the relief rating) reflects the discrepancy between the magnitude of an outcome expectation (e.g., here, expectation of the US) and the obtained outcome (here, US or not); that, therefore, a PE is generated when a subject expects a US (as a result of prior conditioning) but does not get it; that this leads to a proportional update (reduction) of the US expectation in the next trial; and that this in turn leads to a diminished PE when the US again does not occur. Notably, the reader must be made aware that the higher the PE, the higher the reduction and the faster the extinction (proportionality).

      The reader must also be made aware that the update is additionally determined by some multiplicatory "transmission" function or constant (e.g., learning rate in Rescorla-Wagner) that defines the size of the relationship between the magnitude of the PE and the magnitude of the update (reduction). Hence, in two individuals, even if the magnitude of the PE is identical, the magnitude of the update may differ because of individual differences in the learning rate (to take the Rescorla-Wagner implementation). The authors, however, seem to ignore the possibility that fasting changes the learning rate.

      Both the dynamics of the PE and the learning rate, of course, add complexity to the interpretation of the past and present data. But I think the authors cannot avoid this when they want to make sense of a treatment (fasting) that they believe affects safety learning. Speaking of "lower levels of relief" (L66) must be qualified by whether these lower ratings were observed initially (when the first PEs were registered at initial threat omissions, meaning that safety learning should be relatively slowed down by fasting) or on average or later during a safety learning experiment (which could indicate that learning under fasting was relatively quicker/more successful).

      Following upon this, in L74, the conclusion from observations of lower levels of relief during avoidance and faster decline in relief during extinction in the previous study that "overnight fasting decreased the reward value of safety (less relief pleasantness)" may be wrong if the faster decline and the resulting lower average levels of relief were the consequence of a higher initial PE in the fasting group, as would be expected from the Rescorla-Wagner rule. If the latter were the case, this would suggest that subjects actually registered more safety (a higher discrepancy to their threat expectation) in early trials. This could also explain why fasting sped up extinction in that study (see Abstract). It might also explain why "effective avoidance" (L64) was at least maintained (although it should actually also be sped up). It might make less parsimonious explanations ("fasting biases .. to focus on food at the expense of safety", L79), requiring the presence of a food source and a utility function of accepting a threat in the obtainment of food, unnecessary.

      All this, however, rests on whether I think I have understood what the authors want to say about their relief measurements and the way the operationalized avoidance in the previous study.

      More unclarities due to not giving full information: L91: "... extinction and avoidance learning. Accordingly, human fMRI studies have found ... activations in the ventral striatum and the VTA during threat omissions that might contribute to establishing a new safety CS-->noUS memory that reduces the initial fear response." However, in avoidance, it is an action that is reinforced by the US omission and hence an action-->noUS memory that is being formed. The CS keeps its threat value acquired during the preceding conditioning phase, and the reduction of fear during CS presentations is contingent upon the exertion of the avoidance action.

      L99: "Because overnight fasting decreased relief rating particularly during omissions after safety signals". Again, if a US is omitted after a safety signal (an extinguished CS or a CS-), there should be no PE and no relief. If there were still relief ratings at US omission after a safety signal, this would suggest extinction did not fully work or differential conditioning was not successful. In any case, it is not clear at all why relief was specifically decreased during omissions after safety signals and not (and much more so) during omissions after threat signals, where there is clearly a PE. If this was not the case, one has to wonder if something went wrong in the discovery study.

      The paragraph starting L103 and the associated figure 1 could be a bit more precise and give a bit more information in order to provide the reader a proper understanding of key experimental manipulations, in particular the ART task. Please define abbreviations "CS+unav", "CS+av". L108 ff.: One gets the impression there is only one CS+, whereas there are two. Say explicitly that one CS+ remains unavoidable during the Avoidance phase (CS+unav). What is the purpose of this stimulus? Do participants learn during the Avoidance phase that the CS+unav is unavoidable and the CS+av is avoidable or is this instructed? Do participants have to press the button within a certain time after CS+unav onset in order to avoid the US, or with a certain force? Is avoidance in case of successful button pressing deterministic or probabilistic? Say that the frame with the non-lit lamp is the ITI.

      Relief ratings (Figure 1b): The rating says "How pleasant was the relief that you felt?". That is, the experimenter insinuates that the participant will have felt relief and only wants to know how pleasant that relief was. The subjects has no chance to indicate there was no relief. This may be the reason why, in the discovery study, subjects indicated relief to safe stimuli, see above. Why did the authors not simply ask about the degree of relief felt, which would give a subject the chance to say there was no relief? I think this is a major flaw.

      L119: "We previously found that overnight fasting reduces avoidance and relief mostly to a safe CS-." If this is really the only thing that the authors found, then the fasting manipulation in their previous study failed to modulate avoidance of CS+s and the PE signaling at the time of US omissions after CS+s, that is, after actual threat stimuli. The procedure then clearly is not suited to study influences of fasting on avoidance learning. Whatever it does manipulate, it is not relief-based avoidance learning.

      L130: It makes absolutely no sense to hypothesize that a manipulation reducing relief in extinction learning will decrease activation in the neural PE circuitry at the time of US omission more after the CS- than after the CS+. Of course, the PE is highest when the US is not given after the CS+, and this is where any relief manipulation should have an effect. As said above, the authors must also specify their hypothesis with respect of timing (early or late extinction? See the animal papers cited above.)

    1. Author Response

      Thanks to all the reviewers for their insightful and constructive comments, which are very helpful in improving the manuscript. We are encouraged by the many positive comments regarding the significance of our findings and the value of our data. Regarding the reviews’ concern on cell classification, we used several additional marker genes to explain the identification of cell clusters and subclusters. We have further analyzed and rewrote part of the text to address the concerns raised. Here is a point-by-point response to the reviewers’ comments and concerns. Figures R1-R9 were provided only for additional information for reviewers and were not included in the revised manuscript.

      Reviewer #1 (Public Review):

      In the article "Temporal transcriptomic dynamics in developing macaque neocortex", Xu et al. analyze the cellular composition and transcriptomic profiles of the developing macaque parietal cortex using single-cell RNA sequencing. The authors profiled eight prenatal rhesus macaque brains at five timepoints (E40, E50, E70, E80, and E90) and obtained a total of around 53,000 high-quality cells for downstream analysis. The dataset provides a high-resolution view into the developmental processes of early and mid-fetal macaque cortical development and will potentially be a valuable resource for future comparative studies of primate neurogenesis and neural stem cell fate specification. Their analysis of this dataset focused on the temporal gene expression profiles of outer and ventricular radial glia and utilized pesudotime trajectory analysis to characterize the genes associated with radial glial and neuronal differentiation. The rhesus macaque dataset presented in this study was then integrated with prenatal mouse and human scRNA-seq datasets to probe species differences in ventricular radial glia to intermediate progenitor cell trajectories. Additionally, the expression profile of macaque radial glia across time was compared to those of mouse apical progenitors to identify conserved and divergent expression patterns of transcription factors.

      The main findings of this paper corroborate many previously reported and fundamental features of primate neurogenesis: deep layer neurons are generated before upper layer excitatory neurons, the expansion of outer radial glia in the primate lineage, conserved molecular markers of outer radial glia, and the early specification of progenitors. Furthermore, the authors show some interesting divergent features of macaque radial glial gene regulatory networks as compared to mouse. Overall, despite some uncertainties surrounding the clustering and annotations of certain cell types, the manuscript provides a valuable scRNA-seq dataset of early prenatal rhesus macaque brain development. The dynamic expression patterns and trajectory analysis of ventricular and outer radial glia provide valuable data and lists of differentially expressed genes (some consistent with previous studies, others reported for the first time here) for future studies.

      The major weaknesses of this study are the inconsistent dissection of the targeted brain region and the loss of more mature excitatory neurons in samples from later developmental timepoint due to the use of single-cell RNA-seq. The authors mention that they could observe ventral progenitors and even midbrain neurons in their analyses. Ventral progenitors should not be present if the authors had properly dissected the parietal cortex. The fact that they obtained even midbrain cells point to an inadequate dissection or poor cell classification. If this is the result of poor classification, it could be easily fixed by using more markers with higher specificity. However, if it is the result of a poor dissection, some of the cells in other clusters could potentially be from midbrain as well. The loss of more mature excitatory neurons is also problematic because on top of hindering the analysis of these neurons in later developmental periods, it also affects the cell proportions the authors use to support some of their claims. The study could also benefit from the validation of some of the genes the authors uncovered to be specifically expressed in different populations of radial glia.

      We thank the Reviewer’s comments and apologize for the shortcomings of tissue dissection and cell capture.

      We used more marker genes for major cell classification, such as SHOX2, IGFBP5, TAC1, PNYN, FLT1, and CYP1B, in new Figure 1D, to improve the cell type annotation results. We improved the cell type annotation results by fixing cluster 20 from C20 as Ventral LGE-derived interneuron precursor and cluster by the expression of IGFBP5, TAC1, and PDYN; fixing cluster 23 from meningeal cells to thalamus cells by the expression of ZIC2, ZIC4, and SHOX2. These cell types were excluded in the follow-up analysis. Due to EN8 being previously incorrectly defined as midbrain neurons, it resulted in a misunderstanding of the dissection result as a poor dissection. After carefully reviewing the data analysis process, we determined that EN8 was a small group of cells in cluster 23 mistakenly selected during excitatory neuron analysis, as shown in Figure R5(A), which was corrected after revision. In the revised manuscript, we deleted the previous EN8 subcluster and renumbered the rest of the excitatory neuron subclusters in the new Figure 2.

      In addition, we also improved the description of sample collection as follows: “We collected eight pregnancy-derived fetal brains of rhesus macaque (Macaca mulatta) at five prenatal developmental stages (E40, E50, E70, E80, E90) and dissected the parietal lobe cortex. Because of the different development times of rhesus monkeys, prenatal cortex size and morphology are different. To ensure that the anatomical sites of each sample are roughly the same, we use the lateral groove as a reference to collect the parietal lobe for single-cell sequencing (as indicated by bright yellow in Figure S1A) and do not make a clear distinction between the different regional parts including primary somatosensory cortex and association cortices in the process of sampling”. As shown in Figure S1A, due to the small volume of the cerebral cortex at early time points, especially in E40, a small number of cells beyond the dorsal parietal lobe, including the ventral cortex cells and thalamus cells, were collected during the sampling process with the brain stereotaxic instrument.

      In this study, the BD method was used to capture single cells. Due to the fixed size of the micropores, this method might be less efficient in capturing mature excitatory neurons. However, it has a good capture effect on newborn neurons at each sampling time point so that the generation of excitatory neurons at different developmental time points can be well observed, as shown in Figure 2, which aligns with our research purpose.

      To verify the reliability of our cell annotation results, we compared the similarity of cell-type association between our study and recently published research(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652), using the scmap package to project major cell types in our macaque development scRNA-seq dataset to GSE226451. The river plot in Author response image 1 illustrates the broadly similar relationships of cell type classification between the two datasets.

      Author response image 1.

      Riverplot illustrates relationships between datasets in this study and recently published developing macaque telencephalon datasets major cell type annotation.

      Furthermore, bioinformatics analysis is used for the validation of genes specifically expressed in outer radial glia. We verified terminal oRG differentiation genes in the recently published macaque telencephalic development dataset(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652) (GEO accession: GSE226451). The results of Author response image 2 show that the gene expression showed states/stages. Most of the oRG terminal differentiation markers genes identified in our study were also expressed in the oRG cells of the GSE226451 dataset. In particular, the two datasets were consistent in the expression of ion channel genes ATP1A2, ATP1A2, and SCN4B.

      Author response image 2.

      Heatmap shows the relative expression of genes displaying significant changes along the pseudotime axis of vRG to oRG from the dataset of Nicola Micali et al.2023(GEO: GSE226451). The columns represent the cells being ordered along the pseudotime axis.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Xu et al., is an interesting study aiming to identify novel features of macaque cortical development. This study serves as a valuable atlas of single cell data during macaque neurogenesis, which extends the developmental stages previously explored. Overall, the authors have achieved their aim of collecting a comprehensive dataset of macaque cortical neurogenesis and have identified a few unknown features of macaque development.

      Strengths:

      The authors have accumulated a robust dataset of developmental time points and have applied a variety of informatic approaches to interrogate this dataset. One interesting finding in this study is the expression of previously unknown receptors on macaque oRG cells. Another novel aspect of this paper is the temporal dissection of neocortical development across species. The identification that the regulome looks quite different, despite similar expression of transcription factors in discrete cell types, is intriguing.

      Weaknesses:

      Due to the focus on demonstrating the robustness of the dataset, the novel findings in this manuscript are underdeveloped. There is also a lack of experimental validation. This is a particular weakness for newly identified features (like receptors in oRG cells). It's important to show expression in relevant cell types and, if possible, perform functional perturbations on these cell types. The presentation of the data highlighting novel findings could also be clarified at higher resolution, and dissected through additional informatic analyses. Additionally, the presentation of ideas and goals of this manuscript should be further clarified. A major gap in the study rationale and results is that the data was collected exclusively in the parietal lobe, yet the rationale and interpretation of what this data indicates about this specific cortical area was not discussed. Last, a few textual errors about neural development are also present and need to be corrected.

      We thank you for your comments and suggestions concerning our manuscript. The comments and suggestions are all valuable and helpful for revising and improving our paper and the essential guiding significance to our research. We have studied the comments carefully and made corrections, which we hope to meet with approval. We have endeavored to address the multiple points raised by the referee.

      To support the reliability of our data and newly identified features, we verified terminal oRG differentiation genes in the recently published macaque telencephalic development dataset(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652) (GEO accession: GSE226451). The results of Figure R2 show that the gene expression showed states/stages. Most of the oRG terminal differentiation markers genes identified in our study were also expressed in the oRG cells of the GSE226451 dataset. In particular, the two datasets were consistent in the expression of ion channel genes ATP1A2, ATP1A2, and SCN4B.

      Our research results mainly explore the conserved features of neocortex development across species. By comparing evolution, we found the types of neural stem cells in the intermediate state, their generative trajectories, and gene expression dynamics accompanying cell trajectories. We further explored the stages of transcriptional dynamics during vRG generating oRG. More analysis was performed through transcriptional factor regulatory network analysis. We performed the TFs regulation network analysis of human vRG with pyscenic workflow. The top transcription factors of every time point in human vRG were calculated, and we used the top 10 TFs and their top 5 target genes to perform interaction analysis and generate the regulation network of human vRG in revised figure 6. In comparison of the pyscenic results of mouse, macaque and human vRG, it was obvious that the regulatory networks were not evolutionarily conservative. Compared with macaque, the regulatory network of transcription factors and target genes in humans is more complex. Some conserved regulatory relationships present in more than one species are identified, such as HMGN3, EMX2, SOX2, and HMGA2 network at an early stage when deep lager generation and SOX10, ZNF672, ZNF672 network at a late stage when upper-layer generation.

      Although the parietal lobe is the center of the somatic senses and is significant for interpreting words as well as language understanding and processing. In this study, the parietal lobe area was selected mainly because of the convenience of sampling the dorsal neocortex. As we described in the Materials and Methods section as follows: “Because of the different development times of rhesus monkeys, prenatal cortex size and morphology are different. To ensure that the anatomical sites of each sample are roughly the same, we use the lateral groove as a reference to collect the parietal lobe for single-cell sequencing (as indicated by bright yellow in Figure S1A) and do not make a clear distinction between the different regional parts including primary somatosensory cortex and association cortices in the process of sampling”.

      Thanks for carefully pointing out our manuscript's textual errors about neural development. We have corrected them which were descripted in the following response.

      Reviewer #3 (Public Review):

      Summary: The study adds to the existing data that have established that cortical development in rhesus macaque is known to recapitulate multiple facets cortical development in humans. The authors generate and analyze single cell transcriptomic data from the timecourse of embryonic neurogenesis.

      Strengths:

      Studies of primate developmental biology are hindered by the limited availability and limit replication. In this regard, a new dataset is useful.

      The study analyzes parietal cortex, while previous studies focused on frontal and motor cortex. This may be the first analysis of macaque parietal cortex and, as such, may provide important insights into arealization, which the authors have not addressed.

      Weaknesses:

      The number of cells in the analysis is lower than recent published studies which may limit cell representation and potentially the discovery of subtle changes.

      The macaque parietal cortex data is compared to human and mouse pre-frontal cortex. See data from PMCID: PMC8494648 that provides a better comparison.

      A deeper assessment of these data in the context of existing studies would help others appreciate the significance of the work.

      We thank the reviewer for these suggestions and constructive comments. We agree with the reviewer that the cell number in our study is lower than in recently published studies. The scRNA sequencing in this study was completed between 2018 and 2019, the early stages of the single-cell sequencing technology application. Besides, we have been unable to get extra macaque embryos to enlarge the sample numbers recently since rhesus monkey samples are scarce. Therefore, the number of cells in our study is relatively small compared to recently published single-cell studies.

      The dataset suggested by the reviewers is extremely valuable, and we tried to perform analysis as the reviewer suggested to explore temporal expression patterns in different species of parietal cortex. The dataset from PMCID: PMC8494648 provides the developing human brain across regions from gestation week (GW)14 to gestation week (GW)25. Since this data set only covers the middle and late stages of embryonic neurogenesis, it did not fully match the developmental time points of our study for integration analysis. However, we quoted the results of this study in the discussion section.

      The human regulation analysis with pyscenic workflow was added into new figure 6 for the comparison of different species vRG regulatory network. Compared with macaque, the regulatory network of transcription factors and target genes in humans is more complex. Some conserved regulatory relationships present in more than one species are identified, such as HMGN3, EMX2, SOX2, and HMGA2 network at an early stage when deep lager generation and SOX10, ZNF672, ZNF672 network at a late stage when upper-layer generation.

      Besides, we performed additional integration analysis of our dataset with the recently published macaque neocortex development datase (GEO accession: GSE226451) to verify the reliability of our cell annotation results and terminal oRG differentiation genes. The river plot in Figure R1 illustrates the broadly similar relationships of cell type classification between the two datasets. The result in Figure R2 showed that most of the oRG terminal differentiation markers genes identified in our study were also expressed in the oRG cells of the GSE226451 dataset. In particular, the two datasets were consistent in the expression of ion channel genes ATP1A2, ATP1A2, and SCN4B.

      Reviewer #1 (Recommendations For The Authors):

      1) Throughout the manuscript, the term "embryonic" or "embryogenesis" is used in reference to all timepoints (E40-E90) in this study. The embryonic period is a morphologically and anatomically defined developmental period that ends ~E48-E50 in rhesus macaque. Prenatal or developing is a more accurate term when discussing all timepoints of this study.

      We thank the reviewer for pointing out this terminology that needs to be clarified. We have now replaced “embryonic” with “prenatal” as a more appropriate description for the sampling time points in the manuscript.

      2) Drosophila should be italicized in the introduction.

      Thanks for suggesting that we have set the “Drosophila” words to italics in the manuscript.

      3) Introduction - "In rodents, radial glia are found in the ventricular zone (VZ), where they undergo proliferation and differentiation." This sentence implies that only within rodents are radial glia found within the ventricular zone. Radial glia are present within the ventricular zone of all mammals.

      Thanks for careful reading. This sentence has been corrected “In mammals, radial glial cells are found in the ventricular zone (VZ), where they undergo proliferation and differentiation.”

      4) Figure 1A - an image of the E40 brain is missing.

      We first sampled the prenatal developmental cortex of rhesus monkeys at the E40 timepoint. Unfortunately, we forgot to save the photo of the sampling at the E40 time point.

      5) Figure 1B and 1C - it is unclear why cluster 20 is not annotated in Figure 1 as in the text it is stated "Each of the 28 identified clusters could be assigned to a cell type identity..." This cluster expresses VIM and PAX6 suggestive of ventricular radial glia and is located topographically approximate to IPC cluster 8 and seems to bridge the gap between neural stem cells and the interneuron clusters. Additionally, cluster 20 appears to be subclustered by itself in the progenitor subcluster UMAP (Figure 3A) suggestive of a batch effect or cells with low quality. The investigation, quality control, and proper annotation of this cluster 20 is necessary.

      We appreciate for the reviewer’s suggestion. We detected specific expression marker genes of cluster 20, cells in this cluster specifically expressed VIM, IGFBP5 and TAC. According to the cell annotation results from a published study, we relabeled cluster 20 as ventral LGE-derived interneuron precursors (Yu, Yuan et al. Nat Neurosci. 2021. doi:10.1038/s41593-021-00940-3. PMID: 34737447.). Cluster 20 cells have been deleted in the new Figure 3A.

      6) Figure 1B UMAP - it is unexpected that meningeal cells would cluster topographically closer to the excitatory neuron cluster (one could even argue that the meningeal cell cluster is located within the excitatory neuron clusters) instead of next to or with the endothelial cell clusters. This is suspicious for a mis-annotated cell cluster. ZIC2 and ZIC3 were used as the principal marker genes for meningeal cells. However, these genes are not specific for meninges (PanglaoDB) and had not been identified as marker genes in a developmental sc-RNAseq dataset of the developing mouse meninges (DeSisto et al. 2020). Additional marker genes (COL1A1, COL1A2, CEMIP, CYP1B1, SLC13A3) may be helpful to delineate the identity of this cluster and provide more evidence for a meningeal origin.

      We thank the reviewer for the constructive advice. The violin plot in Author response image 3 has checked additional marker genes, including COL1A1, COL1A2, CEMIP, and CYP1B2. Cluster 23 does not express these marker genes but specifically expresses thalamus marker genes SHOX2(Rosin, Jessica M et al. Dev Biol. 2015. doi:10.1016/j.ydbio.2014.12.013. PMID: 25528224.) and TCF7L2(Lipiec, Marcin Andrzej et al. Development. 2020. doi: 10.1242/dev.190181. PMID: 32675279). According to the gene expression results, we corrected the cell definition of cluster 23 to thalamic cells in the revised manuscript. Specifically, we added marker genes SHOX2 and CYP1B1 in the new Figure 1D violin plot and corrected the cell definition of cluster23 from meninges to thalamus cells in the revised manuscript and figures.

      Author response image 3.

      Vlnplot of additional markers in cluster 23.

      7) From Figure 1A, it appears that astrocytes (cluster 13) are present at E40 and E50 timepoints. This is inconsistent with literature and experimental data of the timing of the neuron-glia switch in primates and inconsistent with the claim within the text that, "Collectively, these results suggested that cortical neural progenitors undergo neurogenesis processes during the early stages of macaque embryonic cortical development, while gliogenic differentiation... occurs in later stages." The clarification of the percentage of astrocytes at each timepoint would clarify this point.

      According to the suggestion, we have statistically analyzed the percentage of astrocytes (cluster 13) at each time point. The statistical results showed that the proportion of astrocytes was low to 0.1783% and 0.1046% at E40 and E50 time points, and increased significantly at E80 and E90, suggesting the onset of macaque gliogenesis might be around embryonic 80 days to 90 days. The result was consistent with published research on the timing of the neuron-glial transition in primates (Rash, Brian G et al. Proc Natl Acad Sci U S A. 2019. doi:10.1073/pnas.1822169116. PMID: 30894491). Besides, we thought that the cells in cluster 13 captured at E40 to E50 time points, with a total number of less than 200, maybe astrocyte precursor cells expressing the AQP4 gene (Yang, Lin, et al. Neuroscience bulletin. 2022. doi:10.1007/s12264-021-00759-9. PMID: 34374948).

      8) A subcluster of ExN neurons was identified and determined to be of midbrain origin based on expression of TCF7L2. Did this subcluster express other known markers of the developing midbrain (OTX2, LMX1A, NR4A2, etc...)? Additionally, does this subcluster suggest that the limits of the dissection extended to the midbrain in samples E40 and E50?

      We apologize for the previous inadequacy of the excitatory neuron cell annotation. In the description of the previous version of the manuscript, we misidentified the cells of the EN8 as midbrain cells. Following the reviewer’s suggestion, we verified the expression of more tissue- specific marker genes of EN8. As the violin diagram in Author response image 4 shows, other developing midbrain markers OTX2, NR4A2, and PAX7 did not express in EN8, but thalamus marker genes SHOX2, TCF7L2, and NTNG1 were highly expressed in EN8. Besides, dorsal cortex excitatory neuron markers NEUROD2, NEUROD6, and EMX1 were not expressed in EN8, which suggests that EN8 might not belong to cortical cells. After carefully reviewing the data analysis process, we determined that EN8 was a small group of cells in cluster 23 mistakenly selected during excitatory neuron analysis, as shown in Figure R5(A), which was corrected after revision. In the revised manuscript, we have removed EN8 from the analysis of excitatory neurons. In the revised manuscript, we have deleted the previous EN8 subcluster and renumbered the left excitatory neuron subclusters in new Figure 2 and Figure S3.

      Author response image 4.

      (A). Modified diagram of clustering of excitatory neuron subclusters collected at all time points, visualized via UMAP related to Figure 2A. (B) Vlnplot of different marker genes in EN8.

      9) "These data suggested that the cell fate determination by diverse neural progenitors occurs in the embryonic stages of macaque cortical development and is controlled by several key transcriptional regulators" The authors present a list of differentially expressed genes specific to the various radial glia clusters along pseudotime. Some of these radial glia DEGs are known and have been characterized by previous literature while other DEGs they have identified had not been previously shown to be associated with radial glia specification/maturation. However, this list of DEGs does not support the claim that cell fate determination is controlled by several key transcriptional regulators. What were the transcriptional regulators of radial glia specification identified in this study and how were they validated?

      We agree with the reviewer and honestly admit that the description of this part in the previous manuscript is inaccurate. The description has been deleted in the revised manuscrip.

      10) "Comparing vRG to IPC trajectory between human, macaque, and mouse, we found this biological process of vRG-to-IPC is very conserved across species, but the vRG to oRG trajectory is divergent between species. The latter process is almost invisible in mice, but it is very similar in primates and macaque." Firstly, macaques are primates, and the text should be updated to reflect this. Secondly, from Figure 5C., it seems there were no outer radial glia detected at all within the vRG-oRG and vRG-IPC developmental trajectories. This would imply that oRGs are not "almost invisible" in mice, but rather do not exist. The authors need to clarify the presence or absence of identifiable outer radial glia in the integrated dataset and relate the relative abundance of these cells to their interpretation of the developmental trajectories for each species.

      We apologize for the description inaccuracies in the manuscript and thank the reviewer for pointing out the expression errors. At your two suggestions, the description has been corrected in the revised manuscript as "Comparing vRG to IPC trajectory between human, macaque, and mouse, we found this biological process of vRG-to-IPC is very conserved across species. However, the vRG to oRG trajectory is divergent between species because the oRG population was not identified in the mouse dataset. The latter process is almost invisible in mice but similar in humans and macaques".

      Although several published research has shown that oRG-like progenitor cells were present in the mouse embryonic neocortex(Wang, Xiaoqun et al. Nature neuroscience.2011. doi:10.1038/nn.2807; Vaid, Samir et al. Development. 2018, doi:10.1242/dev.169276. PMID: 30266827). However, oRG cells were barely detected in the scRNA-seq dataset of mice cortical development studies(Ruan, Xiangbin et al. Proc Natl Acad Sci U S A. 2021. doi:10.1073/pnas.2018866118. PMID: 33649223; Di Bella, Daniela J et al. Nature. 2021. doi:10.1038/s41586-021-03670-5. PMID: 34163074; Chen, Ao et al. Cell. 2022. doi:10.1016/j.cell.2022.04.003. PMID: 35512705). There were no oRG populations detected in the mouse embryonic cortical development dataset (GEO: GSE153164) used for integration analysis in our study.

      11) "Ventral radial glia cells generate excitatory neurons by direct and indirect neurogenesis" This should be corrected to dorsal radial glia cells as this paper is discussing radial glia of the dorsal pallium.

      13) Editorially, gene names need to be italicized in the text, figures, and figure legends.

      14) Figure 5B - a scale bar showing the scale of the relative expression denoted by the dark blue color would be beneficial.

      15) Figure S7D is mislabeled in the figure legend.

      Merged response to points 11 to 15: Thank you for kindly pointing out the errors in our manuscript. We have corrected the above four points in the revised version.

      Reviewer #2 (Recommendations For The Authors):

      Specific suggestions for authors:

      In the abstract the authors state: "thicker upper-layer neurons". I think it's important to be clear in the language by stating either that the layers are thicker or the neurons are most dense.

      Thanks for your good comments. The description of “thicker upper-layer neurons” was corrected to “the thicker supragranular layer” in the revised manuscript. The supragranular layer thickness in primates was much higher than in rodents, both in absolute thickness and in proportion to the thickness of the whole neocortex (Hutsler, Jeffrey J et al. Brain research. 2005. doi:10.1016/j.brainres.2005.06.015. PMID: 16018988). Here, we want to describe the supragranular layer of primates as significantly higher than that of rodents, both in absolute thickness and in proportion to the thickness of the whole neocortex.

      The introduction needs additional clarification regarding the vRG vs oRG discussion. I was unclear what the main takeaway for readers should be. Similarly, the discussion of previous studies and the importance for comparing human and macaque could be clarified.

      We appreciate the suggestion and apologize for the shortcomings of the introduction part. We have rewritten the section and added additional clarification in the revised introduction. In the revised manuscript, the contents of the introduction are as follows:

      “The neocortex is the center for higher brain functions, such as perception and decision-making. Therefore, the dissection of its developmental processes can be informative of the mechanisms responsible for these functions. Several studies have advanced our understanding of the neocortical development principles in different species, especially in mice. Generally, the dorsal neocortex can be anatomically divided into six layers of cells occupied by distinct neuronal cell types. The deep- layer neurons project to the thalamus (layer VI neurons) and subcortical areas (layer V neurons), while neurons occupying more superficial layers (upper-layer neurons) preferentially form intracortical projections1. The generation of distinct excitatory neuron cell types follows a temporal pattern in which early-born neurons migrate to deep layers (i.e., layers V and VI), while the later- born neurons migrate and surpass early-born neurons to occupy the upper layers (layers II-IV) 2. In Drosophila, several transcription factors are sequentially explicitly expressed in neural stem cells to control the specification of daughter neuron fates, while very few such transcription factors have been identified in mammals thus far. Using single-cell RNA sequencing (scRNA-seq), Telley and colleagues found that daughter neurons exhibit the same transcriptional profiles of their respective progenitor radial glia, although these apparently heritable expression patterns fade as neurons mature3. However, the temporal expression profiles of neural stem cells and the contribution of these specific temporal expression patterns in determining neuronal fate have yet to be wholly clarified in humans and non-human primates. Over the years, non-human primates (NHP) have been widely used in neuroscience research as mesoscale models of the human brain. Therefore, exploring the similarities and differences between NHP and human cortical neurogenesis could provide valuable insight into unique features during human neocortex development.

      In mammals, radial glial cells are found in the ventricular zone (VZ), where they undergo proliferation and differentiation. The neocortex of primates exhibits an extra neurogenesis zone known as the outer subventricular zone (OSVZ), which is not present in rodents. As a result of evolution, the diversity of higher mammal cortical radial glia populations increases. Although ventricular radial glia (vRG) is also found in humans and non-human primates, the vast majority of radial glia in these higher species occupy the outer subventricular zone (OSVZ) and are therefore termed outer radial glia (oRG). Outer radial glial (oRG) cells retain basal processes but lack apical junctions 4 and divide in a process known as mitotic somal translocation, which differs from vRG 5. VRG and oRG are both accompanied by the expression of stem cell markers such as PAX6 and exhibit extensive self-renewal and proliferative capacities 6. However, despite functional similarities, they have distinct molecular phenotypes. Previous scRNA-seq analyses have identified several molecular markers, including HOPX for oRGs, CRYAB, and FBXO32 for vRGs7. Furthermore, oRGs are derived from vRGs, and vRGs exhibit obvious differences in numerous cell-extrinsic mechanisms, including activation of the FGF-MAPK cascade, SHH, PTEN/AKT, and PDGF pathways, and oxygen (O2) levels. These pathways and factors involve three broad cellular processes: vRG maintenance, spindle orientation, and cell adhesion/extracellular matrix production8.

      Some transcription factors have been shown to participate in vRG generation, such as INSM and TRNP1. Moreover, the cell-intrinsic patterns of transcriptional regulation responsible for generating oRGs have not been characterized.

      ScRNA-seq is a powerful tool for investigating developmental trajectories, defining cellular heterogeneity, and identifying novel cell subgroups9. Several groups have sampled prenatal mouse neocortex tissue for scRNA-seq 10,11, as well as discrete, discontinuous prenatal developmental stages in human and non-human primates 7,12 13,14. The diversity and features of primate cortical progenitors have been explored 4,6,7,15. The temporally divergent regulatory mechanisms that govern cortical neuronal diversification at the early postmitotic stage have also been focused on 16. Studies spanning the full embryonic neurogenic stage in the neocortex of humans and other primates are still lacking. Rhesus macaque and humans share multiple aspects of neurogenesis, and more importantly, the rhesus monkey and human brains share more similar gene expression patterns than the brains of mice and humans17-19. To establish a comprehensive, global picture of the neurogenic processes in the rhesus macaque neocortex, which can be informative of neocortex evolution in humans, we sampled neocortical tissue at five developmental stages (E40, E50, E70, E80, and E90) in rhesus macaque embryos, spanning the full neurogenesis period. Through strict quality control, cell type annotation, and lineage trajectory inference, we identified two broad transcriptomic programs responsible for the differentiation of deep-layer and upper-layer neurons. We also defined the temporal expression patterns of neural stem cells, including oRGs, vRGs, and IPs, and identified novel transcription factors involved in oRG generation. These findings can substantially enhance our understanding of neocortical development and evolution in primates.”

      Why is this study focused on the parietal lobe? This should be discussed in the introduction and interpretation of the data should be contextualized in the context of this cortical area.

      In this study, samples were collected from the parietal lobe area mainly for the following reasons:

      (1) To ensure that the cortical anatomical parts collected at each time point are consistent, we used the lateral cerebral sulcus as a marker to collect the parietal lobe tissue above the lateral sulcus for single-cell sequencing sample collection. Besides, the parietal region is also convenient for sampling the dorsal cortex.

      (2) Previous studies have made the timeline of the macaque parietal lobe formation process during the prenatal development stage clear ( Finlay, B L, and R B Darlington.Science.1995. doi:10.1126/science.7777856. PMID: 7777856), which is also an essential reason for using the parietal lobe as the research object.

      Figure 1:

      Difficult to appreciate how single cell expression reflects the characterization of layers described in Figure 1A. A schematic for temporal development would be helpful. Also, how clusters correspond to discrete populations of excitatory neurons and progenitors would improve figure clarity. Perhaps enlarge and annotate the UMAPS on the bottom of Figure 1A.

      We thank the reviewer for the suggestion and apologize for that Figure 1A does not convey the relationship between single-cell expression and neocortex layer formation. In the revised manuscript, time points information associated with the hierarchy is labeled to the diagram in Figure S1A. The UMAPS on the bottom of Figure 1A was enlarged in the revised manuscript as new Figure 1C.

      Labels on top of clusters for 1A/1B would be helpful as it's difficult to see which colors the numbers correspond to on the actual UMAP.

      Many thanks to the reviewer for carefully reading and helpful suggestions. We have adjusted the visualization of UMAP in the revised vision. The numbers in the label bar of Figure 1B have been moved to the side of the dot so that the dot can be seen more clearly.

      Microglia and meninges are also non-neural cells. This needs to be changed in the discussion of the results.

      Thanks for the suggestion. We have fixed the manuscript as the reviewer suggested. The description in the revised manuscript has been fixed as follows: “According to the expression of the marker genes, we assigned clusters to cell type identities of neurocytes (including radial glia (RG), outer radial glia (oRG), intermediate progenitor cells (IPCs), ventral precursor cells (VP), excitatory neurons (EN), inhibitory neurons (IN), oligodendrocyte progenitor cells (OPC), oligodendrocytes, astrocytes, ventral LGE-derived interneuron precursors and Cajal-Retzius cells, or non-neuronal cell types (including microglia, endothelial, meninge/VALC(vascular cell)/pericyte, and blood cells). Based on the expression of the marker gene, cluster 23 was identified as thalamic cells, which are small numbers of non-cortical cells captured in the sample collection at earlier time points. Each cell cluster was composed of multiple embryo samples, and the samples from similar stages generally harbored similar distributions of cell types.”.

      It's important to define the onset of gliogenesis in the text and figure. What panels/ages show this?

      We identified the onset of gliogenesis by statistically analyzing the percentage of astrocytes (cluster 13) at each time point and added the result in Figure S1. The statistical results showed that the proportion of astrocytes was deficient at E40 and E50 time points and increased significantly at E80 and E90, suggesting the onset of macaque gliogenesis might be around embryonic 80 days to 90 days. The result was consistent with published research on the timing of the neuron-glial transition in primates (Rash, Brian G et al. Proceedings of the National Academy of Sciences of the United States of America 201. doi:10.1073/pnas.1822169116. PMID: 30894491).

      Figure 2:

      Why are there so few neurons at E90? Is it capture bias, dissociation challenges (as postulated for certain neuronal subtypes in the discussion), or programmed cell death at this time point?

      We thought it was because mature neurons at E90 with abundant axons and processes were hard to settle into micropores of the BD method for single cell capture. Due to the fixed size of the BD Rhapsody microwells, this sing-cell capture method might be less efficient in capturing mature excitatory neurons but has a good capture effect on newborn neurons at each sampling time point. In conclusion, based on the BD cell capture method feature, the immature neurons at each point are more easily captured than mature neurons in our study, so the generation of excitatory neurons at different developmental time points can be well observed, as shown in Figure 2, which aligns with our research purpose.

      The authors state: "We then characterized temporal changes in the composition of each EN subcluster. While the EN 5 and EN 11 (deep-layer neurons) subclusters emerged at E40 and E50 and disappeared in later stages, EN subclusters 1, 2, 3, and 4 gradually increased in population size from E50 to E80 (Figure 2D)." What about EN7? It's labeled as an upper layer neuron that is proportionally highest at E40. Could this be an interesting, novel finding? Does this indicate something unique about macaque corticogenesis? The authors don't describe/discuss this cell type at all.

      We apologize for the manuscript’s lack of detailed descriptions of EN results. In our study, EN7 is identified as CUX1-positive, PBX3-positive, and ZFHX3-positive excitatory neuron subcluster. The results of Fig. 2B show that EN7 was mainly captured from the early time points (E40/E50) samples. Above description was added in the revised manuscript.

      The Pbx/Zfhx3-positive excitatory neuron subtype reported in Moreau et al. study on mouse neocortex development progress ( Moreau, Matthieu X et al. Development. 2021. doi:10.1242/dev.197962. PMID: 34170322). Our study verified that the Pbx3/Zfhx3-positive cortical excitatory neurons also exist in the early stage of prenatal macaque cortex development.

      Is there any unique gene expression in identified subtypes that are surprising? Did the comparison against human data, in later figures, inform any unique features of gene expression?

      Based on the excitatory neuron subclusters analysis result in our study, we found no astonishing results in excitatory neuron subclusters. In subsequent integrated cross-species analyses, macaque excitatory neurons showed similar transcriptional characteristics to human excitatory neurons. In general, excitatory neurons tend to have a greater diversity in the cortex of animals that are more advanced in evolution (Ma, Shaojie et al. Science. 2022. doi:10.1126/science.abo7257. PMID: 36007006; Wei, Jia-Ru et al. Nat Commun. 2022. doi:10.1038/s41467-022-34590-1. PMID: 36371428; Galakhova, A A et al. Trends Cogn Sci. 2022. doi:10.1016/j.tics.2022.08.012. PMID: 36117080; Berg, Jim et al. Nature. 2021. doi:10.1038/s41586-021-03813-8. PMID: 34616067). Since only single-cell transcriptome data was analyzed in this study, we did not find any unique features of the prenatal developing macaque cortex excitatory neurons in the comparison against the human dataset due to the limitation of information dimension.

      Figure 3:

      The identification of terminal oRG differentiation genes is interesting. The confirmation of known gene expression as well as novel markers that indicate different states/stages of oRG cells is a valuable resource. As the identification of described ion channel expression is a novel finding, it should be explored more and would be strengthened by validation in tissue samples and, if possible, functional assays.

      E is the most novel part of this figure, but it's very hard to read. I think increasing the focus of this figure onto this finding and parsing these results more would be informative.

      Thanks for the positive comments. We apologize for the lack of clarity and conciseness in figure visualizations. We hypothesized vRG to oRG cell trajectories into three phases: onset, commitment, and terminal. The leading information conveyed by Figure 3E was the dynamic gene expression along the developmental trajectory from vRG to oRG. Specific genes were selected and shown in the schema diagram of new Figure 3.

      We verified terminal oRG differentiation genes in the recently published macaque telencephalic development dataset(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652) (GEO accession: GSE226451). The results of Author response image 2 show that the gene expression showed states/stages. Most of the oRG terminal differentiation markers genes identified in our study were also expressed in the oRG cells of the GSE226451 dataset. In particular, the two datasets were consistent in the expression of ion channel genes ATP1A2, ATP1A2, and SCN4B.

      I'm curious about the granularity of the oRG_C12 terminal cluster. Are there ways to subdivide the different cells that seem to be glial-committed vs actively dividing vs neurogenically committed to IPCs? In the text, the authors referred to different oRG populations, but they are annotated as the same cluster and cell type. The authors should clarify this.

      According to the reviewer's suggestion, we subdivide the oRG_C12 into eight subclusters. Based on the marker gene in Author response image 5C, subclusters 1,2 and 4 might be glial- committed with AQP4/S100B positive expression; subclusters 3,6,7 might be neurogenically committed to IPCs with NEUROD6 positive expression; subclusters 0,3,5,6,7 might be actively dividing state with MKI67/TOP2A positive expression.

      Author response image 5.

      Subdivide analysis of oRG_C12. (A)and (B) Subdividing of e oRG_C12 visualized via UMAP. Cells are colored according to subcluster timepoint (A) and subcluster identities (B). (C) Violin plot of molecular markers for the subclusters.

      Figure 4:

      Annotating/labeling the various EN clusters (even as deep/upper) would help improve the clarity of this and other figures. It's clear what each progenitor subtype is but it's hard to read the transitions. Why are all the EN groups in pink/red? It makes the data challenging to interpret.

      In Figure4A, we use different yellow/orange colors for deep-layer excitatory neuron subclusters (EN5 and EN10), and different red/pink colors for upper-layer excitatory neuron subclusters (EN1, EN2, EN3, EN4, EN6, EN7, EN8 and EN9). We add the above information in the legend of Figure 4 in the revised manuscript.

      E50 seems to be unique - what's EN11?

      Based on the molecular markers for EN subclusters in Author response image 2, we recognized EN11 as a deep-layer excitatory neuron subcluster expressing BCL11B and FEZF2. As explained in the above reply, the microplate of BD has a good effect on capturing newborn neurons at each time point. The EN11 was mainly a newborn excitatory neuron at the E50 timepoint, which makes the subcluster seem unique.

      Author response image 6.

      Vlnplot of different markers in EN8.

      Figure 4E - the specificity of gene expression for deep vs upper layer markers seems to be over stated given the visualized gene expression pattern (ex FEZF2). Could the right hand panels be increased to better appreciate the data and confirm the specificity, as described.

      In our study, we used slingshot method to infer cell lineages and pseudotimes, which have been used to identifying biological signal for different branching trajectories in many scRNA- seq studies. We apologize for the lack of visualization clarity in the figure 4E. Due to the size limitation of the uploaded file, the file was compressed, resulting in a decrease in the clarity of the image. Below, we provided figure 4E with a higher definition and increased several genes’ slingshot branching tree results according to the reviewer's suggestion.

      Figure 5:

      There are some grammatical typos at the bottom of page 8. In this section, it also feels like there is a missing logical step between expansion of progenitors through elongated developmental windows that impact long-term expansion of the upper cortical layers.

      We apologize for the grammatical typos and have corrected them in the revised manuscript. We understand the reviewer’s concern. Primates have much longer gestation than rodents, and previous study evidence had shown that extending neurogenesis by transplanting mouse embryos to a rat mother increases explicitly the number of upper-layer cortical neurons, with concomitant abundant neurogenic progenitors in the subventricular zone(Stepien, Barbara K et al. Curr Biol. 2020. doi:10.1016/j.cub.2020.08.046. PMID: 32888487). We thought this mechanism could also explain primates' much more expanded abundance of upper-layer neurons.

      I'm curious about the IPCs that arise from the oRGs. Lineage trajectory shows vRG decision to oRG or IPC, but oRGs also differentiate into IPCs. Could the authors conjecture why they are not in this dataset or are indistinguishable from vRG-derived IPCs.

      Several published experiments have proved that oRG can generate IPC in human and macaque developing neocortex. (Hansen, David V et al. Nature. 2010. doi:10.1038/nature08845. PMID: 20154730; Betizeau, Marion et al. Neuron. 2013. doi:10.1016/j.neuron.2013.09.032. PMID: 24139044). Clearly identifying the difference between IPC generated from vRG and oRG at the transcriptional level in our single-cell transcriptome dataset is difficult. We hypothesized that the IPCs produced by both pathways have highly similar transcriptional features. Due to the limit of the scRNA data analysis algorithm used in this study, we didn’t distinguish the two kinds of IPC, which could not be in terms of pseudo-time trajectory reconstruction and transcriptional data.

      Figure 6 :

      How are the types 1-5 in 6A defined? Were they defined in one species and then applied across the others?

      We applied the same analysis to each species. We first picked up vRG cells in each species dataset and screened the differentially expressed genes (DEGs) between adjacent development time points using the “FindMarkers” function (with min. pct = 0.25, logfc. threshold = 0.25). After separate normalization of the DEG expression matrix from different species datasets, we use the “standardise” function from the Mfuzz package to standardize the data. The DEGs of vRG in each species were grouped into five clusters using the Mfuzz package in R with fuzzy c- means algorithm.

      The temporal dynamics in the highlighted section in B have interesting, consistent patterns of gene expression of the genes described, but what about the genes below that appear less consistent temporally? What processes do not appear to be conserved, given those gene expression differences?

      Many thanks for the constructive comments. The genes in Figure 6B below are temporal dynamics non-conserved transcription factors among the three species vRG. We performed a functional enrichment analysis on the temporal dynamics of non-conserved transcription factors with the PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System(https://www.pantherdb.org/), and the analysis results are shown in Author response image 7. The gene ontology (GO) analysis results show that unconserved transcription factors were related to different biological processes, cellular components, and molecular functions. However, subsequent experiments are still needed to verify specific genes.

      Author response image 7.

      Gene Ontology (GO) analysis of unconserved temporal patterns transcription factors among mouse, macaque and human vRG cells.

      The identification of distinct regulation of gene networks, despite conservation of transcription factors in discrete cell types, is interesting. What does the comparison between humans and macaques indicate about regulatory differences evolutionarily?

      We appreciate the reviewer for the comments. We performed the TFs regulation network analysis of human vRG with pyscenic workflow. The top transcription factors of every time point in human vRG were calculated, and we used the top 10 TFs and their top 5 target genes to perform interaction analysis and generate the regulation network of human vRG in revised figure 6. In comparison of the pyscenic results of mouse, macaque and human vRG, it was obvious that the regulatory networks were not evolutionarily conservative. Compared with macaque, the regulatory network of transcription factors and target genes in humans is more complex. Some conserved regulatory relationships present in more than one species are identified, such as HMGN3, EMX2, SOX2, and HMGA2 network at an early stage when deep lager generation and SOX10, ZNF672, ZNF672 network at a late stage when upper-layer generation.

      Reviewer #3 (Recommendations For The Authors):

      The data should be compared to a similar brain region in human and mouse, if available. (See data from PMCID: PMC8494648).

      We appreciate the reviewer’s suggestions. In Figure 6, the species-integration analysis, the mouse data were from the perspective of the somatosensory cortex, macaque data were mainly from the parietal lobe in this study, and human data including the frontal lobe (FL), parietal lobe (PL), occipital lobe (OL), and temporal lobe (TL). PMC8494648 offered high-quality data covering the period of gestation week 14 to gestation week 25. However, our study's development stage of rhesus monkeys is E40-E90 days, corresponding to pcw8-pcw21 in humans. The quality of data from PMC8494648 is particularly good. However, the developmental processes covered by PMC8494648 don’t perfectly match the development time of the macaque cortex that we focused on in this study. Therefore, it is challenging to integrate the dataset (PMCID: PMC8494648) into the data analysis part. However, we have cited the results of this precious research (PMCID: PMC8494648) in the discussion part of the revised manuscript.

      A deeper assessment of these data in the context of existing studies would help distinguish the work and enable others to appreciate the significance of the work.

      We appreciate the reviewer’s constructive suggestions. The human regulation analysis with pyscenic workflow was added into new figure 6 for the comparison of different species vRG regulatory network. Analysis of the regulatory activity of human, macaque and mouse prenatal neocortical neurogenesis indicated that despite commonalities in the roles of classical developmental TFs such as GATA1, SOX2, HMGN3, TCF7L1, ZFX, EMX2, SOX10, NEUROG1, NEUROD1 and POU3F1. The top 10 TFs of the human, macaque, and mouse vRG each time point and their top 5 target genes identified by pySCENIC as an input to construct the transcriptional regulation network (Figure 6 D, F and H). Some conserved regulatory TFs present in more than one species are identified, such as HMGN3, EMX2, SOX2, and HMGA2 at an early stage when deep- lager generation and SOX10, ZNF672, and ZNF672 at a late stage when upper-lay generation.

      Besides, we performed some comparative analysis with our macaque dataset and the newly published macaque telencephalon development dataset. The results were only used to provide additional information to reviewers and were not included in the revised manuscript.

      To verify the reliability of our cell annotation results, we compared the similarity of cell-type association between our study and recently published research(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652), using the scmap package to project major cell types in our macaque development scRNA-seq dataset to GSE226451. The river plot in Author response image 1 illustrates the broadly similar relationships of cell type classification between the two datasets. Otherwise, we used more marker genes for cell annotation to improve the results of cell type definition in new Figure 1D. Besides, the description of distinct excitatory neuronal types has been improved in the new Figure 2.

      Furthermore, we verified terminal oRG differentiation genes in the recently published macaque telencephalic development dataset(Micali N, Ma S, Li M, et al. Science. doi:10.1126/science.adf3786.PMID: 37824652) (GEO accession: GSE226451). The results of Authro response image 2 show that the gene expression showed states/stages. Most of the oRG terminal differentiation markers genes identified in our study were also expressed in the oRG cells of the GSE226451 dataset. In particular, the two datasets were consistent in the expression of ion channel genes ATP1A2, ATP1A2, and SCN4B.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study reports on the potential of neural networks to emulate simulations of human ventricular cardiomyocyte action potentials for various ion channel parameters with the advantage of saving simulation time in certain conditions. The evidence supporting the claims of the authors is solid, although the inclusion of open analysis of drop-off accuracy and validation of the neural network emulators against experimental data would have strengthened the study. The work will be of interest to scientists working in cardiac simulation and quantitative pharmacology.

      Thank you for the kind assessment. It is important for us to point out that, while limited, experimental validation was performed in this study and is thoroughly described in the work.

      Reviewer 1 - Comments

      This manuscript describes a method to solve the inverse problem of finding the initial cardiac activations to produce a desired ECG. This is an important question. The techniques presented are novel and clearly demonstrate that they work in the given situation. The paper is well-organized and logical.

      Strengths:

      This is a well-designed study, which explores an area that many in the cardiac simulation community will be interested in. The article is well written and I particularly commend the authors on transparency of methods description, code sharing, etc. - it feels rather exemplary in this regard and I only wish more authors of cardiac simulation studies took such an approach. The training speed of the network is encouraging and the technique is accessible to anyone with a reasonably strong GPU, not needing specialized equipment.

      Weaknesses:

      Below are several points that I consider to be weaknesses and/or uncertainties of the work:

      C I-(a) I am not convinced by the authors’ premise that there is a great need for further acceleration of cellular cardiac simulations - it is easy to simulate tens of thousands of cells per day on a workstation computer, using simulation conditions similar to those of the authors. I do not really see an unsolved task in the field that would require further speedup of single-cell simulations. At the same time, simulations offer multiple advantages, such as the possibility to dissect mechanisms of the model behaviour, and the capability to test its behaviour in a wide array of protocols - whereas a NN is trained for a single purpose/protocol, and does not enable a deep investigation of mechanisms. Therefore, I am not sure the cost/benefit ratio is that strong for single-cell emulation currently.

      An area that is definitely in need of acceleration is simulations of whole ventricles or hearts, but it is not clear how much potential for speedup the presented technology would bring there. I can imagine interesting applications of rapid emulation in such a setting, some of which could be hybrid in nature (e.g. using simulation for the region around the wavefront of propagating electrical waves, while emulating the rest of the tissue, which is behaving more regularly/predictable, and is likely to be emulated well), but this is definitely beyond of the scope of this article.

      Thank you for this point of view. Simulating a population of few thousand cells is completely feasible on single desktop machines and for fixed, known parameters, emulation may not fill ones need. Yet we still foresee a great untapped potential for rapid evaluations of ionic models, such as for the gradient-based inverse problem, presented in the paper. Such inverse optimization requires several thousand evaluations per cell and thus finding maximum conductances for the presented experimental data set (13 cell pairs control/drug → 26 APs) purely through simulations would require roughly a day of simulation time even in a very conservative estimation (3.5 seconds per simulation, 1000 simulations per optimization). Additionally, the emulator provides local sensitivity information between the AP and maximum conductances in the form of the gradient, which enables a whole new array of efficient optimization algorithms [Beck, 2017]. To further emphasize these points, we added the number of emulations and runtime of each conducted experiment in the specific section and a paragraph in the discussion that addresses this point:

      "Cardiomyocyte EP models are already very quick to evaluate in the scale of seconds (see Section 2.3.1), but the achieved runtime of emulations allows to solve time consuming simulation protocols markedly more efficient. One such scenario is the presented inverse maximum conductance estimation problem (see Section 3.1.2 and Section 3.1.3), where for estimating maximum conductances of a single AP, we need to emulate the steady state AP at least several hundred times as part of an optimization procedure. Further applications include the probabilistic use of cardiomyocyte EP models with uncertainty quantification [Chang et al., 2017, Johnstone et al., 2016] where thousands of samples of parameters are potentially necessary to compute a distribution of the steady-state properties of subsequent APs, and the creation of cell populations [Muszkiewicz et al., 2016, Gemmell et al., 2016, Britton et al., 2013]." (Section 4.2)

      We believe that rapid emulations are valuable for several use-cases, where thousands of evaluations are necessary. These include the shown inverse problem, but similarly arise in uncertainty quantification, or cardiomyocyte population creation. Similarly, new use-cases may arise as such efficient tools become available. Additionally, we provided the number of evaluations along with the runtimes for each of the conducted experiments, showing how essential these speedups are to realize these experiments in reasonable timeframes. Utilizing these emulations in organ-level electrophysiological models is a possibility, but the potential problems in such scenarios are much more varied and depend on a number of factors, making it hard to pin-point the achievable speed-up using ionic emulations.

      C I-(b) The authors run a cell simulation for 1000 beats, training the NN emulator to mimic the last beat. It is reported that the simulation of a single cell takes 293 seconds, while emulation takes only milliseconds, implying a massive speedup. However, I consider the claimed speedup achieved by emulation to be highly context-dependent, and somewhat too flattering to the presented method of emulation. Two specific points below:

      First, it appears that a not overly efficient (fixed-step) numerical solver scheme is used for the simulation. On my (comparable, also a Threadripper) CPU, using the same model (”ToR-ORd-dyncl”), but a variable step solver ode15s in Matlab, a simulation of a cell for 1000 beats takes ca. 50 seconds, rather than 293 of the authors. This can be further sped up by parallelization when more cells than available cores are simulated: on 32 cores, this translates into ca. 2 seconds amortized time per cell simulation (I suspect that the NN-based approach cannot be parallelized in a similar way?). By amortization, I mean that if 32 models can be simulated at once, a simulation of X cells will not take X50 seconds, but (X/32)50. (with only minor overhead, as this task scales well across cores).

      Second, and this is perhaps more important - the reported speed-up critically depends on the number of beats in the simulation - if I am reading the article correctly, the runtime compares a simulation of 1000 beats versus the emulation of a single beat. If I run a simulation of a single beat across multiple simulated cells (on a 32-core machine), the amortized runtime is around 20 ms per cell, which is only marginally slower than the NN emulation. On the other hand, if the model was simulated for aeons, comparing this to a fixed runtime of the NN, one can get an arbitrarily high speedup.

      Therefore, I’d probably emphasize the concrete speedup less in an abstract and I’d provide some background on the speedup calculation such as above, so that the readers understand the context-dependence. That said, I do think that a simulation for anywhere between 250 and 1000 beats is among the most reasonable points of comparison (long enough for reasonable stability, but not too long to beat an already stable horse; pun with stables was actually completely unintended, but here it is...). I.e., the speedup observed is still valuable and valid, albeit in (I believe) a somewhat limited sense.

      We agree that the speedup comparison only focused on a very specific case and needs to be more thoroughly discussed and benchmarked. One of the main strengths of the emulator is to cut the time of prepacing to steady state, which is known to be a potential bottleneck for the speed of the single-cell simulations. The time it takes to reach the steady state in the simulator is heavily dependant on the actual maximum conductance configuration and the speed-up is thus heavily reliant on a per-case basis. The differences in architecture of the simulator and emulator further makes direct comparisons very difficult. In the revised version we now go into more detail regarding the runtime calculations and also compare it to an adaptive time stepping simulation (Myokit [Clerx et al., 2016]) in a new subsection:

      "The simulation of a single AP (see Section 2.1) sampled at a resolution of 20kHz took 293s on one core of a AMD Ryzen Threadripper 2990WX (clock rate: 3.0GHz) in CARPentry. Adaptive timestep solver of variable order, such as implemented in Myokit [Clerx et al., 2016], can significantly lower the simulation time (30s for our setup) by using small step sizes close to the depolarization (phase 0) and increasing the time step in all other phases. The emulation of a steady state AP sampled at a resolution of 20kHz for t ∈ [−10, 1000]ms took 18.7ms on a AMD Ryzen 7 3800X (clock rate: 3.9GHz) and 1.2ms on a Nvidia A100 (Nvidia Corporation, USA), including synchronization and data copy overhead between CPU and GPU.

      "The amount of required beats to reach the steady state of the cell in the simulator has a major impact on the runtime and is not known a-priori. On the other hand, both simulator and emulator runtime linearly depends on the time resolution, but since the output of the emulator is learned, the time resolution can be chosen at arbitrarily without affecting the AP at the sampled times. This makes direct performance comparisons between the two methodologies difficult. To still be able to quantify the speed-up, we ran Myokit using 100 beats to reach steady state, taking 3.2s of simulation time. In this scenario, we witnessed a speed-up of 171 and 2 · 103 of our emulator on CPU and GPU respectively (again including synchronization and data copy overhead between CPU and GPU in the latter case). Note that both methods are similarly expected to have a linear parallelization speedup across multiple cells.

      For the inverse problem, we parallelized the problem for multiple cells and keep the problem on the GPU to minimize the overhead, achieving emulations (including backpropagation) that run in 120µs per AP at an average temporal resolution of 2kHz. We consider this the peak performance which will be necessary for the inverse problem in Section 3.1.2." (Section 2.3.1)

      Note that the mentioned parallelization across multiple machines/hardware applies equally to the emulator and simulator (linear speed-up), though the utilization for single cells is most likely different (single vs. multi-cell parallelization).

      C I-(c) It appears that the accuracy of emulation drops off relatively sharply with increasing real-world applicability/relevance of the tasks it is applied to. That said, the authors are to be commended on declaring this transparently, rather than withholding such analyses. I particularly enjoyed the discussion of the not-always amazing results of the inverse problem on the experimental data. The point on low parameter identifiability is an important one and serves as a warning against overconfidence in our ability to infer cellular parameters from action potentials alone. On the other hand, I’m not that sure the difference between small tissue preps and single cells which authors propose as another source of the discrepancy will be that vast beyond the AP peak potential (probably much of the tissue prep is affected by the pacing electrode?), but that is a subjective view only. The influence of coupling could be checked if the simulated data were generated from 2D tissue samples/fibres, e.g. using the Myokit software.

      Given the points above (particularly the uncertain need for further speedup compared to running single-cell simulations), I am not sure that the technology generated will be that broadly adopted in the near future.

      However, this does not make the study uninteresting in the slightest - on the contrary, it explores something that many of us are thinking about, and it is likely to stimulate further development in the direction of computationally efficient emulation of relatively complex simulations.

      We agree that the parameter identifiability is an important point of discussion. While the provided experimental data gave us great insights already, we still believe that given the differences in the setup, we can not draw conclusions about the source of inaccuracies with absolute certainty. The suggested experiment to test the influence of coupling is of interest for future works and has been integrated into the discussion. Further details are given in the response to the recommendation R III- (t)

      Reviewer 2 - Comments

      Summary:

      This study provided a neural network emulator of the human ventricular cardiomyocyte action potential. The inputs are the corresponding maximum conductances and the output is the action potential (AP). It used the forward and inverse problems to evaluate the model. The forward problem was solved for synthetic data, while the inverse problem was solved for both synthetic and experimental data. The NN emulator tool enables the acceleration of simulations, maintains high accuracy in modeling APs, effectively handles experimental data, and enhances the overall efficiency of pharmacological studies. This, in turn, has the potential to advance drug development and safety assessment in the field of cardiac electrophysiology.

      Strengths:

      1) Low computational cost: The NN emulator demonstrated a massive speed-up of more than 10,000 times compared to the simulator. This substantial increase in computational speed has the potential to expedite research and drug development processes

      2) High accuracy in the forward problem: The NN emulator exhibited high accuracy in solving the forward problem when tested with synthetic data. It accurately predicted normal APs and, to a large extent, abnormal APs with early afterdepolarizations (EADs). High accuracy is a notable advantage over existing emulation methods, as it ensures reliable modeling and prediction of AP behavior

      C II-(a) Input space constraints: The emulator relies on maximum conductances as inputs, which explain a significant portion of the AP variability between cardiomyocytes. Expanding the input space to include channel kinetics parameters might be challenging when solving the inverse problem with only AP data available.

      Thank you for this comment. We consider this limitation a major drawback, as discussed in Section 4.3. Identifiability is already an issue when only considering the most important maximum conductances. Further extending the problem to include kinetics will most likely only increase the difficulty of the inverse problem. For the forward problem though, it might be of interest to people studying ionic models to further analyze the effects of channel kinetics.

      C II-(b) Simplified drug-target interaction: In reality, drug interactions can be time-, voltage-, and channel statedependent, requiring more complex models with multiple parameters compared to the oversimplified model that represents the drug-target interactions by scaling the maximum conductance at control. The complex model could also pose challenges when solving the inverse problem using only AP data.

      Thank you pointing out this limitation. We slightly adapted Section 4.3 to further highlight some of these limitations. Note however that the experimental drugs used have been shown to be influenced by this drug interaction in varying degrees [Li et al., 2017] (e.g. dofetilide vs. cisapride). However, the discrepancy in identifiability was mostly channel-based (0%-100%), whereas the variation in identifiability between drugs was much lower (39%-66%).

      C II-(c) Limited data variety: The inverse problem was solved using AP data obtained from a single stimulation protocol, potentially limiting the accuracy of parameter estimates. Including AP data from various stimulation protocols and incorporating pacing cycle length as an additional input could improve parameter identifiability and the accuracy of predictions.

      The proposed emulator architecture currently only considers the discussed maximum conductances as input and thus can only compensate when using different stimulation protocols. However, the architecture itself does not prohibit including any of these as parameters for future variants of the emulator. We potentially foresee future works extending on the architecture with modified datasets to include other parameters of importance, such as channel kinetics, stimulation protocols and pacing cycle lengths. These will however vary between the actual use-cases one is interested in.

      C II-(d) Larger inaccuracies in the inverse problem using experimental data: The reasons for this result are not quite clear. Hypotheses suggest that it may be attributed to the low parameter identifiability or the training data set were collected in small tissue preparation.

      The low parameter identifiability on some channels (e.g. GK1) poses a problem, for which we state multiple potential reasons. As of yet, no final conclusion can be drawn, warranting further research in this area.

      Reviewer 3 - Comments

      Summary:

      Grandits and colleagues were trying to develop a new tool to accelerate pharmacological studies by using neural networks to emulate the human ventricular cardiomyocyte action potential (AP). The AP is a complex electrical signal that governs the heartbeat, and it is important to accurately model the effects of drugs on the AP to assess their safety and efficacy. Traditional biophysical simulations of the AP are computationally expensive and time-consuming. The authors hypothesized that neural network emulators could be trained to predict the AP with high accuracy and that these emulators could also be used to quickly and accurately predict the effects of drugs on the AP.

      Strengths:

      One of the study’s major strengths is that the authors use a large and high-quality dataset to train their neural network emulator. The dataset includes a wide range of APs, including normal and abnormal APs exhibiting EADs. This ensures that the emulator is robust and can be used to predict the AP for a variety of different conditions.

      Another major strength of the study is that the authors demonstrate that their neural network emulator can be used to accelerate pharmacological studies. For example, they use the emulator to predict the effects of a set of known arrhythmogenic drugs on the AP. The emulator is able to predict the effects of these drugs, even though it had not been trained on these drugs specifically.

      C III-(a) One weakness of the study is that it is important to validate neural network emulators against experimental data to ensure that they are accurate and reliable. The authors do this to some extent, but further validation would be beneficial. In particular for the inverse problem, where the estimation of pharmacological parameters was very challenging and led to particularly large inaccuracies.

      Thank you for this recommendation. Further experimental validation of the emulator in the context of the inverse problem would be definitely beneficial. Still, an important observation is that the identifiability varies greatly between channels. While the inverse problem is an essential reason for utilizing the emulator, it is also empirically validated for the pure forward problem and synthetic inverse problem, together with the (limited) experimental validation. The sources of problems arising in estimating the maximum conductances of the experimental tissue preparations are important to discuss in future works, as we now further emphasize in the discussion. See also the response to the recommendations R III-(t).

      Reviewer 1 - Recommendations

      R I-(a) Could further detail on the software used for the emulation be provided? E.g. based on section 2.2.2, it sounds like a CPU, as well as GPU-based emulation, is possible, which is neat.

      Indeed as suspected, the emulator can run on both CPUs and GPUs and features automatic parallelization (per-cell, but also multi-cell), which is enabled by the engineering feats of PyTorch [Paszke et al., 2019]. This is now outlined in a bit more detail in Sec. 2 and 5.

      "The trained emulator is provided as a Python package, heavily utilizing PyTorch [Paszke et al., 2019] for the neural network execution, allowing it to be executed on both CPUs and NVidia GPUs." (Section 5)

      R I-(b) I believe that a potential use of NN emulation could be also in helping save time on prepacing models to stability - using the NN for ”rough” prepacing (e.g. 1000 beats), and then running a simulation from that point for a smaller amount of time (e.g. 50 beats). One could monitor the stability of states, so if the prepacing was inaccurate, one could quickly tell that these models develop their state vector substantially, and they should be simulated for longer for full accuracy - but if the model was stable within the 50 simulated beats, it could be kept as it is. In this way, the speedup of the NN and accuracy and insightfulness of the simulation could be combined. However, as I mentioned in the public review, I’m not sure there is a great need for further speedup of single-cell simulations. Such a hybrid scheme as described above might be perhaps used to accelerate genetic algorithms used to develop new models, where it’s true that hundreds of thousands to millions of cells are eventually simulated, and a speedup there could be practical. However one would have to have a separate NN trained for each protocol in the fitness function that is to be accelerated, and this would have to be retrained for each explored model architecture. I’m not sure if the extra effort would be worth it - but maybe yes to some people.

      Thank you for this valuable suggestion. As pointed out in C I-(a), one goal of this study was to reduce the timeconsuming task of prepacing. Still, in its current form the emulator could not be utilized for prepacing simulators, as only the AP is computed by the emulator. For initializing a simulation at the N-th beat, one would additionally need all computed channel state variables. However, a simple adaptation of the emulator architecture would allow to also output the mentioned state variables.

      R I-(c) Re: ”Several emulator architectures were tried on the training and validation data sets and the final choice was hand-picked as a good trade-off between high accuracy and low computational cost” - is it that the emulator architecture was chosen early in the development, and the analyses presented in the paper were all done with one previously selected architecture? Or is it that the analyses were attempted with all considered architectures, and the well-performing one was chosen? In the latter case, this could flatter the performance artificially and a test set evaluation would be worth carrying out.

      We apologize for the unclear description of the architectural validation. The validation was in fact carried out with 20% of the training data (data set #1), which is however completely disjoint with the test set (#2, #3, #4, formerly data set #1 and #2) on which the evaluation was presented. To further clarify the four different data sets used in the study, we now dedicated an additional section to describing each set and where it was used (see also our response below R I-(d)), and summarize them in Table 1, which we also added at R II-(a). The cited statement was slightly reworked.

      "Several emulator architectures were tried on the training and validation data sets and the final choice was hand-picked as a good trade-off between high accuracy on the validation set (#1) and low computational runtime cost." (Section 2.2.2)

      R I-(d) When using synthetic data for the forward and inverse problem, with the various simulated drugs, is it that split of the data into training/validation test set was done by the drug simulated (i.e., putting 80 drugs and the underlying models in the training set, and 20 into test set)? Or were the data all mixed together, and 20% (including drugs in the test set) were used for validation? I’m slightly concerned by the potential of ”soft” data leaks between training/validation sets if the latter holds. Presumably, the real-world use case, especially for the inverse problem, will be to test drugs that were not seen in any form in the training process. I’m also not sure whether it’s okay to reuse cell models (sets of max conductances) between training and validation tests - wouldn’t it be better if these were also entirely distinct? Could you please comment on this?

      We completely agree with the main points of apprehension that training, validation and test sets all serve a distinct purpose and should not be arbitrarily mixed. However, this is only a result of the sub-optimal description of our datasets, which we heavily revised in Section 2.2.1 (Data, formerly 2.3.1). We now present the data using four distinct numbers: The initial training/validation data, now called data set #1 (formerly no number), is split 80%/20% into training and validation sets (for architectural choices) respectively. The presented evaluations in Section 2.3 (Evaluation) are purely performed on data set #2 (normal APs, formerly #1), #3 (EADs, formerly #2) and #4 (experimental).

      R I-(e) For the forward problem on EADs, I’m not sure if the 72% accuracy is that great (although I do agree that the traces in Fig 12-left also typically show substantial ICaL reactivation, but this definitely should be present, given the IKr and ICaL changes). I would suggest that you also consider the following design for the EAD investigation: include models with less severe upregulation of ICaL and downregulation of IKr, getting a population of models where a part manifests EADs and a part does not. Then you could run the emulator on the input data of this population and be able to quantify true, falsexpositive, negative detections. I think this is closer to a real-world use case where we have drug parameters and a cell population, and we want to quickly assess the arrhythmic risk, with some drugs being likely entirely nonrisky, some entirely risky, and some between (although I still am not convinced it’s that much of an issue to just simulate this in a couple of thousands of cells).

      Thank you for pointing out this alternative to address the EAD identification task. Even though the values chosen in Table 2 seem excessively large, we still only witnessed EADs in 171 of the 950 samples. Especially border cases, which are close to exhibiting EADs are hardest to estimate for the NN emulator. As suggested, we now include the study with the full 950 samples (non-EAD & EAD) and classify the emulator AP into one of the labels for each sample. The mentioned 72.5% now represent the sensitivity, whereas our accuracy in such a scenario becomes 90.8% (total ratio of correct classifications):

      "The data set #3 was used second and Appendix C shows all emulated APs, both containing the EAD and non-EAD cases. The emulation of all 950 APs took 0.76s on the GPU specified in Section 2.2.3 We show the emulation of all maximum conductances and the classification of the emulation. The comparison with the actual EAD classification (based on the criterion outlined in Appendix A) results in true-positive (EAD both in the simulation and emulation), false-negative (EAD in the simulation, but not in the emulation), false-positive (EAD in the emulation, but not in the simulation) and true-negative (no EAD both in the emulation and simulation). The emulations achieved 72.5% sensitivity (EAD cases correctly classified) and 94.9% specificity (non-EAD cases correctly classified), with an overall accuracy of 90.8% (total samples correctly classified). A substantial amount of wrongly classified APs showcase a notable proximity to the threshold of manifesting EADs. Figure 7 illustrates the distribution of RMSEs in the EAD APs between emulated and ground truth drugged APs. The average RMSE over all EAD APs was 14.5mV with 37.1mV being the maximum. Largest mismatches were located in phase 3 of the AP, in particular in emulated APs that did not fully repolarize." (Section 3.1.1)

      R I-(f) Figure 1 - I think a large number of readers will understand the mathematical notation describing inputs/outputs; that said, there may be a substantial number of readers who may find that hard to read (e.g. lab-based researchers, or simulation-based researchers not familiar with machine learning). At the same time, this is a very important part of the paper to explain what is done where, so I wonder whether using words to describe the inputs/outputs would not be more practical and easier to understand (e.g. ”drug-based conductance scaling factor” instead of ”s” ?). It’s just an idea - it needs to be tried to see if it wouldn’t make the figure too cluttered.

      We agree that the mathematical notation may be confusing to some readers. As a compromise between using verbose wording and mathematical notation, we introduced a legend in the lower right corner of the figure that shortly describes the notation in order to help with interpreting the figure.

      R I-(g) ”APs with a transmembrane potential difference of more than 10% of the amplitude between t = 0 and 1000 ms were excluded” - I’m not sure I understand what exactly you mean here - could you clarify?

      With this criterion, we try to discard data that is far away from fully repolarizing within the given time frame, which applies to 116 APs in data set #1 and 50 APs in data set #3. We added a small side note into the text:

      "APs with a transmembrane potential difference of more than 10% of the amplitude between t = 0 and 1000ms (indicative of an AP that is far away from full repolarization) were excluded." (Section 2.2.1)

      R I-(h) Speculation (for the future) - it looks like a tool like this could be equally well used to predict current traces, as well as action potentials. I wonder, would there be a likely benefit in feeding back the currents-traces predictions on the input of the AP predictor to provide additional information? Then again, this might be already encoded within the network - not sure.

      Although not possible with the chosen architecture (see also R I-(b)), it is worth thinking about an implementation in future works and to study differences to the current emulator.

      Entirely minor points:

      R I-(i) ”principle component analysis” → principal component analysis

      Fixed

      R I-(j) The paper will be probably typeset by elife anyway, but the figures are often quite far from their sections, with Results figures even overflowing into Discussion. This can be often fixed by using the !htb parameters (\begin{figure}[!htb]), or potentially by using ”\usepackage[section]{placeins}” and then ”\FloatBarrier” at the start and end of each section (or subsection) - this prevents floating objects from passing such barriers.

      Thank you for these helpful suggestions. We tried reducing the spacing between the figures and their references in the text, hopefully improving the reader’s experience.

      R I-(k) Alternans seems to be defined in Appendix A (as well as repo-/depolarization abnormalities), but is not really investigated. Or are you defining these just for the purpose of explaining what sorts of data were also included in the data?

      We defined alternans since this was an exclusion criterion for generating simulation data.

      Reviewer 2 - Recommendations

      R II-(a) Justification for methods selection: Explain the rationale behind important choices, such as the selection of specific parameters and algorithms.

      Thank you for this recommendation, we tried to increase transparency of our choices by introducing a separate data section that summarizes all data sets and their use cases in Section 2.2.1 and also collect many of the explanations there. Additionally we added an overview table (Table 1) of the utilized data.

      Author response table 1.

      Table 1: Summary of the data used in this study, along with their usage and the number of valid samples. Note that each AP is counted individually, also in cases of control/drug pairs.

      R II-(b) Interpretation of the evaluation results: After presenting the evaluation results, consider interpretations or insights into what the results mean for the performance of the emulator. Explain whether the emulator achieved the desired accuracy or compare it with other existing methods. In the revised version, we tried to further expand the discussion on possible applications of our emulator (Section 4.2). See also our response to C I-(a). To the best of our knowledge, there are currently no out-of-the-box methods available for directly comparing all experiments we considered in our work.

      Reviewer 3 - Recommendations

      R III-(a) In the introduction (Page 3) and then also in the 2.1 paragraph authors speak about the ”limit cycle”: Do you mean steady state conditions? In that case, it is more common to use steady state.

      When speaking about the limit cycle, we refer to what is also sometimes called the steady state, depending on the field of research and/or personal preference. We now mention both terms at the first occurence, but stick with the limit cycle terminology which can also be found in other works, see e.g. [Endresen and Skarland, 2000].

      R III-(b) On page 3, while comparing NN with GP emulators, I still don’t understand the key reason why NN can solve the discontinuous functions with more precision than GP.

      The potential problems in modeling sharp continuities using GPs is further explained in the referenced work [Ghosh et al., 2018] and further references therein:

      "Statistical emulators such as Gaussian processes are frequently used to reduce the computational cost of uncertainty quantification, but discontinuities render a standard Gaussian process emulation approach unsuitable as these emulators assume a smooth and continuous response to changes in parameter values [...] Applying GPs to model discontinuous functions is largely an open problem. Although many advances (see the discussion about non-stationarity in [Shahriari et al., 2016] and the references in there) have been made towards solving this problem, a common solution has not yet emerged. In the recent GP literature there are two specific streams of work that have been proposed for modelling non-stationary response surfaces including those with discontinuities. The first approach is based on designing nonstationary processes [Snoek et al., 2014] whereas the other approach attempts to divide the input space into separate regions and build separate GP models for each of the segmented regions. [...]"([Ghosh et al., 2018])

      We integrated a short segment of this explanation into Section 1.

      R III-(c) Why do authors prefer to use CARPentry and not directly openCARP? The use of CARPentry is purely a practical choice since the simulation pipeline was already set up. As we now point out however in Sec. 2.1 (Simulator), simulations can also be performed using any openly available ionic simulation tool, such as Myokit [Clerx et al., 2016], OpenCOR [Garny and Hunter, 2015] and openCARP [Plank et al., 2021]. We emphasized this in the text.

      "Note, that the simulations can also be performed using open-source software such as Myokit [Clerx et al., 2016], OpenCOR [Garny and Hunter, 2015] and openCARP [Plank et al., 2021]." (Section 2.1)

      R III-(d) In paragraph 2.1:

      (a) In this sentence: ”Various solver and sampling time steps were applied to generate APs and the biomarkers used in this study (see Appendix A)” this reviewer suggests putting the Appendix reference near “biomarkers”. In addition, a figure that shows the test of various solver vs. sampling time steps could be interesting and can be added to the Appendix as well.

      (b) Why did the authors set the relative difference below 5% for all biomarkers? Please give a reference to that choice. Instead, why choose 2% for the time step?

      1) We adjusted the reference to be closer to “biomarkers”. While we agree that further details on the influence of the sampling step would be of interest to some of the readers, we feel that it is far beyond the scope of this paper.

      2) There is no specific reference we can provide for the choice. Our goal was to reach 5% relative difference, which we surpassed by the chosen time steps of 0.01 ms (solver) and 0.05 ms (sampling), leading to only 2% difference. We rephrased the sentence in question to make this clear.

      "We considered the time steps with only 2% relative difference for all AP biomarkers (solver: 0.01ms; sampling: 0.05ms) to offer a sufficiently good approximation." (Section 2.1)

      R III-(e) In the caption of Figure 1 authors should include the reference for AP experimental data (are they from Orvos et al. 2019 as reported in the Experimental Data section?)

      We added the missing reference as requested. As correctly assumed, they are from [Orvos et al., 2019].

      R III-(f) Why do authors not use experimental data in the emulator development/training?

      For the supervised training of our NN emulator, we need to provide the maximum conductances of our chosen channels for each AP. While it would be beneficial to also include experimental data in the training to diversify the training data, the exact maximum conductances in our the considered retrospective experiments are not known. In the case such data would be available with low measurement uncertainty, it would be possible to include.

      R III-(g) What is TP used in the Appendix B? I could not find the acronymous explanation.

      We are sorry for the oversight, TP refers to the time-to-peak and is now described in Appendix A.

      R III-(h) Are there any reasons for only using ST and no S1? Maybe are the same?

      The global sensitivity analysis is further outlined in Appendix B, also showing S1 (first-order effects) and ST (variance of all interactions) together (Figure 11) [Herman and Usher, 2017] and their differences (e.g. in TP) Since S1 only captures first-order effects, it may fail to capture higher-order interactions between the maximum conductances, thus we favored ST.

      R III-(i) In Training Section Page 8. It is not clear why it is necessary to resample data. Can you motivate?

      The resampling part is motivated by exactly capturing the swift depolarization dynamics, whereas the output from CARPentry is uniformly sampled. This is now further highlighted in the text.

      "Then, the data were non-uniformly resampled from the original uniformly simulated APs, to emphasize the depolarization slope with a high accuracy while lowering the number of repolarization samples. For this purpose, we resamled the APs [...]" (Section 2.2.1)

      R III-(j) For the training of the neuronal network, the authors used the ADAM algorithm: have you tested any other algorithm?

      For training neural networks, ADAM has become the current de-facto standard and is certainly a robust choice for training our emulator. While there may exist slightly faster, or better-suited training algorithms, we witnessed (qualitative) convergence in the training (Equation (2)). We thus strongly believe that the training algorithm is not a limiting factor in our study.

      R III-(k) What is the amount of the drugs tested? Is the same dose reported in the description of the second data set or the values are only referring to experimental data? Moreover, it is not clear if in the description of experimental data, the authors are referring to newly acquired data (since they described in detail the protocol) or if they are obtained from Orvos et al. 2019 work.

      In all scenarios, we tested 5 different drugs (cisapride, dofetilide, sotalol, terfenadine, verapamil). We revised our previous presentation of the data available, and now try to give a concise overview over the utilized data (Section 2.2.1 and table 1) and drug comparison with the CiPA distributions (Table 5, former 4). Note that in the latter case, the available expected channel scaling factors by the CiPA distributions vary, but are now clearly shown in Table 5.

      R III-(l) In Figure 4, I will avoid the use of “control” in the legend since it is commonly associated with basal conditions and not with the drug administration.

      The terminology “control” in this context is in line with works from the CiPA initiative, e.g. [Li et al., 2017] and refers to the state of cell conditions before the drug wash-in. We added a minor note the first time we use the term control in the introduction to emphasize that we refer to the state of the cell before administering any drugs

      "To compute the drugged AP for given pharmacological parameters is a forward problem, while the corresponding inverse problem is to find pharmacological parameters for given control (before drug administration) and drugged AP." (Section 1)

      R III-(m) In Table 1 when you referred to Britton et al. 2017 work, I suggest adding also 10.1371/journal.pcbi.1002061.

      We added the suggested article as a reference.

      R III-(n) For the minimization problem, only data set #1 has been used. Have you tested data set #2?

      In the current scenario, we only tested the inverse problem for data set #2 (former #1). The main purpose for data set #3 (former #2), was to test the possibility to emulate EAD APs. Given the overall lower performance in comparison to data set #2 (former #1), we also expect deteriorated results in comparison to the existing inverse synthetic problem.

      R III-(o) In Figure 6 you should have the same x-axis (we could not see any points in the large time scale for many biomarkers). Why dVmMax is not uniformed distributed compared to the others? Can you comment on that?

      As suggested, we re-adjusted the x-range to show the center of distributions. Additionally, we denoted in each subplot the number of outliers which lie outside of the shown range. The error distribution on dVmMax exhibits a slightly off-center, left-tailed normal distribution, which we now describe a bit more in the revised text:

      "While the mismatches in phase 3 were simply a result of imperfect emulation, the mismatches in phase 0 were a result of the difficulty in matching the depolarization time exactly. [...] Likewise, the difficulty in exactly matching the depolarization time leads to elevated errors and more outliers in the biomarkers influenced by the depolarization phase (TP and dVmMax)," (Section 3.1.1)

      R III-(p) Page 14. Can the authors better clarify ”the average RMSE over all APs 13.6mV”: is it the mean for all histograms in Figure 7? (In Figure 5 is more evident the average RMSE).

      The average RMSE uses the same definition for Figures 5 and 7: It is the average over all the RMSEs for each pair of traces (simulated/emulated), though the amount of samples is much lower for the EAD data set and not normal distributed.

      R III-(q) In Table 4, the information on which drugs are considered should be added. For each channel, we added the names of the drugs for which respective data from the CiPA initiative were available.

      R III-(r) Pag. 18, second paragraph, there is a repetition of ”and”.

      Fixed

      R III-(s) The pair’s combination of scaling factors for simulating synthetic drugs reported in Table 2, can be associated with some effects of real drugs? In this case, I suggest including the information or justifying the choice.

      The scaling factors in Table 2 are used to create data set #3 (former #2), and is meant to provide several APs which expose EADs. This is described in more detail in the new data section, Section 2.2.1:

      "Data set #3: The motivation for creating data set #3 was to test the emulator on data of abnormal APs showing the repolarization abnormality EAD. This is considered a particularly relevant AP abnormality in pharmacological studies because of their role in the genesis of drug-induced ventricular arrhythmia’s [Weiss et al., 2010]. Drug data were created using ten synthetic drugs with the hERG channel and the Cav1.2 channel as targets. To this end, ten samples with pharmacological parameters for GKr and PCa (Table 2) were generated and the synthetic drugs were applied to the entire synthetic cardiomyocyte population by scaling GKr and PCa with the corresponding pharmacological parameter. Of the 1000 APs simulated, we discarded APs with a transmembrane potential difference of more than 10% of the amplitude between t = 0 and 1000ms (checked for the last AP), indicative of an AP that does not repolarize within 1000ms. This left us with 950 APs, 171 of which exhibit EAD (see Appendix C)." (Section 2.2.1)

      R III-(t) A general comment on the work is that the authors claim that their study highlights the potential of NN emulators as a powerful tool for increased efficiency in future quantitative systems pharmacology studies, but they wrote ”Larger inaccuracies were found in the inverse problem solutions on experimental data highlight inaccuracies in estimating the pharmacological parameters”: so, I was wondering how they can claim the robustness of NN use as a tool for more efficient computation in pharmacological studies.

      The discussed robustness directly refers to efficiently emulating steady-state/limit cycle APs from a set of maximum conductances (forward problem, Section 3.1.1). We extensively evaluated the algorithm and feel that given the low emulation RMSE of APs (< 1 mV), the statement is warranted. The inverse estimation, enabled through this rapid evaluation, performs well on synthetic data, but shows difficulties for experimental data. Note however that at this point there are multiple potential sources for these problems as highlighted in the Evaluation section (Section 4.1) and Table 5 (former 4) highlights the difference in accuracy of estimating per-channel maximum conductances, revealing a potentially large discrepancy. The emulator also offers future possibilities to incorporate additional informations in the forms of either priors, or more detailed measurements (e.g. calcium transients) and can be potentially improved to a point where also the inverse problem can be satisfactorily solved in experimental preparations, though further analysis will be required.

      References [Beck, 2017] Beck, A. (2017). First-order methods in optimization. SIAM.

      [Britton et al., 2013] Britton, O. J., Bueno-Orovio, A., Ammel, K. V., Lu, H. R., Towart, R., Gallacher, D. J., and Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23).

      [Chang et al., 2017] Chang, K. C., Dutta, S., Mirams, G. R., Beattie, K. A., Sheng, J., Tran, P. N., Wu, M., Wu, W. W., Colatsky, T., Strauss, D. G., and Li, Z. (2017). Uncertainty quantification reveals the importance of data variability and experimental design considerations for in silico proarrhythmia risk assessment. Frontiers in Physiology, 8.

      [Clerx et al., 2016] Clerx, M., Collins, P., de Lange, E., and Volders, P. G. A. (2016). Myokit: A simple interface to cardiac cellular electrophysiology. Progress in Biophysics and Molecular Biology, 120(1):100–114.

      [Endresen and Skarland, 2000] Endresen, L. and Skarland, N. (2000). Limit cycle oscillations in pacemaker cells. IEEE Transactions on Biomedical Engineering, 47(8):1134–1137.

      [Garny and Hunter, 2015] Garny, A. and Hunter, P. J. (2015). OpenCOR: a modular and interoperable approach to computational biology. Frontiers in Physiology, 6.

      [Gemmell et al., 2016] Gemmell, P., Burrage, K., Rodr´ıguez, B., and Quinn, T. A. (2016). Rabbit-specific computational modelling of ventricular cell electrophysiology: Using populations of models to explore variability in the response to ischemia. Progress in Biophysics and Molecular Biology, 121(2):169–184.

      [Ghosh et al., 2018] Ghosh, S., Gavaghan, D. J., and Mirams, G. R. (2018). Gaussian process emulation for discontinuous response surfaces with applications for cardiac electrophysiology models.

      [Herman and Usher, 2017] Herman, J. and Usher, W. (2017). SALib: An open-source python library for sensitivity analysis. J. Open Source Softw., 2(9):97.

      [Johnstone et al., 2016] Johnstone, R. H., Chang, E. T., Bardenet, R., de Boer, T. P., Gavaghan, D. J., Pathmanathan, P., Clayton, R. H., and Mirams, G. R. (2016). Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? Journal of Molecular and Cellular Cardiology, 96:49–62.

      [Li et al., 2017] Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., Mdluli, T., Strauss, D. G., and Colatsky, T. (2017). Improving the in silico assessment of proarrhythmia risk by combining hERG (human ether`a-go-go-related gene) channel–drug binding kinetics and multichannel pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2).

      [Muszkiewicz et al., 2016] Muszkiewicz, A., Britton, O. J., Gemmell, P., Passini, E., S´anchez, C., Zhou, X., Carusi, A., Quinn, T. A., Burrage, K., Bueno-Orovio, A., and Rodriguez, B. (2016). Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm. Progress in Biophysics and Molecular Biology, 120(1):115–127.

      [Orvos et al., 2019] Orvos, P., Kohajda, Z., Szlov´ak, J., Gazdag, P., Arp´adffy-Lovas, T., T´oth, D., Geramipour, A.,´ T´alosi, L., Jost, N., Varr´o, A., and Vir´ag, L. (2019). Evaluation of possible proarrhythmic potency: Comparison of the effect of dofetilide, cisapride, sotalol, terfenadine, and verapamil on hERG and native iKr currents and on cardiac action potential. Toxicological Sciences, 168(2):365–380.

      [Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

      [Plank et al., 2021] Plank, G., Loewe, A., Neic, A., Augustin, C., Huang, Y.-L., Gsell, M. A., Karabelas, E., Nothstein, M., Prassl, A. J., S´anchez, J., Seemann, G., and Vigmond, E. J. (2021). The openCARP simulation environment for cardiac electrophysiology. Computer Methods and Programs in Biomedicine, 208:106223.

      [Shahriari et al., 2016] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175. Conference Name: Proceedings of the IEEE.

      [Snoek et al., 2014] Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input Warping for Bayesian Optimization of Non-Stationary Functions. In Proceedings of the 31st International Conference on Machine Learning, pages 1674–1682. PMLR. ISSN: 1938-7228.

      [Weiss et al., 2010] Weiss, J. N., Garfinkel, A., Karagueuzian, H. S., Chen, P.-S., and Qu, Z. (2010). Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm, 7(12):1891–1899.

    1. Author Response

      We would like to thank the editor and the reviewers for their constructive comments and the chance to revise the manuscript. The suggestions have allowed us to improve our manuscript. We have been able to fulfil all reviewer comments and added new statistical analyses to examine associations for subsets of data. Whilst suggested by a reviewer, we did not perform large-scale experiments to confirm the viability of low sporozoite densities at different time-points post salivary gland colonization. For these assays there are currently no satisfactory in vitro models for sporozoites harvested from single mosquitoes and setting up and validating such experiments could be a PhD project in itself. We do consider this suggestion very relevant but beyond the scope of the current work.

      Relevantly, during the time the manuscript was under review at eLife, we have been able to examine the multiplicity of infection in our field experiments. This was, as written in the original manuscript, a key reason to also perform experiments in the field where there is a greater diversity of parasite lines. We have successfully performed AMA-1 amplicon deep sequencing on infected mosquito salivary glands and infected skins. Although this does not change the key messages of the manuscript and is secondary to our main hypothesis, we do consider it a relevant addition since we were able to demonstrate that for some infected mosquitoes from the Burkina Faso study, multiple clones were expelled by mosquitoes during probing on a single piece of artificial skin. We have added a short paragraph to our revised manuscript and updated the acknowledgement section to include the supporting researcher who conducted those experiments.

      Reviewer #1 (Public Review):

      Summary: There is a long-believed dogma in the malaria field; a mosquito infected with a single oocyst is equally infectious to humans as another mosquito with many oocysts. This belief has been used for goal setting (and modelling) of malaria transmission-blocking interventions. While recent studies using rodent malaria suggest that the dogma may not be true, there was no such study with human P. falciparum parasites. In this study, the numbers of oocysts and sporozoite in the mosquitoes and the number of expelled sporozoites into artificial skin from the infected mosquito was quantified individually. There was a significant correlation between sporozoite burden in the mosquitoes and expelled sporozoites. In addition, this study showed that highly infected mosquitoes expelled sporozoites sooner.

      Strengths:

      • The study was conducted using two different parasite-mosquito combinations; one was lab-adapted parasites with Anopheles stephensi and the other was parasites, which were circulated in infected patients, with An. coluzzii. Both combinations showed statistically significant correlations between sporozoite burden in mosquitoes and the number of expelled sporozoites.

      • Usually, this type of study has been done in group bases (e.g., count oocysts and sporozoites at different time points using different mosquitoes from the same group). However, this study determined the numbers in individual bases after multiple optimization and validation of the approach. This individual approach significantly increases the power of correlation analysis.

      Weaknesses:

      • In a natural setting, most mosquitoes have less than 5 oocysts. Thus, the conclusion is more convincing if the authors perform additional analysis for the key correlations (Fig 3C and 4D) excluding mosquitoes with very high total sporozoite load (e.g., more than 5-oocyst equivalent load).

      In the revised manuscript, we have also performed our analysis including only the subset of mosquitoes with low oocyst burden. In our Burkina Faso experiments, where we could not control oocyst density, 48% (15/31) of skins were from mosquitoes with <5 oocyst sheets. Whilst low oocyst densities were thus not very uncommon, we acknowledge that this may have rendered some comparisons underpowered. At the same time, we observe a strong positive trend between oocyst density and sporozoite density and between salivary gland sporozoite density and mosquito inoculum. This makes it very likely that this trend is also present at lower oocyst densities, an association where sporozoite inoculation saturates at high densities is plausible and has been observed before for rodent malaria (DOI: 10.1371/journal.ppat.1008181) whilst we consider it less likely that sporozoite expelling would be more efficient at low (unmeasured) sporozoite densities.

      • As written as the second limitation of the study, this study did not investigate whether all expelled sporozoites were equally infectious. For example, Day 9 expelled sporozoites may be less infectious than Day 11 sporozoites, or expelled sporozoites from high-burden mosquitoes may be less infectious because they experience low nutrient conditions in a mosquito. Ideally, it is nice to test the infectivity by ex vivo assays, such as hepatocyte invasion assay, and gliding assay at least for salivary sporozoites. But are there any preceding studies where the infectivity of sporozoites from different conditions was evaluated? Citing such studies would strengthen the argument.

      We appreciate this thought and can see the value of these experiments. We are not aware of any studies that examined sporozoite viability in relation to the day of salivary gland colonization or sporozoite density.

      One previous study assessed the NF54 sporozoite infectivity on different days post infection (days 12-13-14-15-16-18) and observed no clear differences in ‘per sporozoite hepatocyte invasion capacity’ over this period (DOI: 10.1111/cmi.12745). We nevertheless agree that it is conceivable that sporozoites require maturation in the salivary glands and might not all be equally infectious. While hepatocyte invasion experiments are conducted with bulk harvesting of all the sporozoites that are present in the salivary glands, it would even be more interesting to assess the invasion capacity of the smaller population of sporozoites that migrate to the proboscis to be expelled. This would, as the reviewer will appreciate, be a major endeavour. To do this well the expelled sporozoites would need to be harvested from the salivary glands/proboscis and used in the best and most natural environment for invasion. The suggested work would thus depend on the availability of primary hepatocytes since conventional cell-lines like HC-04 are likely to underestimate sporozoite invasion. Importantly, there are currently no opportunities to include the barrier of the skin environment in invasion assays whilst this may be highly important in determining the likelihood that sporozoites manage to achieve invasion and give rise to secondary infections. In short, we agree with the reviewer that these experiments are of interest but consider these well beyond the scope of the current work. We have added a section to the Discussion section to highlight these future avenues for research. ‘Of note, our assessments of EIP and of sporozoite expelling did not confirm the viability of sporozoites. Whilst the infectivity of sporozoites at different time-points post infection has been examine previously (https://doi.org/10.1111/cmi.12745), these experiments have never been conducted with individual mosquito salivary glands. To add to this complexity, such experiments would ideally retain the skin barrier that may be a relevant determinant for invasion capacity and primary hepatocytes.’

      • Since correlation analyses are the main points of this paper, it is important to show 95% CI of Spearman rank coefficient (not only p-value). By doing so, readers will understand the strengths/weaknesses of the correlations. The p-value only shows whether the observed correlation is significantly different from no correlation or not. In other words, if there are many data points, the p-value could be very small even if the correlation is weak.

      We appreciate this comment and agree that this is indeed insightful. We have added the 95% confidence intervals to all figure legends and main text. We also provide them below.

      Fig 3b: 95% CI: 0.74, 0.85

      Fig 3c: 95% CI: 0.17, 0.50

      Fig 4c: 95% CI: 0.80, 0.95

      Fig 4d: 95% CI: 0.52, 0.82

      Supp Fig 5a: 95% CI: 0.74, 0.85

      Supp Fig 5b: 95% CI: 0.73, 0.93

      Supp Fig 6: 95% CI: 0.11, 0.48

      Supp Fig 7: 95% CI: -0.12, 0.16

      Reviewer #2 (Public Review):

      Summary: The malaria parasite Plasmodium develops into oocysts and sporozoites inside Anopheles mosquitoes, in a process called sporogony. Sporozoites invade the insect salivary glands in order to be transmitted during a blood meal. An important question regarding malaria transmission is whether all mosquitoes harbouring Plasmodium parasites are equally infectious. In this paper, the authors investigated the progression of P. falciparum sporozoite development in Anopheles mosquitoes, using a sensitive qPCR method to quantify sporozoites and an artificial skin system to probe for parasite expelling. They assessed the association between oocyst burden, salivary gland infection intensity, and sporozoites expelled.

      The data show that higher sporozoite loads are associated with earlier colonization of salivary glands and a higher prevalence of sporozoite-positive salivary glands and that higher salivary gland sporozoite burdens are associated with higher numbers of expelled sporozoites. Intriguingly, there is no clear association between salivary gland burdens and the prevalence of expelling, suggesting that most infections reach a sufficient threshold to allow parasite expelling during a mosquito bite. This important observation suggests that low-density gametocyte carriers, although less likely to infect mosquitoes, could nevertheless contribute to malaria transmission.

      Strengths: The paper is well written and the work is well conducted. The authors used two experimental models, one using cultured P. falciparum gametocytes and An. stephensi mosquitoes, and the other one using natural gametocyte infections in a field setup with An. coluzzii mosquitoes. Both studies gave similar results, reinforcing the validity of the observations. Parasite quantification relies on a robust and sensitive qPCR method, and parasite expelling was assessed using an innovative experimental setup based on artificial skin.

      Weaknesses: There is no clear association between the prevalence of sporozoite expelling and the parasite burden. However, high total sporozoite burdens are associated with earlier and more efficient colonization of the salivary glands, and higher salivary gland burdens are associated with higher numbers of expelled sporozoites. While these observations suggest that highly infected mosquitoes could transmit/expel parasites earlier, this is not directly addressed in the study. In addition, whether all expelled sporozoites are equally infectious is unknown. The central question, i.e. whether all infected mosquitoes are equally infectious, therefore remains open.

      We agree that the manuscript provides important steps forward in our understanding of what makes an infectious mosquito but does not conclusively demonstrate that highly infected mosquitoes are more likely to initiate a secondary infection. We consider this to be beyond the scope of the current work although the current work lays the foundation for these important future studies. For human Plasmodium infections the most satisfactory answer on the infectiousness of low versus high infected mosquitoes comes from controlled human infection models. In response to reviewer comments, we have extended our Discussion section to highlight this importance. To accommodate the (very fair) reviewer comments, we have avoided any phrasings that suggest that our findings demonstrate differences in transmission.

      Reviewer #3 (Public Review):

      Summary: This study uses a state-of-the-art artificial skin assay to determine the quantity of P. falciparum sporozoites expelled during feeding using mosquito infection (by standardised membrane feeding assay SMFA) using both cultured gametocytes and natural infection. Sporozoite densities in salivary glands and expelled into the skin are quantified using a well-validated molecular assay. These studies show clear positive correlations between mosquito infection levels (as determined by oocyst numbers), sporozoite numbers in salivary glands, and sporozoites expelled during feeding. This indicates potentially significant heterogeneity in infectiousness between mosquitoes with different infection loads and thus challenges the often-made assumption that all infected mosquitoes are equally infectious.

      Strengths: Very rigorously designed studies using very well validated, state-of-the-art methods for studying malaria infections in the mosquito and quantifying load of expelled sporozoites. This resulted in very high-quality data that was well-analyzed and presented. Both sources of gametocytes (cultures vs. natural infection) show consistent results further strengthening the quality of the results obtained.

      Weaknesses: As is generally the case when using SMFAs, the mosquito infections levels are often relatively high compared to wild-caught mosquitoes (e.g. Bombard et al 2020 IJP: median 3-4 ), and the strength of the observed correlations between oocyst sheet and salivary gland sporozoite load even more so between salivary gland sporozoite load and expelled sporozoite number may be dominated by results from mosquitoes with infection levels rarely observed in wild-caught mosquitoes. This could result in an overestimation of the importance of these well-observed positive relationships under natural transmission conditions. The results obtained from these excellently designed and executed studies very well supported their conclusion - with a slight caveat regarding their application to natural transmission scenarios

      For efficiency and financial reasons, we have worked with an approach to enhance mosquito infection rates. If we had worked with gametocytes at physiological concentrations and a small number of donors, we probably have had considerably lower mosquito infection rates. Whilst this would indeed result in lower infection burdens in the sparse infected mosquitoes, addressing the reviewer concern, it would have made the experiments highly inefficient and expensive. The skin mimic was initially provided free of charge when the matrix was close to the expiry date but for the experiments in Burkina Faso we had to purchase the product at market value. Whilst we consider the biological question sufficiently important to justify this investment – and think our findings prove us right – it remained important to avoid using skins for uninfected mosquitoes. Since oocyst prevalence and density are strongly correlated (doi: 10.1016/j.ijpara.2012.09.002; doi: 10.7554/eLife.34463), a low oocyst density in natural infections typically coincides with a high proportion of negative mosquitoes.

      Of note, our approach did result in the inclusion of 15 skins from infected mosquitoes with 1-4 oocysts. This number may be modest but we did include observations from this low oocyst range which is, we agree, highly important for better understanding malaria epidemiology.

      This work very convincingly highlights the potential for significant heterogeneity in the infectiousness between individual P. falciparum-infected mosquitoes. Such heterogeneity needs to be further investigated and if again confirmed taken into account both when modelling malaria transmission and when evaluating the importance of low-density infections in sustaining malaria transmission.

      Reviewer #4 (Public Review):

      Summary: The study compares the number of sporozoites expelled by mosquitoes with different Plasmodium infection burden. To my knowledge this is the first report comparing the number of expelled P. falciparum sporozoites and their relation to oocyst burden (intact and ruptured) and residual sporozoites in salivary glands. The study provides important evidence on malaria transmission biology although conclusions cannot be drawn on direct impact on transmission.

      Strengths: Although there is some evidence from malaria challenge studies that the burden of sporozoites injected into a host is directly correlated with the likelihood of infection, this has been done using experimental infection models which administer sporozoites intravenously. It is unclear whether the same correlation occurs with natural infections and what the actual threshold for infection may be. Host immunity and other host related factors also play a critical role in transmission and need to be taken into consideration; these have not been mentioned by the authors. This is of particular importance as host immunity is decreasing with reduction in transmission intensity.

      Weaknesses: The natural infections reported in the study were not natural as the authors described. Gametocyte enrichment was done to attain high oocyst infection numbers. Studying natural infections would have been better without the enrichment step. The infected mosquitoes have much larger infection burden than what occurs in the wild.

      Nevertheless, the findings support the same results as in the experiments conducted in the Netherlands and therefore are of interest. I suggest the authors change the wording. Rather than calling these "natural" infections, they could be called, for example, "experimental infections with wild parasite strains".

      We have addressed these concerns and, in the process, also changed our manuscript title. The following sentences have been changed:

      “It is currently unknown whether all Plasmodium falciparum infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and natural infections in Burkina Faso”.

      Now reads: “It is currently unknown whether all Plasmodium falciparum infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and experimental infections with naturally circulating parasite strains in Burkina Faso”. 226-228 “Experimental infections with naturally circulating parasite strains show comparable correlation between oocyst density, salivary gland density and sporozoite inoculum”.

      Has now replaced the original phrasing: “Natural infected mosquitoes by gametocyte carriers in Burkina Faso show comparable correlation between oocyst density, salivary gland density and sporozoite inoculum”.

      I do not believe the study results generate sufficient evidence to conclude that lower infection burden in mosquitoes is likely to result in changes to transmission potential in the field. In study limitations section, the authors say "In addition, our quantification of sporozoite inoculum size is informative for comparisons between groups of high and low-infected mosquitoes but does not provide conclusive evidence on the likelihood of achieving secondary infections. Given striking differences in sporozoite burden between different Plasmodium species - low sporozoite densities appear considerably more common in mosquitoes infected with P. yoelii and P. berghei the association between sporozoite inoculum and the likelihood of achieving secondary infections may be best examined in controlled human infection studies. However, in the abstract conclusion the authors state "Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is associated with the number of expelled sporozoites and may need to be considered in estimations of transmission potential." Kindly consider ending the sentence at "expelled sporozoites." Future studies on CHMI can be recommended as a conclusion if authors feel fit.

      We agree that we need to be very cautious with conclusions on the impact of our findings for the infectious reservoir. We have rephrased parts of our abstract and have updated the Discussion section following the reviewer suggestions. We agree with the reviewer that CHMI studies are recommended and have expanded the Discussion section to make this clearer. The sentence in the abstract now ends as:

      "Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential."

      Reviewer #1 (Recommendations For The Authors):

      • Prevalence data shown in Fig 2A and Table S1 are different. For example, >50K at Day 11, Fig 2A shows ~85% prevalence, but Table S1 says 100%. If the prevalence in Table S1 shows a proportion of observations with positive expelled sporozoites (instead of a proportion of positive mosquitoes shown in Fig 2A), then the prevalence for <1K at Day 11 cannot be 6.7% (either 0 or 20% as there were a total of 5 observations). So in either case, it is not clear why the numbers shown in Fig 2A and Table S1 are different.

      Figure 2A and Table S2 are estimated prevalence and odds ratios from an additive logistic regression model (i.e. excluding the interaction between day and sporozoite categories). Table S1 includes this interaction when estimating prevalence and odds ratios and as we can see some categories in the interaction were extremely small resulting in blown up confidence intervals especially in day 11. So Table S1 and Fig 2A are the results from two different models. Whilst our results are thus correct, we can understand the confusion and have added a sentence to explain the model used in the figure/table legends.

      Figure. 2 Extrinsic Incubation Period in high versus low infected mosquitoes. A. Total sporozoites (SPZ) per mosquito in body plus salivary glands (x-axis) were binned by infection load <1k; 1k-10k; 10k-50k; >50k and plotted against the proportion of mosquitoes (%) that were sporozoite positive (y-axis) as estimated from an additive logistic regression model with factors day and SPZ categories. Supplementary Table S1. The extrinsic incubation period of P. falciparum in An. stephensi estimated by quantification of sporozoites on day 9, 10, 11 by qPCR. Based on infection intensity mosquitoes were binned into four categories (<1k, 1k-10k, 10k-50k, >50) that was assessed by combining sporozoite densities in the mosquito body and salivary gland. Prevalences and odds ratios were estimated from a logistic regression model with factors day, SPZ category and their interaction.

      There are 3 typos in the paper. Please fix them.

      Line 464; ...were counted using a using an incident....

      Line 473; Supplementary Figure 7 should be Fig S8.

      Line 508: ...between days 9 and 10 using a (t=-2.0467)....

      We appreciate the rigour in reviewing our text and have corrected all typos.

      Reviewer #2 (Recommendations For The Authors):

      High infection burdens may result in earlier expelling capacity in mosquitoes, which would reflect more accurately the EIP. The fact that earlier colonization of SG and correlation between SG burden and numbers expelled suggest it could be the case, but it would be interesting to directly measure the prevalence of expelling over time to directly assess the effect of the sporozoite burden (not just at day 15 but before). This could reveal how the parasite burden in mosquitoes is a determinant of transmission.

      We appreciate this suggestion and will consider this for future experiments. It adds another variable that is highly relevant but will also complicate comparisons where sporozoite expelling is related to both time since infectious blood meal and salivary gland sporozoite density (that is also dependent on time since infectious bloodmeal). Moreover, we then consider it important to measure this over the entire duration of sporozoite expelling, including late time-points post infectious bloodmeal. This may form part of a follow-up study.

      Another question is whether all sporozoites (among expelled parasites) are equally infective, i.e. susceptible to induce secondary infection. If not, this could reconcile the data of this study and previous results in the rodent model where high burdens were associated with an increased probability to transmit.

      As also indicated above, we are aware of a single study that assessed NF54 sporozoite infectivity on different days post infection (days 12-13-14-15-16-18) and observed no clear differences in ‘per sporozoite hepatocyte invasion capacity’ over this period (DOI: 10.1111/cmi.12745). We nevertheless agree that it is conceivable that sporozoites require maturation in the salivary glands and might not all be equally infectious. While hepatocyte invasion experiments are conducted with bulk harvesting of all the sporozoites that are present in the salivary glands, it would even be more interesting to assess the invasion capacity of the smaller population of sporozoites that migrate to the proboscis to be expelled. This would, as the reviewer will appreciate, be a major endeavour. To do this well the expelled sporozoites would need to be harvested from the salivary glands/proboscis and used in the best and most natural environment for invasion. The suggested work would thus depend on the availability of primary hepatocytes since conventional cell-lines like HC-04 are likely to underestimate sporozoite invasion. Importantly, there are currently no opportunities to include the barrier of the skin environment in invasion assays whilst this may be highly important in determining the likelihood that sporozoites manage to achieve invasion and give rise to secondary infections. In short, we agree with the reviewer that these experiments are of interest but consider these well beyond the scope of the current work. We have added a section to the Discussion section to highlight these future avenues for research. ‘Of note, our assessments of EIP and of sporozoite expelling did not confirm the viability of sporozoites. Whilst the infectivity of sporozoites at different time-points post infection has been examine previously (ref), these experiments have never been conducted with individual mosquito salivary glands. To add to this complexity, such experiments would ideally retain the skin barrier that may be a relevant determinant for invasion capacity and primary hepatocytes.’

      The authors evaluated oocyst rupture at day 18, i.e. 3 days after feeding experiments (performed at day 15). Did they check in control experiments that the prevalence of rupture oocysts does not vary between day 15 and day 18?

      We did not do this and consider it very unlikely that there is a noticeable increase in the number of ruptured oocysts between days 15 and 18. We observe that salivary gland invasion plateaus around day 12 and the provision of a second bloodmeal that is known to accelerate oocyst maturation and rupture (doi: 10.1371/journal.ppat.1009131) makes it even less likely that a relevant fraction of oocysts ruptures very late. Perhaps most compellingly, the time of oocyst rupture will depend on nutrient availability and rupture could thus occur later for oocysts from a heavily infected gut compared to oocysts from mosquitoes with a low infection burden. We observe a very strong association between salivary gland sporozoite density (day 15) and oocyst density (assessed at day 18) without any evidence for change in the number of sporozoites per oocyst for different oocyst densities. In our revised manuscript we have also assessed correlations for different ranges of oocyst intensities and see highly consistent correlation coefficients and find no evidence for a change in ‘slope’. If oocyst rupture would regularly happen between days 15 and 18 and this late rupture would be more common in heavily infected mosquitoes, we would expect this to affect the associations presented in figures 3B and 4C This is not the case.

      The authors report higher sporozoite numbers per oocyst and a higher proportion of SG invasion as compared to previous studies (30-50% rather than 20%). How do they explain these differences? Is it due to the detection method and/or second blood meal? Or parasite species?

      We were also intrigued by these findings in light of existing literature. To address potential discrepancies, it is indeed possible that the 2nd bloodmeal made a difference. In addition, NF54 is known to be a highly efficient parasite in terms of gametocyte formation and transmission. And there are marked differences in these performances between NF54 isolates and definitely between NF54 and its clone 3D7 that is regularly used. We also used a molecular assay to detect and quantify sporozoites but consider it less likely that this is a major factor in terms of explaining SG invasion since sporozoite densities were typically within the range that would be detected by microscopy. We can only hypothesize that the 2nd bloodmeal may have contributed to these findings and acknowledge this in the revised Discussion section.

      The median numbers of expelled sporozoites seem to be higher in the natural gametocyte infection experiments as compared to the cultures. Is it due to the mosquito species (An. coluzzii versus An. stephensi?).

      The added value of our field experiments, a more relevant mosquito species and more relevant parasite isolates, is also a weakness in terms of understanding possible differences between in vitro experiments and field experiments with naturally circulating parasite strains. We only conclude that our in vitro experiments do not over-estimate sporozoite expelling by using a highly receptive mosquito source and artificially high gametocyte densities. We have clarified this in the revised Discussion.

      39% of sporozoite-positive mosquitoes failed to expel, irrespective of infection densities. Could the authors discuss possible explanations for this observation?

      In paragraph 304-307 we now write that:” This finding broadly aligns with an earlier study of Medica and Sinnis that reported that 22% of P. yoelii infected mosquitoes failed to expel sporozoites. For highly infected mosquitoes, this inefficient expelling has been related to a decrease of apyrase in the mosquito saliva”.

      In Figure 3, it would be interesting to zoom in the 0-1k window, below the apparent threshold for successful expelling.

      We have generated correlation estimates for different ranges of oocyst and sporozoite densities and added these in Supplementary Table 5. We agree that this helps the reader to appreciate the contribution of different ranges of parasite burden to the observed associations.

      In Fig S8. Did they observe intact oocysts with fixed samples? These could be shown as well in the figure.

      We have incorporated this comment. An intact oocyst from fixed samples was now added to Fig S10.

      Minor points

      -line 119: LOD and LOQ could be defined here.

      We agree that this should have been defined. We changed line 119 to explain LOD and LOQ to: …“the limit of detection (LOD) and limit of quantification (LOQ)”….

      • line 126: the title does not reflect the content of this paragraph.

      We have changed the title: “Immunolabeling allows quantification of ruptured oocysts ”into: A comparative analysis of oocyst densities using mercurochrome staining and anti-CSP immunostaining.

      -line 269: infectivity is not appropriate. The data show colonization of SG.

      Line 269: infectivity has been changed with colonization of salivary glands.

      There seems to be a problem with Fig S6. The graph seems to be the same as Fig 3C. Please check whether the graph and legends are correct.

      Supplementary Figure 6 shows the sporozoite expelling density in relation to infection burden with a threshold set at > 20 sporozoites while Fig 3C shows the total sporozoite density (residual salivary gland sporozoites + sporozoites expelled, X-axis) in relation to the number of expelled sporozoites (Y-axis) by COX-1qPCR without any threshold density. We have explained this in more detail in the revised supplemental figure where we now state

      “Of note, this figure differs from Figure 3C in the main text in the following manner. This figure presents sporozoite expelling density in relation to infection burden with a threshold set at > 20 sporozoites to conclude sporozoite positivity while Figure 3C shows the total sporozoite density (residual salivary gland sporozoites + sporozoites expelled, X-axis) in relation to the number of expelled sporozoites (Y-axis) by COX-1 qPCR without any threshold density and thus includes all observations with a qPCR signal”

      Reviewer #3 (Recommendations For The Authors):

      Congratulations to the authors for the really excellently designed and rigorously conducted studies.

      My main concern is in regards to the relatively high oocyst numbers in their experimental mosquitoes (from both sources of gametocytes) compared to what has been reported from wild-caught mosquitoes in previous studies in Burkina Faso.

      We have addressed this concern above. For completeness, we include the main points here again. We enriched gametocytes for efficiency reasons, experiments on gametocytes at physiological concentrations would have resulted in a lower oocyst density (and thus more ‘natural’ although a minority of individuals achieves very high oocyst densities in all studies that included a broad range of oocyst densities (e.g. doi: 10.1016/j.exppara.2014.12.010; doi: 10.1016/S1473-3099(18)30044-6). Of note, we did include 15 skins from low oocyst densities (1-4 oocysts). Whilst low oocyst densities were thus not very uncommon in our sample set, we acknowledge that this may have rendered some comparisons underpowered. At the same time, we observe a strong positive trend between oocyst density and sporozoite density and between salivary gland sporozoite density and mosquito inoculum. This makes it very likely that this trend is also present at lower oocyst densities, an association where sporozoite inoculation saturates at high densities is plausible and has been observed before for rodent malaria (DOI: 10.1371/journal.ppat.1008181) whilst we consider it less likely that sporozoite expelling would be more efficient at low (unmeasured) sporozoite densities. In the revised manuscript we have also performed our analysis including only the subset of mosquitoes with low oocyst burden.

      The best way to address this would be to do comparable artificial skin-feeding experiments on such wild-caught mosquitoes, but I appreciate that this is very difficult to do.

      This would indeed by difficult to do. Mostly because infection status can only be examined post-hoc and it is likely that >95% of mosquitoes are sporozoite negative at the moment experiments are conducted (in many settings this will even be >99%). Importantly, also in wild-caught mosquitoes very high oocyst burdens are observed in a small but relevant subset of mosquitoes (doi: 10.1016/j.ijpara.2020.05.012).

      Instead, I would suggest the authors conduct addition analysis of their data using different cut-offs for maximum oocyst numbers (e.g. <5, <10, <20) to determine if these correlations hold across the entire range of observed oocyst sheets and salivary gland sporozoite load.

      We have provided these calculations for the proposed range of oocyst numbers. In addition, we also provided them for a range of sporozoite densities. These findings are now provided in

      Entire range of observed oocyst sheets and salivary gland sporozoite load. A minor point on the regression lines in Figures 3 & 4: both variables in these plots have inherent variation (measurement & natural), but regression techniques such as reduced major exit regression (MAR) that allow error in both x and y variables may be preferable to a standard lines regression. Also, as it is implausible that mosquitoes with zero sporozoite in salivary glands expel several hundred sporozoites at feeding, the regression should probably also be constrained to pass through the 0,0 point.

      Since the main priority of the analyses is the correlation, and not the fit of the regression line – which is only for indication, and also because of the availability of software, we did not change the type of regression. We have however added a disclaimer to the legend, and we have also forced the intercept to 0 – which does indeed better reflect the biological association. Additionally we added 95% confidence intervals to all Spearman’s correlation coefficients in the legends.

    1. Author Response

      Responses to public reviews

      Reviewer 1

      We thank the reviewer for the valuable and constructive comments and are pleased that the re-viewer finds our study timely and our behavioral results clear.

      1) The RSA basically asks on the lowest level, whether neural activation patterns (as measured by EEG) are more similar between linked events compared to non-linked events. At least this is the first question that should be asked. However, on page 11 the authors state: "We ex-amined insight-induced effects on neural representations for linked events [...]". Hence, the critical analysis reported in the manuscript fully ignores the non-linked events and their neu-ral activation patterns. However, the non-linked events are a critical control. If the reported effects do not differ between linked and non-linked events, there is no way to claim that the effects are due to experimental manipulation - neither imagination nor observation. Hence, instead of immediately reporting on group differences (sham vs. control) in a two-way in-teraction (pre vs. post X imagination vs. observation), the authors should check (and re-port) first, whether the critical experimental manipulation had any effect on the similarity of neural activation patterns in the first place.

      We completely agree that the non-link items are a critical control. Therefore, we had reported not only the results for linked but also for non-linked events on page 15, lines 336-350. We clarified this important point now on page 12 lines 283-286:

      “Subsequently, we examined insight-induced effects on neural representations for linked (vs. non-linked) events by comparing the change from pre- to post-insight (post-pre) and the difference between imagination and observation (imagination - observation) between cTBS and sham groups using an independent cluster-based permutation t-test.”

      Moreover, to directly compare linked and non-linked events we performed a four-way in-teraction including link vs. non-link. This analysis yielded a significant four-way interaction, showing that the interaction of time (pre vs. post), mode of insight (imagination vs. obser-vation) and cTBS differed for linked vs. non-linked items. We then report the follow-up analyses, separately for linked and non-linked events. Please see pages 12-13, lines 287-294:

      “First, we included the within-subject factors time (pre vs. post), mode of insight (imagina-tion vs. observation) and link (vs. non-link) by calculating the difference waves. Subse-quently we conducted a cluster-based permutation test comparing the cTBS and the sham groups. This analysis yielded a four-way interaction within a negative cluster in a fronto-temporal region (electrode: FT7; p = 0.007, ci-range = 0.00, SD = 0.00). This result indicates that the impact of cTBS over the angular gyrus on the neural pattern reconfiguration follow-ing imagination- vs. observation-based insight may differ between linked and non-linked events. For linked events, this analysis yielded a […]”

      2) Overall, the focus on the targeted three-way interaction is poorly motivated. Also, a func-tional interpretation is largely missing.

      In order to better explain our motivation for the three-way interaction, we em-phasized in the introduction the importance of disentangling potential differences due to the mode of insight, given the known role of the angular gyrus in imagination on pages 4-5, lines 107-115:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked event.”

      As discussed on page 21 (starting from line 478; see also the intro on page 4), we expected that the angular gyrus would be particularly implicated in imagination-based insight, given its known role in imagination (e.g.: Thakral et al., 2017). Moreover, given the angular gyrus’s strong connectivity with other regions, the results observed may not be driven by this re-gion alone but also by interconnected regions, such as the hippocampus. We clarified these important points at the very end of the discussion on pages 23-24, lines 543-560:

      “Furthermore, the differential impact of cTBS to the angular gyrus on neural reconfigura-tions between events linked via imagination and those linked via observation may be at-tributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Uddin et al., 2010). This stronger connectivity between the ventral angular gyrus and the hippocampus may shed light on the greater impact of cTBS to the angular gyrus on im-agination-based insight. Given the angular gyrus’s robust connectivity with other brain re-gions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also origi-nate from these interconnected regions. This notion may bear particular importance given the required accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the an-gular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gy-rus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014).”

      3) "Interestingly, we observed a different pattern of insight-related representational pattern changes for non-linked events." It is not sufficient to demonstrate that a given effect is pre-sent in one condition (linked events) but not the other (non-linked events). To claim that there are actually different patterns, the authors would need to compare the critical condi-tions directly (Nieuwenhuis et al., 2011).

      We completely agree and now compared the two conditions directly. Specifical-ly, we now report the significant four-way interaction, including the factor link vs. non-link, before delving into separate analyses for linked and non-linked events on pages 12-13, lines 287-294:

      “First, we included the within-subject factors time (pre vs. post), mode of insight (imagina-tion vs. observation) and link (vs. non-link) by calculating the difference waves. Subse-quently we conducted a cluster-based permutation test comparing the cTBS and the sham groups. This analysis yielded a four-way interaction within a negative cluster in a fronto-temporal region (electrode: FT7; p = 0.007, ci-range = 0.00, SD = 0.00). This result indicates that the impact of cTBS over the angular gyrus on the neural pattern reconfiguration follow-ing imagination- vs. observation-based insight may differ between linked and non-linked events. For linked events, this analysis yielded a […]”

      4) "This analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B)." (p. 11). The authors report results with specificity for certain topographical locations. However, this is in stark contrast to the fact that the authors derived time X time RSA maps.

      We did derive time × time similarity maps for each electrode within each partic-ipant, which allowed us to find a cluster consisting of specific electrodes. We apologize for not making this aspect clear enough and have, therefore, modified the respective part of our methods section on page 38, lines 951-952:

      “In total, this analysis produced eight Representational Dissimilarity Matrices (RDMs) for each electrode and each participant.”

      5) "These theta power values were then combined to create representational feature vectors, which consisted of the power values for four frequencies (4-7 Hz) × 41 time points (0-2 sec-onds) × 64 electrodes. We then calculated Pearson's correlations to compare the power pat-terns across theta frequency between the time points of linked events (A with B), as well as between the time points of non-linked events (A with X) for the pre- and the post-phase separately, separately for stories linked via imagination and via observation. To ensure un-biased results, we took precautions not to correlate the same combination of stories twice, which prevented potential inflation of the data. To facilitate statistical comparisons, we ap-plied a Fisher z-transform to the Pearson's rho values at each time point. This yielded a global measure of similarity on each electrode site. We, thus, obtained time × time similarity maps for the linked events (A and B) and the non-linked events (A and X) in the pre- and post-phases, separately for the insight gained through imagination and observation." (p. 34+35).

      If RSA values were calculated at each time point and electrode, the Pearson correlations would have been computed effectively between four samples only, which is by far not enough to derive reliable estimates (Schönbrodt & Perugini, 2013). The problem is aggra-vated by the fact that due to the time and frequency smoothing inherent in the time-frequency decomposition of the EEG data, nearby power values across neighboring theta frequencies are highly similar to start with. (e.g., Schönauer et al., 2017; Sommer et al., 2022).

      Alternative approaches would be to run the correlations across time for each electrode (re-sulting in the elimination of the time dimension) or to run the correlations at each time point across electrodes (resulting in the elimination of topographic specificity).

      At least, the authors should show raw RSA maps for linked and non-linked events in the pre- and post-phases separately for the insight gained through imagination and observa-tion in each group, to allow for assessing the suitability of the input data (in the supple-ments?) before progressing to reporting the results of three-way interactions.

      Although we do see the reviewer’s point, we think that an RSA specific to the theta range yielding electrode specific time × time similarity maps must be run this way, otherwise, as you pointed out, one or the other dimension is compromised. Running an RSA across time for each electrode will lead to computing a similarity measure between the events without information on when these stimuli become more or less similar, thereby ig-noring the temporal dynamics crucial to EEG data and not taking advantage of the high temporal resolution. Conversely, conducting an RSA across electrodes might result in an overall similarity measure per participant, disregarding the spatial distribution and potential variations among electrodes. Although EEG has limited spatial resolution, different elec-trodes can capture differences that may aid in understanding neural processing. However, as suggested by the reviewer, we included the raw RSA maps for linked and non-linked events separately for pre- and post-phases, imagination and observation and link and non-link in the supplement and refer to these data in the results section on pages 12-13, lines 293-295:

      “For linked events, this analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B; Figure 3 – Figure sup-plement 1).”

      And on page 15, lines 339-341:

      “This analysis yielded a positive cluster (p = 0.035, ci-range = 0.00, SD = 0.00) in a fronto-temporal region (electrode: FT7; Fig. 3C; Figure 3 – Figure supplement 2).”

      Reviewer 2

      We thank the reviewer for the very helpful and constructive comments and appreciate that the reviewer finds our study relevant to all areas of cognitive research.

      1) While the observed memory reconfiguration/changes are attributed to the angular gyrus in this study, it remains unclear whether these effects are solely a result of the AG's role in re-configuration processes or to what extent the hippocampus might also mediate these memory effects (e.g., Tambini et al., 2018; Hermiller et al., 2019).

      We agree that, in addition to the critical role of the angular gyrus, there may be an involvement of the hippocampus. We point now explicitly to the modulatory capacities of angular gyrus stimulation on the hippocampus. Please see page 4, lines 81-88:

      “One promising candidate that may contribute to insight-driven memory reconfiguration is the angular gyrus. The angular gyrus has extensive structural and functional connections to many other brain regions (Petit et al., 2023), including the hippocampus (Coughlan et al., 2023; Uddin et al., 2010). Accordingly, previous studies have shown that stimulation of the angular gyrus resulted in altered hippocampal activity (Thakral et al., 2020; Wang et al., 2014). Furthermore, the angular gyrus has been implicated in a myriad of cognitive func-tions, including mental arithmetic, visuospatial processing, inhibitory control, and theory-of-mind (Cattaneo et al., 2009; Grabner et al., 2009; Lewis et al., 2019; Schurz et al., 2014).”

      We further added a new paragraph to the discussion pointing at the possibility that not solely the angular gyrus but another brain region, such as the hippocampus, may have me-diated the changes observed in our study on pages 23-24, lines 546-562:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagination-based insight. Given the angular gyrus’s robust connectivity with other brain regions, includ-ing the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      2) Another weakness in this manuscript is the use of different groups of participants for the key TMS intervention, along with underspecified or incomplete hypotheses/predictions.

      In our view, the chosen between-subjects design is to be preferred over a crossover design for several reasons. First, our choice aimed to eliminate potential se-quence effects that may have adversely affected performance in the narrative-insight task (NIT). Second, this approach ensured consistency in expectations regarding the story links while also mitigating potential differences induced by fatigue. Additionally, we accounted for the potential advantage of a within-subject design – the stimulation of the same brain – by utilizing neuro-navigated TMS for targeting the stimulation coordinate. Finally, it is im-portant to note that we measured the event representations pre- and post-insight and that also the mode of insight was manipulated within-subject. Thus, our design did include a within-subject component and we are convinced that the chosen paradigm balances the different strengths and weaknesses of within-subject and between-subjects designs in the best possible manner. We specified our rationale for choosing a between-subjects ap-proach in the introduction on page 5, lines 122-126:

      “We intentionally adopted a mixed design, combining both between-subjects and within-subject methodologies. The between-subjects approach was chosen to minimize the risk of carry-over effects and sequence biases. Simultaneously, we capitalized on the advantages of a within-subject design by altering the pre- to post-insight comparison and the mode of insight (imagination vs. observation) within each participant.”

      Moreover, to provide a comprehensive portrayal of the two groups, we incorporated de-scriptions concerning trait and state variables alongside age and motor thresholds and in-cluded t-test comparisons between these variables on page 7, lines 157-160:

      “Notably, the groups did not differ on levels of subjective chronic stress (TICS), state and trait anxiety (STAI-S, STAI-T), depressive mood (BDI), imaginative capacities (FFIS), person-ality dimensions (BFI), age, and motor thresholds (for descriptive statistics see Table 1; all p > 0.053).”

      And further included age and motor thresholds as control variables in Table 1 on page 18, lines 402-404:

      “Overall, levels of subjective chronic stress, anxiety, and depressive mood were relatively low and not different between groups. The groups did further not differ in terms of per-sonality traits, imagination capacity, age or motor thresholds (all p > 0.053; see Table 1).”

      For greater precision in outlining our hypotheses, we specified these at the end of the in-troduction on pages 4-55, lines 107-118:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked events. We further predicted that cTBS to the left angular gyrus would reduce the impact of (imagination-based) insight into the link of initially unrelated events on memory performance during free recall, given its higher variability compared to other memory measures.”

      3) Furthermore, in some instances, the types of analyses used do not appear to be suitable for addressing the questions posed by the current study, and there is limited explanation pro-vided for the choice of analyses and questionnaires.

      We addressed this concern by inserting a new section “control variables” in the methods explaining our rationale for employing the different questionnaires as control var-iables on pages 40-41, lines 1003-1019:

      “Control variables In order to ensure that the observed effects were solely attributable to the TMS manipula-tion and not influenced by other factors, we comprehensively evaluated several trait and state variables. To account for potential variations in anxiety levels that could impact our re-sults, we specifically measured state and trait anxiety using STAI-S and STAI-T (Laux et al., 1981), thus minimizing the potential confounding effects of anxiety on our findings (Char-pentier et al., 2021). Additionally, we evaluated participants’ chronic stress levels using the TICS (Schulz & Schlotz, 1999) to exclude any group variations that might explain the effect on memory, cosidering the well-established impact of stress on memory (Sandi & Pinelo-Nava, 2007; Schwabe et al., 2012). Moreover, we assessed participants’ depressive symp-toms employing the BDI (Hautzinger et al., 2006), to guarantee group comparability on this clinical measure. We further assessed fundamental personality dimensions using the BFI-2 (Danner et al., 2016) to exclude any potential group discrepancies that could account for dif-ferences observed. Lastly, we assessed participants’ imaginative capacities using the FFIS (Zabelina & Condon, 2019), to ensure uniformity across groups regarding this central varia-ble, considering the significant role of imagination in relation to the cTBS-targeted angular gyrus (Thakral et al., 2017).”

      We further specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-85:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Moreover, we added an explanation on why we opted for the RSA approach in the meth-ods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      Reviewer 3

      We thank the reviewer for the constructive and very helpful comments. We are pleased that the reviewer considered our experimental design to be strong and our behavioral results to be striking.

      1) My major criticism relates to the main claim of the paper regarding causality between the angular gyrus and the authors' behavior of interest. Specifically, I am not convinced by the evidence that the effects of stimulation noted in the paper are attributable specifically to the angular gyrus, and not other regions/networks.

      While our results showed specific changes after cTBS over the angular gyrus, demonstrating a causal involvement of the angular gyrus in these effects, we completely agree that this does not rule out an involvement of additional areas. In particular, there is evidence suggesting that cTBS over parietal regions, such as the angular gyrus, could poten-tially influence hippocampal functioning. We address this issue now in a new paragraph that we have added to the discussion, on pages 23-24, lines 546-564:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagination-based insight. Given the angular gyrus’s robust connectivity with other brain regions, includ-ing the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus. Expanding upon this idea, it is conceivable that targeting a more dorsal segment of the angular gyrus might exert a stronger influence on observation-based linking – an aspect that warrants future in-vestigations.”

      Responses to reviewer recommendations

      Reviewer 1

      1) On page 26, the authors write: "[...] different video events (A, B, and X) were recalled from day one [...]". I may have missed this point, but I had the impression that the task was con-ducted within one day.

      Indeed, this study was conducted within a single day. We rephrased the respec-tive statement accordingly. Please see page 7, lines 149-153:

      “To test this hypothesis and the causal role of the angular gyrus in insight-related memory reconfigurations, we combined the life-like video-based narrative-insight task (NIT) with representational similarity analysis of EEG data and (double-blind) neuro-navigated TMS over the left angular gyrus in a comprehensive investigation within a single day.”

      We further included this information in the methods section on page 27, lines 634-635:

      “In total, the experiment took about 4.5 hours per participant and was completed within a single day. ”

      Reviewer 2

      1) There is a substantial disconnection between the introduction and the methods/results sec-tion. One reason is that there is not sufficient detail regarding the hypotheses/predictions and the specific types of analyses chosen to test these hypotheses/predictions. Additionally, it is not explained what comparisons and outcomes would be informative/expected. This should be made clear. Second and related to the above, the rationale for conducting certain types of analyses (correlation, coherence, see below) sometimes is not specified.

      To address this concern, we elaborated on our hypotheses incorporating specif-ic predictions for the free recall, given its higher variability than the other memory measures, and for imagination vs. observation at the end of the introduction on pages 4-5, lines 107-122:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to interfere with the increase in neural similarity for linked events and with the decrease of neural similarity for non-linked events. We further predicted that cTBS to the left angular gyrus would reduce the impact of (imagination-based) insight into the link of initially unrelated events on memory performance during free recall, given its higher variability compared to other memory measures. Considering the high connectivity profile of the angular gyrus within the brain (Seghier, 2013), we conducted an EEG connec-tivity analysis building upon prior findings concerning alterations in neural reconfigurations. To establish a link between neural and behavioral findings, we chose a correlational ap-proach to relate observations from these two domains.”

      Moreover, we made our rationale for the employed analyses more explicit and specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-851:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Moreover, we added an explanation on why we opted for the RSA approach in the meth-ods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      2) The authors suggest that besides Branzi et al. (2021), this is one of the first studies showing that memory update is linked to the AG. I suggest having a look at work from Tambini, Nee, & D'Esposito, 2018, JoCN, and other papers from Joel Voss' group that target a similar re-gion of AG/Inferior parietal cortex. Many studies, using multiple TMS protocols, have now shown this brain region is causally involved in episodic and associative memory encoding.

      As mentioned above, further consideration of this literature is important as it delves into the region's hippocampal connectivity (and other network properties), and how that mediates the memory effects. Indeed because of the nature of the methods employed in this study, we do not know if the memory-related behavioural effects are due to TMS-changes induced at the AG's versus the hippocampal' s level, or both. How do the current findings square with the existing TMS effects from this region? Can the connectivity profile of the target re-gion highlighted by previous studies provide further insight into how the current behaviour-al effect arises? Some comments on this could be added to the discussion.

      We completely agree that the other studies showing enhanced associative memory after TMS to parietal regions need to be addressed. Therefore, we updated the discussion on page 20, lines 449-453:

      “Interestingly, recent work has additionally indicated that targeting parietal regions with TMS led to alterations in hippocampal functional connectivity, thereby enhancing associa-tive memory (Nilakantan et al., 2017; Tambini et al., 2018; Wang et al., 2014), potentially shedding light on the underlying mechanisms involved.”

      Moreover, we included a section specifically addressing the possibility that the effects ob-served may pertain to having modulated other regions via the targeted region and updated the discussion on pages 23-24, lines 543-562:

      “Furthermore, the differential impact of cTBS to the angular gyrus on neural reconfigura-tions between events linked via imagination and those linked via observation may be at-tributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Uddin et al., 2010). This stronger connectivity between the ventral angular gyrus and the hippocampus may shed light on the greater impact of cTBS to the angular gyrus on im-agination-based insight. Given the angular gyrus’s robust connectivity with other brain re-gions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also origi-nate from these interconnected regions. This notion may bear particular importance given the required accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the an-gular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gy-rus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      3) Another comment I have regards the results observed for the observation vs imagination insight conditions. The authors mention that the 'changes in representational similarity for the observation condition should be interpreted with caution, as these seemingly opposite changes appeared to be at least in part driven by group differences already in the pre-phase before participants gained insight.' I wonder what these group differences are and whether the authors have any hypothesis about what factors determined them.

      We could only speculate about the basis of the observed pre-insight phase dif-ferences. However, we provide now the raw RSA data as supplemental material to make the pattern of the (raw) RSA findings in the pre- and post-insight phases more transparent. We refer the interested reader to this material on pages 12-13, lines 293 to 295:

      “For linked events, this analysis yielded a negative cluster (p = 0.032, ci-range = 0.00, SD = 0.00) in the parieto-temporal region (electrodes: T7, Tp7, P7; Fig. 3B; Figure 3 – Figure sup-plement 1).”

      And on page 15, lines 339-341:

      “This analysis yielded a positive cluster (p = 0.035, ci-range = 0.00, SD = 0.00) in a fronto-temporal region (electrode: FT7; Fig. 3C; Figure 3 – Figure supplement 2).”

      Furthermore, the age of participants is not reported separately for the two groups (cTBS to AG vs Sham), I think. This should be reported including a t-test showing that the two groups have the same age.

      We agree and report now explicitly that groups did not significantly differ in rel-evant control variables including age. Please see page 7, lines 157-160:

      “Notably, the groups did not differ on levels of subjective chronic stress (TICS), state and trait anxiety (STAI-S, STAI-T), depressive mood (BDI), imaginative capacities (FFIS), person-ality dimensions (BFI), age, and motor thresholds (for descriptive statistics see Table 1; all p > 0.053).”

      And further included age and motor thresholds as control variables in Table 1 on page 18, lines 402-412:

      “Overall, levels of subjective chronic stress, anxiety, and depressive mood were relatively low and not different between groups. The groups did further not differ in terms of per-sonality traits, imagination capacity, age or motor thresholds (all p > 0.053; see Table 1).”

      The fact this study is not a within-subject design makes difficult the interpretation of the results and this should be recognised as an important limitation of the study.

      As outlined above, a within-subject design would in our view come with several disadvantages, such as significant sequence/carry-over effects. Moreover, the neural rep-resentation change was measured in a pre-post design, enabling us to measure the insight-driven neural reconfiguration at the individual level.

      We clarify our rationale for the between-subjects factor TMS in the introduction on page 5, lines 122-126:

      “We intentionally adopted a mixed design, combining both between-subjects and within-subject methodologies. The between-subjects approach was chosen to minimize the risk of carry-over effects and sequence biases. Simultaneously, we capitalized on the advantages of a within-subject design by altering the pre- to post-insight comparison and the mode of insight (imagination vs. observation) within each participant.”

      Furthermore, we included our rationale for choosing a between-subjects approach for the crucial TMS manipulation in the methods section on page 25, lines 601-604:

      “We implemented a mixed-design including the within-subject factors link (linked vs. non-linked events), session (pre- vs. post-link), and mode (imagination vs. observation) as well as the between-subjects factor group (cTBS to the angular gyrus vs. sham) to mitigate the risk of carry-over effects and sequence biases of the crucial cTBS manipulation.”

      4) The angular gyrus is a heterogeneous region with multiple graded subregions. The one tar-geted in the present study is the ventral AG which has strong connections with the episodic-hippocampal memory system. I was wondering if this might explain why the AG TMS ef-fects on representational changes have been observed for events linked via imagination but not direct observation. Perhaps the stimulation of a more 'visual' AG subregion (see Hum-phreys et al., 2020, Cerebral Cortex) would have resulted in a different (opposite) pattern of results. It would be good to add some comments on this in the discussion.

      We appreciate this interesting perspective offered regarding the potential out-comes of our study, particularly in relation to the activation of a more ventral sub region of the angular gyrus. We incorporated this idea into our discussion, alongside considerations regarding the potential effects of a more dorsal angular gyrus stimulation on observation-based linking. However, caution is warranted recognizing the inherent limitations posed by the precision of TMS manipulations, which is further underscored by our electric field simu-lations, utilizing a 10 mm radius. We included this section in the discussion on pages 23-24, lines 546-569:

      “Another intriguing aspect to consider is that the stimulated site was situated in the more ventral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagina-tion-based insight. Given the angular gyrus’s robust connectivity with other brain regions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus. Expanding upon this idea, it is conceivable that targeting a more dorsal segment of the angular gyrus might exert a stronger influence on observation-based linking – an aspect that warrants future in-vestigations. Yet, while acknowledging the functional heterogeneity within the angular gy-rus (Humphreys et al., 2020), pinpointing specific sub regions via TMS remains challenging due to its limited focal precision at the millimeter level (Deng et al., 2013; Thielscher & Kammer, 2004), as reinforced by our electric field simulations utilizing a 10 mm radius. Hence, drawing definitive conclusions regarding distinct angular gyrus sub regions requires future research employing rigorous checks to assess the focality of their stimulation.”

      5) Regarding the methods section, I have the following specific queries. It is unclear what is the purpose of the coherence and correlation analyses (pages 35, 36). Could the authors pro-vide further clarification on this? These analyses seem not to be mentioned anywhere in the introduction. This should be clarified briefly in the introduction and then in the methods sec-tion. The same for the questionnaires (anxiety, stress, etc): It is unclear the reason for col-lecting this type of data. This should be clarified in the introduction as well.

      We agree, and have updated the introduction as follows on page 5, lines 118-122:

      “Considering the high connectivity profile of the angular gyrus within the brain (Seghier, 2013), we conducted an EEG connectivity analysis building upon findings from the RSA anal-yses concerning alterations in neural reconfigurations. To establish a link between neural and behavioral findings, we chose a correlational approach to relate observations from these two domains.”

      We additionally provided an explanation for including these questionnaires in the introduc-tion on page 5, lines 126-129:

      “To control for any group differences beyond the TMS manipulation, we gathered various control variables through questionnaires, including trait- and state-anxiety, depressive symptoms, chronic stress levels, personality dimensions, and imaginative capacities.”

      Moreover, we elaborated on the underlying rationale guiding our chosen analytical ap-proaches. Therefore, we specified why we chose to analyze our behavioral data using LMMs on page 34, lines 849-851:

      “For our behavioral analyses we opted to employ linear-mixed models (LMM), given their high robustness regarding the underlying distribution and high sensitivity to individual varia-tion (Pinheiro & Bates, 2000; Schielzeth et al., 2020).”

      Furthermore, we added an explanation on why we opted for the RSA approach in the methods section on page 37, lines 920-923:

      “This method is ideally suited to measure neural representation changes and was specifical-ly chosen as it has been previously identified as the preferred approach for quantifying in-sight-induced neural changes (Grob et al., 2023b; Milivojevic et al., 2015).”

      To clarify on the rationale behind our coherence analysis, we incorporated an explanatory sentence in the methods section on page 39, lines 966-967:

      “Due to the robust connectivity between the angular gyrus and other brain regions (Petit et al., 2023; Seghier, 2013), we proceeded with a connectivity analysis as a next step.”

      6) The preregistration webpage is in German. This is not ideal as it means that the information is available only to German speakers.

      This webpage can easily be switched to English by changing the settings in the top right corner:

      To address this issue, we included a description of how to set the webpage to English in the methods section on page 25, lines 581-582:

      “For translation to English, please adjust the page settings located in the top right corner.”

      7) Page 18. 'NIT' and 'MAT' - avoid abbreviations when possible.

      We included the full name for the narrative-insight task (NIT) on page 7, line 151, line 153, and line 165, page 8 lines 177-178 and line 187, page 19 on line 427, page 26 on line 615, line 629 and line 632, page 27, line 653, page 30, lines 730-731, page 31, line 754, page 35, line 870, line 873, and page 36 and line 885.

      We further included the full name for the multi-arrangements task (MAT) on page 19, lines 428-429.

      8) Line 21....we further observed DECREASED...should be replaced with INCREASED, if I am not wrong.

      We checked the sentence again and it looks correct to us, since it describes the change for observation-based insight, not imagination-based insight. We clarified that this finding pertains to observation-based linking by modifying the sentence on page 23, lines 525-528, as follows:

      “Following cTBS to the angular gyrus, we further observed decreased pattern similarity for non-linked events in the observation-based condition, resembling the pattern change ob-served in the sham group for linked events, which may highlight the role of the angular gy-rus in representational separation during observation-based linking”

      Reviewer 3

      1) The major claim of the paper is that the angular gyrus is causally involved in insight-driven memory reconfiguration. To the authors' credit, they localized stimulation to the angular gyrus using an anatomical scan, the strength of the estimated electromagnetic field in the angular gyrus correlated with their behavioral results, and there were also brain-behavior correlations involving sensors located in the parietal lobe. However, the minimum evidence needed to claim causality is 1) evidence of a behavioral change (which the authors found) and 2) evidence of target engagement in the angular gyrus. It is also important to show brain-behavior correlations between target engagement and behavior. Although the au-thors stimulated the angular gyrus, that does not mean that rTMS specifically affected this region or that the behavioral results can be attributed to rTMS effects on the angular gyrus. As the authors point out, the angular gyrus has dense connections with other regions such as the hippocampus. In fact, several studies have shown that angular gyrus (or near AG) stimulation affects the hippocampal network (Wang et al., 2014, Science; Freedberg et al. 2019, eNeuro; Thakral et al., 2020, PNAS). EEG also has a poor spatial resolution, so even though the results were attributable to parieto-temporal sensors, this is not sufficient evi-dence to claim that the angular gyrus was modulated. Source localization would be re-quired to reconstruct the signal specifically from the AG. Thus, with the manuscript written as is, the authors can claim that "cTBS to the angular gyrus modulates insight-driven memory reconfiguration," but the current claim is not sufficiently substantiated.

      While acknowledging the potential role of the angular gyrus in driving the ob-served changes, we recognize that the available evidence may not be sufficient. Conse-quently, we have introduced several modifications within our manuscript to address this concern.

      In the revised Introduction, we now explicitly address the possibility of a stimulation of the hippocampus via the angular gyrus on page 4, lines 84-85:

      “Accordingly, previous studies have shown that stimulation of the angular gyrus resulted in altered hippocampal activity (Thakral et al., 2020; Wang et al., 2014).”

      Additionally, we included relevant evidence demonstrating previous instances of targeted stimulation of the angular gyrus, which led to alterations in hippocampal connectivity and associative memory. These insights have been included in the discussion on page 20, lines 449-453:

      “Interestingly, recent work has additionally indicated that targeting parietal regions with TMS led to alterations in hippocampal functional connectivity, thereby enhancing associa-tive memory (Nilakantan et al., 2017; Tambini et al., 2018; Wang et al., 2014), potentially shedding light on the underlying mechanisms involved.”

      Next, we have integrated crucial modifications essential for establishing a conclusive infer-ence of causality in our study. Moreover, we now explore the potential mediation of the effects observed from angular gyrus stimulation through other brain regions, like the hip-pocampus. In addition, we have highlighted prior work where such stimulation coincided with alterations in associative memory. For the updated discussion section, please see pag-es 23-24, lines 538-562:

      “Although our study provided evidence suggesting a causal role of the angular gyrus in in-sight-driven memory reconfigurations – highlighted by behavioral changes after cTBS to the angular gyrus, neural changes in left parietal regions, and relevant brain-behavior associa-tions – it is important to acknowledge the limitations imposed by the spatial resolution of EEG. Consequently, the precise source of the observed signal changes in the parietal re-gions remains uncertain, potentially tempering the definitive nature of these findings. Fur-thermore, the differential impact of cTBS to the angular gyrus on neural reconfigurations between events linked via imagination and those linked via observation may be attributed to its crucial role in imaginative processes (Ramanan et al., 2018; Thakral et al., 2017). An-other intriguing aspect to consider is that the stimulated site was situated in the more ven-tral portion of the angular gyrus, recognized for its stronger connectivity to the episodic hippocampal memory system in contrast to its more dorsal counterpart (Seghier, 2013; Ud-din et al., 2010). This stronger connectivity between the ventral angular gyrus and the hip-pocampus may shed light on the greater impact of cTBS to the angular gyrus on imagina-tion-based insight. Given the angular gyrus’s robust connectivity with other brain regions, including the hippocampus (Seghier, 2013), it is plausible that the observed changes might not solely stem from alterations within the angular gyrus itself, but could also originate from these interconnected regions. This notion may bear particular importance given the re-quired accessibility to the hippocampus during imaginative processes (Benoit & Schacter, 2015; Grob et al., 2023a; Zeidman & Maguire, 2016). Interactions between the angular gyrus and the hippocampus may give rise to rich memory representations (Ramanan et al., 2018). In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      We further replaced terms that imply inhibition of the angular gyrus with a more operation-ally descriptive phrase:

      “cTBS to the angular gyrus”

      2) The authors frequently claim that cTBS is "inhibitory stimulation" and that inhibition of the angular gyrus caused their effects. There is a common misconception within the cognitive neuroscience literature that stimulation is either "inhibitory" or "excitatory," but there is no such thing as either. The effects of rTMS are dependent on many physiological, state, and trait-specific variables and the location of stimulation. For example, while cTBS does repro-ducibly inhibit behavior supported by the motor cortex (Wilkinson et al., 2010, Cortex; Rosenthal et al., 2009, J Neurosci), cTBS of the posterior parietal cortex reproducibly en-hances hippocampal network functional connectivity and episodic memory (Hermiller et al., 2019, Hippocampus; Hermiller et al., 2020, J Neurosci). The authors reference the Huang et al. (2005) paper as evidence of its inhibitory effects but work in this paper is not sufficient to broadly categorize cTBS as inhibitory. First, Huang et al. stimulated the motor cortex and measured the effects on corticospinal excitability, which is significantly different from what the current authors are measuring. Furthermore, this oft-cited study only included 9 sub-jects. Other studies have found that the effects of theta-burst are significantly more varia-ble when more subjects are used. For example, intermittent theta-burst, which is assumed to be excitatory based on the Huang paper, was found to produce unreliable excitatory ef-fects when more subjects were examined (Lopez-Alonso, 2014, Brain Stimulation). Thus, the a priori assumption that stimulation would be inhibitory is weak and cTBS should not be dis-cussed as "inhibitory."

      We agree and included now a statement in the methods section that explicitly states that cTBS effects may be region-specific on page 33, lines 817-819:

      “Nonetheless, the effects of cTBS appear to vary based on the targeted region, with cTBS to parietal regions demonstrating the capability to enhance hippocampal connectivity (Hermiller et al., 2019, 2020).”

      We further substituted all terminology suggestive of an inhibitory effect with the phrase:

      “cTBS to the angular gyrus”.

      However, it is important to note, that while other studies (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014) found increased hippocampal connectivity after rTMS to a parie-tal region as well as enhanced associative memory, we observed impaired memory for the linked events. We included this clarification in the discussion on page 24, lines 558-562:

      “In line with this, recent studies have demonstrated that cTBS to the angular gyrus resulted in enhanced hippocampal connectivity and improved associative memory (Hermiller et al., 2019; Tambini et al., 2018; Wang et al., 2014). However, it should be noted that our study detected impaired associative memory following cTBS to the angular gyrus.”

      3) The hypothesis at the end of the introduction did not strike me as entirely clear. From this hypothesis, it seems that the authors are just comparing the differences in memory and re-configuration during imagination-based insight links. However, the authors also include ob-servation-based links and a non-linking condition, which seem ancillary to the main hy-pothesis. Thus, I am confused about why these extra factors were included and exactly what statistical results would confirm the authors' hypothesis.

      We agree, and have clarified our hypotheses on pages 4-5, lines 107-115:

      “Considering this involvement of the angular gyrus in imaginative processes, we expected that the effect of cTBS on the change in representational similarity from pre- to post-insight will differ based on the mode of insight – whether this insight was gained via imagination or observation. Specifically, we expected a more pronounced impairment in the neural recon-figurations when insight is gained via imagination, as this function may depend more on an-gular gyrus recruitment than insight gained via observation. Additionally, we expected cTBS to the left angular gyrus to reduce the increase in neural similarity for linked events and in-crease of neural dissimilarity for non-linked events.”

      4) Many of the distributions throughout the paper do not look normal. Was normality checked? Are non-parametric stats warranted?

      We evaluated and reported the normality assumption in our behavioral anal-yses. Despite the non-normal distribution of our data, we chose to utilize linear-mixed models due to their robust performance even in case of deviations from normal distribu-tions. This update in our methods section can be found on page 36, lines 890-896:

      “After outlier correction, we identified non-normality in our data using a Shapiro-Wilk test (narrative-insight task: W = 0.92, p < 0.001; multi-arrangements task: W = 0.94, p < 0.001; forced-choice recognition: W = 0.50, p < 0.001; free recall details: W = 0.85, p < 0.001; free recall naming of linking events: W = 0.94, p < 0.001). However, we mitigated this by employ-ing linear-mixed models (LMMs), recognized for their robustness even with non-normally distributed data (Schielzeth et al., 2020).”

      We recalculated the correlational analysis between the RSA data and the behavioral recall of linking events by using the Spearman method on page 13, lines 306-308:

      “Furthermore, to address a deviation from the normality assumption, the correlational analysis was repeated using the Spearman method, which indicated an even stronger cor-relation (r(59) = 0.32, p = 0.012).”

      We further recalculated the correlation between the change in coherence for linked events and the recall of details for events linked via imagination on page 16, lines 376-378:

      “Please note that for addressing a deviation from the normality assumption, the correla-tional analysis was repeated using the Spearman method, which yielded a significant corre-lation of similar strength (r(59) = 0.31, p = 0.015).”

      Our EEG analyses , including RSA and coherence analyses, utilized a cluster-based permuta-tion test (Fieldtrip; Oostenveld et al., 2011). These tests do not assume a normal distribu-tion by utilizing empirical sampling for statistical inference. This approach ensures robust-ness without constraints imposed by specific distributional assumptions. Subsequent t-tests, stemming from significant clusters identified in the initial non-parametric analyses, were extensions of the robust non-parametric approach and did not require additional normality testing.

      5) Can the authors include more detail about the sham coil? Was it subthreshold? Did the EMF cross the skull?

      The sham coil, also obtained from MAG & More GmbH, München, Germany, provided a similar sensory experience; however, the company did not specify any field strength (n.a.) as this coil was purposefully designed to prevent the induction of an elec-tromagnetic field (EMF) capable of penetrating the skull, thereby ensuring it had no impact on the brain. We clarified on this point in the methods section on pages 31-32, lines 772-778:

      “Two identically looking but different 70 mm figure-of-eight-shaped coils were used de-pending on the TMS condition: The PMD70-pCool coil (MAG & More GmbH, München, Germany) with a 2T maximum field strength was used for cTBS, while the PMD70-pCool-SHAM coil (MAG & More GmbH, München, Germany), with minimal magnetic field strength, was employed for sham, providing a similar sensory experience, with stimulation pulses being scattered over the scalp and not penetrating the skull.”

      6) There are differences between exclusion criteria in pre-registration and report. For example, BMI is an exclusion factor in the report, but not in the pre-registration. Can the authors provide a reason for this deviation?

      This discrepancy is due to (partial) participant recruitment from previous fMRI studies conducted in our lab that involved a stress induction protocol (as a structural MRI image was needed for the ‘neuronavigated’ TMS). Owing to the distinct cortisol stress reac-tivity observed in individuals with varying body mass indices (BMIs), participants with a BMI below 19 or above 26 kg/m² were excluded from these studies. To maintain consistency within our sample, only participants meeting these criteria were included. We elaborated on this point in the methods section on page 25, lines 586-592:

      “Participants were screened using a standardized interview for exclusion criteria that com-prised a history of neurological and psychiatric disease, medication use and substance abuse, cardiovascular, thyroid, or renal disease, evidence of COVID-19 infection or expo-sure, and any contraindications to MRI examination or TMS. Additionally, participants with a body mass index (BMI) below 19 or above 26 kg/m² were excluded. This decision stemmed from recruiting some participants from prior studies that incorporated stress induction pro-tocols, which imposed this specific criterion (Herhaus & Petrowski, 2018; Schmalbach et al., 2020).”

      7) Were impedances monitored and minimized during EEG?

      Yes, they were monitored. We clarified this point in the methods section on page 34, lines 845-847:

      “We maintained impedances within a range of ± 20 μV using the common mode sense (CMS) and driven right leg (DRL) electrodes, serving as active reference and ground, re-spectively”

      8) I think there may be a typo related to the Thakral coordinates. I believe Thakral used MNI coordinates -48,-64, 30, whereas the authors stated they used -48,-67,30. Is this a mistake?

      Upon reevaluation of our study coordinates, we identified a slight deviation in our stimulation coordinates compared to those reported by Thakral et al. (2017; +3mm on the y-axis). This variance resulted from the required MNI to Talairach (TAL) transformations necessary for utilizing the neuronavigation software Powermag View! (MAG & More GmbH, München, Germany). Notably, this deviation was consistent across all participants in our study. While TMS is more precise than tDCS, its focality is not as fine-grained down to the millimeter level. Despite this, our electric field simulations, adopting a 10mm radius, ef-fectively encompassed the original coordinates specified by Thakral et al. (2017). This radius ensured coverage over the intended target area, mitigating the impact of this minor devia-tion on the overall study outcomes. We updated the methods section accordingly on page 33, lines 800-806:

      “Based on the individual T1 MR images, we created 3D reconstructions of the participants' heads, allowing us to precisely locate the left angular gyrus coordinate (MNI: -48, -67, 30), initially derived from previous work (Thakral et al., 2017), for TMS stimulation. Despite a mi-nor deviation in coordinates due to necessary MNI to Talairach transformations for soft-ware compatibility (Powermag View! by MAG & More GmbH, München, Germany), our methodology ensured precise localization of the angular gyrus target area.”

      9) How was the tail of the coil positioned during stimulation? Was it individualized so that the lobes of the coil are perpendicular to the nearest gyrus, as is commonly done?

      The coil handle always pointed upwards to maintain optimal positioning with the coil holder. We followed the positioning procedure in the neuronavigation software Powermag View!, which did not indicate any positioning of the coil handle but specified the position and angle of the coil itself. To incorporate this aspect, we updated the legend of figure 2 on page 11, lines 260-261:

      “Please note that in the study, the coil handle was oriented upwards; however, in this illus-tration, it has been intentionally depicted as pointing downwards for better visibility pur-poses.”

      We further updated the method section on page 33, lines 723-824:

      “The coil was positioned tangentially on the head and mechanically fixed in a coil holder, with its handle pointing upwards to maintain its position”

    1. Author Response

      We are grateful for the insightful suggestions and comments provided by the reviewers. Your constructive feedback has been valuable, and we are thankful for the opportunity to address each point.

      We appreciate both reviewers’ recognition of our devotion to rigorous methodology and experimental control in this study, as evidenced by the comments: “remarkable efforts were made to isolate peripheral confounds”, “a clear strength of the study is the multitude of control conditions … that makes results very convincing”, and “thorough design of the study”. Indeed, we hope to have provided more than solid, but compelling evidence for sound-driven motor inhibitory effects of online TUS. We hope that this will be reflected in the assessment. Our conclusions are supported by multiple experiments across multiple institutions using exemplary experimental control including (in)active controls and multiple sound-sham conditions. This contrasts with the sole use of flip-over sham or no-stimulation conditions used in the majority of work to date. Indeed, the current study communicates that substantiated inferences on the efficacy of ultrasonic neuromodulation cannot be made under insufficient experimental control.

      In response to the reviewers' comments, we have substantially changed our manuscript. Specifically, we have open-sourced the auditory masking stimuli and specified them in better detail in the text, we have improved the figures to reflect the data more closely, we have clarified the intracranial doseresponse relationship, we have elaborated in the introduction, and we have further discussed the possibility of direct neuromodulation. We hope that you agree these changes have helped to substantially improve the manuscript.

      Public reviews

      1.1) Despite the main conclusion of the authors stating that there is no dose-response effects of TUS on corticospinal inhibition, both the comparison of Isppa and MEP decrease for Exp 1 and 2, and the linear regression between MEP decrease (relative to baseline) and the estimated Isppa are significant, arguing the opposite, that there is a dose-response function which cannot be fully attributed to difference in sound (since the relationship in inversed, lower intracranial Isppa leads to higher MEP decrease). These results suggest that doseresponse function needs to be further studied in future studies.

      We thank the reviewer for bringing up this point. While we are convinced our study provides no evidence for a direct neuromodulatory dose-response relationship, we have realized that the manuscript could benefit from improved clarity on this point.

      A dose-response relationship between TUS intensity and motor cortical excitability was assessed by manipulating free-water Isppa (Figure 4C). Here, no significant effect of free-water stimulation intensity was observed for Experiment I or II, thus providing no evidence for a dose-response relationship (Section 3.2). To aid in clarity, ‘N.S.’ has been added to Figure 4C in the revised manuscript.

      However, it is likely that the efficacy of TUS would depend on realized intracranial intensity, which we estimated with 3D simulations for on-target stimulation. These simulations resulted in an estimated intracranial intensity for each applied free-water intensity (i.e., 6.35 and 19.06 W/cm2), for each participant. We then tested whether inter-individual differences in intracranial intensity during on-target TUS affected MEP amplitude. We have realized that the original visualization used to display these data and its explanation was unintuitive. Therefore, we have completely revised Supplementary Figure 6. Because of the substantial length of this section, we have not copied it here. Please see the Supplementary material for the implemented improvements.

      In brief, we now show MEP amplitudes on the y-axis, rather than expressing values a %change. This plot depicts how individuals with higher intracranial intensities during ontarget TUS exhibit higher MEP amplitudes. However, this same relationship is observed for active control and sound-sham conditions. If there were a direct neuromodulatory doseresponse relationship of TUS, this would be reflected as the difference between on-target and control conditions changing as the estimated intracranial intensity increases. This was not the case. Further, the fact that the difference between on-target stimulation and baseline changes across intracranial intensities is notable, but this occurs to an equal degree in the control conditions. Therefore, these data cannot be interpreted as evidence for a doseresponse relationship.

      We hope the changes in Supplementary Figure 6 will make it clear that there is no evidence for direct intracranial dose-response effects.

      1.2) Other methods to test or mask the auditory confound are possible (e.g., smoothed ramped US wave) which could substantially solve part of the sound issue in future studies or experiments in deaf animals etc... 

      We agree with the reviewer’s statement. We aimed to replicate the findings of online motor cortical inhibition reported in prior work using a 1000 Hz square wave modulation frequency. While ramping can effectively reduce the auditory confound, as noted in the discussion, this is not feasible for the short pulse durations (0.1-0.3 ms) employed in the current study (Johnstone et al., 2021). We have further clarified this point in the methods section of the revised manuscript as follows:

      “While ramping the pulses can in principle mitigate the auditory confound (Johnstone et al., 2021; Mohammadjavadi et al., 2019), doing so for such short pulse durations (<= 0.3 ms) is not effective. Therefore, we used a rectangular pulse shape to match prior work.”

      Mitigation of the auditory confound by testing deaf subjects is a valid approach, and has now been added to the revised manuscript in the discussion as follows:

      “Alternative approaches could circumvent auditory confounds by testing deaf subjects, or perhaps more practically by ramping the ultrasonic pulse to minimize or even eliminate the auditory confound.”

      1.3) Dose-response function is an extremely important feature for a brain stimulation technique. It was assessed in Exp II by computing the relationship between the estimated intracranial intensities and the modulation of corticospinal excitability (Fig. 3b, 3c). It is not clear why data from Experiment I could not be integrated in a global intracranial dose-response function to explore wider ranges of intracranial intensities and MEP variability.

      We chose not to combine data from Experiment 1 in a global intracranial dose-response function because TUS was applied at different fundamental frequencies and focal depths (Experiment I: 500 kHz, 35 mm; Experiment II: 250 kHz, 28 mm). We have now explicitly communicated this under Supplementary Figure 6:

      “It was not appropriate to combine data from Experiments I and II given the different fundamental frequencies and stimulation depths applied… we ran simple linear models for Experiment II, which had a sufficient sample size (n = 27) to assess inter-individual variability.”

      1.4) Furthermore, the dose response function as computed with the MEP change relative to baseline shows a significant effect (6.35W/cm2) or a trend (19.06 W/cm2) for a positive linear relationship. This comparison cannot disentangle the auditory confound from the pure neuromodulatory effect but given the direction of the relationship (lower Isppa associated with larger neuromodulatory effect), it is unlikely that it is driven by sound. This relationship is absent for the Active control condition or the Sound Sham condition, more or less matched for peripheral confound. This needs to be further discussed. 

      Please refer to point 1.1

      1.5) The clear auditory confound arises from TUS pulsing at audible frequencies, which can be highly subject to inter-individual differences. Did the authors individually titrate the auditory mask to account for this intra- and inter-individual variability in auditory perception? 

      In Experiments I-III, the auditory mask was identical between participants. In Experiment IV, the auditory mask volume and signal-to-noise ratio were adjusted per participant. In the discussion we recommend individualized mask titration. However, we do note that masking successfully blinded participants in Experiment II, despite using uniform masking stimuli (Supplementary Figure 5).

      1.6) How different is the masking quality when using bone-conducting headphones (e.g., Exp. 1) compared to in-ear headphones (e.g., Exp. 2)?

      In our experience, bone conducting headphones produce a less clear, fuzzier, sound than in-ear headphones. However, in-ear headphones block the ear canal and likely result in the auditory confound being perceived as louder. We have included this information in the discussion of the revised manuscript:

      “Titrating auditory mask quality per participant to account for intra- and inter-individual differences in subjective perception of the auditory confound would be beneficial. Here, the method chosen for mask delivery must be considered. While bone-conducting headphones align with the bone conduction mechanism of the auditory confound, they might not deliver sound as clearly as in-ear headphones or speakers. Nevertheless, the latter two rely on airconducted sound. Notably, in-ear headphones could even amplify the perceived volume of the confound by obstructing the ear canal.”

      1.7) I was not able to find any report on the blinding efficacy of Exp. 1. Do the authors have some data on this? 

      We do not have blinding data available for Experiment I. Following Experiment I, we decided it would be useful to include such an assessment in Experiment II.

      1.8) Was the possibility to use smoothed ramped US wave form ever tested as a control condition in this set of studies, to eventually reduce audibility? For such fast PRF, for fast PRF, the slope would still need to be steep to stimulate the same power (AUC), it might not be as efficient. 

      We indeed tested smoothing (ramping) the waveform. There was no perceptible impact on the auditory confound volume. Indeed, prior research has also indicated that ramping over

      such short pulse durations is not effective (Johnstone et al., 2021). Taken together, we chose to continue with a square wave modulation as in prior TUS-TMS studies. We have updated the methods section of the manuscript with the following:

      “While ramping the pulses can in principle mitigate the auditory confound (Johnstone et al., 2021; Mohammadjavadi et al., 2019), doing so for such short pulse durations (<= 0.3 ms) is not effective. Therefore, we used a rectangular pulse shape to match prior work.”

      Importantly, our research shows that auditory co-stimulation can confound effects on motor excitability, and this likely occurred in multiple seminal TUS studies. While some preliminary work has been done on the efficacy of ramping in humans, future work is needed to determine what ramp shapes and lengths are optimal for reducing the auditory confound.

      1.9) There are other models or experiments that need to be discussed in order to clearly disassociate the TUS effect from the auditory confound effect, for instance, testing deaf animal models or participants, or experiments with multi-region recordings (to rule out the effects of the dense structural connectivity between the auditory cortex and the motor cortex). 

      The suggestion to consider multi-region recording in future experiments is important. Indeed, the effects of the auditory confound are expected to vary between brain regions. In the primary motor cortex, we observe a learned inhibition, which is perhaps supported by dense structural connectivity with the auditory system. In contrast, in perceptual areas such as the occipital cortex, one might expect tuned attentional effects in response to the auditory cue. We suggest that it is likely that the impact of the auditory confound also operates on a more global network level. It is reasonable to propose that, in a cognitive task for example, the confound will affect task performance and related brain activity, ostensibly regardless of the extent of direct structural connectivity between the auditory cortex and the (stimulated) region of interest.

      Regarding the testing of deaf subjects, this has been included in the revised discussion as follows:

      “Alternative approaches could circumvent auditory confounds by testing deaf subjects, or perhaps more practically by ramping the ultrasonic pulse to minimize or even eliminate the auditory confound.”

      1.10) The concept of stochastic resonance is interesting but traditionally refers to a mechanism whereby a particular level of noise actually enhances the response of non-linear systems to weak sensory signals. Whether it applies to the motor system when probed with suprathreshold TMS intensities is unclear. Furthermore, whether higher intensities induce higher levels of noise is not straightforward neither considering the massive amount of work coming from other NIBS studies in particular. Noise effects are indeed a function of noise intensity, but exhibit an inverted U-shape dose-response relationship (Potok et al., 2021, eNeuro). In general SR is rather induced with low stimulation intensities in particular in perceptual domain (see Yamasaki et al., 2022, Neuropsychologia).  In the same order of ideas, did the authors compare inter-trials variability across the different conditions? 

      We thank the reviewer for these insightful remarks. Indeed, stochastic resonance is a concept first formalized in the sensory domain. Recently, the same principles have been shown to apply in other domains as well. For example, transcranial electric noise (tRNS) exhibits similar stochastic resonance principles as sensory noise (Van Der Groen & Wenderoth, 2016). Indeed, tRNS has been applied to many cortical targets, including the motor system. In the current manuscript, we raise the question of whether TUS might engage with neuronal activity following principles similar to tRNS. One prediction of this framework would be that TUS might not modulate excitation/inhibition balance overall, but instead exhibit an inverted U-shape dose-dependent relationship with stochastic noise. Please note, we do not use the ‘suprathreshold TMS intensity’ to quantify whether noise could bring a sub-threshold input across the detection threshold, nor whether it could bring a sub-threshold output across the motor threshold. Instead, we use the MEP read-out to estimate the temporally varying excitability itself. We argue that MEP autocorrelation captures the mixture of temporal noise and temporal structure in corticospinal excitability. Building on the non-linear response of neuronal populations, low stochastic noise might strengthen weakly present excitability patterns, while high stochastic noise might override pre-existing excitability. It is therefore not the overall MEP amplitude, but the MEP timeseries that is of interest to us. Here, we observe a non-linear dose-dependent relationship, matching the predicted inverted U-shape. Importantly, we did not intend to assume stochastic resonance principles in the motor domain as a given. We have now clarified in the revised manuscript that we propose a putative framework and regard this as an open question:

      “Indeed, human TUS studies have often failed to show a global change in behavioral performance, instead finding TUS effects primarily around the perception threshold where noise might drive stochastic resonance (Butler et al., 2022; Legon et al., 2018). Whether the precise principles of stochastic resonance generalize from the perceptual domain to the current study is an open question, but it is known that neural noise can be introduced by brain stimulation (Van Der Groen & Wenderoth, 2016). It is likely that this noise is statedependent and might not exceed the dynamic range of the intra-subject variability (Silvanto et al., 2007). Therefore, in an exploratory analysis, we exploited the natural structure in corticospinal excitability that exhibits as a strong temporal autocorrelation in MEP amplitude.”

      Following the above reasoning, we felt it critical to estimate noise in the timeseries, operationalized as a t-1 autocorrelation, rather than capture inter-trial variability that ignores the timeseries history and requires data aggregation thereby reducing statistical power. Importantly, we would expect the latter index to capture global variability, putatively masking the temporal relationships which we were aiming to test. The reviewer raises an interesting option, inviting us to wonder if inter-trial variability might be sensitive enough, nonetheless. To this end, we compared inter-trial variability as suggested. This was achieved by first calculating the inter-trial variability for each condition, and then running a three-way repeated measures ANOVA on these values with the independent variables matching our autocorrelation analyses, namely, procedure (on-target/active control)intensity (6.35/19.06)masking (no mask/masked). This analysis did not reveal any significant interactions or main effects.

      Author response table 1.

      1.11) State-dependency/Autocorrelations: These values were extracted from Exp2 which has baseline trials. Can the authors provide autocorrelation values at baseline, with and without auditory mask?  Can the authors comment on the difference between the autocorrelation profiles of the active TUS condition at 6.35W/cm2 or at 19.06W/cm2. They should somehow be similar to my understanding.  Besides, the finding that TUS induces noise only when sound is present and at lower intensities is not well discussed. 

      In the revised manuscript, we have now included baseline in the figure (Figure 4D). Regarding baseline with and without a mask, we must clarify that baseline involves only TMS (no mask), and sham involves TMS + masking stimulus (masked).

      The dose-dependent relationship of TUS intensity with autocorrelation is critical. One possible observation would have been that TUS at both intensities decreased autocorrelation, with higher intensities evoking a greater reduction. Here, we would have concluded that TUS introduced noise in a linear fashion.

      However, we observed that lower-intensity TUS in fact strengthened pre-existing temporal patterns in excitability (higher autocorrelation), while during higher-intensity TUS these patterns were overridden (lower autocorrelation). This non-linear relationship is not unexpected, given the non-linear responses of neurons.

      If this non-linear dependency is driven by TUS, one could expect it to be present during conditions both with and without auditory masking. However, the preparatory inhibition effect of TUS likely depends on the salience of the cue, that is, the auditory confound. In trials without auditory masking, the salience of the confound in highly dependent on (transmitted) intensity, with higher intensities being perceived as louder. In contrast, when trials are masked, the difference in cue salience between lower and higher intensity stimulation in minimized. Therefore, we would expect for any nuanced dose-dependent direct TUS effect to be best detectable when the difference in dose-dependent auditory confound perception is minimized via masking. Indeed, the dose-dependent effect of TUS on autocorrelation is most prominent when the auditory confound is masked.

      “In sum, these preliminary exploratory analyses could point towards TUS introducing temporally specific neural noise to ongoing neural dynamics in a dose-dependent manner, rather than simply shifting the overall excitation-inhibition balance. One possible explanation for the discrepancy between trials with and without auditory masking is the difference in auditory confound perception, where without masking the confound’s volume differs between intensities, while with masking this difference is minimized. Future studies might consider designing experiments such that temporal dynamics of ultrasonic neuromodulation can be captured more robustly, allowing for quantification of possible state-dependent or nondirectional perturbation effects of stimulation.”

      1.12) Statistical considerations. Data from Figure 2 are considered in two-by-two comparisons. Why not reporting the ANOVA results testing the main effect of TUS/Auditory conditions as done for Figure 3. Statistical tables of the LMM should be reported. 

      Full-factorial analyses and main effects for TUS/Auditory conditions are discussed from Section 3.2 onwards. These are the same data supporting Figure 2 (now Figure 3). We would like to note that the main purpose of Figure 2 is to demonstrate to the reader that motor inhibition was observed, thus providing evidence that we replicated motor inhibitory effects of prior studies. A secondary purpose is to visually represent the absence of direct and spatially specific neuromodulation. However, the appropriate analyses to demonstrate this are reported in following sections, from Section 3.2 onwards, and we are concerned that mentioning these analyses earlier will negatively impact comprehensibility.

      Statistical tables of the LMMs are provided within the open-sourced data and code reported at the end of the paper, embedded within the output which is accessible as a pdf (i.e., analysis/analysis.pdf).

      1.13) Startle effects: The authors dissociate two mechanisms through which sound cuing can drive motor inhibition, namely some compensatory expectation-based processes or the evocation of a startle response. I find the dissociation somehow artificial. Indeed, it is known that the amplitude of the acoustic startle response habituates to repetitive stimulation. Therefore, sensitization can well explain the stabilization of the MEP amplitude observed after a few trials. 

      Thank you for bringing this to our attention. Indeed, an acoustic startle response would habituate over repetitive stimulation. A startle response would result in MEP amplitude being significantly altered in early trials. As the participant would habituate to the stimulus, the startle response would decrease. MEP amplitude would then return to baseline levels. However, this is not the pattern we observe. An alternative possibility is that participants learn the temporal contingency between the stimulus and TMS. Here, compensatory expectation-based change in MEP amplitude would be observed. In this scenario, there would be no change in MEP amplitude during early trials because the stimulus has not yet become informative of the TMS pulse timing. However, as participants learn how to predict TMS timing by the stimulus, MEP amplitude would decrease. This is also the pattern we observe in our data. We have clarified these alternatives in the revised manuscript as follows:

      “Two putative mechanisms through which sound cuing may drive motor inhibition have been proposed, positing either that explicit cueing of TMS timing results in compensatory processes that drive MEP reduction (Capozio et al., 2021; Tran et al., 2021), or suggesting the evocation of a startle response that leads to global inhibition (Fisher et al., 2004; Furubayashi et al., 2000; Ilic et al., 2011; Kohn et al., 2004; Wessel & Aron, 2013). Critically, we can dissociate between these theories by exploring the temporal dynamics of MEP attenuation. One would expect a startle response to habituate over time, where MEP amplitude would be reduced during startling initial trials, followed by a normalization back to baseline throughout the course of the experiment as participants habituate to the starling stimulus. Alternatively, if temporally contingent sound-cueing of TMS drives inhibition, MEP amplitudes should decrease over time as the relative timing of TUS and TMS is being learned, followed by a stabilization at a decreased MEP amplitude once this relationship has been learned.”

      1.14) Can the authors further motivate the drastic change in intensities between Exp1 and 2? Is it due to the 250-500 carrier difference? It this coming from the loss power at 500kHz? 

      The change in intensities between Experiments I and II was not an intentional experimental manipulation. Following completion of data acquisition, our TUS system received a firmware update that differentially corrected the 250 kHz and 500 kHz stimulation intensities. In this manuscript, we report the actual free-water intensities applied during our experiments.

      1.15) Exp 3: Did 4 separate blocks of TUS-TMS and normalized for different TMS intensities used with respect to baseline. But how different was it. Why adjusting and then re adjusting intensities? 

      The TMS intensities required to evoke a 1 mV MEP under the four sound-sham conditions significantly differed from the intensities required for baseline. In the revised appendix, we have now included a figure depicting the TMS intensities for these conditions, as well as statistical tests demonstrating each condition required a significantly higher TMS intensity than baseline.

      TMS intensities were re-adjusted to avoid floor effects when assessing the efficacy of ontarget TUS. Sound-sham conditions themselves attenuate MEP amplitude. This is also evident from the higher TMS intensities required to evoke a 1 mV MEP under these conditions. If direct neuromodulation by TUS would have further decreased MEP amplitude, the concern was that effects might not be detectible within such a small range of MEP amplitudes.

      1.16) In Exp 4, TUS targeted the ventromedial WM tract. Since direct electrical stimulation on white matter pathways within the frontal lobe can modulate motor output probably through dense communication along specific white matter pathways (e.g., Vigano et al., 2022, Brain), how did the authors ensure that this condition is really ineffective? Furthermore, the stimulation might have covered a lot more than just white matter. Acoustic and thermal simulations would be helpful here as well. 

      Thank you for pointing out this possibility. Ultrasonic and electrical stimulation have quite distinct mechanisms of action. Therefore, it is challenging to directly compare these two approaches. There is a small amount of evidence that ultrasonic neuromodulation of white matter tracts is possible. However, the efficacy of white matter modulation is likely much lower, given the substantially lesser degree of mechanosensitive ion channel expression in white matter as opposed to gray matter (Sorum et al., 2020, PNAS). Further, recent work has indicated that ultrasonic neuromodulation of myelinated axonal bundles occurs within the thermal domain (Guo et al., 2022, SciRep), which is not possible with the intensities administered in the current study. Nevertheless, based on Experiment IV in isolation, it cannot be definitively excluded that there TUS induced direct neuromodulatory effects in addition to confounding auditory effects. However, Experiment IV does not possess sufficient inferential power on its own and must be interpreted in tandem with Experiments I-III. Taken together with those findings, it is unlikely that a veridical neuromodulation effect is seen here, given the equivalent or lower stimulation intensities, the substantially deeper stimulation site, and the absence of an additional control condition in Experiment IV. This likelihood is further decreased by the fact that inhibitory effects under masking descriptively scale with the audibility of TUS.

      Off-target effects such as unintended co-stimulation of gray matter when targeting white matter is always an important factor to consider. Unfortunately, individualized simulations for Experiment IV are not available. However, the same type of transducer and fundamental frequency was used as in Experiment II, for which we do have simulations. Given the size of the focus and the very low in-situ intensities extending beyond the main focal point, it is incredibly unlikely that effective stimulation was administered outside white matter in a meaningful number of participants. Nevertheless, the reviewer is correct that this can only be directly confirmed with simulations, which remain infeasible due to both technical and practical constraints. We have included the following in the revised manuscript:

      “The remaining motor inhibition observed during masked trials likely owes to, albeit decreased, persistent audibility of TUS during masking. Indeed, MEP attenuation in the masked conditions descriptively scale with participant reports of audibility. This points towards a role of auditory confound volume in motor inhibition (Supplementary Fig. 8). Nevertheless, one could instead argue that evidence for direct neuromodulation is seen here. This unlikely for a number of reasons. First, white matter contains a lesser degree of mechanosensitive ion channel expression and there is evidence that neuromodulation of these tracts may occur primarily in the thermal domain (Guo et al., 2022; Sorum et al., 2021). Second, Experiment IV lacks sufficient inferential power in the absence of an additional control and must therefore be interpreted in tandem with Experiments I-III. These experiments revealed no evidence for direct neuromodulation using equivalent or higher stimulation intensities and directly targeting grey matter while also using multiple control conditions. Therefore, we propose that persistent motor inhibition during masked trials owes to continued, though reduced, audibility of the confound (Supplementary Fig. 8). However, future work including an additional control (site) is required to definitively disentangle these alternatives.”

      1.17) Still for Exp 4. the rational for the 100% MSO or 120% or rMT is not clear, especially with respect to Exp 1 and 2. Equipment is similar as well as raw MEPs amplitudes, therefore the different EMG gain might have artificially increased TMS intensities. Could it have impacted the measured neuromodulatory effects?

      Experiment IV was conducted independently at a different institute than Experiments I-II. In contrast to Experiments I-II, a gel pad was used to couple TUS to the participant’s head. The increased TMS-to-cortex distance introduced by the gel pad necessitates higher TMS intensities to compensate for the increased offset. In fact, in 9/12 participants, the intended intensity at 120% rMT exceeded the maximum stimulator output. In those cases, we defaulted to the maximum stimulator output (i.e., 100% MSO). We have clarified in the revised supplementary material as follows:

      “We aimed to use 120% rMT (n =3). However, if this intensity surpassed 100% MSO, we opted for 100% MSO instead (n = 9). The mean %MSO was 94.5 ± 10.5%. The TMS intensities required in this experiment were higher than those required in Experiment I-II using the same TMS coil, though still within approximately one standard deviation. This is likely due to the use of a gel pad, which introduces more distance between the TMS coil and the scalp, thus requiring a higher TMS intensity to evoke the same motor activity.”

      Regarding the EMG gain, this did not affect TMS intensities and did not impact the measured neuromodulatory effects. The EMG gain at acquisition is always considered during signal digitization and further analyses.

      1.18) Exp. 4. It would be interesting to provide the changes in MEP amplitudes for those subjects who rated "inaudible" in the self-rating compared to the others. That's an important part of the interpretation: inaudible conditions lead to inhibition, so there is an effect. The auditory confound is not additive to the TUS effect. 

      Previously, we only provided participant’s ratings of audibility, and showed that conditions that were rated as inaudible more often showed less inhibition, descriptively indicating that inaudible stimulation does not lead to inhibition. This interpretation is in line with our conclusion that the TUS auditory confound acts as a cue signaling the upcoming TMS pulse, thus leading to preparatory inhibition.

      We have now included an additional plot and discussion in Supplementary Figure 8 (Subjective Report of TUS Audibility). Here, we show the change in MEP amplitude from baseline for the three continuously masked TUS intensities as in the main manuscript, but now split by participant rating of audibility. Descriptively, less audible sounds result in no marked change or a smaller change in MEP amplitude. This supports our conclusion that direct neuromodulation is not being observed here. When participants were unsure whether they could hear TUS, or when they did hear TUS, more inhibition was observed. However, this is still to a lesser degree than unmasked stimulation which was nearly always audible, and likely also more salient. This also supports our conclusion that these results indicate a role of cue salience rather than direct neuromodulation. Regarding masked conditions where participants were uncertain whether they heard TUS, the sound was likely sufficient to act as a cue, albeit potentially subliminally. After all, preparatory inhibition is not a conscious action undertaken by the participant either. We would also like to note that participants reported perceived audibility after each block, not after each trial, so selfreported audibility was not a fine-grained measurement. The data from Experiment IV suggest that the volume of the cue has an impact on motor inhibition. Taken together with the points mentioned in 1.16, it is not possible to conclude there is evidence for direct neuromodulation in Experiment IV.

      1.19) I suggest to re-order sub panels of the main figures to fit with the chronologic order of appearance in the text. (e.g Figure 1 with A) Ultrasonic parameters, B) 3D-printed clamp, C) Sound-TMS coupling, D) Experimental condition). 

      We have restructured the figures in the manuscript to provide more clarity and to have greater alignment with the eLife format.

      2.1) Although auditory confounds during TUS have been demonstrated before, the thorough design of the study will lead to a strong impact in the field.

      We thank the reviewer for recognition of the impact of our work. They highlight that auditory confounds during TUS have been demonstrated previously. Indeed, our work builds upon a larger research line on auditory confounds. The current study extends on the confound’s presence by quantifying its impact on motor cortical excitability, but perhaps more importantly by invalidating the most robust and previously replicable findings in humans. Further, this study provides a way forward for the field, highlighting the necessity of (in)active control conditions and tightly matched sham conditions for appropriate inferences in future work. We have amended the abstract to better reflect these points:

      “Primarily, this study highlights the substantial shortcomings in accounting for the auditory confound in prior TUS-TMS work where only a flip-over sham control was used. The field must critically reevaluate previous findings given the demonstrated impact of peripheral confounds. Further, rigorous experimental design via (in)active control conditions is required to make substantiated claims in future TUS studies.”

      2.2) A few minor [weaknesses] are that (1) the overview of previous related work, and how frequent audible TUS protocols are in the field, could be a bit clearer/more detailed

      We have expanded on previous related work in the revised manuscript:

      “Indeed, there is longstanding knowledge of the auditory confound accompanying pulsed TUS (Gavrilov & Tsirulnikov, 2012). However, this confound has only recently garnered attention, prompted by a pair of rodent studies demonstrating indirect auditory activation induced by TUS (Guo et al., 2022; Sato et al., 2018). Similar effects have been observed in humans, where exclusively auditory effects were captured with EEG measures (Braun et al., 2020). These findings are particularly impactful given that nearly all TUS studies employ pulsed protocols, from which the pervasive auditory confound emerges (Johnstone et al., 2021).”

      2.3) The acoustic control stimulus can be described in more detail

      We have elaborated upon the masking stimulus for each experiment in the revised manuscript as follows:

      Experiment I: “In addition, we also included a sound-only sham condition that resembled the auditory confound. Specifically, we generated a 1000 Hz square wave tone with 0.3 ms long pulses using MATLAB. We then added white noise at a signal-to-noise ratio of 14:1. This stimulus was administered to the participant via bone-conducting headphones.”

      Experiment II: “In this experiment, the same 1000 Hz square wave auditory stimulus was used for sound-only sham and auditory masking conditions. This stimulus was administered to the participant over in-ear headphones.”

      Experiment III: “Auditory stimuli were either 500 or 700 ms in duration, the latter beginning 100 ms prior to TUS (Supplementary Fig. 3.3). Both durations were presented at two pitches. Using a signal generator (Agilent 33220A, Keysight Technologies), a 12 kHz sine wave tone was administered over speakers positioned to the left of the participant as in Fomenko and colleagues (2020). Additionally, a 1 kHz square wave tone with 0.5 ms long pulses was administered as in Experiments I, II, IV, and prior research (Braun et al., 2020) over noisecancelling earbuds.”

      Experiment IV: “We additionally applied stimulation both with and without a continuous auditory masking stimulus that sounded similar to the auditory confound. The stimulus consisted of a 1 kHz square wave with 0.3 ms long pulses. This stimulus was presented through wired bone-conducting headphones (LBYSK Wired Bone Conduction Headphones). The volume and signal-to-noise ratio of the masking stimulus were increased until the participant could no longer hear TUS, or until the volume became uncomfortable.”

      In the revised manuscript we have also open-sourced the audio files used in Experiments I, II, and IV, as well as a recording of the output of the signal generator for Experiment III:

      “Auditory stimuli used for sound-sham and/or masking for each experiment are accessible here: https://doi.org/10.5281/zenodo.8374148.”

      2.4) The finding that remaining motor inhibition is observed during acoustically masked trials deserves further discussion.

      We agree. Please refer to points 1.16 and 1.18.

      2.5) In several places, the authors state to have "improved" control conditions, yet remain somewhat vague on the kind of controls previous work has used (apart from one paragraph where a similar control site is described). It would be useful to include more details on this specific difference to previous work.

      In the revised manuscript, we have clarified the control condition used in prior studies as follows:

      Abstract:

      “Primarily, this study highlights the substantial shortcomings in accounting for the auditory confound in prior TUS-TMS work where only a flip-over sham control was used.”

      Introduction:

      “To this end, we substantially improved upon prior TUS-TMS studies implementing solely flip-over sham by including both (in)active control and multiple sound-sham conditions.”

      Methods:

      “We introduced controls that improve upon the sole use of flip-over sham conditions used in prior work. First, we applied active control TUS to the right-hemispheric face motor area, allowing for the assessment of spatially specific effects while also better mimicking ontarget peripheral confounds. In addition, we also included a sound-only sham condition that closely resembled the auditory confound.”

      2.6) I also wondered how common TUS protocols are that rely on audible frequencies. If they are common, why do the authors think this confound is still relatively unexplored (this is a question out of curiosity). More details on these points might make the paper a bit more accessible to TUS-inexperienced readers. 

      Regarding the prevalence of the auditory confound, please refer to point 2.2.

      Peripheral confounds associated with brain stimulation can have a strong impact on outcome measures, often even overshadowing the intended primary effects. This is well known from electromagnetic stimulation. For example, the click of a TMS pulse can strongly modulate reaction times (Duecker et al., 2013, PlosOne) with effect sizes far beyond that of direct neuromodulation. Unfortunately, this consideration has not yet fully been embraced by the ultrasonic neuromodulation community. This is despite long known auditory effects of TUS (Gavrilov & Tsirulnikov, 2012, Acoustical Physics). It was not until the auditory confound was shown to impact brain activity by Guo et al., and Sato et al., (2018, Neuron) that the field began to attend to this phenomenon. Mohammadjavadi et al., (2019, BrainStim) then showed that neuromodulation persisted even in deaf mice, and importantly, also demonstrated that ramping ultrasound pulses could reduce the auditory brainstem response (ABR). Braun and colleagues (2020, BrainStim) were the first bring attention to the auditory confound in humans, while also discussing masking stimuli. This was followed by a study from Johnstone and colleagues (2021, BrainStim) who did preliminary work assessing both masking and ramping in humans. Recently, Liang et al., (2023) proposed a new form of masking colourfully titled the ‘auditory Mondrian’. Further research into the peripheral confounds associated with TUS is on the way.

      However, we agree that the confound remains relatively unexplored, particularly given the substantial impact it can have, as demonstrated in this paper. What is currently lacking is an assessment of the reproducibility of previous work that did not sufficiently consider the auditory confound. The current study constitutes a strong first step to addressing this issue, and indeed shows that results are not reproducible when using control conditions that are superior to flip-over sham, like (in)active control conditions and tightly matched soundsham conditions. This is particularly important given the fundamental nature of this research line, where TUS-TMS studies have played a central role in informing choices for stimulation protocols in subsequent research.

      We would speculate that, with TUS opening new frontiers for neuroscientific research, there comes a rush of enthusiasm wherein laying the groundwork for a solid foundation in the field can sometimes be overlooked. Therefore, we hope that this work sends a strong message to the field regarding how strong of an impact peripheral confounds can have, also in prior work. Indeed, at the current stage of the field, we see no justification not to include proper experimental control moving forward. Only when we can dissociate peripheral effects from direct neuromodulatory effects can our enthusiasm for the potential of TUS be warranted.

      2.7) Results, Fig. 2: Why did the authors not directly contrast target TUS and control conditions? 

      Please refer to point 1.1.

      2.8) The authors observe no dose-response effects of TUS. Does increasing TUS intensity also increase an increase in TUS-produced sounds? If so, should this not also lead to doseresponse effects? 

      We thank the reviewer for this insightful question. Yes, increasing TUS intensity results in an increased volume of the auditory confound. Under certain circumstances this could lead to ‘dose-response’ effects. In the manuscript, we propose that the auditory confounds acts as a cue for the upcoming TMS pulse, thus resulting in MEP attenuation once the cue is informative (i.e., when TMS timing can be predicted by the auditory confound). In this scenario, volume can be taken as the salience of the cue. When the auditory confound is sufficiently salient, it should cue the upcoming TMS pulse and thus result in a reduction of MEP amplitude.

      If we take Experiment II as an example (Figure 3B), the 19.06 W/cm2 stimulation would be louder than the 6.35 W/cm2 intensity. However, as both intensities are audible, they both cue the upcoming TMS pulse. One could speculate that the very slight (nonsignificant) further decrease for 19.06 W/cm2 stimulation could owe to a more salient cueing.

      One might notice that MEP attenuation is less strong in Experiment I, even though higher intensities were applied. Directly contrasting intensities from Experiments I and II was not feasible due to differences in transducers and experimental design. From the perspective of sound cueing of the upcoming TMS pulse, the auditory confound cue was less informative in Experiment I than Experiment II, because TUS stimulus durations of both 100 and 500 ms were administered, rather than solely 500 ms durations. This could explain why descriptively less MEP attenuation was observed in Experiment I, where cueing was less consistent.

      Perhaps more convincing evidence of a sound-based ‘dose-response’ effect comes from Experiment IV (Figure 4B). Here, we propose that continuous masking reduced the salience of the auditory confound (cue), and thus, less MEP attenuation was be observed. Indeed, we see less MEP change for masked stimulation. For the lowest administered volume during masked stimulation, there was no change in MEP amplitude from baseline. For higher volumes, however, there was a significant inhibition of MEP amplitude, though it was still less attenuation than unmasked stimulation. These results indicate a ‘doseresponse’ effect of volume. When the volume (intensity) of the auditory confound was low enough, it was inaudible over the continuous mask (also as reported by participants), and thus it did not act as a cue for the upcoming TMS pulse, therefore not resulting in motor inhibition. When the volume (intensity) was higher, less participants reported not being able to hear the stimulation, so the cue was to a given extent more salient, and in line with the cueing hypothesis more inhibition was observed.

      In summary, because the volume of the auditory confound scales with the intensity of TUS, there may be dose-response effects of the auditory confound volume. Along the border of (in)audibility of the confound, as in masked trials of Experiment IV, we may observe dose-response effects. However, at clearly audible intensities (e.g., Experiment I & II), the size of such an effect would likely be small, as both volumes are sufficiently audible to act as a cue for the upcoming TMS pulse leading to preparatory inhibition.

      2.9) I wonder if the authors could say a bit more on the acoustic control stimulus. Some sound examples would be useful. The authors control for audibility, but does the control sound resemble the one produced by TUS? 

      Please refer to point 2.3.

      2.10) The authors' claim that the remaining motor inhibition observed during masked trials is due to persistent audibility of TUS relies "only" on participants' descriptions. I think this deserves a bit more discussion. Could this be evidence that there is a TUS effect in addition to the sound effect? 

      Please refer to points 1.16 and 1.18.

    1. Author Response

      Thank you for your letter and for the reviewers’ comments concerning our manuscript entitled “The cation channel mechanisms of subthreshold inward depolarizing currents in the VTA dopaminergic neurons and their roles in the depression-like behavior”. These comments are constructive and very helpful for improving our manuscript. We have studied comments carefully and have made provisional revision which we hope meet with approval. We also respond to the reviewer’s comments point by point as following.

      Reviewer #1 (Public Review):

      Comment 1:

      The pharmacological tools used in this study are highly non-selective. Gd3+, used here to block NALCN is actually more commonly used to block TRP channels. 2-APB inhibits not only TRPC channels, but also TRPM and IP3 receptors while stimulating TRPV channels (Bon and Beech, 2013), while FFA actually stimulates TRPC6 channels while inhibiting other TRPCs (Foster et al., 2009).

      We agree with the reviewer that the substances mentioned are not specific. Although we performed shRNA experiments against NALCN and TRPC6, we also used more specific pharmacological modulators for these two channels, L703,606 (the antagonist of NALCN)[1] and larixyl acetate (a potent TRPC6 inhibitor)[2]. The results are shown in figure 3E, F and figure 4C, E.

      Comment 2:

      -The multimodal approach including shRNA knockdown experiments alleviates much of the concern about the non-specific pharmacological agents. Therefore, the author's claim that NALCN is involved in VTA dopaminergic neuron pacemaking is well-supported.

      -However, the claim that TRPC6 is the key TRPC channel in VTA spontaneous firing is somewhat, but not completely supported. As with NALCN above, the pharmacology alone is much too non-specific to support the claim that TRPC6 is the TRP channel responsible for pacemaking. However, unlike the NALCN condition, there is an issue with interpreting the shRNA knockdown experiments. The issue is that TRPC channels often form heteromers with TRPC channels of other types (Goel, Sinkins and Schilling, 2002; Strübing et al., 2003). Therefore, it is possible that knocking down TRPC6 is interfering with the normal function of another TRPC channel, such as TRPC7 or TRPC4.

      From our single-cell RNA-seq results, TRPC7 and TRPC4 are found not to be present broadly like TRPC6 in the VTA DA neurons. And in experiments using single cell PCR (sFig. 9A), only a very small proportion of TRPC6-positive DA cells (DAT+) expressed TRPC4 (sFig. 9Bi) or TRPC7 (sFig. 9Bii), in consistent with the results of single-cell RNA-seq (Fig.2). Therefore, it is possible that knocking down TRPC6 maybe not interfering with the normal function of another TRPC channel, such as TRPC7 or TRPC4.

      Comment 3:

      The claim that TRPC6 channels in the VTA are involved in the depressive-like symptoms of CMUS is supported.

      • However, the connection between the mPFC-projecting VTA neurons, TRPC6 channels, and the chronic unpredictable stress model (CMUS) of depression is not well supported. In Figure 2, it appears that the mPFC-projecting VTA neurons have very low TRPC6 expression compared to VTA neurons projecting to other targets. However, in figure 6, the authors focus on the mPFC-projecting neurons in their CMUS model and show that it is these neurons that are no longer sensitive to pharmacological agents non-specifically blocking TRPC channels (2-APB, see above comment). Finally, in figure 7, the authors show that shRNA knockdown of TRPC6 channels (in all VTA dopaminergic neurons) results in depressive-like symptoms in CMUS mice. Due to the low expression of TRPC6 in mPFC-projecting VTA neurons, the author's claims of "broad and strong expression of TRPC6 channels across VTA DA neurons" is not fully supported. Because of the messy pharmacological tools used, it cannot be clamed that TRPC6 in the mPFC-projecting VTA neurons is altered after CMUS. And because the knockdown experiments are not specific to mPFC-projecting VTA neurons, it cannot be claimed that reducing TRPC6 in these specific neurons is causing depressive symptoms.

      The reason we focused on the mPFC-projecting VTA DA neurons is that this pathway is indicated in depressive-like behaviors of the CMUS model[3-5]. Although mPFC-projecting VTA DA neurons seem have lower level of TRPC6, we reason they are still functional there. However, we do agree with the reviewer that the statement “broad and strong expression of TRPC6 channels across VTA DA neurons" is not fully supported. We have changed the statements based on the reviewer suggestion. Furthermore, we did selectively knockdown TRPC6 in the mPFC-projecting VTA DA neurons, and then studied the behavior (Fig.8).

      Comment 4:

      It is important to note that the experiments presented in Figure 1 have all been previously performed in VTA dopaminergic neurons (Khaliq and Bean, 2010) including showing that low calcium increases VTA neuron spontaneous firing frequency and that replacement of sodium with NMDG hyperpolarizes the membrane potential.

      We agree with reviewer that similar experiments have been performed previously [6] for the flow of our manuscript and for general readers.

      Comment 5:

      -The authors explanation for the increase in firing frequency in 0 calcium conditions is that calcium-activated potassium channels would no longer be activated. However, there is a highly relevant finding that low calcium enhances the NALCN conductance through the calcium sensing receptor from Dejian Ren's lab (Lu et al., 2010) which is not cited in this paper. This increase in NALCN conductance with low calcium has been shown in SNc dopaminergic neurons (Philippart and Khaliq, 2018), and is likely a factor contributing to the low-calcium-mediated increase in spontaneous VTA neuron firing.

      We agree with the reviewer and thanks for the suggestions. A discussion for this has been added.

      Comment 6:

      -One of the only demonstrations of the expression and physiological significance of TRPCs in VTA DA neurons was published by (Rasmus et al., 2011; Klipec et al., 2016) which are not cited in this paper. In their study, TRPC4 expression was detected in a uniformly distributed subset of VTA DA neurons, and TRPC4 KO rats showed decreased VTA DA neuron tonic firing and deficits in cocaine reward and social behaviors.

      We thank the reviewer for the suggestion. The references and a discussion for this has been added.

      Comment 7:

      • Out of all seven TRPCs, TRPC5 is the only one reported to have basal/constitutive activity in heterologous expression systems (Schaefer et al., 2000; Jeon et al., 2012). Others TRPCs such as TRPC6 are typically activated by Gq-coupled GPCRs. Why would TRPC6 be spontaneously/constitutively active in VTA DA neurons?

      In a complex neuronal environment where VTA DA neurons are located, multiple modulatory factors including the GPCRs could be dynamically active, this could lead to the activation of TRP channels including TRPC6.

      Comment 8:

      A new paper from the group of Myoung Kyu Park (Hahn et al., 2023) shows in great detail the interactions between NALCN and TRPC3 channels in pacemaking of SNc DA neurons.

      The reference mentioned has been added. We thank the reviewer.

      Reviewer #2 (Public Review):

      Comment 1:

      These results do not show that TRPC6 mediates stress effects on depression-like behavior. As stated by the authors in the first sentence of the final paragraph, "downregulation of TRPC6 proteins was correlated with reduced firing activity of the VTA DA neurons, the depression-like behaviors, and that knocking down of TRPC6 in the VTA DA neurons confer the mice with depression behaviors." Therefore, the results show associations between TRPC6 downregulation and stress effects on behavior, occlusion of the effects of one by the other on some outcome measures, and cell manipulation effects that resemble stress effects. There is no experiment that shows reversal of stress effects with cell/circuit-specific TRPC6 manipulations. Please adjust the title, abstract and interpretation accordingly.

      We agree with the reviewer’s suggestion. The title was changed to ‘’The cation channel mechanisms of subthreshold inward depolarizing currents in the VTA dopaminergic neurons and their roles in the chronic stress-induced depression-like behavior” and the abstract and interpretation were also adjusted accordingly.

      Comment 2:

      Statistical tests and results are unclear throughout. For all analyses, please report specific tests used, factors/groups, test statistic and p-value for all data analyses reported. In some cases, the chosen test is not appropriate. For example, in Figure 6E, it is not clear how an experiment with 2 factors (stress and drug) can be analyzed with a 1-way RM ANOVA. The potential impact of inappropriate statistical tests on results makes it difficult to assess the accuracy of data interpretation.

      We have redone the statistical analysis as suggested by the reviewer and added specific tests used, factors/groups, test statistic and p-value for all data analyses into the figure legends of the revised manuscript.

      Comment 3:

      Why were only male mice used? Please justify and discuss in the manuscript. Also, change the title to reflect this.

      Although most similar previous studies used male mice or rats[7, 8], we do agree with the reviewer that the female animals should also be tested, in consideration possible role of sex hormones, as such we repeated some key experiments on female mice (sFig.1.6.8. and 13).

      Comment 4:

      Number of recorded cells is very low in Figure 1. Where in VTA did recordings occur? Given the heterogeneity in this brain region, this n may be insufficient. Additional information (e.g., location within VTA, criteria used to identify neurons) should be included. Report the number of mice (i.e., n = 6 cells from X mice) in all figures.

      Yes indeed, the number here is not high. More experiments were performed to increase the N/n number. And the location of recorded cells in VTA and the number of used mice is now shown in all figures; criteria to identify neurons is stated in the Methods-Identification of DA neurons and electrophysiological recordings. At the end of electrophysiological recordings, the recorded VTA neurons were collected for single-cell PCR. VTA DA neurons were identified by single-cell PCR for the presence of TH and DAT.

      Comment 5:

      Authors refer to VTA DA neurons as those that are DAT+ in line 276, although TH expression is considered the standard of DAergic identity, and studies (e.g., Lammel et al, 2008) have shown that a subset of VTA DA neurons have low levels of DAT expression. Authors should reword/clarify that these are DAT-expressing VTA DA neurons.

      The study published by Lammel[9] in 2015 has shown the low dopamine specificity of transgene expression in ventral midbrain of TH-Cre mice; on the other hand, DAT-Cre mice exhibit dopamine-specific Cre expression patterns, although DAT-Cre mice are likely to suffer from their own limitations (for example, low DAT expression in mesocortical DA neurons may make it difficult to target this subpopulation, see Lammel et al., 2008[10]).Hence, in our study, the DAT was used as criteria to identify DAT neurons. Of course, TH and DAT were all tested in single-cell PCR to identify whether the recorded cells were DA neurons.

      Comment 6:

      Neuronal subtype proportions should be quantified and reported (Fig. 1Aii).

      Neuronal subtype proportions are now quantified and reported in Fig. 1Aii.

      Comment 7:

      In addition to reporting projection specificity of neurons expressing specific channels, it would be ideal to report these data according to spatial location in VTA.

      The spatial location of recorded cells in VTA are now shown in all figures.

      Comment 8:

      The authors state that there are a small number of Glut neurons in VTA, then they state that a "significant proportion" of VTA neurons are glutamatergic.

      Thanks, “a significant proportion of neurons” has been changed to “less than half of sequenced DA neurons”.

      Comment 9:

      It is an overstatement that VTA DA neurons are the key determinant of abnormal behaviors in affective disorders.

      Thanks, we have amended the statement to that “Dopaminergic (DA) neurons in the ventral tegmental area (VTA) play an important role in mood, reward and emotion-related behaviors”.

      Reviewer #3 (Public Review):

      Comment 1:

      The authors of this study have examined which cation channels specifically confer to ventral tegmental area dopaminergic neurons their autonomic (spontaneous) firing properties. Having brought evidence for the key role played by NALCN and TRPC6 channels therein, the authors aimed at measuring whether these channels play some role in so-called depression-like (but see below) behaviors triggered by chronic exposure to different stressors. Following evidence for a down-regulation of TRPC6 protein expression in ventral tegmental area dopaminergic cells of stressed animals, the authors provide evidence through viral expression protocols for a causal link between such a down-regulation and so-called depression-like behaviors. The main strength of this study lies on a comprehensive bottom-up approach ranging from patch-clamp recordings to behavioral tasks. However, the interpretation of the results gathered from these behavioral tasks might also be considered one main weakness of the abovementioned approach. Thus, the authors make a confusion (widely observed in numerous publications) with regard to the use of paradigms (forced swim test, tail suspension test) initially aimed (and hence validated) at detecting the antidepressant effects of drugs and which by no means provide clues on "depression" in their subjects. Indeed, in their hands, the authors report that stress elicits changes in these tests which are opposed to those theoretically seen after antidepressant medication. However, these results do not imply that these changes reflect "depression" but rather that the individuals under scrutiny simply show different responses from those seen in nonstressed animals. These limits are even more valid in nonstressed animals injected with TRPC6 shRNAs (how can 5-min tests be compared to a complex and chronic pathological state such as depression?). With regard to anxiety, as investigated with the elevated plus-maze and the open field, the data, as reported, do not allow to check the author's interpretation as anxiety indices are either not correctly provided (e.g. absolute open arm data instead of percents of open arm visits without mention of closed arm behaviors) or subjected to possible biases (lack of distinction between central and peripheral components of the apparatus).

      We agree with the reviewer that behavior tests we used here is debatable whether they represent a real depression state, and this is an open question that could be discussed from different respective. Since these testes (forced swimming and tail suspension), as the reviewer noted, were “widely observed in numerous publications”, we used these seemly only options to reflect a “depression-like” state. One could argue that since these testes were initially used for testing antidepressants (“validated”), with decreased immobility time as indications of anti-depressive effects, why not an increased immobility time reflect a “depression-like” state. As for anxiety tests, the data concerning the elevated plus-maze are also changed based on the reviewer’s suggestion.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      Reviewer #1 (Recommendations For The Authors):

      Recommendation 1 for improving the paper:

      -The paper needs extensive editing for both overall structural clarity and for the high number of typos and grammatical errors.

      We thank the reviewer’s suggestion. The revised manuscript has been edited extensively.

      Recommendation 2 for improving the paper:

      -Retrobeads are often toxic to cells and build up with increasing time. It is surprising that the authors wait 14-21 days for retrobead expression in their target cells. It is also a problem that the mPFC projecting cells have a longer time with the retrobeads than the other projection-targeting cells because the toxicity could be more extensive with the longer wait time thus confounding the results. The authors should repeat some mPFC experiments at the 14 day time point to confirm that the longer time with the beads is not influencing the differential effects in these cells.

      According to the methods published by Stephan Lammel and Jochen Roeper, “For sufficient labeling, survival periods for retrograde tracer transport depended on respective injection areas: DS and NAc lateral shell, 7 days; NAc core, NAc medial shell, and BLA, 14 days; and mPFC, 21 days[10]”, we did the experiments related to mPFC projecting cells at the 21 day time point. Consistent with the mentioned above, the labeled mPFC projecting cells at 14 day time point, is not sufficient, compared with this at 21 day time point, which is shown as followings.

      Author response image 1.

      Confocal images showing the anatomical distribution of mPFC-projecting DA neurons labelled with retrobeads (red) in the VTA after DAT-immunofluorescence (green) staining at different day time point (A, 14d; B, 21d) after retrobeads injection; Scale bars=10 μm.

      Recommendation 3 for improving the paper:

      -The experiment with FFA in Figure 4E seems weird. Why is there no baseline before the FFA application? And why is the baseline trending downward immediately? The authors should explain why this example experiment is presented differently from all the others.

      We apologize for this part that this example time-course is not typical. Since the FFA is not specific antagonist for TRPC6 and actually stimulates TRPC6 channels, we repeated the experiments with a more specific pharmacological modulator for TRPC6, larixyl acetate (LA), and the results are shown in Figure 4C and 4F.

      Recommendation 4 for improving the paper:

      -It would be much more useful to see exact p values in the text, as it aids in interpreting the 'insignificance' of specific comparisons. Specifically, in Figure 5F, the 2-APB looks like it is having a small effect, and the already low firing rate (due to the TRPC6 knockdown) makes a big effect less likely. It would be useful to know what the actual p value is here (and everywhere).

      OK. We now report all P values in the figure legends of the revised version.

      Recommendation 5 for improving the paper:

      -In the results, it should be explained that the "RMP" of VTA DA neurons was obtained by treating the cells with TTX.

      A sentence indicating the presence of TTX when measuring “RMP” is added in the Results part of the revised version.

      Recommendation 6 for improving the paper:

      -The spacing of the panels in the figures is somewhat odd. The figures could be more compact.

      Thanks, we have re-arranged all figures.

      Recommendation 7 for improving the paper:

      The paper is difficult to read because of significant grammatical errors. Here are some examples by line number, but this list is not at all exhaustive.

      We thank the reviewer for pointing out grammatical errors and we corrected them.

      Reviewer #2 (Recommendations For The Authors):

      Recommendation 1 for improving the paper:

      Fix typos: e.g., change HCH to HCN, change EMP to EPM, "these finding", "compact par" should read "pars compacta", "substantial" in line 475 should read "substantia", Incomplete sentences on line 73 and line 107, etc. Also, what is meant by "autonomic" firing activity? What is meant by "expression files"? Change "depression behaviors" to depression-like behaviors. "The HCN" as written in line 69 is a bit misleading, as HCN channels in the heart and brain are different members of a family of channels, although as written in the text, it seems that they are identical. In Figure 2, rearrange order of brain regions (e.g., from "BLA-VTA" to "VTA-BLA"), because as written, it seems that the focus is on projections into the VTA from each brain region, rather than VTA neurons that project to each respective region.

      We thank the reviewer for pointing out these errors and we corrected them. Autonomic firing activity has been changed to spontaneous firing activity. Expression files has been changed to expression levels. All the “depression behavior” have been changed to depression-like behaviors. In the Figure 2, all “xx-VTA” have been changed to “VTA-xx”.

      Reviewer #3 (Recommendations For The Authors):

      Recommendation 1 for improving the paper:

      Methodology: as opposed to sFig. 8 where the order through which mice were repeatedly tested is precise, such a key information is lacking in Fig. 6 as well as in the Methods section (for example, when such traumatic stress as forced swimming is performed with regard to the other tests?). Relevant to this point is the possible bias triggered by such chronological testing as exposure to the forced swim test likely affects the behaviors recorded in the other tests. Furthermore, the way this test is conducted is appealing as it is mentioned that the water depth was set to 10 cms which is quite low given that immobility scores might be affected by the ability of mice to stand on their tails.

      With regard to the elevated plus-maze, data are erroneously provided. Absolute values regarding open arm behaviors should be provided as percentages of the number of visits (or time spent therein) over the total (open + closed) number of arm visits. Indeed, closed arm visits should also be provided. This variable, also considered an index of locomotor activity, would allow the reader to exclude any effect of locomotion on the exploration in the open field.

      As they stand, data in the open field seem to indicate parallel changes at the center(center time) and the periphery (total distance), hence suggesting locomotor effects rather than anxiogenic effects. Data related to the center and the periphery should be clearly distinguished. Lastly, the number of weeks allowed for the mice to recover from surgeries aimed at delivering viruses are not mentioned. This is important as it could have affected the amplitude of the sensitivity to the stressors.

      We thank the reviewer for the suggestion. The lack information in Figure 6 and the Methods is now supplied. We apologize for the wrong number of “10 cm” in the forced swimming test, this has been corrected. The data concerning the elevated plus-maze are also changed based on the reviewer’s suggestion. For a possible role of locomotor effect, we tested the mice on the rota-rod test. From the result, there is no difference in locomotor activity between control and depressed-like mice (sFig.10G, sFig.12I and sFig.13G). We modified the experimental procedure timeline in Figure 6 and in the method- AAV for gene knockdown or overexpression and viral construct and injection, we added “Mice were singly housed with enough food and water to recover for 4-5 weeks after injection of virus, before behavior tests and electrophysiological recordings.” to report the number of weeks allowed for the mice to recover from surgeries aimed at delivering virus.

      Recommendation 2 for improving the paper:

      Results/conclusions: as yet mentioned, the authors make a confusion in the interpretation of their tail suspension tests and forced swimming tests. I acknowledge that such a confusion is frequent but it is important to note that the tests used by the authors were INITIALLY aimed at detecting the antidepressant effects of drugs under investigation. However, it is not because a test reveals such antidepressant properties that they also provide indices of depression. The authors will surely agree that it is unlikely that a 5-min test provides a model of a chronic pathology accounted for by a complex intrication between genetics and environmental factors. I would propose the authors to read for example Molendijk and De Kloet (Eur J Neurosci 2022). I think that the authors should just neutrally mention their results without any interpretation related to depression. On the other hand, what could have been interesting is to test whether the so-called "depressive-like" responses recorded in the study were sensitive to chronic antidepressant treatments. This would have allowed the authors to further suggest some relevance (if any) with depression-like pathologies.

      As we discussed above, we again agree with the reviewer’s concern. However, if as stated by the reviewer that “However, it is not because a test reveals such antidepressant properties that they also provide indices of depression”, then the experiments suggested by the reviewer “….. to test whether the so-called "depressive-like" responses recorded in the study were sensitive to chronic antidepressant treatments”

      Recommendation 3 for improving the paper:

      A close examination of the responses to CMUS or chronic restraint suggests that indeed two populations of animals were detected, possibly sensitive and resilient to these stressors. Did the authors try to examine this possibility?

      Based on the results of behavior test in CMUS and CRS, animals might be divided into two populations of animals highly-sensitive and moderately-sensitive ones.

      Recommendation 4 for improving the paper:

      There are some text changes that need to be performed:

      Page 2 line 46: ref 4 uses a social stress model which brings no clearcut evidence for it being a "depression" model. Indeed, this model can also be suggested to be a model of chronic anxiety (Kalueff et al., Science 2006; Chaouloff, Cell tissue Res 2013), hence indicating that VTA dopaminergic neurons might also be involved in anxiety.

      page 11, line 329: the references supporting the hypothesis that VTA DA neurons are linked to depression cannot be found in the reference list (10-15 do not correspond to the appropriate references).

      page 11, line 3341: reference 47 does not fit with the authors' assertion as it did not include any behavior.

      Fig. S8: body weight data are likely provided as changes rather than absolute values (e.g. 8 g)

      We agreed with the reviewer’s comments. The line 46“……such as depression states” has been changed to “such as depression- or anxiety-related states”. And we corrected the references in line 329 and 341. Finally, the body weight has been changed to the change in body weight.

      References:

      1. Um, K.B., et al., TRPC3 and NALCN channels drive pacemaking in substantia nigra dopaminergic neurons. Elife, 2021. 10.

      2. Urban, N., et al., Identification and Validation of Larixyl Acetate as a Potent TRPC6 Inhibitor. Mol Pharmacol, 2016. 89(1): p. 197-213.

      3. Zhong, P., et al., HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. Elife, 2018. 7.

      4. Liu, D., et al., Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain, 2018. 159(1): p. 175.

      5. Walsh, J.J. and M.H. Han, The Heterogeneity of Ventral Tegmental Area Neurons: Projection Functions in a Mood-Related Context. Neuroscience, 2014. 282: p. 101-108.

      6. Khaliq, Z.M. and B.P. Bean, Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci, 2010. 30(21): p. 7401-13.

      7. Li, L., et al., Selective targeting of M-type potassium K(v) 7.4 channels demonstrates their key role in the regulation of dopaminergic neuronal excitability and depression-like behaviour. Br J Pharmacol, 2017. 174(23): p. 4277-4294.

      8. Friedman, A.K., et al., Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science, 2014. 344(6181): p. 313-9.

      9. Lammel, S., et al., Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron, 2015. 85(2): p. 429-38.

      10. Lammel, S., et al., Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 2008. 57(5): p. 760-73.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      This work describes a new and powerful approach to a central question in ecology: what are the relative contributions of resource utilisation vs interactions between individuals in the shaping of an ecosystem? This approach relies on a very original quantitative experimental set-up whose power lies in its simplicity, allowing an exceptional level of control over ecological parameters and of measurement accuracy.

      In this experimental system, the shared resource corresponds to 10^12 copies of a fixed single-stranded target DNA molecule to which 10^15 random single-stranded DNA molecules (the individuals populating the ecosystem) can bind. The binding process is cycled, with a 1000x-PCR amplification step between successive binding steps. The composition of the population is monitored via high-throughput DNA sequencing. Sequence data analysis describes the change in population diversity over cycles. The results are interpreted using estimated binding interactions of individuals with the target resource, as well as estimated binding interactions between individuals and also self-interactions (that can all be directly predicted as they correspond to DNA-DNA interactions). A simple model provides a framework to account for ecosystem dynamics over cycles. Finally, the trajectory of some individuals with high frequency in late cycles is traced back to the earliest cycles at which they are detected by sequencing. Their propensities to bind the resource, to form hairpins, or to form homodimers suggest how different interaction modes shape the composition of the population over cycles.

      The authors report a shift from selection for binding to the resource to interactions between individuals and self-interactions over the course of cycles as the main drivers of their ecosystem. The outcome of the experiment is far from trivial as the individual resource binding energy initially determines the relative enrichment of individuals, and then seems to saturate. The richness of the population dynamics observed with this simple system is thus comparable to that found in some natural ecosystems. The findings obtained with this new approach will likely guide the exploration of natural ecosystems in which parameters and observables are much less accessible.

      My review focuses mainly on the experimental aspects of this work given my own expertise. The introduction exposes very convincingly the scientific context of this work, justifying the need for such an approach to address questions pertaining to ecology. The manuscript describes very clearly and rigorously the experimental setup. The main strengths of this work are (i) the outstanding originality of the experimental approach and (ii) its simplicity. With this setup, central questions in ecology can be addressed in a quantitative manner, including the possibility of running trajectories in parallel to generalize the findings, as reported here. Technical aspects have been carefully implemented, from the design of random individuals bearing flanking regions for PCR amplification, binding selection and (low error) amplification protocols, and sequencing read-out whose depth is sufficient to capture the relevant dynamics.<br /> :<br /> We thank the reviewer for summarizing our work and the main findings in a very clear and effective manner.

      One missing aspect in the data analysis is the quantification of the effect of PCR amplification steps in shaping the ecosystem (to be modeled if significant). In addition, as it stands the current work does not fully harness the power of the approach. For instance, with this setup, one can tune the relative contributions of binding selection vs amplification for instance (to disentangle forces that shape the ecosystem). One can also run cycles with new DNA individuals, designed with arbitrarily chosen resource binding vs self-binding, that are predicted to dominate depending on chosen ecological parameters. I have three main recommendations to the authors:

      1) PCR amplification steps (and not only binding selection steps) should be taken into account when interpreting the outcome of experiments.

      2) More generally, a systematic analysis of the possible modes of propagation of a DNA molecule from one cycle to the next, including those considered as experimental noise, would help with interpreting the results.

      3) Testing experimentally the predictions from the analysis and the modelling of results would strengthen the case for this approach.

      Despite its conceptual simplicity, our approach has indeed a few experimental handles that enable exploring a relevant variety of conditions much beyond those described in this paper, of which we are very aware. These involve selection vs. amplification or set the stage to explore competition, parasitism or cooperation among specific species, as the reviewer points out, but also introduce mutations and explore the kinetics of evolution in static or dynamic environments. Ongoing experiments are considering some of these conditions. We modified the text to mention more explicitly these possibilities, which are now mentioned in p11 lines 376-378 and lines 416-417. The three points raised by the reviewer helped us to further improve and clarify strengths and limitations of our work, as detailed below.

      Regarding the first point, here are my suggestions :

      • Run one cycle of just amplification vs 'binding + amplification', or simply increase the number of PCR cycles (and subsample the product) to check whether it impacts the population composition, in particular for sequences with predictions derived from the current analysis.

      The point raised by the reviewer is indeed very relevant and not discussed in our manuscript. Prompted by the reviewer’s comment, we performed two new experiments to distinguish resource-binding selection from PCR amplification effects.

      First, we performed a negative control experiment in which we performed the “selection step” with bear beads, i.e. beads without with no DNA grafted on them. We then compared the results with the corresponding results of the original experiments on Oligo 1 and 2.

      After 6 cycles, the most abundant sequence in the negative dataset has a relative occurrence of 0.05%, whereas the dominant strand in Oligo 1 and Oligo 2 has an abundance of 8% and 16%, respectively, i.e. 40-80 times larger.

      This indicates that the drift due to non-specific binding + PCR amplification is at least two orders of magnitude smaller than the selection induced by the affinity with the resource.

      This results are now cited in p14 lines 468-470, and described in Appendix 1, Experimental controls.

      Second, we tested the effect of PCR amplification on the selection process. We exploited the fact that we have aliquots for each generation of our evolution experiment, which we sampled and saved after PCR and before sequencing. We thus chose a specific generation - specifically generation 9 from Oligo 1 experiments - and performed another PCR round we proceeded directly to sequencing with no beadsselection step. We then compared the ensemble of oligos obtained in this way, which we named Oligo 1 “cycle 9 replica”, with both the original Oligo1 cycle 9, and with Oligo1 cycle 10.

      We sampled 20 times 4 x 10^5 sequences from the cycle 9 dataset, from cycle 9 replica and from cycle 10 with a bootstrap approach. To compare the three systems we extracted the fraction of the population of each covered by the 10 most abundant individuals. The results are shown in Figure 2 - Figure Supplement 4. In the figure caption further details on the analysis can be found. The similarity between cycle 9 and cycle 9 replica and the marked difference between cycle 9 replica and cycle 10

      indicates that the relevant part of the selection is indeed performed by the resourcebinding mechanism, while drifts induced by PCR play a secondary role.

      As a further check, we compared the specific sequences across the 20 samples in cycle 9 and cycle 9 replica datasets and found that the 10 most abundant sequences are almost always the same. In particular, the first 8/9 are always the same, possibly shuffled.

      These new pieces of evidence are now cited in p14 lines 483-484 and described in Appendix 1, Experimental controls.

      • Sequencing read-out includes the same PCR protocol as the one used for amplification steps, so read-out potentially has an effect on the composition of the ecosystem. Again, varying the number of PCR cycles is a direct way to test this.

      The PCR amplification involved in the read-out might have a minor effect on the sequencing outcome but not on the composition of the ecosystem. In fact, the sample that undergoes sequencing is taken from the pool at each cycle, and not inserted back into it. Thus, it does not participate in the following selection steps. This is specified in the text at p3 line 104

      • Could self-interactions (hairpins of homodimers) benefit individuals during amplification steps? The role of self-interactions during binding selection steps could also be tested directly over one cycle (again varying the relative weight of the binding vs amplification to disentangle both).

      Our choice of conditions for PCR amplification were thought to minimize effects of this type. PCR amplification is carried out at 68 C, a temperature at which, given the level of self and mutual complementarity in the sequences analyzed in the text, hairpins or homodimers should be melted and thus have no effect. This is specified in the text at p. 14 lines 479-480 However, if an effect is present, it gives a disadvantage (rather than an advantage) to self-interacting individuals. For the amplification step we used Q5® Hot Start HighFidelity DNA Polymerase, which does not possess strand displacement activity. Therefore, in theory, if during amplification the polymerase encounters a double strand portion, it stops and synthesizes only a truncated product, which will be then lost during the purification step. In other words, sequences with secondary and/or tertiary structures are less likely to be amplified during the polymerization step. As a consequence, a DNAi that is characterized by this kind of structures, will be negatively selected even in the case of optimal binding to the resource, and will be underrepresented in the pool.

      About the second point:

      • Regarding the effect of sampling (sequencing read-out), PCR amplification errors: explicitly check the consistency of observations with the expected outcome, in the methods section (right now these aspects are only briefly mentioned in the main text), which would highlight again the level of control and accuracy of the system.

      Hoping to have well interpreted the request, we performed a technical replicate sequencing Oligo 1 cycle 9 again and analyzed the sequences that have at least 100 reads (corresponding to 27.42% of the total reads). We find that among the 800 DNA species that have at least 100 reads, 93.6% are found in both replicates. All the nonoverlapping sequences have very low abundance, close to 100.

      Moreover, we compare the population size of each DNA species between the two replicas, after having equalized the database sizes. The results are now cited in p14 lines 509-510, In Appendix 1, Experimental Controls and shown in Figure 2-figure supplement 3, where we plot the ratio of the number of reads in the two replicates for each sequence as a function of the number of reads in one. We found an average of 0.965 with a standard deviation of 0.119. High fluctuations are found in the most rare species, as expected.

      We think this evaluation indeed strengthens the solidity of our results.

      • I have a small concern about target resource accessibility: is there any spacer between the ssDNA and the bead? The methods section does not mention any, and I would expect such a proximity between the target DNA and the bead to yield steric repulsion that impedes interactions with random DNA individuals.

      Yes, there is a 12-carbon spacer between the bead and the resource, which was inserted exactly to make the resource more accessible. This information is now available in Table 1 of Supplementary Information detailing the sequences used in the experiment. However, as now described in the text (p8 lines 284-286), we observe that the interaction with the resource is always shifted to the 3', the terminal furthest from the bead, indicating some residual issue of accessibility to the resource sections closest to the bead.

      • Regardless of the existence of a spacer, binding of random DNA molecules to beads instead of the target DNA constitutes a potential source of noise (described for now as '1-x' in the IBEE model), which can be probed by swapping targets, selecting without target etc.

      This issue is addressed by the test with bare beads described above, in which we found little effects, corresponding to small 1−𝑥 value.

      • Is there any recombination potentially occurring during amplification steps? This could be tested with a set of known molecules amplified over 24 amplification steps in a row (no binding step).

      It is possible for recombination to occur during the amplification steps. In Appendix 2, the section "By-Product Formation from PCR Amplification", discusses PCR byproducts as aberrant forms of amplification, such as recombination events. We adopted several strategies to limit by-product formation, such as: i) use of “blockers” characterized by a phosphate group at 3’ end (thus inhibiting their usage during the amplification and allowing a better control of the reaction conditions over the PCR cycles), ii) a high annealing temperature (to limit the possibility of a spurious primer annealing to the random region), iii) fewer PCR cycles, iv) a high primer concentration, v) a very short elongation step (all these strategies have been implemented to avoid a possible mispriming event between different DNAi, and the formation of concatemers). However, the formation of by-products is a problem inherent to the technique: in fact, it is a known issue for classical SELEX technology (Tolle et al. 2014), mainly due to the random region within the DNAi. Q5® Hot Start High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) has an error rate of <0.44 x 10-6/base.

      In classic SELEX technology, the average number of selection cycles is 10. This limitation is partly due to the increase in PCR by-products. As we can see from Figure 2 Supplementary Figure 1, the percentage of PCR by-products is less than 20% at cycle 12, and then increases dramatically in the following cycles. We are performing a series of experiments with known and limited sequences to verify and better understand the phenomenon for future applications of the SEDES platform. On this issue we decided not to modify the manuscript since we think it is already well discussed in Appendix 1.

      And the third point:

      • Perform one cycle (or a few cycles) with random DNA individuals, the most frequent individuals at the end of the current experiment, newly designed individuals with higher binding affinity to the target than currently dominating individuals, newly designed individuals with higher propensity to form hairpins or to form homodimers. Such experimental testing of predictions from the data analysis/modeling, typical of a physics approach, would illustrate the level of understanding one can reach with a simple yet powerful experimental setup.

      We perfectly agree that the approach we propose and the set of results we obtained call for further investigations that could strengthen analysis and modeling. The final aim we envisage is the understanding, within this simplified approach, of key evolutionary factors such as fitness. Indeed, becoming able to write an explicit fitness function would be a significant new contribution to the understanding of evolutionary processes, even within the limited settings of the ADSE approach, as discussed in the conclusions of the manuscript.

      However, undergoing such an analysis is a long and expensive job, which we have started and will be completed in a not immediate future. For this reason, given the already significant body of results we are presenting here, we prefer to keep this paper confined to the study of the evolution of a random DNAi population and discuss in a future contribution the behavior of smaller designed sets of competing, collaborating or parasitic individuals.

      Looking ahead, additional stages of investigations will also include mutations - to investigate the kinetics of speciation, and, in an even further stage, the interplay between evolution kinetics and dynamical mutation of resources.

      I have a few smaller points:

      • It would be very useful to provide the expected dynamic range of binding free energies (in terms of DeltaG and omega): what is the maximum binding free energy for the perfect complement?

      The NUPACK-computed binding free energy of a 20 basis-long oligomer complementary to the resource (𝜔=20) is -24.36 Kcal/mol for Oligo1 and -23.08 Kcal/mol for oligo 2. This is the best answer we can offer to the reviewer’s request, since the maximum binding free energy of DNAi individuals (much longer than the target strand) would include contributions from the unpaired bases. Indeed, the values give above are approached by the left tail of the distribution of Fig. 3a, which however includes DNAi self-energies.<br /> The perfect complement binding free energy is now cited in the text as a reference for the dynamical range of DeltaG (p4 lines 151-152).

      • How is the number of captured DNA molecules quantified? Is 10^12 measured, estimated, or hypothesized?

      The number of sequences was calculated from data obtained from 260 nm absorbance quantification. We have now added this information in the Methods, Selection Phase” section.

      Reviewer #2:

      Summary:

      In this manuscript, the authors introduced ADSE, a SELEX-based protocol to explore the mechanism of emergency of species. They used DNA hybridization (to the bait pool, "resources") as the driving force for selection and quantitatively investigated the factors that may contribute to the survival during generation evolution (progress of SELEX cycle), revealing that besides individual-resource binding, the inter- and intra-individual interactions were also important features along with mutualism and parasitism.

      Strengths:

      The design of using pure biochemical affinity assay to study eco-evolution is interesting, providing an important viewpoint to partly explain the molecular mechanism of evolution.

      Weaknesses:

      Though the evidence of the study is somewhat convincing, some aspects still need to be improved, mostly technical issues.

      Major:

      1) There are a few technical issues that the authors should clarify in the manuscript to make the analysis more transparent:

      1.1) To my understanding, it is difficult to guarantee the even distribution of different species (individuals) in the initial individual pool. Even though the authors have shown in Fig. 2a that the top 10 sequences take up ~ 0% in the pool, it remains unclear how abundant these top and bottom representative sequences are, given the huge number of the pool (10E15). Can the author show the absolute number of these sequences in different quantiles? Please show both Oligo sets.<br /> : First, we thank the reviewer for both positive and critical comments that have guided us in reformulating or clarifying some messages of our work.

      As for this specific point: 10E15 is a small number compared to 4^50 = 10E30, the number of possible sequences of length 30. Thus, we don’t expect more than one individual per sequence in the initial pool. However, sequencing requires a preparation amplification, which may lead to detecting a few sequences with more than one individual.

      Specifically, in the initial pool of Oligo 1, the most abundant individual (of sequence GAACTAAAGGGGCGGTGTCCACTTGCCTGTAGTGGTTATCAGTCCGGTTG)has 3 copies. The 0.7% of the sequences has 2 copies, while the vast majority of strings (99.3% on a sample of about 1.5 x 10E6 sequenced DNAi) is present in one copy only. A similar situation holds for Oligo 2, with 4 DNAi present in 3 copies and the 0.8% of the sequences (in a pool of 2 x 10E6 DNAi) in 2 copies.

      It is worth noticing that none of the 10 most abundant species in the last cycle is present in the sample. Indeed, the fraction of the pool which is sequenced is removed from the population that undergoes evolution (as now specified in p2, line 104). We specified in the text (p2, lines 69-70, p3 lines 94-96) the fact that in the initial pool no sequence is expected to be present in more than one individual.

      1.2) The author claimed that they used two different oligo sets (Oligo1 and Oligo2) in this study. It is unclear which data was used in the presentation. How reproducible are they? Similar to this concern, how reproducible if the same oligo set was used to repeat the experiment?

      The oligo used in the main text was declared in Methods, Replica section. It is now declared also in the main text (p3 lines 106-108 and in the captions of Figure 2, Figure 3 and Figure 4). Reproducibility is addressed in: Figure 2-figure supplement 5; Figure 2-figure supplement 6; Appendix 2: Results of the experimental replica.

      It should also be noted that two starting pools of random 50mers are necessarily disjoint sets for the same reason discussed in the previous answer: the probability of common sequences in two 10E15 selections from a 10E30 is negligibly small. Thus, it is expected that each time a new evolution experiment is started, different dominant sequences are found. However, the statistical properties of the DNAi pool during the evolution process of Oligo1 and Oligo2 are similar as discussed in Appendix 2 of the paper.

      1.3) PCR and illumina sequencing itself introduced selection bias. How would the analysis eliminate them? The authors only discussed the errors created during PCR cycles (page 3, lines 115-122). However the PCR itself would prefer to amplify some sequences over the others (e.g. with high GC content). Similarly, the illumina sequencing would be difficult to sequence the low complexity sequences. How would this be circumvented?

      Yes, both PCR and Illumina sequencing have some known biases in the amplification process (e.g. sequencing of homopolymers or amplification of GC-rich sequences) that are intrinsic to the used techniques. Regarding PCR, we implemented a thermal protocol optimized for our chosen experimental setup, characterized by very short denaturation, annealing and amplification steps performed at high temperatures. Regarding Illumina sequencing, we can’t rule out a bias against specific sequences (e.g, homopolymers), which however should not be captured during the selection step, due to the design of the resource. Also, the libraries subjected to sequencing are characterized by a low complexity: according to the experimental design, the first and last 25 nucleotides are the same for all DNAi, the only differences being in the central 50 nt-long sequence. It is known that a low complexity library might encounter problems during sequencing due to the design of Illumina instruments: nucleotide diversity, especially in the first sequencing cycles, is critical for cluster filtering, optimal run performance and high-quality data generation. To overcome this limitation, the obtained libraries were run together with more complex and diverse library preparations: the ADSE sequences were about 1-2% of the total reads per run, corresponding to only a few million reads.

      This discussion is now in Appendix 1, Intrinsic limitations of the molecular approach.

      1.4) Some DNA sequences would bind to the beads instead of the resource sequence coated on them. Should the author run the experiment using bead alone as a control?<br /> : We performed a negative control experiment in which we performed the “selection step” with bear beads, i.e. beads without with no DNA grafted on them. We then compared the results with the corresponding results of the original experiments on Oligo 1 and 2.

      After 6 cycles, the most abundant sequence in the negative dataset has a relative occurrence of 0.05%, whereas the dominant strand in Oligo 1 and Oligo 2 has an abundance of 8% and 16%, respectively, i.e. 40-80 times larger.

      This indicates that the drift due to non-specific binding (+ PCR amplification) is at least two orders of magnitude smaller than the selection induced by the affinity with the resource.<br /> This part is now discussed in Appendix 1, Experimental controls.

      2) It would be interesting to study the impact of environmental factors, for example, changing pH, salt concentration, and detergent. Would these factors accelerate/decelerate the evolution?

      We agree that the approach we propose and the set of results we obtained call for further investigations. However, performing these additional experiments, which would require a minimum of 6 generations each, is a long and expensive job, which we have started and will not be completed in the near future. For this reason, given the already significant body of results we are presenting here, we prefer to keep this paper confined to the study of the evolution of a random DNAi population in the selected conditions and leave the exploration of new conditions, potentially opening new evolutionary scenarios, to a future contribution. In fact, our aim was to show that through our platform we can indeed observe fundamental elements of evolution in a non-biological system, which, in the set of chosen parameters, we do.

      3) The concentration of individual oligo is apparently one of the most important factors in determining the interactions. In later cycles, some oligos become dominant, namely with extremely higher concentrations compared to their concentration in earlier cycles. This would definitely affect its interaction with resources, or self-interaction, or interaction with other oligos in the pool. However, the authors failed to discuss this factor, which may explain the exponential enrichment in later cycles.

      We agree with the reviewer that this is an important point, but we disagree that we have not discussed it. We introduce the topic at the end of the “Null Model and Eco-evolutionary Algorithm”, where we comment on the change of the gamma parameter by saying that there must be a shift in the evolution process, first dominated by the interactions with the resources, and in later stages by some other factors (lines 227230) that we then discuss in “Self and mutual DNAi interactions are evolutionary drivers”. In this latter chapter and in the following, we indeed discussed the effects of mutual and self interactions between DNAi.

      Indeed, a key point in our paper is the change in the gamma parameter necessary to match the IBEE model to experiments, as it is now more openly stated (p5 lines 217218 where we also mention figure 2-supplement 8 which clearly shows the necessity of a variable gamma). The two regimes enlightened by the gamma value must reflect a change in the competition for the resources and interactions among species. In the first generations, where the diversity of species is large (there are few strings for each species) and binding to the resources generally very week (small <omega>), the affinity with the resource is the main driving force (fast growth of <omega>), while mutual interactions remain too random to favor any species in particular. In the later cycles instead, when <omega> becomes large enough to provide a significant stability to the resource-binding of the majority of species, the dominating species compete more intensively on the basis of their structure and capacity of self-defense, parasitism and mutualism, a condition in which evolution affects more modifications in sequences than in <omega>.

      Certainly, our understanding of this shift is based on statistical behavior and it is inferential, based on the study of specific DNAi described in the last part of the manuscript. For a better molecular model, more experiments with selected DNAi competing, cooperating or being parasitic would be necessary, with the final aim of defining a predictive fitness function. Alas, this requires months of further investigation. :

      4) The author observed the different behaviors of medium 𝜔 in early and late cycles, referring to Fig 2h. Using the IBEE model, they found out it is the change of gamma. However, the authors did not further discuss the molecular mechanism. It could be very interesting to understand the evolutionary change of these individuals.

      This comment might be related to the previous one. It is true that our discussion and understanding of the whole process is statistical, and misses a molecular model to predict the value of gamma.

      However, the specific behavior that the reviewer asks about (those in Fig. 2h) is not related to the change in gamma. Even if gamma remains as in the first part of the evolution (gamma = 3), the species with overlap between 6 and 10 would first grow in number and later decrease. Indeed, during the first cycles they have an advantage with respect to the majority of species with lower maximum overlap, a condition that favors their amplification. However, in the second stage of the evolution dominant species with a larger affinity emerge and outcompete the individuals of this class. We added a sentence in the text to clarify this point (p7 lines 227-229).

      5) In Figure 2f, some high w become quite missing. Should the authors give some interpretation? It is not observed in cycle 12 though (panel e).

      Such an effect is just due to under-sampling. In a pool of 10^n oligomers, any sequence with a given 𝜔 with P(omega) < 10E-n will have a vanishing probability to appear in that sample.<br /> At cycle 12 the overall number of sequenced strands is larger than at cycle 24, due to the growing presence of PCR by-products. Thus, the right tail of the cyan distribution at the last cycle is sampled with less accuracy than at cycle 12. We have added a sentence in the revised manuscript (p5 lines 177-178) to clarify this point.

      6) It would be interesting to further explore if another type of selection resource is used, for example protein that binds to particular sequences, i.e. transcription factors. Previous studies have used a large amount of sequence-specific transcription factors to run SELELX. Since the data have existed there, why not explore?

      This is an interesting suggestion: can we use data from “ordinary” SELEX favoring specific sequences to explore sequence evolution? Two limitations make us a bit skeptical on this path: first, the consensus sequences of DNA-binding proteins are rather short and typically target dsDNA rather than ssDNA; second, the free energy of interaction is known only for the consensus sequence but not for sequences with all possible mutations with respect to the consensus sequence, making very hard to develop any molecular understanding of the process.

      Minor:

      1) There is no figure legend or in-text citation of Figure 2b.

      2) Please correct "⁃C" with "{degree sign}C" in lines 470, 471, 472, 477 et al.

      3) Typos and grammar issues should be corrected. Examples are shown below (but not limited to these only):

      • mixed use of past and present tense.

      • Line 152, "basis" should be "bases".

      • Line 277, "a impediment" should be "an impediment"

      • Line 278, "a major deadly threats" should be "major deadly threats"<br /> :<br /> We are sorry for the mistakes, and we have corrected them. Many thanks to the reviewer!

    1. Author Response

      Reviewer #1 (Public Review):

      The goal of the current study was to evaluate the effect of neuronal activity on blood-brain barrier permeability in the healthy brain, and to determine whether changes in BBB dynamics play a role in cortical plasticity. The authors used a variety of well-validated approaches to first demonstrate that limb stimulation increases BBB permeability. Using in vivo-electrophysiology and pharmacological approaches, the authors demonstrate that albumin is sufficient to induce cortical potentiation and that BBB transporters are necessary for stimulus-induced potentiation. The authors include a transcriptional analysis and differential expression of genes associated with plasticity, TGF-beta signaling, and extracellular matrix were observed following stimulation. Overall, the results obtained in rodents are compelling and support the authors' conclusions that neuronal activity modulates the BBB in the healthy brain and that mechanisms downstream of BBB permeability changes play a role in stimulus-evoked plasticity. These findings were further supported with fMRI and BBB permeability measurements performed in healthy human subjects performing a simple sensorimotor task. While there are many strengths in this study, there is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions. The authors only used males in this study and do not discuss whether they would also expect to sex differences in stimulation-evoked BBB changes in the healthy brain. Another minor limitation is the authors did not address the potential impact of anesthesia which can impact neurovascular coupling in rodent studies. The authors could have also better integrated the RNAseq findings into mechanistic experiments, including testing whether the upregulation of OAT3 plays a role in cortical plasticity observed following stimulation. Overall, this study provides novel insights into how neurovascular coupling, BBB permeability, and plasticity interact in the healthy brain.

      While there are many strengths in this study, there is literature to suggest that there are sex differences in BBB dysfunction in pathophysiological conditions. The authors only used males in this study and do not discuss whether they would also expect to sex differences in stimulation-evoked BBB changes in the healthy brain.

      We agree with the reviewer regarding the importance of examining sex differences on stimulation-evoked BBB changes. To address this issue we have: (1) clarified in the methods section that the human study involved both males and females; (2) added a section to the discussion highlighting the male bias as a key limitation of our animal experiments; and (3) stated that future work should examine whether stimulation-evoked BBB changes differ between makes and females.

      Another minor limitation is the authors did not address the potential impact of anesthesia which can impact neurovascular coupling in rodent studies.

      We are grateful for this comment and agree with the reviewer that the potential effects of anesthesia should be discussed. We have added the following discussion paragraph:

      “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can affect various receptors within the NVU, potentially altering neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketamine-xylazine anesthesia, which unlike other anesthetics, was shown to generate robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018).”

      Reviewer #2 (Public Review):

      Summary:

      This study builds upon previous work that demonstrated that brain injury results in leakage of albumin across the bloodbrain barrier, resulting in activation of TGF-beta in astrocytes. Consequently, this leads to decreased glutamate uptake, reduced buffering of extracellular potassium, and hyperexcitability. This study asks whether such a process can play a physiological role in cortical plasticity. They first show that stimulation of a forelimb for 30 minutes in a rat results in leakage of the blood-brain barrier and extravasation of albumin on the contralateral but not ipsilateral cortex. The authors propose that the leakage is dependent upon neuronal excitability and is associated with an enhancement of excitatory transmission. Inhibiting the transport of albumin or the activation of TGF-beta prevents the enhancement of excitatory transmission. In addition, gene expression associated with TGF-beta activation, synaptic plasticity, and extracellular matrix are enhanced on the "stimulated" hemisphere. That this may translate to humans is demonstrated by a breakdown in the blood-brain barrier following activation of brain areas through a motor task.

      Strengths:

      This study is novel and the results are potentially important as they demonstrate an unexpected breakdown of the blood-brain barrier with physiological activity and this may serve a physiological purpose, affecting synaptic plasticity.

      The strengths of the study are:

      1) The use of an in vivo model with multiple methods to investigate the blood-brain barrier response to a forelimb stimulation.

      2) The determination of a potential functional role for the observed leakage of the blood-brain barrier from both a genetic and electrophysiological viewpoint.

      3) The demonstration that inhibiting different points in the putative pathway from activation of the cortex to transport of albumin and activation of the TGF-beta pathway, the effect on synaptic enhancement could be prevented.

      4) Preliminary experiments demonstrating a similar observation of activity-dependent breakdown of the blood-brain barrier in humans.

      Weaknesses:

      There are both conceptual and experimental weaknesses.

      1) The stimulation is in an animal anesthetized with ketamine, which can affect critical receptors (ie NMDA receptors) in synaptic plasticity.

      We agree that the potential effects of anesthesia should be considered. The Discussion was revised to address this point: “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can affect various receptors within the NVU, potentially altering neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketamine-xylazine anesthesia, which unlike other anesthetics, was shown to generate robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018)”

      2) The stimulation protocol is prolonged and it would be helpful to know if briefer stimulations have the same effect or if longer stimulations have a greater effect ie does the leakage give a "readout" of the stimulation intensity/length.

      Thank you for this important comment. We are also very curious about the potential relationship between stimulation magnitude/duration and subsequent leakage and have added the following statement to the discussion:

      “Future studies should also explore the effects of stimulation magnitude/duration on BBB modulation, as well as the stimulation threshold between physiological and pathological increase in BBB permeability.”

      Our current findings indicate that a one-minute stimulation does not affect vascular permeability or SEP and we aim to test additional stimulation paradigms in future studies.

      3) For some of the experiments (see below), the numbers of animals are low and the statistical tests used may not be the most appropriate, making the results less clear cut.

      We appreciate this comment and have revised the statistical analysis of Figure 1J,K. We now use a nested t-test to test for differences between rats (as opposed to sections). The differences remain significant (EB, p=0.0296; Alexa, p=0.0229). The text was modified accordingly.

      4) The experimental paradigms are not entirely clear, especially the length of time of drug application and the authors seem to try to detect enhancement of a blocked SEP.

      Thank you for pointing this out. Figures 2&3 were revised for clarification and a ‘Drug Application’ subsection was added to the methods section.

      5) It is not clear how long the enhancement lasts. There is a remark that it lasts longer than 5 hours but there is no presentation of data to support this.

      Thank you for this comment. As the length of experiments differed between animals, the exact length could not be specifically stated. To clarify this point, we revised the text to indicate that LTP was recorded until the end of each experiment (between 1.5-5 hours, depending on the condition the animal was in). We also added a panel to figure 2 (Figure 2d) with exemplary data showing potentiation 60, 90, and 120 min post stimulation.

      6) The spatial and temporal specificity of this effect is unclear (other than hemispheric in rats) and even less clear in humans.

      Our animal experiments (using both in vivo imaging and histological analysis) showed no evidence of BBB modulation outside the cortical somatosensory area corresponding to the limbs. We looked at the entirety of the coronal section of the brain and found enhancement solely in the somatosensory area corresponding to limb. The right side of panels h and i in Figure 1 show an x20 magnification of the section, focusing on the enhanced area. The whole section was not shown, as no fluorescence was found outside the magnified area. Moreover, our quantification showed that the enhancement was specific to the contralateral and not ipsilateral somatosensory cortex (Figure 1 j-k).

      We agree that temporal specificity needs to be further explored, and we have now stated that in the discussion: “Future studies are needed to explore the BBB modulating effects of additional stimulation protocols – with varying durations, frequencies, and magnitudes. Such studies may also elucidate the temporal and ultrastructural characteristics that may differentiate between physiological and pathological BBB modulation.”

      We also agree that larger studies are needed to better understand the specificity of the observed effect in humans, and to account for potential inter-human variability in vascular integrity and brain function due to different schedules, diets, exercise habits, etc.

      8) The experimenters rightly use separate controls for most of the experiments but this is not always the case, also raising the possibility that the application of drugs was not done randomly or interleaved, but possibly performed in blocks of animals, which can also affect results.

      Thank you for pointing out this lack of clarity. We have now highlighted that drug application was done randomly.

      9) Methyl-beta-cyclodextrin clears cholesterol so the effect on albumin transport is not specific, it could be mediating its effect through some other pathway.

      We agree that the effect of mβCD may not be specific. To mitigate this issue, we used a very low mβCD concentration (10uM). Notably, this is markedly lower than the concentrations reported by Koudinov et al, showing that cholesterol depletion is observed at 5mM mβCD and not at 2.5mM/5mM (Koudinov & Koudinova, 2001). This point was added to the discussion.

      10) Since the breakdown of the blood-brain barrier can be inhibited by a TGF-beta inhibitor, then this implies that TGFbeta is necessary for the breakdown of the blood-brain barrier. This does not sit well with the hypothesis that TGF-beta activation depends upon blood-brain barrier leakage.

      Thank you for pointing out this lack of clarity. We have added a discussion paragraph that clarifies our hypothesis: “As mentioned above, albumin is a known activator of TGF-β signaling, and TGF-β has a well-established role in neuroplasticity. Interestingly, emerging evidence suggests that TGF-β also increases cross-BBB transcytosis (Betterton et al., 2022; Kaplan et al., 2020; McMillin et al., 2015; Schumacher et al., 2023). Hence, we propose the following two-part hypothesis for the TGF-β/BBB-mediated synaptic potentiation observed in our experiments: (1) prolonged stimulation triggers TGF-β signaling and increased caveolae-mediated transcytosis of albumin; and (2) extravasated albumin induces further TGF-β signaling, leading to synaptogenesis and additional cross-BBB transport – in a self-reinforcing positive feedback loop. Future research is needed to examine the validity of this hypothesis.

      Reviewer #3 (Public Review):

      Summary:

      This study used prolonged stimulation of a limb to examine possible plasticity in somatosensory evoked potentials induced by the stimulation. They also studied the extent that the blood-brain barrier (BBB) was opened by prolonged stimulation and whether that played a role in the plasticity. They found that there was potentiation of the amplitude and area under the curve of the evoked potential after prolonged stimulation and this was long-lasting (>5 hrs). They also implicated extravasation of serum albumin, caveolae-mediated transcytosis, and TGFb signalling, as well as neuronal activity and upregulation of PSD95. Transcriptomics was done and implicated plasticity-related genes in the changes after prolonged stimulation, but not proteins associated with the BBB or inflammation. Next, they address the application to humans using a squeeze ball task. They imaged the brain and suggested that the hand activity led to an increased permeability of the vessels, suggesting modulation of the BBB.

      Strengths:

      The strengths of the paper are the novelty of the idea that stimulation of the limb can induce cortical plasticity in a normal condition, and it involves the opening of the BBB with albumin entry. In addition, there are many datasets and both rat and human data.

      Weaknesses:

      The conclusions are not compelling however because of a lack of explanation of methods and quantification. It also is not clear whether the prolonged stimulation in the rat was normal conditions. To their credit, the authors recorded the neuronal activity during stimulation, but it seemed excessive excitation. Since seizures open the BBB this result calls into question one of the conclusions. that the results reflect a normal brain. The authors could either conduct studies with stimulation that is more physiological or discuss the caveats of using a supraphysiological stimulus to infer healthy brain function.

      The conclusions are not compelling however because of a lack of explanation of methods and quantification.

      Thank you for this comment. In the revised paper, we expanded the Methods section to better describe the procedures and approaches we used for data analysis.

      It also is not clear whether the prolonged stimulation in the rat was normal conditions.

      We believe that the used stimulation protocol is within the physiological range (and relevant to plasticity, learning and memory) for the following reasons:

      1) In our continuous electrophysiological recordings, we did not observe any form of epileptiform or otherwise pathological activity.

      2) Memory/training/skill acquisition experiments in humans often involve similar training duration or longer (Bengtsson et al., 2005), e.g., a 30 min thumb training session performed by (Classen et al., 1998).

      3) The levels of SEP potentiation we observed are similar to those reported in:

      a) Rats following a 10-minute whisker stimulation (one hour post stimulation, (Mégevand et al., 2009)).

      b) Humans following a 15 min task (McGregor et al., 2016).

      This important point is now presented in the discussion.

      Reviewer #1 (Recommendations For The Authors):

      The discussion would benefit from additional discussion of the potential impacts of sex and anesthesia in their findings.

      We agree with the reviewer and have added the following paragraph to the discussion:

      “A key limitation of our animal experiments is the fact they were performed under anesthesia, due to the complex nature of the experimental setup (i.e., simultaneous cortical imaging and electrophysiological recordings). Anesthetic agents can potentially alter neuronal activity, SEPs, CBF, and vascular responses (Aksenov et al., 2015; Lindauer et al., 1993; Masamoto & Kanno, 2012). To minimize these effects, we used ketaminexylazine anesthesia, which unlike other anesthetics, was shown to maintain robust BOLD and SEP responses to neuronal activation (Franceschini et al., 2010; Shim et al., 2018). Another limitation of our animal study is the potentially non-specific effect of mβCD – an agent that disrupts caveola transport but may also lead to cholesterol depletion (Keller & Simons, 1998). To mitigate this issue, we used a very low mβCD concentration (10uM), orders of magnitude below the concentration reported to deplete cholesterol (Koudinov et al). Lastly, our animal study is limited by the inclusion of solely male rats. While our findings in humans did not point to sex-related differences in stimulation-evoked BBB modulation, larger animals and human studies are needed to examine this question.”

      The figure text is quite small.

      Thank you for pointing this out, we revised all figures and increased font size for clarity.

      Including pharmacological concentrations within the figure legends would improve the readability of the manuscript.

      Thank you for this suggestion, the figure legends were modified accordingly.

      In methods for immunoassays the 5 groups could be more clear by stating that there are 3 timepoints for stimulation experiments. There is a typo in this section where the 24-hour post is stated twice in the same sentence.

      Thank you for pointing this out, the text was modified accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1) In Figure 1, J and K seem to indicate that in these experiments the statisitics were done per slice and not per animal. This is not a reasonable approach, a repeat measure ANOVA or averaging for each animal are more appropriate statistical approaches.

      We thank the reviewer for pointing this out. The statistical analysis for Figure 1j,k was modified. We now use a nested ttest to test for differences between rats and not sections. The differences are still significant (EB, p=0.0296; Alexa, p=0.0229). The manuscript was modified accordingly.

      2) In Figure 2, the protocol does not seem to give much idea about time course. There was a stimulation test for 1 minute before and then 1 minute after the 30-minute stimulation train. How was potentiation assessed for the next 5 hours and where are the data?

      Potentiation was assessed by repeating 1min test stim every 30 min for the duration of the experiment, we added a panel to show late potentiation, see response above.

      3) In Figure 2, there is a notable lack of controls eg the effect of sham stimulation and application of saline. These are important as the drift of response magnitude can be a problem in long experiments.

      We did test for the potential presence of response drift, by examining whether SEPs of non-stimulated animals change over time (at baseline, 30 or 60 minutes of recording; n=6). No statistical differences were found. Our analysis focused on using each animal as its own control (i.e., comparing baseline SEP to SEP post albumin perfusion), because SEP studies highlight the importance of comparing each animal to its own baseline, due to the large inter-animal variability (All et al., 2010; Mégevand et al., 2009; Zandieh et al., 2003).

      4) Figure 3 a is not clear – were the drugs applied throughout?

      Thank you for pointing this out. We have revised Figure 3 a to show that the drugs were applied for 50 min before the stimulation.

      5) In Figure 3 panel d is repeated in panel j. This needs correcting

      Thank you. This mistake was fixed.

      6) In LTP-type experiments usually the antagonist is applied during the stimulation and then washed out. This avoids the problem in this figure in which CNQX effectively blocks transmission and so it is not possible to detect any enhancement if it were there. Eg in panel e, CNQX block transmission, and then the assessment is performed when the AMPA receptors are blocked after 30 minutes of stimulation. If receptors are blocked no enhancement will be detectable. Moreover, surely the question is the ratio of the effect of 30-minute stimulation on the SEP in the presence of CNQX and so the statistics should be done on the fold change in the SEP following 30-minute stimulation in the presence of CNQX.

      Thank you. The protocol might have been misrepresented in the original figure. We modified Fig 3a to clarify that the antagonists were indeed washed out upon stimulation start to make sure the receptors are not blocked during the test stimulation following the 30 min stimulation. In addition, we tested for the difference in fold change between 30 min stim, and 30 min stimulation following antagonists wash-in (Fig 3f and Fig S2a).

      7) Interesting in Figure f, stimulation, albumin, and AP5 all seem to have the same enhancement of the SEP. Is the lack of effect of 30-minute stimulation in the presence of AP5, a ceiling effect ie AP5 has enhanced the SEP, and no further enhancement from stimulation is possible.

      This is a very interesting point that will require further research.

      8) SJN seems to block neurotransmission. What is the mechanism? The same analysis as for CNQX should be performed ie what is the fold change not compared to baseline but in the presence of SJN.

      Our quantification showed that SJN did not significantly reduce the SEP max amplitude, and we therefore did not include this graph in the figure.

      9) Please acknowledge that the effect of mbetaCD is non-specific. There is a large literature on the effects of cholesterol depletion on LTP.

      We agree that the effect of mβCD may not be specific. To mitigate this issue, we used a very low mβCD concentration (10µM). Notably, this is markedly lower than the concentrations reported by Koudinov et al, showing that cholesterol depletion is only observed at a concentration of 5mM (Koudinov & Koudinova, 2001). This point is now discussed under the discussion paragraph describing the study’s limitations.

      10) k&l seem to have used the same control in which case they should not be analysed separately (they are all part of the same experiment).

      We agree with the reviewer and have revised the figure accordingly.

      11) The difference in gene expression in Figure 4 would be more convincing if it could be prevented by for example a TGFbeta inhibitor.

      We agree and acknowledge the impact such experiments could provide. We plan to incorporate these experiments into our future studies.

      12) Figure 5 seems to indicate bilateral and widespread BBB modulation arguing that this may be a non-specific effect. Panel g should look at other neocortical regions eg occipital cortex.

      We agree and thank the reviewer for this comment. We revised the figure to include other cortical areas, such as the frontal and occipital cortices (Figure 5g)

      Minor comments

      1) Paired data eg in Fig 2D are better represented by pairing the dots usually with a line.

      2) Please correct the %fold baseline in axes in graphs which show % change for baseline.

      3) Figure 4 is not correctly referred to in the text.

      We agree with all the points raised by the reviewer and revised the figures and text accordingly.

      Reviewer #3 (Recommendations For The Authors):

      The conclusions are not compelling however because of a lack of explanation of methods and quantification. It also is not clear whether the prolonged stimulation in the rat was normal conditions. To their credit, the authors recorded the neuronal activity during stimulation, but it seemed excessive excitation. Since seizures open the BBB this result calls into question one of the conclusions. that the results reflect a normal brain. The authors could either conduct studies with stimulation that is more physiological or discuss the caveats of using a supraphysiological stimulus to infer healthy brain function.

      Major concerns:

      Methods need more explanation. Rationales need more justification. Examples are provided below.

      Throughout many sections of the paper, sample sizes and stats are often missing. For stats, please provide p-values and other information (tcrit, U statistic, F, etc.)

      Thank you, we added the relevant information where it was missing throughout the manuscript.

      For transcriptomics, they might have found changes in BBB-related genes if they assayed vessels but they assayed the cortex.

      We agree with the reviewer that this would be a very interesting future direction. The present study could not include this kind of analysis due to lack of access to vasculature isolation methods or single-cell RNA seq.

      What were the inclusion/exclusion criteria for the subjects?

      Thank you for pointing out this lack of clarity. The methods section (under ‘Magnetic Resonance Imaging’ – ‘Participants’) was expanded to include the following:

      “Male and female healthy individuals, aged 18-35, with no known neurological or psychiatric disorders were recruited to undergo MRI scanning while performing a motor task (n=6; 3 males and 3 females). MRI scans of 10 sex- and age- matched individuals (with no known neurological or psychiatric disorders) who did not perform the task were used as control data (n=10; 5 males and 5 females.

      Were they age and sex-matched?

      They were, indeed, age and sex-matched. This was now clarified in the relevant Methods section.

      Were there other factors that could have influenced the results?

      Certainly. Human subjects are difficult to control for due to different schedules, diets, exercise habits, and other factors that may impact vascular integrity and brain function. Larger multimodal studies are needed to better understand the observed phenomenon.

      Fig. 1. Images are very dim. Text here and in other figures is often too small to see. Some parts of the figures are not explained.

      Our apologies. Figures and legends were revised accordingly.

      Fig 2a, f. I don't see much difference here- do the authors think there was?

      We agree that the difference may not be visually obvious. The quantification of trace parameters (amplitude and area under curve) does, however, reveal a significant SEP difference in response to both stimulation (panels X and y) and albumin (panels z and q).

      Fig 3 d and j seem the same.

      We thank the reviewer for noticing. This was a copy mistake that was now rectified.

      Lesser concerns and examples of text that need explana9on:

      Introduction

      Insulin-like growth factor is transported. From where to where?

      The text was edited to clarify that this was cross-BBB influx of insulin-like growth factor-I.

      RMT that underlies the transport of plasma proteins was induced by physiological or non-physiological stimulation.

      This was shown without stimulation, in normal physiology of young and aged healthy mice. The text was edited to clarify this point.

      What was the circadian modulation that was shown to implicate BBB in brain function?

      The text was edited for clarity.

      Results

      When the word stimulation is used please be specific if whiskers are moved by an experimenter, an electrode is used to apply current, etc.

      We have now moved the ‘Stimulation protocol’ section closer to beginning of the Methods and emphasized that we administered electrical stimulation to the forepaw or hindlimb using subdermal needle electrodes.

      Please explain how the authors are convinced they localized the vascular response.

      The vascular response was localized via: (1) visual detection of arterioles that dilated in response to stimulation (due to functional hyperemia / neurovascular coupling) [figure 1 d]; and (2) quantitative mapping of increased hemoglobin concentration (Bouchard et al., 2009) [Figure 1 b]. This is now mentioned in the methods (under ‘In vivo imaging’) and results (under the ‘Stimulation increases BBB permeability’).

      "30 min of limb stimulation" means what exactly? 6 Hz 2mA for 30 min?

      Thank you. The text was revised for clarity (Methods under ‘Stimulation protocol’):

      “The left forelimb or hind limb of the rat was stimulated using Isolated Scmulator device (AD Instruments) attached with two subdermal needle electrodes (0.1 ms square pulses, 2-3 mA) at 6 Hz frequency. Test stimulation consisted of 360 pulses (60 s) and delivered before (as baseline) and after long-duration stimulation (30 min, referred throughout the text as ‘stimulation’). In control and albumin rats, only short-duration stimulations were performed. Under sham stimulation, electrodes were placed without delivering current.”

      Histology that was performed to confirm extravasation needs clarification because if tissue was removed from the brain, and fixed in order to do histology, what is outside the vessels would seem likely to wash away.

      Thank you for pointing out the need to clarify this point. The Histology description in the Methods section was revised in the following manner:

      “Albumin extravasacon was confirmed histologically in separate cohorts of rats that were anesthetized and stimulated without craniotomy surgery. Assessment of albumin extravasacon was performed using a well-established approach that involves peripheral injection of either labeled-albumin (bovine serum albumin conjugated to Alexa Flour 488, Alexa488-Alb) or albumin-labeling dye (Evans blue, EB – a dye that binds to endogenous albumin and forms a fluorescent complex), followed by histological analysis of brain tissue (Ahishali & Kaya, 2020; Ivens et al., 2007; Lapilover et al., 2012; Obermeier et al., 2013; Veksler et al., 2020). Since extravasated albumin is taken up by astrocytes (Ivens et al., 2007; Obermeier et al., 2013), it can be visualized in the brain neuropil after brain removal and fixation (Ahishali & Kaya, 2020; Ivens et al., 2007; Lapilover et al., 2012; Veksler et al., 2020). Five rats were injected with Alexa488-Alb (1.7 mg/ml) and five with EB (2%, 20 mg/ml, n=5). The injections were administered via the tail vein. Following injection, rats were transcardially perfused with…”

      It is not clear why there was extravasacon contralateral but not ipsilateral if there are cortical-cortical connections.

      Interpersonally, we also did not observe ipsilateral SEP in response to limb stimulation, with evidence of SEP and BBB permeability only in the contralateral sensorimotor region. This finding is consistent with electrophysiological and fMRI studies showing that peripheral stimulation results in predominantly contralateral potentials (Allison et al., 2000; Goff et al., 1962).

      After injection of Evans blue or Alexa-Alb, how was it shown that there was extravasacon?

      Extravasalon in cortical sections was visualized using a fluorescent microscope (Figure 1 h-i). Since extravasated albumin is taken up by astrocytes, fluorescent imaging can be used for visualizing and quantifying labeled albumin (Ahishali & Kaya, 2020; Ivens et al., 2007; Knowland et al., 2014). Here is the relevant methods excerpt:

      “Coronal sections (40-μm thick) were obtained using a freezing microtome (Leica Biosystems) and imaged for dye extravasacon using a fluorescence microscope (Axioskop 2; Zeiss) equipped with a CCD digital camera (AxioCam MRc 5; Zeiss).”

      How is a sham control not stimulated - what is the sham procedure?

      In the sham stimulation protocol electrodes were placed, but current was not delivered. A section titled ‘Stimulation protocol’ was added to the methods to clarify this point.

      What was the method for photothrombosis-induced ischemia?

      The procedure for photothrombosis-induced ischemia is described under the Methods section ‘Immunoassays’ – ‘Enzyme-linked immunosorbent assay (ELISA) for albumin extravasalon’:

      “Rats were anesthetilzed and underwent … photothrombosis stroke (PT) as previously described (Lippmann et al., 2017; Schoknecht et al., 2014). Briefly, Rose Bengal was administered intravenously (20 mg/kg) and a halogen light beam was directed for 15 min onto the intact exposed skull over the right somatosensory cortex.”

      Fig 1d. All parts of d are not explained.

      Thank you for pointing this out. In the revised manuscript, the panels of this figure were slightly reordered, and we made sure all panels are explained in the legend.

      e. Is the LFP a seizure? How physiological is this- it does not seem very physiological.

      Thank you for your comment. We believe that this activity is not a seizure because it lacks the typical slow activity that corresponds to the “depolarizalon shir” observed during seizures (Ivens et al., 2007; Milikovsky et al., 2019; Zelig et al., 2022).

      f. Permeability index needs explanation. How was the area chosen for each rat? Randomly? Was it the same across rats?

      We have now revised the Methods section to provide a clearer description of the permeability index calculation and the choice of the imaging area:

      “Across all experiments, acquired images were the same size (512 × 512 pixel, ~1x1 mm), centered above the responding arteriole. Images were analyzed offline using MATLAB as described (Vazana et al., 2016). Briefly, image registration and segmentation were performed to produce a binary image, separating blood vessels from extravascular regions. For each extravascular pixel, a time curve of signal intensity over time was constructed. To determine whether an extravascular pixel had tracer accumulation over time (due to BBB permeability), the pixel’s intensity curve was divided by that of the responding artery (i.e., the arterial input function, AIF, representing tracer input). This ratio was termed the BBB permeability index (PI), and extravascular pixels with PI > 1 were identified as pixels with tracer accumulation due to BBB permeability.”

      g. For Evans blue and Alexa-Alb was the sample size rats or sections?

      Thank you for this question. We revised the statistical analysis for Figure 1j,k to appropriately asses the differences between rats. We used a nested t-test to test for differences between rats (and not sections). The differences remained significant (EB, p=0.0296; Alexa, p=0.0229) and the text was modified accordingly.

      h, i, j need more contrast and/or brightness to appreciate the images. Arrows would help. The text is too small to read.

      Thank you. This issue was addressed in the revised paper.

      To induce potentiation, 6 Hz 2 mA stimuli were used for 30 min. Please justify this as physiological.

      Thank you for the comment. We believe that the used stimulation protocol is within the physiological range (and relevant to plasticity, learning and memory) for the following reasons:

      1. In our continuous electrophysiological recordings, we did not observe any form of epileptiform or otherwise pathological activity.

      2. Memory/training/skill acquisition experiments in humans often involve similar training duration or longer (Bengtsson et al., 2005), e.g., a 30 min thumb training session performed by (Classen et al., 1998).

      3. The levels of SEP potentiation we observed are similar to those reported in:

      a. Rats following a 10-minute whisker stimulation (one hour post stimulation, (Mégevand et al., 2009)).

      b. Humans following a 15 min task (McGregor et al., 2016).

      We have revised the Discussion of the paper to clarify this important point.

      The test stimulus to evoke somatosensory evoked potentials was 1 min. Was this 6 Hz 2 mA for 1 min? Please justify.

      Yes. We chose these parameters as these ranges were shown to induce the largest changes in blood flow (with laserdoppler flowmetry) and summated SEP (Ngai et al., 1999), corresponding with our findings. We also show that these stimulation parameters do not induce changes in BBB permeability nor synaptic potentiation, therefore served as test control.

      How long after the 30 min was the test stimulus triggered- immediately? 30 sec afterwards?

      The test stimulus was applied 5 min afterwards to allow for BBB imaging protocol (now explained in the Methods section).

      How were amplitude and AUC measured? Baseline to peak? For AUC is it the sum of the upward and downward deflections comprising the LFP?

      Yes, and yes. This is now clarified in the ‘Analysis of electrophysiological recordings’ section in the Methods.

      How was the same site in the somatosensory cortex recorded for each animal?<br /> Potentiation was said to last >5 hrs. How often was it measured? Was potentiation the same for the amplitude and the AUC?

      The location of the cranial window over the somatosensory cortex was the same in all rats. The location of the specific responding arteriole may change between animals, but the recording electrode was places around the responding arteriole in the same approaching angle and depth for all animals.

      As the length of experiments differed between animals, the exact length could not be specifically stated. We therefore revised the text to clarify that LTP was recorded until the end of each experiment (depending on the animal condition, between 1.5-5 hours) and added a panel to figure 2 (Figure 2f) with exemplary data showing potentiation 120 min (2hr) post stimulation.

      Why was 25% of the serum level of albumin selected- does the brain ever get exposed to that much? Was albumin dissolved in aCSF or was aCSF chosen as a control for another reason?

      Yes, albumin was dissolved in aCSF and the solution was allowed to diffuse through the brain. The relatively high concentration of albumin was chosen to account for factors that lower its effective tissue concentration:

      1. The low diffusion rate of albumin (Tao & Nicholson, 1996).

      2. The likelihood of albumin to encounter a degradation site or a cross-BBB efflux transporter (Tao & Nicholson, 1996; Zhang & Pardridge, 2001).

      Figure 2.

      a. Please show baseline, the stimulus, and aftier the stimulus.

      Please point out when there was stimulacon.

      What is the inset at the top?

      The inset on top is the example trace of the stimulus waveform, the legend of the figure was modified for clarity.

      b. Please show when the stimulus artifact occurred. The end of the 1-minute test stimulus period is fine. Why are the SEPs different morphologies? It suggests the different locations in the cortex were recorded.

      What is shown is the averaged SEP response over 1min test stimulus, each SEP is time locked to each stimulus. Regarding SEP waveform, it does indeed show different morphology between animals, as sometimes different arterioles respond to the stimulation, and we localize the recording to the responding vessel in each rat. However, in each rat the recording is only from one location. Once the electrode was positioned near the responding arteriole it was not moved.

      d, e. What are the stats?

      h, i. Add stats. Are all comparisons Wilcoxon? Please provide p values.

      The comparisons were performed with the Wilcoxon test. We now state that and provide the exact p values.

      j. What was selected from the baseline and what was selected during Albumin and how long of a record was selected?

      What program was used to create the spectrogram?

      What is meant by changes at frequencies above 200 Hz, the frequencies of HFOs?

      The Method section (under ‘Electrophysiology – Data acquisition and analyses’) has been revised for clarification. Spectrogram was created with MATLAB and graphed with Prism. For analysis, we selected a 10 min recorded segment before starting albumin perfusion, and 10 min after terminating albumin perfusion.

      When the cortial window was exposed to drugs, what were concentrations used that were selective for their receptor? How long was the exposure?

      Was the vehicle tested?

      We have revised the Methods section (under ‘Animal preparation and surgical procedures - Drug application’) to clarify the duration and concentration used and justification. All blockers were exposed for 50 min. The vehicle was an artificial cerebrospinal fluid solution (aCSF).

      For PSD-95, what was the area of the cortex that was tested?

      Were animals acutely euthanized and the brain dissected, frozen, etc?

      We have revised the Methods section (under ‘Immunoassays’) for clarity.

      What is mbetaCD?

      The full term was added to the results section. It is also mentioned in the Methods.

      Is SJN specific at the concentration that was chosen? Did it inhibit the SEP?

      In the concentration used in our experiments, SJN is a selective TGF-β type I receptor ALK5 inhibitor (see (Gellibert et al., 2004)).

      Fig. 3b. It looks like CNQX increased the width of the vessels quite a bit. Please explain.

      For AP5, very large vessels were imaged, making it hard to compare to the other data.

      The vascular dilation in response to the stimulation under CNQX was similar to that seen under “normal” conditions (i.e. aCSF). As for AP5, in some experiments the responding arteriole was in close proximity to a large venule that cannot be avoidable while imaging. For quantification we always measured arterioles within the same diameter range.

      e. Sometimes CNQX did not block the response after 30 min stimulation. Why?

      CNQX is washed out before the 30 min stimulation starts, so it is not expected to block the response to stimulation. However, in some cases the response to stimulation was lower in amplitude, likely due to residual CNQX that did not wash out completely.

      Regarding DEGs, on the top of p 10 what are the percentages of?

      In this analysis we tested in each hemisphere how many genes expressed differentially between 1 and 24 hours post stimulation (either up- or down- regulated). The results were presented as the percentages of differentially expressed genes in each hemisphere (13.2% contralateral, and 7.3% ipsilateral). The text was rephrased for clarity.

      Please add a ref for the use of the JSD metric methods and support for its use as the appropriate method. Other methods need explanation/references.

      References were added to the text to clarify. The Jensen-Shannon Divergence metric is commonly used to calculate the statistical pairwise distance among two distributions (Sudmant et al., 2015). From comparing a few different distance metric calculations including JSD, our results were similar irrespective of the distance metric applied. Therefore, we demonstrate the variability between paired samples of stimulated and non-stimulated cortex of each animal at two time points following stimulation (24 h vs. 1 h) using JSD.

      What synaptic plasticity genes were selected for assay and what were not?

      What does "largely unaffected" mean? Some of the genes may change a small amount but have big functional effects.

      The selected genes of interest were taken from a large list compiled from previous publications (see (Cacheaux et al., 2009; Kim et al., 2017)) and are well documented in gene ontology databases and tools (e.g., Metascape, (Zhou et al., 2019)).

      We agree that the term ‘largely unaffected’ is suboptimal, and we rephrased this section of the results to indicate that “No significant differences were found in BBB or inflammation related genes between the hemispheres”. We also agree that a small number of genes can have big functional effects. Future studies are needed to better understand the genes underlying the observed BBB modulation.

      Please note that Slc and ABCs are not only involved in the BBB.

      Thank you. We modified the text to no longer specify that these are BBB-specific transporters.

      Please explain the choice of the stress ball squeeze task, and DCE.

      DCE is a well-established method for BBB imaging in living humans, and it is cited throughout the manuscript. The ball squeeze task was chosen as it is presumed to involve primarily sensory motor areas, without high-level processing (Halder et al., 2005). This is now stated in the discussion.

      What is Gd-DOTA?

      Gd-DOTA is a gadolinium-based contrast agent (gadoterate meglumine, AKA Dotarem). Text was revised for clarity. Please see the Methods section under ‘Magnetic Resonance Imaging’ - ‘Data Acquisition’.

      What does a higher percentage of activated regions mean- how was activacon defined and how were regions counted?

      Higher percentage of activated regions refers to regions in which voxels showed significant BOLD changes due to the motor task preformed. The statistical approaches and analyses are detailed in the Methods section under ‘Magnetic Resonance Imaging - Preprocessing of functional data, and fMRI Localizer Motor Task’.

      Figure. 4

      Was stimulation 1 min or 30 min.?

      30 min, Text has been revised for clarity.

      What is the Wald test and how were p values adjusted-please add to the Stats section.

      The Methods section under ‘Statistical analysis’ was revised to clarify this point.

      Is there a reason why p values are sometimes circles and otherwise triangles?

      The legend was revised to explain that ”Circles represent genes with no significant differences between 1 and 24 h poststimulation. Upward and downward triangles indicate significantly up- and down- regulated genes, respectively.”

      How can a p-value be zero? Please explain abbreviations.

      The p-value is very low (~10-10) and therefore appears to be zero due to the scale of the y-axis.

      Fig. 5b.

      There are unexplained abbreviations.

      The x on the ball and hand is not clear relative to the black ball and hand.

      Thank you for noticing. We revised the figure for clarity.

      c. What was the method used to make an activator map and what is meant by localizer task?

      The explanation of the “fMRI Localizer Motor Task” section in the methods was revised for added clarity.

      f. What is the measurement "% area" that indicates " BBB modulation"?

      Is it in f, the BBB permeable vessels (%)? f. Please explain: "Heatmap of BBB modulated voxels percentage in motor/sensory-related areas of task vs. controls."

      The %area measurement indicates the percentage of voxels within a specific brain region that have a leaky BBB. See Methods.

      Is Task - the control?

      Yes.

      Supplemental Fig. 2.

      Why is AUC measured, not amplitude?

      The amplitude, and now also the AUC are shown in Figure 3.

      b. There is no comparison to baseline. The arrowhead points to the start of stimulation but there is no arrowhead marking the end.

      In the revised paper we added a grey shade over the stimulation period to better visualize the difference to baseline. In this panel we wanted to show that NMDA receptor antagonist did not block the SEP, while AMPA receptor antagonist did.

      c. In the blot there are two bands for PSD95- which is the one that is PSD95? There is no increase in PSD95 uncl 24 hrs but in the graph in d there is. In the blot, there is a strong expression of PSD95 ipsilateral compared to contralateral in the sham-why?

      What is the percent change fold?

      The PSD-95 is the top and larger band. The lower band was disregarded in the analysis. The example we show may not fully reflect the group statistics presented in panel d. Upon quantification of 8 animals, PSD-95 is significantly higher 30 min and 24 hours post stimulation in the contralateral hemisphere. No significant changes were found in sham animals. The % change fold refers to the AUC change compared to baseline. This panel was now incorporated in Figure 3 (panel h), and the title was corrected to “|AUC|, % change from baseline”.

      Supplemental Fig. 4.

      a. If ipsilateral and contralateral showed many changes why do the authors think the effects were only contralateral?

      Our gene analysis was designed to complement our in vivo and histological findings, by assessing the magnitude of change in differentially expressed genes (DEGs). This analysis showed that: (1) the hemisphere contralateral to the stimulus has significantly more DEGs than the ipsilateral hemisphere; and (2) the DEGs were related to synaptic plasticity and TGF-b signaling. These findings strengthen the hypothesis raised by our in vivo and histological experiments.

      Supplemental Fig. 5 includes many processes not in the results. Examples include dorsal cuneate and VPL, dynamin, Kir, mGluR, etc. The top right has numbers that are not mentioned. If the drawings are from other papers they should be cited.

      The drawings of Figure 5 are original and were not published before. This hypothesis figure points to mechanisms that may drive the phenomena described in the paper. The legend of the figure was revised to include references to mechanisms that were not tested in this study.

      Papers referenced in this letter:

      Ahishali, B., & Kaya, M. (2020). Evaluation of Blood-Brain Barrier Integrity Using Vascular Permeability Markers: Evans Blue, Sodium Fluorescein, Albumin-Alexa Fluor Conjugates, and Horseradish Peroxidase. Methods in Molecular Biology, 2367, 87–103. https://doi.org/10.1007/7651_2020_316

      Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G., & Wyrwicz, A. M. (2015). Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. Journal of Cerebral Blood Flow and Metabolism, 35(11), 1819–1826. https://doi.org/10.1038/jcbfm.2015.130

      All, A. H., Agrawal, G., Walczak, P., Maybhate, A., Bulte, J. W. M., & Kerr, D. A. (2010). Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats. Neurological Sciences, 31(5), 595–601. https://doi.org/10.1007/s10072-010-0329-y

      Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E., & Wright, J. C. (2000). Functional MRI cerebral activation and deactivation during finger movement. Neurology, 54(1), 135–142. https://doi.org/10.1212/wnl.54.1.135

      Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148–1150. https://doi.org/10.1038/nn1516

      Betterton, R. D., Abdullahi, W., Williams, E. I., Lochhead, J. J., Brzica, H., Stanton, J., Reddell, E., Ogbonnaya, C., Davis, T. P., & Ronaldson, P. T. (2022). Regula/on of Blood-Brain Barrier Transporters by Transforming Growth Factor-β/Activin Receptor-Like Kinase 1 Signaling: Relevance to the Brain Disposition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors (i.e., Sta/ns). Drug Metabolism and Disposition, 50(7), 942–956. https://doi.org/10.1124/dmd.121.000781

      Bouchard, M. B., Chen, B. R., Burgess, S. A., & Hillman, E. M. C. (2009). Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Optics Express, 17(18), 15670. https://doi.org/10.1364/oe.17.015670

      Cacheaux, L. P., Ivens, S., David, Y., Lakhter, A. J., Bar-Klein, G., Shapira, M., Heinemann, U., Friedman, A., & Kaufer, D. (2009). Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. Journal of Neuroscience, 29(28), 8927–8935. https://doi.org/10.1523/JNEUROSCI.0430-09.2009

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123. https://doi.org/10.1152/JN.1998.79.2.1117/ASSET/IMAGES/LARGE/JNP.JA47F4.JPEG

      Franceschini, M. A., Radhakrishnan, H., Thakur, K., Wu, W., Ruvinskaya, S., Carp, S., & Boas, D. A. (2010). The effect of different anesthetics on neurovascular coupling. NeuroImage, 51(4), 1367–1377. https://doi.org/10.1016/j.neuroimage.2010.03.060

      Gellibert, F., Woolven, J., Fouchet, M. H., Mathews, N., Goodland, H., Lovegrove, V., Laroze, A., Nguyen, V. L., Sautet, S., Wang, R., Janson, C., Smith, W., Krysa, G., Boullay, V., De Gouville, A. C., Huet, S., & Hartley, D. (2004). Identification of 1,5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. Journal of Medicinal Chemistry, 47(18), 4494–4506. https://doi.org/10.1021/jm0400247

      Goff, W. R., Rosner, B. S., & Allison, T. (1962). Distribution of cerebral somatosensory evoked responses in normal man. Electroencephalography and Clinical Neurophysiology, 14(5), 697–713. https://doi.org/10.1016/0013-4694(62)90084-6

      Halder, P., Sterr, A., Brem, S., Bucher, K., Kollias, S., & Brandeis, D. (2005). Electrophysiological evidence for cortical plasticity with movement repetition. European Journal of Neuroscience, 21(8), 2271–2277. https://doi.org/10.1111/J.1460-9568.2005.04045.X

      Ivens, S., Kaufer, D., Flores, L. P., Bechmann, I., Zumsteg, D., Tomkins, O., Seiffert, E., Heinemann, U., & Friedman, A. (2007). TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain, 130(2), 535–547. https://doi.org/10.1093/brain/awl317

      Kaplan, L., Chow, B. W., & Gu, C. (2020). Neuronal regulation of the blood–brain barrier and neurovascular coupling. In Nature Reviews Neuroscience (Vol. 21, Issue 8, pp. 416–432). Nature Research. https://doi.org/10.1038/s41583-020-0322-2

      Keller, P., & Simons, K. (1998). Cholesterol is required for surface transport of influenza virus hemagglutinin. Journal of Cell Biology, 140(6), 1357–1367. https://doi.org/10.1083/jcb.140.6.1357

      Kim, S. Y., Senatorov, V. V., Morrissey, C. S., Lippmann, K., Vazquez, O., Milikovsky, D. Z., Gu, F., Parada, I., Prince, D. A., Becker, A. J., Heinemann, U., Friedman, A., & Kaufer, D. (2017). TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Scientific Reports, 7(1), 7711. https://doi.org/10.1038/s41598-017-07394-3

      Knowland, D., Arac, A., Sekiguchi, K. J., Hsu, M., Lutz, S. E., Perrino, J., Steinberg, G. K., Barres, B. A., Nimmerjahn, A., & Agalliu, D. (2014). Stepwise Recruitment of Transcellular and Paracellular Pathways Underlies Blood-Brain Barrier Breakdown in Stroke. Neuron, 82(3), 603–617. https://doi.org/10.1016/j.neuron.2014.03.003

      Koudinov, A. R., & Koudinova, N. V. (2001). Essen/al role for cholesterol in synaptic plasticity and neuronal degeneration. The FASEB Journal, 15(10), 1858–1860. https://doi.org/10.1096/r.00-0815re

      Lapilover, E. G., Lippmann, K., Salar, S., Maslarova, A., Dreier, J. P., Heinemann, U., & Friedman, A. (2012). Periinfarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiology of Disease, 48(3), 495–506. htttts://doi.org/10.1016/j.nbd.2012.06.024

      Lindauer, U., Villringer, A., & Dirnagl, U. (1993). Characterization of CBF response to somatosensory stimulation: Model and influence of anesthetics. American Journal of Physiology - Heart and Circulatory Physiology, 264(4 33-4), 223–1228. https://doi.org/10.1152/ajpheart.1993.264.4.h1223

      Lippmann, K., Kamintsky, L., Kim, S. Y., Lublinsky, S., Prager, O., Nichtweiss, J. F., Salar, S., Kaufer, D., Heinemann, U., & Friedman, A. (2017). Epileptiform activity and spreading depolarization in the bloodbrain barrier-disrupted peri-infarct hippocampus are associated with impaired GABAergic inhibition and synaptic plasticity. Journal of Cerebral Blood Flow and Metabolism, 37(5), 1803–1819. https://doi.org/10.1177/0271678X16652631

      Masamoto, K., & Kanno, I. (2012). Anesthesia and the quantitative evaluation of neurovascular coupling. In Journal of Cerebral Blood Flow and Metabolism (Vol. 32, Issue 7, pp. 1233–1247). SAGE PublicationsSage UK: London, England. https://doi.org/10.1038/jcbfm.2012.50

      McGregor, H. R., Cashaback, J. G. A., & Gribble, P. L. (2016). Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing. Current Biology, 26(7), 921–927. https://doi.org/10.1016/j.cub.2016.01.064

      McMillin, M. A., Frampton, G. A., Seiwell, A. P., Patel, N. S., Jacobs, A. N., & DeMorrow, S. (2015). TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5. Laboratory Investigation, 95(8), 903–913. https://doi.org/10.1038/labinvest.2015.70

      Mégevand, P., Troncoso, E., Quairiaux, C., Muller, D., Michel, C. M., & Kiss, J. Z. (2009). Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation. Journal of Neuroscience, 29(16), 5326– 5335. https://doi.org/10.1523/JNEUROSCI.5965-08.2009

      Milikovsky, D. Z., Ofer, J., Senatorov, V. V., Friedman, A. R., Prager, O., Sheintuch, L., Elazari, N., Veksler, R., Zelig, D., Weissberg, I., Bar-Klein, G., Swissa, E., Hanael, E., Ben-Arie, G., Schefenbauer, O., Kamintsky, L., Saar-Ashkenazy, R., Shelef, I., Shamir, M. H., … Friedman, A. (2019). Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. Science Translational Medicine, 11(521), eaaw8954–eaaw8954. https://doi.org/10.1126/scitranslmed.aaw8954

      Ngai, A. C., Jolley, M. A., D’Ambrosio, R., Meno, J. R., & Winn, H. R. (1999). Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Research, 837(1–2), 221–228. https://doi.org/10.1016/S0006-8993(99)01649-2

      Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. In Nature Medicine (Vol. 19, Issue 12, pp. 1584–1596). Nature Publishing Group. https://doi.org/10.1038/nm.3407

      Schoknecht, K., Prager, O., Vazana, U., Kamintsky, L., Harhausen, D., Zille, M., Figge, L., Chassidim, Y., Schellenberger, E., Kovács, R., Heinemann, U., & Friedman, A. (2014). Monitoring stroke progression: In vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. Journal of Cerebral Blood Flow and Metabolism, 34(11), 1791–1801. https://doi.org/10.1038/jcbfm.2014.147

      Schumacher, L., Slimani, R., Zizmare, L., Ehlers, J., Kleine Borgmann, F., Fitzgerald, J. C., Fallier-Becker, P., Beckmann, A., Grißmer, A., Meier, C., El-Ayoubi, A., Devraj, K., Mittelbronn, M., Trautwein, C., & Naumann, U. (2023). TGF-Beta Modulates the Integrity of the Blood Brain Barrier In Vitro, and Is Associated with Metabolic Alterations in Pericytes. Biomedicines, 11(1), 1–19. https://doi.org/10.3390/biomedicines11010214

      Shim, H. J., Jung, W. B., Schlegel, F., Lee, J., Kim, S., Lee, J., & Kim, S. G. (2018). Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex ac/va/on in response to forepaw stimulation. NeuroImage, 177, 30–44. https://doi.org/10.1016/J.NEUROIMAGE.2018.04.062

      Sudmant, P. H., Alexis, M. S., & Burge, C. B. (2015). Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biology, 16(1), 287. https://doi.org/10.1186/s13059-015-0853-4

      Tao, L., & Nicholson, C. (1996). Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience, 75(3), 839–847. https://doi.org/10.1016/0306-4522(96)00303-X

      Vazana, U., Veksler, R., Pell, G. S., Prager, O., Fassler, M., Chassidim, Y., Roth, Y., Shahar, H., Zangen, A., Raccah, R., Onesti, E., Ceccanti, M., Colonnese, C., Santoro, A., Salvati, M., D’Elia, A., Nucciarelli, V., Inghilleri, M., & Friedman, A. (2016). Glutamate-mediated blood–brain barrier opening: Implications for neuroprotection and drug delivery. Journal of Neuroscience, 36(29), 7727–7739. https://doi.org/10.1523/JNEUROSCI.0587-16.2016

      Veksler, R., Vazana, U., Serlin, Y., Prager, O., Ofer, J., Shemen, N., Fisher, A. M., Minaeva, O., Hua, N., SaarAshkenazy, R., Benou, I., Riklin-Raviv, T., Parker, E., Mumby, G., Kamintsky, L., Beyea, S., Bowen, C. V., Shelef, I., O’Keeffe, E., … Friedman, A. (2020). Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain, 143(6), 1826–1842. https://doi.org/10.1093/brain/awaa140

      Zandieh, S., Hopf, R., Redl, H., & Schlag, M. G. (2003). The effect of ketamine/xylazine anesthesia on sensory and motor evoked potentials in the rat. Spinal Cord, 41(1), 16–22. https://doi.org/10.1038/sj.sc.3101400

      Zelig, D., Goldberg, I., Shor, O., Ben Dor, S., Yaniv-Rosenfeld, A., Milikovsky, D. Z., Ofer, J., Imtiaz, H., Friedman, A., & Benninger, F. (2022). Paroxysmal slow wave events predict epilepsy following a first seizure. Epilepsia, 63(1), 190–198. https://doi.org/10.1111/epi.17110

      Zhang, Y., & Pardridge, W. M. (2001). Mediated efflux of IgG molecules from brain to blood across the blood– brain barrier. Journal of Neuroimmunology, 114(1–2), 168–172. https://doi.org/10.1016/S01655728(01)00242-9

      Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09234-6

    1. Author Response

      Reviewer #1 (Public Review)

      Midbrain dopamine neurons have attracted attention as a part of the brain's reward system. A different line of research, on the other hand, has shown that these neurons are also involved in higher cognitive functions such as short-term memory. However, these neurons are thought not to encode short-term memory itself because they just exhibit a phasic response in short-term memory tasks, which cannot seem to maintain information during the memory period. To understand the role of dopamine neurons in short-term memory, the present study investigated the electrophysiological property of these neurons in rodents performing a T-maze version of a short-term memory task, in which a visual cue indicated which arm (left or right) of the T-maze was associated with a reward. The animal needed to maintain this information while they were located between the cue presentation position and the selection position of the T-maze. The authors found that the activity of some dopamine neurons changed depending on the information while the animals were located in the memory position. This dopamine neuron modulation was unable to explain the motivation or motor component of the task. The authors concluded that this modulation reflected the information stored as short-term memory.

      I was simply surprised by their finding because these dopamine neurons are similar to neurons in the prefrontal cortex that store memory information with sustained activity. Dopamine neurons are an evolutionally conserved structure, which is seen even in insects, whereas the prefrontal cortex is developed mainly in the primate. I feel that their findings are novel and would attract much attention from readers in the field. But the authors need to conduct additional analyses to consolidate their conclusion.

      We thank reviewer #1 for the positive assessment and for the valuable and constructive comments on our manuscript.

      Reviewer #1 (Recommendations to The Authors)

      (1) The authors found the dopamine neuron modulation that reflected the memory information during the delay period. Here the dopamine neuron activity was aligned by the position, not by time, in which the animals needed to maintain the information. Usually, the activity was aligned by time, and many studies found that dopamine neurons exhibited a short duration burst in response to rewards and behaviorally relevant stimuli including visual cues presented in short-term memory tasks. For comparison, I (and probably other readers) want to see the time-aligned dopamine neuron modulation that reflected the memory information. Did the modulation still exist? Did it have a long duration? The authors just showed the time-aligned "population" activity that exhibited no memory-dependent modulation.

      We agree that the point raised by the reviewer is important. To address this question, we added a new paragraph to the Methods section titled “Methodological considerations” (in line 793 of the revised manuscript), where we explain the caveats of using time alignment in the T-maze task study. We also created a new sup figure 5 to clarify our argument. As the figure shows, we did not observe major differences in the firing rates when they were arranged by position or time. More importantly, we did not detect brief bursts of activity in response to the visual cue which could reflect an RPE signaling scheme. Our interpretation is that in the T-maze task, DA neurons encode “miniature” RPE signals between successive states in the T-maze, which are hard to detect, especially when neurons receive a continuous sensory input during trials.

      (2) Several studies have reported that dopamine neurons at different locations encode distinct signals even within the VTA or SNr. Were the locations of dopamine neurons maintaining the memory information different from those of other dopamine neurons?

      We thank the reviewer’s comment. Indeed, there is evidence from recent studies demonstrating that DA neurons form functional and anatomical clusters in the VTA and SN. Following the reviewer’s advice, we report the anatomical structure of memory and non-memory-specific neurons in the revised manuscript. You can read these results in the paragraph “Anatomical organization of trajectory-specific neurons.” in the “Results” section (in line 383 of the revised manuscript) and in the new sup figure 11. We only observed a clear functional-anatomical segregation in GABA neurons, but not in DA neurons. But we should note that the absence of segregation in the DA neurons could be accounted for by the fact that we recorded mostly from the lateral VTA, therefore we do not have any numbers from the medial VTA.

      (3a) Did the dopamine neurons maintaining the memory information respond to reward?

      We believe that we have already provided the data that can partially answer this question by correlating the firing rate difference between the reward and memory delay sections. This result was described in the “Neuronal activities in delay and reward are unrelated.” paragraph and in Figure 6. Moreover, motivated by the reviewer’s question, we also performed additional analysis, which is included in the revised manuscript. Briefly, we clustered significant responses between the memory delay and reward sections (Category 1: Left-signif, R-signif or No-signif / Category 2: Memory delay or Reward). We discovered that only a very small number of neurons showed the same significant trajectory preference in the memory delay and reward sections (i.e., significant preference for left trials in the memory delay and significant preference for the left reward). In fact, more significant neurons showed a preference for opposite trajectories (i.e. significant preference for left trials in memory delay and a significant preference for right rewards). A description of the new results is included in the “Neuronal activities in delay and reward are unrelated.” paragraph (in line 349 of the revised manuscript) and in the new supplementary Figure 11.

      (3b) Did they encode reward prediction error? The relationship between the present data and the conventional theory may be valuable.

      We understand that the readers of this study will come up with the question of how memory-specific activities are related to RPE signaling. However, the T-maze task we used in this research was designed for studying working memory and was not adequate to extract information about the RPE signaling of DA neurons.

      RPE signaling is mainly studied in Pavlovian conditioning. These are low-dimensional tasks with usually four (4) states (state1: ITI, state2: trial start, state3: stimulus presentation, state4: reward delivery). Evidence of RPE signaling is extracted from the firing activity of states 3 and 4 (which is theorized to be related to the difference in the values for states 3 and 4).

      However, in the T-maze task, the number of states is hard to define and practically countless. In these conditions, it has been suggested that numerous small RPEs are signaled while the mice navigate the maze; Thus, they are very difficult to detect. To our knowledge, only Kim et al 2020, Cell, vol183, pg1600, managed to detect the RPE signaling activity of DA neurons while mice were teleported in a virtual corridor.

      Another confounding factor in extracting RPE signals in the T-maze task is that the environment is high-dimensional and DA neurons are multitasking. Therefore, it is likely that RPE signaling could be masked by other parallel encoding schemes.

      We have added these descriptions in the “Methodological considerations” (in line 793 of the revised manuscript).

      (4) Did the dopamine neurons maintaining the memory information (left or right) prefer a contralateral direction like neurons in the motor cortex?

      We thank the reviewer for this comment. Indeed, the majority of the memory-specific DA neurons showed a preference for the contralateral direction. We report this result in the legend of the new sup fig 10 (in line 1668 of the revised manuscript).

      (5) As shown in Table S2, the proportion of GABA neurons maintaining the memory information (left or right during delay) was much larger than that of dopamine neurons. It seems to be strange because the main output neurons in the VTA are dopaminergic. What is the role of these GABA neurons?

      We thank the reviewer for pointing this out. The present study shows that in both populations a sizeable portion of neurons show memory-specific encoding activities. However, the percentage of memory-encoding GABA neurons is more than twice as large as in the DA neurons. Moreover, we show that GABA neurons are functionally and anatomically segregated.

      From this evidence, one could raise the hypothesis that the GABA neurons have a primary role and that the activity of DA neurons is a collateral phenomenon, triggered in a sequence of events within the VTA network. To characterize the (1) role and (2) importance of GABA neurons in memory-guided behavior, one should first identify the afferent and efferent projections of these cells in great detail. Unfortunately, we do not provide anatomical evidence.

      So far, with the electrophysiological data we have collected (unit and field recordings), we can address an alternative hypothesis. It has been reported earlier (but we have also observed) that the VTA circuit engages in behaviorally related network oscillations which range from 0.4Hz up to 100Hz. Converging evidence from different brain regions, in vitro preparations but also in vivo recordings agree that local networks of inhibitory neurons are crucial for the generation, maintenance, and spectral control of network oscillations. Ongoing analysis, which we hope will lead to a publication, is looking for the behavioral correlates of network oscillations on the T-maze task, as well as the correlation of single-unit firing activity to the field oscillations. We expect to detect a higher field-unit coherence in GABA neurons, which could explain their stronger engagement in memory-specific encoding activity.

      The potential role of GABA neurons in network oscillations is discussed in the revised manuscript in a newly added paragraph in line 564.

      Reviewer #2 (Public Review)

      The authors phototag DA and GABA neurons in the VTA in mice performing a t-maze task, and report choice-specific responses in the delay period of a memory-guided task, more so than in a variant task w/o a memory component. Overall, I found the results convincing. While showing responses that are choice selective in DA neurons is not entirely novel (e.g. Morris et al NN 2006, Parker et al NN 2016), the fact that this feature is stronger when there is a memory requirement is an interesting and novel observation.

      I found the plots in 3B misleading because it looks like the main result is the sequential firing of DA neurons during the Tmaze. However, many of the neurons aren't significant by their permutation test. Often people either only plot the neurons that are significant, or plot with cross-validation (ie sort by half of the trials, and plot the other half).

      Relatedly, the cross-task comparisons of sequences (Fig, 4,5) are hampered by the fact that they sort in one task, then plot in the other, which will make the sequences look less robust even if they were equally strong. What happens if they swap which task's sequences they use to order the neurons? I do realize they also show statistical comparisons of modulated units across tasks, which is helpful.

      We thank reviewer #2 for the valuable and constructive comments on our manuscript. If, as the reviewer commented, the rate differences between left and right trajectories were only the result we want to claim, there may be a way to show only those whose left and right are significant. However, the sequential activity is also one of the points we wanted to display. We did not emphasize this result because it has already been shown by Engelhard et al. 2019. However, after reading the reviewer's comments, we decided to add a few lines in the "Results" (in lines 205 - 215 of the revised manuscript) and "Discussion" (in line 453 of the revised manuscript) describing the sequential activity of the VTA circuit. In those lines, we explained that DA activity is position-specific (resulting in sequential activity) and that a fraction of them also have left-right specificity.

      Overall, the introduction was scholarly and did a good job covering a vast literature. But the explanation of t-maze data towards the end of the introduction was confusing. In Line 87, I would not say "in the same task" but "in a similar task" because there are many differences between the tasks in question.

      We thank the reviewer for pointing out this mistake. In the revised manuscript, we replaced “in the same task” with “in a similar task” (in line 85 of the revised manuscript).

      And not clear what is meant by "by averaging neuronal population activities, none of these computational schemes would have been revealed. " There was trial averaging, at least in Harvey et al. I thought the main result of that paper related to coding schemes was that neural activity was sequential, not persistent. I think it would help the paper to say that clearly.

      We admit that this sentence leaves room for misunderstanding. We were mainly referring to DA studies using microdialysis or fiber photometry techniques. We decided to delete this sentence in the revised manuscript.

      Also, I'm not aware it was shown that choice selectivity diminishes when the memory demand of the task is removed - please clarify if that is true in both referenced papers.

      The reviewer’s remark is correct. None of these reports show explicitly that memory-specific activities are diminished without the memory component. Therefore, we deleted this sentence in the revised manuscript.

      If so, an interpretation of this present data could be found in Lee et al biorxiv 2022, which presents a computational model that implies that the heterogeneity in the VTA DA system is a reflection of the heterogeneity found in upstream regions (the state representation), based on the idea that different subsets of DA neurons calculate prediction errors with respect to different subsets of the state representation.

      We thank the reviewer for sharing this interpretation. We agree that this theory would support our results. In the revised manuscript we briefly discuss the Lee et al. report (in line 460 of the revised manuscript).

      I am surprised only 28% of DA neurons responded to the reward - the reward is not completely certain in this task. This seems lower than other papers in mice (even Pavlovian conditioning, when the reward is entirely certain). It would be helpful if the authors comment on how this number compares to other papers.

      In Pavlovian conditioning, neuronal responses to rewards are compared to a relatively quiet period of firing activity (usually the inter-trial interval epoch). As the reviewer pointed out, in the present study, the number of DA neurons responding to reward is smaller compared to the earlier studies. We hypothesize that this is due to our comparison method. We compared the post-reward response to an epoch when the animal was running along the side arms and the majority of neurons were highly active, instead of comparing it to a quiescent baseline epoch.

      Reviewer #2 (Recommendations to The Authors)

      Can you clarify what disparity you are referring to here? "Disparities between this 438 and our study in the proportions of modulated neurons could be attributed to the 439 different recording techniques applied as well as the maze regions of interest; for 440 example, Engelhard et al. analyzed neuronal firing activities in the visual-cue period 441 (Engelhard et al., 2019), whereas we focused on memory delay.". Is it the fact that Engelhard et al did not report choice-selective activity? They did report cue-side-selective activity, with some neurons responsive to cues on one side, and other neurons responsive to cues on the other side. Because there are more cues on the left when the mouse turns left, these neurons do indeed have choice-selective responses.

      We thank the reviewer for this comment. We agree that we need to clarify further our argument. As the reviewer pointed out, Engelhard et al identified choice-specific DA neurons. However, they reported the encoding properties of DA neurons only in the visual-cue period and the reward period. Remarkably, although the task has a memory delay, they did not report the neuronal firing activities for this delay period. Instead, in the present study we dedicated most of our analysis to characterizing the firing properties of VTA neurons in the delay period.

      Also, in response to your comment, we edited the paragraph where we describe the disparities between our study and Engelhard et al (in line 466 in the revised manuscript).

      I don't think this sentence of intro is needed since it doesn't really contain new info: "Therefore, we looked for hints 116 of memory-related encoding activities in single DA and GABA neurons by 117 characterizing their firing preference for opposite behavioral choices.".

      We agree with the reviewer. Therefore, we deleted this sentence in the revised manuscript.

      I didn't understand this line of discussion: "Our evidence does not question the validity of this computational model, since we do not provide evidence of how the selective preference for one response over the other translates into the release site.".

      The gating theory is based on experimental evidence of neuronal firing activities of DA neurons but also takes into consideration (to a lesser degree) the pre- and post-synaptic processes at the DA release sites (inverted U-shape of D1R activity). We thought that the reader may come to the conclusion that we question the validity of the gating theory. But this is not our intention, especially when we do not provide important evidence such as (1) the projection sites of DA and GABA neurons and (2) the sequence of events that take place at the synaptic triads following the DA and GABA release.

      After reading your comment we came to the conclusion that this sentence should be omitted because it is not within the scope of this study to question the validity of the gating theory. Instead, we dedicated a few lines of text to explaining which components of the gating theory (“update”, “maintenance & manipulation” and “motor preparation”) could be attributed to the trajectory-specific activities in the memory delay of the T-maze task. (section “Activities of midbrain DA neurons in short-term memory” in line 417 of the revised manuscript).

      In 1B, please illustrate when the light pulses are on & off?

      Following the reviewer’s instruction, we added colored bars on top of the raster plots in Figure 1B, indicating the light induction conditions.

      In legend for 6C, please clarify it's a correlation between the difference in R and L choice activity across the epochs (if my understanding is correct).

      The reviewer’s understanding is correct. We took this advice into consideration to further clarify the methods of analysis that led to the plot in Figure 6C (in line 1246 in the revised manuscript).

    1. Author Response

      We thank you for the time you took to review our work and for your feedback!

      The major changes to the manuscript are:

      1. We have extended the range of locomotion velocity over which we compare its dependence with cholinergic activity in Figures 2E and S2H.

      2. We have quantified the contributions of cholinergic stimulation on multiplicative and additive gains on visual responses (Figure S7).

      3. We have provided single cell examples for the change in latency to visual response (Figure S12).

      4. We have added an analysis to compare layer 2/3 and layer 5 locomotion onset responses as a function of visuomotor condition (Figure S8).

      A detailed point-by-point response to all reviewer concerns is provided below.  

      Reviewer #1 (Public Review):

      The paper submitted by Yogesh and Keller explores the role of cholinergic input from the basal forebrain (BF) in the mouse primary visual cortex (V1). The study aims to understand the signals conveyed by BF cholinergic axons in the visual cortex, their impact on neurons in different cortical layers, and their computational significance in cortical visual processing. The authors employed two-photon calcium imaging to directly monitor cholinergic input from BF axons expressing GCaMP6 in mice running through a virtual corridor, revealing a strong correlation between BF axonal activity and locomotion. This persistent activation during locomotion suggests that BF input provides a binary locomotion state signal. To elucidate the impact of cholinergic input on cortical activity, the authors conducted optogenetic and chemogenetic manipulations, with a specific focus on L2/3 and L5 neurons. They found that cholinergic input modulates the responses of L5 neurons to visual stimuli and visuomotor mismatch, while not significantly affecting L2/3 neurons. Moreover, the study demonstrates that BF cholinergic input leads to decorrelation in the activity patterns of L2/3 and L5 neurons.

      This topic has garnered significant attention in the field, drawing the interest of many researchers actively investigating the role of BF cholinergic input in cortical activity and sensory processing. The experiments and analyses were thoughtfully designed and conducted with rigorous standards, leading to convincing results which align well with findings in previous studies. In other words, some of the main findings, such as the correlation between cholinergic input and locomotor activity and the effects of cholinergic input on V1 cortical activity, have been previously demonstrated by other labs (Goard and Dan, 2009; Pinto et al., 2013; Reimer et al., 2016). However, the study by Yogesh and Keller stands out by combining cutting-edge calcium imaging and optogenetics to provide compelling evidence of layerspecific differences in the impact of cholinergic input on neuronal responses to bottom-up (visual stimuli) and top-down inputs (visuomotor mismatch).

      We thank the reviewer for their feedback.

      Reviewer #2 (Public Review):

      The manuscript investigates the function of basal forebrain cholinergic axons in mouse primary visual cortex (V1) during locomotion using two-photon calcium imaging in head-fixed mice. Cholinergic modulation has previously been proposed to mediate the effects of locomotion on V1 responses. The manuscript concludes that the activity of basal forebrain cholinergic axons in visual cortex provides a signal which is more correlated with binary locomotion state than locomotion velocity of the animal. Cholinergic axons did not seem to respond to grating stimuli or visuomotor prediction error. Optogenetic stimulation of these axons increased the amplitude of responses to visual stimuli and decreased the response latency of layer 5 excitatory neurons, but not layer 2/3 neurons. Moreover, optogenetic or chemogenetic stimulation of cholinergic inputs reduced pairwise correlation of neuronal responses. These results provide insight into the role of cholinergic modulation to visual cortex and demonstrate that it affects different layers of visual cortex in a distinct manner. The experiments are well executed and the data appear to be of high quality. However, further analyses are required to fully support several of the study's conclusions.

      We thank the reviewer for their feedback.

      1) In experiments analysing the activity of V1 neurons, GCaMP6f was expressed using a ubiquitous Ef1a promoter, which is active in all neuronal cell types as well as potentially non-neuronal cells. The manuscript specifically refers to responses of excitatory neurons but it is unclear how excitatory neuron somata were identified and distinguished from that of inhibitory neurons or other cell types.

      This might be a misunderstanding. The Ef1α promoter has been reported to drive highly specific expression in neurons (Tsuchiya et al., 2002) with 99.7% of labeled cells in layer 2/3 of rat cortex being NeuN+ (a neuronal marker), with only 0.3% of labeled cells being GFAP+ (a glial marker) (Yaguchi et al., 2013). This bias was even stronger in layer 5 with 100% of labeled cells being NeuN+ and none GFAP+ (Yaguchi et al., 2013). The Ef1α promoter in an AAV vector, as we use it here, also biases expression to excitatory neurons. In layer 2/3 of mouse visual cortex, we have found that 96.8% ± 0.7% of labeled neurons are excitatory three weeks after viral injection (Attinger et al., 2017). Similar results have also been found in rats (Yaguchi et al., 2013), where on expressing GFP under Ef1a promoter delivered using Lenti virus, 95.2% of labeled neurons in layer 2/3 were excitatory and 94.1% in layer 5 were excitatory. These numbers are comparable to the ones obtained with promoters commonly used to target expression to excitatory neurons. To do this, typically two variants of promoters based on the transcription start region of CaMKIIα gene have been used. The first, the CaMKIIα-0.4 promoter, results in 95% excitatory specificity (Scheyltjens et al., 2015). The second, the CaMKIIα-1.3 promoter, results in only 82% excitatory specificity (Scheyltjens et al., 2015), and is thus not far from chance. We have clarified this in the manuscript. Nevertheless, we have removed the qualifier “excitatory” when talking about neurons in most instances, throughout the manuscript.

      2) The manuscript concludes that cholinergic axons convey a binary locomotion signal and are not tuned to running speed. The average running velocity of mice in this study is very slow - slower than 15 cm/s in the example trace in Figure 1D and speeds <6 cm/s were quantified in Figure 2E. However, mice can run at much faster speeds both under head-fixed and freely moving conditions (see e.g. Jordan and Keller, 2020, where example running speeds are ~35 cm/s). Given that the data in the present manuscript cover such a narrow range of running speeds, it is not possible to determine whether cholinergic axons are tuned to running speed or convey a binary locomotion signal.

      Our previous analysis window of 0-6.25 cm/s covered approximately 80% of all data. We have increased the analysis window to 0-35 cm/s that now covers more than 99% of the data (see below). Also, note that very high running speeds are probably overrepresented in the Jordan and Keller 2020 paper as mice had to be trained to run reliably before all experiments given the relatively short holding times of the intracellular recordings. The running speeds in our current dataset are comparable to other datasets we have acquired in similar experiments.

      Figure 2E has now been updated to reflect the larger range of data. Please note, as the number of mice that contribute to the data now differs as a function of velocity (some mice run faster than others), we have now switched to a variant of the plot based on hierarchical bootstrap sampling (see Methods). This does not overtly change the appearance of the plot. See Author response image 1 for a comparison of the original plot, the extended range without bootstrap sampling, and the extended range with bootstrap sampling currently used in the paper.

      Author response image 1.

      Average activity of cholinergic axons as a function of locomotion velocity. (A) As in the previous version of the manuscript. (B) As in A, but with the extended velocity range. (C) As in B, but using hierarchical bootstrap sampling to estimate median (red dots) and 95% confidence interval (shading) for each velocity bin.

      3) The analyses in Figure 4 only consider the average response to all grating orientations and directions. Without further analysing responses to individual grating directions it is unclear how stimulation of cholinergic inputs affects visual responses. Previous work (e.g. Datarlat and Stryker, 2017) has shown that locomotion can have both additive and multiplicative effects and it would be valuable to determine the type of modulation provided by cholinergic stimulation.

      We thank the reviewer for this suggestion. To address this, we quantified how cholinergic stimulation influenced the orientation tuning of V1 neurons. The stimuli we used were full field sinusoidal drifting gratings of 4 different orientations (2 directions each). For each neuron, we identified the preferred orientation and plotted responses relative to this preferred orientation as a function of whether the mouse was running, or we were stimulating cholinergic axons. Consistent with previous work, we found a mixture of a multiplicative and an additive components during running. With cholinergic axon stimulation, the multiplicative effect was stronger than the additive effect. This is now quantified in Figure S7.

      4) The difference between the effects of locomotion and optogenetic stimulation of cholinergic axons in Figure 5 may be confounded by differences in the visual stimulus. These experiments are carried out under open-loop conditions, where mice may adapt their locomotion based on the speed of the visual stimulus. Consequently, locomotion onsets are likely to occur during periods of higher visual flow. Since optogenetic stimulation is presented randomly, it is likely to occur during periods of lower visual flow speed. Consequently, the difference between the effect of locomotion and optogenetic stimulation may be explained by differences in visual flow speed and it is important to exclude this possibility.

      We find that in general locomotion is unaffected by visual flow in open loop conditions in this type of experiment (in this particular dataset, there was a small negative correlation between locomotion and visual flow in the open loop condition, Author response image 2).

      Author response image 2.

      Correlation between visual flow and locomotion in open loop conditions. Average correlation of locomotion velocity and visual flow speed in open loop for all mice in Figure 5. Each dot is an imaging site. In the open loop, the correlation between locomotion and visual flow speed is close to zero, but significantly negative in this dataset.

      However, to directly address the concern that our results are influenced by visual flow, we can restrict our analysis only to locomotion onsets that occurred in absence of visual flow (Author response image 3A and R3B). These responses are not substantially different from those when including all data (Figures 5A and 5B). Thus, the difference between the effect of locomotion and optogenetic stimulation cannot be explained by differences in visual flow speed.

      Author response image 3.

      Open loop locomotion onset responses without visual flow. (A) Average calcium response of layer 2/3 neurons in visual cortex to locomotion onset in open loop in the absence of visual flow. Shading indicates SEM. (B) As in A, but for layer 5 neurons.

      5) It is unclear why chemogenetic manipulations of cholinergic inputs had no effect on pairwise correlations of L2/3 neuronal responses while optogenetic stimulation did.

      This is correct – we do not know why that is the case and can only speculate. There are at least two possible explanations for this difference:

      1) Local vs. systemic. The optogenetic manipulation is relatively local, while the chemogenetic manipulation is systemic. It is not clear how cholinergic release in other brain regions influences the correlation structure in visual cortex. It is conceivable that a cortex-wide change in cholinergic release results in a categorically different state with a specific correlation structure in layer 2/3 neurons different from the one induced by the more local optogenetic manipulation.

      2) Layer-specificity of activation. Cholinergic projections to visual cortex arrive both in superficial and deep layers. We activate the axons in visual cortex optogenetically by illuminating the cortical surface. Thus, in our optogenetic experiments, we are primarily activating the axons arriving superficially, while in the chemogenetic experiment, we are likely influencing superficial and deep axons similarly. Thus, we might expect a bias in the optogenetic activation to influencing superficial layers more strongly than the chemogenetic activation does.

      6) The effects of locomotion and optogenetic stimulation on the latency of L5 responses in Figure 7 are very large - ~100 ms. Indeed, typical latencies in mouse V1 measured using electrophysiology are themselves shorter than 100 ms (see e.g. Durand et al., 2016). Visual response latencies in stationary conditions or without optogenetic stimulation appear surprisingly long - much longer than reported in previous studies even under anaesthesia. Such large and surprising results require careful analysis to ensure they are not confounded by artefacts. However, as in Figure 4, this analysis is based only on average responses across all gratings and no individual examples are shown.

      This is correct and we speculate this is the consequence of a combination of different reasons.

      1) Calcium imaging is inherently slower than electrophysiological recordings. While measuring spiking responses using electrophysiology, response latencies of on the order of 100 ms have indeed been reported, as the reviewer points out. Using calcium imaging these latencies are typically 4 times longer (Kuznetsova et al., 2021). This is likely a combination of a) calcium signals that are slower than electrical changes, b) delays in the calcium sensor itself, and c) temporal sampling used for imaging that is about 3 orders of magnitude slower than what typically used for electrophysiology.

      2) Different neurons included in analysis. The calcium imaging likely has very different biases than electrophysiological recordings. Historically, the fraction of visually responsive neurons in visual cortex based on extracellular electrophysiological recordings has been systematically overestimated (Olshausen and Field, 2005). One key contributor to this is the fact that recordings are biased to visually responsive neurons. The criteria for inclusion of “responsive neurons” strongly influences the “average” response latency. In addition, calcium imaging has biases that relate to the vertical position of the somata in cortex. Both layer 2/3 and layer 5 recordings are likely biased to superficial layer 2/3 and superficial layer 5 neurons. Conversely, electrical recordings are likely biased to layer 4 and layer 5 neurons. Thus, comparisons at this level of resolution between data obtained with these two methods are difficult to make.

      We have added example neurons as Figure S12, as suggested.  

      Reviewer #1 (Recommendations For The Authors):

      While the study showcases valuable insights, I have a couple of concerns regarding the novelty of their research and the interpretation of results. By addressing these concerns, the authors can clarify the positioning of their research and strengthen the significance of their findings.

      (Major comments)

      1) Page 1, Line 21: The authors claim, "Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, enabling faster switching between internal representations during locomotion." However, it is not clear which specific data or results support the claim of "switching between internal representations." Overall, their study primarily presents responses averaged across all neurons imaged, lacking a detailed exploration of individual neuron response patterns. Population analysis, such as PCA and decoding, can be used to assess the encoding of each stimulus by V1 neurons - "internal representation."<br /> To strengthen their claim regarding "switching between internal representations," the authors could consider an experiment measuring the speed at which the population activity pattern A transitions to the population activity pattern B when the visual stimulus switches from A to B. Such experiments would significantly enhance the impact of their study, providing a clearer understanding of how BF cholinergic input influences the dynamic representation of stimuli during locomotion.

      We thank the reviewer for bringing this up. That acetylcholine enables a faster switching between internal representations in layer 5 is a speculation. We have attempted to make this clearer in the discussion. Our speculation is based on the finding that the population response in layer 5 to sensory input is faster under high levels of acetylcholine (Figures 4D and 7B). In line with the reviewer’s intuition, the neuronal response to a change in visual stimulus, in our experiment from a uniform grey visual stimulus to a sinusoidal grating stimulus, is indeed faster. Based on evidence in favor of layer 5 encoding internal representation (Heindorf and Keller, 2023; Keller and Mrsic-Flogel, 2018; Suzuki and Larkum, 2020), we interpret the decrease in latency of the population response as a faster change in internal representation. We are not sure a decoding analysis would add much to this, given that a trivial decoder simply based on mean population response would already find a faster transition. We have expanded on our explanation of these points in the manuscript.

      2) Page 4, Line 103: "..., a direct measurement of the activity of cholinergic projection from basal forebrain to the visual cortex during locomotion has not been made." This statement is incorrect. An earlier study by Reimer et al. indeed imaged cholinergic axons in the visual cortex of mice running on a wheel. They found that "After walking onset, ... ACh activation, and a large pupil diameter, were sustained throughout the walking period in both cortical areas V1 and A1." Their findings are very similar to the results presented by Yogesh and Keller - that is, BF cholinergic axons exhibited locomotion statedependent activity. The authors should clarify the positioning of this study relative to previous studies.

      Reimer, J., McGinley, M., Liu, Y. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat Commun 7, 13289 (2016). https://doi.org/10.1038/ncomms13289

      We have clarified this as suggested. However, we disagree slightly with the reviewer here. The key question is whether the cholinergic axons imaged originate in basal forebrain. While Reimer et al. 2016 did set out to do this, we believe a number of methodological considerations prevent this conclusion:

      1) In their analysis, Reimer et al. 2016 combine data from mice with cholinergic axons labeled with either viral injection to basal forebrain or germline cross of ChAT-cre mice with reporter line. Unfortunately, it is unclear what the exact number of mice labeled with either strategy was. Based on the information in the paper, we can conclude that of the 6 mice used for experiments between 2 and 5 were germline cross. The problem with germline labeling of ChAT positive neurons is that when using a cross, VIP-ChAT+ neurons in cortex are also labeled. Based on the fact that Reimer et al. 2016 find an anticipatory increase in activity on locomotion onset, that is also seen by Larsen et al. 2018 (they use a germline cross strategy), an effect we do not see in our data, we speculate that a significant part of the signals reported in the Reimer et al. 2016 paper are from local VIP-ChAT+ neurons.

      2) In their analysis, Reimer et al. 2016 also combine all imaging data obtained from both primary auditory cortex and primary visual cortex. Given the heterogeneity in the basal forebrain cholinergic neuronal population and their projection selectivity, to better understand these signals, it’s important to acquire the signals from cholinergic axons selectively in specific cortical regions, which we do in visual cortex. Based on the information provided in their paper, we were unfortunately not able to discern the injection location for their viral labeling strategy. Given the topographic selectivity in projection from basal forebrain, this could give hints as to the relative contribution of cholinergic projections to A1 vs V1 in their data. The injection coordinates given in the methods of the Reimer paper, of 4 mm lateral and 0.5 mm posterior to bregma to target basal forebrain, are likely wrong (they fall outside the head of the mouse).

      Given the heterogeneity in the basal forebrain cholinergic neuronal population and their projection selectivity, to better understand these signals, it’s important to acquire the signals from cholinergic axons both selectively in a cortical region, as we do in visual cortex, and purely originating from basal forebrain. Collins et al. 2023 inject more laterally and thus characterize cholinergic input to S1 and A1, while Lohani et al. 2022 use GRAB sensors which complement our findings. Please note, we don’t think there is any substantial disagreement in the results of previous studies and ours, with very few exceptions, like the anticipatory increase in cholinergic activity that precedes locomotion onset in the Reimer et al. 2016 data, but not in ours. This is a rather critical point in the context of the literature of motor-related neuronal activity in mouse V1. Based on early work on the topic, it is frequently assumed that motor-related activity in V1 is driven by a cholinergic input. This is very likely incorrect given our results, hence we feel it is important to highlight this methodological caveat of earlier work.

      3) Fig. 4H: The authors found that L5 neurons exhibit positive responses at the onset of locomotion in a closed-loop configuration. Moreover, these responses are further enhanced by photostimulation of BF axons.

      In a previous study from the same authors' group (Heindorf and Keller, 2023), they reported 'negative' responses in L5a IT neurons during closed-loop locomotion. This raises a question about the potential influence of different L5 neuron types on the observed results between the two studies. Do the author think that the involvement of the other neuronal type in L5, the PT neurons, might explain the positive responses seen in the present study? Discussing this point in the paper would provide valuable insights into the underlying mechanisms.

      Yes, we do think the positive response observed on locomotion onset in closed loop is due to non-Tlx3+ neurons. Given that Tlx3-cre only labels a subset of inter-telencephalic (IT) neurons (Gerfen et al., 2013; Heindorf and Keller, 2023), it’s not clear whether the positive response is explained by the pyramidal tract (PT) neurons, or the non-Tlx3+ IT neurons. Dissecting the response profiles of different subsets of layer 5 neurons is an active area of research in the lab and we hope to be able to answer these points more comprehensively in future publications. We have expanded on this in the discussion as suggested.

      Furthermore, it would be valuable to investigate whether the effects of photostimulation of BF axons vary depending on neuronal responsiveness. This could help elucidate how neurons with positive responses, potentially putative PT neurons, differ from neurons with negative responses, putative IT neurons, in their response to BF axon photostimulation during locomotion.

      We have attempted an analysis of the form suggested. In short, we found no relationship between a neuron’s response to optogenetic stimulation of ChAT axons and its response to locomotion onset, or its mean activity. Based on their response to locomotion onset in closed loop, we split layer 5 neurons into three groups, 30% most strongly decreasing (putative Tlx3+), 30% most strongly increasing, and the rest. We did not see a response to optogenetic stimulation of basal forebrain cholinergic axons in any of the three groups (Author response image 4A). We also found no obvious relationship between the mean activity of neurons and their response to optogenetic stimulation (Author response image 4B).

      Author response image 4.

      Neither putative layer 5 cell types nor neuronal responsiveness correlates with the response to optogenetic stimulation of cholinergic axons. (A) Average calcium response of layer 5 neurons split into putative Tlx3 (closed loop locomotion onset suppressed) and non-Tlx3 like (closed loop locomotion onset activated) to optogenetic stimulation of cholinergic axons. (B) Average calcium response of layer 5 neurons to optogenetic stimulation of cholinergic axons as a function of their mean response throughout the experimental session. Left: Each dot is a neuron. Right: Average correlation in the response of layer 5 to optogenetic stimulation and mean activity over all neurons per imaging site. Each dot is an imaging site.

      (Minor comments)

      1) It is unclear which BF subregion(s) were targeted in this study.

      Thanks for pointing this out. We targeted the entire basal forebrain (medial septum, vertical and horizontal limbs of the diagonal band, and nucleus basalis) with our viral injections. All our axonal imaging data comes from visual cortex and given the sensory modality-selectivity of cholinergic projections to cortex, the labeled axons originate from medial septum and the diagonal bands (Kim et al., 2016). We have now added the labels for basal forebrain subregions targeted next to the injection coordinates in the manuscript.

      2) Page 43, Line 818: The journal name of the cited paper Collins et al. is missing.

      Fixed.

      3) In the optogenetic experiments, how long is the inter-trial interval? Simulation of BF is known to have long-lasting effects on cortical activity and plasticity. It is, therefore, important to have a sufficient interval between trials.

      The median inter-trial interval for different stimulation events are as follows:

      • Optogenetic stimulation only : 15 s

      • Optogenetic stimulation + grating : 12 s

      • Optogenetic stimulation + mismatch: 35 s

      • Optogenetic stimulation + locomotion onset: 45 s

      We have added this information to the methods in the manuscript.

      Assuming locomotion is the primary driver of acetylcholine release (as we argue in Figures 1 and 2), the frequency of stimulation roughly corresponds to the frequency of acetylcholine release experienced endogenously. It is of course possible that being awake and mobile puts the entire system in a longlasting acetylcholine driven state different from what would be observed during long-term quite wakefulness or during sleep. But the main focus of the optogenetic stimulation experiments we performed was to investigate the consequences of the rapid acetylcholine release driven by locomotion.

      4) Page 11, Line 313: "..., we cannot exclude the possibility of a systemic contribution to the effects we observe through shared projections between different cortical and subcortical target." This possibility can be tested by examining the effect of optogenetic stimulation of cholinergic axons on locomotor activity, as they did for the chemogenetic experiments (Fig. S7). If the optogenetic manipulation changes locomotor activity, it is likely that this manipulation has some impact on subcortical activity and systemic contribution to the changes in cortical responses observed.

      Based on the reviewer suggestion we tested this and found no change in the locomotor activity of the mice on optogenetic stimulation of cholinergic axons locally in visual cortex (we have added this as Figure S5 to the manuscript). Please note however, we can of course not exclude a systemic contribution based on this.

      5) Fig. 4 and 5: In a closed-loop configuration, L2/3 neurons exhibit a transient increase in response at the onset of locomotion, while in an open-loop configuration, their response is more prolonged. On the other hand, L5 neurons show a sustained response in both configurations. Do the authors have any speculation on this difference?

      This is correct. Locomotion onset responses in layer 2/3 are strongly modulated by whether the locomotion onset occurs in closed loop or open loop configurations (Widmer et al., 2022). This difference is absent in our layer 5 data here. We suspect this is a function of a differential within-layer cell type bias in the different recordings. In the layer 2/3 recordings we are likely biased strongly towards superficial L2/3 neurons that tend to be negative prediction error neurons (top-down excited and bottom-up inhibited), see e.g. (O’Toole et al., 2023). A reduction of locomotion onset responses in closed loop is what one would expect for negative prediction error neurons. While layer 5 neurons exhibit mismatch responses, they do not exhibit opposing top-down and bottom-up input that would result in such a suppression (Jordan and Keller, 2020).

      We can illustrate this by splitting all layer 2/3 neurons based on their response to gratings and to visuomotor mismatch into a positive prediction error (PE) type (top 30% positive grating response), a negative prediction error type (top 30% positive visuomotor mismatch response), and the rest (remaining neurons and neurons responsive to both grating and visuomotor mismatch). Plotting the response of these neurons to locomotion onset in closed loop and open loop, we find that negative PE neurons have a transient response to locomotion onset in closed loop while positive PE neurons have a sustained increase in response in closed loop. In open loop the response of the two populations is indistinguishable. Splitting the layer 5 neurons using the same criteria, we don’t find a striking difference between closed and open loop between the two groups of neurons. We have added this as Figure S8.

      Reviewer #2 (Recommendations For The Authors):

      Major concerns:

      1) As a ubiquitous promoter was used to drive GCaMP expression, please explain how excitatory neurons were identified.

      2) As the data cover a very small range of running speeds, it is important to confirm that the binary locomotion signal model still applies when mice run at higher speeds - either by selecting recordings where mice have a wider range of running speeds or conducting additional experiments. In addition, please show the running speed tuning of individual axons.

      3) Please provide a more detailed analysis of the effects of locomotion and cholinergic modulation on visual responses. How does cholinergic modulation affect orientation and direction tuning? Are the effects multiplicative or additive? How does this compare to the effects of locomotion on single neurons?

      4) To ensure that the analyses in Figure 5 are not confounded by differences in the visual stimulus, please include average visual flow speed traces for each condition.

      5) Please clarify why chemogenetic manipulations of cholinergic inputs had no effect on pairwise correlations in L2/3.

      6) The latency effect is quite an extraordinary claim and requires careful analysis. Please provide examples of single neurons illustrating the latency effect - including responses across individual grating orientations/directions. One possible confound is that grating presentation could itself trigger locomotion or other movements. In the stationary / noOpto conditions, the grating response might not be apparent in the average trace until the animal begins to move. Thus the large latency in the stationary / noOpto conditions may reflect movement-related rather than visual responses.

      Please see our responses to these points in the public review part above.

      There are some minor points where text and figures could be improved:

      1) When discussing the decorrelation of neuronal responses by cholinergic axon activation, it is important to make it clear that Figure 6D quantifies the responses of layer 5 apical dendrites rather than neurons.

      We have added this information to the results section.

      2) In Figure S7, please clarify why velocity is in arbitrary units.

      This was an oversight and has been fixed.

      3) Please clarify how locomotion and stational trials are selected in Figure 4.

      We thank the reviewers for pointing this out. Trials were classified as occurring during locomotion or while mice were stationary as follows. We used a time-window of -0.5 s to +1 s around stimulus onset. If mice exhibited uninterrupted locomotion above a threshold of 0.25 cm/s in this time-window, we considered the stimulus as occurring during locomotion, otherwise it was defined as occurring while the mice were stationary. Note, the same criteria to define locomotion state was used to isolate visuomotor mismatch events, and also during control optogenetic stimulation experiments. We have added this information to the methods.

      4) When testing whether cholinergic activation is sufficient to explain locomotion-induced decorrelation in Figure 6G-H, please show pre-CNO and post-CNO delta-correlation, not just their difference.

      We can do that, but the results are harder to parse this way. We have added this as Figure S11 to the manuscript. The problem with parsing the figure is that the pre-CNO levels are different in different groups. This is likely a function of mouse-to-mouse variability and makes it harder to identify what the CNO induced changes are. Using the pre-post difference removes the batch influence. Hence, we have left this as the main analysis in Figure 6G and 6H.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      In this paper, the effects of two sensory stimuli (visual and somatosensory) on fMRI responsiveness during absence seizures were investigated in GEARS rats with concurrent EEG recordings. SPM analysis of fMRI showed a significant reduction in whole-brain responsiveness during the ictal period compared to the interictal period under both stimuli, and this phenomenon was replicated in a structurally constrained whole-brain computational model of rat brains.

      The conclusion of this paper is that whole-brain responsiveness to both sensory stimuli is inhibited and spatially impeded during seizures.

      I also suggest the manuscript should be written in a way that is more accessible to readers who are less familiar with animal experiments. In addition, the implementation and interpretation of brain simulations need to be more careful and clear.

      Several sections of the manuscript were clarified and simplified to be more accessible. Also, implementation and interpretations of brain simulations were modified to be more precise.

      Strengths:

      1) ZTE imaging sequence was selected over traditional EPI sequence as the optimal way to perform fMRI experiments during absence seizures.

      2) A detailed classification of stimulation periods is achieved based on the relative position in time of the stimulation period with respect to the brain state.

      3) A whole-brain model embedded with a realistic rat connectome is simulated on the TVB platform to replicate fMRI observations.

      We thank the reviewer for indicating the strengths of our manuscript.

      Weaknesses:

      1) The analysis in this paper does not directly answer the scientific question posed by the authors, which is to explore the mechanisms of the reduced brain responsiveness to external stimuli during absence seizures (in terms of altered information processing), but merely characterizes the spatial involvement of such reduced responsiveness. The same holds for the use of mean-field modeling, which merely reproduces experimental results without explaining them mechanistically as what the authors have claimed at the head of the paper.

      We agree with the reviewer that the manuscript does not answer specifically about the mechanisms of reduced brain responsiveness. The main scientific question addressed in the manuscript was to compare whole-brain responsiveness of stimulus between ictal and interictal states. The sentence that can lead to misinterpretations in the manuscript abstract: “The mechanism underlying the reduced responsiveness to external stimulus remains unknown.” was therefore modified to the following “The whole-brain spatial and temporal characteristics of reduced responsiveness to external stimulus remains unknown”.

      2) The implementations of brain simulations need to be more specific.

      Contribution:

      The contribution of this paper is performing fMRI experiments under a rare condition that could provide fresh knowledge in the imaging field regarding the brain's responsiveness to environmental stimuli during absence seizures.

      Reviewer #2 (Public Review):

      Summary:

      This study examined the possible effect of spike-wave discharges (SWDs) on the response to visual or somatosensory stimulation using fMRI and EEG. This is a significant topic because SWDs often are called seizures and because there is non-responsiveness at this time, it would be logical that responses to sensory stimulation are reduced. On the other hand, in rodents with SWDs, sensory stimulation (a noise, for example) often terminates the SWD/seizure.

      In humans, these periods of SWDs are due to thalamocortical oscillations. A certain percentage of the normal population can have SWDs in response to photic stimulation at specific frequencies. Other individuals develop SWDs without stimulation. They disrupt consciousness. Individuals have an absent look, or "absence", which is called absence epilepsy.

      The authors use a rat model to study the responses to stimulation of the visual or somatosensory systems during and in between SWDs. They report that the response to stimulation is reduced during the SWDs. While some data show this nicely, the authors also report on lines 396-8 "When comparing statistical responses between both states, significant changes (p<0.05, cluster-) were noticed in somatosensory auditory frontal..., with these regions being less activated in interictal state (see also Figure 4). That statement is at odds with their conclusion.

      We thank the reviewer for noting this discrepancy. The statement should have been written vice versa and it has been corrected as: “When comparing statistical responses between both states, significant changes (p<0.05, cluster-level corrected) were noticed in the somatosensory, auditory and frontal cortices: these regions were less activated in ictal than in interictal state (see also Figure 4).”

      They also conclude that stimulation slows the pathways activated by the stimulus. I do not see any data proving this. It would require repeated assessments of the pathways in time.

      We agree with the reviewer that there are no data showing slowing of the pathways in response to stimulus. However, we are a bit confused about this comment, as to what part in conclusion section it refers to. We did not intentionally claim that stimulation slows the activated pathways in the manuscript.

      The authors also study the hemodynamic response function (HRF) and it is not clear what conclusions can be made from the data.

      Hemodynamic response functions were studied for two reasons:

      • To account for possible change in HRF during the detection of activated regions. Indeed, a physiological change in HRF can mask the detection of an activation when the software uses a standard HRF to convolve the design matrix (David et al. 2008).

      • To characterize the shape and polarity of fMRI activations in brain regions that we noticed to be differently activated between ictal and interictal states and evaluate whether alteration in activation was associated to alteration in hemodynamic.

      The observed HRF decreases (rather than increases) in the cortex when stimulation was applied during SWD, was discussed in section 4.4., where we speculated that neuronal suppression caused by SWD can prevent responsiveness. In this case, the decreased HRF could either be a consequence or a cause of the observed neuronal suppression. The assumption that the HRF reduction is causal would be supported by a possible vascular steal effect from other activation regions. However, in the conclusion section we did not state this and therefore the following sentence was added to conclusions: “Moreover, the detected decreases in the cortical HRF when sensory stimulation was applied during spike-and-wave discharges, could play a role in decreased sensory perception. Further studies are required to evaluate whether this HRF change is a cause or a consequence of the reduced neuronal response”.

      Finally, the authors use a model to analyze the data. This model is novel and while that is a strength, its validation is unclear. The conclusion is that the modeling supports the conclusions of the study, which is useful.

      Details about the model were added.

      Strengths:

      Use of fMRI and EEG to study SWDs in rats.

      Weaknesses:

      Several aspects of the Methods and Results are unclear.

      Reviewer #3 (Public Review):

      Summary:

      This is an interesting paper investigating fMRI changes during sensory (visual, tactile) stimulation and absence seizures in the GAERS model. The results are potentially important for the field and do suggest that sensory stimulation may not activate brain regions normally during absence seizures. However the findings are limited by substantial methodological issues that do not enable fMRI signals related to absence seizures to be fully disentangled from fMRI signals related to the sensory stimuli.

      Strengths:

      Investigating fMRI brain responses to sensory stimuli during absence seizures in an animal model is a novel approach with the potential to yield important insights.

      The use of an awake, habituated model is a valid and potentially powerful approach.

      Weaknesses:

      The major difficulty with interpreting the results of this study is that the duration of the visual and auditory stimuli was 6 seconds, which is very close to the mean seizure duration per Table 1. Therefore the HRF model looking at fMRI responses to visual or auditory stimuli occurring during seizures was simultaneously weighting both seizure activity and the sensory (visual or auditory) stimuli over the same time intervals on average. The resulting maps and time courses claiming to show fMRI changes from visual or auditory stimulation during seizures will therefore in reality contain some mix of both sensory stimulation-related signals and seizure-related signals. The main claim that the sensory stimuli do not elicit the same activations during seizures as they do in the interictal period may still be true. However the attempts to localize these differences in space or time will be contaminated by the seizure-related signals.

      The claims that differences were observed for example between visual cortex and superior colliculus signals with visual stim during seizures vs. interictal are unconvincing due to the above.

      We understand this concern expressed by the reviewer and agree that seizure-related signals must be considered in the analysis when studying stimulation responses. Therefore, in modelling the responses in the SPM framework, we considered both stimulation and seizure-only states as regressors of interest and used seizure-only responses as nuisance regressors to account for error variance. Thereby, the effects caused by the stimulation should be, in theory, separated as much as possible from the effects caused by the seizure itself. Additionally, the cases where stimulations occurred fully inside a seizure (included in Figure 3, “...stimulation during ictal state) actually had a longer average seizure duration of 45 ± 60 s, therefore being much longer than 6s which an average duration taken from all seizures.

      However, we acknowledge that there is a potential that some leftover effects from a seizure are still present, and we have noted this caution in the “Physiologic and methodologic considerations” section: “We note a caution that presented maps and time courses showing fMRI changes from visual or whisker stimulation during seizures may contain mixture of both sensory stimulation-related signals and seizure-related signals. To minimize this contamination, we considered in SPM both stimulation and seizure-only states as regressors of interest and used seizure-only responses as nuisance regressors to account for error variance. Thereby, the effects caused by the seizure itself should be separated as much as possible from the effects caused by stimulation.”

      The maps shown in Figure 3 do not show clear changes in the areas claimed to be involved.

      We clarified the overall appearance of Figure 3, by enlarging the selected cross sections for better anatomical differentiation and added anterior and posterior directions on all images.

      Reviewer #1 (Recommendations For The Authors):

      1) The implementations of brain simulations need to be more specific: How is the stimulation applied in the mean-field model in terms of its mathematical expression? The state variable of the model is the rate of neuronal firing, but how is it subsequently converted into fMRI responses? How are the statistical plots calculated? How much does this result depend on the model parameter?

      Further details and explanations about the model have now been added to the manuscript. The stimulation of a specific region is simulated as an increase in the excitatory input to the specific node. In particular we use a square function for representing the stimulus (see for example panel A in Figure 6–figure supplement 1). As the referee mentions, the model describes the dynamics of the neuronal firing rates. This provides direct information about neuronal activity and responsiveness for which all the statistical analyses of the simulations shown in the paper were performed using the firing rates. For these analyses, no conversion to fMRI was needed. To build the statistical maps, an ANOVA (analysis of variance) test was used. The ANOVA test is originally designed to assess the significance of the change in the mean between two samples, and is calculated via an F-test as the ratio of the variance between and within samples. In our case it allowed us to assess the impact of the stimulation on the ongoing neuronal activity by performing a comparison of the timeseries of the firing rate with and without stimulation (this was performed independently for each state). For the results presented in this paper, the ANOVA analysis was performed using the “f_oneway” function of the scipy.stats. module in python. Regarding the dependence on the model parameter, the main results obtained in our paper are related with the responsiveness of the system under two quantitatively different types of ongoing dynamics: an asynchronous irregular activity (interictal period) and an oscillatory SWD type of dynamics (ictal period). In particular, we show how for the SWD dynamics the activity evoked by the stimulus is overshadowed by the ongoing activity which imposes a strong limitation in the response of the system and the propagation of the stimulus. In this sense, the main results of the simulations are very general, and no significant dependence on specific cellular or network parameters was observed within a physiologically relevant range or should be expected. Nevertheless, we point out that, as mentioned in the text, the key parameter that triggers the transition between the two types of dynamics is the strength of the adaptation current (in particular the strength of the spike-triggered adaptation parameter ‘b’ described in the Supplementary information), which in addition has the capacity of controlling the frequency of the oscillations. In the paper, this parameter was set such that the SWD frequency falls within the range observed in the GAERS (between 7-12Hz). We believe that further analysis around the region of transition between states, in particular from a dynamical point of view, could be of relevance for future work.

      2) In the abstract, what exactly does "typical information flow in functional pathways" mean and which part of the results does this refer to?

      We note that this sentence was overly complicated. By “typical information flow”, we were referring to sensory responsiveness during interictal state. Therefore, we made the following modifications to the abstract: “These results suggest that sensory processing observed during an interictal state can be hindered or even suppressed by the occurrence of an absence seizure, potentially contributing to decreased responsiveness.”

      3) Figure 4 - Figure Supplement 1 performed an analysis of comparing states between 'when stimulation ended a seizure' and 'stimulation during an ictal period'. The authors should explain more clearly in the manuscript what is the reason and significance of considering the state of 'when stimulation ended a seizure'. And how is a seizure considered to be terminated by stimulation rather than ending spontaneously?

      We have now added explanations to the manuscript section 2.5.3 as why this state was also of interest: “The case when stimulation ended a seizure is particularly interesting for studying the spatial and temporal aspects explaining shift from ictal, i.e. non-responsiveness state, to non-ictal, i.e. responsiveness state.” We agree that there is a possibility that seizures ended spontaneously at the same time as stimulus was applied but argue that seizures most probably end due to stimulation, based on results published previously (https://doi.org/10.1016/j.brs.2012.05.009).

      4) In Section 3.1, some detailed descriptions of methods should be moved to Section 2, e.g. how the spatial and temporal SNR is obtained and the description of bad quality data. Also, I suggest the significance of selecting the optimal MRI sequence be stated earlier in the paper, as Section 3.1 cannot be expected from reading the abstract and introduction.

      We moved some technical explanations of SNRs from section 3.1. to section 2.4.1. Significance of the selection of the MRI sequence is also now stated earlier in the introduction section: “For this purpose, the functionality of ZTE sequence was first piloted, and selected over traditional EPI sequence for its lower acoustic noise and reduced magnetic susceptibility artefacts. The selected MRI sequence thus appeared optimal for awake EEG-fMRI measurements.”

      Some minor issues:

      1) How is ROI defined in this paper? What type of atlas is used?

      Anatomical ROIs were drawn based on Paxinos and Watson rat brain atlas 7th edition. Region was selected if there were statistically significant activations detected inside that region, based on activation maps. We clarified the definition of ROI as the following: “Anatomical ROIs, based on Paxinos atlas (Paxinos and Watson rat brain atlas 7th edition), were drawn on the brain areas where statistical differences were seen in activation maps.”

      2) Section 4.3.2, "In addition, some responses were seen in the somatosensory cortex during the seizure state, which may be due to the fact that the linear model used did not completely remove the effect of the seizure itself" What is the reason for the authors to make such comments?

      This claim was made because we saw similar trend of responses (deactivation) in F-contrast maps in the somatosensory cortex, when comparing “stimulation during ictal state” maps to "seizure map", leading us to assume that the effect of seizure was still apparent in the maps (even though “seizure only” states were used as nuisance regressors). However, as this claim is highly speculative, we have decided to delete this sentence in the manuscript.

      3) Abbreviations such as SPM, HRF, CBF, etc. are not defined in the manuscript.

      Definitions for these abbreviations were added.

      4) Supplementary information-AdEx mean-field model, 've and vi', e and i should be subscripted.

      Subscripts were added.

      Reviewer #2 (Recommendations For The Authors):

      Below are more detailed questions and concerns. Many questions are about the Methods, which seem to be written by a specialist. However, there are also questions about the experimental approach and conclusions.

      One of the strengths of the study is the use of fMRI and EEG. However, to allow rats to be still in the magnet, isoflurane was used, and then as soon as rats recovered they were imaged. However isoflurane has effects on the brain long after the rats have appeared to wake up. Moreover, to train rats to be still, repetitive isoflurane sessions had to be used. Repetitive isoflurane should have a control of some kind, or be discussed as a limitation.

      The repetitive use of isoflurane is indeed an important limiting factor that was not yet discussed in the manuscript. We have added the following sentences to the “Physiologic and methodologic considerations” section:

      “As the used awake habituation and imaging protocol didn’t allow us to avoid the usage of isoflurane during the preparation steps, we cannot rule out the possible effect of using repetitive anesthesia on brain function. However, duration (~15 min) and concentration of anesthesia (~1.5%) during these steps were still moderate, whereas extended durations (1-3 h) of either single or repetitive isoflurane exposures have been used in previous studies where long-term effects on brain function have been observed (Long II et al., 2016; Stenroos et al., 2021). Moreover, there was a 5-15 min waiting period between the cessation of anesthesia and initiation of fMRI scan, to avoid the potential short-term effects of isoflurane that has been found to be most prominent during the 5 min after isoflurane cessation (Dvořáková et al., 2022).

      An assumption of the study is that interictal periods are normal. However, they may not be. A control is necessary. One also wants to know how often GAERS have spontaneous spike-wave discharges (SWDs), what the authors call seizures. The reason is that the more common the SWDs, the less likely interictal periods are normal. It seems from the Methods that rats were selected if they had frequent seizures so many could be captured in a recording session. Those without frequent seizures were discarded.

      A good control would be a normal rat that has spontaneous SWDs, since almost all rat strains have them, especially with age and in males (PMID: 7700522). However, whether they are frequent enough might be a problem. Alternatively, animals could be studied with rare seizures to assess the normal baseline, and compared to interictal states in GAERS.

      We appreciate this concern raised by the Reviewer. Even though it would be interesting to study different strains and SWD frequency dependence, the aim of this study was to compare interictal vs ictal states in this specific animal model. We also understand that interictal periods could not necessarily model “normal” state and therefore went through the manuscript again to remove any claims referring to this.

      About the mechanisms of SWDs, the authors should update their language which seems imprecise and lacks current citations (starting on line 71):

      "Although the origin of absence seizures is not fully understood, current studies on rat models of absence seizures suggest that they arise from atypical excitatory-inhibitory patterns in the barrel field of the somatosensory cortex (Meeren et al. 2002; Polack et al. 2007) and lead to synchronous cortico-thalamic activity (Holmes, Brown, and Tucker 2004)."

      Some of the best explanations for SWDs that I know of are from the papers of John Huguenard. His reviews are excellent. They discuss the mechanisms of thalamocortical oscillations.

      We have reformatted the sentences discussing the mechanism of SWDs and included the explanations provided by manuscripts from Huguenard and McCafferty et al.: “Although the origin of absence seizures is not fully understood, current studies on rat models of absence seizures suggest that they arise from excitatory drive in the barrel field of the somatosensory cortex (Meeren et al. 2002; Polack et al. 2007, 2009, David et al., 2008) and then propagate to other structures (David et al., 2008) including thalamus, knowing to play an essential role during the ictal state (Huguenard, 2019). Notably, the thalamic subnetwork is believed to play a role in coordinating and spacing SWDs via feedforward inhibition together with burst firing patterns. These lead to the rhythms of neuronal silence and activation periods that are detected in SWD waves and spikes (McCafferty et al., 2018; Huguenard, 2019).”

      The following also is not precise:

      "Although seizures are initially triggered by hyperactive somatosensory cortical neurons, the majority of neuronal populations are deactivated rather than activated during the seizure, resulting in an overall decrease in neuronal activity during SWD (McCafferty et al. 2023)." What neuronal populations? Cortex? Which neurons in the cortex? Those projecting to the thalamus? What about thalamocortical relay cells? Thalamic gabaergic neurons?

      Lines 85-8: "In addition, a previous fMRI study on GAERS, which measured changes in cerebral blood volume, found both deactivated and activated brain areas during seizures (David et al. 2008). Which areas and conditions led to reduced activity? Increased activity? How was it surmised?

      "concurrent stimuli and therefore could contribute to the alterations in behavioral responsiveness" - This idea has been raised before by others (Logthetis, Barth). Please discuss these as the background for this study.

      The particular section was modified to the following:

      “Previous results on GAERS have indicated that, during an absence seizure, hyperactive electrophysiological activity in the somatosensory cortex can contribute to bilateral and regular SWD firing patterns in most parts of the cortex. These patterns propagate to different cortical areas (retrosplenial, visual, motor and secondary sensory), basal ganglia, cerebellum, substantia nigra and thalamus (David et al. 2008; Polack et al. 2007). Although SWDs are initially triggered by hyperactive somatosensory cortical neurons, neuronal firing rates, especially in majority of frontoparietal cortical and thalamocortical relay neurons, are decreased rather than increased during SWD, resulting in an overall decrease in activity in these neuronal populations (McCafferty et al. 2023). Previous fMRI studies have demonstrated blood volume or BOLD signal decreases in several cortical regions including parietal and occipital cortex, but also, quite surprisingly, increases in subcortical regions such as thalamus, medulla and pons (David et al., 2008; McCafferty et al., 2023). In line with these findings, graph-based analyses have shown an increased segregation of cortical networks from the rest of the brain (Wachsmuth et al. 2021). Altogether, alterations in these focal networks in the animal models of epilepsy impairs cognitive capabilities needed to process specific concurrent stimuli during SWD and therefore could contribute to the lack of behavioral responsiveness (Chipaux et al. 2013; Luo et al. 2011; Meeren et al. 2002; Studer et al. 2019), although partial voluntary control in certain stimulation schemes can be still present (Taylor et al., 2017).”

      Please discuss the mean-field model more. What are its assumptions? What is its validation? Do other models also provide the same result?

      We have now extended the discussion and explanation of the mean-field model, both in the main text and in the Supplementary information. The mean-field model is a statistical tool to estimate the mean activity of large neuronal populations, and as such its main assumptions are centered around the size of the population analyzed and the characteristic times of the neuronal dynamics under study. It has been shown that the formalism is valid for characteristic times of neuronal dynamics with a lower bond in the order of few milliseconds and with population size of in the order thousands of neurons (see El Boustani and Destexhe, Neural computation 2009; and Di Volo et al, Neural computation 2019), with both conditions satisfied in the simulations made for this work. Regarding the validation, the model has been extensively validated and used for simulating different brain states (Di Volo et al. 2009; Goldman et al. 2023), signal propagation in cortical circuits (Zerlaut et al, 2018) and to perform whole-brain simulations (Goldman et al, 2023). The standard validation of the mean-field implies its comparison with the activity obtained from the corresponding spiking neural network. For completeness we show in Author response image 1 an example of the SWD type of dynamics obtained from a spiking neural network together with the one obtained from the mean-field. This figure has been added now to the Supplementary information of the paper. Regarding the extension of the results to other models, we think that the generality of our results is an interesting point from our work. The main results obtained from our simulation are related with the responsiveness of the system during two different type of ongoing activity: in the interictal state there is a significant variation on the ongoing activity evoked by the stimulation that is propagated to other regions, while in the SWD state the evoked activity is overshadowed by the ongoing activity which imposes a strong limit to the responsiveness of the system and the propagation of the signal. In this sense, the results of the simulations are very general and should be extensible to other models. Of course, the advantage of using a model like ours is the capability of reproducing the different states, its applicability to large scale simulations, and the fact that it is built from biologically relevant single-cell models (AdEx).

      Author response image 1.

      Comparison of the SWD dynamics in the mean-field model and the underlying spiking-neural network of AdEx neurons. A) Raster plot (top) and mean firing rate (bottom) from an SWD type of dynamics obtained from the spiking- network simulations. The network is made of 8000 excitatory neurons and 2000 inhibitory neurons. Neurons in the network are randomly connected with probability p=0.05 for inhibitory-inhibitory and excitatory-inhibitory connections, and p=0.06 for excitatory-excitatory connections. Cellular parameters correspond to the ones used in the mean-field, with spike-triggered adaptation for excitatory neurons set to b=200pA. We show the results for excitatory (green) and inhibitory (red) neurons. B) Mean-firing rate obtained from a single mean-field model. We see that, although the amplitude of oscillations is larger in the spiking-network, the mean-field can correctly capture the general dynamics and frequency of the oscillations.

      Line 11: "rats were equally divided by gender." Given n=11, does that mean 5 males and 6 females or the opposite?

      Out of 11 animals, 6 were males, and 5 females. This is now mentioned in the manuscript.

      What was the type of food?

      Type of food was added to the manuscript (Extrudat, vitamin-fortified, irradiated > 25 kGy)

      What were the electrodes?

      This was provided in the manuscript. Carbon fiber filament was produced by World Precision Instruments. The tips of this filament were spread to brush-like shape to increase the contact surface above the skull.

      "low noise zero echo time (ZTE) MRI sequence"- please explain for the non-specialist or provide references.

      Reference added.

      Lines 148-150: "The length of habituation period was selected based on pilot experiments and was sufficient for rats to be in low-stress state and produce absence seizures inside the magnet." How do the authors know the rats were in a low-stress state?

      This claim was based on two factors. At the end of the habituation protocol, the motion of animals was considerably decreased according to previous study using similar restraint/habituation protocol (DOI: 10.3389/fnins.2018.00548). In this study the decreased motion is also correlated with decreased blood corticosterone levels which reduced to baseline levels (indicating low-stress state) after 4 days of habituation. Another factor is when epileptic rodents are continuously recorded for 24h, most SWDs occur during a state of passive wakefulness or drowsiness (Lannes et al. 1988, Coenen et al. 1991) . Either way, as we don’t have a way to provide direct evidence of low-stress state, we modified the sentence to the following:

      “The length of habituation period was selected based on pilot experiments to provide low-motion data therefore giving rats a better chance to be in a low-stress state and thus produce absence seizures inside the magnet.”

      Lines 150-2: "Respiration rate and motion were monitored during habituation sessions using a pressure pillow and video camera to estimate stress level." What were the criteria for a high stress level?

      Criteria for high (or low) stress levels were based mostly on motion levels according to previous study (DOI: 10.1016/s0149-7634(05)80005-3). Still, as we didn’t measure direct measures of stress, we modified the sentence to the following:

      “Pressure pillow and video camera were used to estimate physiological state, via breathing rate, and motion level, respectively.”

      Lines 152-3: "During the last habituation session, EEG was measured to confirm that the rats produced a sufficient amount of absence seizures (10 or more per session)." If 10 min, the rats would basically be seizing the entire session, leading to doubt about what the interictal state was.

      The length of the last habituation session was 60min and the fMRI scan 45min. Given that rats produced ~40-50 seizures during fMRI scan, on average they produced ~1 seizures/min, and one seizure lasting on average of 5-6s, giving ~45s periods for interictal states. 10 or more seizures were used as a threshold to give statistically meaningful findings based on pilot experiments.

      Line 153: "Total of 2-5 fMRI experiments were conducted per rat within a 1-3-week period." What was the schedule for each animal? A table would be useful. If it varied, how do the authors know this was justified?

      Please see Figure 1–figure supplement 2 for examples of habituation timelines for individual rats:

      We found an error when stating 2-5 fMRI experiments, but it should be 3-5 fMRI experiments. This was corrected. We had an aim to acquire 12-14 sessions per stimulation condition and once a sufficient number of sessions were acquired, part of the animals was not used further. Two of the animals that were found to have good quality EEG and produced sufficient amounts of SWDs were kept, and briefly retrained for later second stimulation condition experiments. This was done to replace animals that needed to be excluded in the second stimulation condition due to bad quality EEG or lost implant. Extended use of some animals could theoretically bring slight variation to results but could actually be an advantage as animals were already well trained providing low-motion data.

      "Before and after each habituation session, rats were given a treat of sugar water and/or chocolate cereals as positive reinforcement. " How much and what was the concentration of sugar water; chocolate cereal?

      Rats were given 3 chocolate cereals and/or 1% sugar water. This was added to the manuscript now.

      Line 188: "We relied on pilot calibration of the heated water to maintain the body temperature" Please explain.

      Sentence was clarified:

      “We relied on pilot calibration of the temperature of heated water circulating inside animal bed to maintain the normal body temperature of ~37 °C"

      Line 190: "After manual tuning and matching of the transmit-receive coil, shimming and anatomical imaging" Please explain for the non-specialist.

      Sentence was simplified:

      “After routine preparation steps in the MRI console were done"

      Lines 199-201: "Anatomical imaging was conducted with a T1-FLASH sequence (TR: 530 ms, TE: 4 ms, flip angle 196 18{degree sign}, bandwidth 39,682 kHz, matrix size 128 x 128, 51 slices, field-of-view 32 x 32 mm², resolution 0.25 x 0.25 x 0.5 mm3). fMRI was performed with a 3D ZTE sequence (TR: 0.971 ms, TE: 0 ms, flip angle 4{degree sign}, pulse length 1 µs, bandwidth 150 kHz, oversampling 4, matrix size 60 x 60 x 60, field-of-view 30 x 30 x 60 mm3 , resolution of 0.5 x 0.5 x 1 mm3 , polar under sampling factor 5.64 nr. of projections 2060 resulting to a volume acquisition time of about 2 s). A total of 1350 volumes (45 min) were acquired." Please explain for the non-specialist.

      These technical parameters are provided for the sake of repeatability. Section was however clarified as the following and citation was added:

      Anatomical imaging was conducted with a T1-FLASH sequence (repetition time: 530 ms, echo time: 4 ms, flip angle 18°, bandwidth 39,682 kHz, matrix size 128 x 128, 51 slices, field-of-view 32 x 32 mm², spatial resolution 0.25 x 0.25 x 0.5 mm3). fMRI was performed with a 3D ZTE sequence (repetition time: 0.971 ms, TE: 0 ms, flip angle 4°, pulse length 1 µs, bandwidth 150 kHz, oversampling 4, matrix size 60 x 60 x 60, field-of-view 30 x 30 x 60 mm3, spatial resolution of 0.5 x 0.5 x 1 mm3, polar under sampling factor 5.64, number of projections 2060 resulting to a volume acquisition time of about 2 s (look Wiesinger & Ho, 2022 for parameter explanations)). A total of 1350 volumes (45 min) were acquired.

      "Visual (n=14 sessions, 5 rats) and somatosensory whisker (n=14 sessions, 4 rats)" - Please explain how multiple sessions were averaged for a single rat. Please justify the use of different numbers of sessions per rat.

      All the sessions belonging to the same stimulus scheme (multiple sessions per rat) were put at the once as sessions in SPM analysis together with all the stimulus conditions belonging to these sessions. Justifications for using a different number of sessions per rat, were given above.

      Lines 205-206: "For the visual stimulation, light pulses (3 Hz, 6 s total length, pulse length 166 ms) were produced by a blue led, and light was guided through two optical fibers to the front of the rat's eyes. What wavelength of blue? Why blue? Is the stimulation strong? Weak?

      Wavelength was 470 nm and brightness 7065 mcd with a current of 20mA. Blue was selected as it is in the frequency range that rat can differentiate and this color has been used in previous literature ( https://doi.org/10.1016/j.neuroimage.2020.117542, https://doi.org/10.1016/j.jneumeth.2021.109287)

      Line 212: "Stimulation parameters were based on previous rat stimulation fMRI studies to produce robust responses" What is a robust response? One where a lot of visual cortical voxels are activated?

      Sentence was corrected as the following:

      “Stimulation parameters were based on previous rat stimulation fMRI studies and chosen to activate voxels widely in visual and somatosensory pathways, correspondingly.”

      Line 245: "Seizures were confirmed as SWDs if they had a typical regular pattern, had at least double the amplitude compared to baseline signal..." What was the "typical" pattern? What baseline signal was it compared to? Was the baseline measured as an amplitude? Peak to trough?

      Sentence was corrected to the following:

      “Seizures were confirmed as SWDs if they had a typical regular spike and wave pattern with 7-12 Hz frequency range and had at least double the amplitude compared to baseline signal. All other signals were classified as baseline i.e. signal absent of a distinctive 7-12 Hz frequency power but spread within frequencies from 1 to 90 Hz.”

      "using rigid, affine, and SYN registrations" Please explain for the non-specialist.

      Corrected as the following:

      “using rigid, affine (linear) and SYN (non-linear) registrations”

      Line 274-5: "However, there were also intermediate cases where the seizure started or ended during the stimulation block (Figure 1 - Figure Supplement 1). These intermediate cases were modeled as confounds" Why confounds? They could be very interesting because the stimulation may not be affected if timed at the end of the seizure. What was the definition of start and end? Defining the onset and end of seizures is tricky.

      We agree that these cases are also highly interesting. Indeed, all the intermediate cases were also analyzed separately but not included in the manuscript (other than the case when stimulation immediately ended a seizure) as no statistical findings were found when comparing these cases to the baseline. E.g. for the case when stimulation was applied towards the end of seizure, it provided weakened responses but still stronger compared to case when stimulation was applied fully during a seizure (indicating some responsiveness after the cessation of seizure). As these intermediate cases led to results with higher variance, we considered them as confounds in the general linear model (i.e. reducing unwanted variance from the results of interests).

      Definition of onset and end of seizure can be difficult in some cases. When looking at the signal itself, especially towards the end of seizure the amplitude of SWDs can get weaker and thus the shift from seizure to baseline signal can be more problematic to differentiate. However, when looking at the power spectrum the boundaries were more easily detectable. Thus, in the definitions of onsets and ends of seizure we relied on both the signal and power spectrum (stated in the manuscript).

      "in the SPM analysis" Please explain for the non-specialist.

      Definition of SPM together with a link to software site was added.

      Line 276: "of fMRI data (see 2.5.3.) and thus explained variance that was not accounted for by the main effects of interest. " Please clarify.

      Clarified as:

      “Intermediate cases, where the seizure started or ended during the stimulation block (Figure 1–figure supplement 1), were considered as confounds of no-interest in the SPM analysis of fMRI data and the explained variance caused by the confounds were reduced from the main effects of interests”

      Line 277: "Additionally, a contrast..." What is meant?

      This chapter in 2.5.3. was modified as a whole to be more clear.

      Line 278-9: "...was given to two cases: i) when stimulation ended a seizure (0-2 s between stimulation start and seizure end)..." Again, how is the seizure onset and end defined?

      Look comment above.

      Lines 281-2: "Stimulations that did not fully coincide with a seizure were considered as nuisance regressors in the second level analysis." What is meant by nuisance regressor?

      Reference to SPM 12 manual was given for technical terms referring to analysis software.

      Lines 283-8: "Motion periods were also included as multiple regressors (not convolved with a basis function) to be used as nuisance regressors. Stimulations that coincided with a motion above 0.3% of the voxel size were not considered stimulation inputs. Stimulation and seizure inputs were convolved with "3 gamma distribution basis functions" (i.e. 3rd 285 order gamma) in SPM (option: basis functions, gamma functions, order: 3), to account for temporal and dispersion variations in the hemodynamic response. The choice of 3rd order gamma was based on the expectation that time-to peak and shape of HRFs of seizure could vary across voxels (David et al. 2008)." Please explain the technical terms.

      Reference for SPM 12 manual was given for technical terms referring to analysis software, and HRF was defined.

      "BAMS rat connectome" - Please explain the technical terms.

      Modified as:

      “…connection matrix of the rat nervous system (BAMS rat connectome, Bota, Dong, and Swanson 2012).”

      Results

      After removing problematic animals and sessions, was there sufficient power? There probably wasn't enough to determine sex differences.

      After removing problematic sessions, we found statistically significant results (multiple comparison corrected) results in both activation maps, and hemodynamic responses. To determine sex differences, there were not enough animals for statistical findings (p>0.05).

      Figure 2 - I don't understand "tSNR" here. What is the point here?

      B vs C. Are these different brain areas or the same but SNR was adjusted?

      D. Where is FD explained? I think explaining what the parts of the figure show would be helpful.

      tSNR, the temporal signal-to-noise ratio, demonstrates the behavior of noise through time. Readers who are planning to mimic the used awake fMRI protocol together with the single loop coil, might be interested on data quality aspect, and ability for the coil to capture signal from noise, as it is one of the most important factors in fMRI designs where small signal changes have to be distinguished from the background noise.

      B and C illustrate the same brain area, but B was acquired with high resolution anatomical scanning (T1 FLASH), and C was acquired with low resolution ZTE scanning. We clarified the figure legend to the following:

      “…spatial signal-to-noise ratios of an illustrative high resolution anatomical T1-FLASH (B), and low resolution ZTE image (C)

      FD was explained in section 2.5.1. Some parts of the explanation were clarified: “Framewise displacement (FD) (Figure 2E) was calculated as follows. First, the differential of successive motion parameters (x, y, z translation, roll, pitch, yaw rotation) was calculated. Then absolute value was taken from each parameter and rotational parameters were divided by 5 mm (as estimate of the rat brain radius) to convert degrees to millimeters (Power et al. 2012). Lastly, all the parameters were summed together.”

      Table 1 has no statistical comparisons.

      Table 1 is purely an illustration of stimulation and seizure occurrence. There is no specific interest to compare stimulation types (in what state of seizure it occurred) as it does not provide any meaningful inferences to the study.

      Statistical activation maps - it is not clear how this was done.

      Creation of statistical maps are explained in section 2.5.3.

      Line 384-5: "In addition, some responses were observed in the somatosensory cortex during a seizure state, probably due to incomplete nuisance removal of the effect of the seizure itself by the linear model used." I don't see why the authors would not suggest that the result is logical given that stimuli should activate the somatosensory cortex.

      Sentence was modified as the following:

      “In addition, responses were observed in the somatosensory cortex during a seizure state”

      Fig 3 "F-contrast maps." Please explain.

      Creation of statistical maps are explained in section 2.5.3.

      HRF- please define. The ROI selection is unclear - it "was based on statistical differences seen in activation maps." But how were ROIs drawn? Also, why were HRFs examined at the end of seizures?

      HRF was defined, and definitions of HRF and ROI were moved from results section 3.3. to method section 2.5.3.

      Definition of ROI was clarified:

      “Anatomical ROIs, based on Paxinos atlas (Paxinos and Watson rat brain atlas 7th edition), were drawn on the brain areas where statistical differences were seen in activation maps.”

      HRFs were estimated additionally at the end of seizure as it was specifically interesting to study brain state shifts from ictal to interictal. This shift was also providing us statistically significant findings in means that brain responses differed from ictal stimulation.

      Line 421: "Interestingly, the response amplitude was higher when the stimulation ended a seizure compared to when it did not" Why is this interesting?

      Word “interestingly” was changed to “additionally” to avoid any inferences in the results section.

      Line 427: "Notably, HRFs amplitudes were both negatively and positively signed during the ictal 427 state, depending on the brain region." Why is this notable?

      Word “notably” was removed to avoid any inferences in the results section.

      Please explain the legends of Figures 4 and 6 more clearly.

      Figure 4, and figure 4 – figure supplement 1, legends were clarified:

      “HRFs was calculated in selected ROI, belonging to visual or somatosensory area, by multiplying gamma basis functions (Figure 1–figure supplement 1, B) with their corresponding average beta values over a ROI and taking a sum of these values.”

      Using the comments above as a guide, please revise the Discussion to be more precise and more clear about what was shown and what can be concluded in light of limitations. Please ensure the literature is cited where appropriate.

      Some parts of the discussion and conclusion sections were modified.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments:

      Formatting: fMRI maps in Figures 3 and 5 should be more clearly labeled, indicating anterior and posterior directions on all images, and the cross sections should be enlarged to enable anatomical areas to be more clearly differentiated.

      Anterior and posterior directions were added, and cross sections were enlarged.

      The Methods section 2.41 and other places in the text, and Figure 2 - Figure Supplement 1 say that there was less artifact on the EEG with ZTA than with GE-EPI. However the EEG shown in Figure 2 - Figure Supplement 1 Part C shows much more artifact in the left (ZTE) trace than the right (GE-EPI) trace. This apparent contradiction should be resolved.

      The figure was actually demonstrating the relative change to the signal when MRI sequences were on, and by this standard, the ZTE produced both less amplitude and frequency changes than EPI. In the example figure, the baseline fluctuations in the EEG trace in the left were higher in amplitude than in the right, and this could potentially lead to misconception of ZTE producing more noise. Figure legend was clarified to highlight relative change:

      “ZTE also caused relatively less artificial noise on EEG signal, keeping both amplitude of the signal and frequencies relatively more intact, which improved live detection of absence seizures.”

      Figure 2 - Supplement 1, part B horizontal axis should provide units.

      Units were added.

      Figure 2 - Supplement 1, legend last sentence says arrows mark the beginning of each "sequence." Is this a typo and should this instead say "each seizure"?

      Should state “each fMRI sequence” which was corrected.

      Line 307, Methods "to reveal brain areas where ictal stimulation provided higher amplitude response than interictal" - should this be reversed, ie weren't the authors analyzing a contrast to determine where interictal signals were higher than ictal signals?

      This should be reversed, and was corrected, thank you for noting this.

      Figure 6 - Figure Supplement 1, the scales are very different for many of the plots so they are hard to compare. Especially in the ictal periods (D, E, F) it is hard to see if any changes are happening during ictal stimulation similar to interictal stimulation due to very different scales. The activity related to SWD is so large that it overshadows the rest and perhaps should be subtracted out.

      We point out that Figure 6 - Figure Supplement 1 reproduces with a higher level of detail the results shown of Figure 6 from the main text, where all signals are plotted in the same scale. The difference between scales used in this figure is intended, and its purpose is to show and highlight the large differences observed on the ongoing activity and the evoked response between the two states (ictal and interictal). In interictal periods the ongoing activity is characterized by fluctuations around a baseline level whose variance is highly affected by the application of the stimulus. On the contrary, ictal periods are characterized by large oscillations, with periods of high and synchronized activity followed by periods of nearly no activity, where the effect of the stimulus on the dynamics is overshadowed by the ongoing dynamics (both from local and from afferent nodes) as the referee mentions, and which imposes a strong limit to the responsiveness of the system and the propagation of the signal.

    1. Reviewer #2 (Public Review):

      The authors demonstrate convincingly the potential of single mesodermal cells, removed from zebrafish embryos, to show cell-autonomous oscillatory signaling dynamics and differentiation. Their main conclusion is that a cell-autonomous timer operates in these cells and that additional external signals are integrated to tune cellular dynamics. Combined, this is underlying the precision required for proper embryonic segmentation, in vivo. I think this work stands out for its very thorough, quantitative, single-cell real-time imaging approach, both in vitro and also in vivo. A very significant progress and investment in method development, at the level of the imaging setup and also image analysis, was required to achieve this highly demanding task. This work provides new insight into the biology underlying embryo axis segmentation.<br /> The work is very well presented and accessible. I think most of the conclusions are well supported. Here a my comments and suggestions:

      1) The authors state that "We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding remarkable agreement."

      I think this statement needs to be better placed in context. In absolute terms, the period of oscillations and the timing of differentiation are actually very different in vitro, compared to in vitro. While oscillations have a period of ~30 minutes in vivo, oscillations take twice as long in vitro. Likewise, while the last oscillation is seen after 143 minutes in vivo, the timing of differentiation is very significantly prolonged, i.e.more than doubled, to 373min in vitro (Supplementary Figure 1-9). I understand what the authors mean with 'remarkable agreement', but this statement is at the risk of being misleading. I think the in vitro to in vivo differences (in absolute time scales) needs to be stated more explicitly. In fact, the drastic change in absolute timescales, while preserving the relative ones,i.e. the number of oscillations a cell is showing before onset of differentiation remains relatively invariant, is a remarkable finding that I think merits more consideration (see below).

      2) One timer vs. many timers<br /> The authors show that the oscillation clock slowing down and the timing of differentiation, i.e. the time it takes to activate the gene mesp, are in principle dissociable processes. In physiological conditions, these are however linked. We are hence dealing with several processes, each controlled in time (and hereby space). Rather than suggesting the presence of 'a timer', I think the presence of multiple timing mechanisms would reflect the phenomenology better. I would hence suggest separating the questions more consistently, for instance into the following three:<br /> a. what underlies the slowing down of oscillations?<br /> b. what controls the timing of onset of differentiation?<br /> c. and finally, how are these processes linked?

      Currently, these are discussed somewhat interchangeably, for instance here: "Other models posit that the slowing of Her oscillations arise due to an increase of time-delays in the negative feedback loop of the core clock circuit (Yabe, Uriu, and Takada 2023; Ay et al. 2014), suggesting that factors influencing the duration of pre-mRNA splicing, translation, or nuclear transport may be relevant. Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock."(page 14). In the first part, the slowing down of oscillations is discussed and then the authors conclude on 'the timer', which however is the one timing differentiation, not the slowing down. I think this could be somewhat misleading.

      3) From this and previous studies, we learn/know that without clock oscillations, the onset of differentiation still occurs. For instance in clock mutant embryos (mouse, zebrafish), mesp onset is still occurring, albeit slightly delayed and not in a periodic but smooth progression. This timing of differentiation can occur without a clock and it is this timer the authors refer to "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14). This 'timer' is related to what has been previously termed 'the wavefront' in the classic Clock and Wavefront model from 1976, i.e. a "timing gradient' and smooth progression of cellular change. The experimental evidence showing it is cell-autonomous by the time it has been laid down,, using single cell measurements, is an important finding, and I would suggest to connect it more clearly to the concept of a wavefront, as per model from 1976.

      4) Regarding question a., clearly, the timer for the slowing down of oscillations is operating in single cells, an important finding of this study. It is remarkable to note in this context that while the overall, absolute timescale of slowing down is entirely changed by going from in vivo to in vitro, the relative slowing down of oscillations, per cycle, is very much comparable, both in vivo and in vivo. To me, while this study does not address the nature of this timer directly, the findings imply that the cell-autonomous timer that controls slowing down is, in fact, linked to the oscillations themselves. We have previously discussed such a timer, i.e. a 'self-referential oscillator' mechanism (in mouse embryos, see Lauschke et al., 2013) and it seems the new exciting findings shown here in zebrafish provide important additional evidence in this direction. I would suggest commenting on this potential conceptual link, especially for those readers interested to see general patterns.

      5) Regarding question c., i.e. how the two timing mechanisms are functionally linked, I think concluding that "Whatever the identity, our results indicate the timer ought to exert control over differentiation independent of the clock." (page 14), might be a bit of an oversimplification. It is correct that the timer of differentiation is operating without a clock, however, physiologically, the link to the clock (and hence the dependence of the timescale of clock slowing down), is also evident. As the author states, without clock input, the precision of when and where differentiation occurs is impacted. I would hence emphasize the need to answer question c., more clearly, not to give the impression that the timing of differentiation does not integrate the clock, which above statement could be interpreted to say.

      6) A very interesting finding presented here is that in some rare examples, the arrest of oscillations and onset of differentiation (i.e. mesp) can become dissociated. Again, this shows we deal here with interacting, but independent modules. Just as a comment, there is an interesting medaka mutant, called doppelkorn (Elmasri et al. 2004), which shows a reminiscent phenotype "the Medaka dpk mutant shows an expansion of the her7 expression domain, with apparently normal mesp expression levels in the anterior PSM.". The authors might want to refer to this potential in vivo analogue to their single cell phenotype.

      7) One strength of the presented in vitro system is that it enables precise control and experimental perturbations. A very informative set of experiments would be to test the dependence of the cell-autonomous timing mechanisms (plural) seen in isolated cells on ongoing signalling cues, for instance via Fgf and Wnt signaling. The inhibition of these pathways with well-characterised inhibitors, in single cells, would provide important additional insight into the nature of the timing mechanisms, their dependence on signaling and potentially even into how these timers are functionally interdependent.

    1. Reviewer #1 (Public Review):

      Summary:<br /> This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

      The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:<br /> The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:<br /> My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

      On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

      For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      Suggestions for improvement:<br /> - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.<br /> - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed.<br /> - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment?

    1. Reviewer #2 (Public Review):

      Summary:

      We often have prior expectations about how the sensory world will change, but it remains an open question as to how these expectations are integrated into perceptual decisions. In particular, scientists have debated whether prior knowledge principally changes the decisions we make about the perceptual world, or directly alters our perceptual encoding of incoming sensory evidence.

      The authors aimed to shed light on this conundrum by using a novel psychophysical task while measuring EEG signals that have previously been linked to either the sensory encoding or response selection phase of perceptual choice. The results convincingly demonstrate that both features of perceptual decision making are modulated by prior expectations - but that these biases in neural process emerge over different time courses (i.e., decisional signals are shaped early in learning, but biases in sensory processing are slower to emerge).

      Another interesting observation unearthed in the study - though not strictly linked to this perceptual/decisional puzzle - is that neural signatures of focused attention are exaggerated on trials where participants are given neutral (i.e. uninformative) cues. This is consistent with the idea that observers are more attentive to incoming sensory evidence when they cannot rely on their expectations.

      In general, I think the study makes a strong contribution to the literature, and does an excellent job of separating 'perceiving' from 'responding'. More perhaps could have been done though to separate 'perceiving' and 'responding' from 'deciding' (see below).

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision and/or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

      In revising the manuscript after an initial round of revisions, the authors have done a good job of acknowledging these complexities - and I don't think that any of these outstanding scientific puzzles detract from the value of the paper as a whole.

    1. No man would keep his hands off what was not his own when he could safely take what he liked out of the market, or go into houses and lie with any one at his pleasure, or kill or release from prison whom he would, and in all respects be like a God among men.

      This is all a hypothetical situation that cannot be proven. However, I do believe the same could be said regarding the statement that every person who has previously been just will act with the same integrity when placed in a similar situation. It IS all hypothetical. But really thinking about it, I think we all have the capacity to act unjust in situations and justify ourselves. Just think if your loved one's life was at risk and you HAD to be unjust to save that person, would you do it? Many people may say no, or it depends on what I would have to do. But I think in reality, we do not want to admit that we would indeed do anything even if it means being unjust. When we are put under pressure, we show our true colors. We just fear what others may think of us. Or we fear what we may think of ourselves. Either way, we tend to justify ourselves and not view things as they are.

      We have a tendency to want to be above others in society and make our own rules and excuses.

    2. And this we may truly affirm to be a great proof that a man is just, not willingly or because he thinks that justice is any good to him individually, but of necessity, for wherever any one thinks that he can safely be unjust, there he is unjust.

      Earlier I mentioned conscience as something that can drive a person to justice. So, I'm also curious what Plato would think about altruism and how natural it is to humans?

    1. Background Applying good data management and FAIR data principles (Findable, Accessible, Interoperable, and Reusable) in research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.Findings We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers with software dependencies. We adhered to software development practices like version control, documentation, and licensing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via WorkflowHub.Conclusions Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows to turn FAIR principles into practice.

      Reviewer 3 Megan Hagenauer - Original Submission

      Review of "A Multi-omics Data Analysis Workflow Packaged as a FAIR Digital Object" by Niehues et al. for GigaScience08-31-2023I want to begin by apologizing for the tardiness of this review - my whole family caught Covid during the review period, and it has taken several weeks for us to be functional again.OverviewAs a genomics data analyst, I found this manuscript to be a fascinating, inspiring, and, quite honestly, intimidating, view into the process of making analysis code and workflow truly meet FAIR standards. I have added recommendations below for elements to add to the manuscript that would help myself and other analysts use your case study to plan out our own workflows and code release. These recommendations fall quite solidly into the "Minor Revision" category and may require some editorial oversight as this article type is new to me. Please note that I only had access to the main text of the manuscript while writing this review.Specific Comments1) As a case study, it would be useful to have more explicit discussion of the expertise and effort involved in the FAIR code release and the anticipated cost/benefit ratio:As a data analyst, I have a deep, vested interest in reproducible science and improved workflow/code reusability, but also a limited bandwidth. For me, your overview of the process of producing a FAIR code release was both inspiring and daunting, and left me with many questions about the feasibility of following in your footsteps. The value of your case study would be greatly enhanced by discussing cost/benefit in more detail:a. What sort of expertise or training was required to complete each step in the FAIR release? E.g.,i. Was your use of tools like Github, Jupyter notebook, WorkflowHub, and DockerHub something that could be completed by a scientist with introductory training in these tools, or did it require higher level use?ii. Was there any particular training required for the production of high quality user documentation or metadata? (e.g., navigating ontologies?)b. With this expertise/training in place, how much time and effort do you estimate that it took to complete each step of adapting your analysis workflow and code release to meet FAIR standards?i. Do you think this time and effort would differ if an analyst planned to meet FAIR standards for analysis code prior to initiating the analysis versus deciding post-hoc to make the release of previously created code fit FAIR standards?c. The introduction provides an excellent overview of the potential benefits of releasing FAIR analysis code/workflows. How did these benefits end up playing out within your specific case study?i. e.g., I thought this sentence in your discussion was a particularly important note about the benefits of FAIR analysis code in your study: "Developing workflows with partners across multiple institutions can pose a challenge and we experienced that a secure shared computing environment was key to the success of this project."ii. Has the FAIR analysis workflow also been useful for collaboration or training in your lab?iii. How many of the analysis modules (or other aspects of the pipeline) do you plan on reusing? In general, what do you think is the size for the audience for reuse of the FAIR code? (e.g., how many people do you think will have been saved significant amounts of work by you putting in this effort?)iv. … Or is the primary benefit mostly just improving the transparency/reproducibility of your science?d. If there is any way to easily overview these aspects of your case study (effort/time, expertise, immediate benefits) in a table or figure, that would be ideal. This is definitely the content that I would be skimming your paper to find.2) As a reusable code workflow, it would be useful to provide additional information about the data input and experimental design, so that readers can determine how easily the workflow could be adapted to their own datasets. This information could be added to the text or to Fig 1. E.g.,i. The dimensionality of the input (sample size, number of independent variables & potential co-variates, number of dependent variables in each dataset, etc)ii. Data types for the independent variables, co-variates, and dependent variables (e.g., categorical, numeric, etc)iii. Any collinearity between independent variables (e.g., nesting, confounding).3) As documentation of the analysis, it would be useful to provide additional information about how the analysis workflow may influence the interpretation of the results.a. It would be especially useful to know which aspects of the analysis were preplanned or following a standard procedure/protocol, and which aspects of the analysis were customized after reviewing the data or results. This information can help the reader assess the risk of overfitting or HARKing.b. It would also be useful to call out explicitly how certain analysis decisions change the interpretation of the results. In particular, the decision to use dimension reduction techniques within the analysis of both the independent and dependent variables, and then focus only on the top dimensions explaining the largest sources of variation within the datasets, is especially important to justify and describe its impact on the interpretation of the results. Is there reason to believe that externalizing behavior should be related to the largest sources of variation within buccal DNA methylation or urinary metabolites? Within genetic analyses, the assumption tends to be the opposite - that genetic variation related to behavior (such as externalizing) is likely to be present in a small percent of the genome, and that the top sources of variation within the genetics dataset are uninteresting (related to population) and therefore traditionally filtered out of the data prior to analysis. Within transcriptomics, if a tissue is involved in generating the behavior, some of the top dimensions explaining the largest sources of variation in the dataset may be related to that behavior, but the absolute largest sources of variation are almost always technical artifacts (e.g., processing batches, dissection batches) or impactful sources of biological noise (e.g., age, sex, cell type heterogeneity in the tissue). Is there reason to believe that cheek cells would have their main sources of epigenetic variation strongly related to externalizing behavior? (maybe as a canary in a coal mine for other whole organism events like developmental stress exposure?). Is there reason to believe that the primary variation in urinary metabolites would be related to externalizing behavior? (perhaps as a stand-in for other largescale organismal states that might be related to the behavior - hormonal states? metabolic states? inflammation?). Since the goal of this paper is to provide a case study for creating a FAIR data analysis workflow, it is less important that you have strong answers for these questions, and more important that you are transparent about how the answers to these questions change the interpretation of your results. Adding a few sentences to the discussion is probably sufficient to serve this purpose. Thank you for your hard work helping advance our field towards greater transparency and reproducibility. I look forward to seeing your paper published so that I can share it with the other analysts in our lab.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public Review)

      Weaknesses

      1) The usage of young growing mice (8-10 weeks) versus adult mice (>4 months) in the murine mechanical overload experiments. The usage of adult mice would be preferable for these experiments given that maturational growth may somehow affect the outcomes.

      The basis for this critique is not clear as it has been shown that the longitudinal growth of bones is complete by ⁓8 weeks of age (e.g., PMID: 28326349, and 31997656). These studies, along with others, also indicate that 8 weeks is a post-pubescent age in mice. For these reasons, 8 weeks of age was viewed as being representative of the human equivalent of when people start to perform resistance exercise with the goal of increasing muscle mass. Also, it’s important to consider that the mice were 10-12 weeks of age when the muscles were collected which would be equivalent to a human in their lower 20’s. In our human study, the mean age of the subjects was 23. Given the above points, it’s hard for us to appreciate why the use of mice that started at 8-10 weeks of age is viewed as a weakness. With that being said, we recognize that there may be age-related changes in mechanisms of mechanical load-induced growth, but it was not our intent to address this topic.

      1b) No consideration for biological sex.

      We appreciate this point and we agree that sex is an important variable to consider. In this study, we explored an unchartered topic and therefore we wanted to minimize as many known variables as possible. We did that, in part, by focusing specifically on male subjects. In the future, it will certainly be important to explore whether sex (and age) impact the structural adaptations that drive the mechanical load-induced growth of muscle fibers.

      2) Information on whether myofibrillogenesis is dependent on hypertrophy induced by loading, or just hypertrophy in general. To provide information on this, the authors could use, for instance, inducible Myostatin KO mice (a model where hypertrophy and force production are not always in lockstep) to see whether hypertrophy independent from load induces the same result as muscle loading regarding myofibrillogenesis.

      This is a great suggestion, but it goes beyond the intended scope of our study. Nevertheless, with the publication of our FIM-ID methodology, the answer to this and related questions can now be obtained in a time- and cost-effective manner.

      3) Limited information on Type 1 fiber hypertrophy. A "dual overload" model is used for the mouse where the soleus is also overloaded, but presumably, the soleus was too damaged to analyze. Exploring hypertrophy of murine Type 1 fibers using a different model (weight pulling, weighted wheel running, or forced treadmill running) would be a welcome addition.

      The point is well taken and further studies that are aimed at determining whether there are differences in how Type I vs. Type II fibers grow would be an excellent subject for future studies.

      Reviewer #3 (Public Review)

      1) Supplemental Figure 1 is not very clear.

      Supplemental Figure 1 is now presented as Supplemental Figure 2. We carefully reexamined this figure and, in our opinion, the key points have been appropriately conveyed. We would be more than happy to revise the figure, but we would need guidance with respect to which aspect(s) of the figure were not clear to the reviewer.

      Reviewer #1 (Recommendations For The Authors)

      Introduction.

      1) I do not think the first paragraph is really necessary. Cell growth is a fundamental property of cell biology that requires no further justification.

      We believe that it is essential to remind all readers about the importance of skeletal muscle research. For some, the detrimental impact of skeletal muscle loss on one’s quality of life and the greater burden on the healthcare system may not be known.

      2) I prefer "fundamental" over "foundationally".

      All mentions of the word “foundational” and “foundationally” have been changed to “fundamental” and “fundamentally.”

      3) As usual for the Hornberger lab, the authors do an excellent job of providing the (historical) context of the research question.

      Thank you for this positive comment.

      4) I prefer “Goldspink” as “Dr. Goldspink” feels too personal especially when you are critical of his studies.

      All instances of “Dr.” have been removed when referring to the works of others. This includes Dr. Goldspink and Dr. Tokuyasu.

      5) Fourth paragraph, after reference #17. I felt like this discussion was not necessary and did not really add any value to the introduction.

      We believe that this discussion should remain since it highlights the widely accepted notion that mechanical loading leads to an increase in the number of myofibrils per fiber, yet there is no compelling data to support this notion. This discussion highlights the need for documented evidence for the increase in myofibril number in response to mechanical loading and, as such, it serves as a major part of the premise for the experiments that were conducted in our manuscript.

      6) The authors do a nice job of laying out the challenge of rigorously testing the Goldspink model of myofiber hypertrophy.

      Thank you!

      Results

      1). For the EM images, can the authors provide a representative image of myofibril tracing? From the EM image provided, it is difficult to evaluate how accurate the tracing is.

      -Representative images and an explanation of myofibril calculation have been provided in Supplemental Figure 5.

      2) In the mouse, how does the mean myofibril CSA compare between EM and FIM-ID?

      Author response image 1.

      The above figures compare the myofibril CSA and fiber CSA measurements that were obtained with EM and FIM-ID for all analyzed fibers, as well as the same fibers separated according to the fiber type (i.e., Ox vs. Gly). The above figure shows that the FIM-ID measurements of myofibril CSA were slightly, yet significantly, lower than the measurements obtained with EM. However, we believe that it would be misleading to present the data in this manner. Specifically, as shown in Fig. 4C, a positive linear relationship exists between myofibril CSA and fiber CSA. Thus, a direct comparison of myofibril CSA measurements obtained from EM and FIM-ID would only be meaningful if the mean CSA of the fibers that were analyzed were the same. As shown on the panel on the right, the mean CSA of the fibers analyzed with FIM-ID was slightly, yet significantly, lower than the mean CSA of the fibers analyzed with EM. As such, we believe that the most appropriate way to compare the measurements of the two methods is to express the values for the myofibril CSA relative to the fiber CSA and this is how we presented the data in the main figure (i.e., Fig. 4E).

      3) Looking at Fig. 3D, how is intermyofibrillar space calculated when a significant proportion of the ROI is odd-shaped myofibrils that are not outlined? It is not clear how the intermyofibrillar space between the odd-shaped myofibrils is included in the total intermyofibrillar space calculation for the fiber.

      The area occupied by the intermyofibrillar components is calculated by using our custom “Intermyofibrillar Area” pipeline within CellProfiler. Briefly, the program creates a binary image of the SERCA signal. The area occupied by the white pixels in the binary image is then used to calculate the area that is occupied by the intermyofibrillar components. To help readers, an example of this process is now provided in supplemental figure 4.

      4) What is the average percentage of each ROI that was not counted by CP (because a myofibril did not fit the shape criteria)? The concern is that the method of collection is biasing the data. In looking at EM images of myofibrils (from other studies), it is apparent that myofibrils are not always oval; in fact, it appears that often myofibrils have a more rectangular shape. These odd-shaped myofibrils are excluded from the analysis yet they might provide important information; maybe these odd-shaped myofibrils always hypertrophy such that their inclusion might change the overall conclusion of the study. I completely understand the challenges of trying to quantify odd-shaped myofibrils. I think it is important the authors discuss this important limitation of the study.

      First, we would like to clarify that myofibrils of a generally rectangular shape were not excluded. The intent of the filtering steps was to exclude objects that exhibited odd shapes because of an incomplete closure of the signal from SERCA. To illustrate this point we have annotated the images from Figure 3B-D with a red arrow which points to a rectangular object and blue arrows which point to objects that most likely consisted of two or more individual myofibrils that were falsely identified as a single object.

      Author response image 2.

      We appreciate the reviewer's concern that differences in the exclusion rates between groups could have biased the outcomes. Indeed, this was something that we were keeping a careful eye on during our analyses, and we hope that the reviewer will take comfort in knowing that objects were excluded at a very similar rate in both the mouse and human samples (44% vs. 46% for SHAM vs. MOV in mice, and 47% vs. 47% for PRE vs. POST in humans). We realize that this important data should have been included in our original submission and it is now contained with the results section of the revised version of our manuscript. Hopefully the explanation above, along with the inclusion of this data, will alleviate the reviewers concerns that differences between the groups may have been biased by the filtering steps.

      Discussion.

      1) I think the authors provided a balanced interpretation of the data by acknowledging the limitation of having only one time-point. i.e., not being able to assess the myofibril splitting mechanism.

      Thank you!

      2) I think a discussion on the important limitation of only quantifying oval-shaped myofibrils should be included in the discussion.

      Please refer to our response to comment #4 of the results section.

      Reviewer #2 (Recommendations For The Authors)

      Overall, this is a thoughtful, clear, and impactful manuscript that provides valuable tools and information for the skeletal muscle field. My specific comments are as follows:

      1) In the introduction, I really appreciate the historical aspect provided on myofbrillogenesis. As written, however, I was expecting the authors to tackle the myofibril "splitting" question in greater detail with their experiments given the amount of real estate given to that topic, but this was not the case. Consider toning this down a bit as I think it sets a false expectation.

      We acknowledge that the study does not directly address the question about myofibril splitting. However, we believe that it is important to highlight the background of this untested theory since it serves as a major part of the premise for the experiments that were performed.

      2) In the introduction, is it worth worth citing this study? https://rupress.org/jcb/articlepdf/111/5/1885/1464125/1885.pdf.

      This is a very interesting study but, despite the title, we do not believe that it is accurate to say that this study investigated myofibrillogenesis. Instead (as illustrated by the author in Fig. 9) the study focused on the in-series addition of new sarcomeres at the ends of the pre-existing myofibrils (i.e., it studied in-series sarcomerogenesis). In our opinion, the study does not provide any direct evidence of myofibrillogenesis, and we are not aware of any studies that have shown that the chronic stretch model employed by the authors induces myofibrillogenesis. However, numerous studies have shown that chronic stretch leads to the in-series addition of new sarcomeres.

      3) Is there evidence for myofbrillogenesis during cardiac hypertrophy that could be referenced here?

      This is a great question, and one would think that it would have been widely investigated. However, direct evidence for myofibrillogenesis during load-induced cardiac hypertrophy is just as sparse as the evidence for myofibrillogenesis during load-induced skeletal muscle hypertrophy.

      4) In the introduction, perhaps mention that prolonged fixation is another disadvantage of EM tissue preparation. This typically prevents the usage of antibodies afterwards, whereas the authors have been able to overcome this using their method, which is a great strength.

      Thank you for the suggestion. This point has been added the 5th paragraph of the introduction.

      5) In the introduction, are there not EM-compatible computer programs that could sidestep the manual tracing and increase throughput? Why could software such as this not be used? https://www.nature.com/articles/s41592-019-0396-9

      While we agree that automated pipelines have been developed for EM, such methods require a high degree of contrast between the measured objects. With EM, the high degree of contrast required for automated quantification is rarely observed between the myofibrils and the intermyofibrillar components (especially in glycolytic fibers). Moreover, one of the primary goals of our study was to develop a time and cost-effective method for identifying and quantifying myofibrils. As such, we developed a method that would not require the use of EM. We only incorporated EM imaging and analysis to validate the FIM-ID method. Therefore, utilizing an EM-compatible program to sidestep the manual tracing would have sped up the validation step, but it would not have accomplished one of the primary goals of our study.

      6) In the results, specifically for the human specimens, were "hybrid" fibers detected and, if so, how did the pattern of SERCA look? Also, did the authors happen to notice centrallynucleated muscle fibers in the murine plantaris after overload? If so, how did the myofibrils look? Could be interesting.

      For the analysis of the human fibers, two distinct immunolabeling methods were performed. One set of sections was stained for SERCA1 and dystrophin, while the other set was stained for SERCA2 and dystrophin. In other words, we did not perform dual immunolabeling for SERCA1 and SERCA2 on the same sections. Therefore, during the analysis of the human fibers, we did not detect the presence of hybrid fibers. Furthermore, while we did not perform nuclear staining on these sections, it should be noted that nuclei do not contain SERCA, and to the best of our recollection, we did not detect any SERCAnull objects within the center of the fibers. Moreover, our previous work has shown that the model of MOV used in this study does not lead to signs of degeneration/regeneration (You, Jae-Sung et al. (2019). doi:10.1096/fj.201801653RR). Therefore, it can be safely assumed that very few (if any) of the fibers analyzed in this study were centrally nucleated.

      7) In the Results, fixed for how long? This is important since, at least in my experience, with 24+ hours of fixation, antibody reactivity is significantly reduced unless an antigen retrieval step is performed (even then, not always successful). Also, presumably these tissues were drop-fixed? These details are in the Methods but some additional detail here could be warranted for the benefit of the discerning and interested reader.

      For both the mouse and human, the samples were immersion-fixed (presumably the equivalent of “drop-fixed”) in 4% paraformaldehyde in 0.1M phosphate buffer solution for a total of 24 hours (as described in the Methods section). We agree that prolonged aldehyde fixation can affect antibody reactivity; however, the antibodies used for FIM-ID did not require an antigen retrieval step.

      8) In the results regarding NADH/FAD autofluorescence imaging, a complimentary approach in muscle was recently described and could be cited here: https://journals.physiology.org/doi/full/10.1152/japplphysiol.00662.2022

      We appreciate the reviewer’s recommendation to add this citation for the support of our method for fiber type classification and have added it to the manuscript in the second paragraph under the “Further refinement and validation of the automated measurements with FIM-ID” subsection of the Results as citation number 57.

      9) In the results, "Moreover, no significant differences in the mean number of myofibrils per fiber CSA were found when the results from the FIM-ID and EM-based measurements were directly compared, and this point was true when the data from all analyzed fibers was considered..." Nit-picky, but should it be "were considered" since data is plural?

      Thanks, this error was corrected.

      10) In the discussion, are the authors developing a "methodology" or a "method"? I think it may be the latter.

      We agree that “method” is the correct term to use. Instances of the word “methodology” have been replaced with “method.”

      11) In the discussion, since the same fibers were not being tracked over time, I'm not sure that saying "radial growth" is strictly correct. It is intuitive that the fibers were growing during loading, of course, but it may be safer to say "larger fibers versus control or the Pre sample" or something of the like. For example, "all the fiber types that were larger after loading versus controls" as opposed to "showed significant radial growth"

      While we agree that the fiber size was not tracked over time, the experiments were designed to test for a main effect of mechanical loading. Therefore, we are attributing the morphological adaptations to the mechanical loading variable (i.e., mechanical loadinduced growth). The use of terms like “the induction of radial growth” or “the induction of hypertrophy” are commonly used in studies with the methods employed in this study. Respectfully, we believe that it would be more confusing for the readers if we used the suggested terms like "all the fiber types that were larger after loading versus controls". For instance, if I were the reader I would think to myself… but there fiber types that were larger than others before loading (e.g., Ox vs. Gly), so what are the authors really trying to talk about?

      12) I would suggest making a cartoon summary figure to complement and summarize the Methods/Results/Discussion

      Thank you for this suggestion. We created a cartoon that summarizes the overall workflow for FIM-ID and this cartoon is now presented in Supplemental Figure 1.

    1. And, as to the faculties of the mind, setting aside the arts grounded uponwords and especially that skill of proceeding upon general and infallible rulescalled science, which very few have and but in few things, as being not a nativefaculty born with us, nor attained, as prudence, while we look after somewhatelse, I find yet a greater equality amongst men than that of strength. Forprudence is but experience, which equal time equally bestows on all men inthose things they equally apply themselves unto. That which may perhaps makesuch equality incredible is but a vain conceit of one’s own wisdom, which almostall men think they have in a greater degree than the vulgar, that is, than all menbut themselves, and a few others whom by fame or for concurring withthemselves they approve. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal. For there is not ordinarily agreater sign of the equal distribution of anything than that every man iscontented with his share.2

      To me, Hobbes is saying that In simple terms, people are generally equally smart. The idea that some are wiser might be because individuals often think they are smarter than others. Hobbes argues that, in reality, people are more equal in their mental abilities than they realize.

    2. For such is the nature of men that, howsoever theymay acknowledge many others to be more witty or more eloquent or morelearned, yet they will hardly believe there be many so wise as themselves, forthey see their own wit at hand and other men’s at a distance. But this provethrather that men are in that point equal than unequal.

      This is such an interesting point. We like to assume that we better than, in any aspect, our peers, but when it comes down to it, we are all equal. We all carry that belief that we are better then someone else, believing we are unequal to said person. They may carry that same idea about you, they think they outrank you in some aspect, making them believe they are better then you. Therefore, we are all the same. The same arrogant people.

    1. Content (posts, photos, articles, etc.)# Content recommendations can go well when users find content they are interested in. Sometimes algorithms do a good job of it and users are appreciative. TikTok has been mentioned in particular as providing surprisingly accurate recommendations, though Professor Arvind Narayanan argues that TikTok’s success with its recommendations relies less on advanced recommendation algorithms, and more on the design of the site making it very easy to skip the bad recommendations and get to the good ones. Content recommendations can go poorly when it sends people down problematic chains of content, like by grouping videos of children in a convenient way for pedophiles, or Amazon recommending groups of materials for suicide.

      I think we need to understand the nuances of recommendation algorithms, which is critical in addressing their influence on individual experiences. As these systems are designed to enhance user interaction, they can inadvertently perpetuate biases and present content that may not always align with the best interests or intentions of the users.

    1. To whom our general Ancestor repli'd. Daughter of God and Man, accomplisht Eve, [ 660 ] Those have thir course to finish, round the Earth, By morrow Eevning, and from Land to Land In order, though to Nations yet unborn, Ministring light prepar'd, they set and rise; Least total darkness should by Night regaine [ 665 ] Her old possession, and extinguish life In Nature and all things, which these soft fires Not only enlighten, but with kindly heate Of various influence foment and warme, Temper or nourish, or in part shed down [ 670 ] Thir stellar vertue on all kinds that grow On Earth, made hereby apter to receive Perfection from the Suns more potent Ray. These then, though unbeheld in deep of night, Shine not in vain, nor think, though men were none, [ 675 ] That heav'n would want spectators, God want praise; Millions of spiritual Creatures walk the Earth Unseen, both when we wake, and when we sleep: All these with ceasless praise his works behold Both day and night: how often from the steep [ 680 ] Of echoing Hill or Thicket have we heard Celestial voices to the midnight air, Sole, or responsive each to others note Singing thir great Creator: oft in bands While they keep watch, or nightly rounding walk, [ 685 ] With Heav'nly touch of instrumental sounds In full harmonic number joind, thir songs Divide the night, and lift our thoughts to Heaven.

      In this section, Adam responds to Eve as to why the stars and heavens shine. He explains to her that the sun must shine over all the earth, for those who will inhabit it in the future. They sleep at night, so that they may work harder in the day. He also talks about various "celestial voices"(4. 682) that he has heard at night, praising the glory of God. This heavenly chorus will protect them, as they “divide the night”(4. 688) to keep watch over Adam and Eve, while continuing to exalt their Creator. While reading this section, it seemed to me that the difference between night and day was emphasised heavily. This is an important distinction to make, as God is attributed as the giver of light, and Satan as a bringer of darkness.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      1. General Statements

      We thank the reviewers for their excellent work that greatly improved our work. We are very content that reviewer #1 considered our work to be “novel, interesting and important for understanding the mitochondrial biology of PD”. This reviewer also valued our work as “a significant advancement” and suggested further study of the relationship of CISD1 (dimerization) to general mitophagy/autophagy. We addressed this in the already transferred revision (version 1, v1).

      Also reviewer #2 considered our work to be “an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate”. This reviewer had a very specific suggestion on how to improve our manuscript which makes a lot of sense and is feasible. As the suggested experiments include fly breeding and behavioral analysis, these experiments will be included in the second revision to be uploaded as soon as possible (version 2, v2).

      Finally, reviewer #3 gathered that parts of our results “are confirmatory to recently published work” but also appreciated that our results established that iron-depleted apo-Cisd is an important determinant of toxicity which has not been shown before. I would like to comment here, that in contrast to the paper mentioned by this reviewer, our contribution includes data from dopaminergic neurons obtained from human patients suffering from familial Parkinson’s disease that demonstrate the same increase in apo-Cisd levels as the flies. This reviewer mainly suggested that the manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data which we did in the revised version of our manuscript. We also added data on the expression levels of Cisd and apo-Cisd in transgenic flies as also suggested.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary: The manuscript focuses on mitochondrial CISD1 and its relationship to two Parkinson's disease (PD) proteins PINK1 and Parkin. Interestingly, CISD1 is a mitochondrial iron sulfur binding protein and an target of Parkin-mediated ubiquitinylation. Disruption of iron metabolism and accumulation of iron in the brain has long since been reported in PD but the involvement of iron sulfur binding is little studied both in vivo and in human stem cell models of PD. This work addresses the relationship between CISD1 and two mitochondrial models of PD (PINK1 and Parkin) making use of in vivo models (Drosophila), PINK1 patient models (iPSC derived neurons) and Mouse fibroblasts. The authors report a complex relationship between CISD1, PINK1 and Parkin, where iron-depleted CISD1 may illicit a toxic gain of function downstream of PINK1 and Parkin.

      Major comments:

      The conclusions are overall modest and supported by the data. One question remains unaddressed. Is mitochondrial CISD1 a downstream target that specifically mediates PINK1 and Parkin loss of function phenotypes or are the phenotypes being mediated because CISD1 is downstream of mitophagy in general?

      It would be interesting to know what happens to CISD1 (dimerization?) upon initiation of mitophagy in wild type cells? Would dissipation of mitochondrial membrane potential be sufficient to induce changes to CISD1 in wild type cells or PINK1 deficient cells? Since iron chelation is a potent inducer of mitophagy (Loss of iron triggers PINK1/Parkin-independent mitophagy. George F G Allen, Rachel Toth, John James, Ian G Ganley. EMBO Reports (2013)14:1127-1135) it would be useful to show one experiment addressing the role of CISD1 dimerization under mitochondrial depolarizing and non-depolarizing conditions in cells.

      Based on the overall assumption of the reviewer that our work is “novel, interesting and important for understanding the mitochondrial biology of PD” and “a significant advancement” we understand the word “modest” here as meaning “not exaggerated”. To address this question, we studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Alternatively, the authors should discuss the topic of mitophagy (including PINK1-parkin independent mitophagy), the limitation of the present study not being able to rule out a general mitophagy effect and previous work on the role of iron depletion on mitophagy induction in the manuscript.

      The data and the methods are presented in such a way that they can be reproduced.

      The experiments are adequately replicated and statistical analysis is adequate.

      Minor comments:

      Show p values even when not significant (ns) since even some of the significant findings are borderline < p0.05.

      Here, I decided to leave it as it is, because the figures became very cluttered and less easy to understand. Borderline findings are however indicated and mentioned in the text.

      Because the situation for CISD1 is complicated (overexpression, different models etc.) it would be helpful if in the abstract the authors could summarize the role. E.g. as in the discussion that iron-depleted CISD1 could represent a toxic function.

      The abstract has been completely rewritten and now mentions the potential toxic function of iron-depleted CISD1.

      If there is sufficient iron (accumulation in PD) why would CISD1 be deactivated? Perhaps that could be postulated or discussed in a simplified way?

      We actually think that apo-CISD1 without its iron/sulfur cluster is incapable of transferring its Fe/S cluster to IRP1 and IRP2. This then results in increased levels of apo-IRP1/2 and subsequent changes that lead to iron overload. Such a sequence of events would place CISD1 upstream of the changes in iron homeostasis observed in PD and models of PD. This is now discussed in more detail.

      In the methods section both reducing and non-reducing gel/Western blotting is mentioned but the manuscript only describes data from blots under reducing conditions. Are there blots under non-reducing conditions that could be shown to see how CISD1 and dimerized CISD1 resolve?

      We now show these blots as supplemental data in new supplemental Figure 2.

      In the results section, PINK1 mutant flies, it is said that the alterations to CISD1 (dimerization) are analogous to the PINK1 mutation patient neurons. The effect is seen in old but not young flies. Since iPSC-derived neurons are relatively young in the dish, would one not expect that young flies and iPSC-derived neurons have similar CISD1 phenotypes? Could the authors modify the text to reflect that? or discuss the finding in further context.

      We only studied one time point in PINK1 mutation patient neurons and controls. It would indeed be interesting whether neuronal aging (as far as this can be studied in the dish) would result in increased CISD1 dimerization. This is now discussed.

      Reviewer #1 (Significance):

      The strengths of this work are in the novelty of the topic and the use of several well established in vivo and cell models including patient-derived neurons. The findings discussed in the text are honest and avoid over-interpretation. The findings are novel, interesting and important for understanding the mitochondrial biology of PD.

      We thank the reviewer for their kind words.

      Limitations include the lack of strong phenotypes in the CISD1 models and the lack of robust, sustained and consistent increase in CISD1 dimers in the patient and fly models (just significant because of variability). The relationship of CISD1 (dimerization) to general mitophagy/autophagy is not shown here.

      We do not completely agree with the assumption that all CISD1 models lack a strong phenotype. At least the CISD1-deficient fibroblasts exhibit a strong phenotype consisting of fragmented mitochondria and increased oxidative stress. The lack of a strong phenotype in Cisd-deficient flies could actually hint to a potential compensatory mechanism that could also protect the Pink1 mutant x Cisd-deficient double-knockout flies. It is correct that the increase in CISD1/Cisd dimers in the PD models are not overwhelming but – as also mentioned by the reviewer – this could be increased in “older” cultures. This is now discussed in more detail. As suggested by the reviewer, we have now added experiments that study the relationship between CISD1 dimerization and conventional mitophagy as described above.

      There is a significant advancement. So far researchers were able to describe the importance of iron metabolism in PD (For example refer to work from the group of Georg Auburger such as PMID 33023155 and discussion of therapeutic intervention such as reviewed by Ma et al. PMID: 33799121) but few papers describe involvement of iron sulfur cluster proteins specifically (such as Aconitase) in relation to PINK1 and parkin (these are cited). The fact that CISD1 is a protein of the mitochondrial outer membrane makes it particularly interesting and further studies looking more closely at the interaction of CISD1 with mitochondrial proteins associated with PD will be of interest.

      We thank the reviewer for pointing out these excellent publications. Key et al present an enormous wealth of data on protein dysregulation of wildtype and Pink1-/- fibroblast cell lines upon perturbation of the iron homeostasis (Key et al, 2020). Both cell lines exhibit a downregulation of CISD1 levels upon iron deprivation with the agent 2,2′ -Bipyridine possibly as a compensatory mechanism to limit the toxic gain of function of iron-depleted CISD1. The other paper, Ma et al. is a recent review on changes in iron homeostasis in PD and PD models (Ma et al, 2021). Both papers are now cited in the manuscript.

      This paper describes CISD1 as a new and relevant player in PINK1 and Parkin biology. Further work could lead to exploration of whether CISD1 could be a therapeutic target, considering its role in maintaining mitochondrial redox and mitochondrial health. This is of particular interest to mitochondrial biologists and pre-clinical research in PD.

      This preprint was reviewed by three scientists whose research focus in the mitochondrial biology underlying Parkinson's disease. The group has a special interest in the functions of the mitochondrial outer membrane. We work with several cell models of Parkinson's disease and work with patient donated samples. We do not have expertise in Drosophila models of PD nor the quantification of iron described in the manuscript.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary: In the paper entitled 'Mitochondrial CISD1 is a downstream target that mediates PINK1 and Parkin loss-of-function phenotypes', Bitar and co-workers investigate the interaction between CISD1 and the PINK1/Parkin pathway. Mutations in PINK1 and PARKIN cause early onset Parkinson's disease and CISD1 is a homodimeric mitochondrial iron-sulphur binding protein. They observed an increase in CISD1 dimer formation in dopaminergic neurons derived from Parkinson's disease patients carrying a PINK1 mutation. Immuno-blots of cells expressing CISD1 mutants that affects the iron sulphur cluster binding and as well as cells treated with iron chelators, showed that the tendency of CISD1 to form dimers is dependent on its binding to iron-sulphur clusters. Moreover, the Iron-depleted apo-CISD1 does not rescue mitochondrial phenotypes observed in CISD1 KO mouse cells. Finally, In vivo studies showed that overexpression of Cisd and mutant apo-Cisd in Drosophila shortened fly life span and, using a different overexpression model, apo-Cisd caused a delay in eclosion. Similar as patient derived neurons, they observed an increase in Cisd dimer levels in Pink1 mutant flies. Additionally, the authors showed that double mutants of Cisd and Pink1 alleviated all Pink1 mutant phenotypes, while double mutants of Prkn and Cisd rescued most Prkn mutant phenotypes.

      Major comments:

      1) The authors observed an increase in the levels of Cisd dimers in Pink1 mutant flies and removing Cisd in Pink1 mutant background rescues all the mutant phenotypes observed in Pink1 mutant flies, suggesting that the Cisd dimers are part and partial of the Pink1 mutant phenotype. The authors also generated a UAS_C111S_Cisd fly which can overexpress apo-Cisd. Overexpression of the C111S_Cisd construct with Tub-Gal4 showed a developmental delay. Since apo-Cisd forms more dimeric Cisd, my question is: does the strong overexpression (e.g. with Tub-Gal4) of the C111S_Cisd in wild type flies shows any of the Pink1 mutant phenotypes? If not, the authors should mention this and elaborate on it.

      We thank the reviewer for their comments. In fact, we only observed very few flies ecclosing after overexpression of wildtype Cisd or C111S Cisd using the strong tubP-Gal4 driver during development. We considered these very few flies to be escapees (also indicated by the rather low induction of Cisd mRNA suggesting compensatory downregulation) and only used them to conduct the analysis shown in Figure 4c-e. This is now mentioned in more detail in the manuscript.

      2) Figure 6g: Shows the TEM pictures of the indirect flight muscles of Pink1 mutant flies and Pink1, Cisd double mutants. To me, the Picture of Pink1 mutant mitochondria is not very convincing. We expect swollen (enlarged) mitochondria with disrupted mitochondrial matrix. However, this is not clear in the picture. Moreover, in my opinion, Figure6 g, is missing an EM Picture of the Cisd mutant indirect flight muscles.

      We now show exemplary pictures from Pink1 mutant and DKO in a higher magnification which better demonstrate the rounded Pink1 mutant mitochondria and the disrupted cristae structure. EM pictures of all four genotypes in different magnifications are now shown in new supplemental Figure 6.

      3) OPTIONAL: The authors suggest that most probably apo-Cisd, assumes a toxic function in Pink1 mutant flies and serves as a critical mediator of Pink1-linked phenotypes. If this statement is correct, we can hypothesize that increasing apo-Cisd in Pink1 mutant background should worsen the pink1 mutant defects.

      Therefore, I suggest overexpressing Cisd1 wild type (and/or C111S Cisd) in pink1 mutant flies, as pink1 is on the X chromosome, and mild overexpression of Cisd1 with da is not lethal, these experiments could be done in 3-4 fly crosses and hence within 1.5 - 2 months.

      We have set up this experiment and will report in the second revision (v2) of our manuscript.

      Since Pink1 mutant flies contain higher levels of endogenous Cisd dimers, we can expect that overexpression of wild type Cisd will result in an even stronger increase of dimers. If these dimers indeed contribute to Pink1 mutant phenotypes we can expect that overexpression of Cisd will result in a worsening of the Pink1 mutant phenotypes.

      We have set up this experiment and will report in the second revision of our manuscript.

      Minor Comments:

      -) In the Introduction (Background) there are some parts without references:

      E.g., there is not a single reference in the following part between

      'However, in unfit mitochondria with a reduced mitochondrial membrane potential ...&... compromised mitochondria safeguards overall mitochondrial health and function.'

      We thank the reviewer for pointing out this flaw. We have now added a suitable reference to the introduction.

      -) In the introduction there is some confusion about the nomenclature used in the article: e.g. following comments are made in the text: Cisd2 (in this publication referred to as Dosmit) or fly Cisd2 (in this publication named MitoNEET).

      However, the names Dosmit and MitoNEET do not appear in the manuscript (except in references)

      The literature and nomenclature for CISD1 are indeed confusing. We have now revised the introduction.

      -) Figure 1: I am not sure why some gels are shown in this figure. The two last lanes of figure 1c are redundant and Figure 1c' which is also not mentioned in the text, is also a repetition of figure 1c.

      The blots in 1c and 1c’ represent all data points (different patients and different individual differentiations) shown in the quantification in 1d. This is now explained better in the revised manuscript.

      -) The authors mention in material and methods that T2A sites are used at the C-terminus of CISD1 to avoid tagging of CISD1. However, this is not entirely true as T2A will leave some amino acids (around 20) after the self-cleaving and therefore CISD1 will be tagged.

      This is indeed true and we have now changed the wording in the revised manuscript.

      -) In figure 5 P1 is used to abbreviate Pink1 mutants, however P1, to me, refers to pink1 wild type. It would be clearer to abbreviate Pink1 mutants as P1B9 in the graphs as B9 is the name of the mutant pink1 allele.

      We thank the reviewer for pointing out this flaw. We have now altered Fig. 5 to be clearer.

      -) In figure 7: Parkin is abbreviated both as Prkn and as Park

      We thank the reviewer for pointing out this flaw, we indeed mixed up both names because it is complicated. The gene symbol is Prkn, the fly line is called Park25. We have now clarified this in the text and Fig. 7.

      -) I suggest changing the title. Recently an article (Ham et al, 2023 PMID: 37626046) was published showing similar genetic interactions between Pink1/Prkn and Cisd. However, the article of Ham et al, 2023 was focused on Pink1/Prkn regulation of ER calcium release, while this article is more related to iron homeostasis. I suggest that the title shows this distinction.

      This is indeed a very good suggestion. We have now altered the title to “Iron/sulfur cluster loss of mitochondrial CISD1 mediates PINK1 loss-of-function phenotypes”.

      Reviewer #2 (Significance):

      In general, this is an exciting and well-executed piece of research focusing on the defects in iron homeostasis observed in Parkinson's disease which a wide audience will appreciate. Very recently, a similar genetic interaction between Cisd and Pink1/Prkn in flies was published (Ham et al, 2023 PMID: 37626046) however, from a different angle. While, Ham et al focused on the role of Pink1/Prkn and Cisd in IP3R related ER calcium release, this manuscript approaches the Pink1/Prkn - Cisd interaction from an iron homeostasis point of view. Since, iron dysregulation contributes to the pathogenesis of Parkinson's disease, the observations in this manuscript are relevant for the disease. Hence, the work is sufficiently novel and deserves publication. However, additional experiments are suggested to strengthen the authors' conclusions.

      We thank the reviewer for their kind words. As mentioned above, these additional experiments are on their way and will be included in version 2 of our revised manuscript (v2).

      I work on Drosophila models of Parkinson's disease

      Referees cross-commenting

      I agree with the reviewer number 1 that it would be interesting to investigate CISD1 dimerisation status during mitophagy.

      As mentioned above, we now studied CISD1 dimerization in response to more classical activators of mitophagy namely FCCP and antimycin/oligomycin which had no significant effect on dimerization suggesting that this phenotype is more pronounced under iron depletion. These data are shown in the new Fig. 2c.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Here the authors provide evidence that Cisd is downstream of Parkin/Pink1 and suggest that the levels of apo-Cisd correlate with neurotoxicity. The data presented generally supports the conclusions of the authors and will be useful to those in the field. The manuscript would be improved by a more balanced discussion of the strengths and weaknesses of the study and more circumspection in interpretation of data.

      We thank the reviewer for their comments aimed to improve our manuscript. We have now discussed the strengths and weaknesses of our study in more detail.

      Introduction. While iron has been implicated in Parkinson's disease, it is an overstatement to say that disruption in iron metabolism contributes significantly to the pathogenesis of the disease.

      There is certainly a plethora of data implicating perturbed iron homeostasis in PD as also pointed out by reviewer #1. We have tried to tone down our wording in the text and added a recent review on the topic (Ma et al, 2021) as also suggested by reviewer #1.

      Introduction. The discussion of the various names for Cisd2 is important, but confusing as written. Specifically, the use of "this" makes the wording unclear.

      We thank the reviewer for pointing out this flaw. We have altered the wording in the introduction.

      Methods. It would be preferable to use heterozygous driver lines or a more similar genetic control rather than w-1118.

      The exact controls were indeed not well explained in the Methods section, this has been corrected in the revised version. In brief, homozygous driver and UAS lines were indeed used in Fig. 4, this will be addressed in the second revision of our manuscript together with the experiments reviewer #2 suggested. The data shown in Fig. 5, 6, and 7 all used w1118 as control because all other fly strains are on the same genetic background.

      Page 10. It appears that the PINK1 lines have been described previously. The authors should clarify this point and ensure that the new data presented in the current manuscript (presumably the mRNA levels, Fig. 1a) is indicated, as well as data that is confirmatory of prior findings (Fig. 1b).

      Yes, these PINK1 lines have been described previously as pointed out in the manuscript. The original paper did not quantify the PINK1 mRNA levels shown in Fig. 1a. The blots shown in Fig. 1b are from new differentiations and have also not been shown before but confirm findings published in Jarazo et al. (Jarazo et al, 2022). This has been clarified in the revised version of our manuscript.

      Fig. 3 legend. There is a typographical error, "ne-way ANOVA."

      We thank the reviewer for pointing out this flaw. This has been corrected in the revised version.

      Page 15. The nature of the Pink1-B9 mutant should be specified.

      We now added a supplemental Figure 1 that depicts the specific mutation in these flies.

      Fig. 4. Levels of mutant and wild type Cisd should be compared in transgenic flies.

      We now added a quantification of mutant and wildtype Cisd levels to the new Figure 4d.

      Fig. 5b,d. The striking change seems to be the decrease in dimers in young Pink1 mutant animals, not the small increase in dimers in the older Pink1 mutants.

      It is always difficult to find a “typical” picture that reflects all changes observed in quantitative data. This Figure actually shows a decrease of total Cisd levels in young flies in Fig. 5c but no difference of the dimer/monomer ratio in Fig. 5d.

      Fig. 5f. Caution should be used in interpreting the results. Deferiprone has toxicity to wildtype flies (trend) and may simply be making sick Pink1 mutants sicker.

      There is certainly a tendency for wildtype flies to thrive less in food containing deferiprone. To make this more obvious, we have now added the exact p value (0.0764, which we don’t consider borderline but a tendency) to this figure and mention this fact in the text.

      Fig. 5e. The data are hard to interpret. The number of animals is very small for a viability study and the strains are apparently in different genetic backgrounds, though this is not clearly specified. The experiment in Supplementary Fig. 1 appears better controlled and supports the Pink1 data; however, a similar concern pertains to Fig. 7. The authors may thus wish to be more circumspect in their interpretation, especially of the Parkin data.

      In Fig 5e we quantified total iron levels and the Fe3+/Fe2+ ratio using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Although indeed not so many flies were used in this quantification, the results are highly significant. If the reviewer was referring to Fig. 5f, we agree that this experiment was not well (to be honest, even wrongly explained) which we corrected in the revised version of this manuscript. We thank the reviewer for pointing out this flaw.

      Reviewer #3 (Significance):

      The major significance of the study is in putting downstream of Parkin/Pink1 (largely confirmatory to recently published work) and suggesting that the levels of apo-Cisd are an important determinant of toxicity. The work will be of interest to those in the field.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      The changes already carried out and included in the transferred manuscript (v1) are indicated above in bold orange. All changes pending on ongoing experiments to be included in the second revision of the manuscript are indicated above in bold magenta.

      4. Description of analyses that authors prefer not to carry out

      All changes suggested by the reviewers were addressed (v1) or will be addressed (v2).

      References

      Jarazo J, Barmpa K, Modamio J, Saraiva C, Sabaté-Soler S, Rosety I, Griesbeck A, Skwirblies F, Zaffaroni G, Smits LM, et al (2022) Parkinson’s Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment. Mov Disord 37: 80–94

      Key J, Sen NE, Arsović A, Krämer S, Hülse R, Khan NN, Meierhofer D, Gispert S, Koepf G & Auburger G (2020) Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells 9

      Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, et al (2021) Parkinson’s disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 41: 101896

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      __We thank all the reviewers for their time and their constructive criticism, based on which we will revise our manuscript. All our responses are indicated in red. __

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      The manuscript by Nguyen and Cheng is investigating the timing and mechanism of cessation of neuroblasts in the pupal optic lobe. Previous studies by several groups have determined the spatial and temporal factors required for the neuroepithelial to neuroblast transition and neuroblast to neural/glycogenesis in third instar larvae such that neuroblasts are eliminated. The mechanism of elimination of neuroblasts in the VNC or mushroom bodies have been investigated, but the mechanism(s) and the timing of elimination of medulla neuroblasts has not been investigated. The authors suggest that medulla neuroblasts are eliminated via a combination of mechanisms including apoptosis, prospero induced size symmetric terminal differentiation and a switch to gliogenesis by gcm expression. Expression of Tailless also was found to affect the timing of medulla neuroblast termination. They also ruled out several mechanisms such as ecdysone pulses.

      Major comments

      Clearly written and logical flow to experiments and results not over interpreted.

      Clearly show that the neuroblast number and size decrease (12 to 18 hrs) and are eliminated by 30 hours

      Figure 2a Marking of the Neuroepithelium. Would be more convincing if shown by PatJ expression and is clonal analysis. While the following panels use PatJ in clones suggesting are NE and NBs present it is more difficult to put into the context in the higher magnification images (Figure 2 D- M) and the Miranda expression in F' seems to be the entire lobe and it is not clear if would be any NE which does not agree with what is shown in panel A.

      We will perform clonal analysis using MARCM to show that the elimination of medulla NBs (marked by Dpn) is accompanied by the depletion of NE (marked by PatJ). For Figure 2 D, E, I, L, we will change the images to the whole lobes to clearly show the shift in the NE-NB transition upon Notch OE/KD.

      Is difficult to see the neuroblasts in Figure 2 D D" and E. The figure does not match what is stated in the results in that the neuroblasts are difficult to observe. If the point is that there is fewer NE cells and more neuroblasts then this is hard to see. It has been previously shown that with Notch RNAi clones prematurely extrude form the NE (Egger 20210; Keegan 2023) and could be expressing more Neuroblast markers but this is not visible in the panels as shown. Are the images single focal plane or maximum projections? Imaging more deeply in the brain or viewing in cross section would account for these possibilities. The possibility that are more neuroblasts but not all at the surface of the OL should be addressed as this could also alter the overall results.

      Figure 2 is key to first point of the paper so needs to be addressed.

      The images are single focal plane of the superficial layer of the medulla. We will specify this information in the figure legends. We will include cross-section of the notch RNAi clones to show the delamination of precocious NBs.

      Minor comments

      Why express volume of DPN in clone volume. Would make the point more clear and more strong be to express as number of NB in the 3-D volume of the clone. This measurement occurs in several figures.

      We will redo the quantification as suggested.

      Use of Miranda to mark NBs is unclear in Figure 2. Perhaps more clear in B&W.

      We will redo the staining with Dpn instead of Mira to mark medulla NBs. Figures will be presented in B&W as suggested.

      Make clear in figures (or figure legend) if single focal plane or projections.

      We will do so.

      It is unclear what percentage of NB the Gal4 line eyR16F10 are expressed in. Veen 2023 state that the GAL4 is also expressed in neurons and at different levels whether deeper within the brain or superficially on the surface of the brain. At 16 APF it is expressed but it is not clear whether it is in all cells at a low level or only within a few cells

      We will further characterize the expression of eyR16F10-GAL4 in the pupal medulla as suggested.

      Some RNAi lines referenced as previously validated and other are not. For example: EcR, Oxphos, Med27, Notch need references or confirmation of specificity to the intended target (qRT)

      We will perform RT-qPCR to validate the use of UAS-med27 RNAi. For RNAi stocks such as UAS-EcR RNAi, UAS-Atg1 RNAi, UAS-notch RNAi that have been previously used in other publications, we will provide appropriate references.

      At least 2 animals per genotype were used. While I appreciate the technical difficulty of working in pupae this seems a bit low in terms of number of samples and data would be more robust with more numbers.

      Any experiments in which less than 3 animals were used, we will redo the experiments.

      Reviewer #1 (Significance (Required)):

      This provides mechanism and timing for the elimination of neuroblasts (NE to NB) that arise from the medulla. As these are most similar to mammalian brain development (Radial glial to NSC) this information provides more context to interpret the formation of glial and neurons in the adult optic lobe given the effect on timing and mechanisms of elimination.

      This paper would be of interest to developmental biologist who work with Drosophila or mice who are looking at neural development. An understanding of how neural diversity is achieved and the mechanisms behind this that can be dysfunctional in terms of etiology of neural diseases. Is a well done study for the most part that would be improved by clarifying some data and provided more replicates for robustness of the data.

      I am a developmental biologist working with Drosophila in larval and adult neural development.

      __Reviewer #2 (Evidence, reproducibility and clarity (Required)): __

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      • The paper shows that the end of production of neural stem cells occurs the neuroepithelium is completely transformed. The experiments performed by the authors are fine and show that, if the transition is delayed, neural stem cells terminate their life later, and vice versa. However, the lifespan of the neural stem cells is not affected by the timing of the transition. Therefore, these experiments do not tell us how neural stem cells terminate their life, which is the central question of the study. The discussion should be written accordingly and the title and the model in Fig 6 modified to reflect the importance of the end of life of the stem cells, the main theme of the paper.

      We agree that our said experiments did not elucidate how NBs terminate at the end of neurogenesis. Nevertheless, our aim is to show that the timing of NB termination in the medulla is dependent on the timing of the NE-NB transition.

      In Supplementary Figure 1, we showed that factors previously shown to be involved in NB termination in other lineages did not play similar roles in the medulla NBs. Thus, we think that NB termination in the medulla is likely regulated at the levels of the NE, but not the NBs themselves. Although we have briefly mentioned this in our manuscript, we hope by conducting the experiments suggested by the reviewer (see below), we can subsequently modify our model in Figure 6 and our discussion.

      • The authors talk about Pros-dependent symmetric division and gliogenic switch as two separate processes, but these may be two sides of the same phenomenon. Tll+ gcm+ neural stem cells undergo Pros-dependent cell cycle exit, generating glial progeny. If the authors agree with this, could they update their model (and discussion) to reflect the fact that gliogenic switch occurs via a Pros-dependent symmetric division, and these are not two separate processes independently contributing to the depletion of the neural stem cell pool? Ideally, a triple staining between Dpn, Pros, and gcm would show that the symmetrically dividing cells seen by the authors are committed to the glial fate.

      We will further test how gliogenesis is affected in pros RNAi clones. The results may shed light on whether Pros-mediated symmetric division is required for Gcm-mediated gliogenesis in the medulla. Regarding the model, we have summarized our findings and suggestions in Figure 5K, however, we will integrate this information into our final model.

      In Figure 5C, we showed that at 12h APF, there are Dpn+ NBs in the medulla that expressed both Pros and Gcm, suggesting that it is very likely that Pros is upstream of Gcm to induce the glial cell fate switch of the medulla NBs.

      • Why were Notch RNAi experiments assessed for the presence of neural stem cells at P12 and gcm RNAi experiments at P24? Given that most optic lobe neural stem cells disappear between P12-18, a subtle effect of gcm RNAi may have been missed. Do the authors have data for gcm RNAi at P12?

      We hypothesized that the timing of NE-NB transition affects the timing of NB termination in the medulla. Because Notch KD was previously shown to induce precocious NE-NB transition in the OL, meaning that medulla NBs are born prematurely, we expected that this manipulation will lead to a corresponding premature elimination of the NBs. In contrast, gcm RNAi which inhibits the switch into the glial cell fate of the NBs, is expected to prolong the neurogenic phase of the NBs, and thereby, their persistence by 24h APF when WT NBs are eliminated.

      • The authors should acknowledge that the inhibition of either apoptosis or autophagy alone may not be fully sufficient to prevent the death of NBs. In mushroom body neural stem cells, both processes must be inhibited simultaneously to produce a strong effect on their survival (Pahl et al. 2019, PMID 30773368).

      We will add this information in our discussions.

      • There is an important missing point that should be addressed: is there a specific point in time when all neural stem cells must stop their lineage wherever they are in the temporal series and either die or divide symmetrically? One possibility that is not discussed is that most neural stem cells end their life through a gliogenic symmetric division while those that were generated late must stop en route and die by apoptosis and/or autophagy. This would solve the strange diversity of end-of-life, which could be easily addressed by identifying the temporal stage of the neural stem cells that undergo apoptosis

      We agree that it would be of interest to understand how there are diverse mechanisms by which medulla NBs terminate during pupal development. To address if temporal progression is involved in apoptosis of the medulla NBs, we will first characterize the expression of some temporal TFs (e.g., Ey, Slp, Tll) at 12h APF when we found a subset of medulla NBs undergo apoptosis in the wildtype animals.

      Minor suggestions:

      We agree with these minor modifications.

      • Line 46: Specify that there are 8 type II neural stem cells in each hemisphere*.

      • The statement in lines 181-182 that "cell death, and not autophagy, makes a minor contribution to..." should be replaced with "apoptosis, and not autophagy," as autophagy is also a type of cell death.

      • The authors should adjust the logic of the section "Medulla neuroblasts terminate during early pupal development": Describe the wild-type pattern first (the decrease in the number of neural stem cells and their size with age) and then describe the perturbations aimed at disrupting the number and the size of neural stem cells

      • Line 151 should refer to Fig. 2I-K, not Fig. 2J-K.

      **Referees cross-commenting**

      How can NBs die by different mechanisms?? This might only happen is they are in a different states, an issue that is not addressed.

      it has been shown that optic lobe NBs end their life by a symmetric, gliogenic last division at the end of the last temporal window, and not by PCD.

      It is likely, and the authors do hint at it, that NBs only die by PCD when they prematurely interrupt the temporal series in early pupation when neurons synchronously start undergoing maturation.

      I believe that the authors should explain this, if this is indeed their model, and show that NBs die while still in early temporal windows.

      Reviewer #2 (Significance (Required)):

      Lineages of neural stem cells are of great interest to understand how many neural types are generated. They produce very diverse neurons, often in a highly stereotyped series. However, they must terminate their life when the animal becomes functional or if neurons need time to become mature before birth.

      In the Drosophila optic lobes, neural stem cells are produced over a period of several days by a wave of neurogenesis that transforms a neuroepithelium into neural stem cells that undergo a series of temporal patterning steps. It has been reported that they finish their life when a symmetric division generates glial cells. The authors however analyze the end of a particular lineage, that of the latest born neural stem cells of the medulla.

      The paper shows that neural stem cells stop being produced when the neuroepithelium is consumed. But how do the latest born neural stem cells stop their lineage?

      The results show that they do so by several means, which is quite unexpected: they may die from apoptosis, or autophagy, by becoming glioblasts or by a terminal symmetric division.

      There are no major issues affecting the conclusions

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this manuscript, the authors address the timing and mechanisms responsible for the termination of medulla neuroblasts in Drosophila visual processing centres, also known as optic lobes. Through time course experiments the authors demonstrate the medulla NBs are completely eliminated by 30h APF during early pupal development. By manipulating the Notch signalling pathway as well as proneural genes such as lethal of scute, the authors show that altering the NE-NB transition is sufficient to change the timing of NB termination. In contrast, ecdysone signalling and components of the mediator complex, known to terminate proliferation of central brain NBs, are not required for the termination of medulla NBs. Medulla NBs sequentially express a variety of temporal transcription factors to promote cellular diversity, however, the authors demonstrate that altering temporal factors such as Ey, Sco or Hth, does not affect the timing of the medulla NBs termination. Interestingly however overexpression of the transcription factor tailless can cease medulla NB termination via the conversion of type I to type II NB fate. They further go on to show the importance of the differentiation factor, Prospero, in promoting the differentiation of medulla NBs as well as terminating medulla neurogenesis during pupal development. Finally, in addition to differentiation, the authors show another mechanism responsible for the cessation of neurogenesis which is the commencement of gliogenesis. Through manipulation of the neurogenic to gliogenic switch by knockdown or overexpressing the glial regulatory gene, gcm, the authors show that even though the downregulation of gcm is is not sufficient to induce NB persistence, gcm overexpression can cause premature termination of NBs.

      Major comments:

      • Are the key conclusions convincing?

      Yes, the key conclusions are convincing with proper controls, quantifications and statistical analyses.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?

      The conclusion that temporal transcription factors (TTF) do not affect the timing of medulla NB termination is somewhat preliminary. The authors investigated a simplified temporal series including Homothorax, Eyeless, Sloppy-paired, Dichaete and Tailless. However, there are additional temporal factors that have not been examined for their potential involvement in medullar NB termination. Previous reports have identified several other temporal factors that play a role in medulla TTF cascade, such as, SoxNeuro (SoxN) and doublesex-Mab related 99B (Dmrt99B) that start their expression in the NE similar to Hth, however, Dmrt99B is likely to be repressed much later than Hth (Li, Erclik et al. 2013, Zhu, Zhao et al. 2022). At this point, it remains challenging to completely rule out the possibility that other temporal factors play a role in medullar NB termination or have redundant functions in regulating the timing of medulla NB cessation. It is suggested to tone down this claim and provide a brief discussion on alternative possibilities, citing relevant papers on the functions of other temporal factors in medullar NBs.

      We agree.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation.

      Loss of pros by RNAi caused the formation of ectopic NBs and the NBs persist even at 24h APF. Do these NBs persist at 30h or 48h APF? Does overexpression of Pros result in early termination of medulla NBs?

      We will do these experiments in clones as suggested.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments.

      Yes, I believe the suggested experiments are realistic in terms of time and resources, with an estimation of 3 months to complete the experiments.

      • Are the data and the methods presented in such a way that they can be reproduced?

      Yes.

      • Are the experiments adequately replicated and statistical analysis adequate?

      The experiments are straight forward and were performed with proper controls, supported by quantifications and proper statistical analyses. However, there is no mention about how many replicates were used.

      We will add this information in our Material and Methods section.

      Minor comments:

      1. The authors use the eyR6F10-Gal4 driver in certain experiments. The eyR6F10-Gal4 driver is however expressed only in a subset of medulla NBs. Can the authors comment on what percentage of medulla NBs is the driver expressed in? We will characterize this.

      Does the EGFR signalling pathway or JAK/STAT pathway affect the timing of termination of medulla NBs? Experiments are not necessary. The author can speculate on their roles.

      We will modify our discussion accordingly.

      Figure 1C has a p value of only 0.03 (*) but shows a strong reduction in the number of Dpn+ cells from 12h to 18h, etc. Is this correct? Also, is the p value the same for the comparison between 12h and 24h as well as 12h and 30h APF?

      Yes. P-values showed no significant differences between 28-24h and 24-30h APF.

      The controls in figure 2B and to some extent figure 2H show one major outlier (much higher than the other brain lobes in the control). Will the removal of this outlier affect the significance/ p-value of the experiment?

      No, removing the outliers do not change the statical results.

      In figure 2B what is the p-value between 12h and 18h APF? Is it *** as well?

      No, it’s not significant.

      Line 84 of the introduction introduces Tll, Gcm and Pros for the first time in the manuscript and should be written out in full.

      We will change this.

      • Are prior studies referenced appropriately?

      Yes.

      • Are the text and figures clear and accurate?

      Yes.

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions?

      Quite a few of data mentioned in the manuscript have been described as data not shown. I think it would be nice to show quantifications or representative images in the supplementary figures.

      We will add the data which was previously not shown.

      Reviewer #3 (Significance (Required)):

      Since the mechanisms by which medulla NBs are terminated are currently unknow, this is an important and interesting study to understand how medulla neuroblasts in the optic lobe are terminated. The balance between stem cell maintenance and differentiation is critical for proper brain development and the results presented in this paper are impactful. Furthermore, Drosophila melanogaster is an excellent model to study stem cell niches and neuroblast temporal patterning. The authors provide key mechanisms namely cell death, Pros-mediated differentiation and the gliogenic switch that contribute to a better understanding of how the NB progenitor pool can be terminated in the Drosophila OL, which is largely supported by the data.

      • Place the work in the context of the existing literature (provide references, where appropriate).

      So far, most work in this field has focused on the regulation of the temporal factors to promote the progression of the TTF transcriptional cascade and thereby diversity of the neural progenitors (Li, Erclik et al. 2013, Naidu, Zhang et al. 2020, Ray and Li 2022, Zhu, Zhao et al. 2022). Furthermore, work on pathways such as EGFR and Notch signalling that allows the proneural wave to progress and subsequently induce neuroblast formation in a precise and orderly manner have also been studied (Yasugi, Umetsu et al. 2008, Yasugi, Sugie et al. 2010). Here, considering previous literature, the authors move one step forward to determine how and when these neuroblast progenitors cease proliferation during development thus providing mechanisms for the regulation of the neuroepithelial stem cell pool, its timely conversion into NSCs and the switch from neurogenesis to gliogenesis thus providing important implications for brain size determination and function.

      • State what audience might be interested in and influenced by the reported findings.

      Stem cell research, neurobiologists and developmental biologists.

      • Define your field of expertise

      Stem cells, developmental biology

    1. One big category of website that produces writing are the professional media outlets that employ journalists, editors, researchers, and writers to produce daily or weekly content. On these sites, the writing itself is the product.

      Although thee are so many different styles of writing, especially on the internet, I think we can all agree in one way or another that knowing how to write professionally, whether it may be for a professional media outlet or even for a company website, is very important. Consider journalism. If a journalist working for the New York Times were to publish a story that was written in the style of something that came from Reddit, they would be fired immediately. Therefore, knowing how to differentiate when to use different writing styles is extremely important as a writer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This valuable study, of interest for students of the biology of genomes, uses simulations in combination with published data to examine how many TADs remain after cohesin depletion. The authors suggest that a significant subset of chromosome conformations do not require cohesin, and that knowledge of specific epigenetic states can be used to identify regions of the genome that still interact in the absence of cohesin. The theoretical approaches and quantitative analysis are state-of-the-art, and the data quality and strength of the conclusions are solid. However, because "physical boundaries (of domains?)" in the model appear to be a consequence of preserved TADs, rather than the other way around, the functional insights are limited.

      Summary of the reviewer discussion for the authors:

      While the simulations are state of the art and the reviewers appreciated that the approaches used here might help to resolve apparent discrepancies between conclusions from single-cell and bulk/ensemble techniques to study chromosome conformation, the work would benefit from clarification of what precisely is meant with "physical boundaries" and from a comparison of CCM and HIPPS models to understand commonalities and differences between them. In addition, more discussion of the relation of the current work to previous studies, such as Schwarzer et al., 2017, and Nuebler et al., 2018, would elevate the work and make the key claims more compelling. Please see also the detailed comments from the expert reviewers.

      We thank the editor for the assessment and the reviewers for the incisive comments. We will address these comments one by one. In particular, we attempt to clarify the concept of “physical boundaries” and its relevance in our study. We hope our responses are satisfactory. We believe that our manuscript has benefitted substantially by revising the manuscript following the comments by the reviewers.

      Below is our point-by-point response to the comments:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Jeong et al. investigate the prevalence and cause of TADs that are preserved in eukaryotic cells after cohesin depletion. The authors perform an extensive analysis of previously published Hi-C data, and find that roughly 15% of TADs are preserved in both mouse liver cells and in HCT-116 cells. They confirm previous findings that epigenetic mismatches across the boundaries of TADs can cause TAD preservation. However, the authors also find that not all preserved TADs can be explained this way. Jeong et al. provide an argument based on polymer simulations that "physical boundaries" in 3D structures provide an additional mechanism that can lead to TAD preservation. However, in its current form, we do not find the argumentation and evidence that leads to this claim to be fully compelling.

      Strengths:

      We appreciate the extensive statistical analysis performed by the authors on the extent to which TAD's are preserved; this does seem like a novel and valuable contribution to the field.

      We thank the reviewer for a succinct and comprehensive summary of our work and for appreciating value of our work.

      Weaknesses:

      1) As the authors briefly note, the fact that compartmentalization due to epigenetic mismatches can cause TAD-like structures upon cohesin depletion has already been discussed in the literature; see for example Extended Data Figure 8 in (Schwarzer et al., 2017) or the simulation study (Nuebler et al., 2018). We are hence left with the impression that the novelty of this finding is somewhat overstated in this manuscript.

      It is unclear to us by studying the results in the Extended Data Figure 8 that the authors have shown that epigenetic mismatches cause TAD-like structures. As far as we can discern, the data, without a quantitative analysis, shows that may be new TAD-like structures that are not in the wild type appear when cohesin is deleted.

      The studies by Schwarzer et al 2017 and Nuebler et al 2018 are relevant to our own investigation, which we undertook after scrutinizing the experiments in Schwarzer et al 2017 and the related work by Rao et. al in 2017 on a different cell line. In the summary of the Reviewer discussion, it is suggested we discuss the relation to the experimental study by Schwarzer et al 2017 and the computational work by Nuebler et al 2018.

      (1) The results and the corresponding discussion in these two studies are different (may be complimentary) from our results. When referring to the Extended Data Figure 8 Schwarzer and co-authors state in the main text, “The finer compartmentalization explains most of the remaining or new domains and boundaries seen in Nipbl Hi-C maps”. We are not 100% sure what “remaining” means in this context. The Extended Data Fig. 8(a) shows the “common boundaries” is correlated with the eigenvectors of compartmentalization. If this indeed is what the reviewer is referring to, we believe that our study differs from theirs in two important ways: First, Extended Data Fig.8 (a) is a statistical analysis at the “ensemble” level. In our study, we examined the preservation of TADs at both individual and ensemble level with more detailed analysis. Second, in Extended Data Fig. 8(a), the “common boundaries” (incidentally we are uncertain how that was calculated) are compared to the eigenvectors of PCA analysis of the compartments (larger length scales). In contrast, in our study, we examined the correlation between TAD boundaries and the epigenetic profiles. We believe that this is an important distinction. The PCA analysis of compartments and “common boundaries” defined using (presumably) the insulation score are both derived from the Hi-C contact map. Epigenetic profile, on the other hand, is independent of Hi-C data. We believe our contribution, is to build the connection between epigenetic profiles with the preservation of TADs, and link it to 3D structures. For these reasons, we assert that our results are novel, and are not contained (or even implied) in the Schwarzer et al 2017 study.

      The simulations in Neubler et al 2018, which were undertaken to rationalize the experimenrs, revealed that compartmentalization of small segments is enhanced after cohesin depletion, while TADs disappear, which support the broad claims that are made in the experiments. They assert that the structures generated are non-equilibrium. They do not address the emergence of preserved nor the observation of TAD-like structures at the single cell level. However, our goal was to elucidate the reasons for of preservation of TADs. By that we mean, the reasons why certain TADs are present in both the wild and cohesin depleted cells? Through a detailed analyses of two cells, polymer simulations, we have provided a structural basis to answer the question. Finally, we have provided a plausible between TAD preservation and maintenance of enhancer-promoter interactions by analyzing the Micro-C data. For all these reasons, we believe that our study is different from the results in the Extended Figure 8 or the simulations described by Neubler.

      Let us summarize the new results in our study that are not contained in the studies referred to by this Reviewer. (1) We showed by analyzing the Hi-C data for mouse liver and HCT-16 that a non-negligible fraction of TAPs is preserved, which set in motion our detailed investigation. (2) Then, using polymer simulations on a different cell type, we generated quantitative insights (epigenetic mismatches as well as structural basis) for the preservation of TADs. Although not emphasized, we showed that deletion of cohesin in the GM12878 cells also give rise to P-TADs a prediction that suggests that the observations might be “universal”. (3) Rather than perform, time consuming polymer simulations, we calculated 3D structures directly from Hi-C data for the mouse liver and HCT-16 cells, which provided a structural basis for TAP preservation. (4) The 3D structures also showed how TAD-like features appear at the single cell level, which is in accord with imaging experiments. (5) Finally, we suggest that P-TADs may be linked to the maintenance of enhancer-promoter and promoter-promoter interactions by calculating the 3D structures using the recent Micro-C data.

      For the reasons given above, we assert that our results are novel, and bring new perspectives that are not in the aforementioned insightful studies cited by the Reviewer.

      2) It is not quite clear what the authors conceptually mean by "physical boundaries" and how this could offer additional insight into preserved TADs. First, the authors use the CCM model to show that TAD boundaries correlate with peaks in the single cell boundary probability distribution of the model. This finding is consistent with previous reports that TAD-like structures are present in single cells, and that specific TAD boundaries only arise as a population average.

      The finding based on the CCM simulations hence seems to be that preserved TADs also arise as a population average in cohesin-depleted cells, but we do not follow what the term "physical boundaries" refers to in this context. The authors then use the Hi-C data to infer a maximumentropy-based HIPPS model. They find that preserved TADs often have boundaries that correspond to peaks in the single cell boundary probabilities of the inferred model. The authors seem to imply that these peaks in the boundary probability correspond to "physical boundaries" that cause the preservation of TADs. This argument seems circular; the model is based on inferring interaction strengths between monomers, such that the model recreates the input Hi-C map. This means that the ensemble average of the model should have a TAD boundary where one is present in the input Hi-C data. A TAD boundary in the Hi-C data would then seem to imply a peak in the model's single-cell boundary probability. (The authors do display two examples where this is not the case in Fig.3h, but looking at these cases by eye, they do not seem to correspond to strong TAD boundaries.) "Physical boundaries" in the model are hence a consequence of the preserved TADs, rather than the other way around, as the authors seem to suggest. At the very least the boundary probability in the HIPPS model is not an independent statistic from the Hi-C map (on which their model is constrained), so we have concerns about using the physical boundaries idea to understand where some of the preserved TADs come from.

      There are many statements in this long comment that require us to unpack separately. First, using both the CCM simulations, and even more importantly using data-driven approach, we established that TAD-like structures are present in single cells with and without cohesin. The latter finding is fully consistent with imaging experiments. We are unaware of other computational efforts, before our work, demonstrating that this is the case. Perhaps, the Reviewer can point to the papers in the literature.

      Regarding the statement that our arguments are circular, and lack of clarity of the meaning of physical boundary, please allow us to explain. First, we apologize for the confusion. Let us clarify our approach. We first used CCM to understand the potential origin of substantial fraction of P-TADs in the GM. The simulations, allowed us to generate the plausible mechanisms, for the origin of P-TADs. Because the CCM does reproduce the Hi-C data, we surmised that the general mechanisms inferred from these simulations could be profitably used to analyze the experiments. The simulations also showed that knowledge of 3D structures produces a muchneeded structural basis of P-TADs , and potentially for emergence of new TADs upon cohesin depletion.

      Because 3D coordinates are needed to obtain structural insights into the role of cohesin, we use a novel method to obtain them without the need for simulations. In particular, we used the HIPPS method to obtain 3D coordinates with the Hi-C data as the sole input, which allowed us to calculate directly the boundary probabilities. The excellent agreement between the predicted 3D structures and imaging experiments suggests that meaningful information, not available in Hi-C, may be gleaned from the ensemble of calculated 3D structures.

      Although “physical boundary”, a notion introduced by Zhuang, is defined in in the method section, it is apparently unclear for which we apologize. Because this is an important technical tool, we have added a summary in the main text in the revision. We did not mean to imply that the physical boundaries cause the preservation of TADs, although we found that maintenance of the enhancer-promoter contacts (see Fig. 8 in the revision) could be one of the potential reasons for the emergence of physical boundaries. We agree with the reviewer that physical boundaries are structural evidence of preserved TADs (not the cause), that is when a TAD is preserved, we can detect it by prominent physical boundary. The purpose and benefit of physical boundary analysis and using HIPPS in general is to obtain three-dimensional structures of chromosomes. Although both CCM simulations and HIPPS use Hi-C contact maps, three-dimensional structures provide additional information that is not present in the Hi-C data.

      The arguments that the authors use to justify their claims could be clarified and strengthened. Here are some suggestions: -Explain the concept of "physical boundaries" more clearly in the main text.

      As explained above, we have revised the text to clarify the concept and purpose of physical boundaries analysis. See Page 7.

      • Justify why the boundary probabilities and the physical boundaries concept can be used to offer novel insight into where preserved TADs may come from.

      Boundary probabilities and physical boundaries provide previously unavailable 3D structural information on the TADs structures both at the single-cell and population level. This provides a direct structural basis for determining which TADs are preserved. But in order to understand where P-TADs may come from, physical boundaries analysis alone is not sufficient. As we have shown in the analysis of enhancer-promoter contact, using physical boundary analysis from 3D structures, we can conclude that conservation of enhancer-promoter contact could be one of the reasons for the P-TAD.

      • Explain more clearly what the additional value of using the HIPPS model to study TAD preservation is.

      Our goal, as announced in the title is to elucidate the structural basis for the emergence of PTADs. The HIPPS method, which avoids doing simulations (like CCM and other polymer models used in the literature) provides an ensemble of 3D conformations using averaged contact map generated in Hi-C experiments. Even more importantly, HIPPS produce an ensemble of structures, which can be the basis for predicting the outcomes at the single-cell level. The accuracy of the generated structures has been shown in our previous work (Shi and ThirumalaiPRX 2021). In ensemble-averaged Hi-C experiments, TADs appear to be relatively stable. However, imaging experiments (Bintu et. al, 2018) have revealed that TADs are not fixed structures present in every single cell, but instead exhibit variability at the single-cell level. TADlike structures with distinct boundaries are observed in individual cells, and the location of these boundaries varies from cell to cell. However, these TAD-like structures still show a preferential positioning in 3D structures. Interestingly, the preferential positioning often corresponds to TAD boundaries observed in population-averaged Hi-C data. This suggests that while cohesin is involved in establishing the overall organization of TADs, other factors and mechanisms could also contribute to TAD formation at the individual cell level. In this study, we showed some boundaries of P-TADs upon cohesin loss in the Hi-C maps, align with preferential boundaries in individual 3D structures of chromosomes. The makes the finding that a subset of TADs is preserved upon cohesin is robust.

      From a technical perspective, the use of HIPPS avoids time-consuming polymer simulations. The HIPPS is rapid and can be used to generate arbitrarily large ensemble of structures, allowing us calculate properties both at the single cell and ensemble level.

      In addition, we'd like to offer the following feedback to the authors.

      3) The discussion of enhancer-promoter loops as a cause of TAD preservation is interesting, but it would be interesting to know fraction of preserved TADs enhancer-promoter loops might explain.

      We thank the reviewer for the excellent suggestion. We have done the suggested calculation. The results are shown in a new Figure.8 in the main text. We also moved the results on enhancer-promoter to the main results section from the Discussion section.

      4) The last paragraph of the introduction seems to state that only the HIPPS model was used to find single-cell 3D structures and boundary probabilities. However, the main text suggests that the CCM model was also used for these purposes.

      We have revised the text to clarify this point on pages 3-4. Also please see the discussion on the utility of HIPPS above.

      5) When referring to the boundary probability, it would be useful if the authors always specified whether they refer to the boundary probability before or after cohesin depletion (or loop depletion in the CCM model). Statements such as "This implies that peaks in the boundary probabilities should correspond to P-TADs" are ambiguous; it is unclear if the authors mean that boundary probabilities before cohesin depletion predict that the boundary will be preserved, rather than that preserved TAD boundaries correlate with peaks in the boundary probability after cohesin depletion.

      We thank the reviewer for the suggestion. Indeed, it may be confusing. Hence, we have revised the text in numerous places to clarify this point.

      6) It would be interesting to analyze all TAD boundaries that are present after cohesin depletion, rather than just those that overlap with TAD boundaries in WT cells. This would give better statistics for answering the question what causes TAD-like structures in cells without cohesin.

      We thank the reviewer for this excellent suggestion. First, this would we believe this deviate from the primary goal of this study: what leads to TAD preservation after cohesin deletion? Second, this has to be done very systematically, as we did here for P-TADs, in order draw meaningful conclusions. This is a very useful study for another occasion.

      7) The use of a plethora of acronyms (P-TAD, CM, DM, CCM, HLM...) makes the paper difficult to read.

      We have revised the text to change CM to “contact map” and “DM” to “distance map”. For PTADs, CCM, and WLM, we would argue that P-TAD is rather a clear and intuitive abbreviation and CCM/WLM refers to specific methods/models and replacing them with full names would make text more difficult to read. We hope the reviewer is okay with us keeping these acronyms.

      Reviewer #2 (Public Review):

      Summary:

      Here Jeong et al., use a combination of theoretical and experimental approaches to define molecular contexts that support specific chromatin conformations. They seek to define features that are associated with TADs that are retained after cohesin depletion (the authors refer to these TADs as P-TADs). They were motivated by differences between single cell data, which suggest that some TADs can be maintained in the absence of cohesin, whereas ensemble HiC data suggest complete loss of TADs. By reananalyzing a number of HiC datasets from different cell types, the authors observe that in ensemble methods, a significant subset of TADs are retained. They observe that P-TADs are associated with mismatches in epigenetic state across TAD boundaries. They further observe that "physical boundaries" are associated with P-TAD maintenance. Their structure/simulation based approach appears to be a powerful means to generate 3D structures from ensemble HiC data, and provide chromosome conformations that mimic the data from single-cell based experiments. Their results also challenge current dogma in the field about epigenetic state being more related to compartment formation rather than TAD boundaries. Their analysis is particularly important because limited amounts of imaging data are presently available for defining chromosome structure at the single-molecule level, however, vast amounts of HiC and ChIP-seq data are available. By using HiC data to generate high quality simulated structural data, they overcome this limitation. Overall, this manuscript is important for understanding chromosome organization, particularly for contacts that do not require cohesin for their maintenance, and for understanding how different levels of chromosome organization may be interconnected. I cannot comment on the validity of the provided simulation methods and hope that another reviewer is qualified to do this.

      We appreciate the reviewer for a comprehensive summary of our work, and we are happy that the reviewer finds our work important, which provides valuable insights to the field.

      Specific comments

      • It is unclear what defines a physical barrier. From reading the text and the methods, it is not entirely clear to me how the authors have designated sites of physical barriers. It may help to define this on pg 7, second to last paragraph, when the authors first describe instances of PTAD maintenance in the absence of epigenetic mismatch.

      We thank the reviewer for the suggestions. The details of physical boundary designation are provided in the appendix data analysis. To make the concept and idea of physical boundary easy to understand, we have revised the text on page 7 in the revised main text.

      • Figure 7 adds an interesting take to their approach. Here the authors use microC data to analyze promoter-enhancer/promoter-promoter contacts. These data are included as part of the discussion. I think this data could be incorporated into the main text, particularly because it provides a biological context where P-TADs would have a rather critical role.

      We thank the reviewers for the suggestion. We also agree that results in Figure 7 provide novel insights on TAD formation and its possible preservation upon perturbation. We have followed the reviewer’s suggestion to move it to an independent section in the main results section as the last subsection.

      • Figure 3a- the numbers here do not match the text (page 6, second to last paragraph). The numbers have been flipped for either chromosome 10 or chromosome 13 in the text or the figures.

      We thank the reviewer for pointing out this error. In the revised main text, it has been corrected.

      Reviewer #3 (Public Review):

      This manuscript presents a comprehensive investigation into the mechanisms that explain the presence of TADs (P-TADs) in cells where cohesin has been removed. In particular, to study TADs in wildtype and cohesin depleted cells, the authors use a combination of polymer simulations to predict whole chromosome structures de novo and from Hi-C data. Interestingly, they find that those TADs that survive cohesin removal contain a switch in epigenetic marks (from compartment A to B or B to A) at the boundary. Additionally, they find that the P-TADs are needed to retain enhancer-promoter and promoter-promoter interactions.

      Overall, the study is well-executed, and the evidence found provides interesting insights into genome folding and interpretations of conflicting results on the role of cohesin on TAD formation.

      We are pleased with the reviewer’s positive assessment of our work.

      To strengthen their claims, the authors should compare their de-novo prediction approach to their data-driven predictions at the single cell level.

      We thank the reviewer for the very good suggestion. We are assuming that the Reviewer is asking us to compare the CCM simulations with HIPPS generated structures at the single cell level. We have shown, using the GM12878 cell data, that the polymer simulations reproduce the Hi-C contact maps (an average quantity) well (see Appendix Fig. 2 and Fig. 3). In addition, we show in Appendix Fig. 8 the comparison with ensemble averaged distance maps as well as at the single cell level for Chr 13 from the GM12878 cell. There are TAD-like structures at the single cell level just as we find for HCT-116 cell (Fig. 5 in the main text). Thus, the conclusions from de-novo prediction and data-driven predictions are consistent. In addition, in our previous publication introducing HIPPS in Phys Rev X 11: 011051 (2021), we showed that the method is quantitatively accurate in reproducing experimental data for all the interphase chromosomes.

      Having demonstrated this consistency, we used computationally simple data-driven predictions to analyze HCT-116 and mouse liver cell lines for which Hi-C data with and without cohesin rather than perform multiple laborious polymer simulations.

      Please see below for our response to specific comments.

      1) It is confusing that the authors change continuously their label for describing B-A and A-B switches. They should choose one expression. I think that the label "switch" between A and B is more precise than "mismatch".

      We have revised the text to make it consistent. Now it all reads “A-B”. Yes, the suggestion that we use switch is good but we think that mismatch is more concise. We trust that this Reviewer will indulge us on this point.

      2) In the Abstract, the authors mention HCT-116 cells but do not specify which cells are these.

      We have changed “HCT-116” in the abstract to “human colorectal carcinoma cell line”.

      3) In the Abstract, it is unclear what the authors mean by "without any parameters"

      In the theoretically based HIPPS method, there is no “free” parameter. In other words, the only parameter is uniquely determined. To avoid confusion, we have removed “without any parameters” from abstract.

      4) In Results, what do the authors mean by 16% (26%)?

      This refers the percentage of how many TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. Using TopDom method, we identified TAD boundaries in Wild and cohesin-depleted cells. There are 16% (959 out of 4176 – Fig. 1a) and 26% (1266 out of 4733 – Fig. 1b) of TADs are preserved after Nipbl and RAD21 removal in mouse and HCT-116 cells, respectively. We removed the percentages in the revised version.

      5) In Results, the authors mention "more importantly, we did tune the value of any parameter to fit the experimental CMs". Did they mean that instead they didn't tune any parameter?

      We apologize for the confusion. In the CCM, there is a single controlled parameter. We have changed the sentence to reflect this correctly.

      6) In Results, section "CCM simulations reproduce wild-type Hi-C maps", Kullback-Leibler (KL) divergence is used to assess the correlation between two loci, but it is unclear what the value 0.04 stands for; is it a good or a bad correlation?

      The value for Kullback-Leibler divergence can vary from 0 to infinity with 0 give the perfect correlation. Thus, 0.04 means that the correlation is excellent.

      7) The authors use two techniques to obtain 3D structures, one is CCM, which takes the cohesin as constraints, and another is HIPPS, which reconstructs from Hi-C maps. Both seem to have good agreement with the Hi-C contact maps. However, did the authors compare the CCM with the HIPPS 3D structures?

      This is detailed in response at the start of the reply to this Reviewer. As detailed in this response as well in the main text we used the CCM to generate hypotheses for the origin of P-TADs. In the process, we established the accuracy of CCM, which gives us confidence about the hypotheses. As explained above and emphasized in the revised version, CCM simulations are time consuming whereas generating 3D structures using HIPPS is computationally simple. Because HIPPS is also accurate, we used it to analyze the Hi-C data on mouse liver, HCT-116 as well as Micro-Data on mESC.

      In our paper in Phys Rev X 11: 011051 (2021) we showed that HIPPS reproduces Hi-C data. In the current manuscript, we showed in Appendix Fig. 2 and Fig. 3 as well as in a study in 2018 (Shi and Thirumalai, Nat Comm.) that CCM is accurate as well. Thus, there is little doubt about the accuracies of the methods that we have developed.

      8) In Results, section "P-TADs have prominent spatial domain boundaries", the authors constructed individual spatial distance matrices (DMs) using 10,000 simulated 3D structures. What are the differences among these 10,000 simulations? Do they start them with different initial structures?

      The structures are generated using HIPPS which is data-driven method that uses Hi-C contact map as constraints. The method, which uses the maximum entropy theory, samples from a distribution that describe the structural ensemble of chromosome. The 10,000 structures are randomly sampled and are independent from each other. The HIPPS method is not a simulation, and hence the issue of initial structures does not arise.

      9) In Methods, when the authors mention the "unknown parameter", do they use one parameter for all simulations (+/- cohesin) or is this parameter different for each system? Would this change the results?

      We apologize for the confusion. The “unknown parameter” is the energy scale 𝜖 that describes the interaction strength between chromosome loci. We have revised the text in the method (page 27) to clarify it. The same value of 𝜖 is used for all CCM simulation with or without cohesin.

      10) In Methods, when the authors perform DBSCAN clustering, they mention that they optimize the clustering parameters for each system. However, if they want to compare between different systems, the clustering parameters should be the same.

      The purpose of DBSCAN is to capture the spatial clustering topology of chromosome loci. However, different cell types and chromosomes may have different overall density, which will impact the average distance between loci. If using the same parameters, such global changes will impact the result of clustering most and the intended spatial clustering topology can be distorted. Hence, we tune the clustering parameter for each system in order to ignore the global effect but only capture the local and topology of clustering of chromosome loci.

      Grammar comments:

      1) "structures, with sharp boundaries are present, at.."

      We thank the reviewer for pointing out the error. We have fixed it.

      2) "Three headlines emerge from these studies are:"

      We have fixed it.

      3) "both the cell lines"

      We have fixed it.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript presents the first evidence for a plastic enhancement in the response of pial cortical arterioles to external stimulation. Specifically, they show (p8; Figure 3A-C) that repeated application of a visual stimulus at 0.25 Hz, at the upper edge of the vasomotor response, leads to a greater change in the diameter of pial arterioles at that frequency. This adds to the earlier, referenced work of Mateo et al (2017) that showed locking - or entrainment of pial arteriole vasomotion - by stimuli at different (0.0 to 0.3 Hz) frequencies.

      We thank the reviewer for positively identifying the value of our manuscript.

      The manuscript has a major flaw. Much as there is plasticity that leads to an increase in the amplitude of vasomotion at the drive frequency, the authors need to show reversibility. This could possibly be accomplished by driving the visual system at a different frequency, say 0.15 Hz, and observing if the 0.25 Hz response is then diminished. The authors could then test if their observation is repeatable by again driving at 0.25 Hz. Unless I missed the presentation on this point, there is no evidence for reversibility.

      The reviewer has raised a very important point of view. In our experiments, the visually induced vasomotion (or visual stimulus-triggered vasomotion) was always entrained by repeated trials of the 0.25 Hz temporal frequency stimuli. When the visual stimulation stops, the vasomotion frequency lock to 0.25 Hz quickly dissipates. After saturated training with this stimulus, the parameters of the visual stimulus were switched, for example to 0.15 Hz. The animal quickly adapted to this new stimulus paradigm and the vasomotion was frequency-locked to 0.15 Hz. The adaptation to this new paradigm occurred well within 5 minutes. In Fig. 5, various paradigms were randomly tested. In some of the trials, 0.25 Hz stimulus was tested after 0.15 Hz. The vasomotion also quickly adapted back to the 0.25 Hz. We agree with the reviewer that this reversibility could have been explicitly documented in the manuscript.

      Drew, P. J., A. Y. Shih, J. D. Driscoll, P. M. Knutsen, D. Davalos, P. Blinder, K. Akassoglou, P. S. Tsai, and D. Kleinfeld. 2010. 'Chronic optical access through a polished and reinforced thinned skull', Nature Methods, 7: 981-84.

      Morii, S., A. C. Ngai, and H. R. Winn. 1986. 'Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: With detailed description of the closed cranial window technique in rats', Journal of Cerebral Blood Flow & Metabolism, 6: 34-41.

      Reviewer #2 (Public Review):

      Sasaki et al. investigated methods to entrain vasomotion in awake wild-type mice across multiple regions of the brain using a horizontally oscillating visual pattern which induces an optokinetic response (HOKR) eye movement. They found that spontaneous vasomotion could be detected in individual vessels of their wild-type mice through either a thinned cranial window or intact skull preparation using a widefield macro-zoom microscope. They showed that low-resolution autofluorescence signals coming from the brain parenchyma could be used to capture vasomotion activity using a macro-zoom microscope or optical fibre, as this signal correlates well with the intensity profile of fluorescently-labelled single vessels. They show that vasomotion can also be entrained across the cortical surface using an oscillating visual stimulus with a range of parameters (with varying temporal frequencies, amplitudes, or spatial cycles), and that the amplitude spectrum of the detected vasomotion frequency increases with repeated training sessions. The authors include some control experiments to rule out fluorescence fluctuations being due to artifacts of eye movement or screen luminance and attempt to demonstrate some functional benefit of vasomotion entraining as HOKR performance improves after repeat training. These data add in an interesting way to the current knowledge base on vasomotion, as the authors demonstrate the ability to entrain vasomotion across multiple brain areas and show some functional significance to vasomotion with regards to information processing as HOKR task performance correlates well with vascular oscillation amplitudes.

      We thank the reviewer for summarizing the value of our study and recognizing its significance.

      The aims of the paper are mostly well supported by the data, but some streamlining of the data presentation would improve overall clarity. The third aim to establish the functional significance of vasomotion in relation to plasticity in information processing could be better supported by the inclusion of some additional control experiments.

      We thank the reviewer for recognizing our vast amount of data supporting our findings. We agree that better data presentation could have improved the clarity of the manuscript.

      Specifically:

      1) The clarity and comprehensibility of the paper could be significantly enhanced by incorporating additional details in both the introduction and discussion sections. In the introduction, a succinct definition of the frequency range of vasomotion should be provided, as well as a better description of the horizontal optokinetic response (i.e. as they have in the results section in the first paragraph below the 'Entrainment of vasomotion with visual stimuli presentation' sub-heading). The discussion would benefit from the inclusion of a clear summary of the results presented at the start, and the inclusion of stronger justification (i.e. more citations) with regards to the speculation about vasomotion and neuronal plasticity (e.g. paragraph 5 includes no citations).

      We agree that a better description of vasomotion and horizontal optokinetic response could have been provided in the introduction. As the reviewer suggests, the discussion could also have started with the following summary of the results.

      “We show that visually induced vasomotion can be frequency-locked to the visual stimulus and can be entrained with repeated trials. The initial drive for the vasomotion, or the sensory-evoked hyperemia, must be coming from the neuronal activity in the visual system. The vasomotion is likely triggered by activation of the neurovascular interaction (Kayser, 2004; van Veluw et al., 2020). Surprisingly, the entrained vasomotion was observed not only in the visual cortex but also widely throughout the surface of the brain and deep in the cerebellar flocculus. The global entrainment could be realized through separate mechanisms from the local neurovascular coupling. What is also unknown is where the plasticity occurs. The neuronal visual response in the primary visual cortex could potentially decrease with repeated visual stimulation presentation as the adaptive movement of the eye should decrease the retinal slip. With repeated training sessions, a more static projection of the presented image will likely be shown to the retina. The neurovascular coupling could be enhanced with increased responsiveness of the vascules and vascular-to-vascular coupling could also be potentiated.”

      2) The novel methods for detecting vasomotion using low-resolution imaging techniques are discussed across the first four figures, but this gets a little bit confusing to follow as the authors jump back and forth between the different imaging and analysis techniques they have employed to capture vasomotion. The data presentation could be better streamlined - for instance by presenting only the methods most relevant for the functional dataset (in Figures 5-7), with the additional information regarding the various controls to establish the use of autofluorescence intensity imaging as a valid method for capturing vasomotion reduced to fewer figure panels, or moved to supplementary figures so as to not detract from the main novel findings contributed in this study.

      We apologize for the confusing presentation of the data. Many of the initial figures were technical; however, we feel that following these steps was necessary to logically conclude that shadow imaging of the autofluorescence could be used as an indicator of vasomotion. We do agree with the reviewer that going back and forth between different techniques can be confusing. We could have added separate supplementary figures to introduce the various methods used upfront before going into the findings.

      3) The authors heavily rely on representative traces from individual vessels to illustrate their findings, particularly evident in Figures 1-4. While these traces offer a valuable visualization, augmenting their approach by presenting individual data points across the entire dataset, encompassing all animals and vessels, would significantly enhance the robustness of their claims. For instance, in Figures 1 and 2, where average basal and dilated traces are depicted for a representative vessel, supplementing these with graphs showcasing peak values across all measured vessels would enable the authors to convey a more holistic representation of their data. Or in Figure 3, where the amplitude spectrum is presented for individual Texas red fluorescence intensity changes in V1 across novice, trained, and expert mice, incorporating a summary graph featuring the amplitude spectrum value at 0.25Hz for each individual trace (across animals/imaging sessions), followed by statistical analysis, would fortify the strength of their assertions. Moreover, providing explicit details on sample sizes for each individual figure panel (where not a representative trace), including the number of animals or vessels/imaging sessions, would contribute to transparency and aid readers in assessing the generalisability of the findings.

      We agree with the reviewer that summarization of the data across a number of vessels/imaging sessions would lead to more generalization of the findings. However, contrary to what the reviewer described, we did summarize the vessel diameter expansion events across multiple vessel observations in Fig. 1F, G. The vasomotion parameters were not summarized for observation in intact skull shown in Fig. 2. However, this figure was intended just to show that vessel boundary cannot be well defined in intact skull imaging and Texas Red intensity or autofluorescence intensity fluctuation would give a better indication of vessel diameter fluctuation. In Fig. 3G, the peak ratio of 0.25 Hz was calculated for individual animals at Novice, Trained, and Expert levels and summarized for n = 5 animals. Statistical analysis was also done. The variability between imaging sessions within individual animals was not analyzed; thus, this could have been indicated.

      4) In the experiments where mice are classed as "novice", "trained" or "expert", the inclusion of the specific range of the number of training sessions for each category would improve replicability.

      We agree with the reviewer that classification on the level of training should have been explicitly indicated. Mice experiencing the first visual training session were defined as “Novice”. The mice that have experienced 3 training sessions are the “Trained” mice and the performance of the “Trained” mice during the 4th training session was evaluated. Mice that experienced 8 to 11 rounds of visual training sessions are the “Expert” mice.

      5) The authors don't state whether mice were habituated to the imaging set-up prior to the first data collection, as head-fixation and restraint can be stress-inducing for animals, especially upon first exposure, which could impact their neurovascular coupling responses differentially in "novice" versus "trained" imaging sessions (e.g. see Han et al., 2020, DOI: https://doi.org/10.1523/JNEUROSCI.1553-20.2020). The stress associated with a tail vein injection prior to imaging could also partially explain why mice didn't learn very well if Texas Red was injected before the training session. If no habituation was conducted in these experiments, the study would benefit from the inclusion of some control experiments where "novice" responses were compared between habituated and non-habituated animals.

      We agree with the reviewer that stress could well affect spontaneous vasomotion as well as visually induced vasomotion (or visual stimulus-triggered vasomotion). As the reviewer suggested, we could have compared the habituated and non-habituated mice to the initial visually induced vasomotion response. In addition, whether the experimentally induced increase in stress would interfere with the vasomotion or not could also be studied. With the Texas Red experiments, we observed that tail-vein injection stress appeared to interfere with the HOKR learning process. In the experiments presented in Fig. 3, Texas Red was injected before session 1. Vasomotion entrainment likely progressed with sessions 2 and 3 training. Before session 4, Texas Red was injected again to visualize the vasomotion. The vasomotion was clearly observed in session 4, indicating that the stress induced by tail-vein injection could not interfere with the generation of visually induced vasomotion.

      6) The experiments regarding the brain-wide vasomotion entrainment across the cortical surface would benefit from some additional information about how brain regions were identified (e.g. particularly how V1 and V2 were distinguished given how close together they are).

      The brain regions were identified by referring to the Mouse Brain Atlas. As the skull was intact, the location of bregma, lambda, and midline was clearly visible. We agree with the reviewer that strict separation of V1 and V2 could be difficult if we rely on the brain atlas alone. However, what we wanted to emphasize was that there was no specific localization of the vasomotion entrainment effect.

      7) Whilst the authors show that HOKR task performance and vasomotion amplitude are increased with repeated training to provide some support to their aim of investigating the functional significance of vasomotion with regards to information processing plasticity, the inclusion of some additional control experiments would provide stronger evidence to address this aim. For instance, if vasomotion signalling is blocked or reduced (e.g. using optogenetics or in an AD mouse model where arteriole amyloid load restricts vasomotion capacity), does flocculus-dependent task performance (e.g. HOKR eye movements) still improve with repeated exposure to the external stimulus.

      We agree that experimental intervention to vasomotion is ideal to test the functional significance of vasomotion. As pharmacological intervention lacks specificity, we are currently exploring the optogenetic approach. We have never thought of using the AD mouse as a model of restricted vasomotion by amyloid, and we agree this would be an interesting model to study. However, the AD mouse model would also have deficits other than the restricted vasomotion. On the other hand, we could test whether the repeated presentation of slowly oscillating visual stimuli can have beneficial effects in improving the cognitive abilities of AD model mice.

      Reviewer #3 (Public Review):

      Summary:

      Here the authors show global synchronization of cerebral blood flow (CBF) induced by oscillating visual stimuli in the mouse brain. The study validates the use of endogenous autofluorescence to quantify the vessel "shadow" to assess the magnitude of frequency-locked cerebral blood flow changes. This approach enables straightforward estimation of artery diameter fluctuations in wild-type mice, employing either low magnification wide-field microscopy or deep-brain fibre photometry. For the visual stimuli, awake mice were exposed to vertically oscillating stripes at a low temporal frequency (0.25 Hz), resulting in oscillatory changes in artery diameter synchronized to the visual stimulation frequency. This phenomenon occurred not only in the primary visual cortex but also across a broad cortical and cerebellar surface. The induced CBF changes adapted to various stimulation parameters, and interestingly, repeated trials led to plastic entrainment. The authors control for different artefacts that may have confounded the measurements such as light contamination and eye movements but found no influence of these variables. The study also tested horizontally oscillating visual stimuli, which induce the horizontal optokinetic response (HOKR). The amplitude of eye movement, known to increase with repeated training sessions, showed a strong correlation with CBF entrainment magnitude in the cerebellar flocculus. The authors suggest that parallel plasticity in CBF and neuronal circuits is occurring. Overall, the study proposes that entrained "vasomotion" contributes to meeting the increased energy demand associated with coordinated neuronal activity and subsequent neuronal circuit reorganization.

      We thank the reviewer for providing a thorough summarization of our manuscript.

      Strengths:

      • The paper describes a simple and useful method for tracking vasomotion in awake mice through an intact skull.

      • The work controls for artefacts in their primary measurements.

      • There are some interesting observations, including the nearly brain-wide synchronization of cerebral blood flow oscillations to visual stimuli and that this process only occurs after mice are trained in a visual task.

      • This topic is interesting to many in the CBF, functional imaging, and dementia fields.

      We thank the reviewer for positively recognizing the strength of the paper.

      Weaknesses:

      • I have concerns with the main concepts put forward, regarding whether the authors are actually studying vasomotion as they state, as opposed to functional hyperemia which is sensory-induced changes in blood flow, which is what they are actually doing. I recommend several additional experiments/analyses for them to explore. This is mostly further characterizing their effect which will benefit the interpretations.

      We recognized that the terminology used in our paper was not explicitly explained. Traditionally, “vasomotion” is defined as the dilation and constriction of the blood vessels that occurs spontaneously at low frequencies in the 0.1 Hz range without any apparent external stimuli. Sensory-induced changes in the blood flow are usually called “hyperemia”. However, in our paper, we used the term, vasomotion, literally, to indicate both forms of “vascular” “motion”. Therefore, the traditional vasomotion was called “spontaneous vasomotion” and the hyperemia induced with slow oscillating visual stimuli was called “visually induced vasomotion”.

      Using our newly devised methods, we show the presence of “spontaneous vasomotion”. However, this spontaneous vasomotion was often fragmented and did not last long at a specific frequency. With visual stimuli that slowly oscillated at temporal frequencies close to the frequency of spontaneous vasomotion, oscillating hyperemia, or “visually induced vasomotion” was observed.

      • Neuronal calcium imaging would also benefit the study and improve the interpretations.

      In our paper, we mainly studied the visually induced vasomotion (or visual stimulus-triggered vasomotion). Therefore, visual stimulation must first activate the neurons and, through neurovascular coupling, the initial drive for vasomotion is likely triggered. However, visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex. We also do not know how the synchronized vasomotion can spread throughout the whole brain. Where the plasticity for vasomotion entrainment occurs is also unknown. To identify the extent of the neuronal contribution to the vasomotion triggering, whole brain synchronization, and vasomotion entrainment, simultaneous neuronal calcium imaging would be ideal. However, due to the fact that fluorescent Ca2+ indicators expressed in neurons would also be distorted by the “shadow” effect from the vasomotion, exquisite imaging techniques would be required.

      • The plastic effects in vasomotion synchronization that occur with training are interesting but they could use an additional control for stress. Is this really a plastic effect, or is it caused by progressively decreasing stress as trials and progress? I recommend a habituation control experiment.

      As also pointed out by reviewer #2, we agree that, whether stress would affect visually induced vasomotion or not could be studied. Studying the visually induced vasomotion in mice well-habituated to the experimental apparatus would give an idea of whether stress could truly be a profounding factor affecting vasomotion. On the other hand, whether acutely induced stress can interfere with the already entrained vasomotion could also be studied. In the experiments presented in Fig. 3, Texas Red was injected via the tail vein, which would be quite stressful for the mouse. However, in the trained mouse, visually induced vasomotion could be observed regardless of the stress. It is likely that stress can interfere with the acquisition of vasomotion entrainment, but the already acquired entrainment will not be canceled with acute stress induced by tail-vein injection. We agree that further relationship between stress and vasomotion and plasticity related to vasomotion entrainment could be investigated.

      Appraisal

      I think the authors have an interesting effect that requires further characterization and controls. Their interpretations are likely sound and additional experiments will continue to support the main hypothesis. If brain-wide synchrony of blood flow can be trained and entrained by external stimuli, this may have interesting therapeutic potential to help clear out toxic proteins from the brain as seen in several neurodegenerative diseases.

      We thank the reviewer for the positive evaluation of our manuscript. Strong entrainment of visually induced vasomotion was observed with a simple presentation of slowly oscillating visual stimuli for several days. This is a totally non-invasive method to train the vasomotion capacity. As the reviewer recognizes, potential benefits for the treatment of dementia and neurodegenerative diseases could be evaluated with further studies.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability.

      The differentiation between visible and invisible disabilities in this text serves as a crucial reminder of the broad spectrum of disabilities and the varied experiences of those living with them. It underscores the need for greater awareness and sensitivity towards individuals whose disabilities may not be immediately apparent. The mention of the unjust stigma faced by individuals with invisible disabilities raises important questions about societal attitudes and the need for a shift towards more compassionate and informed perspectives. This section also implicitly advocates for a more inclusive definition of disability, one that acknowledges the complexity and diversity of individual experiences, thereby fostering a more accommodating and supportive community.

    1. There are several ways of managing disabilities. All of these ways of managing disabilities might be appropriate at different times for different situations. 10.2.1. Coping Strategies# Those with disabilities often find ways to cope with their disability, that is, find ways to work around difficulties they encounter and seek out places and strategies that work for them (whether realizing they have a disability or not). Additionally, people with disabilities might change their behavior (whether intentionally or not) to hide the fact that they have a disability, which is called masking and may take a mental or physical toll on the person masking, which others around them won’t realize. For example, kids who are nearsighted and don’t realize their ability to see is different from other kids will often seek out seats at the front of classrooms where they can see better. As for us two authors, we both have ADHD and were drawn to PhD programs where our tendency to hyperfocus on following our curiosity was rewarded (though executive dysfunction with finishing projects created challenges)1. This way of managing disabilities puts the burden fully on disabled people to manage their disability in a world that was not designed for them, trying to fit in with “normal” people. 10.2.2. Modifying the Person# Another way of managing disabilities is assistive technology, which is something that helps a disabled person act as though they were not disabled. In other words, it is something that helps a disabled person become more “normal” (according to whatever a society’s assumptions are). For example: Glasses help people with near-sightedness see in the same way that people with “normal” vision do Walkers and wheelchairs can help some disabled people move around closer to the way “normal” people can (though stairs can still be a problem) A spoon might automatically balance itself when held by someone whose hands shake Stimulants (e.g., caffeine, Adderall) can increase executive function in people with ADHD, so they can plan and complete tasks more like how neurotypical people do. Assistive technologies give tools to disabled people to help them become more “normal.” So the disabled person becomes able to move through a world that was not designed for them. But there is still an expectation that disabled people must become more “normal,” and often these assistive technologies are very expensive. Additionally, attempts to make disabled people (or people with other differences) act “normal” can be abusive, such as Applied Behavior Analysis (ABA) therapy for autistic people, or “Gay Conversion Therapy.” 10.2.3. Making an environment work for all# Another strategy for managing disability is to use Universal Design, which originated in architecture. In universal design, the goal is to make environments and buildings have options so that there is a way for everyone to use it2. For example, a building with stairs might also have ramps and elevators, so people with different mobility needs (e.g., people with wheelchairs, baby strollers, or luggage) can access each area. In the elevators the buttons might be at a height that both short and tall people can reach. The elevator buttons might have labels both drawn (for people who can see them) and in braille (for people who cannot), and the ground floor button may be marked with a star, so that even those who cannot read can at least choose the ground floor. In this way of managing disabilities, the burden is put on the designers to make sure the environment works for everyone, though disabled people might need to go out of their way to access features of the environment. 10.2.4. Making a tool adapt to users# When creating computer programs, programmers can do things that aren’t possible with architecture (where Universal Design came out of), that is: programs can change how they work for each individual user. All people (including disabled people) have different abilities, and making a system that can modify how it runs to match the abilities a user has is called Ability based design. For example, a phone might detect that the user has gone from a dark to a light environment, and might automatically change the phone brightness or color scheme to be easier to read. Or a computer program might detect that a user’s hands tremble when they are trying to select something on the screen, and the computer might change the text size, or try to guess the intended selection. In this way of managing disabilities, the burden is put on the computer programmers and designers to detect and adapt to the disabled person. 10.2.5. Are things getting better?# We could look at inventions of new accessible technologies and think the world is getting better for disabled people. But in reality, it is much more complicated. Some new technologies make improvements for some people with some disabilities, but other new technologies are continually being made in ways that are not accessible. And, in general, cultures shift in many ways all the time, making things better or worse for different disabled people. 1 We’ve also noticed many youtube video essayists have mentioned having ADHD. This is perhaps another job that attracts those who tend to hyperfocus on whatever topic grabbed their attention, and then after releasing their video, move on to something completely different. 2 Universal Design has taken some criticism. Some have updated it, such as in acknowledging that different people’s needs may be contradictory, and others have replaced it with frameworks like Inclusive Design..

      This explains different ways to help people with disabilities, like using special tools or making places easier for everyone to use. An example could be the tiktok update allowing for autogenerated subtitles so people didn't have to consciously write out every line. It shows that helping disabled people often means changing our surroundings or technology to fit their needs better.

    1. kinds of facts and events which are facts for ushave already been shaped up and given theircharacter and substance as facts, as relations, etc.,by the methods and practice of governing. Men-tal illness, crimes, riots, violence, work satisfac-tion, neighbors and neighborhoods, motiva-tion, etc., these are the constructs of the practiceof government. In many instances such as mentalillness, crimes, neighborhoods, etc., they are con-stituted as discrete phenomena primarily byadministrative procedures and others arise asproblems in relation to the actual practice ofgovernment, as for example concepts of motiva-tion, work satisfaction, etc.The governing processes of our society areorganized as social entities constituted externallyto those persons who participate in and performthem. The managers, the bureaucrats, the admin-istrators, are employees, are people who are used.They do not own the enterprises or otherwise ap-propriate them. Sociologists study these entitiesunder the heading of formal organization. Theyare put together as objective structures with goals,activities, obligations, etc., other than those whichits employees can have as individuals. The acad-emic professions are also set up in a mode whichexternalizes them as entities vis-8-vis their practi-tioners. The body of knowledge which its mem-bers accumulate is appropriated by the disciplineas its body. The work of members aims at con-tributing to that body of knowledge.As graduate students learning to become sociol-ogists, we learn to think sociology as it is thoughtand to practice it as it is practiced. We learnthat some topics are relevant and some are not.We learn to discard our experienced world as asource of reliable information or suggestionsabout the character of the world; to confine andfocus our insights within the conceptual frame-works and relevances which are given in thediscipline. Should we think other kinds ofthoughts or experience the world in a differentway or with edges and horizons that pass beyondthe conceptual we must practice a discipline whichdiscards them or find some procedure whichmakes it possible to sneak them in. We learn away of thinking about the world which is recog-nizable to its practitioners as the sociologicalway of thinking.We learn to practice the sociological subsump-tion of the actualities of ourselves and of otherpeople. We find out how to treat the world asinstances of a sociological body of knowledge.The procedure operates as a sort of conceptualimperialism. When we write a thesis or a paper,we learn that the first thing to do is to latch it onto the discipline at some point. This may be byThe profession of sociology is predicated on auniverse which is occupied by men and it is itselfstill largely appropriated by men as their “ter-ritory.”

      Цікаво, наскільки змінилася ситуація з часу написання цієї статті. Звичайно, "базові" соціологічні твори були написані переважно білими чоловіками (переважно, бо були Рут Бенедикт та Маргарет Мід, наприклад), проте з огляду на авторство джерел, що вивчаються принаймні в Могилянці на соціології, кількість впливових соціологинь значно зросла

    1. Ethics provides a foundation for what teachers should do in their roles and responsibilities as an educator. It is a framework that a teacher can use to help make decisions about what is right or wrong in a given situation.

      I think it is important to have a foundation for us teachers to refer to in order to help lead us in the right direction to make the "right" solution. This is important because sometimes teachers make connections with their students or have certain feelings towards an individual due to there behavior or whatever it may be which can hinder there decisions making. So it is important that we do not let our feelings get in the way of our decision making but rather rely on the ethics of the situation.

    1. Author Response

      We thank the editors and the reviewers for their assessment of our revised manuscript. Please see bellow, our answers to the recommendations by reviewer #2.

      Figure S2F - Seems like a very narrow range of parameters. Is there some fine tuning here?

      The range of values of tau_P that yields previous-trial biases is bounded by below and above for the following reasons: above a certain value of tau_P (therefore large integration time), the bump that had formed in the previous trial is not strong enough to remain stable for a long time, and therefore dissipates by the time the current trial starts (especially when adaptation is fast, towards the left of the third panel). Below a certain value, instead, this integration timescale is small enough to quickly form a representation of the current trial, hence the bump from the previous trial quickly dissipates (due to mutual inhibition). This interplay between the integration and the adaptation timescale as well as considering a phenomenon which is bounded in time (how close the activity bump is to the second stimulus of the previous trial which is presented between -22.4 and -5.6 seconds from the moment we are considering) yields a region for tau_P which is bounded. This region, however, appears narrow due to the limited number of points we have considered for the simulation grid.

      Regarding my comment on lapse at the boundaries (old line 221). Lapse parameters in psychometric curves correspond to errors on the "easy" trials. But the mechanistic explanation for lapse trials is that there is a non-zero probability for the subject to respond in a manner that is random and independent of the stimulus. In the case of extreme stimuli, this is the only reason for errors, and thus looking at the edges of the psychometric curves allows to calculate lapse rate. But - the usual assumption for underlying mechanism is that the subject lapses in all trials, regardless of stimulus. If I understand correctly, this is different than the mechanistic reason for lapses in the network model, which was described as something that happens more in the edges than in the center. Or more generally, to be a stimulus-dependent effect.

      We thank the reviewer for this clarification. The reviewer is right that in our mechanistic model, lapses (as defined by errors on easy trials) are more likely to occur for extreme stimuli, due to the vicinity to the boundary of the attractor. Such errors also occur for non-extreme stimuli, when delay intervals are long enough for the bump in PPC to drift to the boundaries. In experiments, lapse trials as described by the reviewer occur due to multiple different reasons; for lapse that is independent of the stimuli, mechanisms such as attention have been thought to play a role, this however is not included in our model.

      What are the parameters for the distributions (skewed, bimodal, ...)?

      These parameters are reported in the legend of Fig.6, where the distributions appear.

      Bump with adaptation. Sorry for the draft-like comment. I don't think the existing studies are in the form you describe. I do think it might be useful to point readers to these studies. If an interested reader wishes to understand network dynamics in this and similar scenarios, it might be useful to have the pointers. The reference I had in mind was Romani, S., & Tsodyks, M. (2015). Short‐term plasticity based network model of place cells dynamics. Hippocampus, 25(1), 94-105.

      We thank the reviewer for the clarification, and we will include this reference in the Version of Record.


      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study about the mechanisms underlying our capacity to represent and hold recent events in our memory and how they are influenced by past experiences. A key aspect of the model put forward here is the presence of discrete jumps in neural activity with the posterior parietal region of the cortex. The strength of evidence is largely solid, with some weaknesses noted in the methodology. Both reviewers suggested ways in which this aspect of the model can to be tested further and resolve conflicts with previously published experimental results, in particular the study by Papadimitriou et al 2014 in Journal of Neurophysiology.

      We thank the editors for their assessment. As mentioned in the cover letter, we have addressed all the reviewers’ concerns and would like to request and update of the assessment to reflect the revisions we have made.

      Public Reviews:

      We thank both reviewers for their careful reading and feedback that helped clarify many aspects of the model. Below, we address their comments.

      Reviewer #1 (Public Review):

      This paper aims to explain recent experimental results that showed deactivating the PPC in rats reduced both the contraction bias and the recent history bias during working memory tasks. The authors propose a twocomponent attractor model, with a slow PPC area and a faster WM area (perhaps mPFC, but unspecified). Crucially, the PPC memory has slow adaptation that causes it to eventually decay and then suddenly jump to the value of the last stimulus. These discrete jumps lead to an effective sampling of the distribution of stimuli, as opposed to a gradual drift towards the mean that was proposed by other models. Because these jumps are single-trial events, and behavior on single events is binary, various statistical measures are proposed to support this model. To facilitate this comparison, the authors derive a simple probabilistic model that is consistent with both the mechanistic model and behavioral data from humans and rats. The authors show data consistent with model predictions: longer interstimulus intervals (ISIs) increase biases due to a longer effect over the WM, while longer intertrial intervals (ITIs) reduce biases. Finally, they perform new experiments using skewed or bimodal stimulus distributions, in which the new model better fits the data compared to Bayesian models.

      The mechanistic proposed model is simple and elegant, and it captures both biases that were previously observed in behavior, and how these are affected by the ISI and ITI (as explained above). Their findings help rethink whether our understanding of contraction bias is correct.

      On the other hand, the main proposal - discrete jumps in PPC - is only indirectly verified.

      We agree with the reviewer that the evidence for discrete jumps in PPC has been provided in behavioural results (short-term, n-back trial biases), and not from neural data. However, we believe electrophysiological investigations are out of the scope of the current manuscript and future works are needed to further verify the results.

      The model predicts a systematic change in bias with inter-trial-interval. Unless I missed it, this is not shown in the experimental data. Perhaps the self-paced nature of the experiments allows to test this?

      We thank the reviewer for this great suggestion.

      We had not previously looked at this in the data for the reason that in the simulations, the ITI is set to either 2.2, 6 or 11 seconds, whereas the experiment is self-paced. Therefore, any comparison with the simulation should be made carefully.

      However, after the reviewer’s suggestion, we did look at the change in the bias with the inter-trial interval, by dividing trials according to ITIs lower than 3 seconds (“short” ITI), and higher than 3 seconds (“long” ITI). This choice was motivated by the shape of the distribution of ITIs, which is bimodal, with a peak around 1 second, and another after 3 seconds (new Fig 8F). Hence, we chose 3 seconds as it seemed a natural division. However, 3 seconds also happens to be approximately the 75th percentile of the distribution, and this means that there is much more data in the “short” ITI than the “long” ITI set. In order to have sufficient data in the “long” ITI for clearer effects we used all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript, for succinctness). This larger dataset allows us to clearly see not only a decreasing contraction bias with increasing ITI (Fig 8G), but also a decreasing onetrial-back attractive bias with increasing ITI (Fig 8H). We have uploaded all the datasets as well as scripts used to analyze them to this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data.

      The data in some of the figures in the paper are hard to read. For instance, Figure 3B might be easier to understand if only the first 20 trials or so are shown with larger spacing. Likewise, Figure 5C contains many overlapping curves that are hard to make out.

      We have limited the dynamics in Fig 3B to the first 50 trials for better visibility. Likewise, as suggested, we report the standard error of the mean instead of the standard deviation in old Fig 5C (new Fig 6C) – this allows for the different curves to be better discernible.

      There is a gap between the values of tau_PPC and tau_WM. First - is this consistent with reports of slower timescales in PFC compared to other areas?

      Recent studies by Xiao-Jing Wang and colleagues (Refs. 1-3 below) suggest that may be the case. In Wang et al 2023, Ref 1 below), the authors use a generative model to study the concept of bifurcation in space in working memory, that is accompanied by an inverted-V shape of the time constants as a function of cortical hierarchy.

      Briefly, they propose a generative model of the cortex with modularity, incorporating repeats of a canonical local circuit connected via long-range connections. In particular, the authors define a hierarchy for each local circuit. At a critical point in this hierarchy axis, there is a phase transition from monostability to bistability in the firing rate. This means that a local circuit situated below the critical point will only display a low activity steady state, while those above the critical point additionally display a persistent activity steady state.

      The model predicts a critical slowing down of the neural fluctuations at the critical point, resulting in an inverted-V shape of the time constants as a function of the hierarchy. They test the predictions of their model – the bifurcation in space and that inverted-V-shaped time constants as a function of the hierarchy - on connectome-based models of the macaque and mouse cortex. Interestingly both datasets show similar behavior. In particular, during working memory, frontal areas (higher in the hierarchy, e.g. area 24c in macaques) has a smaller time constant relative to posterior parietal areas (lower in the hierarchy, like LIP or f7). We have now cited this new work.

      [1] https://www.biorxiv.org/content/10.1101/2023.06.04.543639v1

      [2] https://elifesciences.org/articles/72136

      [3] https://www.biorxiv.org/content/10.1101/2022.12.05.519094v3.abstract

      Second - is it important for the model, or is it mostly the adaptation timescale in PPC that matters?

      We have run simulations producing a phase diagram with tau_theta^P on the x-axis, tau^P on the y-axis, and in color, the fraction of trials in which the bump is in the vicinity of a target (Fig S2 F), before the network is presented with the second stimulus. This target can be the first stimulus s_1 (left), mean over stimuli (middle) and previous trial’s stimulus (right)). White point corresponds to parameters of the default network.

      In this phase diagram, the lowest value that tau_P takes is tau_WM=0.01. When tau_P=tau_WM, the bump is rarely in the vicinity of 1-trial-back stimulus, and we can see that tau_PPC should be greater than tau_WM in order for the model to yield 1-trial back effects. We conclude that it is indeed important for tau_PPC > tau_WM.

      We have included this in Fig S2 F of the manuscript.

      Regarding the relation to other models, the model by Hachen et al (Ref 45) also has two interacting memory systems. It could be useful to better state the connection, if it exists.

      The model proposed by Hachen et al is conceptually different in that one module stores the mean of the sensory stimulus; it could be related to a variant of our model where adaptation is turned off in the PPC network (Fig S2 A). However, the task they model is also different: subjects have to learn the location of a boundary according to which the stimulus is classified as ‘weak’ or ‘strong’, set by the experimenter. Hence, it is a task where learning is needed - this contrasts with the task we are modelling, where only working memory is required. How task demands reconfigure existing circuits via dynamics and/or learning to perform different computations is a fascinating area of research that is outside the scope of this work.

      Reviewer #2 (Public Review):

      Working memory is not error free. Behavioral reports of items held in working memory display several types of bias, including contraction bias and serial dependence. Recent work from Akrami and colleagues demonstrates that inactivating rodent PPC reduces both forms of bias, raising the possibility of a common cause.

      In the present study, Boboeva, Pezzotta, Clopath, and Akrami introduce circuit and descriptive variants of a model in which the contents of working memory can be replaced by previously remembered items. This volatility manifests as contraction bias and serial dependence in simulated behavior, parsimoniously explaining both sources of bias. The authors validate their model by showing that it can recapitulate previously published and novel behavioral results in rodents and neurotypical and atypical humans.

      Both the modeling and the experimental work is rigorous, providing compelling evidence that a model of working memory in which reports sometimes sample past experience can produce both contraction bias and serial dependence, and that this model is consistent with behavioral observations across rodents and humans in the parametric working memory (PWM) task.

      Evidence for the model advanced by the authors, however, remains incomplete. The model makes several bold predictions about behavior and neural activity, untested here, that either conflict with previous findings or have yet to be reported but are necessary to appropriately constrain the model.

      First, in the most general (descriptive) formulation of the Boboeva et al. model, on a fraction of trials items in working memory are replaced by items observed on previous trials. In delayed estimation paradigms, which allow a more direct behavioral readout of memory items on a trial-by-trial basis than the PWM task considered here, reports should therefore be locked to previous items on a fraction of trials rather than display a small but consistent bias towards previous items. However, the latter has been reported (e.g., in primate spatial working memory, Papadimitriou et al., J Neurophysiol 2014). The ready availability of delayed estimation datasets online (e.g., from Rademaker and colleagues, https://osf.io/jmkc9/) will facilitate in-depth investigation and reconciliation of this issue.

      As pointed out by the reviewer, in the PWM task that we are modelling here, the activity in the network is used to make a binary decision. However, it is possible to directly analyse the network activity before the onset of the second stimulus.

      In their manuscript, Papadimitriou et al. study a memory-guided saccade task in nonhuman primates and argue that the animals display a small but consistent bias towards previous items (Fig 2). In that figure, the authors compute the error as the difference between the saccade direction and target direction in each trial. They compute this error for all trials in which the preceding trial’s target direction is between 35° and 85° relative to the current trial (counterclockwise with respect to the current trial’s target). They discover that the residual error distribution is unimodal with a mode at 1.29° and a mean at 2.21° (positive, so towards the preceding target’s direction), from which they deduce a small but systematic bias towards previous trial targets.

      We have computed a similar measure for our network with default parameters (Table 1), by subtracting the location of the bump at the end of the delay interval (s_hat(t), ‘saccade’) from the initial location of the first stimulus in the current trial (s1(t) or the ‘target’). We have done this for all trials where s1(t)=0.2, and where s2(t-1) takes specific values. These distributions are characterized by two modes. The first corresponds to those trials where the bump is not displaced in WM (i.e. mean of zero). We can also see the appearance of a second mode at the location of s1(t) - s2(t-1), corresponding to the displacements towards the preceding trial’s stimulus described in the main text. If, instead, we limit the analysis to a small range of previous trials close to s1(t) (similar to Papadimitriou et al) then the distribution of residual errors will appear unimodal, as the two modes merge. Importantly, note that there is a large variability around the second mode, expressing a more complex dynamics in the network. As can be seen in Fig 3B, the location of the bump is not always slaved to the one in the PPC in a straightforward way -- due to the adaptation in the PPC, the global inhibition in the connectivity kernel, as well as interleaved design for various delay intervals, the WM bump can be displaced in nontrivial ways (see also Recommendation no 4), yielding the dispersion around the second peak. It remains to be seen whether such patterns can be observed in the data from previous works on continuous working memory recall (including Papadimitriou et al). However, to our knowledge, such detailed and full analysis of errors at the level of individual trials has not been done.

      In summary, this analysis shows that the type of dynamics in our network is not one of the two cases: 1) small and systematic bias in each and every trial or 2) large error that occurs only rarely; rather, the dispersion around both modes suggests that the dynamics in our model are a mixture of these two limit cases.

      We have also performed another typical analysis, reported in several continuous recall tasks (e.g. Jazayeri and Shadlen 2010) where contraction bias has been reported. We plot WM bump locations after the delay period for every trial (s_hat(t)), and their averages, against the nominal value of s1(t). We see that the mean WM location deviates from the identity line toward the mean values of s1(t), again showing contraction bias as an average effect, while individual trials follow the dynamics explained above.

      We have now included a new section on continuous recall (Sect. 1.5 and a new figure (Fig 5)), which details the two above-mentioned analyses. The analysis of freely available datasets of delayed estimation tasks, unfortunately, is out of the scope of this work, and we leave such analyses to future studies.

      Second, the bulk of the modeling efforts presented here are devoted to a circuit-level description of how putative posterior parietal cortex (PPC) and working-memory (WM) related networks may interact to produce such volatility and biases in memory. This effort is extremely useful because it allows the model to be constrained by neural observations and manipulations in addition to behavior, and the authors begin this line of inquiry here (by showing that the circuit model can account for effects of optogenetic inactivation of rodent PPC).

      Further experiments, particularly electrophysiology in PPC and WM-related areas, will allow further validation of the circuit model. For example, the model makes the strong prediction that WM-related activity should display 'jumps' to states reflecting previously presented items on some trials. This hypothesis is readily testable using modern high-density recording techniques and single-trial analyses.

      As mentioned in response to the previous comment, we note again that in the WM network, the bump ‘displacement’ has a complex dynamics -- the examples we have provided in Fig 1A and 2B mainly show the cases in which jumps occur in the WM network, but this is not the only type of dynamics we observe in the model. We do have instances in which the continuity of the model causes drift across values, and we have now replaced the right panel in Fig 2B with one such instance, in order to emphasize that this displacement towards the previous trial’s stimulus (s2(t-1)) can occur in various ways. For a more thorough analysis, we have analyzed the distance between s1(t) and the position of the bump in the WM network at the end of the delay period s_hat(t), conditioned on specific values of s1(t) and s2(t-1) (Fig 5C). In this figure, we can see the appearance of two modes: one centered around 0, corresponding to the correct trials where the stimulus is kept in WM (s1(t) = s_hat(t)), and another mode centered around s2(t-1), the location of the second stimulus of the previous trial, where the bump is displaced. Note, as we explain in Sect. 1.5, the large dispersion around this second mode, which suggests that the bump is not always displaced to that specific location and may undergo drift.

      We agree with the reviewer that future electrophysiological experiments (or analysis of existing datasets) are necessary for validation of these results.

      Finally, while there has been a refreshing movement away from an overreliance on p-values in recent years (e.g., Amrhein et al., PeerJ 2017), hypothesis testing, when used appropriately, provides the reader with useful information about the amount of variability in experimental datasets. While the excellent visualizations and apparently strong effect sizes in the paper mitigate the need for p-values to an extent, the paucity of statistical analysis does impede interpretation of a number of panels in the paper (e.g., the results for the negatively skewed distribution in 5D, the reliability of the attractive effects in 6a/b for 2- and 3- trials back).

      We share the reviewer’s criticism towards the misuse of p-values – in order for a clearer interpretation of old Fig 5D (new Fig 7E), we have looked at the 2 and 3 trials-back biases by using all of our dataset – the negatively skewed, and also two bimodal distributions (of which only one was shown in the manuscript). This larger dataset of 43 subjects (approximately 17,200 trials) allows us to clearly see the 2 and 3 trial back attractive biases, and the effect that the delay interval exerts on them.

      Reviewer #1 (Recommendations For The Authors):

      Fig 5 A&C - It might be beneficial to separate the distribution of stimuli from the performance. It is hard to read the details of the performance, especially with error bars.

      Following the next recommendation, we have exchanged the standard deviation to standard errors of the mean, hopefully this allows to better read the performance.

      Fig 5C. The number of participants should be written. Perhaps standard errors instead of standard deviation?

      We have now changed the standard deviation to standard errors of the mean and included the number of participants in the figure.

      Fig 2B - hard to understand, because there is no marking of where "perfect" memory of s1 would be.

      The perfect memory of s1 is shown in the upper panel as black bars.

      Fig 3B. dot number 9 (blue, around 0.7) - why is WM higher than stimulus?

      This trial has a long ISI (blue means 10s). During this delay, the bump in the PPC, under the influence of adaptation, drifts far below the first stimulus (note that the previous trial also had its first stimulus in the same location, as a result of which the adaptative thresholds have built up significantly, causing the bump to move away from that location). During this delay period, neurons in the WM network receive inputs from the PPC network: if this input is strong enough, it can disrupt an existing bump; if not, this input still exerts inhibiting influence on the existing bump via the global inhibition in the connectivity. This can cause an existing bump to slowly drift in a random direction, and finally dissipate. Note that the lines in Fig 2B represent the neuron with the maximal activity, this activity may be a stable bump, or an unstable bump that may soon dissipate.

      Other examples with similar dynamics include trials 43 and 54.

      L167 fewer -> smaller

      We have now corrected this.

      Fig 3C - bump can also be in between. Is this binned?

      We have not binned the length of the attractor; to produce that figure, we check whether the position of the neuron with the maximal firing rate is within a distance of ±5% of the length of the whole line attractor from the target location.

      L221 Lapse at the boundary of attractor. This seems very different from behavior. Specifically, if it is in the boundaries, it should be stimulus dependent.

      Very sorry, we did not manage to understand the reviewer’s comment.

      L236 are -> is

      We have now corrected this.

      Fig S4 - should be mostly in main text.

      Part of this figure is in Fig 6A, but given the amount of detail, we think Supplementary Material is better suited.

      L253-254. Differences across all distributions - very minor except the bimodal case.

      That is correct, this is why we conducted the experiment with the bimodal distribution, to better differentiate the predictions of the two models.

      L273 extra comma after "This probability"

      We have now corrected this.

      ITI was only introduced in section 1.5.2. Perhaps worth mentioning the default 5s value earlier in the paper.

      We have now mentioned this in line 97-98.

      Fig S6B title: perhaps "previous stimuli"?

      We have now corrected this.

      L364 i"n A given trial"

      Equation 2 - no decay term?

      Thank you for pointing out this error, we have now corrected this.

      Equation 5,6 are j^W and j^P indices of neurons in those populations?

      Yes, j^W indexes neurons in the WM network, and j^P those in the PPC. We have now added this in the text for clarity.

      Bump with adaptation - other REFs? Sandro?

      We are aware of continuous bump attractors implementing short-term synaptic plasticity in various studies (including by Sandro Romani), but not in the form we have described. May the reviewer kindly point us towards the relevant literature.

      Free boundary - what is the connectivity for neurons 1 and N? Is it weaker than others? Is the integral still 1? Does this induce some bias on the extreme values?

      The connectivity of the network is all-to-all. However, as expressed by Eq. (3), the distance-dependent contribution to the weights, K, decreases exponentially as we move from neuron 1 onwards, and from neuron N down. The sum (or integral, in the large-N limit) of the K_ij for j on either side of neuron i is unity only when i is sufficiently far from 1 or N. We have rephrased the paragraph starting in line 516 to make this clearer.

      The presence of a boundary could introduce a bias in theory, but in practice, it affects the dynamics only when the bump drifts sufficiently close to it. The smallest stimulus in the simulated task has amplitude 0.2, with width 0.05, which implies the activation of 50 neurons on either side of neuron 400. If one compares this with the width of the kernel K in stimulus space (d_0 = 0.02), which spans ~10 neurons, we can see that the bump of activity stays mostly far from the boundary. It is possible, though it is observed rarely, when several consecutive long delay intervals happen to occur, that the bump in PPC drifts beyond the location corresponding to either the minimum or maximum stimulus.

      Code availability?

      Code simulating the dynamics of the network as well as analysing the resulting data can be found in the following repository: https://github.com/vboboeva/ParametricWorkingMemory Code used to analyse human behavioural data and fit them with our statistical model can be found in this repository: https://github.com/vboboeva/ParametricWorkingMemory_Data Code used to run the auditory PWM experiments with human subjects (adapted from Akrami et al 2018) can be found here: https://github.com/vboboeva/Auditory_PWM_human

      L547 stimuli

      We have now corrected this.

      Equation 14 uses both stimuli. Was this the same for the rest of analysis in the paper (first figures for instance)?

      This equation was used for all GLM analyses (Figs 9 and S6).

      D0 is very small (0.02). Does this mean that activity is essentially discrete in the model? Fig 1A & 2B - the two examples of model activity suggest this is the case. In other words - are there cases where the continuity of the model causes drift across values? Can you show an example (similar to Fig 1A)?

      Since this point has been raised beforehand, we refer to the first comment, Fig 2B and Sect. 1.5 for the response to this question.

      Table 1 - inter trial interval 6. Text says 5

      We have now corrected this in the text.

      Reviewer #2 (Recommendations For The Authors):

      In addition to my review above, I just have a few minor comments:

      • If I understood correctly, the squares inside the purple rectangle in Figure 1B are meant to show a gradation from red to blue, but this was hard to make out in the pdf.

      Actually the squares are all on one side or the other of the diagonal, therefore they do not have any gradation.

      • line 164: "The resulting dynamics... [are]?"

      We have corrected this in the text.

      • Fig 7B legend: "The network performance is on average worse for longer ITIs" – correct?

      This was a mistake, we have replaced worse with better.

      Other comments

      We realized that the colorbar reported the incorrect fraction classified in Figs 1B, 2C, 7B (new 8B), S2C, S3A, S5B. We have corrected this in the new version of the manuscript.

      We also found a minor mistake in one of our analysis codes that computed the n-trial back biases for different delay intervals. This did not change our results, actually made the effects clearer. The figures concerned are Fig 3F and new Fig 7E.

    1. Author Response

      eLife assessment

      This study presents important findings for understanding cortical processing of color, binocular disparity, and naturalistic textures in the human visual cortex at the spatial scale of cortical layers and columns using state-of-the-art high-resolution fMRI methods at ultra-high magnetic field strength (7 T). Solid evidence supports an interesting layer-specific informational connectivity analysis to infer information flow across early visual areas for processing disparity and color signals. While the question of how the modularity of representation relates to cortical hierarchical processing is interesting and fundamental, the findings that texture does not map onto previously established columnar architecture in V2 is suggestive but would benefit from further controls. The successful application of high-resolution fMRI methods to study the functional organization along cortical columns and layers is relevant to a broad readership interested in general neuroscience.

      Thank you for your assessment of our manuscript "Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area ". We have carefully considered the public reviews and have outlined our plans of revision by providing point-by-point responses to the reviewers’ comments.

      Reviewer #1 (Public Review):

      To support the finding that texture is not represented in a modular fashion, additional possibilities must be considered. These include the effectiveness and specificity of the texture stimulus and control stimuli, (b) further analysis of possible structure in images that may have been missed, and (c) limitations of imaging resolution.

      Thank you for your suggestions. We will provide evidence and additional analyses to show that there was indeed a large difference in high-order statistical information between the texture and control stimuli in our study, and thus the contrast between the two stimuli should be effective in localizing the processing of high-order texture information. Compared to the previous studies, another reason for the weaker texture selectivity in the current study could be the smaller number of images used and the slower rate of image presentation. Although our fMRI result at 1-mm isotropic resolution did not show a modular processing of naturalistic texture in CO-stripe columns, this does not exclude the possibility that smaller modules exist beyond the current fMRI resolution. We will discuss these limitations in the revised manuscript.

      More in-depth analysis of subject data is needed. The apparent structure in the texture images in peripheral fields of some subjects calls for more detailed analysis. e.g. Relationship to eccentricity and the need for a 'modularity index' to quantify the degree of modularity. A possible relationship to eccentricity should also be considered.

      We will perform further analysis based on your suggestion, especially regarding the relationship between eccentricity and modulation index. We will discuss this possibility in the revised manuscript.

      Given what is known as a modular organization in V4 and V3 (e.g. for color, orientation, curvature), did images reveal these organizations? If so, connectivity analysis would be improved based on such ROIs. This would further strengthen the hierarchical scheme.

      Thank you for your suggestion. The informational connectivity analyses used highly informative voxels by feature selection, which may already represent information from the modular organizations in these higher visual areas. We will examine the functional maps for possible modular organizations.

      Reviewer #2 (Public Review):

      In lines 162-163, it is stated that no clear columnar organization exists for naturalistic texture processing in V2. In my opinion, this should be rephrased. As far as I understand, Figure 2B refers to the analysis used to support the conclusion. The left and middle bar plots only show a circular analysis since ROIs were based on the color and disparity contrast used to define thin and thick stripes. The interesting graph is the right plot, which shows no statistically significant overlap of texture processing with thin, thick, and pale stripe ROIs. It should be pointed out that this analysis does not dismiss a columnar organization per se but instead only supports the conclusion of no coincidence with the CO-stripe architecture.

      Reviewer #1 also raised a similar concern. We agree that there may be a smaller functional module of textures in area V2 at a finer spatial scale than our fMRI resolution. We will rephrase our conclusions to be more precise.

      In Figure 3, cortical depth-dependent analyses are presented for color, disparity, and texture processing. I acknowledge that the authors took care of venous effects by excluding outlier voxels. However, the GE-BOLD signal at high magnetic fields is still biased to extravascular contributions from around larger veins. Therefore, the highest color selectivity in superficial layers might also result from the bias to draining veins and might not be of neuronal origin. Furthermore, it is interesting that cortical profiles with the highest selectivity in superficial layers show overall higher selectivity across cortical depth. Could the missing increase toward the pial surface in other profiles result from the ROI definition or overall smaller signal changes (effect size) of selected voxels? At least, a more careful interpretation and discussion would be helpful for the reader.

      We will discuss the limitations of cortical depth-dependent analysis using GE-BOLD fMRI. All our stimuli produced robust activations in these visual areas, thus the flat laminar profiles of modulatory indices are unlikely to be caused by smaller signal changes. We will show the original BOLD responses in addition to the modulation index.

      I was slightly surprised that no retinotopy data was acquired. The ROI definition in the manuscript was based on a retinotopy atlas plus manual stripe segmentation of single columns. Both steps have disadvantages because they neglect individual differences and are based on subjective assessment. A few points might be worth discussing: (1) In lines 467-468, the authors state that V2 was defined based on the extent of stripes. This classical definition of area V2 was questioned by a recent publication (Nasr et al., 2016, J Neurosci, 36, 1841-1857), which showed that stripes might extend into V3. Could this have been a problem in the present analysis, e.g., in the connectivity analysis? (2) The manual segmentation depends on the chosen threshold value, which is inevitably arbitrary. Which value was used?

      The retinotopic atlas on the standard surface is usually quite accurate in defining the boundaries of early visual areas. Although some stripes may extend into V3, these patterns should be more robust in V2. In our analysis, we selected only those with clear organizations within the retinotopic atlas. Thus, the signal contribution from V3 is likely to be small and would not affect the pattern of results. In addition, the results between V3 and V2 could be very different, we will compare the pattern of results from these areas in additional analyses. The threshold for segmentation is abs(T)>2, we will clarify this in the method.

      The use of 1-mm isotropic voxels is relatively coarse for cortical depth-dependent analyses, especially in the early visual cortex, which is highly convoluted and has a small cortical thickness. For example, most layer-fMRI studies use a voxel size of around isotropic 0.8 mm, which has half the voxel volume of 1 mm isotropic voxels. With increasing voxel volume, partial volume effects become more pronounced. For example, partial volume with CSF might confound the analysis by introducing pulsatility effects.

      We agree that the 1-mm isotropic voxel is much smaller in volume than the 0.8-mm isotropic voxel, but the resolution along the cortical depth is not a large difference. In addition to our study, there are also other studies showing that fMRI at 1-mm isotropic resolution is capable of resolving cortical depth-dependent signals. Also, our fMRI slices were oriented perpendicular to the calcarine sulcus, the higher in-plane resolution will also benefit in resolving depth-dependent signals. We will discuss these issues about fMRI resolution in the revised manuscript.

      The SVM analysis included a feature selection step stated in lines 531-533. Although this step is reasonable for the training of a machine learning classifier, it would be interesting to know if the authors think this step could have reintroduced some bias to remaining draining vein contributions.

      Several precautions have been taken in the ROI definition to reduce the influence of large draining veins. The same number of voxels were selected from each cortical depth for the SVM analysis, thus there was no bias from the superficial layers susceptible to draining veins. Also, since both feedforward and feedback connections involved the superficial voxels, the remaining influence of large draining veins should be comparable between the two connections.

      Reviewer #3 (Public Review):

      The authors tend to overclaim their results.

      Thank you for your comments. We will add more control analyses to strengthen our findings, and have appropriate discussion of results.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary: The authors study the appearance of oscillations in motifs of linear threshold systems, coupled in specific topologies. They derive analytical conditions for the appearance of oscillations, in the context of excitatory and inhibitory links. They also emphasize the higher importance of the topology, compared to the strength of the links. Finally, the results are confirmed with WC oscillators, which are also linear. The findings are to some extent confirmed with spiking neurons, though here results are less clear, and they are not even mentioned in the Discussion.

      Overall, the results are sound from a theoretical perspective, but I still find it hard to believe that they are of significant relevance for biological networks, or in particular for the oscillations of BG-thalamus-cortex loop in PD. I find motifs in general to be too simplistic for multiscale and generally large networks as is the case in the brain. Moreover, the division of regions is more or less arbitrary by definition, and having such a strong dependence on an odd/even number of inhibitory links is far from reality. Another limitation is the fact that the cortex is considered a single node. Similarly, decomposing even such a coarse network in all possible (238 in this case) motifs doesn't seem of much relevance, when I assume that the emergence of pathological rhythms is more of an emergent phenomenon.

      Strengths:

      From the point of view of nonlinear dynamics, the results are solid, and the intuition behind the proofs of the theorems is well explained.

      Weaknesses:

      As stated in the summary, I find the work to be too theoretical without a real application in biological systems or the brain, where the networks are generally very large.

      We respectfully disagree with the reviewer here. The second half of the paper is all about explaining a biological problem. We have shown the validity of our theoretical results (which indeed were obtained in idealized settings) to explain emergence of oscillations in the basal ganglia. We clearly show that our theoretical results hold both in a rate-based model and in a network model with spiking neurons. The model with spiking neurons is one of the most complete network models of the basal ganglia available in the literature. So we emphasize that we have provided a clear application of our results for the brain networks.

      It is not the problem in the simplicity of the model or of the topology, it is often the case that the phenomena are explained by very reduced systems, but the problem is that the applicability of the finding cannot be extended. E.g. the Kuramoto model uses all-to-all coupling, or similar with QIF neurons which also need to follow a Lorentzian distribution in order to derive a mean field.

      We do not understand this comment. There is no need to extend these results to a network of Kuramoto models because in that setting we already assume that individual nodes/populations are oscillating – there is no problem of emergence of oscillations. Here, we are specifically considering a setting in which nodes themselves are not oscillators. We agree that we, at this point, have no insight into how to extend our analytical proof to a situation where individual nodes are spiking.

      But in those cases, relaxing the strict conditions that were necessary for the derivations, still conserves the main findings of the analysis, which I don't see being the case here. The odd/even number rule is too strict, and talking about a fixed and definite number of cycles in the actual brain seems too simplistic.

      We have clearly relaxed most of our assumptions when we considered a network model of basal ganglia in which each subpopulation is a collection of spiking neurons. And as we have shown our results still hold (see Figure 5). Again our model is about oscillations in a network of networks i.e. network of brain regions.

      At meso-scale it is not unreasonable to find such cycles and even-odd number rules. We have shown this for the case of a cortico-basal ganglia model. We can also extend this to cortico-thalamic networks and so on. We have already emphasized this point in the introduction to avoid any confusion: see lines 62-66 – “We prove this conjecture for the threshold-linear network (TLN) model without delays which can closely capture the dynamics of neural populations. Therefore, it is implicit that our results do not hold at the neuronal level but rather at the level of neuron populations/brain regions e.g. the basal ganglia (BG) network which can be described a network of different nuclei.” and lines 69-70 – ’Within the framework of the odd-cycle theory, distinct nuclei are associated with either excitatory or inhibitory nodes.’

      Being linear is another strong assumption, and it is not clear how much of the results are preserved for spiking neurons, even though there is such an analysis, or maybe for other nonlinear types of neuronal masses.

      Clearly our results hold in a network of spiking neurons (see Figure 5). It is of course interesting to ask whether our results hold in a network where individual spiking neurons have more complex spiking behavior like AdEx or Quadratic IF. But that kind of analysis deserves a full manuscript on its own.

      Delays are also mentioned, and their impact on the oscillatory networks is as expected: it reduces the amplitude, but there is no link to the literature, where this is an established phenomenon during synchronization. Finally, the authors should also discuss the time-delays as a known phenomenon to cause or amplify oscillations at different frequencies in a network of coupled oscillators, e.g Petkoski & Jirsa Network Neuroscience 2022, Tewarie et al. NeuroImage 2019, Davis et al. Nat Commun 2021.

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Public Review):

      Summary:

      The authors present here a mathematical and computational study of the topological/graph theory requirements to obtain sustained oscillations in neural network models. A first approach mathematically demonstrates that a given network of interconnected neural populations (understood in the sense of dynamical systems) requires an odd number of inhibitory populations to sustain oscillations. The authors extend this result via numerical simulations of (i) a simplified set of Wilson-Cowan networks, (ii) a simplified circuit of the cortico-basal ganglia network, and (iii) a more complex, spike-based neural network of basal ganglia network, which provides insight on experimental findings regarding abnormal synchrony levels in Parkinson's Disease (PD).

      Strengths:

      The work elegantly and effectively combines solid mathematical proof with careful numerical simulations at different levels of description, which is uncommon and provides additional layers of confidence to the study. Furthermore, the authors included detailed sections to provide intuition about the mathematical proof, which will be helpful for readers less inclined to the perusal of mathematical derivations. Its insightful and well-informed connection with a practical neuroscience problem, the presence of strong beta rhythms in PD, elevates the potential influence of the study and provides testable predictions.

      Weaknesses:

      In its current form, the study lacks a more careful consideration of the role of delays in the emergence of oscillations. Although they are addressed at certain points during the second part of the study, there are sections in which this could have been done more carefully, perhaps with additional simulations to solidify the authors' claims. Furthermore, there are several results reported in the main figures which are not explained in the main text. From what I can infer, these are interesting and relevant results and should be covered. Finally, the text would significantly benefit from a revision of the grammar, to improve the general readability at certain sections. I consider that all these issues are solvable and this would make the study more complete.

      This point has been made by the first reviewer as well. So we repeat our answer:

      This is indeed a weakness of our model. But as the reviewer already knows, dynamical systems with delays are very difficult to analyze analytically. We have mentioned this in the limitations of the model and the analysis. In our simulations we have considered delays and when the delays are within reasonable limits our results hold.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in my comments above, I think that the work is already quite solid and relevant but would significantly improve if some issues were addressed:

      We would like to thank the reviewer for valuable comments and constructive feedback which has helped us greatly improve the manuscript.

      1) While the authors acknowledge early on the limitations of this study in terms of not considering plasticity or neuron biophysics (line 72), I think that the absence of propagation delays should be explicitly included here. This absence leads to inaccuracies --for example, the sentence "Consider a small network of two nodes. If we connect them mutually with excitatory synapses, intuitively we can say that the two-population network will not oscillate" (line 74) is only correct if the delays (or signal latencies) are zero. With a proper delay, two excitatory neurons can engage in oscillations with a period given by two times the value of the delay.

      A similar situation happens for inhibitory neurons, where the winner-take-all dynamics described in line 77 is only valid for zero delay. It is known that a homogeneous population of inhibitory spiking neurons with delayed synapses can lead to fast oscillations (Brunel and Hakim 1999), something which is also valid for the equivalent inhibitory single node with delayed self-inhibition. Indeed, a circuit of two inhibitory populations with delayed self- and cross-inhibition can generate oscillations, contradicting the main conclusion of the odd number of inhibitory nodes needed for oscillations.

      Because of these considerations, I think the authors should be more careful when explaining the effects of delays, and state that their main results on the link between oscillations and having an odd number of inhibitory nodes are not valid when delays are considered. They could modify the sentences in lines 72-77 above and include a supplementary figure right after their simulation study for the Wilson-Cowan (to explain the examples above, and also the one in the next point).

      The reviewer has brought up a critical point regarding the impact of propagation delays, and we completely concur with your assessment. In our study, we indeed did not comprehensively consider the effects of propagation delays in cycles with even inhibition, which may introduce inaccuracies in our conclusions.

      We note that in the Wilson-Cowan model with delays, certain cycles with even number of inhibitory links can also generate oscillations with a period equal to twice the delay value. However, in our hand such oscillations were transient and dissipated quickly.

      To better reflect the limitations of our research, we have made significant modifications to the relevant sections in our manuscript.

      In line 100, we've added text to explicitly state that we considered delays in our simulations and acknowledged their potential to generate oscillations ("Given the importance of delays in biological network such as BG, we will consider them in the simulations.").

      In line 102, we've clarified that our conclusions are based on a scenario without delays ("In this following, we give simple examples of the possibility of oscillation (or not) based on the connectivity characteristics of small networks without delays. Let us start with a network of two nodes.").

      Additionally, in line 230, we've included a reference figure supplement 3-2 to highlight the outcomes in terms of oscillations ("EII network only resulted in transient oscillations (Fig. 3, figure supplement 3-1, figure supplement 3-2)").

      In lines 234-237, we've added a sentence discussing the role of synaptic delays in generating transient oscillations in cycles with an even number of inhibitory components, referring to figure supplement 3-2 ("In networks with even number of inhibitory connections (e.g. EII, EEE, II), synaptic delays are the sole mechanism for initiating oscillations, however, unless delays are precisely tuned such oscillations will remain transient (see Supplementary figure supplement 3-2)").

      Moreover, in response to the reviewer’s suggestion, we have included an additional figure supplement 3-2 to illustrate how cycles with even inhibitory components generate transient oscillations when propagation delays are taken into account. This figure provides a visual representation of the phenomenon and enhances the clarity of our findings.

      2) In Figure 3, two motifs (III and EII) are explored to demonstrate the validity of the results across different parameters. Delays don't seem to play a disruptive role in these two cases, but the results seem to be different for other motifs not considered here. Aside from the examples mentioned above, I can imagine how a motif of EEE (i.e. a circle of three excitatory Wilson-Cowan neurons) would display oscillations when delays are included, as the activation would 'circulate' along the ring. However, this EEE motif has an even number of inhibitory units (or perhaps zero is considered an exception, but if so it's not mentioned in the text).

      We thank the reviewer for this observation regarding Figure 3. Indeed, the impact of delays may differ for other motifs not considered in our study. For example, as the reviewer has correctly anticipated, a motif of EEE (a circular network of three excitatory Wilson-Cowan neurons) would exhibit oscillations when delays are included, as activation could 'circulate' along the ring.

      To address this concern,we have performed new simulations (added as a new supplementary figure supplement 3-2). As illustrated in figure supplement 3-2, oscillations may indeed arise in the EEE motif when delays are introduced. However, these oscillations will eventually dissipate – at least with our settings.

      3) Figures 1b, 1c, and 4e display interesting results, but these are absent from the main text. Please include the description of those results. Particularly the case of Figs 1b and 1c seems very relevant to understanding the main results in the context of more complex networks, in which multiple loops with odd and even numbers of inhibitory units would coexist in the network. Does the number of odd-inhibitory loops in a given network affect somehow the power or frequency of the resulting network oscillations? It would be interesting to show this.

      Indeed, we did not explain Figs 1b,c and 4e properly. Now we have revised the manuscript in the following way to incorporate these results:

      In lines 124-128, we added the following text to introduce the concept: "We can generalize these results to cycles of any size, categorizing them into two types based on the count of their inhibitory connections in one direction (referred to as the odd cycle rule, as illustrated in Fig. 1b). More complex networks can also be decomposed into cycles of size 2…N (where N is number of nodes), and predict the ability of the network to oscillate (as shown in Fig. 1c)" In line 298, we included the following text to highlight the relevant result: "Next, we removed the STN output (equivalent to inhibition of STN), the Proto-D2-Arky subnetwork generated oscillations for weak positive inputs to the D2-SPNs (Fig.4e, bottom)."

      How the number of odd/even loops affect the frequency is an interesting question. Intuitively there should be a relation between the two. However, a complete treatment of this question is beyond the scope of the manuscript but we think that in a network with identical node properties, more odd cycles should imply higher oscillation power.

      4) The cortico-BG model is focused on how inactivating STN could suppress (or not) beta oscillations, following experimental observations. However, besides mechanisms for extinguishing oscillations, it would be interesting to see if the progressive emergence of pathological beta oscillations could be explained by the modification of some of the nodes in the model (for example, explicitly mimicking the loss of dopaminergic neurons in the substantia nigra). This could be a very interesting additional figure in the main text.

      This is an interesting suggestion. Something similar has been already done – e.g. Kumar et al. (2010) showed that progressive increase of inhibition of GPe can lead to oscillations. Similarly Holgado et al. (2008) showed how progressive change in the mutual connectivity between STN and GPe can cause oscillations. More recently, Ortone et al. (PloS Comp. Biol 2023) and Azizpour et al. (2023 Bioarxiv) have also shown the effect of progressive change in individual node properties on oscillations in basal ganglia using numerical simulations. Our work in a way provides the theoretical backing to their work. Therefore, we think it is not necessary to again show these results in our model. Instead we have cited these papers. Lines 392-396

      5) I observed some grammatical inconsistencies in the text, some of them are indicated below. I would suggest carefully going through the text to correct those issues or seeking help with editing.

      -line 32 "...which can closely capture the neural population dynamics". Which population dynamics? Do the authors refer to general neural dynamics?

      -line 33 "long term behavior" -> long-term behavior

      -line 68 "given the ionic channel composition" -> "given its ionic channel composition"

      We apologize for the grammatical inconsistencies in our manuscript. We have made the necessary corrections to improve the clarity and accuracy of our text.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript is useful for analytically showing that a cyclic network of threshold-linear neural populations can only oscillate if it has an odd number of inhibitory nodes with strong enough connections. Establishing this result, which holds under rather narrow assumptions, relies on standard tools from dynamical system theory. I find the strength of support for this result to be incomplete for the reasons detailed below:

      Although the mathematical arguments used appear to be correct, the manuscript lacks in rigor and clarity. For instance, the main result presented in theorem 2 is stated in a very unclear fashion: aside from the oddity of the number of inhibitory nodes, there are two conditions to check, which determines four cases. This can be explained in a much more straightforward way without introducing four relations in equations 4-7.

      We acknowledge the reviewer’s concern regarding the presentation of the main result in Theorem 2.

      We would like to emphasize that the introduction of four relations in equations 4-7 was intended to provide a detailed and transparent exposition of the conditions for the main result. While we understand that this approach may appear less straightforward, it allows for a more comprehensive understanding of the underlying logic and the multiple factors influencing the outcomes.

      However, we are open to suggestions for more concise and clear ways to express these conditions if the reviewer has specific recommendations or if there are alternative approaches that the reviewer believes would be more effective in conveying the information.

      Moreover, equation 3 in that same theorem is clearly wrong.

      We sincerely apologize for the typographical error in equation 3 within the same theorem. We thank the reviewer for noticing this. We have revised the text to rectify this mistake. The equation has now been corrected to ensure its accuracy.

      The proof of theorem 2 relies on standard linear algebra and can be improved as well: there are typos, approximations, and missing words (see line 664). The rigor of the exposition is also unsatisfactory. For instance, the proof of Lemma 1 ends with the sentence: "Similarly as before, the convergence of the dynamics driven by the left and right terms ends the proof". I don't know what this means.

      We thank the reviewer for the comments and suggestions. We have made the necessary adjustments to enhance the rigor and clarity of our mathematical reasoning in the revised manuscript.

      In line 644, we have provided clarification for the sentence you found unclear. The revised version now offers a more precise explanation that should help in understanding the proof.

      At the same time, the intuitive arguments presented in the main text are vague at best and do not really help grasping the possible generalizability of the results. For instance, I do not understand the message of panel B in Figure 2 and there seems to be no explanation about it in the main text.

      The main purpose of Figure 2B is to offer a visual representation of the concept and to serve as an aid for readers who may prefer a graphical illustration over extensive equations. While we understand that the figure may not provide a complete explanation on its own, it is intended to complement the text and mathematical content presented in the main text. In the revised version we have added the explanation of Figure 2B.

      Aside from the analytical result, most of the paper consists in simulating networks with distinct inhibitory cyclic structure to validate the theoretical argument. I do not find this approach particularly convincing due to the qualitative nature of the numerical results presented. There is little quantitative analysis of the network structure in relation to the emergence of oscillations. It is also hard to judge whether the examples discussed are cherry picked or truly representative of a large class of dynamics.

      The reviewer has a valid concern about numerical simulations and qualitative nature of the results. We would like to provide some perspective on our approach.

      In our paper, the primary focus is on the mathematical proof, which rigorously establishes the existence of our results. However, we understand that numerical simulations are valuable for illustrating the applicability of the theoretical framework and providing insights into the practical implications.

      If we get into the quantitative description of all the results, the manuscript will become prohibitively long. We acknowledge that there is a balance to be struck between theory and numerical examples in a research paper. We believe that, in conjunction with the mathematical proof, the numerical simulations serve the purpose of illustrating the existence of our results in specific examples. While we cannot provide an exhaustive exploration of all possible network structures, we have chosen representative cases to demonstrate the applicability of our findings. Some of these are already provided in figure supplements S3-1 and S3-3. In the absence of specific suggestions from the reviewer we would like to leave it as is.

      Moreover, the authors apply their cycle analysis to real-world networks by considering cycles of inhibitory nodes independently, whereas the same nodes can belong to several cycles. I find it hard to believe that considering these cycles independently should be enough to make predictions about the emergence of oscillations, as these cycles must interact with one another via shared nodes. I do not understand the color coding used to mark distinct cycles in supplementary figures. There is also not enough information to understand figures in the main text. For instance, I do not understand what the grids are representing in panel B, Figure 4.

      We have clarified the color coding and added more information to understand the figures. We appreciate the reviewer’s concern about our application of cycle analysis to real-world networks and the clarity of our figures. It is not a matter of belief – we have provided a mathematical proof and complemented that with illustrative examples from real-world networks i.e. cortico-basal ganglia network with both rate-based and spiking neurons. Clearly our results hold.

      Regarding the color coding in supplementary figures, we have revised the color scheme to make it more intuitive and informative in caption of figure 4: we use different colors to mark potential oscillators in each motif in BG, and each color means an oscillator from panel a. For more details, see figure supplements 4-1–4-6. The colors now represent distinct cycles more clearly, helping readers better interpret the figures.

    1. Reviewer #1 (Public Review):

      Summary & Assessment:

      The catalytic core of the eukaryotic decapping complex consists of the decapping enzyme DCP2 and its key activator DCP1. In humans, there are two paralogs of DCP1, DCP1a, and DCP1b, that are known to interact with DCP2 and recruit additional cofactors or coactivators to the decapping complex; however, the mechanisms by which DCP1 activates decapping and the specific roles of DCP1a versus DCP1b, remain poorly defined. In this manuscript, the authors used CRISPR/Cas9-generated DCP1a/b knockout cells to begin to unravel some of the differential roles of human DCP1a and DCP1b in mRNA decapping, gene regulation, and cellular metabolism. While this manuscript presents some new and interesting observations on human DCP1 (e.g. human DCP1a/b KO cells are viable and can be used to investigate DCP1 function; only the EVH1 domain, and not its disordered C-terminal region which recruits many decapping cofactors, is apparently required for efficient decapping in cells; DCP1a and b target different subsets of mRNAs for decay and may regulate different aspects of metabolism), there are several major issues that undercut some of the main conclusions of the paper, and some key claims that are incompletely or inconsistently supported by the presented data.

      Strengths & well-supported claims:

      • Through in vivo tethering assays in CRISPR/Cas9-generated DCP1a/b knockout cells, the authors show that DCP1 depletion leads to significant defects in decapping and the accumulation of capped, deadenylated mRNA decay intermediates.

      • DCP1 truncation experiments reveal that only the EVH1 domain of DCP1 is necessary to rescue decapping defects in DCP1a/b KO cells.

      • RNA and protein immunoprecipitation experiments suggest that DCP1 acts as a scaffold to help recruit multiple decapping cofactors to the decapping complex (e.g. EDC3, DDX6, PATL1 PNRC1, and PNRC2), but that none of these cofactors are essential for DCP2-mediated decapping in cells.

      • The authors investigated the differential roles of DCP1a and DCP1b in gene regulation through transcriptomic and metabolomic analysis and found that these DCP1 paralogs target different mRNA transcripts for decapping and have different roles in cellular metabolism and their apparent links to human cancers. (Although I will note that I can't comment on the experimental details and/or rigor of the transcriptomic and metabolomic analyses, as these are outside my expertise.)

      Weaknesses & incompletely supported claims:

      1) A central mechanistic claim of the paper is that "DCP1a can regulate DCP2's cellular decapping activity by enhancing DCP2's affinity to RNA, in addition to bridging the interactions of DCP2 with other decapping factors. This represents a pivotal molecular mechanism by which DCP1a exerts its regulatory control over the mRNA decapping process." Similar versions of this claim are repeated in the abstract and discussion sections. However, this appears to be entirely at odds with the observation from in vitro decapping assays with immunoprecipitated DCP2 that showed DCP1 knockout does not significantly affect the enzymatic activity of DCP2 (Figures 2B-D; I note that there may be a very small change in DCP2 activity shown in panel C, but this may be due to slightly different amounts of immunoprecipitated DCP2 used in the assay, as suggested by panel D). If DCP1 pivotally regulates decapping activity by enhancing RNA binding to DCP2, why is no difference in decapping activity observed in the absence of DCP1? Furthermore, the authors show only weak changes in relative RNA levels immunoprecipitated by DCP2 with versus without DCP1 (~2-3 fold change; consistent with the Valkov 2016 NSMB paper, which shows what looks like only modest changes in RNA binding affinity for yeast Dcp2 +/- Dcp1). Is the argument that only a 2-3 fold change in RNA binding affinity is responsible for the sizable decapping defects and significant accumulation of deadenylated intermediates observed in cells upon Dcp1 depletion? (and if so, why is this the case for in-cell data, but not the immunoprecipitated in vitro data?)

      The authors acknowledge this apparent discrepancy between the in vitro DCP2 decapping assays and in-cell decapping data, writing: "this observation could be attributed to the inherent constraints of in vitro assays, which often fall short of faithfully replicating the complexity of the cellular environment where multiple factors and cofactors are at play. To determine the underlying cause, we postulated that the observed cellular decapping defect in DCP1a/b knockout cells might be attributed to DCP1 functioning as a scaffold." This is fair. They next show that DCP1 acts as a scaffold to recruit multiple factors to DCP2 in cells (EDC3, DDX6, PatL1, and PNRC1 and 2). However, while DCP1 is shown to recruit multiple cofactors to DCP2 (consistent with other studies in the decapping field, and primarily through motifs in the Dcp1 C-terminal tail), the authors ultimately show that *none* of these cofactors are actually essential for DCP2-mediated decapping in cells (Figures 3A-F). More specifically, the authors showed that the EVH1 domain was sufficient to rescue decapping defects in DCP1a/b knockout cells, that PNRC1 and PNRC2 were the only cofactors that interact with the EVH1 domain, and finally that shRNA-mediated PNRC1 or PNCR2 knockdown has no effect on in-cell decapping (Figures 3E and F). Therefore, based on the presented data, while DCP1 certainly does act as a scaffold, it doesn't seem to be the case that the major cellular decapping defect observed in DCP1a/b knockout is due to DCP1's ability to recruit specific cofactors to DCP2.

      So as far as I can tell, the discrepancy between the in vitro (DCP1 not required) and in-cell (DCP1 required) decapping data, remains entirely unresolved. Therefore, I don't think that the conclusions that DCP1 regulates decapping by (a) changing RNA binding affinity (authors show this doesn't matter in vitro, and that the change in RNA binding affinity is very small) or (b) by bridging interactions of cofactors with DCP2 (authors show all tested cofactors are dispensable for robust in-cell decapping activity), are supported by the evidence presented in the paper (or convincingly supported by previous structural and functional studies of the decapping complex).

      2) Related to the RNA binding claims mentioned above, are the differences shown in Figure 3H statistically significant? Why are there no error bars shown for the MBP control? (I understand this was normalized to 1, but presumably, there were 3 biological replicates here that have some spread of values?). The individual data points for each replicate should be displayed for each bar so that readers can better assess the spread of data and the significance of the observed differences. I've listed these points as major because of the key mechanistic claim that DCP1 enhances RNA binding to DCP2 hinges in large part on this data.

      3) Also related to point (1) above, the kinetic analysis presented in Figure 2C shows that the large majority of transcript is mostly decapped at the first 5-minute timepoint; it may be that DCP2-mediated decapping activity is actually different in vitro with or without DCP1, but that this is being missed because the reaction is basically done in less than 5 minutes under the conditions being assayed (i.e. these are basically endpoint assays under these conditions). It may be that if kinetics were done under conditions to slow down the reaction somewhat (e.g. lower Dcp2 concentration, lower temperatures), so that more of the kinetic behavior is captured, the apparent discrepancy between in vitro and in-cell data would be much less. Indeed, previous studies have shown that in yeast, Dcp1 strongly activates the catalytic step (kcat) of decapping by ~10-fold, and reduces the KM by only ~2 fold (Floor et al, NSMB 2010). It might be beneficial to use purified proteins here (only a Western blot is used in Figure 2D to show the presence of DCP2 and/or DCP1, but do these complexes have other, and different, components immunoprecipitated along with them?), if possible, to better control reaction conditions.

      This contradiction between the in vitro and in-cell decapping data undercuts one of the main mechanistic takeaways from the first half of the paper. This needs to be addressed/resolved with further experiments to better define the role of DCP1-mediated activation, or the mechanistic conclusions significantly changed or removed.

      4) The second half of the paper compares the transcriptomic and metabolic profiles of DCP1a versus DCP1b knockouts to reveal that these target a different subset of mRNAs for degradation and have different levels of cellular metabolites. This is a great application of the DCP1a/b KO cells developed in this paper and provides new information about DCP1a vs b function in metazoans, which to my knowledge has not really been explored at all. However, the analysis of DCP1 function/expression levels in human cancer seems superficial and inconclusive: for example, the authors conclude that "...these findings indicate that DCP1a and DCP1b likely have distinct and non-redundant roles in the development and progression of cancer", but what is the evidence for this? I see that DCP1a and b levels vary in different cancer cell types, but is there any evidence that these changes are actually linked to cancer development, progression, or tumorigenesis? If not, these broader conclusions should be removed.

      5) The authors used CRISPR-Cas9 to introduce frameshift mutations that result in premature termination codons in DCP1a/b knockout cells (verified by Sanger sequencing). They then use Western blotting with DCP1a or DCP1b antibodies to confirm the absence of DCP1 in the knockout cell lines. However, the DCP1a antibody used in this study (Sigma D5444) is targeted to the C-terminal end of DCP1a. Can the authors conclusively rule out that the CRISPR/Cas-generated mutations do not result in the production of truncated DCP1a that is just unable to be detected by the C-terminally targeted antibody? While it is likely the introduced premature termination codon in the DCP1a gene results in nonsense-mediated decay of the resulting transcript, this outcome is indeed supported by the knockout results showing large defects in cellular decapping which can be rescued by the addition of the EVH1 domain, it would be better to carefully validate the success of the DCP1a knockout and conclusively show no truncated DCP1a is produced by using N-terminally targeted DCP1a antibodies (as was the case for DCP1b).

      Some additional minor comments:

      • More information would be helpful on the choice of DCP1 truncation boundaries; why was 1-254 chosen as one of the truncations?<br /> • Figure S2D is a pretty important experiment because it suggests that the observed deadenylated intermediates are in fact still capped; can a positive control be added to these experiments to show that removal of cap results in rapid terminator-mediated degradation?

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The work is a useful contribution towards understanding the role of archaeal and plant D-aminoacyl-tRNA deacylase 2 (DTD2) in deacylation and detoxification of D-Tyr-tRNATyr modified by various aldehydes produced as metabolic byproducts in plants. It integrates convincing results from both in vitro and in vivo experiments to address the long-standing puzzle of why plants outperform bacteria in handling reactive aldehydes and suggests a new strategy for stress-tolerant crops. The impact of the paper is limited by the fact that only one modified D-aminoacyl tRNA was examined, in lack of evidence that plant eEF1A mimics EF-Tu in protecting L-aminoacyl tRNAs from modification, and in failure to measure accumulation of toxic D-aminoacyl tRNAs or impairment of translation in plant cells lacking DTD2.

      We have now addressed all the drawbacks as follows:

      ‘only one modified D-aminoacyl tRNA was examined’

      We wish to clarify that only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009) and D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007) and it also recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure: 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      Author response image 1.

      DTD2 recycles multiple D-aa-tRNAs with different side chain chemistry and size. Growth of wildtype (WT), dtd null strain (∆dtd), and Pyrococcus horikoshii DTD2 (PhoDTD2) complemented ∆dtd strains of E. coli K12 cells with 500 µM IPTG along with A) no D-amino acids, B) 2.5 mM D-tyrosine, C) 30 mM D-aspartate and D) 5 mM D-tryptophan.

      ‘lack of evidence that plant eEF1A mimics EF-Tu in protecting L-aminoacyl tRNAs from modification’

      To understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). This suggests that eEF-1A will mimic EF-Tu in protecting L-aa-tRNAs from reactive aldehydes. Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      Author response image 2.

      Elongation factor enantio-selects L-aa-tRNAs through D-chiral rejection mechanism. A) Surface representation showing the cocrystal structure of EF-Tu with L-Phe-tRNAPhe. Zoomed-in image showing the binding of L-phenylalanine with side chain projected outside of binding site of EF-Tu (PDB id: 1TTT). B) Zoomed-in image of amino acid binding site of EF-Tu bound with L-phenylalanine showing the selection of amino group of amino acid through main chain atoms (PDB id: 1TTT). C) Modelling of D-phenylalanine in the amino acid binding site of EF-Tu shows severe clashes with main chain atoms of EF-Tu. Modelling of smallest chiral amino acid, alanine, in the amino acid binding site of EF-Tu shows D) no clashes with L-alanine and E) clashes with D-alanine. F) Modelling of D-alanine in the amino acid binding site of eEF-1A shows clashes with main chain atoms. (*Represents modelled molecule). G) Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and animals) showing conserved amino acid binding site residues. (Key residues are marked with red star).

      Author response image 3.

      Elongation factor protects L-aa-tRNAs from aldehyde modification. A) Cartoon representation showing the cocrystal structure of EF-Tu with L-Phe-tRNAPhe (PDB id: 1TTT). B) Zoomed-in image of amino acid binding site of EF-Tu bound with L-phenylalanine (PDB id: 1TTT). C) Cartoon representation showing the cryoEM structure of eEF-1A with tRNAPhe (PDB id: 5LZS). D) Image showing the overlap of EF-Tu:L-Phe-tRNAPhe crystal structure and eEF-1A:tRNAPhe cryoEM structure (r.m.s.d. of 1.44 Å over 292 Cα atoms). E) Zoomed-in image of amino acid binding site of eEF-1A with modelled L-alanine (PDB id: 5ZLS). (*Modelled) F) Overlap showing the amino acid binding site residues of EF-Tu and eEF-1A. (EF-Tu residues are marked in black and eEF-1A residues are marked in red).

      ‘failure to measure accumulation of toxic D-aminoacyl tRNAs or impairment of translation in plant cells lacking DTD2’

      We agree that measuring the accumulation of D-aa-tRNA adducts from plant cells lacking DTD2 is important. We tried to characterise the same with dtd2 mutant plants extensively through Northern blotting as well as mass spectrometry. However, due to the lack of information about the tissue getting affected (root or shoot), identity of aa-tRNA as well as location of aa-tRNA (cytosol or organellar), we are so far unsuccessful in identifying them from plants. Efforts are still underway to identify them from plant system lacking DTD2. However, we have used a bacterial surrogate system, E. coli, as used earlier in Mazeed M. et al., Science Advances, 2021 to show the accumulation of D-aa-tRNA adducts in the absence of dtd. We could identify the accumulation of both formaldehyde and MG modified D-aa-tRNA adducts via mass spectrometry (Figure: 4). These results are now included in the revised manuscript (in line no: 190-197 and Figure: S5).

      Author response image 4.

      Loss of DTD results in accumulation of modified D-aminoacyl adducts on tRNAs in E. coli. Mass spectrometry analysis showing the accumulation of aldehyde modified D-Tyr-tRNATyr in A) Δdtd E. coli, B) formaldehyde and D-tyrosine treated Δdtd E. coli, and C) MG and D-tyrosine treated Δdtd E. coli. ESI-MS based tandem fragmentation analysis for unmodified and aldehyde modified D-Tyr-tRNATyr in D) Δdtd E. coli, E) and F) formaldehyde and D-tyrosine treated Δdtd E. coli, G) and H) MG and D-tyrosine treated Δdtd E. coli.

      Response to Public Reviews:

      We are grateful for the reviewers’ positive feedback and their comments and suggestions on this manuscript. Reviewer 1 has indicated two weaknesses and Reviewer 2 has none. We have now addressed all the concerns of the Reviewers.

      Reviewer #1 (Public Review):

      Summary:

      This work is an extension of the authors' earlier work published in Sci Adv in 2001, wherein the authors showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. The authors in this study, investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (produced by plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      We are happy that reviewer found our work convincing and would like to thank the reviewer for finding our data supportive to the central theme of the manuscript.

      Strengths:

      Data are novel and they provide a new perspective on the role of DTD2, and propose possible use of the DTD2 lines in crop improvement.

      We are happy for this positive comment on the manuscript.

      Weaknesses:

      (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified Tyr-tRNATyr). This is not a risk-free extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?

      We thank the reviewer for bringing up this important point. As mentioned above, we wish to clarify that only half of the aminoacyl-tRNA synthetases are known to charge D-amino acids and only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009). D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007). Moreover, we have previously shown that it recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      (b) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      We thank the reviewer for bringing up this important point. As mentioned above, to understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      Reviewer #2 (Public Review):

      In bacteria and mammals, metabolically generated aldehydes become toxic at high concentrations because they irreversibly modify the free amino group of various essential biological macromolecules. However, these aldehydes can be present in extremely high amounts in archaea and plants without causing major toxic side effects. This fact suggests that archaea and plants have evolved specialized mechanisms to prevent the harmful effects of aldehyde accumulation.

      In this study, the authors show that the plant enzyme DTD2, originating from archaea, functions as a D-aminoacyl-tRNA deacylase. This enzyme effectively removes stable D-aminoacyl adducts from tRNAs, enabling these molecules to be recycled for translation. Furthermore, they demonstrate that DTD2 serves as a broad detoxifier for various aldehydes in vivo, extending its function beyond acetaldehyde, as previously believed. Notably, the absence of DTD2 makes plants more susceptible to reactive aldehydes, while its overexpression offers protection against them. These findings underscore the physiological significance of this enzyme.

      We thank the reviewer for the positive comments the manuscript.

      Response to recommendation to authors:

      Reviewer #1 (Recommendations For The Authors):

      I enjoyed reading the manuscript entitled, "Archaeal origin translation proofreader imparts multi aldehyde stress tolerance to land plants" from the Sankaranarayanan lab. This work is an extension of their earlier work published in Sci Adv in 2001, wherein they showed that DTD2 deacylates N-ethyl-D-aminoacyl-tRNAs arising from acetaldehyde toxicity. Now, the authors of this study (Kumar et al.) investigate the role of archaeal/plant DTD2 in the deacylation/detoxification of D-Tyr-tRNATyr modified by multiple other aldehydes and methylglyoxal (which are produced during metabolic reactions in plants). Importantly, the authors take their biochemical observations to plants, to show that deletion of DTD2 gene from a model plant (Arabidopsis thaliana) makes them sensitive to the aldehyde supplementation in the media especially in the presence of D-Tyr. These conclusions are further supported by the observation that the model plant shows increased tolerance to the aldehyde stress when DTD2 is overproduced from the CaMV 35S promoter. The authors propose a model for the role of DTD2 in the evolution of land plants. Finally, the authors suggest that the transgenic crops carrying DTD2 may offer a strategy for stress-tolerant crop development. Overall, the authors present a convincing story, and the data are supportive of the central theme of the story.

      We are happy that reviewer enjoyed our manuscript and found our work convincing. We would also like to thank reviewer for finding our data supportive to the central theme of the manuscript.

      I have the following observations that require the authors' attention.

      1) The title of the manuscript will be more appropriate if revised to, "Archaeal origin translation proofreader, DTD2, imparts multialdehyde stress tolerance to land plants".

      Both the reviewer’s suggested to change the title. We have now changed the title based on reviewer 2 suggestion.

      2) Abstract (line 19): change, "physiologically abundantly produced" to "physiologically produced".

      As per the reviewer’s suggestion, we have now changed it to "physiologically produced".

      3) Introduction (line 50): delete, 'extremely'.

      We have removed the word 'extremely' from the Introduction.

      4) Line 79: change, "can be utilized" to "may be explored".

      We have changed "can be utilized" to "may be explored" as suggested by the reviewers.

      5) Results in general:

      (a) Data obtained from a single aminoacyl-tRNA (D-Tyr-tRNATyr) have been generalized to imply that what is relevant to this model substrate is true for all other D-aa-tRNAs (term modified aa-tRNAs has been used synonymously with the modified D-Tyr-tRNATyr). This is a risky extrapolation. For example, the authors see that DTD2 removes modified D-Tyr from tRNATyr in a chain-length dependent manner of the modifier. Why do the authors believe that the length of the amino acid side chain will not matter in the activity of DTD2?

      We thank the reviewer for bringing up this important point. As mentioned above, we wish to clarify that only half of the aminoacyl-tRNA synthetases are known to charge D-amino acids and only D-Leu (Yeast), D-Asp (Bacteria, Yeast), D-Tyr (Bacteria, Cyanobacteria, Yeast) and D-Trp (Bacteria) show toxicity in vivo in the absence of known DTD (Soutourina J. et al., JBC, 2000; Soutourina O. et al., JBC, 2004; Wydau S. et al., JBC, 2009). D-Tyr-tRNATyr is used as a model substrate to test the DTD activity in the field because of the conserved toxicity of D-Tyr in various organisms. DTD2 has been shown to recycle D-Asp-tRNAAsp and D-Tyr-tRNATyr with the same efficiency both in vitro and in vivo (Wydau S. et al., NAR, 2007). Moreover, we have previously shown that it recycles acetaldehyde-modified D-Phe-tRNAPhe and D-Tyr-tRNATyr in vitro as shown in our earlier work (Mazeed M. et al., Science Advances, 2021). We have earlier shown that DTD1, another conserved chiral proofreader across bacteria and eukaryotes, acts via a side chain independent mechanism (Ahmad S. et al., eLife, 2013). To check the biochemical activity of DTD2 on D-Trp-tRNATrp, we have now done the D-Trp, D-Tyr and D-Asp toxicity rescue experiments by expressing the archaeal DTD2 in dtd null E. coli cells. We found that DTD2 could rescue the D-Trp toxicity with equal efficiency like D-Tyr and D-Asp (Figure 1). Considering the action on multiple side chains with different chemistry and size, it can be proposed with reasonable confidence that DTD2 also operates based on a side chain independent manner.

      (b) Interestingly, the authors do suggest (in the Materials and Methods section) that the experiments were performed with Phe-tRNAPhe as well as Ala-tRNAAla. If what is stated in Materials and Methods is correct, these data should be included to generalize the observations.

      We regret for the confusing statement. We wish to clarify that L- and D-Tyr-tRNATyr were used for checking the TLC-based aldehyde modification, EF-Tu based protection assays and deacylation assays, D-Phe-tRNAPhe was used to characterise aldehyde-based modification by mass spectrometry and L-Ala-tRNAAla was used to check the modification propensity of multiple aldehydes. We used multiple aa-tRNAs to emphasize that aldehyde-based modifications are aspecific towards the identity of aa-tRNAs. All the data obtained with respective aa-tRNAs are included in manuscript.

      (c) While the use of EFTu supports that the ternary complex formation by the elongation factor can resist modifications of L-Tyr-tRNATyr by the aldehydes or other agents, in the context of the present work on the role of DTD2 in plants, one would want to see the data using eEF1alpha. This is particularly relevant because there are likely to be differences in the way EFTu and eEF1alpha may protect aminoacyl-tRNAs (for example see description in the latter half of the article by Wolfson and Knight 2005, FEBS Letters 579, 3467-3472).

      We thank the reviewer for bringing up this important point. As mentioned above, to understand the role of plant eEF1A in protecting L-aa-tRNAs from aldehyde modification, we have done a thorough sequence and structural analysis. We analysed the aa-tRNA bound elongation factor structure from bacteria (PDB ids: 1TTT) and found that the side chain of amino acid in the amino acid binding site of EF-Tu is projected outside (Figure: 2A; 3A). In addition, the amino group of amino acid is tightly selected by the main chain atoms of elongation factor thereby lacking a space for aldehydes to enter and then modify the L-aa-tRNAs and Gly-tRNAs (Figure: 2B; 3B). Modelling of D-amino acid (D-phenylalanine and smallest chiral amino acid, D-alanine) in the same site shows serious clashes with main chain atoms of EF-Tu, indicating D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2C-E). Next, we superimposed the tRNA bound mammalian eEF-1A cryoEM structure (PDB id: 5LZS) with bacterial structure to understand the structural differences in terms of tRNA binding and found that elongation factor binds tRNA in a similar way (Figure: 3C-D). Modelling of D-alanine in the amino acid binding site of eEF-1A shows serious clashes with main chain atoms, indicating a general theme of D-chiral rejection during aa-tRNA binding by elongation factor (Figure: 2F; 3E). Structure-based sequence alignment of elongation factor from bacteria, archaea and eukaryotes (both plants and mammals) shows a strict conservation of amino acid binding site (Figure: 2G). Minor differences near the amino acid side chain binding site (as indicated in Wolfson and Knight, FEBS Letters, 2005) might induce the amino acid specific binding differences (Figure: 3F). However, those changes will have no influence when the D-chiral amino acid enters the pocket, as the whole side chain would clash with the active site. We have now included this sequence and structural conservation analysis in our revised manuscript (in text: line no 107-129; Figure: 2 and S2). Overall, our structural analysis suggests a conserved mode of aa-tRNA selection by elongation factor across life forms and therefore, our biochemical results with bacterial elongation factor Tu (EF-Tu) reflect the protective role of elongation factor in general across species.

      6) Results (line 89): Figure: 1C-G (not B-G).

      As correctly pointed out by the reviewer(s), we have changed it to Figure: 1C-G.

      7) Results (line 91): Figure: S1B-G (not C-G).

      We wish to clarify that this is correct.

      8) Line 97: change, "propionaldehyde" to "propionaldehyde (Figure: 1H)".

      As per the reviewer’s suggestion, we have now changed, "propionaldehyde" to "propionaldehyde (Figure: 1H)".

      9) Line 124: The statement, "DTD2 cleaved all modified D-aa-tRNAs at 50 pM to 500 nM range (Figure: 2A_D)" is not consistent with the data presented. For example, Figure 2D does not show any significant cleavage. Figure S2A-B also does not show cleavage.

      We thank the reviewers for pointing this out. We have changed the sentence to “DTD2 cleaved majority of aldehyde modified D-aa-tRNAs at 50 pM to 500 nM range".

      10) Line 131: Cleavage observed in Fig. S2E is inconsistent with the generalized statement on DTD1.

      We wish to clarify that the minimal activity seen in Fig. S2E is inconsistent with the general trend of DTD1’s biochemical activity seen on modified D-aa-tRNAs. In addition, we have earlier shown that D-aa-tRNA fits snugly in the active site of DTD1 (Ahmad S. et al., eLife, 2013) whereas the modified D-aa-tRNA cannot bind due to the space constrains in the active site of DTD1 (Mazeed M. et al., Science Advances, 2021). Therefore, this minimal activity could be a result of technical error during this biochemical experiment and could be considered as no activity.

      11) Lines 129-133: Citations of many figure panels particularly in the supplementary figures are inconsistent with generalized statements. This section requires a major rewrite or rearrangement of the figure panels (in case the statements are correct).

      We thank the reviewers for bringing forth this point and we have accordingly modified the statement into “DTD2 from archaea recycled short chain aldehyde-modified D-aa-tRNA adducts as expected (Figure: 3E-G) and, like DTD2 from plants, it did not act on aldehyde-modified D-aa-tRNAs longer than three chains (Figure: 3H; S3C-D; S4G-L)”.

      12) Line 142: I don't believe one can call PTH a proofreader. Its job is to recycle tRNAs from peptidyl-tRNAs.

      We thank the reviewers for pointing out this very important point. This is now corrected.

      13). Line 145: change, "DTD2 can exert its protection for" to "DTD2 may exert protection from".

      As per the reviewer’s suggestion, we have now changed"DTD2 can exert its protection for" to "DTD2 may exert protection from".

      14) Line 148: change, "a homozygous line (Figure: 3A) and checked for" to "homozygous lines (Figure: 3A) and checked them for".

      As per the reviewer’s suggestion, we have now changed, "a homozygous line (Figure: 3A) and checked for" to "homozygous lines (Figure: 3A) and checked them for".

      15) Line 148: Change, the sentence beginning with dtd2 as follows. Similar to earlier results30-32, dtd2-/- (dtd2 hereafter) plants were susceptible to ethanol (Figure: S4A) confirming the non-functionality DTD2 gene in dtd2 plants.

      As per the reviewer’s suggestion, we have now changed the sentence accordingly.

      16) Line 161: change, "linked" to "associated".

      As per the reviewer’s suggestion, we have now changed "linked" to "associated".

      17) Lines 173-176: It would be interesting to know how well the DTD2 OE lines do in comparison to the other known transgenic lines developed with, for example, ADH, ALDH, or AOX lines. Any ideas would help appreciate the observation with DTD2 OE lines!

      We greatly appreciate the reviewer’s suggestion. We have not done any comparison experiment with any transgenic lines so far. However, it can be potentially done in further studies with DTD2 OE lines.

      18) Line 194: change, "necessary" with "present".

      As per the reviewer’s suggestion, we have now changed "necessary" with "present".

      19) Line 210: what is meant by 'huge'? Would 'significant' sound better?

      As per the reviewer’s suggestion, we have now changed "huge" with "significant".

      20) Lines 239-243: This needs to be rephrased. Isn't alpha carbonyl of the carboxyl group that makes ester bond with the -CCA end of the tRNA required for DTD2 activity as well? Are you referring to the carbonyl group in the moiety that modifies the alpha-amino group? Please clarify. The cited reference (no. 64) of Atherly does not talk about it.

      We regret for the confusing statement. To clarify, we were referencing to the carbonyl carbon of the modification post amino group of the amino acid in aa-tRNAs (Figure: 5). We have now included a figure (Figure: S4Q of revised manuscript) to show the comparison of the carbonyl group for the better clarity. The cited reference Atherly A. G., Nature, 1978 shows the activity of PTH on peptidyl-tRNAs and peptidyl-tRNAs possess carbonyl carbon at alpha position post amino group of amino acid in L-aa-tRNAs.

      Author response image 5.

      Figure showing the difference in the position of carbonyl carbon in acetonyl and acetyl modification on aa-tRNAs.

      21) Line 261: thrive (not thrives).

      As per the reviewer’s suggestion, we have now changed it to thrive.

      22) In Fig3A: second last lane, it should be dtd-/-:: AtDTDH150A (not dtd-/-:: AtDTDH150A).

      We thank the reviewers for pointing out this, we have corrected it.

      23). Materials and methods: Please clarify which experiments used tRNAPhe, tRNAAla, PheRS, etc. Also, please carefully check all other details provided in this section.

      As per the reviewer’s suggestion, we would like to provide a table below explaining the use of different substrates as well as enzymes in our experiments.

      Author response table 1.

      24) Figure legends (many places): p values higher than 0.05 (not less than) are denoted as ns.

      We thank the reviewers for pointing out this. We have corrected it.

      Reviewer #2 (Recommendations For The Authors):

      I have only minor comments for the authors:

      Title: I would replace "Archeal origin translation proofreader" with " A translation proofreader of archeal origin"

      As per the reviewer’s suggestion, we have now changed the title.

      Abstract: This section could benefit from some rewriting. For instance, at the outset, the initial logical connection between the first and second sentences of the abstract is somewhat unclear. At the very least, I would suggest swapping their order to enhance the narrative flow. Later in the text, the term "chiral proofreading systems" is introduced; however, it is only in a subsequent sentence that these systems are explained to be responsible for removing stable D-aminoacyl adducts from tRNA. Providing an immediate explanation of these systems would enhance the reader's comprehension. The authors switch from the past participle tense to the present tense towards the end of the text. I would recommend that they choose one tense for consistency. In the final sentence, I would suggest toning down the statement and replacing "can be used" with "could be explored." (https://www.nature.com/articles/d41586-023-02895-w). The same comment applies to the introduction, line 79.

      As per the reviewer’s suggestion, we have now changed the abstract appropriately.

      General note: Conventionally, the use of italics is reserved for the specific species "Arabidopsis thaliana," while the broader genus "Arabidopsis" is not italicized.

      We acknowledge the reviewer for this pertinent suggestion. This is now corrected in revised version of our manuscript.

      General note: I would advise the authors against employing bold characters in conjunction with colors in the figures.

      We thank the reviewer for this suggestion. We have now changed it appropriately in revised version of our manuscript.

      Figure 1A: I recommend including the concentrations of the various aldehydes used in the experiment within the figure legend. While this information is available in the materials and methods section, it would be beneficial to have it readily accessible when analyzing the figure.

      As per the reviewer’s suggestion, we have now included the concentrations in figure legend.

      Figure 1I, J: some error bars are invisible.

      We thank the reviewers for pointing out this, we have corrected it.

      Figure 2M: The table could be simplified by removing aldehydes for which it was not feasible to demonstrate activity. The letter "M" within the cell labeled "aldehydes" appears to be a typographical error, presumably indicating the figure panel.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Figure 3: For consistency with the other panels in the figure, I recommend including an additional panel to display the graph depicting the impact of MG on germination.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Figure 4: Considering that only one plant is presented, it would be beneficial to visualize the data distribution for the other plants used in this experiment, similar to what the authors have done in panel A of the same figure.

      We thank the reviewer for bringing up this point. We wish to clarify that we have done experiment with multiple plants. However, for the sake of clarity, we have included the representative images. Moreover, we have included the quantitative data for multiple plants in Figure 3C-G.

      Figure 5E: The authors may consider presenting a chronological order of events as they believe they occurred during evolution.

      We thank the reviewer for the suggestion. However, it is very difficult to pinpoint the chronology of the events. Aldehydes are lethal for systems due to their hyper reactivity and systems would require immediate solutions to survive. Therefore, we think that both problem (toxic aldehyde production) and its solution (expansion of aldehyde metabolising repertoire and recruitment of archaeal DTD2) might have appeared simultaneously.

      Figure 6: The model appears somewhat crowded, which may affect its clarity and ease of interpretation. The authors might also consider dividing the legend sentence into two separate sentences for better readability.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Line 149: I recommend explicitly stating that ethanol metabolism produces acetaldehyde. This clarification will help the general reader immediately understand why DTD2 mutant plants are sensitive to ethanol.

      As per the reviewer’s suggestion, we have now changed this appropriately.

      Line 289: there is a typographical error, "promotor" instead of the correct term "promoter.".

      We thank the referee for pointing out this, we have now corrected it.

      Figure S5: The root morphology of DTD2 OE plants appears to exhibit some differences compared to the WT, even in the absence of a high concentration of aldehydes. It would be valuable if the authors could comment on these observed differences unless they have already done so, and I may have overlooked it.

      We thank the referee for pointing out this. We do see minor differences in root morphology, but they are more pronounced with aldehyde treatments. The reason for this phenotype remains elusive and we are trying to understand the role of DTD2 in root development in detail in further studies.

      Some Curiosity Questions (not mandatory for manuscript acceptance):

      1) Do DTD2 OE plants display an earlier flowering phenotype than wild-type Col-0?

      We have not done detailed phenotyping of DTD2 OE plants. However, our preliminary observations suggest no differences in flowering pattern as compared to wild-type Col-0.

      2) What is the current understanding of the endogenous regulation of DTD2?

      We have not done detailed analysis to understand the endogenous regulation of DTD2.

      3) Could the protective phenotype of DTD2 OE plants in the presence of aldehydes be attributed to additional functions of this enzyme beyond the removal of stable D-aminoacyl adducts from tRNAs?

      Based on the available evidence regarding the biochemical activity and in vivo phenotypes of DTD2, it appears that removal of stable D-aminoacyl adducts from tRNA is key for the protective phenotype of DTD2 OE.

      A Suggestion for Future Research (not required for manuscript acceptance):

      The authors could explore the possibility of overexpressing DTD2 in pyruvate decarboxylase transgenic plants and assess whether this strategy enhances flood tolerance without incurring a growth penalty under normal growth conditions.

      We thank the referee for this interesting suggestion for future research. We will surely keep this in mind while exploring the flood tolerance potential of DTD2 OE plants.

    1. We have, as a bedrock value in our society, long agreed on thevalue of open access to information, and recognize the problems thatarise with attempts to restrict access to and development of knowledge.

      Many academics and modern people may think this way, but it is far from a "bedrock value".

      In many indigenous cultures knowledge was carefully sectioned and cordoned off.

      And as we know that knowledge itself is power (ipsa scientia potestas est - Francis Bacon) many people have frequently cordoned off access to information.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study advances our understanding of the forces that shape the genomic landscape of transposable elements. By exploiting both long-read sequencing of mutation accumulation lines and in vivo transposition assays, the authors offer compelling evidence that structural variation rather than transposition largely shapes transposable element copy number evolution in budding yeast. The work will be of interest to the transposable element and genome evolution communities.

      Public Reviews:

      Reviewer #1 (Public Review):

      Henault et al build on their own previous work investigating the longstanding hypothesis that hybridization between divergent populations can activate transposable element mobilization (transposition). Previously they created crosses of increasing sequence divergence, using both intra- and inter-species hybrids, and passaged them neutrally for hundreds of generations. Their previous work showed that neither hybrids isolated from natural environments nor hybrids from their mutation accumulation lines showed consistent evidence of increased transposable element content. Here, they sequence and assemble long-read genomes of 127 of their mutation-accumulation lines and annotate all existing and de novo transposable elements. They find only a handful of de novo transposition events, and instead demonstrate that structural variation (ploidy, aneuploidy, loss of heterozygosity) plays a much larger role in the transposable element load in a given strain. They then created transposable element reporter constructs using two different Ty1 elements from S. paradoxus lineages and measured the transposition rate in a number of intraspecific crosses. They demonstrate that the transposition rate is dependent on both the Ty1 sequence and the copy number of genomic transposable elements, the latter of which is consistent with what has been observed in the literature on transposable element copy number control in Saccharomyces. To my knowledge, others have not directly tested the effect of Ty1 sequence itself (have not created diverse Ty1 reporter constructs), and so this is an interesting advance. Finally, the authors show that mitotype has a moderate effect on transposition rate, which is an intriguing finding that will be interesting to explore in future work.

      This study represents a large effort to investigate how genetic background can influence transposable element load and transposition rate. The long read sequencing, assembly, and annotation, and the creation of these reporter constructs are non-trivial. Their results are straightforward, well supported, and a nice addition to the literature.

      The authors state that the results from their current work support results taken from their previous study using short-read sequencing data of the same lines. The argument that follows is whether the authors gained anything novel from long-read sequencing. I would like to see the authors make a stronger argument for why this new work was necessary, and a more detailed view of similarities or differences from their previous study (when should others choose to do long read vs. short read of evolved lines?).

      We thank the reviewer for the suggestion. While we initially aimed to justify the relevance and novelty of the current in relation to our previous study, we understand that this justification may not have been strong enough.

      In the second paragraph of the introduction, we explain how the multidimensional nature of TE load makes it more complex to characterize that simply reporting the abundance of a given TE family in a given genome. We added the following concluding sentence to further emphasize the importance of long reads in TE-focused genome inference:

      “As such, ongoing technological and computational advances in genome inference, including long-read sequencing, will certainly be key to getting a detailed understanding of the dynamics of TEs and the underpinning evolutionary forces.”

      In the penultimate introductory paragraph, we summarize our previous work from 2020 and highlight that the evolution of Ty contents in MA lines was inferred from aggregate measures of genomic abundance of TE families using short reads. We then make the point that combinations of multiple SVs could affect the landscape of TEs in ways that are not reflected by crude short-read measures. We added the following sentence to further emphasize this point and contrast it with the necessity of using more powerful methodologies for genome resolution:

      “Under this scenario, measuring Ty family abundance would yield no significant net change, and the dissection of the underlying SVs using short reads could often be challenging.”

      Relatedly, the authors should report the rates of structural variants that they observe. How are these results similar/different from other mutation-accumulation work in S. cerevisiae?

      Since this work does not attempt to provide an exhaustive report of all the SVs in the MA lines, but rather focus on attributing an SV type to individual loci occupied by TEs, we cannot include these estimates, excepted for de novo transposition itself (see below). We added the following sentence to the Results section on the classification of Ty loci by SV types:

      “We note that the current methodology does not aim at providing an exhaustive quantification of all SVs in the MA lines, as previously done for some SV types (Marsit et al., 2021), but focuses solely on loci containing Ty elements.”

      We added estimates of the average retrotransposition rate in the MA experiment based on the number of de novo insertions detected in the MA lines genomes.

      Figure 4:

      “The average retrotransposition rates estimated from the counts of de novo insertions (per line per generation per element) are the following: CC1, 1.0✕10-5; CC2, 4.9✕10-6; CC3, 7.6✕10-6; BB1, 1.5✕10-5; BC2, 1.7✕10-5; BA1, 6.5✕10-6; BA2, 2.2✕10-5; BSc1, 3.6✕10-5.”

      We added the following paragraph in the Discussion section to specifically discuss these estimates in relation to the in vivo measurements.

      “We note that while the CC crosses tend to have the lowest retrotransposition rates as estimated from the de novo insertions (~1✕10-5 per line per generation per element; Figure 4), these values are several orders of magnitude higher than the in vivo measures in SpC backgrounds. The discrepancy between these estimates could be due to uncharacterized biases inherent to each method. They could also be linked to differences between the parental genotypes used to generate the MA crosses and the fluctuation assays. One major difference is the use of ade2 genotypes in the MA parents, a strategy that was initially adopted to provide a marker for the loss of mitochondrial respiration (Joseph and Hall, 2004; Lynch et al., 2008). It has been shown that the induction of adenine starvation through minimal adenine concentration in the medium and deletion of ADE2, which inactivates the adenine de novo biosynthesis pathway, increases Ty1 transcript levels (Todeschini et al., 2005), resulting in higher transposition rates. Rich complex medium like the one that was used for the MA experiment (YPD) can exhibit substantial variation in adenine concentration (VanDusen et al., 1997), and adenine can quickly become the limiting nutrient for ade2 strains (Kokina et al., 2014). Thus, we cannot exclude that the choice of initial ade2 genotypes could have inflated the transposition rates in the MA experiment.”

      Since the authors show a small, but consistent influence of mitotype on transposition rates, adding further evidence for the role of mtDNA in regulating transposition, I'm curious what the transposition rate of a p0 strain is. I think including these results could make this observation more compelling.

      We agree that measuring in vivo transposition rates in ρ0 backgrounds would be an interesting avenue. However, there is a large distinction between having non-functional mitochondrial respiration in ρ0 strains and inheriting diverse functional mtDNA haplotypes. The effects we show are all linked to the reciprocal inheritance of intact mtDNAs, producing ρ+ strains that are all respiration-competent, as shown by our growth confirmations on non-fermentable carbon sources for all the diploid backgrounds generated. While potentially interesting, adding transposition rates measures for the ρ0 backgrounds seems hard to justify in the context of our results.

      Reviewer #2 (Public Review):

      This is an interesting follow-up study that uses long-read sequencing to examine previously constructed mutation accumulation lines between wild populations of S. cerevisiae and S. paradoxus. They also complement this work with reporter assays in hybrid backgrounds. The authors are attempting to test the hypothesis that hybridization leads to genome shock and unrestrained transposition. The paper largely confirms previous results (suggesting hybridization does not increase transposition) that are well cited and discussed in the paper, both from this group and from the Smukowski Heil/Dunham group but extends them to a new set of species/hybrids and with some additional resolution via the long read sequencing. The paper is well written and clear and I have no serious complaints.

      In the abstract, the authors make three primary claims:

      Structural variation plays a strong role in TE load.

      Transposition plays only a minor role in shaping the TE landscape in MA lines.

      Transposition rates are not increased by hybridization but are affected by genotype-specific factors.

      I found all three claims supported, albeit with some minor questions below:

      Structural variation plays a strong role in TE load.

      Convinced of this result. However:

      Line 185-187/Figure 3C: I'm curious given that the changes in Ty count are so often linked to changes in gross DNA sequence whether the count per total DNA sequence is actually changing on average in these genomes. Ie., does hybridization tend to increase TE count via CNV or does hybridization tend to increase DNA content in the MA lines and TEs come along for the ride?

      The Ty content definitely “rides along” with the rest of the genome that is affected by retrotransposition-unrelated SVs. To further highlight this point, we added a panel (E) to Figure 3 in which we correlate the net Ty copy number change (same as panel D, formerly C) to the corresponding genome size, which reflects the amount of DNA lost/gained by all SV types. We added the following to the results section:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift. Some (but not all) of these crosses also exhibited significant increases in genome size after evolution (Supplemental Figure S7A). The net Ty CN changes per MA line subgenome were globally correlated to the corresponding changes in subgenome size (Figure 3E). Even after excluding polyploid lines (which have the largest changes in both Ty CN and genome size), we found a significant relationship between the two variables (mixed linear model with random intercepts and slopes for MA crosses, P-value=3.71✕10-9; Supplemental Figure S7B), indicating that SVs affecting large portions of the genome have a substantial impact on the Ty landscape.”

      One question about ploidy (lines 175-177):

      Both aneuploidy and triploidy seem easy to call from this data. A 3:1 tetraploidy as well. However, in Figure 2B there are tetraploids that are around the 1:1 line. How are the authors calling ploidy for these strains? This was not clear to me from the text.

      This detail was indeed missing from the manuscript. The ploidy level of all MA lines was previously measured by DNA staining and flow cytometry, and the ploidy level of the subgenomes of each polyploid MA line was previously inferred from short-read sequencing. We modified the figure captions and the main text to include this along with the corresponding references:

      Figure 2:

      “The ploidy level of each line was previously determined by DNA staining and flow cytometry (Charron et al., 2019; Marsit et al., 2021).”

      Main text:

      “The ratio of classified bases per subgenome was consistent with the corresponding ploidy levels: triploid BC lines had two copies of the SpC subgenome, while tetraploid lines had both SpC subgenomes duplicated (Charron et al., 2019; Marsit et al., 2021) (Figure 2B).”

      “Finally, we used the ploidy level of each MA line subgenome as previously measured by flow cytometry and short-read sequencing (Charron et al., 2019; Marsit et al., 2021).”

      Reviewer #3 (Public Review):

      Henault et al. address the important open question of whether hybridization could trigger TE mobilization. To do this they analysed MA lines derived from crosses of Saccharomyces paradoxus and Saccharomyces cerevisiae using long-read sequencing. These MA lines were already analysed in a previous publication using Illumina short-read data but the novelty of this work is the long-read sequencing data, which may reveal previously missed information. It is an interesting message of this study that hybridization between the two species did not lead to much TE activity. Due to this low activity, the authors performed an additional TE activity assay in vivo to measure transposition rates in hybrid backgrounds. The study is well written and I cannot spot any major problems. The study provides some important messages (like the influence of the genotype and mitochondrial DNA on transposition rates).

      Major comments

      • What I miss the most in this work is the perspective of the host defence against TEs in Saccharmoces. Based on such a mechanistic perspective, why do the authors think that hybridization could lead to a TE reactivation? For example, in Drosophila small RNAs important for the defence against a TE, are solely maternally transmitted. Hybrid offspring will thus solely have small-RNAs complementary to the TEs of the mother but not to the TEs of the father, therefore a reactivation of the paternal TEs may be expected. I was thus wondering, what is the situation in yeast. Why would we expect an upregulation of TEs? Without such a mechanistic explanation the hypothesis that TEs should be upregulated in hybrids is a bit vague, based on a hunch.

      We agree with the reviewer that in the first version of the manuscript, the justification for the investigation of the reactivation hypothesis in the first place was not self-sufficient and relied too much on our previous work, upon which this article builds. We extensively remodeled the introduction to better justify the investigation of this hypothesis in the context of the current knowledge on the regulation of Ty elements in Saccharomyces.  

      Reviewer #1 (Recommendations For The Authors):

      It's interesting that the net change in transposable element copy number in mutation accumulation lines is either insignificant or gain, and never a significant loss. I think this could make a nice discussion point regarding the roles of drift and selection on TE load.

      We thank the reviewer for the suggestion and agree that this is an interesting perspective that we did not explore in the first version of the manuscript. We thus included a short discussion point in the Results:

      “The distributions of net Ty CN change per MA line showed that most crosses had significant gains (Figure 3D), suggesting that Ty load can often increase as a result of random genetic drift.”

      We also added the following paragraph to the discussion section:

      “Our experiments illustrate how under weakened natural selection efficiency, TE load can increase in hybrid genomes by the action of transposition-unrelated SVs. This offers a nuanced perspective on the classical interpretation of the transposition-selection balance model (Charlesworth et al., 1994; Charlesworth and Langley, 1989), in which increased TE load would be predominantly driven by the relaxation of purifying selection against TE insertions generated by de novo transposition. Our results suggest that SVs arising in the context of hybridization can act as a significant source of TE insertion polymorphisms which natural selection can purge more or less efficiently, depending on the population genetic context. This is closely related to the idea that sexual reproduction could favor the spread of TE families, contributing to their evolutionary success (Hickey, 1982; Zeyl et al., 1996). Since the insertion polymorphisms that contribute to increase TE load mostly originate from standing genetic variation, they could be less deleterious and thus harder for natural selection to purge efficiently.”

      The point about the role of LOH in TE load is cool!

      We thank the reviewer for their enthusiasm, it is one of our favorite results as well.

      Figure 1: Add a figure component of the green box and label it Ty1 or TE.

      We modified Figure 1 accordingly.

      Figure 2C: what is the assembly size ratio?

      We added the following sentence to the figure caption to clarify what we define as assembly size ratio:

      “Assembly size ratio refers to the ratio of subgenome assembly size to the corresponding parental assembly size.”

      Something cut off in the N50 plot axis

      Unfortunately, we can’t seem to understand what the reviewer meant with this comment, nothing seems cut out of the figure panel 2C in any of our versions of the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      These are all minor comments/suggestions that the authors can take or leave.

      Line 42: "fuels" should be "fuel".

      Since the verb refers to “source” and not “variants”, we believe it should be at the third person singular.

      Line 43: unclear what the authors mean by "regroup".

      We understand how this phrasing may sound strange. We modified the sentence accordingly:

      “Structural variation is a term that encompasses a broad variety of large-scale sequence alterations”

      Line 51-52: There are a couple of really nice papers that could be cited here from Anna Selmecki's group (Todd et al. 2020, Todd and Selmecki 2019, both in eLife).

      We thank the reviewer for the suggestions, we included some of these references in the manuscript.

      Figure 1: This is a nice cartoon! I'd suggest spelling out LOH here for a truly naive reader.

      We modified the Figure 1 accordingly.

      Figure 3A: One thing that is slightly lost here in the presentation is the relative frequency of the different events because of the changing scales across 3A. I can see why you want to do it this way, but would consider whether there may be a way to present this that makes it more obvious how much more frequent polyploidy is than excision for example.

      We agree with the reviewer that the focus of this visualization is to compare crosses and individual MA lines within SV types, and fails to display the relative importance of each SV type. We solved this by including an additional panel (new 3A) that shows how the number of Ty loci affected by each SV type scales in comparison to others.

      Figure 5: I'm not a fan of the gray bars highlighting the individual strains. This made the graph less intuitively readable for me.

      We tend to agree with the reviewer and rolled back to a previous version of Figure 5 that was lighter on annotations.

      One thing I would like to see in the future from this data (definitely not in this paper) is genome rearrangements within these hybrid MA lines. How often are there structural changes and how often are those changes mediated by repeats including TEs?

      We completely agree with the reviewer that this would be a very interesting avenue, with a distinct (and likely higher) set of challenges at the analysis level compared to simply focusing on TE sequences like we did here. We hope to be able to tackle this goal in the future of this project.

      Reviewer #3 (Recommendations For The Authors):

      • I'm not from the yeast field. But why this focus on the Ty-load? Are Ty's the only active TEs in yeast? Provide some background on the TE landscape in yeast and a justification for focusing on Ty's.

      We agree with the reviewer that this point was only implicit in the introduction. We modified the introductory segment on Saccharomyces yeasts to mention that Ty retrotransposons are the only TEs found in these genomes, thus explaining the exclusive focus on them. It now reads as follows:

      “In the case of Saccharomyces cerevisiae, the only TEs found are five families of long terminal repeat (LTR) retrotransposons families named Ty1-Ty5 (Kim et al., 1998).”

      • 56 I would argue that Petrov et al 2003 is not the best citation for arguing that TEs can lead to genomic rearrangement through ectopic recombination. Petrov solely showed that some long TE families are at lower population frequency than short TE families ones. This could be due to many reasons (e.g. recent activity of long TEs - mostly LTRs) but Petrov interpreted the data as being due to ectopic recombination. Petrov, therefore, did not demonstrate any direct evidence for the involvement of ectopic recombination.

      We agree with the reviewer that this reference is not the best choice to simply support the role of TEs in generating ectopic recombination events and modified the references accordingly.

      • For the assembly the authors used two steps 1) separate the reads based on similarity to a subgenome 2) and assembly the reads from the resulting two sets separately. This is probably the only viable approach, but I'm wondering if this step can lead to some biases (many reads may not be assigned to one sub-genome or assigned to the wrong sub-genome). An alternative, possibly less biased approach, would be to use one of the emerging assemblers that promise to assemble sub-genomes. Maybe discuss why this approach was not pursued.

      We completely agree that our method has some level of bias. We adopted it because it seemed the most appropriate to answer our question, which required to resolve individual TE insertions at the level of single haplotype sequences. One specific challenge of this dataset is that we have a relatively wide range of nucleotide divergence between parental subgenomes in the different MA crosses, from <1% to ~15%. The efficiency of haplotype separation from tools that are not necessarily designed to be tunable with respect to the level of nucleotide divergence seemed uncertain, which is why we opted for a custom methodology. Although read non-classification remains a problem that is hard to solve (and would remain so using orthogonal strategies), we believe that read misclassification is minimized by our stringent criteria for read classification. The goal of this study was not to develop a tool nor to benchmark our approach against existing diploid assembly tools. It yielded phased genome representations that were of sufficient completeness and contiguity to confidently answer our questions, and we believe that pushing the discussion towards technical considerations would fall outside of our main objective.

      • The authors used a decision tree to classify Ty loci. What were the training data? How were the trees validated? Decision tree is a technical term for a classifier in machine learning. I do not think the authors used machine learning in this work, but rather an "an ad-hoc set of rules". The term decision tree in this study is misleading.

      We believe that the term “decision tree” can simply refer to a hierarchy of conditional rules implemented as a classification algorithm. As the reviewer pointed, it is clear from the manuscript that none of the analyses performed include any form of training or fitting of a machine learning classifier. However, we agree that its specific reference to the machine learning classifier can create unnecessary confusion. We thus agree to remove this term from the manuscript and replaced all its instances by “a hierarchy of binary rules”.

      • 272: as it is the CNC explanation does not make a lot of sense to me; some information is missing, is p22 expression increasing with copy numbers?

      Yes, p22 expression correlates positively with the CN of p22-expressing Ty1 elements.

      Why are the two alternative downstream codons important?

      We thought it would be useful to mention the two start codons at this point because later in the discussion, we bring the conservation of the first start codon as an observation consistent with the putative expression of p22 in S. paradoxus. We also thought that it helped clarify the mechanism by which the N-truncated version of the protein is expressed.

      p22 interferes with assembly viral particles when in high copy numbers, but what happens when at low copy numbers, is it essential for retroviral activity? Is it even necessary for the virus or just some garbage product (they mention N-truncated).

      To our knowledge, these questions regarding the potential molecular functions of p22 outside of a retrotransposition restriction factor are still open. We added details to the background on CNC in the Introduction and Results section to help clarify some the points raised:

      Introduction:

      “The best known regulation mechanism in yeast is termed copy number control (CNC) and was characterized in the Ty1 family of S. cerevisiae. This mechanism is a potent copy-number dependent negative feedback loop by which increasing the CN of Ty1 elements strengthens their repression (Czaja et al., 2020; Garfinkel et al., 2003; Saha et al., 2015).”

      Results:

      “The mechanism of negative copy-number dependent self-regulation of retrotransposition (CNC) was characterized in the Ty1 family of S. cerevisiae (Garfinkel et al., 2016). This mechanism relies on the expression of an N-truncated variant of the Ty1 capsid/nucleocapsid Gag protein (p22) from two downstream alternative start codons (Nishida et al., 2015; Saha et al., 2015). p22 expression scales up with the CN of Ty1 elements that encode it (Tucker et al., 2015), which gradually interferes with the assembly of the viral-like particles essential for Ty1 replication (Cottee et al., 2021; Saha et al., 2015). Thus, CNC yields a steep negative relationship between the retrotransposition rate measured with a tester element and the number of Ty1 copies in the genome (Garfinkel et al., 2003; Tucker et al., 2015).”

      • mtDNA influences transposition, is anything known about the mechanism?

      When presenting this result, we make it clear that this finding is not new and was previously observed in S. cerevisiae x S. uvarum hybrids by Smukowski-Heil et al. (2021). In this reference, the authors discuss multiple mechanisms by which mitochondrial biology and mito-nuclear interplay may affect transposition rate, although their data cannot support one specific hypothesis. Our data does not to allow to further dissect the mechanistic basis of the mtDNA effect, not more than the effect of distinct Ty1 natural variants. Since we simply provide new independent evidence for the mtDNA effect, it seems to us that repeating the discussion on putative mechanisms while bringing no support to any given hypothesis would be of limited relevance.

      • During the first reading, I got quite confused about what CN means (copy number as it turned out). I suggest using abbreviations only if absolutely necessary, and I'm not entirely convinced it is necessary here. But I leave this to the discretion of the authors.

      We agree that the excessive use of abbreviations in manuscripts is annoying. However, in this case, “copy number” is used so extensively that its abbreviation seemed to improve the reading experience. Thus, we would prefer to keep it unchanged.

      • Fig 3D: Wilcoxon Rank sum test. It is not clear to me what was tested here? Which data were used?

      We confirm that the statistical test employed is the Wilcoxon signed-rank test, and not the Wilcoxon rank-sum test (also known as Mann-Whitney U-test). The Wilcoxon signed-rank test is used here as a non-parametric one-sample test against the null hypothesis that the distribution is centered around zero.

      • de novo -> italics

      We choose to follow the recommendation of the general style conventions of the ACS guide for scholarly communications not to italicize common Latin terms like “de novo”, “e.g.” and “i.e.”.

    1. Instead of seeking discrete answers to complex problems, experts un-derstand that a given issue may be characterized by several compet-ing perspectives as part of an ongoing conversation in which infor-mation users and creators come together and negotiate meaning.

      This part of the assignment confused me, but now I think I understand better. I realized that sometimes we don't have all the answers, and sometimes the "answers" are just a collaboration of opinions and it is up to you to decide.All the sources I am finding are not direct answers to my question, but they do relate and spark my thoughts and more questions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      The reviewers make some suggestions aimed towards increasing the clarity of the manuscript, and I suggest that the authors examine those carefully. In particular, the figure is difficult to read and could contain additional information to help the reader's interpretation. For example, Reviewer 1 suggests including sample age estimates alongside depth, while Reviewer 3 also notes that there is missing information in the figure. Apart from the figure, Reviewer 1 suggests two additional analysis to help explain the amount of mammoth DNA recovered, which they observe is much higher than previous similar investigations. This would seem to be an important issue to address, given the surprising nature of the findings. In addition to this larger issue, the Reviewer makes a few important suggestions for supplementary material that may be needed to support the authors' statements.

      Some additional recommended edits -- in particular to the text and included references to related studies -- are suggested by Reviewers 2 and 3, and both commented on the lack of a publicly-available data repository. The authors may also wish to comment on or revisit their differential treatment of wooly mammoth vs. wooly rhinoceros samples, though I suspect this has more to do with low read numbers for the rhinos.

      Thank you very much for the positive assessment of our manuscript and clear suggestions for revision. We address these points below.

      Reviewer #1 (Recommendations For The Authors):

      I have a few suggestions that might further improve the manuscript:

      It is difficult for the reader to follow which core slices exactly have been sampled and sequenced. The authors mention 23 samples were taken from core LK-001 and 16 samples from core LK-007. From the text it remains unclear to me what the exact age of each of these samples is. Figure 1 shows the depth at which the LK-001 core was sampled, maybe sample age estimates could be included here.

      Thanks for pointing this out. We have added approximate ages to Figure 1, added the depth range to the text (“from 1.5 to 80 cm”; l. 73-74, caption Figure 1), and reworked the table of the sampling depths in the supplement.

      Line 84-87. The authors mention the retrieval of DNA from several expected Arctic taxa, however no further data regarding these findings is given in the manuscript. It would be useful to report the same numbers for these species as the ones given for the Mammuthus and woolly rhinoceros, which would allow for a comparison of the relative abundance of the DNA between these species. Are the expected Arctic species for instance at much higher (DNA) abundance in the samples? It would also be interesting to know if the authors discovered DNA from extant species that are unlikely to have occurred in the geographic region. A (supplementary)table listing the number of mapped reads to each of the respective mitogenomes for each sequence library would be useful for the reader.

      We added a supplementary table (S8) indicating the numbers of reads assigned to mammals.

      Line 90: I am somewhat amazed by the amount of mammoth DNA the authors recovered from these cores. A total depth of over 400X of the mitogenome is quite extraordinary and I am not aware of any ancient sediment study to date that has retrieved a similar amount of data. For instance, the Wang et al. 2021 paper, which the authors cite, sequenced over 400 samples and did not find any mammoth DNA in 70% of those. For the 30% of samples showing signs of mammoth DNA they retrieved on average 530 sequence reads. In this study the authors find on average ~20.000 reads, in 22 out of the 23 sequence libraries. This makes me wonder if the way the mapping was performed has been too lenient, resulting in possible spurious mappings? To really confirm the authenticity of the mammoth (and woolly rhino data) I would suggest two additional analysis:

      1) Mapping all the sequence libraries to a reference consisting of the complete Asian-elephant genome (for instance https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_024166365.1/), the complete human genome (+mitogenome) and the Asian elephant mitogenome. This could possibly reduce spurious mappings as conserved regions between the genomes are filtered out and could also reduce the possible mapping of NUMTS. If the authors could show that after such a mapping approach a significant number of reads are still assigned to the Asian elephant part (including the mitogenome) of the reference, the reported findings would be strengthened.

      2) I also suggest to construct a mitochondrial haplotype network from the obtained DNA, while also including previously published Asian and African elephants as well as previously published mammoth mitogenomes. If the obtained haplotypes indeed show that they cluster within the known haplotype diversity of mammoth, that would be strong support for the authenticity of the data

      The same analysis could be considered for the woolly rhino data, although the lower read numbers might make this analysis challenging.

      We agree that the amount of mammoth DNA is surprising, which is why we opted for further laboratory experiments for confirmation of the hybridization capture results of the first core, i.e., 1) DNA extraction from a second core of a different lake, 2) a quantitative PCR approach (ddPCR), and 3) metabarcoding. Our results of the highly specific ddPCR and metabarcoding assays confirmed considerable amounts of mammoth DNA in two sediment cores of different lakes, thus we have no doubts regarding the authenticity of the data. Considering the large amount of mammoth DNA, the high number of reads, and particularly the high mitogenome coverage, we argue that the effect of some spurious mapping is negligible and does not affect the main outcome and conclusions of our study. Although we agree that a haplotype network would be interesting, such analyses would stretch beyond the focus of this publication.

      Line 91: The authors mention negative controls (extraction and library blanks) did not produce any reads assigned to mammals. This is quite remarkable, as in my experience low levels of (human)contamination are almost always present in the blanks. Could the authors comment on why they think the blanks did not show any signal of mammalian DNA?

      The hybridization capture enrichment and the filtration and mapping procedures likely eliminated human contamination. Also, the data were mapped against Arctic mammal mitogenomes, which did not include human reference sequences. However, six of the sediment samples contained human sequences (now shown in supplementary table S8), albeit at low read counts (mean = 65)

      Line 97: "mapping suggested that the sequences throughout the core originated from multiple individuals" The authors do not provide any supporting data showing this. I think that an analysis (for instance based on allele frequencies) has to be included in manuscript to support this claim.

      We agree that his claim was not sufficiently supported. We performed further analyses including genomic data of previously retrieved mammoth remains and assigned our data to these haplogroups; the results were added to the main text and are shown as a figure (Fig. 2).

      Line 98: "Signatures of post-mortem DNA decay were comparably minor."

      Do the authors know if the used hybridisation enrichment method can distort the measurement of post-mortem damage? Are for instance reads with C-T substitutions less likely to be captured by the baits?

      To our knowledge, there is no study suggesting that damaged sites are less likely to be captured. In general, the hybridization capture procedure is not overly specific, and studies report that DNA is readily and preferentially captured as long as the difference between baits and DNA is not above 10%.

      Line 100: "The proportions of bases did not suggest a substantial deviation from those in the reference genomes or in the closest extant relative of Mammuthus, the Asian elephant (Elephas maximus)."

      It is not clear to me what the authors mean by this. Could the authors explain how this was measured and what their interpretation of this result is?

      We realize that the sentence was unclear. We meant that the nucleotide composition was similar to that of the reference genomes or the closest extant relative. However, as we do not consider this important for the argument, we have removed this sentence from the manuscript.

      Given the high number of recovered mammoth reads in the samples, it would be interesting to know how much mammoth reads are present in the sample before enrichment capture with the baits. Shotgun sequencing the raw extract of one of the samples with the highest number of mammoth reads might allow for a rough estimate of mammoth DNA abundance compared to the other extant species (e.g. reindeer, Arctic lemming and hare) found in the sample(s). This could give further clarification about the extent of stratigraphy disturbance and its overall effect on the DNA based community reconstruction. However, this is just a suggested additional analysis and not something I believe crucial for supporting the overall findings in this manuscript.

      We fully agree that this would be a highly interesting and informative additional analysis to perform. It was, however, not possible to perform this additional analyses in the course of the current experiments.

      Finally, I could not find a public link to the (sequence)data produced in this study. I strongly encourage the authors to make their data publicly available.

      Thank you for pointing this out. We have added a Data Availability paragraph, including the respective reference.

      Reviewer #2 (Recommendations For The Authors):

      In the Discussion it is mentioned that the reasons for Mammoth extinction are not entirely clear but are largely attributed to sudden climate warming (and add some relevant citations). However, there is also abundant literature that suggest humans also played a role in their extinction (for instance, a recent one, Damien et al. (2022) at Ecology Letters 25: 127-137).

      We agree with the reviewer and have added some the recent citation highlighting the possible influence of humans.

      One possibility to add further interest to this paper would be to conduct a phylogenetic tree with the Mammoth mitogenome(s) retrieved and a reference dataset; it could be interesting to know where do they fall in the phylogeny -already abundant with tens of individuals- and maybe it could be even possible to roughly estimate their date. There are some papers that report many Mammoth mitogenomes, including of course some from Siberia; for instance Chang et al. (2017) at Sci Reports and also Fellow Yates et al. (2017) also at Sci Reports (the latter mainly from Central Europe).

      We are well aware of the amount of mt genomes available for mammoth, and such an analyses would be an interesting addition, potentially also offering the possibility to date the DNA. However, the analyses was hampered and would be less secure for this dataset, as our sequences display quite some variation among each other, suggesting that we have a mix of multiple mt genomes, which we cannot readily distinguish. We thus refrain from this, also because we instead provide multiple lines of evidence for the existence of the mammoth DNA in the surface sediment core (metabarcoding, ddPCR).

      Minor points:

      -Correct wooly to woolly

      Revised.

      -In the sampling description it is not totally clear if the samples were taken at 1 cm each (it is mentioned that core LK-001 is sliced in the field at 1-cm steps for radiometric dating and later it is explained that 23 samples were analyzed from this core, but it is unclear if they represent 23 cm of core)

      -Maybe the authors could briefly define some terms such as "talik"

      Revised.

      Reviewer #3 (Recommendations For The Authors):

      Maybe I missed this but I could not find a data availability statement or the location of the repository

      We have added a Data Availability paragraph, including the respective reference.

      It would be good to see some additional analysis on the distribution of the woolly rhinoceros DNA through the sediment core - like the figure for the mammoth i.e read numbers vs depth.

      We have added to the supplements a table showing the numbers of assigned mammal reads over the core depths (Table S8). However, as rhinoceros reads are considerable rarer in our results, we did not produce a figure.

      Would it be possible to be more explicit about the multiple mammoth individuals, could you calculate a minimum number or haplotypes for example.

      We agree that his claim was not sufficiently supported and added results from additional analyses (incl. Fig. 2). Please see our response above.

      Based on the aim stated in the introduction, the analysis of the Arctic biodiversity of this area is missing, it would be nice to see these result added or maybe the focus needs to be changed for clarity.

      We now explicitly state that this objective pertains to a different study, which is currently still in preparation for publication.

      The single main figure needs a bit more consideration. For example in panel A - there was no information on the transformation performed or what the general trend line refers to. Do the results in panel B refer to all 22 libraries? What is the x-axis in Panel C and what do the coloured lines refer to? Additionally, I think the figure needs to be in higher resolution with increased text size on all axes.

      We revised the figure and the caption for clarity and readability.

      Finally this might be an accidental typo - but when referring to the sample aged at around 8,677 years in text it states this the 36.5 cm sample (line 130 and 192), but the supplementary says this is the 51cm sample (Table S6). This would maybe impact potential conclusions. Would you be able to clarify this.

      Thank you for noting this error, we revised it.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Dubicka and co-workers on calcification in miliolid foraminifera presents an interesting piece of work. The study uses confocal and electron microscopy to show that the traditional picture of calcification in porcelaneous foraminifera is incorrect.

      Strengths:

      The authors present high-quality images and an original approach to a relatively solid (so I thought) model of calcification.

      Weaknesses:

      There are several major shortcomings. Despite the interesting subject and the wonderful images, the conclusions of this manuscript are simply not supported at all by the results. The fluorescent images may not have any relation to the process of calcification and should therefore not be part of this manuscript. The SEM images, however, do point to an outdated idea of miliolid calcification. I think the manuscript would be much stronger with the focus on the SEM images and with the speculation of the physiological processes greatly reduced.

      Reply: We would like to give thanks for all of the highly valuable comments. Prior to our study, we were also convinced that the calcification model of Miliolid (porcelaneous) foraminifera was relatively solid. Nevertheless, our SEM imaging results surprisingly contradicted the old model. The main difference is the in situ biomineralization of calcitic needles that precipitate within the chamber wall after deposition of ACC-bearing vesicles. We agree that our fluorescence studies presented in the paper are not conclusive evidence for the calcification model used by the studied Miliolid species. However, our fluorescent results show that “the old model” (sensu Hemleben et al., 1986) is not completely outdated. Most of the fluorescent imaging data show a vesicular transport of substrates necessary for calcification. This transport is presented by Calcein labelling experiments (Movie 1 that show a high number of dynamic endocytic vesicles of sea water circulation within the cytoplasm. These very fine Calcein-labelled vesicles are most likely responsible for transport and deposition of Ca2+ ions. This is partly consistent with the model presented by Hemleben et al. (1986). We may speculate that calcite nucleation is already occurring within the transported vesicles, but at this stage of research we have no evidence for this phenomenon.

      Further live imaging fluorescence data show autofluorescence of vesicles upon excitation at 405 nm (emission 420–480 nm) associated with acidic vesicles marked by pH-sensitive LysoGlow84, may be a hint indicating association of ACC-bearing vesicles with acidic vesicles. Such spatial association of these vesicles may indicate a mechanism of pH elevation in the vesicles transporting Ca2+-rich gel to the calcifying wall of the new chamber.

      We will do our best to limit the physiological interpretation presented based on fluorescence studies in the revised version of the manuscript. We are convinced that our fluorescent live imaging experiments provide important observations in biomineralizing Miliolid foraminifera, which are still missing in the existing literature. It should be stressed that all the fluorescent experiments and SEM observations were based on specimens constructing and biomineralizing new chambers. All of them belong to the same species and come from the same culture. Due to the aforementioned reasons, it is worthwhile presenting these complimentary results of our study. In the future they may be helpful in further exploration and understanding of all aspects of calcification in foraminifera.

      Reviewer #2 (Public Review):

      Summary:

      Dubicka et al. in their paper entitled " Biocalcification in porcelaneous foraminifera" suggest that in contrast to the traditionally claimed two different modes of test calcification by rotallid and porcelaneous miliolid formaminifera, both groups produce calcareous tests via the intravesicular mineral precursors (Mg-rich amorphous calcium carbonate). These precursors are proposed to be supplied by endocytosed seawater and deposited in situ as mesocrystals formed at the site of new wall formation within the organic matrix. The authors did not observe the calcification of the needles within the transported vesicles, which challenges the previous model of miliolid mineralization. Although the authors argue that these two groups of foraminifera utilize the same calcification mechanism, they also suggest that these calcification pathways evolved independently in the Paleozoic.

      Reply: We would like to acknowledge the review and all valuable comments. We do not argue that Miliolida and Rotallida utilise an identical calcification mechanism, but both groups utilize less divergent crystallization pathways, where mesocrystalline chamber walls are created by accumulating and assembling particles of pre-formed liquid amorphous mineral phase.

      Strengths:

      The authors document various unknown aspects of calcification of Pseudolachlanella eburnea and elucidate some poorly explained phenomena (e.g., translucent properties of the freshly formed test) however there are several problematic observations/interpretations which in my opinion should be carefully addressed.

      Weaknesses:

      1) The authors (line 122) suggest that "characteristic autofluorescence indicates the carbonate content of the vesicles (Fig. S2), which are considered to be Mg-ACCs (amorphous MgCaCO3) (Fig. 2, Movies S4 and S5)". Figure S2 which the authors refer to shows only broken sections of organic sheath at different stages of mineralization. Movie S4 shows that only in a few regions some vesicles exhibit red autofluorescence interpreted as Mg-ACC (S5 is missing but probably the authors were referring to S3). In their previous paper (Dubicka et al 2023: Heliyon), the authors used exactly the same methodology to suggest that these are intracellularly formed Mg-rich amorphous calcium carbonate particles that transform into a stable mineral phase in rotaliid Aphistegina lessonii. However, in Figure 1D (Dubicka et al 2023) the apparently carbonate-loaded vesicles show the same red autofluorescence as the test, whereas in their current paper, no evidence of autofluorescence of Mg-ACC grains accumulated within the "gel-like" organic matrix is given. The S3 and S4 movies show circulation of various fluorescing components, but no initial phase of test formation is observable (numerous mineral grains embedded within the organic matrix - Figures 3A and B - should be clearly observed also as autofluorescence of the whole layer). Thus the crucial argument supporting the calcification model (Figure 5) is missing. There is no support for the following interpretation (lines 199-203) "The existence of intracellular, vesicular intermediate amorphous phase (Mg-ACC pools), which supply successive doses of carbonate material to shell production, was supported by autofluorescence (excitation at 405 nm; Fig. 2; Movies S3 and S4; see Dubicka et al., 2023) and a high content of Ca and Mg quantified from the area of cytoplasm by SEM-EDS analysis (Fig. S6)."

      Reply: We used laser line 405nm and multiphoton excitation to detect ACCs. These wavelengths (partly) permeate the shell to excite ACCs autofluorescence. The autofluorescence of the shells is present as well, but it is not clearly visible in movieS4 as the fluorescence of ACCs is stronger. This may be related to the plane/section of the cell which is shown. The laser permeates the shell above the ACCs (short distance), but to excite the shell CaCO3 around foraminifera in the same three-dimensional section where ACCs are shown, the light must pass a thick CaCO3 area due to the three-dimensional structure of the foraminifera shell. Therefore, the laser light intensity is reduced. In a revised version a movie/image with reduced threshold will be shown.

      2) The authors suggest that "no organic matter was detected between the needles of the porcelain structures (Figures 3E; 3E; S4C, and S5A)". Such a suggestion, which is highly unusual considering that biogenic minerals almost by definition contain various organic components, was made based only on FE-SEM observation. The authors should either provide clearcut evidence of the lack of organic matter (unlikely) or may suggest that intense calcium carbonate precipitation within organic matrix gel ultimately results in a decrease of the amount of the organic phase (but not its complete elimination), alike the pure calcium carbonate crystals are separated from the remaining liquid with impurities ("mother liquor"). On the other hand, if (249-250) "organic matrix involved in the biomineralization of foraminiferal shells may contain collagen-like networks", such "laminar" organization of the organic matrix may partly explain the arrangement of carbonate fibers parallel to the surface as observed in Fig. 3E1.

      Reply: We agree with the reviewer that biogenic minerals should, by definition, contain some organic components. We wrote that "no organic matter was detected between the needles of the porcelain structures” as we did not detect any organic structures based only on our FE-SEM observations. We are convinced that the shell incorporates a limited amount of organic matrix. We will rephrase this part of the text to avoid further confusion.

      3) The author's observations indeed do not show the formation of individual skeletal crystallites within intracellular vesicles, however, do not explain either what is the structure of individual skeletal crystallites and how they are formed. Especially, what are the structures observed in polarized light (and interpreted as calcite crystallites) by De Nooijer et al. 2009? The author's explanation of the process (lines 213-216) is not particularly convincing "we suspect that the OM was removed from the test wall and recycled by the cell itself".

      Reply: Thank you for this comment. We will do our best to supplement our explanations. We are aware of the structures observed in polarized light by De Nooijer et al. (2009). However, Goleń et al. (2022, Protist, https://doi.org/10.1016/j.protis.2022.125886) showed that organic polymers may also exhibit light polarization. Additional experimental studies are needed to distinguish these types of polarization. We will aim to investigate this issue in our future research.

      4) The following passage (lines 296-304) which deals with the concept of mesocrystals is not supported by the authors' methodology or observations. The authors state that miliolid needles "assembled with calcite nanoparticles, are unique examples of biogenic mesocrystals (see Cölfen and Antonietti, 2005), forming distinct geometric shapes limited by planar crystalline faces" (later in the same passage the authors say that "mesocrystals are common biogenic components in the skeletons of marine organisms" (are they thus unique or are they common)? It is my suggestion to completely eliminate this concept here until various crystallographic details of the miliolid test formation are well documented.

      Reply: Our intention was to express that mesocrystals are common biogenic components in the skeletons of marine organisms, however Miliolid needles that form distinct geometric shapes limited by planar crystalline faces are unique type of mesocrystals.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      To the Senior Editor and the Reviewing Editor:

      We sincerely appreciate the valuable comments provided by the reviewers, the reviewing editor, and the senior editor. After carefully reviewing and considering the comments, we have addressed the key concerns raised by the reviewers and made appropriate modifications to the article in the revised manuscript.

      The main revisions made to the manuscript are as follows:

      1) We have added comparison experiments with TNDM (see Fig. 2 and Fig. S2).

      2) We conducted new synthetic experiments to demonstrate that our conclusions are not a by-product of d-VAE (see Fig. S2 and Fig. S11).

      3) We have provided a detailed explanation of how our proposed criteria, especially the second criterion, can effectively exclude the selection of unsuitable signals.

      4) We have included a semantic overview figure of d-VAE (Fig. S1) and a visualization plot of latent variables (Fig. S13).

      5) We have elaborated on the model details of d-VAE, as well as the hyperparameter selection and experimental settings of other comparison models.

      We believe these revisions have significantly improved the clarity and comprehensibility of the manuscript. Thank you for the opportunity to address these important points.

      Reviewer #1

      Q1: “First, the model in the paper is almost identical to an existing VAE model (TNDM) that makes use of weak supervision with behaviour in the same way [1]. This paper should at least be referenced. If the authors wish they could compare their model to TNDM, which combines a state space model with smoothing similar to LFADS. Given that TNDM achieves very good behaviour reconstructions, it may be on par with this model without the need for a Kalman filter (and hence may achieve better separation of behaviour-related and unrelated dynamics).”

      Our model significantly differs from TNDM in several aspects. While TNDM also constrains latent variables to decode behavioral information, it does not impose constraints to maximize behavioral information in the generated relevant signals. The trade-off between the decoding and reconstruction capabilities of generated relevant signals is the most significant contribution of our approach, which is not reflected in TNDM. In addition, the backbone network of signal extraction and the prior distribution of the two models are also different.

      It's worth noting that our method does not require a Kalman filter. Kalman filter is used for post hoc assessment of the linear decoding ability of the generated signals. Please note that extracting and evaluating relevant signals are two distinct stages.

      Heeding your suggestion, we have incorporated comparison experiments involving TNDM into the revised manuscript. Detailed information on model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Q2: “Second, in my opinion, the claims regarding identifiability are overstated - this matters as the results depend on this to some extent. Recent work shows that VAEs generally suffer from identifiability problems due to the Gaussian latent space [2]. This paper also hints that weak supervision may help to resolve such issues, so this model as well as TNDM and CEBRA may indeed benefit from this. In addition however, it appears that the relative weight of the KL Divergence in the VAE objective is chosen very small compared to the likelihood (0.1%), so the influence of the prior is weak and the model may essentially learn the average neural trajectories while underestimating the noise in the latent variables. This, in turn, could mean that the model will not autoencode neural activity as well as it should, note that an average R2 in this case will still be high (I could not see how this is actually computed). At the same time, the behaviour R2 will be large simply because the different movement trajectories are very distinct. Since the paper makes claims about the roles of different neurons, it would be important to understand how well their single trial activities are reconstructed, which can perhaps best be investigated by comparing the Poisson likelihood (LFADS is a good baseline model). Taken together, while it certainly makes sense that well-tuned neurons contribute more to behaviour decoding, I worry that the very interesting claim that neurons with weak tuning contain behavioural signals is not well supported.”

      We don’t think our distilled signals are average neural trajectories without variability. The quality of reconstructing single trial activities can be observed in Figure 3i and Figure S4. Neural trajectories in Fig. 3i and Fig. S4 show that our distilled signals are not average neural trajectories. Furthermore, if each trial activity closely matched the average neural trajectory, the Fano Factor (FF) should theoretically approach 0. However, our distilled signals exhibit a notable departure from this expectation, as evident in Figure 3c, d, g, and f. Regarding the diminished influence of the KL Divergence: Given that the ground truth of latent variable distribution is unknown, even a learned prior distribution might not accurately reflect the true distribution. We found the pronounced impact of the KL divergence would prove detrimental to the decoding and reconstruction performance. As a result, we opt to reduce the weight of the KL divergence term. Even so, KL divergence can still effectively align the distribution of latent variables with the distribution of prior latent variables, as illustrated in Fig. S13. Notably, our goal is extracting behaviorally-relevant signals from given raw signals rather than generating diverse samples from the prior distribution. When aim to separating relevant signals, we recommend reducing the influence of KL divergence. Regarding comparing the Poisson likelihood: We compared Poisson log-likelihood among different methods (except PSID since their obtained signals have negative values), and the results show that d-VAE outperforms other methods.

      Author response image 1.

      Regarding how R2 is computed: , where and denote ith sample of raw signals, ith sample of distilled relevant signals, and the mean of raw signals. If the distilled signals exactly match the raw signals, the sum of squared error is zero, thus R2=1. If the distilled signals always are equal to R2=0. If the distilled signals are worse than the mean estimation, R2 is negative, negative R2 is set to zero.

      Thank you for your valuable feedback.

      Q3: “Third, and relating to this issue, I could not entirely follow the reasoning in the section arguing that behavioural information can be inferred from neurons with weak selectivity, but that it is not linearly decodable. It is right to test if weak supervision signals bleed into the irrelevant subspace, but I could not follow the explanations. Why, for instance, is the ANN decoder on raw data (I assume this is a decoder trained fully supervised) not equal in performance to the revenant distilled signals? Should a well-trained non-linear decoder not simply yield a performance ceiling? Next, if I understand correctly, distilled signals were obtained from the full model. How does a model perform trained only on the weakly tuned neurons? Is it possible that the subspaces obtained with the model are just not optimally aligned for decoding? This could be a result of limited identifiability or model specifics that bias reconstruction to averages (a well-known problem of VAEs). I, therefore, think this analysis should be complemented with tests that do not depend on the model.”

      Regarding “Why, for instance, is the ANN decoder on raw data (I assume this is a decoder trained fully supervised) not equal in performance to the relevant distilled signals? Should a well-trained non-linear decoder not simply yield a performance ceiling?”: In fact, the decoding performance of raw signals with ANN is quite close to the ceiling. However, due to the presence of significant irrelevant signals in raw signals, decoding models like deep neural networks are more prone to overfitting when trained on noisy raw signals compared to behaviorally-relevant signals. Consequently, we anticipate that the distilled signals will demonstrate superior decoding generalization. This phenomenon is evident in Fig. 2 and Fig. S1, where the decoding performance of the distilled signals surpasses that of the raw signals, albeit not by a substantial margin.

      Regarding “Next, if I understand correctly, distilled signals were obtained from the full model. How does a model perform trained only on the weakly tuned neurons? Is it possible that the subspaces obtained with the model are just not optimally aligned for decoding?”:Distilled signals (involving all neurons) are obtained by d-VAE. Subsequently, we use ANN to evaluate the performance of smaller and larger R2 neurons. Please note that separating and evaluating relevant signals are two distinct stages.

      Regarding the reasoning in the section arguing that smaller R2 neurons encode rich information, we would like to provide a detailed explanation:

      1) After extracting relevant signals through d-VAE, we specifically selected neurons characterized by smaller R2 values (Here, R2 signifies the proportion of neuronal activity variance explained by the linear encoding model, calculated using raw signals). Subsequently, we employed both KF and ANN to assess the decoding performance of these neurons. Remarkably, our findings revealed that smaller R2 neurons, previously believed to carry limited behavioral information, indeed encode rich information.

      2) In a subsequent step, we employed d-VAE to exclusively distill the raw signals of these smaller R2 neurons (distinct from the earlier experiment where d-VAE processed signals from all neurons). We then employed KF and ANN to evaluate the distilled smaller R2 neurons. Interestingly, we observed that we could not attain the same richness of information solely through the use of these smaller R2 neurons.

      3) Consequently, we put forth and tested two hypotheses: First, that larger R2 neurons introduce additional signals into the smaller R2 neurons that do not exist in the real smaller R2 neurons. Second, that larger R2 neurons aid in restoring the original appearance of impaired smaller R2 neurons. Our proposed criteria and synthetic experiments substantiate the latter scenario.

      Thank you for your valuable feedback.

      Q4: “Finally, a more technical issue to note is related to the choice to learn a non-parametric prior instead of using a conventional Gaussian prior. How is this implemented? Is just a single sample taken during a forward pass? I worry this may be insufficient as this would not sample the prior well, and some other strategy such as importance sampling may be required (unless the prior is not relevant as it weakly contributed to the ELBO, in which case this choice seems not very relevant). Generally, it would be useful to see visualisations of the latent variables to see how information about behaviour is represented by the model.”

      Regarding "how to implement the prior?": Please refer to Equation 7 in the revised manuscript; we have added detailed descriptions in the revised manuscript.

      Regarding "Generally, it would be useful to see visualizations of the latent variables to see how information about behavior is represented by the model.": Note that our focus is not on latent variables but on distilled relevant signals. Nonetheless, at your request, we have added the visualization of latent variables in the revised manuscript. Please see Fig. S13 for details.

      Thank you for your valuable feedback.

      Recommendations: “A minor point: the word 'distill' in the name of the model may be a little misleading - in machine learning the term refers to the construction of smaller models with the same capabilities.

      It should be useful to add a schematic picture of the model to ease comparison with related approaches.”

      In the context of our model's functions, it operates as a distillation process, eliminating irrelevant signals and retaining the relevant ones. Although the name of our model may be a little misleading, it faithfully reflects what our model does.

      I have added a schematic picture of d-VAE in the revised manuscript. Please see Fig. S1 for details.

      Thank you for your valuable feedback.

      Reviewer #2

      Q1: “Is the apparently increased complexity of encoding vs decoding so unexpected given the entropy, sparseness, and high dimensionality of neural signals (the "encoding") compared to the smoothness and low dimensionality of typical behavioural signals (the "decoding") recorded in neuroscience experiments? This is the title of the paper so it seems to be the main result on which the authors expect readers to focus. ”

      We use the term "unexpected" due to the disparity between our findings and the prior understanding concerning neural encoding and decoding. For neural encoding, as we said in the Introduction, in previous studies, weakly-tuned neurons are considered useless, and smaller variance PCs are considered noise, but we found they encode rich behavioral information. For neural decoding, the nonlinear decoding performance of raw signals is significantly superior to linear decoding. However, after eliminating the interference of irrelevant signals, we found the linear decoding performance is comparable to nonlinear decoding. Rooted in these findings, which counter previous thought, we employ the term "unexpected" to characterize our observations.

      Thank you for your valuable feedback.

      Q2: “I take issue with the premise that signals in the brain are "irrelevant" simply because they do not correlate with a fixed temporal lag with a particular behavioural feature hand-chosen by the experimenter. As an example, the presence of a reward signal in motor cortex [1] after the movement is likely to be of little use from the perspective of predicting kinematics from time-bin to time-bin using a fixed model across trials (the apparent definition of "relevant" for behaviour here), but an entire sub-field of neuroscience is dedicated to understanding the impact of these reward-related signals on future behaviour. Is there method sophisticated enough to see the behavioural "relevance" of this brief, transient, post-movement signal? This may just be an issue of semantics, and perhaps I read too much into the choice of words here. Perhaps the authors truly treat "irrelevant" and "without a fixed temporal correlation" as synonymous phrases and the issue is easily resolved with a clarifying parenthetical the first time the word "irrelevant" is used. But I remain troubled by some claims in the paper which lead me to believe that they read more deeply into the "irrelevancy" of these components.”

      In this paper, we employ terms like ‘behaviorally-relevant’ and ‘behaviorally-irrelevant’ only regarding behavioral variables of interest measured within a given task, such as arm kinematics during a motor control task. A similar definition can be found in the PSID[1].

      Thank you for your valuable feedback.

      [1] Sani, Omid G., et al. "Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification." Nature Neuroscience 24.1 (2021): 140-149.

      Q3: “The authors claim the "irrelevant" responses underpin an unprecedented neuronal redundancy and reveal that movement behaviors are distributed in a higher-dimensional neural space than previously thought." Perhaps I just missed the logic, but I fail to see the evidence for this. The neural space is a fixed dimensionality based on the number of neurons. A more sparse and nonlinear distribution across this set of neurons may mean that linear methods such as PCA are not effective ways to approximate the dimensionality. But ultimately the behaviourally relevant signals seem quite low-dimensional in this paper even if they show some nonlinearity may help.”

      The evidence for the “useless” responses underpin an unprecedented neuronal redundancy is shown in Fig. 5a, d and Fig. S9a. Specifically, the sum of the decoding performance of smaller R2 neurons and larger R2 neurons is significantly greater than that of all neurons for relevant signals (red bar), demonstrating that movement parameters are encoded very redundantly in neuronal population. In contrast, we can not find this degree of neural redundancy in raw signals (purple bar).

      The evidence for the “useless” responses reveal that movement behaviors are distributed in a higher-dimensional neural space than previously thought is shown in the left plot (involving KF decoding) of Fig. 6c, f and Fig. S9f. Specifically, the improvement of KF using secondary signals is significantly higher than using raw signals composed of the same number of dimensions as the secondary signals. These results demonstrate that these dimensions, spanning roughly from ten to thirty, encode much information, suggesting that behavioral information exists in a higher-dimensional subspace than anticipated from raw signals.

      Thank you for your valuable feedback.

      Q5: “there is an apparent logical fallacy that begins in the abstract and persists in the paper: "Surprisingly, when incorporating often-ignored neural dimensions, behavioral information can be decoded linearly as accurately as nonlinear decoding, suggesting linear readout is performed in motor cortex." Don't get me wrong: the equivalency of linear and nonlinear decoding approaches on this dataset is interesting, and useful for neuroscientists in a practical sense. However, the paper expends much effort trying to make fundamental scientific claims that do not feel very strongly supported. This reviewer fails to see what we can learn about a set of neurons in the brain which are presumed to "read out" from motor cortex. These neurons will not have access to the data analyzed here. That a linear model can be conceived by an experimenter does not imply that the brain must use a linear model. The claim may be true, and it may well be that a linear readout is implemented in the brain. Other work [2,3] has shown that linear readouts of nonlinear neural activity patterns can explain some behavioural features. The claim in this paper, however, is not given enough”

      Due to the limitations of current observational methods and our incomplete understanding of brain mechanisms, it is indeed challenging to ascertain the specific data the brain acquires to generate behavior and whether it employs a linear readout. Conventionally, the neural data recorded in the motor cortex do encode movement behaviors and can be used to analyze neural encoding and decoding. Based on these data, we found that the linear decoder KF achieves comparable performance to that of the nonlinear decoder ANN on distilled relevant signals. This finding has undergone validation across three widely used datasets, providing substantial evidence. Furthermore, we conducted experiments on synthetic data to show that this conclusion is not a by-product of our model. In the revised manuscript, we added a more detailed description of this conclusion.

      Thank you for your valuable feedback.

      Q6: “Relatedly, I would like to note that the exercise of arbitrarily dividing a continuous distribution of a statistic (the "R2") based on an arbitrary threshold is a conceptually flawed exercise. The authors read too much into the fact that neurons which have a low R2 w.r.t. PDs have behavioural information w.r.t. other methods. To this reviewer, it speaks more about the irrelevance, so to speak, of the preferred direction metric than anything fundamental about the brain.”

      We chose the R2 threshold in accordance with the guidelines provided in reference [1]. It's worth mentioning that this threshold does not exert any significant influence on the overall conclusions.

      Thank you for your valuable feedback.

      [1] Inoue, Y., Mao, H., Suway, S.B., Orellana, J. and Schwartz, A.B., 2018. Decoding arm speed during reaching. Nature communications, 9(1), p.5243.

      Q7: “I am afraid I may be missing something, as I did not understand the fano factor analysis of Figure 3. In a sense the behaviourally relevant signals must have lower FF given they are in effect tied to the temporally smooth (and consistent on average across trials) behavioural covariates. The point of the original Churchland paper was to show that producing a behaviour squelches the variance; naturally these must appear in the behaviourally relevant components. A control distribution or reference of some type would possibly help here.”

      We agree that including reference signals could provide more context. The Churchland paper said stimulus onset can lead to a reduction in neural variability. However, our experiment focuses specifically on the reaching process, and thus, we don't have comparative experiments involving different types of signals.

      Thank you for your valuable feedback.

      Q8: “The authors compare the method to LFADS. While this is a reasonable benchmark as a prominent method in the field, LFADS does not attempt to solve the same problem as d-VAE. A better and much more fair comparison would be TNDM [4], an extension of LFADS which is designed to identify behaviourally relevant dimensions.”

      We have added the comparison experiments with TNDM in the revised manuscript (see Fig. 2 and Fig. S2). The details of model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Reviewer #3

      Q1.1: “TNDM: LFADS is not the best baseline for comparison. The authors should have compared with TNDM (Hurwitz et al. 2021), which is an extension of LFADS that (unlike LFADS) actually attempts to extract behaviorally relevant factors by adding a behavior term to the loss. The code for TNDM is also available on Github. LFADS is not even supervised by behavior and does not aim to address the problem that d-VAE aims to address, so it is not the most appropriate comparison. ”

      We have added the comparison experiments with TNDM in the revised manuscript (see Fig. 2 and Fig. S2). The details of model hyperparameters and training settings can be found in the Methods section in the revised manuscripts.

      Thank you for your valuable feedback.

      Q1.2: “LFADS: LFADS is a sequential autoencoder that processes sections of data (e.g. trials). No explanation is given in Methods for how the data was passed to LFADS. Was the moving averaged smoothed data passed to LFADS or the raw spiking data (at what bin size)? Was a gaussian loss used or a poisson loss? What are the trial lengths used in each dataset, from which part of trials? For dataset C that has back-to-back reaches, was data chopped into segments? How long were these segments? Were the edges of segments overlapped and averaged as in (Keshtkaran et al. 2022) to avoid noisy segment edges or not? These are all critical details that are not explained. The same details would also be needed for a TNDM comparison (comment 1.1) since it has largely the same architecture as LFADS.

      It is also critical to briefly discuss these fundamental differences between the inputs of methods in the main text. LFADS uses a segment of data whereas VAE methods just use one sample at a time. What does this imply in the results? I guess as long as VAEs outperform LFADS it is ok, but if LFADS outperforms VAEs in a given metric, could it be because it received more data as input (a whole segment)? Why was the factor dimension set to 50? I presume it was to match the latent dimension of the VAE methods, but is the LFADS factor dimension the correct match for that to make things comparable?

      I am also surprised by the results. How do the authors justify LFADS having lower neural similarity (fig 2d) than VAE methods that operate on single time steps? LFADS is not supervised by behavior, so of course I don't expect it to necessarily outperform methods on behavior decoding. But all LFADS aims to do is to reconstruct the neural data so at least in this metric it should be able to outperform VAEs that just operate on single time steps? Is it because LFADS smooths the data too much? This is important to discuss and show examples of. These are all critical nuances that need to be discussed to validate the results and interpret them.”

      Regarding “Was the moving averaged smoothed data passed to LFADS or the raw spiking data (at what bin size)? Was a gaussian loss used or a poisson loss?”: The data used by all models was applied to the same preprocessing procedure. That is, using moving averaged smoothed data with three bins, where the bin size is 100ms. For all models except PSID, we used a Poisson loss.

      Regrading “What are the trial lengths used in each dataset, from which part of trials? For dataset C that has back-to-back reaches, was data chopped into segments? How long were these segments? Were the edges of segments overlapped and averaged as in (Keshtkaran et al. 2022) to avoid noisy segment edges or not?”:

      For datasets A and B, a trial length of eighteen is set. Trials with lengths below the threshold are zero-padded, while trials exceeding the threshold are truncated to the threshold length from their starting point. In dataset A, there are several trials with lengths considerably longer than that of most trials. We found that padding all trials with zeros to reach the maximum length (32) led to poor performance. Consequently, we chose a trial length of eighteen, effectively encompassing the durations of most trials and leading to the removal of approximately 9% of samples. For dataset B (center-out), the trial lengths are relatively consistent with small variation, and the maximum length across all trials is eighteen. For dataset C, we set the trial length as ten because we observed the video of this paradigm and found that the time for completing a single trial was approximately one second. The segments are not overlapped.

      Regarding “Why was the factor dimension set to 50? I presume it was to match the latent dimension of the VAE methods, but is the LFADS factor dimension the correct match for that to make things comparable?”: We performed a grid search for latent dimensions in {10,20,50} and found 50 is the best.

      Regarding “I am also surprised by the results. How do the authors justify LFADS having lower neural similarity (fig 2d) than VAE methods that operate on single time steps? LFADS is not supervised by behavior, so of course I don't expect it to necessarily outperform methods on behavior decoding. But all LFADS aims to do is to reconstruct the neural data so at least in this metric it should be able to outperform VAEs that just operate on single time steps? Is it because LFADS smooths the data too much?”: As you pointed out, we found that LFADS tends to produce excessively smooth and consistent data, which can lead to a reduction in neural similarity.

      Thank you for your valuable feedback.

      Q1.3: “PSID: PSID is linear and uses past input samples to predict the next sample in the output. Again, some setup choices are not well justified, and some details are left out in the 1-line explanation given in Methods.

      Why was a latent dimension of 6 chosen? Is this the behaviorally relevant latent dimension or the total latent dimension (for the use case here it would make sense to set all latent states to be behaviorally relevant)? Why was a horizon hyperparameter of 3 chosen? First, it is important to mention fundamental parameters such as latent dimension for each method in the main text (not just in methods) to make the results interpretable. Second, these hyperparameters should be chosen with a grid search in each dataset (within the training data, based on performance on the validation part of the training data), just as the authors do for their method (line 779). Given that PSID isn't a deep learning method, doing a thorough grid search in each fold should be quite feasible. It is important that high values for latent dimension and a wider range of other hyperparmeters are included in the search, because based on how well the residuals (x_i) for this method are shown predict behavior in Fig 2, the method seems to not have been used appropriately. I would expect ANN to improve decoding for PSID versus its KF decoding since PSID is fully linear, but I don't expect KF to be able to decode so well using the residuals of PSID if the method is used correctly to extract all behaviorally relevant information from neural data. The low neural reconstruction in Fid 2d could also partly be due to using too small of a latent dimension.

      Again, another import nuance is the input to this method and how differs with the input to VAE methods. The learned PSID model is a filter that operates on all past samples of input to predict the output in the "next" time step. To enable a fair comparison with VAE methods, the authors should make sure that the last sample "seen" by PSID is the same as then input sample seen by VAE methods. This is absolutely critical given how large the time steps are, otherwise PSID might underperform simply because it stopped receiving input 300ms earlier than the input received by VAE methods. To fix this, I think the authors can just shift the training and testing neural time series of PSID by 1 sample into the past (relative to the behavior), so that PSID's input would include the input of VAE methods. Otherwise, VAEs outperforming PSID is confounded by PSID's input not including the time step that was provided to VAE.”

      Thanks for your suggestions for letting PSID see the current neural observations. We did it per your suggestions and then performed a grid search for the hyperparameters for PSID. Specifically, we performed a grid search for the horizon hyperparameter in {2,3,4,5,6,7}. Since the relevant latent dimension should be lower than the horizon times the dimension of behavior variables (two-dimensional velocity in this paper) and increasing the dimension will reach performance saturation, we directly set the relevant latent dimensions as the maximum. The horizon number of datasets A, B, C, and synthetic datasets is 7, 6, 6 and 5, respectively.

      And thus the latent dimension of datasets A, B, and C and the synthetic dataset is 14, 12, 12 and 10, respectively.

      Our experiments show that KF can decode information from irrelevant signals obtained by PSID. Although PSID extracts the linear part of raw signals, KF can still use the linear part of the residuals for decoding. The low reconstruction performance of PSID may be because the relationship between latent variables and neural signals is linear, and the relationship between latent variables and behaviors is also linear; this is equivalent to the linear relationship between behaviors and neural signals, and linear models can only explain a small fraction of neural signals.

      Thank you for your valuable feedback.

      Q1.4: “CEBRA: results for CEBRA are incomplete. Similarity to raw signals is not shown. Decoding of behaviorally irrelevant residuals for CEBRA is not shown. Per Fig. S2, CEBRA does better or similar ANN decoding in datasets A and C, is only slightly worse in Dataset B, so it is important to show the other key metrics otherwise it is unclear whether d-VAE has some tangible advantage over CEBRA in those 2 datasets or if they are similar in every metric. Finally, it would be better if the authors show the results for CEBRA on Fig. 2, just as is done for other methods because otherwise it is hard to compare all methods.”

      CEBRA is a non-generative model, this model cannot generate behaviorally-relevant signals. Therefore, we only compared the decoding performance of latent embeddings of CEBRA and signals of d-VAE.

      Thank you for your valuable feedback.

      Q2: “Given the fact that d-VAE infers the latent (z) based on the population activity (x), claims about properties of the inferred behaviorally relevant signals (x_r) that attribute properties to individual neurons are confounded.

      The authors contrast their approach to population level approaches in that it infers behaviorally relevant signals for individual neurons. However, d-VAE is also a population method as it aggregates population information to infer the latent (z), from which behaviorally relevant part of the activity of each neuron (x_r) is inferred. The authors note this population level aggregation of information as a benefit of d-VAE, but only acknowledge it as a confound briefly in the context of one of their analyses (line 340): "The first is that the larger R2 neurons leak their information to the smaller R2 neurons, causing them contain too much behavioral information". They go on to dismiss this confounding possibility by showing that the inferred behaviorally relevant signal of each neuron is often most similar to its own raw signals (line 348-352) compared with all other neurons. They also provide another argument specific to that result section (i.e., residuals are not very behavior predictive), which is not general so I won't discuss it in depth here. These arguments however do not change the basic fact that d-VAE aggregates information from other neurons when extracting the behaviorally relevant activity of any given neuron, something that the authors note as a benefit of d-VAE in many instances. The fact that d-VAE aggregates population level info to give the inferred behaviorally relevant signal for each neuron confounds several key conclusions. For example, because information is aggregated across neurons, when trial to trial variability looks smoother after applying d-VAE (Fig 3i), or reveals better cosine tuning (Fig 3b), or when neurons that were not very predictive of behavior become more predictive of behavior (Fig 5), one cannot really attribute the new smoother single trial activity or the improved decoding to the same single neurons; rather these new signals/performances include information from other neurons. Unless the connections of the encoder network (z=f(x)) is zero for all other neurons, one cannot claim that the inferred rates for the neuron are truly solely associated with that neuron. I believe this a fundamental property of a population level VAE, and simply makes the architecture unsuitable for claims regarding inherent properties of single neurons. This confound is partly why the first claim in the abstract are not supported by data: observing that neurons that don't predict behavior very well would predict it much better after applying d-VAE does not prove that these neurons themselves "encode rich[er] behavioral information in complex nonlinear ways" (i.e., the first conclusion highlighted in the abstract) because information was also aggregated from other neurons. The other reason why this claim is not supported by data is the characterization of the encoding for smaller R2 neurons as "complex nonlinear", which the method is not well equipped to tease apart from linear mappings as I explain in my comment 3.”

      We acknowledge that we cannot obtain the exact single neuronal activity that does not contain any information from other neurons. However, we believe our model can extract accurate approximation signals of the ground truth relevant signals. These signals preserve the inherent properties of single neuronal activity to some extent and can be used for analysis at the single-neuron level.

      We believe d-VAE is a reasonable approach to extract effective relevant signals that preserve inherent properties of single neuronal activity for four key reasons:

      1) d-VAE is a latent variable model that adheres to the neural population doctrine. The neural population doctrine posits that information is encoded within interconnected groups of neurons, with the existence of latent variables (neural modes) responsible for generating observable neuronal activity [1, 2]. If we can perfectly obtain the true generative model from latent variables to neuronal activity, then we can generate the activity of each neuron from hidden variables without containing any information from other neurons. However, without a complete understanding of the brain’s encoding strategies (or generative model), we can only get the approximation signals of the ground truth signals.

      2) After the generative model is established, we need to infer the parameters of the generative model and the distribution of latent variables. During the inference process, inference algorithms such as variational inference or EM algorithms will be used. Generally, the obtained latent variables are also approximations of the real latent variables. When inferring the latent variables, it is inevitable to aggregation the information of the neural population, and latent variables are derived through weighted combinations of neuronal populations [3].

      This inference process is consistent with that of d-VAE (or VAE-based models).

      3) Latent variables are derived from raw neural signals and used to explain raw neural signals. Considering the unknown ground truth of latent variables and behaviorally-relevant signals, it becomes evident that the only reliable reference at the signal level is the raw signals. A crucial criterion for evaluating the reliability of latent variable models (including latent variables and generated relevant signals) is their capability to effectively explain the raw signals [3]. Consequently, we firmly maintain the belief that if the generated signals closely resemble the raw signals to the greatest extent possible, in accordance with an equivalence principle, we can claim that these obtained signals faithfully retain the inherent properties of single neurons. d-VAE explicitly constrains the generated signal to closely resemble the raw signals. These results demonstrate that d-VAE can extract effective relevant signals that preserve inherent properties of single neuronal activity.

      Based on the above reasons, we hold that generating single neuronal activities with the VAE framework is a reasonable approach. The remaining question is whether our model can obtain accurate relevant signals in the absence of ground truth. To our knowledge, in cases where the ground truth of relevant signals is unknown, there are typically two approaches to verifying the reliability of extracted signals:

      1) Conducting synthetic experiments where the ground truth is known.

      2) Validation based on expert knowledge (Three criteria were proposed in this paper). Both our extracted signals and key conclusions have been validated using these two approaches.

      Next, we will provide a detailed response to the concerns regarding our first key conclusion that smaller R2 neurons encode rich information.

      We acknowledge that larger R2 neurons play a role in aiding the reconstruction of signals in smaller R2 neurons through their neural activity. However, considering that neurons are correlated rather than independent entities, we maintain the belief that larger R2 neurons assist damaged smaller R2 neurons in restoring their original appearance. Taking image denoising as an example, when restoring noisy pixels to their original appearance, relying solely on the noisy pixels themselves is often impractical. Assistance from their correlated, clean neighboring pixels becomes necessary.

      The case we need to be cautious of is that the larger R2 neurons introduce additional signals (m) that contain substantial information to smaller R2 neurons, which they do not inherently possess. We believe this case does not hold for two reasons. Firstly, logically, adding extra signals decreases the reconstruction performance, and the information carried by these additional signals is redundant for larger R2 neurons, thus they do not introduce new information that can enhance the decoding performance of the neural population. Therefore, it seems unlikely and unnecessary for neural networks to engage in such counterproductive actions. Secondly, even if this occurs, our second criterion can effectively exclude the selection of these signals. To clarify, if we assume that x, y, and z denote the raw, relevant, and irrelevant signals of smaller R2 neurons, with x=y+z, and the extracted relevant signals become y+m, the irrelevant signals become z-m in this case. Consequently, the irrelevant signals contain a significant amount of information. It's essential to emphasize that this criterion holds significant importance in excluding undesirable signals.

      Furthermore, we conducted a synthetic experiment to show that d-VAE can indeed restore the damaged information of smaller R2 neurons with the help of larger R2 neurons, and the restored neuronal activities are more similar to ground truth compared to damaged raw signals. Please see Fig. S11a,b for details.

      Thank you for your valuable feedback.

      [1] Saxena, S. and Cunningham, J.P., 2019. Towards the neural population doctrine. Current opinion in neurobiology, 55, pp.103-111.

      [2] Gallego, J.A., Perich, M.G., Miller, L.E. and Solla, S.A., 2017. Neural manifolds for the control of movement. Neuron, 94(5), pp.978-984.

      [3] Cunningham, J.P. and Yu, B.M., 2014. Dimensionality reduction for large-scale neural recordings. Nature neuroscience, 17(11), pp.1500-1509.

      Q3: “Given the nonlinear architecture of the VAE, claims about the linearity or nonlinearity of cortical readout are confounded and not supported by the results.

      The inference of behaviorally relevant signals from raw signals is a nonlinear operation, that is x_r=g(f(x)) is nonlinear function of x. So even when a linear KF is used to decode behavior from the inferred behaviorally relevant signals, the overall decoding from raw signals to predicted behavior (i.e., KF applied to g(f(x))) is nonlinear. Thus, the result that decoding of behavior from inferred behaviorally relevant signals (x_r) using a linear KF and a nonlinear ANN reaches similar accuracy (Fig 2), does not suggest that a "linear readout is performed in the motor cortex", as the authors claim (line 471). The authors acknowledge this confound (line 472) but fail to address it adequately. They perform a simulation analysis where the decoding gap between KF and ANN remains unchanged even when d-VAE is used to infer behaviorally relevant signals in the simulation. However, this analysis is not enough for "eliminating the doubt" regarding the confound. I'm sure the authors can also design simulations where the opposite happens and just like in the data, d-VAE can improve linear decoding to match ANN decoding. An adequate way to address this concern would be to use a fully linear version of the autoencoder where the f(.) and g(.) mappings are fully linear. They can simply replace these two networks in their model with affine mappings, redo the modeling and see if the model still helps the KF decoding accuracy reach that of the ANN decoding. In such a scenario, because the overall KF decoding from original raw signals to predicted behavior (linear d-VAE + KF) is linear, then they could move toward the claim that the readout is linear. Even though such a conclusion would still be impaired by the nonlinear reference (d-VAE + ANN decoding) because the achieved nonlinear decoding performance could always be limited by network design and fitting issues. Overall, the third conclusion highlighted in the abstract is a very difficult claim to prove and is unfortunately not supported by the results.”

      We aim to explore the readout mechanism of behaviorally-relevant signals, rather than raw signals. Theoretically, the process of removing irrelevant signals should not be considered part of the inherent decoding mechanisms of the relevant signals. Assuming that the relevant signals we extracted are accurate, the conclusion of linear readout is established. On the synthetic data where the ground truth is known, our distilled signals show a significant improvement in neural similarity to the ground truth when compared to raw signals (refer to Fig. S2l). This observation demonstrates that our distilled signals are accurate approximations of the ground truth. Furthermore, on the three widely-used real datasets, our distilled signals meet the stringent criteria we have proposed (see Fig. 2), also providing strong evidence for their accuracy.

      Regarding the assertion that we could create simulations in which d-VAE can make signals that are inherently nonlinearly decodable into linearly decodable ones: In reality, we cannot achieve this, as the second criterion can rule out the selection of such signals. Specifically,z=x+y=n^2+y, where z, x, y, and n denote raw signals, relevant signals, irrelevant signals and latent variables. If the relevant signals obtained by d-VAE are n, then these signals can be linear decoded accurately. However, the corresponding irrelevant signals are n^2-n+z; thus, irrelevant signals will have much information, and these extracted relevant signals will not be selected. Furthermore, our synthetic experiments offer additional evidence supporting the conclusion that d-VAE does not make inherently nonlinearly decodable signals become linearly decodable ones. As depicted in Fig. S11c, there exists a significant performance gap between KF and ANN when decoding the ground truth signals of smaller R2 neurons. KF exhibits notably low performance, leaving substantial room for compensation by d-VAE. However, following processing by d-VAE, KF's performance of distilled signals fails to surpass its already low ground truth performance and remains significantly inferior to ANN's performance. These results collectively confirm that our approach does not convert signals that are inherently nonlinearly decodable into linearly decodable ones, and the conclusion of linear readout is not a by-product by d-VAE.

      Regarding the suggestion of using linear d-VAE + KF, as discussed in the Discussion section, removing the irrelevant signals requires a nonlinear operation, and linear d-VAE can not effectively separate relevant and irrelevant signals.

      Thank you for your valuable feedback.

      Q4: “The authors interpret several results as indications that "behavioral information is distributed in a higher-dimensional subspace than expected from raw signals", which is the second main conclusion highlighted in the abstract. However, several of these arguments do not convincingly support that conclusion.

      4.1) The authors observe that behaviorally relevant signals for neurons with small principal components (referred to as secondary) have worse decoding with KF but better decoding with ANN (Fig. 6b,e), which also outperforms ANN decoding from raw signals. This observation is taken to suggest that these secondary behaviorally relevant signals encode behavior information in highly nonlinear ways and in a higher dimensions neural space than expected (lines 424 and 428). These conclusions however are confounded by the fact that A) d-VAE uses nonlinear encoding, so one cannot conclude from ANN outperforming KF that behavior is encoded nonlinearly in the motor cortex (see comment 3 above), and B) d-VAE aggregates information across the population so one cannot conclude that these secondary neurons themselves had as much behavior information (see comment 2 above).

      4.2) The authors observe that the addition of the inferred behaviorally relevant signals for neurons with small principal components (referred to as secondary) improves the decoding of KF more than it improves the decoding of ANN (red curves in Fig 6c,f). This again is interpreted similarly as in 4.1, and is confounded for similar reasons (line 439): "These results demonstrate that irrelevant signals conceal the smaller variance PC signals, making their encoded information difficult to be linearly decoded, suggesting that behavioral information exists in a higher-dimensional subspace than anticipated from raw signals". This is confounded by because of the two reasons explained in 4.1. To conclude nonlinear encoding based on the difference in KF and ANN decoding, the authors would need to make the encoding/decoding in their VAE linear to have a fully linear decoder on one hand (with linear d-VAE + KF) and a nonlinear decoder on the other hand (with linear d-VAE + ANN), as explained in comment 3.

      4.3) From S Fig 8, where the authors compare cumulative variance of PCs for raw and inferred behaviorally relevant signals, the authors conclude that (line 554): "behaviorally-irrelevant signals can cause an overestimation of the neural dimensionality of behaviorally-relevant responses (Supplementary Fig. S8)." However, this analysis does not really say anything about overestimation of "behaviorally relevant" neural dimensionality since the comparison is done with the dimensionality of "raw" signals. The next sentence is ok though: "These findings highlight the need to filter out relevant signals when estimating the neural dimensionality.", because they use the phrase "neural dimensionality" not "neural dimensionality of behaviorally-relevant responses".”

      Questions 4.1 and 4.2 are a combination of Q2 and Q3. Please refer to our responses to Q2 and Q3.

      Regarding question 4.3 about “behaviorally-irrelevant signals can cause an overestimation of the neural dimensionality of behaviorally-relevant responses”: Previous studies usually used raw signals to estimate the neural dimensionality of specific behaviors. We mean that using raw signals, which include many irrelevant signals, will cause an overestimation of the neural dimensionality. We have modified this sentence in the revised manuscripts.

      Thank you for your valuable feedback.

      Q5: “Imprecise use of language in many places leads to inaccurate statements. I will list some of these statements”

      5.1) In the abstract: "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive due to the unknown ground truth of behaviorally-relevant signals". This statement is not accurate because it implies no prior work does this. The authors should make their statement more specific and also refer to some goal that existing linear (e.g., PSID) and nonlinear (e.g., TNDM) methods for extracting behaviorally relevant signals fail to achieve.

      5.2) In the abstract: "we found neural responses previously considered useless encode rich behavioral information" => what does "useless" mean operationally? Low behavior tuning? More precise use of language would be better.

      5.3) "... recent studies (Glaser 58 et al., 2020; Willsey et al., 2022) demonstrate nonlinear readout outperforms linear readout." => do these studies show that nonlinear "readout" outperforms linear "readout", or just that nonlinear models outperform linear models?

      5.4) Line 144: "The first criterion is that the decoding performance of the behaviorally-relevant signals (red bar, Fig.1) should surpass that of raw signals (the red dotted line, Fig.1).". Do the authors mean linear decoding here or decoding in general? If the latter, how can something extracted from neural surpass decoding of neural data, when the extraction itself can be thought of as part of decoding? The operational definition for this "decoding performance" should be clarified.

      5.5) Line 311: "we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that behaviorally-irrelevant signals lead to an overestimation of the neural dimensionality of behaviorally-relevant signals." => here the dimensionality of the total PC space (i.e., primary subspace of raw signals) is being compared with that of inferred behaviorally-relevant signals, so the former being higher does not indicate that neural dimensionality of behaviorally-relevant signals was overestimated. The former is simply not behavioral so this conclusion is not accurate.

      5.6) Section "Distilled behaviorally-relevant signals uncover that smaller R2 neurons encode rich behavioral information in complex nonlinear ways". Based on what kind of R2 are the neurons grouped? Behavior decoding R2 from raw signals? Using what mapping? Using KF? If KF is used, the result that small R2 neurons benefit a lot from d-VAE could be somewhat expected, given the nonlinearity of d-VAE: because only ANN would have the capacity to unwrap the nonlinear encoding of d-VAE as needed. If decoding performance that is used to group neurons is based on data, regression to the mean could also partially explain the result: the neurons with worst raw decoding are most likely to benefit from a change in decoder, than neurons that already had good decoding. In any case, the R2 used to partition and sort neurons should be more clearly stated and reminded throughout the text and I Fig 3.

      5.7) Line 346 "...it is impossible for our model to add the activity of larger R2 neurons to that of smaller R2 neurons" => Is it really impossible? The optimization can definitely add small-scale copies of behaviorally relevant information to all neurons with minimal increase in the overall optimization loss, so this statement seems inaccurate.

      5.8) Line 490: "we found that linear decoders can achieve comparable performance to that of nonlinear decoders, providing compelling evidence for the presence of linear readout in the motor cortex." => inaccurate because no d-VAE decoding is really linear, as explained in comment 3 above.

      5.9) Line 578: ". However, our results challenge this idea by showing that signals composed of smaller variance PCs nonlinearly encode a significant amount of behavioral information." => inaccurate as results are confounded by nonlinearity of d-VAE as explained in comment 3 above.

      5.10) Line 592: "By filtering out behaviorally-irrelevant signals, our study found that accurate decoding performance can be achieved through linear readout, suggesting that the motor cortex may perform linear readout to generate movement behaviors." => inaccurate because it us confounded by the nonlinearity of d-VAE as explained in comment 3 above.”

      Regarding “5.1) In the abstract: "One solution is to accurately separate behaviorally-relevant and irrelevant signals, but this approach remains elusive due to the unknown ground truth of behaviorally-relevant signals". This statement is not accurate because it implies no prior work does this. The authors should make their statement more specific and also refer to some goal that existing linear (e.g., PSID) and nonlinear (e.g., TNDM) methods for extracting behaviorally relevant signals fail to achieve”:

      We believe our statement is accurate. Our primary objective is to extract accurate behaviorally-relevant signals that closely approximate the ground truth relevant signals. To achieve this, we strike a balance between the reconstruction and decoding performance of the generated signals, aiming to effectively capture the relevant signals. This crucial aspect of our approach sets it apart from other methods. In contrast, other methods tend to emphasize the extraction of valuable latent neural dynamics. We have provided elaboration on the distinctions between d-VAE and other approaches in the Introduction and Discussion sections.

      Thank you for your valuable feedback.

      Regarding “5.2) In the abstract: "we found neural responses previously considered useless encode rich behavioral information" => what does "useless" mean operationally? Low behavior tuning? More precise use of language would be better.”:

      In the analysis of neural signals, smaller variance PC signals are typically seen as noise and are often discarded. Similarly, smaller R2 neurons are commonly thought to be dominated by noise and are not further analyzed. Given these considerations, we believe that the term "considered useless" is appropriate in this context. Thank you for your valuable feedback.

      Regarding “5.3) "... recent studies (Glaser 58 et al., 2020; Willsey et al., 2022) demonstrate nonlinear readout outperforms linear readout." => do these studies show that nonlinear "readout" outperforms linear "readout", or just that nonlinear models outperform linear models?”:

      In this paper, we consider the two statements to be equivalent. Thank you for your valuable feedback.

      Regarding “5.4) Line 144: "The first criterion is that the decoding performance of the behaviorally-relevant signals (red bar, Fig.1) should surpass that of raw signals (the red dotted line, Fig.1).". Do the authors mean linear decoding here or decoding in general? If the latter, how can something extracted from neural surpass decoding of neural data, when the extraction itself can be thought of as part of decoding? The operational definition for this "decoding performance" should be clarified.”:

      We mean the latter, as we said in the section “Framework for defining, extracting, and separating behaviorally-relevant signals”, since raw signals contain too many behaviorally-irrelevant signals, deep neural networks are more prone to overfit raw signals than relevant signals. Therefore the decoding performance of relevant signals should surpass that of raw signals. Thank you for your valuable feedback.

      Regarding “5.5) Line 311: "we found that the dimensionality of primary subspace of raw signals (26, 64, and 45 for datasets A, B, and C) is significantly higher than that of behaviorally-relevant signals (7, 13, and 9), indicating that behaviorally-irrelevant signals lead to an overestimation of the neural dimensionality of behaviorally-relevant signals." => here the dimensionality of the total PC space (i.e., primary subspace of raw signals) is being compared with that of inferred behaviorally-relevant signals, so the former being higher does not indicate that neural dimensionality of behaviorally-relevant signals was overestimated. The former is simply not behavioral so this conclusion is not accurate.”: In practice, researchers usually used raw signals to estimate the neural dimensionality. We mean that using raw signals to do this would overestimate the neural dimensionality. Thank you for your valuable feedback.

      Regarding “5.6) Section "Distilled behaviorally-relevant signals uncover that smaller R2 neurons encode rich behavioral information in complex nonlinear ways". Based on what kind of R2 are the neurons grouped? Behavior decoding R2 from raw signals? Using what mapping? Using KF? If KF is used, the result that small R2 neurons benefit a lot from d-VAE could be somewhat expected, given the nonlinearity of d-VAE: because only ANN would have the capacity to unwrap the nonlinear encoding of d-VAE as needed. If decoding performance that is used to group neurons is based on data, regression to the mean could also partially explain the result: the neurons with worst raw decoding are most likely to benefit from a change in decoder, than neurons that already had good decoding. In any case, the R2 used to partition and sort neurons should be more clearly stated and reminded throughout the text and I Fig 3.”:

      When employing R2 to characterize neurons, it indicates the extent to which neuronal activity is explained by the linear encoding model [1-3]. Smaller R2 neurons have a lower capacity for linearly tuning (encoding) behaviors, while larger R2 neurons have a higher capacity for linearly tuning (encoding) behaviors. Specifically, the approach involves first establishing an encoding relationship from velocity to neural signal using a linear model, i.e., y=f(x), where f represents a linear regression model, x denotes velocity, and y denotes the neural signal. Subsequently, R2 is utilized to quantify the effectiveness of the linear encoding model in explaining neural activity. We have provided a comprehensive explanation in the revised manuscript. Thank you for your valuable feedback.

      [1] Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L. and Schwartz, A.B., 2013. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), pp.557-564.

      [2] Wodlinger, B., et al. "Ten-dimensional anthropomorphic arm control in a human brain− machine interface: difficulties, solutions, and limitations." Journal of neural engineering 12.1 (2014): 016011.

      [3] Inoue, Y., Mao, H., Suway, S.B., Orellana, J. and Schwartz, A.B., 2018. Decoding arm speed during reaching. Nature communications, 9(1), p.5243.

      Regarding Questions 5.7, 5.8, 5.9, and 5.10:

      We believe our conclusions are solid. The reasons can be found in our replies in Q2 and Q3. Thank you for your valuable feedback.

      Q6: “Imprecise use of language also sometimes is not inaccurate but just makes the text hard to follow.

      6.1) Line 41: "about neural encoding and decoding mechanisms" => what is the definition of encoding/decoding and how do these differ? The definitions given much later in line 77-79 is also not clear.

      6.2) Line 323: remind the reader about what R2 is being discussed, e.g., R2 of decoding behavior using KF. It is critical to know if linear or nonlinear decoding is being discussed.

      6.3) Line 488: "we found that neural responses previously considered trivial encode rich behavioral information in complex nonlinear ways" => "trivial" in what sense? These phrases would benefit from more precision, for example: "neurons that may seem to have little or no behavior information encoded". The same imprecise word ("trivial") is also used in many other places, for example in the caption of Fig S9.

      6.4) Line 611: "The same should be true for the brain." => Too strong of a statement for an unsupported claim suggesting the brain does something along the lines of nonlin VAE + linear readout.

      6.5) In Fig 1, legend: what is the operational definition of "generating performance"? Generating what? Neural reconstruction?”

      Regarding “6.1) Line 41: "about neural encoding and decoding mechanisms" => what is the definition of encoding/decoding and how do these differ? The definitions given much later in line 77-79 is also not clear.”:

      We would like to provide a detailed explanation of neural encoding and decoding. Neural encoding means how neuronal activity encodes the behaviors, that is, y=f(x), where y denotes neural activity and, x denotes behaviors, f is the encoding model. Neural decoding means how the brain decodes behaviors from neural activity, that is, x=g(y), where g is the decoding model. For further elaboration, please refer to [1]. We have included references that discuss the concepts of encoding and decoding in the revised manuscript. Thank you for your valuable feedback.

      [1] Kriegeskorte, Nikolaus, and Pamela K. Douglas. "Interpreting encoding and decoding models." Current opinion in neurobiology 55 (2019): 167-179.

      Regarding “6.2) Line 323: remind the reader about what R2 is being discussed, e.g., R2 of decoding behavior using KF. It is critical to know if linear or nonlinear decoding is being discussed.”:

      This question is the same as Q5.6. Please refer to the response to Q5.6. Thank you for your valuable feedback.

      Regarding “6.3) Line 488: "we found that neural responses previously considered trivial encode rich behavioral information in complex nonlinear ways" => "trivial" in what sense? These phrases would benefit from more precision, for example: "neurons that may seem to have little or no behavior information encoded". The same imprecise word ("trivial") is also used in many other places, for example in the caption of Fig S9.”:

      We have revised this statement in the revised manuscript. Thanks for your recommendation.

      Regarding “6.4) Line 611: "The same should be true for the brain." => Too strong of a statement for an unsupported claim suggesting the brain does something along the lines of nonlin VAE + linear readout.”

      We mean that removing the interference of irrelevant signals and decoding the relevant signals should logically be two stages. We have revised this statement in the revised manuscript. Thank you for your valuable feedback.

      Regarding “6.5) In Fig 1, legend: what is the operational definition of "generating performance"? Generating what? Neural reconstruction?””:

      We have replaced “generating performance” with “reconstruction performance” in the revised manuscript. Thanks for your recommendation.

      Q7: “In the analysis presented starting in line 449, the authors compare improvement gained for decoding various speed ranges by adding secondary (small PC) neurons to the KF decoder (Fig S11). Why is this done using the KF decoder, when earlier results suggest an ANN decoder is needed for accurate decoding from these small PC neurons? It makes sense to use the more accurate nonlinear ANN decoder to support the fundamental claim made here, that smaller variance PCs are involved in regulating precise control”

      Because when the secondary signal is superimposed on the primary signal, the enhancement in KF performance is substantial. We wanted to explore in which aspect of the behavior the KF performance improvement is mainly reflected. In comparison, the improvement of ANN by the secondary signal is very small, rendering the exploration of the aforementioned questions inconsequential. Thank you for your valuable feedback.

      Q8: “A key limitation of the VAE architecture is that it doesn't aggregate information over multiple time samples. This may be why the authors decided to use a very large bin size of 100ms and beyond that smooth the data with a moving average. This limitation should be clearly stated somewhere in contrast with methods that can aggregate information over time (e.g., TNDM, LFADS, PSID) ”

      We have added this limitation in the Discussion in the revised manuscript. Thanks for your recommendation.

      Q9: “Fig 5c and parts of the text explore the decoding when some neurons are dropped. These results should come with a reminder that dropping neurons from behaviorally relevant signals is not technically possible since the extraction of behaviorally relevant signals with d-VAE is a population level aggregation that requires the raw signal from all neurons as an input. This is also important to remind in some places in the text for example:

      • Line 498: "...when one of the neurons is destroyed."

      • Line 572: "In contrast, our results show that decoders maintain high performance on distilled signals even when many neurons drop out."”

      We want to explore the robustness of real relevant signals in the face of neuron drop-out. The signals our model extracted are an approximation of the ground truth relevant signals and thus serve as a substitute for ground truth to study this problem. Thank you for your valuable feedback.

      Q10: “Besides the confounded conclusions regarding the readout being linear (see comment 3 and items related to it in comment 5), the authors also don't adequately discuss prior works that suggest nonlinearity helps decoding of behavior from the motor cortex. Around line 594, a few works are discussed as support for the idea of a linear readout. This should be accompanied by a discussion of works that support a nonlinear encoding of behavior in the motor cortex, for example (Naufel et al. 2019; Glaser et al. 2020), some of which the authors cite elsewhere but don't discuss here.”

      We have added this discussion in the revised manuscript. Thanks for your recommendation.

      Q11: “Selection of hyperparameters is not clearly explained. Starting line 791, the authors give some explanation for one hyperparameter, but not others. How are the other hyperparameters determined? What is the search space for the grid search of each hyperparameter? Importantly, if hyperparameters are determined only based on the training data of each fold, why is only one value given for the hyperparameter selected in each dataset (line 814)? Did all 5 folds for each dataset happen to select exactly the same hyperparameter based on their 5 different training/validation data splits? That seems unlikely.”

      We perform a grid search in {0.001, 0.01,0.1,1} for hyperparameter beta. And we found that 0.001 is the best for all datasets. As for the model parameters, such as hidden neuron numbers, this model capacity has reached saturation decoding performance and does not influence the results.

      Regarding “Importantly, if hyperparameters are determined only based on the training data of each fold, why is only one value given for the hyperparameter selected in each dataset (line 814)? Did all 5 folds for each dataset happen to select exactly the same hyperparameter based on their 5 different training/validation data splits”: We selected the hyperparameter based on the average performance of 5 folds data on validation sets. The selected value denotes the one that yields the highest average performance across the 5 folds data.

      Thank you for your valuable feedback.

      Q12: “d-VAE itself should also be explained more clearly in the main text. Currently, only the high-level idea of the objective is explained. The explanation should be more precise and include the idea of encoding to latent state, explain the relation to pip-VAE, explain inputs and outputs, linearity/nonlinearity of various mappings, etc. Also see comment 1 above, where I suggest adding more details about other methods in the main text.”

      Our primary objective is to delve into the encoding and decoding mechanisms using the separated relevant signals. Therefore, providing an excessive amount of model details could potentially distract from the main focus of the paper. In response to your suggestion, we have included a visual representation of d-VAE's structure, input, and output (see Fig. S1) in the revised manuscript, which offers a comprehensive and intuitive overview. Additionally, we have expanded on the details of d-VAE and other methods in the Methods section.

      Thank you for your valuable feedback.

      Q13: “In Fig 1f and g, shouldn't the performance plots be swapped? The current plots seem counterintuitive. If there is bias toward decoding (panel g), why is the irrelevant residual so good at decoding?”

      The placement of the performance plots in Fig. 1f and 1g is accurate. When the model exhibits a bias toward decoding, it prioritizes extracting the most relevant features (latent variables) for decoding purposes. As a consequence, the model predominantly generates signals that are closely associated with these extracted features. This selective signal extraction and generation process may result in the exclusion of other potentially useful information, which will be left in the residuals. To illustrate this concept, consider the example of face recognition: if a model can accurately identify an individual using only the person's eyes (assuming these are the most useful features), other valuable information, such as details of the nose or mouth, will be left in the residuals, which could also be used to identify the individual.

      Thank you for your valuable feedback.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

      We are glad the reviewer found our manuscript “interesting”, the questions we raise “important”, our claims “well-supported by the experimental results”, and our methods “detailed and clearly structured”.

      The details of the sequentially activated Gaussian simulations give some useful results, but the fundamental idea still appears to be "sequential activation is often indistinguishable from a travelling wave", an idea advanced e.g. by Zhigalov & Jensen (2023). It takes a while until the (in my opinion) more intriguing experimental results.

      To emphasize the experimental results, we switched between the analytical results and the experimental results. Correspondingly, figure 2 now illustrates the more intriguing experimental results and figure 3 the analytical results. In addition, we added subtitles to the different sections of the results to ease the navigation through the paper and to enable the readers to access the different sections more easily.

      One of the key claims is that the spikes are more consistent with two sequentially activated modules rather than a continuous wave (with Fig 3k and 3l key to support this). Whilst this is more consistent, it is worth mentioning that there seems to be stochasticity to this and between-trial variability, especially for spikes.

      In the revised manuscript we added the reviewer’s comment about stochasticity, and we discuss its possible origins:

      "The transition was also not clear when examining spiking responses in some of the trials (as indicated by high DIP scores, Figure 2K). However, the observation that temporal grouping became more pronounced when using ALSA (a more robust estimate of local excitability) (Figure 2L,N), suggests that high DIP values may result from variability in the spike times of single neurons, and not necessarily from the lack of modular activation. Such issues can be resolved by denser sampling of spiking activity in the tissue."

      Recommendations For The Authors:

      The eye-cortex turtle preparation is not the most common. I would add more context about how specific the results are to this preparation vs how comparable it is to human data.

      We added a sentence explaining the relevance of our preparation: “Finally, while the layered organization of turtle cortex is different than that of mammalian cortex, the basic excitability features of both tissues are similar (Connors and Kriegstein, 1986; Hemberger et al., 2019; Kriegstein and Connors, 1986; Larkum et al., 2008; Shein-Idelson et al., 2017b), and substantial differences in the manner by which field potentials and spikes spread through the tissue are not to be expected.”

      Philosophical question: when does a 'module' become small enough for it to count as a travelling wave? More on this could be added to the discussion. I think we are in the very early days for a true understanding of travelling waves, and I wonder if these sequentially activated modules will functionally correspond to the known cortical segregation, or if it varies by area/task.

      We agree with the reviewer that macroscopic waves could be composed of smaller modules (or single neurons at the smallest scale). Our results suggest that modular patterns can be classified as wave patterns both at large scales (of brain areas) and smaller scales of local neural circuits. Therefore, we believe it is necessary to make this distinction across different scales. We sharpened this point in the first paragraph of the discussion:

      "…We showed that LFP measurements indicative of waves propagating across turtle cortex are underlined by discrete and consecutively activated neuronal populations, and not by a continuously propagating wavefront of spikes (Figure 2). Similarly, activation profiles that resemble continuous travelling waves in EEG simulations can be underlined by consecutive activation of two discrete cortical regions (Figure 1). We replicated these results using an analytical model and demonstrated that a simple scenario of sequentially activated Gaussians can exhibit WLPs with a rich diversity of spatiotemporal profiles (Figure 3). Our results offer insight into the scenarios and conditions for WLP detection by identifying failure points that should be considered when identifying travelling waves and therefore suggest caution when interpreting continuous phase latency maps as microscopically propagating wave patterns. Such failure points may exist both when examining activity at the scale of brain regions (Figure 1) and smaller neural circuits (Figure 2). Therefore, our results suggest that the discrepancy between modular and wave activation should be examined across spatial scales. Specifically, it is not necessarily the case that at the fine grained (single neuron) scale activation patterns are modular, but, following coarse graining, smooth wave patterns emerge. Rather, modular activation may hierarchically exist across scales (Kaiser and Hilgetag, 2010; Meunier et al., 2010) and may be masked by smeared spatial supra-threshold excitability boundaries. Below we discuss these limitations across techniques and their implications.”

      I would advise the authors to focus on the experimental data, perhaps by putting the simulations second, and by putting some of the equation details that are in Methods into the Supplementary Information. Whilst the simulation parameter space is well-explored, the fundamental idea of spreading Gaussians is relatively simple, and the current manuscript organization detracted from the main message for me a little bit.”

      Following the referee’s suggestion, we switched between the section with experimental data and the one with the analytic model (see response to comment 1). In addition, to ease the reading of the methods, we moved the mathematical derivation and related equations to appendix 1.

      Things I thought about that you may also enjoy thinking about: Could we tell something about sequential sources vs travelling waves by the nature of the wave - e.g. shape or dispersion? If some wave properties are conserved whilst travelling, this could be evidence for travelling vs two sources.

      This is a wonderful suggestion. We are currently working on a follow up publication with a new approach to do exactly that! We think that this new body of work is outside the scope of this paper.

      Could synaptic potentials spread like waves, but spikes more in modular bursts? This would also explain the LFP vs spikes difference - maybe travelling waves of EPSPs are there priming the network, 'looking' for suitable modules to activate, which then activate sequentially. The current discussion is quite spike-focused - could some information be in synaptic potentials after all?

      This is an interesting idea with intriguing functional implications. We added this idea to our discussion (see paragraph below). In addition, to emphasize our discussion on synaptic potentials, we reorganized the paragraphs in the discussion to separate between our discussion on sub-threshold excitability (which is mostly synaptic) and supra-threshold excitability which is the focus of the second part of the discussion.

      “Variability in responses may also be explained by differences in propagation mechanisms (Ermentrout and Kleinfeld, 2001; Muller et al., 2018; Wu et al., 2008). Several reports suggest that waves are underlined by propagation along axonal collaterals (Muller et al., 2018, 2014). Both the transmembrane voltage-gated currents excited during action potentials as well as the post-synaptic currents along axonal boutons can potentially contribute to measured signals. However, such waves travel at high propagation speeds and are not compatible with the wide diversity of wave velocities and mechanisms of local neuronal interactions (Ermentrout and Kleinfeld, 2001; Feller et al., 1996). An intriguing possibility is that such axonal waves prime neuronal excitability by sub-threshold inputs that later result in modular supra-threshold activation. The ability to experimentally discriminate between axonal inputs and local spiking excitability (e.g. by reporters with different wavelengths) can potentially resolve such discrepancies.

      Our turtle cortex results (Figure 2) exemplify how contrasting sub-threshold LFP measurements with supra-threshold spiking measurements can yield different conclusions about the nature of activity spread….”

    2. Joint Public Review:

      Summary:

      In this interesting work, the authors investigated an important topical question: when we see travelling waves in cortical activity, is this due to true wave-like spread, or due to sequentially activated sources? In simulations, it is shown that sequential brain module activation can show up as a travelling wave - even in improved methods such as phase delay maps - and a variety of parameters is investigated. Then, in ex-vivo turtle eye-brain preparations, the authors show that visual cortex waves observable in local field potentials are in fact often better explained as areas D1 and D2 being sequentially activated. This has implications for how we think about travelling wave methodology and relevant analytical tools.

      Strengths:

      I enjoyed reading the discussion. The authors are careful in their claims, and point out that some phenomena may still indeed be genuine travelling waves, but we should have a higher evidence bar to claim this for a particular process in light of this paper and Zhigalov & Jensen (2023) (ref 44). Given this careful discussion, the claims made are well-supported by the experimental results. The discussion also gives a nice overview of potential options in light of this and future directions.

      The illustration of different gaussian covariances leading to very different latency maps was interesting to see.

      Furthermore, the methods are detailed and clearly structured and the Supplementary Figures, particularly single trial results, are useful and convincing.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      […] While this does not rule out criticality in the brain, it decidedly weakens the evidence for it, which was based on the following logic: critical systems give rise to power law behavior; power law behavior is observed in cortical networks; therefore, cortical networks operate near a critical point. Given, as shown in this paper, that power laws can arise from noncritical processes, the logic breaks. Moreover, the authors show that criticality does not imply optimal information transmission (one of its proposed functions). This highlights the necessity for more rigorous analyses to affirm criticality in the brain. In particular, it suggests that attention should be focused on the question "does the brain implement a dynamical latent variable model?".

      These authors are not the first to show that slowly varying firing rates can give rise to power law behavior (see, for example, Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). However, to our knowledge they are the first to show crackling, and to compute information transmission in the critical state.

      We thank the reviewers for their thoughtful assessment of our paper.

      We would push back on the assessment that our model ‘has nothing to do with criticality,’ and that we observed ‘signatures of criticality [that] emerge through fundamentally non-critical mechanisms.’ This assessment partially stems from the definition of criticality provided in the Public Comment, that ‘criticality is a very specific set of phenomena in physics in which fundamentally local interactions produce unexpected long-range behavior.’

      Our disagreement is largely focused on this definition, which we do not think is a standard definition. Taking the favorite textbook example, the Ising model, criticality is characterized by a set of power-law divergences in thermodynamic quantities (e.g., susceptibility, specific heat, magnetization) at the critical temperature, with exponents of these power laws governed by scaling laws. It is not defined by local interactions. All-to-all Ising model is generally viewed as showing a critical behavior at a certain temperature, even though interactions there are manifestly non-local. It is possible that, by “local” in the definition, the Public Comment meant that interactions are “collective” and among microscopic degrees of freedom. However, that same all-to-all Ising model is mathematically equivalent to the mean-field model, where criticality is achieved through large fluctuations of the mean field, but not through microscopic interactions.

      More commonly, criticality is defined by power laws and scaling relationships that emerge at a critical value of a parameter(s) of the system. That is, criticality is defined by its signatures. What is crucial in all such definitions is that this atypical, critical state requires fine tuning. For example, in the textbook example of the Ising model, a parameter (the temperature) must be tuned to a critical value for critical behavior to appear. In the branching process model that generates avalanche criticality, criticality requires tuning m=1. The key result of our paper is that all signatures expected for avalanche criticality (power laws, crackling, and, as shown below, estimates of the branching rate m), and hence the criticality itself, appear without fine-tuning.

      As we discussed in our introduction, there are a few other instances of signatures of criticality (and hence of criticality itself) emerging without fine-tuning. The first we are aware of was the demonstration of Zipf’s Law (by Schwab, et al. 2014, and Aitchison et al. 2016), a power-law relationship between rank and frequency of states, which was shown to emerge generically in systems driven by a broadly distributed latent variable. A second example, arising from applications of coarse-graining analysis to neural data (cf., Meshulam et al. 2019; also, Morales et al., 2023), was demonstrated in our earlier paper (Morrell et al. 2021). Thus, here we have a third example: the model in this paper generates signatures of criticality in the statistics of avalanches of activity, and it does so without fine-tuning (cf., Fig. 2-3).

      The rate at which these ‘criticality without fine-tuning' examples are piling up may inspire revisiting the requirement of fine-tuning in the definition of criticality, and our ongoing work (Ngampruetikorn et al. 2023) suggests that criticality may be more accurately defined through large fluctuations (variance > 1/N) rather than through fine-tuning or scaling relations.

      References:

      • Schwab DJ, Nemenman I, Mehta P. “Zipf’s Law and Criticality in Multivariate Data without FineTuning.” Phys Rev Lett. 2014 Aug; doi::101103/PhysRevLett.113.068102,

      • Aitchison L, Corradi N, Latham PE. “Zipf’s Law Arising Naturally When There Are Underlying, Unobserved Variables.” PLOS Computational biology. 2016 12; 12(12):1-32. doi:10.1371/journal.pcbi.1005110

      • Meshulam L, Gauthier JL, Brody CD, Tank DW, Bialek W. “Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons.” Phys Rev Lett. 2019 Oct; doi: 10.1103/PhysRevLett.123.178103.

      • Morales GB, di Santo S, Muñoz MA. “Quasiuniversal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics.” Proceedings of the National Academy of Sciences. 2023; 120(9):e2208998120.

      • Morrell MC, Sederberg AJ, Nemenman I. “Latent Dynamical Variables Produce Signatures of Spatiotemporal Criticality in Large Biological Systems.” Phys Rev Lett. 2021 Mar; doi: 10.1103/PhysRevLett.126.118302.

      • Ngampruetikorn, V., Nemenman, I., Schwab, D., “Extrinsic vs Intrinsic Criticality in Systems with Many Components.” arXiv: arXiv:2309.13898 [physics.bio-ph]

      Major comments:

      1) For many readers, the essential messages of the paper may not be immediately clear. For example, is the paper criticizing the criticality hypothesis of cortical networks, or does the criticism extend deeper, to the theoretical predictions of "crackling" relationships in physical systems as they can emerge without criticality? Statements like "We show that a system coupled to one or many dynamical latent variables can generate avalanche criticality ..." could be misinterpreted as affirming criticality. A more accurate language is needed; for instance, the paper could state that the model generates relationships observed in critical systems. The paper should provide a clearer conclusion and interpretation of the findings in the context of the criticality hypothesis of cortical dynamics.

      Please see the response to the Public Review, above. To clarify the essential message that the dynamical latent variable model produces avalanche criticality without fine-tuning, we have made revisions to the abstract and introduction. This point was already made in the discussion (first sentence).

      Key sentences changed in the abstract:

      "… We find that populations coupled to multiple latent variables produce critical behavior across a broader parameter range than those coupled to a single, quasi-static latent variable, but in both cases, avalanche criticality is observed without fine-tuning of model parameters. … Our results suggest that avalanche criticality arises in neural systems in which activity is effectively modeled as a population driven by a few dynamical variables and these variables can be inferred from the population activity."

      In the introduction, we changed the final sentence to read:

      "These results demonstrate how criticality in neural recordings can arise from latent dynamics in neural activity, without need for fine-tuning of network parameters."

      2) On lines 97-99, the authors state that "We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from recurrent dynamics locally". This idea is also repeated at the beginning of the Summary section. Perhaps being agnostic isn't such a good idea: it's possible that the recurrent dynamics is in a critical regime, which would just push the problem upstream. Presumably you're thinking of recurrent dynamics with slow timescales that's not critical? Or are you happy if it's in the critical regime? This should be clarified.

      We have amended this sentence to clarify that any latent dynamics with large fluctuations would suffice:

      ”We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics.”

      3) Even though the model in Equation 2 has been described in a previous publication and the Methods section, more details regarding the origin and justification of this model in the context of cortical networks would be helpful in the Results section. Was it chosen just for simplicity, or was there a deeper reason?

      This model was chosen for its simplicity: there are no direct interactions between neurons, coupling between neurons and latent variables is random, and simulation is straightforward. More complex latent dynamics or non-random structure in the coupling matrices could have been used, but our aim was to explore this model in the simplest setting possible.

      We have revised the Results (“Avalanche scaling in a dynamical latent variable model,” first paragraph) to justify the choice of the model:

      "We study a model of a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured (Fig.~\ref{fig:fig1}A). We are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, or they may arise from large fluctuations in local recurrent dynamics. The model was chosen for its simplicity, and because we have previously shown that this model with at least about five latent variables can produce power laws under the coarse-graining analysis \citep{Morrell2021}."

      We have added the following to the beginning of the Methods section expanding on the reasons for this choice:

      "We study a model from Morrell 2021, originally constructed as a model of large populations of neurons in mouse hippocampus. Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current arising from a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured or controlled. In the current paper, we incorporate only the latent variables (no place variables), and we assume that every cell is coupled to every latent variable with some randomly drawn coupling strength."

      4) The Methods section (paragraph starting on line 340) connects the time scale to actual time scales in neuronal systems, stating that "The timescales of latent variables examined range from about 3 seconds to 3000 seconds, assuming 3-ms bins". While bins of 3 ms are relevant for electrophysiological data from LFPs or high-density EEG/MEG, time scales above 10 seconds are difficult to generate through biophysically clear processes like ionic channels and synaptic transmission. The paper suggests that slow time scales of the latent variables are crucial for obtaining power law behavior resembling criticality. Yet, one way to generate such slow time scales is via critical slowing down, implying that some brain areas providing input to the network under study may operate near criticality. This pushes the problem toward explaining the criticality of those external networks. Hence, discussing potential sources for slow time scales in latent variables is crucial. One possibility you might want to consider is sources external to the organism, which could easily have time scales in the 1-24 hour range.

      As the reviewers note, it is a possibility that slow timescales arise from some other brain area in which dynamics are slow due to critical dynamics, but many other plausible sources exist. These include slowly varying sensory stimuli or external sources, as suggested by the reviewers. It is also possible to generate “effective” slow dynamics from non-critical internal sources. One example, from recordings in awake mice, is the slow change in the level of arousal that occurs on the scale of many seconds to minutes. These changes arise from release of neuromodulators that have broad effects on neural populations and correlations in activity (for a focused review, see Poulet and Crochet, 2019).

      We have added the following sentence to the Methods section where timescales of latent variables was discussed:

      "The timescales of latent variables examined range from about $3$ seconds to $3000$ seconds, assuming $3$-ms bins. Inputs with such timescales may arise from external sources, such as sensory stimuli, or from internal sources, such as changes in physiological state."

      5) It is common in neuronal avalanche analysis to calculate the branching parameter using the ratio of events in consecutive bins. Near-critical systems should display values close to 1, especially in simulations without subsampling. Including the estimated values of the branching parameter for the different cases investigated in this study could provide more comprehensive data. While the paper acknowledges that the obtained exponents in the model differ from those in a critical branching process, it would still be beneficial to offer the branching parameter of the observed avalanches for comparison.

      The reviewers requested that the branching parameter be computed in our model. We point out that, for the quasi-stationary latent variables (as in Fig. 3), a branching parameter of 1 is expected because the summed activity at time t+k is, on average, equal to the summed activity at time t, regardless of k. Numerics are consistent with this expectation. Following the methodology for an unbiased estimate of the branching parameter from Wilting and Priesemann (2018), we checked an example set of parameters (epsilon = 8, eta = 3) for quasi-stationary latent fields. We found that the naïve (biased) estimate of the branching parameter was 0.94, and that the unbiased estimator was exp(−1.4⋅10−8) ≈ 0.999999986.

      For faster time scales, it is no longer true that summed activity is constant over time, as the temporal correlations in activity decay exponentially. Using the five-field simulation from Figure 2, we calculated the branching parameter for several values of tau. The biased estimates of m are 0.76 (𝜏=50), 0.79 (𝜏=500), and 0.79 (𝜏=5000). The corrected estimates are 0.98 (𝜏=50), 0.998 (𝜏=500), and 0.9998 (𝜏=5000).

      6) In the Discussion (l 269), the paper suggests potential differences between networks cultured in vitro and in vivo. While significant differences indeed exist, it's worth noting that exponents consistent with a critical branching process have also been observed in vivo (Petermann et al 2009; Hahn et al. 2010), as well as in large-scale human data.

      We thank the reviewers for pointing out these studies, and we have added the missing one (Hahn et al. 2010) to our reference list. The following was added to the discussion, in the section “Explaining Experimental Exponents:”

      "A subset of the in vivo recordings analyzed from anesthetized cat (Hahn et al. 2010) and macaque monkeys (Petermann et al. 2009) exhibited a size distribution exponent close to 1.5."

      Along these lines, we noted two additional studies of high relevance that have been published since our initial submission (Capek et al. 2023, Lombardi et al. 2023), and we have added these references to the discussion of experimental exponents.

      Minor comments:

      1) The term 'latent variable' should be rigorously explained, as it is likely to be unfamiliar to some readers.

      Sentences and clauses have been added to the Introduction, Results and the Methods to clarify the term:

      Intro: “Numerous studies have reported relatively low-dimensional structure in the activity of large populations of neurons [refs], which can be modeled by a population of neurons that are broadly and heterogeneously coupled to multiple dynamical latent (i.e., unobserved) variables.”

      Results: “We studied a population of neurons that are not coupled to each other directly but are driven by a small number of dynamical latent variables -- that is, slowly changing inputs that are not themselves measured.”

      Methods: “Neurons are non-interacting, receiving inputs reflective of place-field selectivity as well as input current reflecting a random projection from a small number of dynamical latent variables, representing inputs shared across the population of neurons that are not directly measured.”

      2) There's a relatively important typo in the equations: Eq. 2 and Eq. 6 differ by a minus sign in the exponent. Eqs. 3 and 4 use the plus sign, but epsilon_0 on line 198 uses the minus sign. All very confusing until we figured out what was going on. But easy to fix.

      Thank you for catching this. We have made the following corrections:

      1) Figures adopted the sign convention that epsilon > 0, with larger values of epsilon decreasing the activity level. Signs in Eqs. 3 and 4 have been corrected to match.

      2) Equation 5 was missing a minus sign in front of the Hamiltonian. Restoring this minus sign fixed the discrepancy between 2 and 6.

      3) In Eq. 7, the left hand side is zeta'/zeta', which is equal to 1. Maybe it should be zeta'/zeta? Fixed, thank you.

      Additional comments:

      The authors are free to ignore these; they are meant to improve the paper.

      We are extremely grateful for the close reading of our paper and note the actions taken below.

      1) We personally would not use the abbreviation DLV; we find abbreviations extremely hard to remember. And DLV is not used that often.

      Done, thank you for the suggestion.

      2) l 198: epsilon_0 = -log(2^{1/N}-1) was kind of hard to picture -- we had to do a little algebra to make sense of it. Why not write e^{-epsilon_0} = 2^{1/N}-1 \approx log(2)/N, which in turn implies that epsilon_0 ~ log(N)?

      Thank you, good point. We have added a sentence now to better explain:

      "...which is maximized at $\epsilon_0 = - \log (2^{1/N} - 1)$, independent of $J_i$ and $\eta$. After some algebra, we find that $\epsilon_0 \sim \log N$ for large $N$."

      3) Typo on l 202: "We plot P_ava as a function of epsilon in Fig. 4B". 4B --> 4D.

      Done

      4) It would be easier on the reader if the tables were all in one place. It would be even nicer to put the parameters in the figure captions. Or at least N; that one is kind of important.

      Table placement was a Latex issue, which we have now fixed. We also have included links between tables and relevant figures and indicated network size.

      5) What's x_i in Eqs. 7 and 8?

      We added a sentence of explanation. These are the individual observations of avalanche sizes or durations, depending on what is being fit.

      6) The latent variables evolve according to an Ornstein-Uhlenbeck process. But we might equally expect oscillations or non-normal behavior coupling dynamical modes, and these are likely to give different behavior with respect to avalanches. It might be worth commenting on this.

      7) The model assumes a normal distribution of the coupling strengths between the latent variables and the binary units. Discussing the potential effects of different types of random coupling could provide interesting insights.

      Both 6 and 7 are interesting questions. At this point, we could speculate that the main results would be qualitatively unchanged, provided dynamics are sufficiently slow and that the distribution of coupling strengths is sufficiently broad (that is, there is variance in the coupling matrix across individual neurons). Further studies would be needed to make these statements more precise.

      8) In Fig 1, tau_f = 1E4 whereas in Fig 2 tau_f = 5E3. Why the difference?

      For Figure 1, we chose a set of parameters that gave clear scaling. In Figure 2, we saw some value in showing more than one example of scaling, hence different parameters for the examples in Fig 2 than Fig 1. Note that the Fig 1 simulations are represented in Fig. 2 G-J, as the 5-field simulation with tau_F = 1e4.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The dominant paradigm in the past decade for modeling the ventral visual stream's response to images has been to train deep neural networks on object classification tasks and regress neural responses from units of these networks. While object classification performance is correlated to the variance explained in the neural data, this approach has recently hit a plateau of variance explained, beyond which increases in classification performance do not yield improvements in neural predictivity. This suggests that classification performance may not be a sufficient objective for building better models of the ventral stream. Lindsey & Issa study the role of factorization in predicting neural responses to images, where factorization is the degree to which variables such as object pose and lighting are represented independently in orthogonal subspaces. They propose factorization as a candidate objective for breaking through the plateau suffered by models trained only on object classification. They claim that (i) maintaining these non-class variables in a factorized manner yields better neural predictivity than ignoring non-class information entirely, and (ii) factorization may be a representational strategy used by the brain.

      The first of these claims is supported by their data. The second claim does not seem well-supported, and the usefulness of their observations is not entirely clear.

      Strengths:<br /> This paper challenges the dominant approach to modeling neural responses in the ventral stream, which itself is valuable for diversifying the space of ideas.

      This paper uses a wide variety of datasets, spanning multiple brain areas and species. The results are consistent across the datasets, which is a great sign of robustness.

      The paper uses a large set of models from many prior works. This is impressively thorough and rigorous.

      The authors are very transparent, particularly in the supplementary material, showing results on all datasets. This is excellent practice.

      Weaknesses:<br /> 1. The primary weakness of this paper is a lack of clarity about what exactly is the contribution. I see two main interpretations: (1-A) As introducing a heuristic for predicting neural responses that improve over-classification accuracy, and (1-B) as a model of the brain's representational strategy. These two interpretations are distinct goals, each of which is valuable. However, I don't think the paper in its current form supports either of them very well:

      (1-A) Heuristic for neural predictivity. The claim here is that by optimizing for factorization, we could improve models' neural predictivity to break through the current predictivity plateau. To frame the paper in this way, the key contribution should be a new heuristic that correlates with neural predictivity better than classification accuracy. The paper currently does not do this. The main piece of evidence that factorization may yield a more useful heuristic than classification accuracy alone comes from Figure 5. However, in Figure 5 it seems that factorization along some factors is more useful than others, and different linear combinations of factorization and classification may be best for different data. There is no single heuristic presented and defended. If the authors want to frame this paper as a new heuristic for neural predictivity, I recommend the authors present and defend a specific heuristic that others can use, e.g. [K * factorization_of_pose + classification] for some constant K, and show that (i) this correlates with neural predictivity better than classification alone, and (ii) this can be used to build models with higher neural predictivity. For (ii), they could fine-tune a state-of-the-art model to improve this heuristic and show that doing so achieves a new state-of-the-art neural predictivity. That would be convincing evidence that their contribution is useful.

      (1-B) Model of representation in the brain. The claim here is that factorization is a general principle of representation in the brain. However, neural predictivity is not a suitable metric for this, because (i) neural predictivity allows arbitrary linear decoders, hence is invariant to the orthogonality requirement of factorization, and (ii) neural predictivity does not match the network representation to the brain representation. A better metric is representational dissimilarity matrices. However, the RDM results in Figure S4 actually seem to show that factorization does not do a very good job of predicting neural similarity (though the comparison to classification accuracy is not shown), which suggests that factorization may not be a general principle of the brain. If the authors want to frame the paper in terms of discovering a general principle of the brain, I suggest they use a metric (or suite of metrics) of brain similarity that is sensitive to the desiderata of factorization, e.g. doesn't apply arbitrary linear transformations, and compare to classification accuracy in addition to invariance.

      Overall, I suggest the authors clarify exactly what their claim is, then focus on that claim and present results to justify it. If neither of the claims above can be supported by evidence, then this paper still has value as an idea that they spent effort trying to test, but they should not suggest these claims in the paper. In that case, it may also be possible to increase the value of the contribution by characterizing how the structure of class-free variable representations impacts correlation with neural fit, instead of just comparing existence vs absence (invariance) of this information. For example, evaluate the degree to which local or global orthogonality matters, or the degree to which curvature of the embedding matters.

      2. I think the comparison to invariance, which is pervasive throughout the paper, is not very informative. First, it is not surprising that invariance is more weakly correlated with neural predictivity than factorization, because invariant representations lose information compared to factorized representations. Second, there has long been extensive evidence that responses throughout the ventral stream are not invariant to the factors the authors consider, so we already knew that invariance is not a good characterization of ventral stream data.

      3. The formalization of the factorization metric is not particularly elegant, because it relies on computing top K principal components for the other-parameter space, where K is arbitrarily chosen as 10. While the authors do show that in their datasets the results are not very sensitive to K (Figure S5), that is not guaranteed to be the case in general. I suggest the authors try to come up with a formalization that doesn't have arbitrary constants. For example, one possibility that comes to mind is E[delta_a x delta_b], where 'x' is the normalized cross product, delta_a, and delta_b are deltas in representation space induced by perturbations of factors a and b, and the expectation is taken over all base points and deltas. This is just the first thing that comes to mind, and I'm sure the authors can come up with something better. The literature on disentangling metrics in machine learning may be useful for ideas on measuring factorization.

      4. The authors defined the term "factorization" according to their metric. I think introducing this new term is not necessary and can be confusing because the term "factorization" is vague and used by different researchers in different ways. Perhaps a better term is "orthogonality", because that is clear and seems to be what the authors' metric is measuring.

      5. One general weakness of the factorization paradigm is the reliance on a choice of factors. This is a subjective choice and becomes an issue as you scale to more complex images where the choice of factors is not obvious. While this choice of factors cannot be avoided, I suggest the authors add two things: First, an analysis of how sensitive the results are to the choice of factors (e.g. transform the basis set of factors and re-run the metric); second, include some discussion about how factors may be chosen in general (e.g. based on temporal statistics of the world, independent components analysis, or something else).

  3. Jan 2024
    1. everything in my own immediate experience supports my deep belief that I am the absolute centre of the universe; the realest, most vivid and important person in existence. We rarely think about this sort of natural, basic self-centredness because it’s so socially repulsive.

      We did an exercise in my "Models of Effective Helping" class yesterday where we were given a list of about 12 people and the list had their ages and a brief description of who they are. We had to choose as a group eight people from the list to go on a life raft and the rest of them would die. You could also choose to save yourself as one of the eight. There was a heated debate over whether its ethical or proper to choose to save yourself over somebody else. I couldn't fathom the thought of me choosing for somebody to die over myself, but the majority of the class agreed to save themselves and kill somebody else. What I thought was even more shocking was that a few of the people on the list were teenagers and people were trying to justify killing them over themselves. What I learned is that there are many people who truly believe that they are the center of the universe, and it may just be human nature to think so.

    1. These functions include the following: (1) poor people do the work that other people do not want to do; (2) the programs that help poor people provide a lot of jobs for the people employed by the programs; (3) the poor purchase goods, such as day-old bread and used clothing, that other people do not wish to purchase, and thus extend the economic value of these goods; and (4) the poor provide jobs for doctors, lawyers, teachers, and other professionals who may not be competent enough to be employed in positions catering to wealthier patients, clients, students, and so forth (Gans, 1972)

      This seems like the thinking of someone who does not believe in equality. I don't think that we need such severe levels of poverty to achieve a healthy social order. It should not be impossible to get out of poverty. Poverty should not be a life sentence.

    1. A disability is an ability that a person doesn’t have, but that their society expects them to have.1 For example: If a building only has staircases to get up to the second floor (it was built assuming everyone could walk up stairs), then someone who cannot get up stairs has a disability in that situation. If a physical picture book was made with the assumption that people would be able to see the pictures, then someone who cannot see has a disability in that situation. If tall grocery store shelves were made with the assumption that people would be able to reach them, then people who are short, or who can’t lift their arms up, or who can’t stand up, all would have a disability in that situation. If an airplane seat was designed with little leg room, assuming people’s legs wouldn’t be too long, then someone who is very tall, or who has difficulty bending their legs would have a disability in that situation. Which abilities are expected of people, and therefore what things are considered disabilities, are socially defined. Different societies and groups of people make different assumptions about what people can do, and so what is considered a disability in one group, might just be “normal” in another. There are many things we might not be able to do that won’t be considered disabilities because our social groups don’t expect us to be able to do them. For example, none of us have wings that we can fly with, but that is not considered a disability, because our social groups didn’t assume we would be able to. Or, for a more practical example, let’s look at color vision: Most humans are trichromats, meaning they can see three base colors (red, green, and blue), along with all combinations of those three colors. Human societies often assume that people will be trichromats. So people who can’t see as many colors are considered to be color blind, a disability. But there are also a small number of people who are tetrachromats and can see four base colors2 and all combinations of those four colors. In comparison to tetrachromats, trichromats (the majority of people), lack the ability to see some colors. But our society doesn’t build things for tetrachromats, so their extra ability to see color doesn’t help them much. And trichromats’ relative reduction in seeing color doesn’t cause them difficulty, so being a trichromat isn’t considered to be a disability. Some disabilities are visible disabilities that other people can notice by observing the disabled person (e.g., wearing glasses is an indication of a visual disability, or a missing limb might be noticeable). Other disabilities are invisible disabilities that other people cannot notice by observing the disabled person (e.g., chronic fatigue syndrome, contact lenses for a visual disability, or a prosthetic for a missing limb covered by clothing). Sometimes people with invisible disabilities get unfairly accused of “faking” or “making up” their disability (e.g., someone who can walk short distances but needs to use a wheelchair when going long distances). Disabilities can be accepted as socially normal, like is sometimes the case for wearing glasses or contacts, or it can be stigmatized as socially unacceptable, inconvenient, or blamed on the disabled person. Some people (like many with chronic pain) would welcome a cure that got rid of their disability. Others (like many autistic people), are insulted by the suggestion that there is something wrong with them that needs to be “cured,” and think the only reason autism is considered a “disability” at all is because society doesn’t make reasonable accommodations for them the way it does for neurotypical people. Many of the disabilities we mentioned above were permanent disabilities, that is, disabilities that won’t go away. But disabilities can also be temporary disabilities, like a broken leg in a cast, which may eventually get better. Disabilities can also vary over time (e.g., “Today is a bad day for my back pain”). Disabilities can even be situational disabilities, like the loss of fine motor skills when wearing thick gloves in the cold, or trying to watch a video on your phone in class with the sound off, or trying to type on a computer while holding a baby. As you look through all these types of disabilities, you might discover ways you have experienced disability in your life. Though please keep in mind that different disabilities can be very different, and everyone’s experience with their own disability can vary. So having some experience with disability does not make someone an expert in any other experience of disability. As for our experience with disability, Kyle has been diagnosed with generalized anxiety disorder and Susan has been diagnosed with depression. Kyle and Susan also both have: near sightedness: our eyes cannot focus on things far away (unless we use corrective lenses, like glasses or contacts) ADHD: we have difficulty controlling our focus, sometimes being hyperfocused and sometimes being highly distracted and also have difficulties with executive dysfunction. 1 There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for. 2 Trying to name the four base colors seen by tetrachromats is not straightforward since our color names are based on trichromat vision. It seems that for tetrachromats blue would be the same, but they would see three different base colors in the red/green range instead of two.

      This paragraph of the article tells how technological developments have the potential to redefine disability. For example, the development of cochlear implants and hearing aids has changed the way society views hearing loss. Similarly, Braille displays and screen reading technology have revolutionized the way blind people access information. I think these are all very significant things, and increasingly people are seeing disability as a spectrum rather than a binary state (disabled vs. non-disabled). Individuals may have different levels of skills in different areas. For example, a person may have a mild visual impairment that has no effect on most activities, but can be a major handicap in specific situations, such as dimly lit areas. I've known people with this problem so I think the point is important.

    2. There are many ways to think about disability, such as legal (what legally counts as a disability?), medical (what is a problem to be cured?), identity (who views themselves as “disabled”), etc. We are focused here more on disability as it relates to design and who things in our world are designed for.

      Certainly, considering disability in the context of design involves creating products, environments, and systems that are inclusive and accessible to individuals with a diverse range of abilities. Engaging individuals with disabilities in the design process helps to identify specific needs and challenges they may face. This approach ensures that the final design reflects the diverse perspectives and requirements of the user community.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Nitrogen metabolism is of fundamental importance to biology. However, the metabolism and biochemistry of guanidine and guanidine containing compounds, including arginine and homoarginine, have been understudied over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new type of guanidine forming enzyme. It was previously known that 2-oxogluturate oxygenase catalysis in bacteria can produce guanidine via oxidation of arginine. Interestingly, the same enzyme that produces guanidine from arginine also oxidises 2-oxogluturate to give the plant signalling molecule ethylene. Funck et al show that a mechanistically related oxygenase enzyme from plants can also produce guanidine, but instead of using arginine as a substrate, it uses homoarginine. The work will stimulate interest in the cellular roles of homoarginine, a metabolite present in plants and other organisms including humans and, more generally, in the biochemistry and metabolism of guanidines.

      1) Significance

      Studies on the metabolism and biochemistry of the small nitrogen rich molecule guanidine and related compounds including arginine have been largely ignored over the last few decades. Very few guanidine forming enzymes have been identified. Funck et al define a new guanidine forming enzyme that works by oxidation of homoarginine, a metabolite present in organisms ranging from plants to humans. The new enzyme requires oxygen and 2oxogluturate as cosubstrates and is related, but distinct from a known enzyme that oxidises arginine to produce guanidine, but which can also oxidise 2-oxogluturate to produce the plant signalling molecule ethylene.

      Overall, I thought this was an exceptionally well written and interesting manuscript. Although a 2-oxogluturate dependent guanidine forming enzyme is known (EFE), the discovery that a related enzyme oxidises homoarginine is really interesting, especially given the presence of homoarginine in plant seeds. There is more work to be done in terms of functional assignment, but this can be the subject of future studies. I also fully endorse the authors' view that guanidine and related compounds have been massively understudied in recent times. I would like to see the possibility that the new enzyme makes ethylene explored. Congratulations to the authors on a very nice study.

      Response: We thank the reviewer for the positive evaluation of our manuscript. In the revised version, we have emphasized more clearly that we found no evidence for ethylene production by the recombinant enzymes. The other suggestions of the reviewer are also considered in the revised version as detailed below.

      Reviewer #2 (Public Review):

      In this study, Dietmar Funck and colleagues have made a significant breakthrough by identifying three isoforms of plant 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) as homo/arginine-6-hydroxylases, catalyzing the degradation of 6-hydroxyhomoarginine into 2aminoadipate-6-semialdehyde (AASA) and guanidine. This discovery marks the very first confirmation of plant or eukaryotic enzymes capable of guanidine production.

      The authors selected three plant 2-ODD-C23 enzymes with the highest sequence similarity to bacterial guanidine-producing (EFE) enzymes. They proceeded to clone and express the recombinant enzymes in E coli, demonstrating capacity of all three Arabidopsis isoforms to produce guanidine. Additionally, by precise biochemical experiments, the authors established these three 2-ODD-C23 enzymes as homoarginine-6-hydroxylases (and arginine-hydroxylase for one of them). Furthermore, the authors utilized transgenic plants expressing GFP fusion proteins to show the cytoplasmic localization of all three 2-ODD-C23 enzymes. Most notably, using T-DNA mutant lines and CRISPR/Cas9-generated lines, along with combinations of them, they demonstrate the guanidine-producing capacity of each enzyme isoform in planta. These results provide robust evidence that these three 2-ODD-C23 Arabidopsis isoforms are indeed homoarginine-6-hydroxylases responsible for guanidine generation.

      The findings presented in this manuscript are a significant contribution for our understanding of plant biology, particularly given that this work is the first demonstration of enzymatic guanidine production in eukaryotic cells. However, there are a couple of concerns and potential ways for further investigation that the authors should (consider) incorporate.

      Firstly, the observation of cytoplasmic and nuclear GFP signals in the transgenic plants may also indicate cleaved GFP from the fusion proteins. Thus, the authors should perform Western blot analysis to confirm the correct size of the 2-ODD-C23 fusion proteins in the transgenic protoplasts.

      Secondly, it may be worth measuring pipecolate (and proline?) levels under biotic stress conditions (particularly those that induce transcript changes of these enzymes, Fig S8). Given the results suggesting a potential regulation of the pathway by biotic stress conditions (eg. meJA), these experiments could provide valuable insights into the physiological role of guanidine-producing enzymes in plants. This additional analysis may give a significance of these enzymes in plant defense mechanisms.

      Response: We thank also reviewer 2 for the positive evaluation and useful suggestions. We performed the proposed GFP Western blot, which indeed indicated the presences of both, fulllength fusion proteins and free GFP, which can explain the partial nuclear localization. We fully agree that further experiments with biotic and abiotic stress will be required to determine the physiological function of the 2-ODD-C23 enzymes. However, the list of potential experiments is long and they are beyond the scope of the present manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Specific points

      Overall, I thought this was a very interesting study, comprising biochemical, cellular, and in vivo studies. Of course more could be done on each of these, and likely will be, but I think the assignment of biochemical function is very strong, across all three approaches. The one new experiment I would like to see is a clear demonstration of whether ethylene is produced - unlikely but should be tested.

      We had mentioned our failure to detect ethylene production by the plant enzymes in the previous version and have made it more prominent and reliable by including ethylene production as positive control in the new supplementary figure S5.

      Abstract

      Delete 'hitherto overlooked' - this is implicit 'but is more likely' to 'is likely'?

      Agreed and modified

      Introduction

      Second sentence - what about relevant small molecule primary metabolites including precursors of proteins/nucleic acids.

      We modified the sentence accordingly.

      Paragraph 2 - maybe also note EFE produces glutamate semi aldehyde, via arginine C-5 oxidation.

      Paragraph 2 has been re-phrased according to your suggestion.

      Overall, I thought the introduction was exceptionally well written.

      Perhaps either in the introduction, or later, note there are other 2OG oxygenases that oxidise arginine/arginine derivatives in various ways, e.g. clavaminate synthase/arginine hydroxylases/desaturases.

      We added a sentence mentioning the arginine hydroxylases VioC and OrfP to the introduction and included VioC into the sequence comparison in supplementary figure 2 to show that these enzymes, as well as NapI, are very different from EFE and the plant hydroxylases.

      Results

      Paragraph 1 - qualify similarity and refer to/give a structurally informed sequence alignment, including EFE

      A new supplemental figure S2 was added with sequence identity values and a structurally informed alignment. The text has been modified accordingly.

      Paragraph 2 - briefly state method of guanidine analysis

      We included a reference to the M&M section and mentioned LC-MS in paragraph 2.

      Figure 1 - trivial point - proteins are not expressed/genes are

      We have modified the legend to figure 1. However, we would like to point out that terms like “recombinant protein expression” are widely used in the field. A quick search with google Ngram viewer shows that “protein expression” started to appear in the mid-80ies and its use stayed constantly at 1/8th of “gene expression”.

      Define errors clearly in all figure legends, clearly defining biological/technical repeats<br /> Page 6 - was the His-tag cleared to ensure no issues with Ni contamination?

      We treat individual plants or independent bacterial cultures as biological replicates. Only in the case of enzyme activity assays with NAD(P)H, technical replicates were used and this has been indicated in the legend of figure 6.

      Lower case 'p' in pentafluorobenzyl corrected

      In Figure 2 make clear the hydroxylated intermediates are not observed

      We now use grey color for the intermediates and have put them in brackets. Additionally we state in the figure legend that these intermediates were not detected.

      Pages 6-7 - I may have missed this but it's important to investigate what happens to the 2OG. Is succinate the only product or is ethylene also produced? This possibility should also be considered in the plant studies, i.e. is there any evidence for responses related to perturbed ethylene metabolism. The authors consider a signalling role relating to AASA/P6C, but seem to ignore a potential ethylene connection.

      As stated above, we checked for ethylene production with negative result. EFE produced 6 times more guanidine than the plant enzymes under the same condition, but even 100-fold lower ethylene production would have been clearly detected.

      Page 12 - 'plants have been shown to....' Perhaps note how hydroxy guanidine is made?

      We now mention the canavanine-γ-lyase that cleaves canavanine into hydroxyguanidine and homoserine.

      Overall, I thought the discussion was good, but perhaps a bit long/too speculative on pages 12/13 and this detracted from the biochemical assignment of the enzyme. I'd suggest shortening the discussion somewhat - the precise roles of the enzyme can be the subject of future work. As indicated above, some discussion on potential links to ethylene would be appreciated.

      Since reviewer 2 wanted more (speculative) discussion on the role of the 2-ODD-C23 enzymes and there was no detectable ethylene production, we took the liberty to leave the discussion largely unaltered.

      I'd also like to see some more consideration/metabolic analyses of guanidine related metabolism in the genetically modified plants.

      Such analyses will certainly be included in future experiments once we get an idea about the physiological role of the 2-ODD-C23 enzymes.

      Page 16 - mass spectrometry

      Corrected.

      Please add a structurally informed sequence alignment with EFE and other 2OG oxygenases acting on arginine/derivatives.

      An excerpt of the alignment is now presented in supplementary figure S2.

      Reviewer #2 (Recommendations For The Authors):

      I would like to see more discussion in the manuscript about the possible interconnection/roles between 2-ODD-C23 guanidine-producing, lysine- ALD1-Pipecolate producing, and proline metabolism pathways during both biotic and abiotic stresses.

      Since we were unable to detect pipecolate in any of our plant samples and also our preliminary results with biotic stress did not produce any evidence for a function of the 2ODD-C23 enzymes in the tested defense responses, we would like to postpone such extended discussion until we find a condition where the physiological function of these enzymes is evident.

      Fig. 4: Authors should change colors for Col-0, 0.2 HoArg and ctrl? They look too similar in my pdf file.

      We changed the colors in figure 4 and hope that the enhanced contrast is maintained during the production of the final version of our article.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Sender et al describe a model to estimate what fraction of DNA becomes cell-free DNA in plasma. This is of great interest to the community, as the amount of DNA from a certain tissue (for example, a tumor) that becomes available for detection in the blood has important implications for disease detection.

      However, the authors' methods do not consider important variables related to cell-free DNA shedding and storage, and their results may thus be inaccurate. At this stage of the paper, the methods section lacks important detail. Thus, it is difficult to fully assess the manuscript and its results.

      Strengths:

      The question asked by the authors has potentially important implications for disease diagnosis. Understanding how genomic DNA degrades in the human circulation can guide towards ways to enrich for DNA of interest or may lead to unexpected methods of conserving cell-free DNA. Thus, the question "how much genomic DNA becomes cfDNA" is of great interest to the scientific and medical community. Once the weaknesses of the manuscript are addressed, I believe this manuscript has the potential to be a widely used resource.

      Weaknesses:

      There are two major weaknesses in how the analysis is presented. First, the methods lack detail. Second, the analysis does not consider key variables in their model.

      Issues pertaining to the methods section.

      The current manuscript builds a flux model, mostly taking values and results from three previous studies: 1) The amount of cellular turnover by cell type, taken from Sender & Milo, 2021

      2) The fractions of various tissues that contribute DNA to the plasma, taken from Moss et al, 2018 and Loyfer et al, 2023

      My expertise lies in cell-free DNA, and so I will limit my comments to the manuscripts in (2). Paper by Loyfer et al (additional context):

      Loyfer et al is a recent landmark paper that presents a computational method for deconvoluting tissues of origin based on methylation profiles of flow-sorted cell types. Thus, the manuscript provides a well-curated methylation dataset of sorted cell-types. The majority of this manuscript describes the methylation patterns and features of the reference methylomes (bulk, sorted cell types), with a smaller portion devoted to cell-free DNA tissue of origin deconvolution.

      I believe the data the authors are retrieving from the Loyfer study are from the 23 healthy plasma cfDNA methylomes analyzed in the study, and not the re-analysis of the 52 COVID-19 samples from Cheng et al (MED 2021).

      Paper by Moss et al (additional context):

      Moss et al is another landmark paper that predates the Loyfer et al manuscript. The technology used in this study (methylation arrays) is outdated but is an incredible resource for the community. This paper evaluates cfDNA tissues of origin in health and different disease scenarios. Again, I assume the current manuscript only pulled data from healthy patients, although I cannot be sure as it is not described in the methods section.

      This manuscript:

      The current manuscript takes (I think) the total cfDNA concentration from males and females from the Moss et al manuscript (pooled cfDNA; 2 young male groups, 2 old male groups, 2 young female groups, 2 old female groups, Supplementary Dataset; "total_cfDNA_conc" tab). I believe this is the data used as total cfDNA concentration. It would be beneficial for all readers if the authors clarified this point.

      The tissues of origin, in the supplemental dataset ("fraction" tab), presents the data from 8 cell types (erythrocytes, monocytes/macrophages, megakaryocytes, granulocytes, hepatocytes, endothelial cells, lymphocytes, other). The fractions in the spreadsheet do not match the Loyfer or Moss manuscripts for healthy individuals. Thus, I do not know what values the supplementary dataset represents. I also don't know what the deconvolution values are used for the flux model.

      The integration of these two methods lack detail. Are the authors here using yields (ie, cfDNA concentrations) from Moss et al, and tissue fractions from Loyfer et al? If so, why? There are more samples in the Loyfer manuscript, so why are the samples from Moss et al. being used? The authors are also selectively ignoring cell-types that are present in healthy individuals (Neurons from Moss et al, 2018). Why?

      Appraisal:

      At this stage of the manuscript, I think additional evidence and analysis is required to confirm the results in the manuscript.

      Impact:

      Once the authors present additional analysis to substantiate their results, this manuscript will be highly impactful on the community. The field of liquid biopsies (non-invasive diagnostics) has the potential to revolutionize the medical field (and has already in certain areas, such as prenatal diagnostics). Yet, there is a lack of basic science questions in the field. This manuscript is an important step forward in asking more "basic science" questions that seek to answer a fundamental biological question.

      We thank the reviewer for the valuable comments on our analysis. In response to the feedback, we have updated the analysis to address all critical points as described below and revised the text to enhance the clarity of our methodology. One notable improvement to our analysis involved ensuring better alignment between the cohort data for cfDNA plasma concentration and cell turnover estimates. To achieve this, we utilized the total plasma concentration of cfDNA from a study conducted by Meddeb et al. 2019, taking into account the influence of age and sex on these concentrations and specifically focusing on a cohort of relatively young and healthy individuals. Additionally, we considered expected variations related to sex, age, and other pertinent factors, as outlined in the studies by Meddeb et al. 2019 and Madsen et al. 2019.

      In addition, we have addressed concerns regarding the technical aspects of cfDNA analysis, providing detailed explanations of their limited impact on our analysis and the resulting conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Cell-free DNA (cfDNA) are short DNA fragments released into the circulation when cells die. Plasma cfDNA level is thought to reflect the degree of cell-death or tissue injury. Indeed, plasma cfDNA is a reliable diagnostic biomarker for multiple diseases, providing insights into disease severity and outcomes. In this manuscript, Dr. Sender and colleagues address a fundamental question: What fraction of DNA released from cell death is detectable as plasma cfDNA? The authors use public data to estimate the amount of DNA produced from dying cells. They also utilize public data to estimate plasma cfDNA levels. Their calculations showed that <10% of DNA released is detectable as plasma cfDNA, the fraction of detectable cfDNA varying by tissue sources. The study demonstrates new and fundamental principles that could improve disease diagnosis and treatment via cfDNA.

      Strengths:

      1) The experimental approach is resource-mindful taking advantage of publicly available data to estimate the fraction of detectable cfDNA in physiological states. The authors did not assess if the fraction of detectable cfDNA changes in disease conditions. Nonetheless, their pioneering study lays the foundation and provides the methods needed for a similar assessment in disease states.

      2) The findings of this study potentially explain discrepancies in measured versus expected tissue-specific cfDNA from some tissues. For example, the gastrointestinal tract is subject to high cell turnover and release of DNA. Yet, only a small fraction of that DNA ends up in plasma as gastrointestinal cfDNA.

      3) The study proposes potential mechanisms that could account for the low fraction of detectable cfDNA in plasma relative to DNA released. This includes intracellular or tissue machinery that could "chew up" DNA released from dying cells, allowing only a small fraction to escape into plasma as cfDNA. Could this explain why the gastrointestinal track with an elaborate phagosome machinery contributes a small fraction of plasma cfDNA? Given the role of cfDNA as damage-associated molecular pattern in some diseases, targeting such a machinery may provide novel therapeutic opportunities.

      Weaknesses:

      In vitro and in vivo studies are needed to validate these findings and define tissue machinery that contribute to cfDNA production. The validation studies should address the following limitations of the study design: -

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We appreciate the reviewer's comments on our analysis. In response to the feedback, we have updated to address key points and revised the text accordingly.

      1) We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      2) In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact, mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

      Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      I think readers would appreciate the authors commenting or addressing the following points, in addition to addressing the concerns I raised about the methods section in the public review:

      What variables and considerations did the authors omit in this study?

      1) Cell-free DNA is found in virtually every biofluid.

      Thus, the fact that cell-free DNA is not present in the plasma does not mean it cannot be detected elsewhere. This also implies that phagocytosis may not be the only factor related to cfDNA not being present in the blood. One example (of many, many others) is neutrophil-derived cell-free DNA, which is present in the urine.

      Indeed, dying cells and their DNA can be consumed locally, released into the blood, or shed outside the body. The latter is a function of tissue topology. For example, intestinal epithelial cell turnover releases material to the lumen of the gut (i.e., stool); kidney and bladder cell turnover releases material to urine; and lung epithelium releases material to the air spaces. In these cases, the absence of cfDNA in plasma is expected. However, in cases where tissue topology dictates release to blood, low representation in cfDNA indicates local consumption or a related mechanism. In Figure 1 of the manuscript, we distinguish between tissues according to their topology, labeling organs that shed material to the outside denoted by open circles.

      Neutrophil-derived DNA in urine likely represents a local process in the kidney (neutrophils that penetrate the epithelium and fall into the urine). Neutrophils that die elsewhere in the body must release cfDNA to the blood before it can reach the urine. Hence, quantifying plasma cfDNA is a legitimate approach for assessing the relationship between cell death and cfDNA. The revised text clarifies this point. We made revisions to the initial paragraph in the results section and a paragraph within the discussion to provide clarity on this topic:

      “Based on atlases of human cell type-specific methylation signatures, Moss et al. and Loyfer et al. analyzed the main cell types contributing to plasma cfDNA. They found the primary sources of plasma cfDNA to be blood cells: granulocytes, megakaryocytes, macrophages, and/or monocytes (the signature could not differentiate between the last two), lymphocytes, and erythrocyte progenitors. Other cells that had detectable contributions are endothelial cells and hepatocytes. Qualitatively, these cells represent most of the leading cell types in cellular turnover, as shown in Sender & Milo 2021 (Sender and Milo 2021). Epithelial cells of the gastrointestinal tract, lung, kidney, bladder, and skin are other cell types that significantly contribute to cellular turnover. Dying cells in these tissues are shed into the gut lumen, the air spaces, the urine, or out of the skin (note that while DNA from gut, lung, and kidney epithelial cells can be found in stool, bronchoalveolar lavage, and urine, the fate of DNA from skin cells is not known). This arrangement may explain why DNA from these cell types is not represented in plasma cfDNA in healthy conditions. Therefore, it appears that cells with high cfDNA plasma levels are those with relatively high turnover that are not being shed out of the body.”

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      2) Effect of biofluid storage.

      Cell-free DNA continues to degrade after it is extracted via blood draw. This is not expected to change tissue of origin predictions (although that remains to be shown in the literature), but definitely affects extraction yield. This is not accounted for (or even discussed) in the manuscript. It would be important to understand how this was done for the data presented here.

      The paper integrates data from multiple recent studies that adhered to state-of-the-art procedures requiring rapid processing of blood samples. In fact, earlier studies that were not careful to isolate plasma quickly typically reported very high concentrations due to the lysis of leukocytes and artifactual release of genomic DNA. Rapid plasma isolation and DNA extraction typically yield 5ng/ml in healthy donors, as stated in the paper (last paragraph of Results).

      3) Batch effects

      Batch effects are not discussed here and can affect cfDNA yields.

      Our analysis relies on data reported by multiple studies from different groups, which independently results in similar key findings (total concentration of cfDNA and the relative contribution of different tissues). Thus, batch effects are unlikely to affect the calculations markedly.

      4) Cell-free DNA extraction kits

      Different kits and methods extract cell-free DNA at different quantities. Importantly, much research has been done recently that most kits are not sensitive for ultrashort cell-free DNA (of lengths ~50bp). This may represent most of the DNA present in plasma. This raises an important question: are the yields that are being used in Moss et al (where I presume the total concentration is taken from) accurate? Is there more cell-free DNA that was missed? While the importance of this ultrashort cfDNA has yet to be shown, it is in the blood. Thus, the authors' model may underestimate ratios by not accounting for this. This is mentioned in the discussion, but it is not evident why it was not added into the model.

      The Qiagen cfDNA extraction kit can detect 50bp fragments. As shown in the specification sheets of the kit (https://www.qiagen.com/us/products/diagnostics-and-clinical-research/solutions-for -laboratory-developed-tests/qiasymphony-dsp-circulating-dna-kit), urine DNA contains abundant DNA fragments that peak at 50bp. In contrast, plasma cfDNA does not contain such fragments at appreciable concentrations. This suggests that small fragments, 50-150bp long, are not a major component of cfDNA, and thus, our measurements of the total concentration of cfDNA are not dramatically underestimated.

      The convention regarding the size distribution of cfDNA fragments is based on extensive evidence using multiple approaches. For example, a study that profiled the DNA released by multiple cell lines in vitro (Aucamp et al. 2017) used another kit for DNA isolation – the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). This kit does extract fragments that are 50bp long (nucleospin-gel-and-pcr-clean-up-mini). Indeed, the DNA released from cultured cells did contain a peak at 50bp, but it was minor compared with the nucleosome-size peak.

      More recently, several studies did suggest the presence of ultra-short cfDNA fragments, 50 bp long on average, and concluded that such fragments might be present at a molar concentration that is comparable to that of nucleosome-protected DNA (for example, (Hisano et al. 2021)).

      Thus, our model estimates can be off by up to 2-fold (that is, actual cfDNA concentration measured in most studies overlooks the small fragments and thus underestimates the actual concentration of cfDNA by 2-fold). This is incorporated into the revised manuscript.

      We note that we cannot exclude the presence of abundant ultra-short DNA fragments (e.g., 10bp long). However, such fragments are not measurable in cfDNA analysis. Thus, we can refine our conclusion and state that only a small fraction of DNA of dying cells appears as measured cfDNA. We included a section in the methods detailing the integration of a potential factor for the short fragments and revised the discussion:

      “The overall plasma cfDNA concentration was multiplied by a factor of 1.5 to accommodate for the presence of small fragments of approximately 50 base pairs of cfDNA in the plasma. These fragments are suggested to contribute comparable molar concentrations (Hisano, Ito, and Miura 2021). Despite having approximately one-third of the mass, it is reasonable to presume that these fragments represent a similar number of genomes. This assumption is based on the idea that their source is a broken nucleosome unit, and the fragments represent the portion that was not degraded. Given the restricted data and its interpretation, we consider factors spanning the range of 1 (negligible effect) and 2 (doubling of the amount). The chosen factor, 1.5, is selected as the midpoint within this range of uncertainty.”

      “In this study, we report a surprising, dramatic discrepancy between the measured levels of cfDNA in the plasma and the potential DNA flux from dying cells. One hypothetical explanation for that discrepancy is the limited sensitivity of typical cfDNA assays to short DNA fragments, which may contribute a significant fraction of the overall cfDNA mass. Regular cfDNA analysis shows a size distribution concentrated around a length of 165 base pairs (bp). The sizes in ctDNA vary more, but most are longer than 100 bp (Alcaide et al. 2020; Udomruk et al. 2021). Recent studies suggested a significant fraction of single-strand ultrashort fragments (length of 25-60 bp) (Cheng et al. 2022; Hisano, Ito, and Miura 2021). However, the total amount of DNA contained in these fragments is less than or comparable to that of the longer “regular” nucleosome-protected cfDNA fragments (Cheng et al. 2022; Hisano, Ito, and Miura 2021), arguing against ultrashort fragments as a dominant explanation for the “missing” cfDNA material. We integrated the estimate provided by Hisano et al. into our analysis as a modifying factor for both the total concentration and uncertainty of plasma cfDNA. Importantly, this incorporation did not alter the overall conclusions, as the discrepancy between the cfDNA plasma concentration and potential DNA flux remains on the same order of magnitude. We note that we cannot exclude the presence of abundant DNA fragments that are even shorter (e.g., 10bp long) and are not measurable in cfDNA analysis. Thus, our formal conclusion is that only a small fraction of the DNA of dying cells appears as measurable cfDNA.”

      5) Health status of samples analyzed.

      Health, sex and physical activity affects cfDNA yields. This is not accounted for or discussed in the manuscript.

      We incorporated several enhancements to improve our analysis in response to the provided feedback. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      Furthermore, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in the works of (Meddeb et al. 2019; Madsen et al. 2019). Our intent in doing so was to demonstrate that these factors are unlikely to alter our conclusions substantially when considering a healthy population. We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion:

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      Reviewer #2 (Recommendations For The Authors):

      1) Align the cohorts to estimate DNA production and plasma cfDNA levels. Cellular turnover rate and plasma cfDNA levels vary with age, sex, circadian clock, and other factors (Madsen AT et al, EBioMedicine, 2019). This study estimated DNA production using data abstracted from a homogenous group of healthy control males (Sender & Milo, Nat Med 2021). On the other hand, plasma cfDNA levels were obtained from datasets of more diverse cohort of healthy males and females with a wide range of ages (Loyfer et al. Nature, 2023 and Moss et al., Nat Commun, 2018).

      We have incorporated several enhancements to improve the coherence of our analysis. In our revised examination, we drew upon the total plasma concentration of cfDNA, as documented in a study conducted by (Meddeb et al. 2019), while considering the influence of age and sex on these concentrations. To ensure the cohort's alignment, we focus on relatively young and healthy individuals, specifically those below the age of 47. This approach allowed for a more meaningful comparison with the estimated DNA flux from a reference male human aged between 20 and 30 years.

      There was no specific estimate for a cohort of young males in both Meddeb et al. and Loyfer et al.; however, we factored in the expected variations stemming from sex, age, and other relevant factors, as elucidated in literature (Meddeb et al. 2019; Madsen et al. 2019). Thus, we demonstrate that sex and age have a small effect on the cfDNA concentrations and thus are unlikely to alter our conclusions substantially when considering a healthy population.

      We summarize the changes in the first paragraph, replacing the “Tissue-specific cfDNA concentration” subsection of the method, and the fourth paragraph added to the discussion.

      “Our estimates for total plasma cfDNA concentration were derived from the median concentration observed in individuals below 47 years of age (n=52), as reported by (Meddeb et al. 2019). To complement this, we integrated our total concentration estimates with data on the proportion of cfDNA originating from specific cell types, leveraging a plasma methylome deconvolution method described by (Loyfer et al. 2023), which did not provide absolute quantities of cfDNA). To quantify the uncertainty associated with our cfDNA concentration estimates, we employed a methodology that considered several sources of variation. First, we incorporated the confidence interval of the median concentration reported by Meddeb et al. as a measure of uncertainty. Additionally, we accounted for individual-specific and analytic variations based on the study by (Madsen et al. 2019), encompassing factors such as the precise timing of measurements and assay precision. These sources of uncertainty were combined using the approach outlined below.”

      “Our current analysis focused on estimating plasma cfDNA concentration and cellular turnover in a cohort of healthy, relatively young individuals. The total plasma cfDNA concentrations were sourced from healthy individuals below 47 years, as reported by (Meddeb et al. 2019). We use data analyzed based on plasma samples from healthy individuals to estimate the proportion of cfDNA originating from specific cell types (Loyfer et al. 2023). These values were then compared to the potential DNA flux resulting from homeostatic cellular turnover, estimated for reference healthy males aged between 20 and 30 (Sender and Milo 2021). In our analysis, we considered various sources of uncertainty, including inter-individual variation, variability in the timing of sample collection, and analytical precision (Madsen et al. 2019; Meddeb et al. 2019). These factors collectively contributed to an uncertainty factor of less than 3. Importantly, this level of uncertainty does not alter our conclusion regarding the relatively small fraction of DNA present in plasma as cfDNA. Furthermore, we acknowledge that age and sex can impact total cfDNA concentration, as demonstrated by (Meddeb et al. 2019), with potential variations of up to 30%. However, as the results of our analysis present a much larger difference, these effects do not change the conclusions drawn from our analysis. Nevertheless, age and health status may influence the proportion of cfDNA originating from specific cell types and their corresponding cellular turnover rates. Consequently, the ratios themselves may vary in the elderly population or individuals with underlying health conditions.”

      2) "cfDNA fragments are not created equal". Recent studies demonstrate that cfDNA composition vary with disease state. For example, cfDNA GC content, fraction of short fragments, and composition of some genomic elements increase in heart transplant rejection compared to no-rejection state (Agbor-Enoh, Circulation, 2021). The genomic location and disease state may therefore be important factors to consider in these analyses.

      In this study, we addressed the total amount of cfDNA in healthy individuals without regard to GC content, representation of different genomic regions, or fragment length, as the goal was to understand if cell death rates are fully accounted for by cfDNA concentration. We agree that it will be interesting to study the relative representation of the genome in cfDNA and the processes that determine cfDNA concentration in pathologies beyond the rate of cell death. These topics for future research fall beyond this study's scope.

      3) Alternative sources of DNA production should be considered. Aside from cell death, DNA can be released from cells via active secretion. This and other additional sources of DNA should be considered in future studies. The distinct characteristics of mitochondrial DNA to genomic DNA should also be considered.

      We know only a few specific cases whereby DNA is released from cells that are not dying. These include the release of DNA from erythroblasts and megakaryocytes to generate anucleated erythrocytes and platelets (Moss et al. 2022, cited in our paper) and the release of NETs from neutrophils.

      The presence of cfDNA fragments originating from megakaryocytes and erythroblasts indicates the elimination of megakaryocytes and erythroblasts and the birth of erythrocytes and platelets. However, the considerations in the rest of the paper still apply: the concentration of cfDNA from these sources is far lower than expected from the cell turnover rate.

      Concerning NETosis: the presence of cfDNA originating in neutrophils that have not died would reduce the concentration of cfDNA from dying neutrophils and thus further increase the discrepancy, which is the topic of our study (under-representation of DNA from dying cells in plasma).

      We updated a paragraph in the discussion regarding this issue:

      “A comparison between the different types of cells shows a trend in which less DNA flux from cells with higher turnover gets to the bloodstream. In particular, a tiny fraction (1 in 3x104) of DNA from erythroid progenitors arrives at the plasma, indicating an extreme efficiency of the DNA recovery mechanism. Erythroid progenitors are arranged in erythroblastic islands. Up to a few tens of erythroid progenitors surround a single macrophage that collects the nuclei extruded during the erythrocyte maturation process (pyrenocytes) (Chasis and Mohandas 2008). The amount of DNA discarded through the maturation of over 200 billion erythrocytes per day (Sender and Milo 2021) exceeds all other sources of homeostatic discarded DNA. Our findings indicate that the organization of dedicated erythroblastic islands functions highly efficiently regarding DNA utilization. Neutrophils are another high-turnover cell type with a low level of cfDNA. When contemplating the process of NETosis (Vorobjeva and Chernyak 2020), the existence of cfDNA originating from live neutrophils would potentially diminish the concentration of cfDNA released by dying neutrophils, thereby amplifying the observed ratio for this particular cell type. The overall trend of higher turnover resulting in a lower cfDNA to DNA flux ratio may indicate similar design principles, in which the utilization of DNA is better in tissues with higher turnover. However, our analysis is limited to only several cell types (due to cfDNA test and deconvolution sensitivities), and extrapolation to cells with lower cell turnover is problematic.”

      We neglected mitochondrial DNA, as it is not measured in methylation cell-of-origin analysis. Similarly to the argument above, if some of the total DNA measured in plasma is in fact mitochondrial, this would mean that genomic cfDNA concentration is actually lower than the estimates, meaning that an even smaller fraction of DNA from dying cells is measured in plasma.

    1. Late infection

      Given that we assume the effect of revision is conditional on the nature of that revision, it's not clear to me what "DAIR vs. Revision" means for late infection silo,

      Just thinking through it for myself...

      The options are:

      • A = DAIR -> B = 12w
      • A = Revision(one) -> B in {12w, 6w}
      • A = Revision(two) -> B in {12w, 7d}
      • C in (no rifampicin, rifampicin)

      Currently, (just focusing on surgery/duration, and making 12w the reference for all groups rather than 7w/6d) cell parameters as specified in the model are:

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_A \ \alpha + \beta_A \ \alpha + \beta_A + \beta_{B1} \ \alpha + \beta_A + \beta_{B2} \end{pmatrix} $$

      So, effect of one-stage + 12 w assumed equal to the effect of two-stage + 12w, then revision type specific deviations from those. And "DAIR vs Revision" (beta_A) is really DAIR vs. weighted average of one-stage 12w and two-stage 12w, i.e. ignores the duration options.

      I'm guessing this is the only randomised comparison we can make: a weighted average of one/two + 12w is the "default" revision.

      As an alternative, I assume it's plausible that one-stage 12w and two-stage 12w differ due to clinician selection of one/two stage. So there may be preference (or maybe it just makes things messy) to have something like

      $$ \begin{matrix} \text{DAIR} \ \text{Revision(one), 12w} \ \text{Revision(two), 12w} \ \text{Revision(one), 6w} \ \text{Revision(two), 7d} \end{matrix} \begin{pmatrix} \alpha \ \alpha + \beta_{A1} \ \alpha + \beta_{A2} \ \alpha + \beta_{A1} + \beta_{B1} \ \alpha + \beta_{A2} + \beta_{B2} \end{pmatrix} $$

      Noting that \beta_{A1} and \beta_{A2} aren't "causal" in the sense that any differences could just be due to selection bias rather than differences in effectiveness of one/two stage.

      The effect of revision versus DAIR will depend on what "revision" means. We can't just compare one-stage 12 weeks to DAIR vs 12 weeks because surgeon's choose who gets one-stage. Only comparison that seems to make sense is weighted combination of one/two stage, with weight as observed in the trial. I think that comparison makes sense, but maybe not.

      Assume that $$p_{A1}$$ is the proportion randomised to revision who are selected to receive one-stage and $$1 - p_{A1}$$ the proportion selected to receive two-stage. Then the comparison for any revision versus DAIR might be taken to mean

      $$ p_{A1}(0.5\beta_{A1} + 0.5(\beta_{A1} + \beta_{B1}))\ + (1 - p_{A1})(0.5\beta_{A2} + 0.5(\beta_{A2} + \beta_{B2})) $$

      which just explicitly allows for the differences. Or some other combination of groups, where we assume that selection of one/two stage in the trial is the same in the population. Presumably though there are issues in interpreting such a comparison as "causal", unless also adjust for factors determining one/two stage selection.

      The \beta_{A1} and \beta_{A2} are necessary for estimation of the duration effects, unless willing to assume no differences between one/two stage 12w.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their reading of our manuscript, which we believe has led to substantial improvements.

      To aid clarity, we have split Fig. 1 into three separate figures.

      For convenience, we have put all major changes in the text in blue.

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary: Hui et al. tackle a crucial question in biology: what factors influence the preference for carbon sources in yeasts?

      They reveal that the growth rate on palatinose exceeds that on glucose,

      The above statement is incorrect --- we think the reviewer may have confused sugars.

      despite palatinose utilization being repressed in the presence of glucose. Consequently, the favored carbon source does not necessarily align with the one supporting the fastest growth rate. The study also delves into potential regulatory mechanisms governing carbon source preference and dismisses certain existing theories, such as the general carbon flux sensing mechanism proposed by Okano et al. [25].

      Major comments: None

      Minor comments:

      The authors suggest that a higher growth rate implies a higher glycolytic flux (l63), a crucial assumption underpinning their interpretation of the absence of a ``general carbon flux sensing mechanism' (l65). To substantiate this significant conclusion, they could calculate the extracellular uptake fluxes (based on the time-course concentrations of biomass and substrates).

      This suggestion is a good one, but unfortunately the number of data points in the new Fig. 3 are insufficient to estimate the uptake flux reliably.

      To address whether glycolytic flux increases, we have added a new paragraph to the introduction explaining how all the sugars we consider feed upper glycolysis, providing either its first or second metabolite. We therefore think it highly likely that any differences in growth rate are generated by differences in glycolytic flux. Indeed, Hackett et al., 2016, showed that the glycolytic flux increases with growth rate when they changed extracellular glucose concentrations. We now include this reference in the Discussion.

      The accumulation of certain by-products is known to be toxic, reducing cellular growth rate (e.g., acetate DOI: 10.1038/srep42135, ethanol DOI: 10.1016/B978-0-12-040308-0.50006-9, etc.), while they can also enhance growth under specific conditions (e.g., acetate DOI: 10.15252/embj.2022113079). Considering this is crucial to rule out certain hypotheses, such as the possibility that a by-product produced during growth on the first carbon source would not modulate growth on the second carbon source, potentially influencing the growth rate differentially in each phase. Although the authors use mutant strains to eliminate the role of some C2 compounds (acetate and ethanol), alternative pathways could be implicated in the (co-)utilization of these by-products. This aspect should be discussed, and ideally, the authors could quantify the time-course concentrations of by-products to assess their potential role.

      We agree with the reviewer that extracellular acetate and ethanol may inhibit growth, although budding yeast might be less sensitive than E. coli, the subject of most of the studies provided.

      Nevertheless, we think it unlikely that these chemicals modify the decision-making we see. First, the icl1Δ mutant we tested is unable to consume ethanol (Fernandez et al., 1992) or acetate (Lee et al., 2011) --- we now include these references in the SI --- and yet has wild-type behaviour (Fig. S2D). Second, we observe that isomaltase expression strongly decreases in the presence of galactose when we grow cells in a microfluidic device (Fig. S4), just like it does in batch culture (Fig. 3A), even though the constant flow of medium through the device removes any chemicals the cells excrete.

      The general flux-sensing regulatory mechanism proposed by Okano et al. [25], which has been dismissed by this study, has recently been questioned, as discussed in DOI: 10.15252/embj.2022113079. This aspect should be included in the discussion.

      Okano et al. studied E. coli while we study budding yeast. We therefore have shown that the understanding for that organism does not transfer to our eukaryotic example. We suspect that control in budding yeast combines both flux-sensing and specific regulation, as we say in the discussion, and so we consider our results to build on those of Okano et al.

      Significance

      Strengths & limitations: The work is robust, and the experiments in the study have been appropriately designed and conducted. The primary question of this study has been tackled using a combination of experimental and computational methods to thoroughly assess various regulatory and functional aspects. However, there are gaps in the data that could enhance key conclusions, notably the absence of glycolytic flux measurements. Moreover, further evidence is needed to substantiate the assertion that by-products do not play a role in carbon source preference.

      Advance: This study represents a significant step forward in comprehending the nutritional strategy of microbes. The authors demonstrate that the preferred carbon source may not necessarily be the one supporting the fastest growth rate. Furthermore, they dismiss certain theories that have been proposed to explain the growth strategy of microbes on mixed carbon sources.

      Audience: By addressing a fundamental question in life science, this work is important in the field of biology in general and of particular interest in systems biology, biotechnology, synthetic biology, and health. Consequently, it will be of interest to a broad audience.

      Reviewer #2

      Evidence, reproducibility and clarity

      Summary: The authors have used microtiter plates to produce growth profiles on combinations of different sugars. From this data they have evaluated whether the sugars are co-consumed or if there is a preference for either sugar, seen as a diauxic shift. They found diauxie between galactose and the disaccharide palatinose, but co-consumption between palatinose and fructose. They further used strains with perturbations in their GAL regulon to attempt to explain this discrepency.

      Major comments:

      I unfortunately found a large portion of the present manuscript unintelligable.

      Firstly, figures were incorrect to the point I could not dechiffre them: Figure 2A-C have black solid and dashed lines in the legend that are not found in the graph, instead there are orange and blue dashed lines in the graph with no legends. Figure 4C has no description of the y-axis. The growth rates in Figure 1C are very hard to follow, and there are definitely local maxima in both the blue and green profiles that are not being discussed (at 15-20 h). I cannot evaluate the conclusions drawn from the data until these issues have been resolved.

      We apologise for the difficulties experienced by this reviewer.

      The black lines in the old Fig. 2's legend, now Fig. 4, explain the different styles used: dashed lines are for single sugars regardless of their concentration and full lines are for mixtures regardless of their concentration. We now explicitly say this in the caption.

      We have fixed the missing label in what is now Fig. 6C and have moved the statement that we are showing two biological replicates for each set of concentrations earlier in Fig. 2's caption.

      We now explore the meaning of the shoulder for the fructose-palatinose mixture in Fig. 2B in the Discussion. This point is not a local maximum, unlike the case for diauxie, because the growth rate always decreases. The shoulder for the glucose-palatinose mixture was likely an artefact generated by measurement noise at low ODs because it was not present when we repeated the experiment. We now use that data for Fig. 2A & B. We also include a new Fig. S5 showing that there are sucrose-palatinose concentrations too that have a similar shoulder.

      Secondly, the language in the Results and Discussion sections is confusing. Alternating between present and imperfect tense as well as active and passive form makes it hard to distinguish the authors own results from literature findings (Results are usually written in passive, imperfect tense). Examples are found on lines 24, 29, 37-38, 59, 84, 131, and 165.

      We have made both sections flow more smoothly with substantial re-writing. As before, we cite all results that are not our own.

      The authors also do not consider the differences and similarities in catabolic pathways for assimilation of galactose, fructose and palatinose. Even if they do not see a reason to continue that as a possible explanation for the co-consumption between fructose and palatinose a discussion of why it is disregarded would not be out of place here.

      A good point, and we now state in the Introduction that all the sugars we study feed upper glycolysis.

      Significance

      There is some novelty to the authors findings, but I would argue it is being overstated in the present manuscript. Some examples of studies looking at catabolite repression, the main cause of diauxie, of sugars other than glucose can be found in: Simpson-Lavy and Kupiec (2019), Gancedo (1998), Prasad and Venkatesh (2008) and Borgstrom et al (2022).

      We strongly disagree with this statement. The papers cited do not address, as we do, the co-consumption between two sugars neither of which is glucose. Where they study two sugars, they always study glucose.

      Simpson-Lavy and Kupiec, 2019, investigate the interaction between acetate and ethanol, neither of which are sugars. Further, they are not independent carbon sources because cells convert ethanol into acetate when catabolising ethanol.

      Gancedo, 1998, is a review of glucose repression and describes how glucose represses the expression of genes for other sugars. Although Gancedo mentions ``galactose repression', this repression is of genes encoding enzymes for gluconeogenesis and the TCA and glyoxylate cycles, not of other sugar regulons, our subject.

      Prasad and Venkatesh, 2008, also focus on glucose and the well studied diauxie between glucose and galactose.

      Borgstrom et al., 2022, focus too on glucose and growth on glucose and xylose in recombinant strains. The standard laboratory strains we study have not be artificially engineered to consume xylose. They do mention that galactose causes repression of TPS1, which encodes an enzyme that synthesises the storage carbohydrate trehalose. This repression is again not of a sugar catabolic regulon, our subject.

      I would not say that the field would be significantly advanced by the publication of this manuscript, and the authors have themselves not explained the application of futhering the understanding palatinose metabolism in yeast. As mentioned above, the catabolite repression potential of galactose is already known, it just hasn't been shown for palatinose specifically before.

      We again strongly disagree. Our findings are novel. The reviewer did not provide any evidence for galactose repression of other sugar regulons, which is not widely recognised as we emphasised in the Discussion. We believe that the reviewer has confused the known "galactose repression' of gluconeogenic or TCA-cycle genes with our new report of repression of other sugar regulons in the presence of the sugar catabolised by the regulon.

      I would recommend a complete rewrite of the manuscript as presented, with a lower stated novelty, clearer language and comprehensible figures.

      Reviewer #3

      Evidence, reproducibility and clarity

      Summary: Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift.

      Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used.

      Although the reviewer states that "it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used“, we are unaware of this work and would appreciate references, particularly for budding yeast. The most systematic study we know, in E. coli by Aidelberg et al., 2014 --- reference 13, concludes that "the faster the growth rate, the higher the sugar on the hierarchy“, the opposite behaviour.

      In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.

      We have changed all growth curves to log2 scale, following New et al., 2014, rather than Monod's choice of linear scale that we had originally.

      Our conclusions are unaffected.

      1. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.

      We already showed these growth rates in their own panel in Fig. 1B. Following the reviewer's suggestion, we have now added their statistical significance to the caption.

      1. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.

      Although we have changed all growth curves to log scale, we decided against include this additional labelling for two reasons. First, we are presenting evidence that some of the growth we observe is diauxic and labelling the curves as diauxic before we discuss this evidence undermines that discussion. Second, any further labels would clutter the figures, and we believe would hinder rather than help the reader.

      Instead we changed the colour scheme and the boldness of the diauxic growth curves in Fig. 2, which we hope the reviewer agrees adds the clarity they felt was missing.

      1. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?

      We have confirmed the statistical significance through a t-test and added the results to the caption of Fig. 6C.

      1. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      We agree and have added more discussion of the fructose- and sucrose-palatinose mixtures to the Discussion and a new figure, Fig. S5.

      Our RNAseq data reveals the difference in gene expression caused by an active versus an inactive GAL regulon. In Fig. S11, we show that the hexose transporters HXT2 and HXT7 are down regulated in 0.1% fructose when the GAL regulon is active, perhaps implying that cells are able to prioritise galactose over other hexoses. Nevertheless, to predict if particular carbon sources are therefore favoured, we would need to know whether cells use specific hexose transporters to drive growth on different carbon sources, which has been little investigated.

      Minor comments:

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      We have re-designed Fig. 5, now Fig. 7, following this suggestion and agree it improves clarity.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism.

      In the new figure, this part has been removed.

      1. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      This is an interesting reference looking at growth on a single carbon source. We are unaware of similar tradeoffs relevant to our study. For example, we see little evidence for a constraint on the proteome because in a strain with a constitutively active GAL regulon there is no change in phenotype if we delete the genes for the three highly expressed GAL enzymes (Fig. S6B). Nevertheless and as we state in the penultimate paragraph of the Discussion, we agree that such a constraint must exist, although perhaps this constraint is ecological.

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations:

      This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      We would argue that one of our important findings is to demonstrate that the scientific community is missing the information needed to make such predictions. We provide a counter example to the generally accepted belief that accurate predictions can be made using growth rates. Our work poses the question: what then are the physiological variables required to predict how a cell will consume a pair of carbon sources?

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Review of the paper by Yu Huo et al.

      Summary:

      Microbes grow at different growth rates in different carbon sources. When more than one carbon sources are present in the media microbes often show a preference over certain carbon sources, and 'non-preferred' carbons sources are used only when the preferred carbon source is exhausted in the media, this process called diauxic shift. Why microbes exhibit such utilization preference over certain carbon sources, is an interesting question in microbiology and evolutionary biology, and the molecular mechanisms that enable microbes to preferentially use one carbon over another is worth investigating. It is intuitive to think that microbes will prefer to use a carbon source that confers maximum growth rate, but when tested experimentally it has been often observed that a carbon source in which microbes grow at sub optimal growth rate is actually preferentially used. In this study authors demonstrate that budding yeast prefer to use galactose over palatinose, but not over sucrose or fructose where all three sugars can support faster growth rate compared to palatinose. Authors presented data where preferential galactose use and diauxic shift is observed in the growth curve when galactose and palatinose or glucose and palatinose combinations were used.

      No diauxic shift was observed in the growth curve when fructose-palatinose, or sucrose-palatinose combination were used. In fructose-palatinose and sucrose-palatinose combinations growth curves agree more with co-utilization strategies. Authors used transcriptomics and genetic perturbations to decipher the molecular mechanism of such preferential carbon use, and reports preference of galactose over palatinose is achieved by preventing positive feedback of MAL regulon, which encodes the genes for palatinose catabolism. We found this observation is interesting and the molecular mechanism of such preferential carbon use is nicely described in this paper. We also find claims authors made are well supported by experiments. Although catabolite repression and diauxic transitions are known in yeast, and authors also pointed out such previous references, but preferential use of a slower carbon source, i.e. galactose over at least one other fast-growing carbon is interesting enough for publication. We would like to support the publication of this article, but we have major concerns about the data analysis and data presentation. Authors must address our concerns which are mentioned below.

      Major comments:

      1. This study mainly hinges on growth rate measurements, but we found growth rates are not properly represented in the figures. Growth curves are always shown in linear scale, which makes it almost impossible to compare fast and slow growth when presented in same plot. All growth curves must be shown on log scale.
      2. Growth rates of the Yeast strain growing individual single carbon sources (galactose, palatinose, sucrose and fructose) should be shown as a figure panel and t-test should be performed to conclude if the individual growth rates are significantly different or not.
      3. Growth phase, lag phase, diauxic shift and post shift growth should be clearly shown in figure 2 and 4, each phase should be clearly marked, carbons used in each phase should be mentioned on the plot. Also, the growth curve must be plotted using log scale.
      4. Authors has taken in account that MAL12 gene overexpression causes long lag when cells need to switch to maltose from glucose, and shown deletion of IMA1 decreases the lag with subsequent 2% growth rate increase in palatinose. How significant is this increase?
      5. Authors have an interesting observation that in sucrose-palatinose and fructose palatinose combinations, most probably co utilization of the carbons is taking place. Authors should discuss this in more details. In galactose-palatinose scenario intracellular galactose-based repression of gal80 and subsequent lack of feed forward of the Mal regulon is expected to stop co-utilization of palatinose. As authors have RNA seq data, can they make predictions for other carbon pairs, where sequential utilization can occur based on their model?

      Minor comments

      1. In figure 5, authors attempted to summarize the model, which is informative, but it will be more useful for non-specific reader if a cell-based cartoon, with transports on surface and catabolic enzymes inside is also added.

      In this schematic diagram, switch from galactose (blue line) to red line (palatinose) shows a mixed color zone, it's a bit confusing, as this represents a bi-stable state. Authors should clearly comment on possibility of biostability while discussing their proposed mechanism. 2. The author may want to put their work in the context of other recent observations that bacteria do not try to maximize their growth rates in many conditions. Fast growth is often associated with expansive tradeoffs, and a carbon source which confers fast growth rate may confer selective disadvantage. Thus, there are evolutionary benefits of sub-optimal growth, which could be discussed in the manuscript. In this regard a recent study (bioRxiv (2023) doi:10.1101/2023.08.22.554312.) has established the link between resource allocation strategies, growth rates and tradeoffs, which may be taken in account while discussing. Are there any known tradeoffs, when galactose is used over palatinose and which is not the case sucrose or fructose?

      Referees cross-commenting

      As other reviewers pointed out, this study has merit and addressed interesting questions, but needed to be written well in a more understandable form, we agree with this assessment. Also figures must be made much clearer, as all of the reviewers pointed out. In summary, this is an interesting study, but needs some work before publication.

      Significance

      General assessment: Strength and limitations: This study addressed an interesting question regarding resource preference and growth rate optimization in microbes. This is an important question in the field. Study is well designed and claims are backed up with experimental results. One of the limitations of the study is lack of predictability. Authors explained the mechanism for one pair of carbon sources, but how applicable that will be in general is not clear.

      Advance: This study helps to advance our knowledge. Their observation regarding preferential utilization of a carbon source which supports slower growth over a carbon source which can support faster growth, and the molecular mechanism provided will help researchers to understand resource allocation strategies better.

      Audience: Microbiology, systems biology, evolutionary biology, fermentation and bio process engineering research.

      Reviewer expertise: Biochemistry, systems biology, metabolic strategies and tradeoffs in microbes, microbial ecology.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We would firstly like to thank all reviewers for their comments and support of this manuscript.

      Reviewer #1 (Recommendations For The Authors):

      No further recommendations.

      Reviewer #2 (Recommendations For The Authors):

      All of my comments have been sufficiently addressed.

      Reviewer #3 (Recommendations For The Authors):

      Thanks for responding to my former recommendations constructively. I believe these points have been fully addressed in this new version.

      However, I have not seen any comments on the points I raised in my former public review concerning the I-2 dependence of the FonSIX4 cell death. Do you know whether FonSIX4 would trigger cell death in tissues not expressing any I-2?

      We are a little confused concerning this comment. I-2 is a different class of resistance protein (NLR) that recognises Avr2 and this is likely to be intracellular. From the previous public review, we believe reviewer 3 may have been asking us to clarify the dependence of I (MM or M82) on FonSIX4 cell death. We have performed these controls by expressing FonSIX4 and associated FonSIX4/Avr1 chimeras in N. benthamiana (with the PR-1 signal peptide for efficient secretion of effectors) and it does not cause cell death in the absence of the I receptor – see S11F Fig. This was not explicitly conveyed in text so we have included the following in text: “Using the N. benthamiana assay we show FonSIX4 is recognised by I receptors from both cultivars (IM82 and iMoneymaker) and cell death is dependent on the presence of IM82 or iMoneymaker (Fig 5B, S11 Fig).”

      I still recommend discussing whether the Avr1 residues crucial for Avr activity are in the same structural regions of the C-terminal domain where previous work has identified residues under diversifying selection in symbiotic fungal FOLD proteins.

      The region important for recognition does encompass some residues within the structural region identified to be under diversifying selection in FOLD effectors from Rhizophagus irregularis previously reported (two residues within one beta-strand). However, we also see residues that don’t overlap to this area. We also note that the mycFOLD proteins analysed in symbiotic fungi are heavily skewed towards strong structurally similarity with FolSIX6 (similar cysteine spacing within both N and C-domains and structural orientation of the N and C-domains) rather than Avr1. We are under the impression that Avr1 was not included in the analysis of diversifying selection in symbiotic fungal FOLD proteins, it also is unclear to us if close Avr1 homologues are present. With this in mind, and considering our already lengthy discussion (as previously highlighted during reviewer), we have decided not to include further discussion concerning this point.


      The following is the authors’ response to the original reviews.

      We would like to thank the editor(s) and reviewers for their work concerning our manuscript. Most of the suggested changes were related to text changes which we have incorporated into the revised version. Please find our response to reviewers below.

      Reviewer #1 (Recommendations For The Authors):

      I only have very minor suggestions for the authors. The first one comes from reading the manuscript and finding it very dense with so many acronyms. This will limit the audience that will read the study and appreciate its impact. This is more noticeable in the Results, with many passages that I would suggest moving to Methodology.

      We thank reviewer 1 for their very positive review. We understand that due to the nature of this study, which includes many protein alleles/mutations that were expressed with different boundaries etc., it is difficult to achieve this. Reviewer 2 asked for more details to be provided. We hope we have achieved a nice balance in the revised manuscript.

      Something else that would facilitate the reading of the manuscript is the effectors name. The authors use the SIX name or the Avr name for some effectors and it makes it difficult to follow up.

      We have tried to make this consistent for Avr1 (SIX4), Avr2 (SIX3) and Avr3 (SIX1). Other SIX effectors are not known Avrs so the SIX names were used.

      Reading the manuscript and seeing how in most of the sections the authors used a computational approach followed by an experimental approach, I wonder why Alphafold2-multimer was not used to investigate the interaction between the effector and the receptor?

      This is a great suggestion, we have certainly investigated this, however to date there is no experimental evidence to directly support the direct interaction between I and Avr1. Post review, we spent some time trying to capture an interaction using a co-immunoprecipitation approach however to date we have not been able to obtain robust data that support this. We are currently looking to study this utilising protein biophysics/biochemistry but this work will take some time.

      Reviewer #2 (Recommendations For The Authors):

      We thank reviewer 2 for the very thorough editing and recommendations. We have incorporated all minor text edits below into the manuscript.

      Line 43: perhaps "Effector recognition" instead of "Effector detection", to be consistent with line 51?

      Line 60: Change to "leads".

      Line 79: Italicise Avr2.

      Line 94: Add the acronym ETI in parentheses after "effector-triggered immunity".

      Line 106: "(Leptosphaeria Avirulence-Supressing)" should be "(Leptosphaeria Avirulence and Supressing)".

      Line 112: Change "defined" to "define".

      Line 119: Spell out the species name on first use.

      Line 205: Glomeromycota is a division rather than a genus. Consistent with Fig 2, it also does not need to italicized.

      Line 207: Change "basidiomycete" to "Division Basidiomycota", consistent with Fig 2.

      Line 214: Change "alignment of Avr1, Avr3, SIX6 and SIX13" to "alignment of the mature Avr1, Avr3, SIX6 and SIX13 sequences".

      Line 324: Change "solved structures" to "solved protein structures".

      Line 335: Spell out acronyms like "MS" on first use in figure legends. Also dpi in other figure legends.

      Line 341: replace "effector-triggered immunity (ETI)" with "(ETI)" - see comment on Line 94.

      Line 370: Change "domains" to "domain".

      Line 374: In the title, change "C-terminus" to C-domain", consistent with the rest of the figure legend.

      Line 404: Change "(basidiomycetes and ascomycetes)" to "(Basidiomycota and Ascomycota fungi)", consistent with Fig 2C.

      Line 416: Change "in" to "by".

      Line 427: un-italicize the parentheses.

      Line 519: First mention of NLR. Spell out the acronym on first use in main text. S5 and S11 figure titles should be bolded.

      Line 852: Replace "@" with "at".

      S4 Table: Gene names should be italicised.

      S5 Table: Needs to be indicated that the primer sequences are in the 5´-3´ orientation.

      With regards to the Agrobacterium tumefaciens-mediated transient expression assays involving co-expression of the Avr1 effector and I immune receptor, the authors need to make clear how many biological replicates were performed as this information is only provided for the ion leakage assay.

      We have added these data to the figure legend

      Line 57: For me, the text "Fol secretes a limited number of structurally related effectors" reads as Fol secretes structurally related effectors, but very few of them are structurally related. Perhaps it would be better to say that the effector repertoire of Fol is made up of proteins that adopt a limited number of structural folds, or that the effector repertoire can be classified into a reduced set of structural families?

      This edit has been incorporated.

      Lines 66-67: Subtle re-wording required for "The best-characterized pathosystem is F. oxysporum f. sp. lycopersici (Fol)", as a pathosystem is made up of a pathogen and its host. Perhaps "The best-characterized pathosystem involves F. oxysporum f. sp. lycopersici (Fol) and tomato".

      Sentence has been reworded.

      Line 113 and throughout: Stick with one of "resistance protein", "receptor", "immune receptor" and "immunity receptor" throughout the manuscript.

      We have decided to use both receptor and immunity receptor as not all receptors investigated in the manuscript provide immunity.

      Lines 149-150: The title does not fully represent what is shown in the figure. The text "that is unique among fungal effectors" can be deleted as there is nothing in Fig 1 that shows that the fold is unique to fungal effectors.

      Figure title has been changed.

      Line 173: The RMSD of Avr3 is stated as being 3.7 Å, but in S3 Fig it is stated as being 3.6 Å.

      This was a mistake in the main text and has been corrected.

      Lines 202-204: This sentence needs to be reworded, as the way that it is written implies that the Diversispora and Rhizophagus genera are in the Ascomycota division. Also, "Ascomycetes" should be changed to "Ascomycota fungi", consistent with Fig 2.

      Sentence has been reworded.

      Line 233: "Scores above 8". What type of scores? Z-scores?

      These are Z-scores. This has been added in text.

      Lines 242-246: It is stated that SIX9 and SIX11 share structural similarity to various RNA-binding proteins, but no scores used to make these assessments is given. The scores should be provided in the text.

      Z-scores have been added.

      Fig 4A: SIX3 should be Avr2, consistent with line 292. The gene names should be italicised in Fig 4A.

      SIX3 was changed to Avr2. Gene names have been italicised.

      Line 356: Subtle rewording required, as "co-infiltrated with both IM82 and iMoneymaker" implies that you infiltrated with protein rather than Agrobacterium strains.

      Sentence has been reworded.

      Fig 5A, Fig 5C and Line 380: Light blue is used, but this looks grey. Perhaps change colour, as grey is already used to show the pro-domain in Fig 5A (or simply change the colour used to highlight the pro-domain)?

      Colour depicting the C-domain was changed.

      Lines 530-531: This text is no longer correct. Rlm4 and Rlm3 are now known to be alleles of Rlm9. See: Haddadi, P., Larkan, N. J., Van deWouw, A., Zhang, Y., Neik, T. X., Beynon, E., ... & Borhan, M. H. (2022). Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall‐associated kinase‐like resistance locus. Plant Biotechnology Journal, 20(7), 1229.

      We thank the reviewer for picking this up. This text has been updated.

      Line 553: Provide more information on what the PR1 signal peptide is.

      More information about the PR1 signal peptide has been added.

      Lines 767-781: Descriptions and naming conventions of proteins throughout the figure legend need to be consistent and better reflect their makeup. For example, I think it would be best to put the sequence range after each protein mentioned - e.g. Avr118-242 or Avr159-242 instead of Avr1, PSL1_C37S18-111 instead of PSL1_C37S, etc. Furthermore, it is often stated that a protein is full-length when it lacks a signal peptide - my thought is that if a proteins lack its signal peptide, it is not full-length. The acronym "PD" also needs to be spelled out as "pro-domain (PD)" in the figure legend.

      We have incorporated sequence range for proteins that were produced upon first use. Sequence ranges that were modelled in AlphaFold2 were not added in text because they can be found in Supplementary Table 3.

      Lines 853-845: It is stated the sizes of proteins are indicated above the chromatogram in S10 Fig, but this is not the case. It is also not clear from S10B Fig that the faint peaks correspond to the peaks in the Fig 4B chromatogram. In S10D Fig, the stick of C58S is difficult to see. Perhaps change the colour or use an arrow/asterisk?

      Protein size estimates have been added above the chromatogram. Added text to indicate that the faint peaks correspond to peaks in Fig 4B. Added an asterisk in S10D Fig to identify the location of C58.

      S14 Fig is not mentioned/referenced in the main text of the manuscript.

      This was a mistake and has been added.

      The reference list needs to be updated to accommodate those referenced bioRxiv preprints that have now been published in peer-reviewed journals.

      The reference list has been updated.

      Reviewer #3 (Recommendations For The Authors):

      It would be good to discuss whether the pro-domains affecting virulence or avirulence activity.

      Kex2, the protease that cleaves the pro-domain functions in the golgi. We therefore suspect that the pro-domain is removed prior to secretion. For recombinant protein production in E. coli we find that these pro-domains are necessary to obtain soluble protein (doi: 10.1111/nph.17516). As we require the pro-domain for protein production and can not completely removing them from our preps, we cannot perform experiments to test this and subsequently comment further. In a paper that identified SIX effectors in tomato utilising proteomics approach (https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/j.1364-3703.2007.00384.x), it appears that the pro-domains were not captured in this analysis. This supports the conclusion that they are not associated with the mature/secreted protein.

      The authors stated that the C-terminal domain of SIX6 has a single disulfide bond unique to SIX6. Please clarify in which context is it unique: in Fusarium or across all FOLD proteins?

      This is in direct comparison to Avr1 and Avr3. The disulfide in the C-domain of SIX6 is unique compared to Avr1 and Avr3. This has been made clear in text.

      The structural similarity of FOLD proteins to other known structures have been discussed (lines 460ff), but it is not clear whether all structures and models identified in this work would yield cysteine inhibitor and tumor necrosis factors as best structural matches in the database or whether this is specific to a single FOLD protein. Please consider discussing recently published findings by others (Teulet et al. 2023, New Phytologist) on this aspect.

      This analysis was performed for Avr1, we obtained relatively low similarity hits for Avr3/Six6. We have updated this text accordingly… “Unfortunately, the FOLD effectors share little overall structural similarity with known structures in the PDB outside of the similarity with each other. At a domain level, the N-domain of the FOLD effector Avr1 has some structural similarities with cystatin cysteine protease inhibitors (PDB code: 4N6V, PDB code: 5ZC1) [60, 61], and the C-domain with tumour necrosis factors (PDB code: 6X83) [62] and carbohydrate-binding lectins (PDB code: 2WQ4) [63]. Relatively weak hits were observed for Avr3/Six6.”

      It might be useful to clearly point out that the ToxA fold and the C-terminus of the FOLD fold are different.

      We have secondary structural topology maps of the FOLD and ToxA-like families in S8 Fig which highlight the differences in topology between these two families.

      Please add information to Fig.S8 listing the approach to generate the secondary structure topology maps.

      We have added this information in the figure caption.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This work presents H3-OPT, a deep learning method that effectively combines existing techniques for the prediction of antibody structure. This work is important because the method can aid the design of antibodies, which are key tools in many research and industrial applications. The experiments for validation are solid.

      Comments to Author:

      Several points remain partially unclear, such as:

      1). Which examples constitute proper validation;

      Thank you for your kind reminder. We have modified the text of the experiments for validation to identify which examples constitute proper validation. We have corrected the “Finally, H3-OPT also shows lower Cα-RMSDs compared to AF2 or tFold-Ab for the majority of targets in an expanded benchmark dataset, including all antibody structures from CAMEO 2022” into “Finally, H3-OPT also shows lower Cα-RMSDs compared to AF2 or tFold-Ab for the majority (six of seven) of targets in an expanded benchmark dataset, including all antibody structures from CAMEO 2022” and added the following sentence in the experimental validation section of our revised manuscript to clarify which examples constitute proper validation: “AlphaFold2 outperformed IgFold on these targets”.

      2) What the relevance of the molecular dynamics calculations as performed is;

      Thank you for your comment, and I apologize for any confusion. The goal of our molecular dynamics calculations is to compare the differences in binding affinities, an important issue of antibody engineering, between AlphaFold2-predicted complexes and H3-OPT-predicted complexes. Molecular dynamics simulations enable the investigation of the dynamic behaviors and interactions of these complexes over time. Unlike other tools for predicting binding free energy, MM/PBSA or MM/GBSA calculations provide dynamic properties of complexes by sampling conformational space, which helps in obtaining more accurate estimates of binding free energy. In summary, our molecular dynamics calculations demonstrated that the binding free energies of H3-OPT-predicted complexes are closer to those of native complexes. We have included the following sentence in our manuscript to provide an explanation of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”.

      3) The statistics for some of the comparisons;

      Thank you for the comment. We have incorporated statistics for some of the comparisons in the revised version of our manuscript and added the following sentence in the Methods section: “We conducted two-sided t-test analyses to assess the statistical significance of differences between the various groups. Statistical significance was considered when the p-values were less than 0.05. These statistical analyses were carried out using Python 3.10 with the Scipy library (version 1.10.1).”.

      4) The lack of comparison with other existing methods.

      We appreciate your valuable comments and suggestions. Conducting comparisons with a broader set of existing methods can further facilitate discussions on the strengths and weaknesses of each method, as well as the accuracy of our method. In our study, we conducted a comparison of H3-OPT with many existing methods, including AlphaFold2, HelixFold-Single, ESMFold, and IgFold. We demonstrated that several protein structure prediction methods, such as ESMFold and HelixFold-Single, do not match the accuracy of AlphaFold2 in CDR-H3 prediction. Additionally, we performed a detailed comparison between H3-OPT, AlphaFold2, and IgFold (the latest antibody structure prediction method) for each target.

      We sincerely thank the comment and have introduced a comparison with OmegaFold. The results have been incorporated into the relevant sections (Fig 4a-b) of the revised manuscript.

      Author response image 1.

      Public Reviews

      Comments to Author:

      Reviewer #1 (Public Review):

      Summary:

      The authors developed a deep learning method called H3-OPT, which combines the strength of AF2 and PLM to reach better prediction accuracy of antibody CDR-H3 loops than AF2 and IgFold. These improvements will have an impact on antibody structure prediction and design.

      Strengths:

      The training data are carefully selected and clustered, the network design is simple and effective.

      The improvements include smaller average Ca RMSD, backbone RMSD, side chain RMSD, more accurate surface residues and/or SASA, and more accurate H3 loop-antigen contacts.

      The performance is validated from multiple angles.

      Weaknesses:

      1) There are very limited prediction-then-validation cases, basically just one case.

      Thanks for pointing out this issue. The number of prediction-then-validation cases is helpful to show the generalization ability of our model. However, obtaining experimental structures is both costly and labor-intensive. Furthermore, experimental validation cases only capture a limited portion of the sequence space in comparison to the broader diversity of antibody sequences.

      To address this challenge, we have collected different datasets to serve as benchmarks for evaluating the performance of H3-OPT, including our non-redundant test set and the CAMEO dataset. The introduction of these datasets allows for effective assessments of H3-OPT’s performance without biases and tackles the obstacle of limited prediction-then-validation cases.

      Reviewer #2 (Public Review):

      This work provides a new tool (H3-Opt) for the prediction of antibody and nanobody structures, based on the combination of AlphaFold2 and a pre-trained protein language model, with a focus on predicting the challenging CDR-H3 loops with enhanced accuracy than previously developed approaches. This task is of high value for the development of new therapeutic antibodies. The paper provides an external validation consisting of 131 sequences, with further analysis of the results by segregating the test sets into three subsets of varying difficulty and comparison with other available methods. Furthermore, the approach was validated by comparing three experimentally solved 3D structures of anti-VEGF nanobodies with the H3-Opt predictions

      Strengths:

      The experimental design to train and validate the new approach has been clearly described, including the dataset compilation and its representative sampling into training, validation and test sets, and structure preparation. The results of the in-silico validation are quite convincing and support the authors' conclusions.

      The datasets used to train and validate the tool and the code are made available by the authors, which ensures transparency and reproducibility, and allows future benchmarking exercises with incoming new tools.

      Compared to AlphaFold2, the authors' optimization seems to produce better results for the most challenging subsets of the test set.

      Weaknesses:

      1) The scope of the binding affinity prediction using molecular dynamics is not that clearly justified in the paper.

      We sincerely appreciate your valuable comment. We have added the following sentence in our manuscript to justify the scope of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”.

      2) Some parts of the manuscript should be clarified, particularly the ones that relate to the experimental validation of the predictions made by the reported method. It is not absolutely clear whether the experimental validation is truly a prospective validation. Since the methodological aspects of the experimental determination are not provided here, it seems that this may not be the case. This is a key aspect of the manuscript that should be described more clearly.

      Thank you for the reminder about experimental validation of our predictions. The sequence identities of the wild-type nanobody VH domain and H3 loop, when compared with the best template, are 0.816 and 0.647, respectively. As a result, these mutants exhibited low sequence similarity to our dataset, indicating the absence of prediction bias for these targets. Thus, H3-OPT outperformed IgFold on these mutants, demonstrating our model's strong generalization ability. In summary, the experimental validation actually serves as a prospective validation.

      Thanks for your comments, we have added the following sentence to provide the methodological aspects of the experimental determination: “The protein expression, purification and crystallization experiments were described previously. The proteins used in the crystallization experiments were unlabeled. Upon thawing the frozen protein on ice, we performed a centrifugation step to eliminate any potential crystal nucleus and precipitants. Subsequently, we mixed the protein at a 1:1 ratio with commercial crystal condition kits using the sitting-drop vapor diffusion method facilitated by the Protein Crystallization Screening System (TTP LabTech, mosquito). After several days of optimization, single crystals were successfully cultivated at 21°C and promptly flash-frozen in liquid nitrogen. The diffraction data from various crystals were collected at the Shanghai Synchrotron Research Facility and subsequently processed using the aquarium pipeline.”

      3) Some Figures would benefit from a clearer presentation.

      We sincerely thanks for your careful reading. According to your comments, we have made extensive modifications to make our presentation more convincing and clearer (Fig 2c-f).

      Author response image 2.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript introduces a new computational framework for choosing 'the best method' according to the case for getting the best possible structural prediction for the CDR-H3 loop. The authors show their strategy improves on average the accuracy of the predictions on datasets of increasing difficulty in comparison to several state-of-the-art methods. They also show the benefits of improving the structural predictions of the CDR-H3 in the evaluation of different properties that may be relevant for drug discovery and therapeutic design.

      Strengths:

      The authors introduce a novel framework, which can be easily adapted and improved. The authors use a well-defined dataset to test their new method. A modest average accuracy gain is obtained in comparison to other state-of-the art methods for the same task while avoiding testing different prediction approaches.

      Weaknesses:

      1) The accuracy gain is mainly ascribed to easy cases, while the accuracy and precision for moderate to challenging cases are comparable to other PLM methods (see Fig. 4b and Extended Data Fig. 2). That raises the question: how likely is it to be in a moderate or challenging scenario? For example, it is not clear whether the comparison to the solved X-ray structures of anti-VEGF nanobodies represents an easy or challenging case for H3-OPT. The mutant nanobodies seem not to provide any further validation as the single mutations are very far away from the CDR-H3 loop and they do not disrupt the structure in any way. Indeed, RMSD values follow the same trend in H3-OPT and IgFold predictions (Fig. 4c). A more challenging test and interesting application could be solving the structure of a designed or mutated CDR-H3 loop.

      Thank you for your rigorous consideration. When the experimental structure is unavailable, it is difficult to directly determinate whether the target is easy-to-predict or challenging. We have conducted our non-redundant test set in which the number of easy-to-predict targets is comparable to the other two groups. Due to the limited availability of experimental antibody structures, especially nanobody structures, accurately predicting CDR-H3 remains a challenge. In our manuscript, we discuss the strengths and weakness of AlphaFold2 and other PLM-based methods, and we introduce H3-OPT as a comprehensive solution for antibody CDR3 modeling.

      We also appreciate your comment on experimental structures. We fully agree with your opinion and made attempts to solve the experimental structures of seven mutants, including two mutants (Y95F and Q118N) which are close to CDR-H3 loop. Unfortunately, we tried seven different reagent kits with a total of 672 crystallization conditions, but were unable to obtain crystals for these mutants. Despite the mutants we successfully solved may not have significantly disrupted the structures of CDR-H3 loops, they have still provided valuable insights into the differences between MSA-based methods and MSA-free methods (such as IgFold) for antibody structure modeling.

      We have further conducted a benchmarking study using two examples, PDBID 5U15 and 5U0R, both consisting of 18 residues in CDR-H3, to evaluate H3-OPT's performance in predicting mutated H3 loops. In the first case (target 5U15), AlphaFold2 failed to provide an accurate prediction of the extended orientation of the H3 loop, resulting in a less accurate prediction (Cα-RMSD = 10.25 Å) compared to H3-OPT (Cα-RMSD = 5.56 Å). In the second case (target 5U0R, a mutant of 5U15 in CDR3 loop), AlphaFold2 and H3-OPT achieved Cα-RMSDs of 6.10 Å and 4.25 Å, respectively. Additionally, the Cα-RMSDs of OmegaFold predictions were 8.05 Å and 9.84 Å, respectively. These findings suggest that both AlphaFold2 and OmegaFold effectively captured the mutation effects on conformations but achieved lower accuracy in predicting long CDR3 loops when compared to H3-OPT.

      2) The proposed method lacks a confidence score or a warning to help guide the users in moderate to challenging cases.

      We appreciate your suggestions and we have trained a separate module to predict confidence scores. We used the MSE loss for confidence prediction, where the label error was calculated as the Cα deviation of each residue after alignment. The inputs of this module are the same as those used for H3-OPT, and it generates a confidence score ranging from 0 to 100.

      3) The fact that AF2 outperforms H3-OPT in some particular cases (e.g. Fig. 2c and Extended Data Fig. 3) raises the question: is there still room for improvements? It is not clear how sensible is H3-OPT to the defined parameters. In the same line, bench-marking against other available prediction algorithms, such as OmegaFold, could shed light on the actual accuracy limit. We totally understand your concern. Many papers have suggested that PLM-based models are computationally efficient but may have unsatisfactory accuracy when high-resolution templates and MSA are available (Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies, Ruffolo, J. A. et al, 2023). However, the accuracy of AF2 decreased substantially when the MSA information is limited. Therefore, we directly retained high-confidence structures of AF2 and introduced a PSPM to improve the accuracy of the targets with long CDR-H3 loops and few sequence homologs. The improvement in mean Cα-RMSD demonstrated the room for accurately predicting CDR-H3 loops.

      We also appreciate your kind comment on defined parameters. In fact, once a benchmark dataset is established, determining an optimal cutoff value through parameter searching can indeed further improve the performance of H3-OPT in CDR3 structure prediction. However, it is important to note that this optimal cutoff value heavily depends on the testing dataset being used. Therefore, we provide a recommended cutoff value and offer a program interface for users who wish to manually define the cutoff value based on their specific requirements. Here, we showed the average Cα-RMSDs of our test set under different confidence cutoffs and the results have been added in the text accordingly.

      Author response table 1.

      We also appreciate your reminder, and we have conducted a benchmark against OmegaFold. The results have been included in the manuscript (Fig 4a-b).

      Author response image 3.

      Reviewer #1 (Recommendations For The Authors):

      1) In Fig 3a, please also compare IgFold and H3-OPT (merge Fig. S2 into Fig 3a)

      In Fig 3b, please separate Sub2 and Sub3, and add IgFold's performance.

      Thank you very much for your professional advice. We have made revisions to the figures based on your suggestions.

      Author response image 4.

      2) For the three experimentally solved structures of anti-VEGF nanobodies, what are the sequence identities of the VH domain and H3 loop, compared to the best available template? What is the length of the H3 loop? Which category (Sub1/2/3) do the targets belong to? What is the performance of AF2 or AF2-Multimer on the three targets?

      We feel sorry for these confusions. The sequence identities of the VH domain and H3 loop are 0.816 and 0.647, respectively, comparing with the best template. The CDR-H3 lengths of these nanobodies are both 17. According to our classification strategy, these nanobodies belong to Sub1. The confidence scores of these AlphaFold2 predicted loops were all higher than 0.8, and these loops were accepted as the outputs of H3-OPT by CBM.

      3) Is AF2-Multimer better than AF2, when using the sequences of antibody VH and antigen as input?

      Thanks for your suggestions. Many papers have benchmarked AlphaFold2-Multimer for protein complex modeling and demonstrated the accuracy of AlphaFold2-Multimer on predicting the protein complex is far from satisfactory (Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants, Rui Yin, et al., 2022). Additionally, there is no significantly difference between AlphaFold2 and AlphaFold2-Multimer on antibody modeling (Structural Modeling of Nanobodies: A Benchmark of State-of-the-Art Artificial Intelligence Programs, Mario S. Valdés-Tresanco, et al., 2023)

      From the data perspective, we employed a non-redundant dataset for training and validation. Since these structures are valuable, considering the antigen sequence would reduce the size of our dataset, potentially leading to underfitting.

      4) For H3 loop grafting, I noticed that only identical target and template H3 sequences can trigger grafting (lines 348-349). How many such cases are in the test set?

      We appreciate your comment from this perspective. There are thirty targets in our database with identical CDR-H3 templates.

      Reviewer #2 (Recommendations For The Authors):

      • It is not clear to me whether the three structures apparently used as experimental confirmation of the predictions have been determined previously in this study or not. This is a key aspect, as a retrospective validation does not have the same conceptual value as a prospective, a posteriori validation. Please note that different parts of the text suggest different things in this regard "The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT" is not exactly the same as "we then sought to validate H3-OPT using three experimentally determined structures of anti-VEGF nanobodies, including a wild-type (WT) and two mutant (Mut1 and Mut2) structures, that were recently deposited in protein data bank". The authors are kindly advised to make this point clear. By the way, "protein data bank" should be in upper case letters.

      We gratefully thank you for your feedback and fully understand your concerns. To validate the performance of H3-OPT, we initially solved the structures of both the wild-type and mutants of anti-VEGF nanobodies and submitted these structures to Protein Data Bank. We have corrected “that were recently deposited in protein data bank” into “that were recently deposited in Protein Data Bank” in our revised manuscript.

      • It would be good to clarify the goal and importance of the binding affinity prediction, as it seems a bit disconnected from the rest of the paper. Also, it would be good to include the production MD runs as Sup, Mat.

      Thanks for your valuable comment. We have added the following sentence in our manuscript to clarify the goal and importance of the molecular dynamics calculations: “Since affinity prediction plays a crucial role in antibody therapeutics engineering, we performed MD simulations to compare the differences in binding affinities between AF2-predicted complexes and H3-OPT-predicted complexes.”. The details of production runs have been described in Method section.

      • Has any statistical test been performed to compare the mean Cα-RMSD values across the modeling approaches included in the benchmark exercise?

      Thanks for this kind recommendation. We conducted a statistical test to assess the performance of different modeling approaches and demonstrated significant improvements with H3-OPT compared to other methods (p<0.001). Additionally, we have trained H3-OPT with five random seeds and compared mean Cα-RMSD values with all five models of AF2. Here, we showed the average Cα-RMSDs of H3-OPT and AlphaFold2.

      Author response table 1.

      • In Fig. 2c-f, I think it would be adequate to make the ordering criterion of the data points explicit in the caption or the graph itself.

      We appreciate your comment and suggestion. We have revised the graph in the manuscript accordingly.

      Author response image 5.

      • Please revise Figure S2 caption and/or its content. It is not clear, in parts b and c, which is the performance of H3-OPT. Why weren´t some other antibody-specific tools such as IgFold included in this comparison?

      Thanks for your comments. The performance of H3-OPT is not included in Figure S2. Prior to training H3-OPT, we conducted several preliminary studies, and the detailed results are available in the supplementary sections. We showed that AlphaFold2 outperformed other methods (including AI-based methods and TBM methods) and produced sub-angstrom predictions in framework regions. The comparison of IgFold with other methods was discussed in a previous work (Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies, Ruffolo, J. A. et al, 2023). In that study, we found that IgFold largely yielded results comparable to AlphaFold2 but with lower prediction cost. Additionally, we have also conducted a detailed comparison of CDR-H3 loops with IgFold in our main text.

      • It is stated that "The relative binding affinities of the antigen-antibody complexes were evaluated using the Python script...". Which Python script?

      Thank you for your comments, and I apologize for the confusion. This python script is a module of AMBER software, we have corrected “The relative binding affinities of the antigen-antibody complexes were evaluated using the python script” into “The relative binding affinities of the antigen-antibody complexes were evaluated using the MMPBSA module of AMBER software”.

      Reviewer #3 (Recommendations For The Authors):

      Does H3-OPT improve the AF2 score on the CDR-H3? It would be interesting to see whether grafted and PSPM loops improve the pLDDT score by using for example AF2Rank [https://doi.org/10.1103/PhysRevLett.129.238101]. That could also be a way to include a confidence score into H3-OPT.

      We are so grateful for your kind question. H3-OPT could not provide a confidence score for output in current version, so we did not know whether H3-OPT improve the AF2 score or not.

      We appreciate your kind recommendations and have calculated the pLDDT scores of all models predicted by H3-OPT and AF2 using AF2Rank. We showed that the average of pLDDT scores of different predicted models did not match the results of Cα-RMSD values.

      Author response table 3.

      Therefore, we have trained a separate module to predict the confidence score of the optimized CDR-H3 loops. We hope that this module can provide users with reliable guidance on whether to use predicted CDR-H3 loops.

      The test case of Nb PDB id. 8CWU is an interesting example where AF2 outperforms H3-OPT and PLMs. The top AF2 model according to ColabFold (using default options and no template [https://doi.org/10.1038/s41592-022-01488-1]) shows a remarkably good model of the CDR-H3, explaining the low Ca-RMSD in the Extended Data Fig. 3. However, the pLDDT score of the 4 tip residues (out of 12), forming the hairpin of the CDR-H3 loop, pushes down the average value bellow the CBM cut-off of 80. I wonder if there is a lesson to learn from that test case. How sensible is H3-OPT to the CBM cut-off definition? Have the authors tried weighting the residue pLDDT score by some structural criteria before averaging? I guess AF2 may have less confidence in hydrophobic tip residues in exposed loops as the solvent context may not provide enough support for the pLDDT score.

      Thanks for your valuable feedback. We showed the average Cα-RMSDs of our test set under different confidence cutoffs and the results have been added in the text accordingly.

      Author response table 4.

      We greatly appreciate your comment on this perspective. Inspired on your kind suggestions, we will explore the relationship between cutoff values and structural information in related work. Your feedback is highly valuable as it will contribute to the development of our approach.

      A comparison against the new folding prediction method OmegaFold [https://doi.org/10.1101/2022.07.21.500999] is missed. OmegaFold seems to outperform AF2, ESM, and IgFold among others in predicting the CDR-H3 loop conformation (See [https://doi.org/10.3390/molecules28103991] and [https://doi.org/10.1101/2022.07.21.500999]). Indeed, prediction of anti-VEGF Nb structure (PDB WT_QF_0329, chain B in supplementary data) by OmegaFold as implemented in ColabFold [https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/omegafold.ipynb] and setting 10 cycles, renders Ca-RMSD 1.472 Å for CDR-H3 (residues 98-115).

      We appreciate your valuable suggestion. We have added the comparison against OmegaFold in our manuscript. The results have been included in the manuscript (Fig 4a-b).

      Author response image 6.

      In our test set, OmegaFold outperformed ESMFold in predicting the CDR-H3 loop conformation. However, it failed to match the accuracy of AF2, IgFold, and H3-OPT. We discussed the difference between MSA-based methods (such as AlphaFold2) and MSA-free methods (such as IgFold) in predicting CDR-H3 loops. Similarly, OmegaFold provided comparative results with HelixFold-Single and other MSA-free methods but still failed to match the accuracy of AlphaFold2 and H3-OPT on Sub1.

      The time-consuming step in H3-OPT is the AF2 prediction. However, most of the time is spent in modeling the mAb and Nb scaffolds, which are already very well predicted by PLMs (See Fig. 4 in [https://doi.org/10.3390/molecules28103991]). Hence, why not use e.g. OmegaFold as the first step, whose score also correlates to the RMSD values [https://doi.org/10.3390/molecules28103991]? If that fails, then use AF2 or grafting. Alternatively, use a PLM model to generate a template, remove/mask the CDR loops (at least CDR-H3), and pass it as a template to AF2 to optimize the structure with or without MSA (e.g. using AF2Rank).

      Thanks for your professional feedbacks. It is really true that the speed of MSA searching limited the application of high-throughput structure prediction. Previous studies have demonstrated that the deep learning methods performed well on framework residues. We once tried to directly predict the conformations of CDR-H3 loops using PLM-based methods, but this initial version of H3-OPT lacking the CBM could not replicate the accuracy of AF2 in Sub1. Similarly, we showed that IgFold and OmegaFold also provide lower accuracy in Sub1 (average Cα-RMSD is 1.71 Å and 1.83 Å, respectively, whereas AF2 predicted an average of 1.07 Å). Therefore, The predictions of AlphaFold2 not only produce scaffolds but also provide the highest quality of CDR-H3 loops when high-resolution templates and MSA are available.

      Thank you once again for your kind recommendation. In the current version of H3-OPT, we have highlighted the strengths of H3-OPT in combining the AF2 and PLM models in various scenarios. AF2 can provide accurate predictions for short loops with fewer than 10 amino acids, and PLM-based models show little or no improvement in such cases. In the next version of H3-OPT, as the first step, we plan to replace the AF2 models with other methods if any accurate MSA-free method becomes available in the future.

      Line 115: The statement "IgFold provided higher accuracy in Sub3" is not supported by Fig. 2a.

      We are sorry for our carelessness. We have corrected “IgFold provided higher accuracy in Sub3” into “IgFold provided higher accuracy in Sub3 (Fig. 3a)”.

      Lines 195-203: What is the statistical significance of results in Fig 5a and 5b?

      Thank you for your kind comments. The surface residues of AF2 models are significantly higher than those of H3-OPT models (p < 0.005). In Fig. 5b, H3-OPT models predicted lower values than AF2 models in terms of various surface properties, including polarity (p <0.05) and hydrophilicity (p < 0.001).

      Lines 212-213: It is not easy to compare and quantify the differences between electrostatic maps in Fig. 5d. Showing a Dmap (e.g. mapmodel - mapexperiment) would be a better option. Additionally, there is no methodological description of how the maps were generated nor the scale of the represented potential.

      Thank you for pointing this out. We have modified the figure (Fig. 5d) according to your kind recommendation and added following sentences to clarify the methodological description on the surface electrostatic potential:

      “Analysis of surface electrostatic potential

      We generated two-dimensional projections of CDR-H3 loop’s surface electrostatic potential using SURFMAP v2.0.0 (based on GitHub from February 2023: commit: e0d51a10debc96775468912ccd8de01e239d1900) with default parameters. The 2D surface maps were calculated by subtracting the surface projection of H3-OPT or AF2 predicted H3 loops to their native structures.”

      Author response image 7.

      Lines 237-240 and Table 2: What is the meaning of comparing the average free energy of the whole set? Why free energies should be comparable among test cases? I think the correct way is to compare the mean pair-to-pair difference to the experimental structure. Similarly, reporting a precision in the order of 0.01 kcal/mol seems too precise for the used methodology, what is the statistical significance of the results? Were sampling issues accounted for by performing replicates or longer MDs?

      Thanks for your rigorous advice and pointing out these issues. We have modified the comparisons of free energies of different predicted methods and corrected the precision of these results. The average binding free energies of H3-OPT complexes is lower than AF2 predicted complexes, but there is no significant difference between these energies (p >0.05).

      Author response table 4.

      Comparison of binding affinities obtained from MD simulations using AF2 and H3-OPT.

      Thanks for your comments on this perspective. Longer MD simulations often achieve better convergence for the average behavior of the system, while replicates provide insights into the variability and robustness of the results. In our manuscript, each MD simulation had a length of 100 nanoseconds, with the initial 90 nanoseconds dedicated to achieving system equilibrium, which was verified by monitoring RMSD (Root Mean Square Deviation). The remaining 10 nanoseconds of each simulation were used for the calculation of free energy. This approach allowed us to balance the need for extensive sampling with the verification of system stability.

      Regarding MD simulations for CDR-H3 refinement, its successful application highly depends on the starting conformation, the force field, and the sampling strategy [https://doi.org/10.1021/acs.jctc.1c00341]. In particular, the applied plan MD seems a very limited strategy (there is not much information about the simulated times in the supplementary material). Similarly, local structure optimizations with QM methods are not expected to improve a starting conformation that is far from the experimental conformation.

      Thank you very much for your valuable feedback. We fully agree with your insights regarding the limitations of MD simulations. Before training H3-OPT, we showed the challenge of accurately predicting CDR-H3 structures. We then tried to optimize the CDR-H3 loops by computational tools, such as MD simulations and QM methods (detailed information of MD simulations is provided in the main text). Unfortunately, these methods were not expected to improve the accuracy of AF2 predicted CDR-H3 loops. These results showed that MD simulations and QM methods not only are time-consuming, but also failed to optimize the CDR-H3 loops. Therefore, we developed H3-OPT to tackle these issues and improve the accuracy of CDR3-H3 for the development of antibody therapeutics.

      Text improvements

      Relevant statistical and methodological parameters are presented in a dispersed manner throughout the text. For example, the number of structures in test, training, and validation datasets is first presented in the caption of Fig. 4. Similarly, the sequence identity % to define redundancy is defined in the caption of Fig. 1a instead of lines 87-88, where authors define "we constructed a non-redundant dataset with 1286 high-resolution (<2.5 Å)". Is the sequence redundancy for the CDR-H3 or the whole mAb/Nb?

      Thank you for pointing out these issues. We have added the number of structures in each subgroup in the caption of Fig. 1a: “Clustering of the filtered, high-resolution structures yielded three datasets for training (n = 1021), validation (n = 134), and testing (n = 131).” and corrected “As data quality has large effects on prediction accuracy, we constructed a non-redundant dataset with 1286 high-resolution (<2.5 Å) antibody structures from SAbDab” into “As data quality has large effects on prediction accuracy, we constructed a non-redundant dataset (sequence identity < 0.8) with 1286 high-resolution (<2.5 Å) antibody structures from SAbDab” in the revised manuscript. The sequence redundancy applies to the whole mAb/Nb.

      The description of ablation studies is not easy to follow. For example, what does removing TGM mean in practical terms (e.g. only AF2 is used, or PSPM is applied if AF2 score < 80)? Similarly, what does removing CBM mean in practical terms (e.g. all AF2 models are optimized by PSPM, and no grafting is done)? Thanks for your comments and suggestions. We have corrected “d, Differences in H3-OPT accuracy without the template module. e, Differences in H3-OPT accuracy without the CBM. f, Differences in H3-OPT accuracy without the TGM.” into “d, Differences in H3-OPT accuracy without the template module. This ablation study means only PSPM is used. e, Differences in H3-OPT accuracy without the CBM. This ablation study means input loop is optimized by TGM and PSPM. f, Differences in H3-OPT accuracy without the TGM. This ablation study means input loop is optimized by CBM and PSPM.”.

      Authors should report the values in the text using the same statistical descriptor that is used in the figures to help the analysis by the reader. For example, in lines 223-224 a precision score of 0.75 for H3-OPT is reported in the text (I assume this is the average value), while the median of ~0.85 is shown in Fig. 6a.

      Thank you for your careful checks. We have corrected “After identifying the contact residues of antigens by H3-OPT, we found that H3-OPT could substantially outperform AF2 (Fig. 6a), with a precision of 0.75 and accuracy of 0.94 compared to 0.66 precision and 0.92 accuracy of AF2.” into “After identifying the contact residues of antigens by H3-OPT, we found that H3-OPT could substantially outperform AF2 (Fig. 6a), with a median precision of 0.83 and accuracy of 0.97 compared to 0.64 precision and 0.95 accuracy of AF2.” in proper place of manuscript.

      Minor corrections

      Lines 91-94: What do length values mean? e.g. is 0-2 Å the RMSD from the experimental structure?

      We appreciate your comment and apologize for any confusion. The RMSD value is actually from experimental structure. The RMSD value evaluates the deviation of predicted CDR-H3 loop from native structure and also represents the degree of prediction difficulty in AlphaFold2 predictions. We have added following sentence in the proper place of the revised manuscript: “(RMSD, a measure of the difference between the predicted structure and an experimental or reference structure)”.

      Line 120: is the "AF2 confidence score" for the full-length or CDR-H3?

      We gratefully appreciate for your valuable comment and have corrected “Interestingly, we observed that AF2 confidence score shared a strong negative correlation with Cα-RMSDs (Pearson correlation coefficient =-0.67 (Fig. 2b)” into “Interestingly, we observed that AF2 confidence score of CDR-H3 shared a strong negative correlation with Cα-RMSDs (Pearson correlation coefficient =-0.67 (Fig. 2b)” in the revised manuscript.

      Line 166: Do authors mean "Taken" instead of "Token"?

      We are really sorry for our careless mistakes. Thank you for your reminder.

      Line 258: Reference to Fig. 1 seems wrong, do authors mean Fig. 4?

      We sincerely thank the reviewer for careful reading. As suggested by the reviewer, we have corrected the “Fig. 1” into “Fig. 4”.

      Author response image 7.

      Point out which plot corresponds to AF2 and which one to H3-OPT

      Thanks for pointing out this issue. We have added the legends of this figure in the proper positions in our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      “A sample size of 3 idiopathic seems underpowered relative to the many types of genetic changes that can occur in ASD. Since the authors carried out WGS, it would be useful to know what potential causative variants were found in these 3 individuals and even if not overlapping if they might expect to be in a similar biological pathway.

      If the authors randomly selected 3 more idiopathic cell lines from individuals with autism, would these cell lines also have altered mTOR signaling? And could a line have the same cell biology defects without a change in mTOR signaling? The authors argue that the sample size could be the reason for lack of overlap of the proteomic changes (unlike the phosphor-proteomic overlaps), which makes the overlapping cell biology findings even more remarkable. Or is the phenotyping simply too crude to know if the phenotypes truly are the same?”

      We appreciate these thoughtful comments and also agree that of several models, our studies indicate the possibility of mTOR alteration in multiple forms of ASD. As above, we are currently pursuing this hypothesis with newly acquired DOD support. With regard to the I-ASD population, we agree that there are a large variety of genetic changes that can occur in genetically undefined ASDs. Indeed, this is precisely why we expected to see “personalized” phenotypes in each I-ASD individual when we embarked on this study. At that time, several years ago, we had planned to expand the analyses to more I-ASD individuals to assess for additional personalized phenotypes. However, as our studies progressed, we were surprised to find convergence in our I-ASD population in terms of neurite outgrowth and migration and later proteomic results showing convergence in mTOR. We found it particularly remarkable that despite a sample size of 3 that this convergence was noted. When we had the opportunity to extend our studies to the 16p11.2 deletion population, we were thrilled to conduct the first comparison between I-ASD and a genetically defined ASD and, as such, the scope of the paper turned towards this comparison. We do agree that analyses of the other I-ASD individuals would be a beneficial endeavor, both to understand how pervasive NPC migration and neurite deficits are in autism and to assess the presence of mTOR dysregulation. Furthermore, it would be important to see whether alterations in other pathways could also lead to similar cell biological deficits, though we know that other studies of neurodevelopmental disorders have found such cellular dysregulations without reporting concurrent mTOR dysregulation. Given our current grant funding to extend these analyses, such experiments within this manuscript would not be feasible.

      Regarding the phenotyping methods used, we decided to assess neurite outgrowth and migration as they are both cytoskeleton dependent processes that are critical for neurodevelopment and are often regulated by the same genes. Furthermore, similar analyses have been applied to Fragile-X Syndrome, 22q11.2 deletion syndrome, and schizophrenia NPCs (Shcheglovitov A. et al., 2013; Mor-Shaked H. et al., 2016; Urbach A. et al., 2010; Kelley D. J. et al., 2008; Doers M. E. et al., 2014; Brennand K. et al., 2015; Lee I. S. et al., 2015; Marchetto M. C. et al., 2011). As such, it seems that multiple underlying etiologies can lead to similar dysregulated cellular phenotypes that can contribute to a variety of neurodevelopmental disorders. On a more global level, there are only a few different cellular functions a developing neuron can undergo, and these include processes such as proliferation, survival, migration, and differentiation. Thus, to understand neurodevelopmental disorders, it is important to study the more “crude” or “global” cellular functions occurring during neurodevelopment to determine whether they are disrupted in disorders such as ASD. In our studies we find that there are indeed dysregulations in many of these basic developmental processes, indicating that the typical steps that occur for normal brain cytoarchitecture may be disrupted in ASD. To understand why, we then further utilized molecular studies to “zoom” in on potential mechanisms which implicated common dysregulation in mTOR signaling as one driver for these common cellular phenotypes. As suggested, we did complete WGS on all the I-ASD individuals and did not see any overlapping genetic variants between the three I-ASD individuals as mentioned in our manuscript. The genetic data was published in a larger manuscript incorporating the data (Zhou A. et al., 2023). However, there were variants that were unique to each I-ASD individual which were not seen in their unaffected family members, and it is possible these variants could be contributing to the I-ASD phenotypes. We also utilized IPA to conduct pathway analysis on the WGS data utilizing the same approach we did in analysis of p- proteome and proteome data. From WGS data, we selected high read-quality variants that were found only in I-ASD individuals and had a functional impact on protein (ie excluding synonymous variants). The enriched pathways obtained from this data were strikingly different from the pathways we found in the p-proteome analysis and are now included in supplemental Figure 6 in the manuscript. Briefly, the top 5 enriched pathways were: O-linked glycosylation, MHC class 1 signaling, Interleukin signaling, Antigen presentation, and regulation of transcription.

      Reviewer #2 (Public Review):

      1) I found that interpreting how differential EF sensitivity is connected to the rest of the story difficult at times. First, it is unclear why these extracellular factors were picked. These are seemingly different in nature (a neuropeptide, a growth factor and a neuromodulator) targeting largely different pathways. This limits the interpretation of the ASD subtype-specific rescue results. One way of reframing that could help is that these are pro-migratory factors instead of EFs broadly defined that fail to promote migration in I-ASD lines due to a shared malfunctioning of the intracellular migration machinery or cell-cell interactions (possibly through tight junction signaling, Fig S2A). Yet, this doesn't explain the migration/neurite phenotypes in 16p11 lines where EF sensitivity is not altered, overall implying that divergent EF sensitivity independent of underlying mTOR state. What is the proposed model that connects all three findings (divergent EF sensitivity based on ASD subtypes, 2 mTOR classes, convergent cellular phenotypes)?

      We thank you for the kind assessment of our manuscript and for the thought-provoking questions posed. In terms of extracellular factors, for our study, we defined extracellular factor as any growth factor, amino acid, neurotransmitter, or neuropeptide found in the extracellular environment of the developing cells. The EFs utilized were selected due to their well-established role in regulation of early neurodevelopmental phenotypes, their expression during the “critical window” of mid-fetal development (as determined by Allan Brain Atlas), and in the case of 5-HT, its association with ASD (Abdulamir H. A. et al., 2018; Adamsen D. et al., 2014; Bonnin A. et al., 2011; Bonnin A. et al., 2007; Chen X. et al., 2015; El Marroun H. et al., 2014; Hammock E. et al., 2012; Yang C. J. et al., 2014; Dicicco-Bloom E. et al., 1998; Lu N. et al., 1998; Suh J. et al., 2001; Watanabe J. et al., 2016; Gilmore J. H. et al., 2003; Maisonpierre P. C. et al., 1990; Dincel N. et al., 2013; Levi- Montalcini R., 1987). Lastly, prior experiments in our lab with a mouse model of neurodevelopmental disorders, had shown atypical responses to EFs (IGF-1, FGF, PACAP). As such, when we first chose to use EFs in human NPCs we wanted to know 1) whether human NPCs even responded to these EFs, 2) whether EFs regulated neurite outgrowth and migration and 3) would there be a differential response in NPCs derived from those with ASD. Our studies were initiated on the I-ASD cohort and given the heterogeneity of ASD we had hypothesized we would get “personalized” neurite and migration phenotypes. Due to this reason, we also wanted to select multiple types of EFs that worked on different signaling pathways. Ultimately, instead of personalized phenotypes we found that all the I-ASD NPCs did not respond to any of the EFs tested whereas the 16p11.2 deletion NPCS did – this was therefore the only difference we found between these two “forms” of ASD. As noted, in I-ASD the lack of response to EFs can be ameliorated by modulating mTOR. However, in the 16p11.2 deletion, despite similar mTOR dysregulation as seen in I-ASD, there is no EF impairment. We do not have a cohesive model to explain why the 16pDel individuals differ from the I-ASD model other than to point to the p- proteomes which do show that the 16pDel NPCs are distinct from the I-ASD NPCs. It seems that mTOR alteration can contribute to impaired EF responsiveness in some NPCs but perhaps there is an additional defect that needs to be present in order for this defect to manifest, or that 16p11.2 deletion NPCs have specific compensatory features. For example, as noted in the thoughtful comment, the p-proteome canonical pathway analysis shows tight junction malfunction in I-ASD which is not present in the 16pDel NPCs and it could be the combination of mTOR dysregulation + dysregulated tight junction signaling that has led to lack of response to EFs in I-ASD. Regardless, we do not think the differences between two genetically distinct ASDs diminish the convergent mTOR results we have uncovered. That is, regardless of whatever defects are present in the ASD NPCs, we are able to rescue it with mTOR modulation which has fascinating implications for treatment and conceptualization for ASD. Lastly, we see our EF studies as an important inclusion as it shows that in some subtypes of ASD, lack of response to appropriate EFs could be contributing to neurodevelopmental abnormalities. Moreover, lack of response to these EFs could have implications for treatment of individuals with ASD (for example, SSRI are commonly used to treat co-morbid conditions in ASD but if an individual is unresponsive to 5- HT, perhaps this treatment is less effective). We have edited the manuscript to include an additional discussion section to address the EFs more thoroughly and have included a few extra sentences in the introduction as well!

      2) A similar bidirectional migration phenotype has been described in hiSPC-derived human cortical interneurons generated from individuals with Timothy Syndrome (Birey et al 2022, Cell Stem Cell). Here, authors show that the intracellular calcium influx that is excessive in Timothy Syndrome or pharmacologically dampened in controls results in similar migration phenotypes. Authors can consider referring to this report in support of the idea that bimodal perturbations of cardinal signaling pathways can converge upon common cellular migration deficits.

      We thank you for pointing out the similar migration phenotype in the Timothy Syndrome paper and have now cited it in our manuscript. We have also expanded on the concept of “too much or too little” of a particular signaling mechanism leading to common outcomes.

      3) Given that authors have access to 8 I-ASD hiPSC lines, it'd very informative to assay the mTOR state (e.g. pS6 westerns) in NPCs derived from all 8 lines instead of the 3 presented, even without assessing any additional cellular phenotypes, which authors have shown to be robust and consistent. This can help the readers better get a sense of the proportion of high mTOR vs low- mTOR classes in a larger cohort.

      We have already addressed this in response to reviewer 1 and the essential revisions section, providing our reasoning for not expanding the study to all 8 I-ASD individuals.

      4) Does the mTOR modulation rescue EF-specific responses to migration as well (Figure 7)

      We did not conduct sufficient replicates of the rescue EF specific responses to migration due to the time consuming and resource intensive nature of the neurosphere experiments. Unlike the neurite experiments, the neurosphere experiments require significantly more cells, more time, selection of neurospheres based on a size criterion, and then manual trace measurements. We did one experiment in Family-1 where we utilized MK-2206 to abolish the response of Sib NPCs to PACAP. Likewise, adding SC-79 to I-ASD-1 neurospheres allowed for response to PACAP.

      Author response image 1.

      Author response image 2.

      Reviewer #3: Public Review

      We appreciate the kind, detailed and very thorough review you provided for us!

      The results on the mTOR signaling pathway as a point of convergence in these particular ASD subtypes is interesting, but the discussion should address that this has been demonstrated for other autism syndromes, and in the present manuscript, there should be some recognition that other signaling pathways are also implicated as common factors between the ASD subtypes.

      With regards to the mTOR pathway, we had included the other ASD syndromes in which mTOR dysregulation has been seen including tuberous sclerosis, Cowden Syndrome, NF-1, as well as Fragile-X, Angelman, Rett and Phelan McDermid in the final paragraph of the discussion section “mTOR Signaling as a Point of Convergence in ASD”. We have now expanded our discussion to include that other signaling pathways such as MAPK, cyclins, WNT, and reelin which have also been implicated as common factors between the ASD subtypes.

      The conclusions of this paper are mostly well supported by data, but for the cell migration assay, it is not clear if the authors control for initial differences in the inner cell mass area of the neurospheres in control vs ASD samples, which would affect the measurement of migration.

      Thank you for this thoughtful comment! When we first started our migration data, inner cell mass size was indeed a major concern for which we controlled in our methods. First, when plating the neurospheres, we would only collect spheres when a majority of spheres were approximately a diameter of 100 um. Very large spheres often could not be imaged due to being out of focus and very small spheres would often disperse when plated. Thus, there were some constraints to the variability of inner cell mass size.

      Furthermore, when we initially collected data, we conducted a proof of principal test to see if initial inner cell mass area (henceforth referred to as initial sphere size or ISS) influenced migration data. To do so, we obtained migration and ISS data from each diagnosis (Sib, NIH, I-ASD, 16pASD). Then we utilized R studio to see if there is a relationship between Migration and ISS in each diagnosis category using the equation (lm(Migration~ISS, data=bydiagnosis). In this equation, lm indicates linear modeling and (~) is a term used to ascertain the relationship between Migration and ISS and the term data=bydiagnosis allows the data to be organized by diagnosis

      The results were expressed as R-squared values indicating the correlation between ISS and Migration for each diagnosis and the p-value showing statistical significance for each comparison. As shown in Author response table 1, for each data set, there is minimal correlation between Migration and ISS in each data set. Moreover, there are no statistically significant relationships between Migration and ISS indicating that initial sphere size DOES NOT influence migration data in any of our data-sets.

      Author response table 1.

      Lastly, utilizing R, we modeled what predicted migration would be like for Sib, NIH, I-ASD, and 16pASD if we accounted for ISS in each group. Raw migration data was then plotted against the predicted data as in Author response image 3.

      Author response image 3.

      As shown in the graph, there are no statistical differences between the raw migration data (the data that we actually measured in the dish) and the modeled data in which ISS is accounted for as a variable. As such, we chose not to normalize to or account for ISS in our other experiments. We have now included the above R studio analyses in our supplemental figures (Figure S1) as well.

      Also, in Fig 5 and 6, panels I and J omit the effects of drug on mTOR phosphorylation as shown for other conditions.

      Both SC-79 and MK2206 were selected in our experiments after thorough analysis of their effects on human epithelial cells and other cultured cells (citations in manuscript). However, initially, we did not know whether either of these drugs would modulate the mTOR pathway in human NPCs, thus, in Figures 5A,5D, 6A and 6D we chose to focus on two of our data-sets to establish the effect of these drugs in human NPCs. Our experiments in Family-1 and Family-2 showed us that SC-79 increases PS6 in human NPCs while MK-2206 downregulates it. Once this was established, we knew the drugs would have similar effects in the NPCs from the other families. Thus, we only conducted a proof of principle test to confirm the drug does indeed have the intended effect in I-ASD-3 and 16pDel. We have included these proof of principle westerns in Figure 5I, 5K, 6I and 6K to show that the effects of these drugs are reproducible across all our NPC lines. We did not include quantification since the data is only from our single proof of principle western.

    1. Author response

      eLife assessment

      Using a genetically controlled experimental setting, the authors find that the lack of Polycomb-dependent epigenetic programming in the oocyte and early embryo influences the developmental trajectory through gestation in the mouse. By showing a two-phase outcome of early growth restriction followed by enhancement, the authors address previous inconsistencies in the field. However, the link with placenta function and gene misregulation is not yet fully supported.

      We thank the Reviewers for their constructive comments. In response we have added significantly more data to the study and substantially rewritten the manuscript. New data include analyses of glucose, amino acid and metabolite levels in fetal and maternal blood samples, more highly resolved fetal growth analyses, a more detailed study of the hyperplastic placenta including IF analyses of labyrinth area, labyrinth to placenta and capillary to labyrinth ratios. We have also added analyses of placental DNA methylation state in offspring from oocytes lacking EED, which reveals a range of DNA methylation changes at imprinted and non-imprinted genes in HET-hom offspring compared to HET-het or WT-wt controls.

      Reviewer #1 (Public Review):

      Oberin, Petautschnig et. al investigated the developmental phenotypes that resulted from oocyte-specific loss of the EED (Embryonic Ectoderm Development) gene - a core component of the Polycomb repressive complex 2 (PRC2), which possess histone methyltransferase activity and catalyses trimethylation of histone H3 at lysine 27 (H3K27). The PRC2 complex plays essential roles in regulating chromatin structure, being an important regulator of cellular differentiation and development during embryogenesis. As novel findings, the authors find that PRC2-dependent programming in the oocyte, via loss of the core component EE2, causes placental hyperplasia and propose that the increase of placental transplacental flux of nutrients leads to fetal and postnatal overgrowth. At the mechanistic level, they show altered expression of genes previously implicated in placental hyperplasia phenotypes. They also establish interesting parallelism with the placental hyperplasia phenotype that is frequently observed in cloned mice.

      Strengths:

      The mouse breeding experiments are very well designed and are powerful to exclude potential confounding genetic effects on the developmental phenotypes that resulted from the loss of EED in oocytes. Another major strength is the developmental profiling across gestation, from pre-implantation to late gestation.

      Weaknesses:

      The evidence for 'oocyte' programming is restricted to phenotypic and gene expression analysis, without measurements of epigenetic dysregulation. It would be an added value if the authors could show evidence for altered H3K27me3 or DNA methylation in the placenta, for example.

      In an earlier previous study we identified a large number of developmentally important genes that accumulated H3K27me3 in primary-secondary stage growing oocytes and were repressed by EED (Jarred et al., 2022 Clinical Epigenetics). However, H3K27me3 was removed from all from these genes during preimplantation development, indicating that maternal inheritance of H3K27me3 at a wide range of genes is unlikely (Jarred et al., 2022 Clinical Epigenetics). Consistent with this only a small number of genes, including Slc38a4 and C2MC, have been shown to be functionally important in H3K27me3-dependent imprinting (Matoba et al., 2022 Genes and Development). Moreover, a related study showed that deletion of Setd2 and consequent loss of H3K36me3 in oocytes led to spreading of H3K27me3 into regions that were otherwise marked by H3K36me3 and DNA methylation (Xu et al. 2019 Nature Genetics 51:844–56). Based on these studies, we proposed that loss of EED and H3K27me3 may result in the ectopic spreading of H3K36me3 and DNA methylation in oocytes and that altered DNA methylation may then be transmitted to offspring and affect developmental outcomes (Jarred et al., 2022 Clinical Epigenetics)

      Given this hypothesis we analysed DNA methylation rather than H3K27me3 in the placenta of WT-wt, HET- het and HET-hom offspring. This revealed differentially methylated regions (DMRs) in HET-hom placentas at two H3K27me3 imprinted genes Sfmbt2 (C2MC) and Mbnl2, five classically imprinted genes and at 74 DMRs not associated with imprinted loci. Together, our data supports the hypothesis from Jarred et al., 2022 Clinical Epigenetics that loss of EED in oocytes results in altered DNA methylation patterning at both imprinted and non-imprinted genes in offspring and that this is likely to affect offspring growth and development. However, whether these changes result from direct alteration of DNA methylation in oocytes remains unclear.

      These new data are now included in results (Lines 387-409), Figure 6I, Supplementary File H-J and Discussion Lines 569-581.

      Reviewer Comment 1. The claim that placental hyperplasia drives offspring catch-up growth is not supported by current experimental data. The authors do not address if transplacental flux is increased in the hyperplastic placentae, measure amino acids and glucose in fetal/maternal plasma, or perform tetraploid rescue experiments to ascertain the contribution of the placenta to growth phenotypes. Furthermore, it is unclear, from the current data, if the surface area for nutrient transport is actually increased in the hyperplastic placenta and the extent to which other cell populations (i.e. spongiotrophoblasts) are affected in addition to glycogen cells. In addition, one of the supporting conclusions that the placenta is a key contributor to fetal overgrowth is based on a very crude measurement - placenta efficiency - which the authors claim is increased in the homozygous mutants compared to controls. After analysing the data carefully, I find evidence for decreased placental efficiency instead. I believe that the authors mistakenly present the data as placenta to fetal weight ratios, which led to the misinterpretation of the 'efficiency' concept.

      We thank the reviewer for pointing out our error in the placental efficiency data and we have now corrected the placental efficiency graphs (fetal/placental weight ratios) and updated the text throughout the manuscript as required (Figure 3I-K). As requested and described below, we have also added significantly more data, which support the conclusion that placental function is not enhanced in HET-hom mice and is unlikely to support fetal growth recovery.

      The new data and analyses we have added include:

      1. Further analyses of glycogen-enriched and non-glycogen-enriched cell counts in the decidua and junctional zones (Figure 4F-J)

      2. Total glycogen cell counts for male and female placentas (Figure 4 – figure supplement 1F)

      3. New analyses of fetal blood glucose levels at E17.5 and E18.5 and matching data from the mothers of each litter (Figure 4M)

      4. New analyses of the circulating amino acid levels and metabolites in fetal blood of E17.5 offspring and matching data from the mothers of each litter (Figure 8)

      5. New IF analyses of CD31 (PECAM-1) and combined this with machine learning assisted quantitative analyses of labyrinth and capillary areas using HALO (Figure 5)

      6. Separated male and female offspring and placental weights at E14.5 and E17.5 and total areas of the placenta, decidua, junctional zone and labyrinth (Figure 3 – figure supplement 1) which provide more insight into potential sex-specific differences in HET-hom offspring and placenta

      We have significantly re-written the results and discussion to reflect our new data and interpretation.

      While we did not assess transplacental flux, our new data revealed: 1. HET-hom fetuses had lower blood glucose levels at E18.5; 2. Circulating levels of amino acids and a wide range of metabolites did not differ between HET-hom and control offspring, or between the mothers of these offspring; 3. HET-hom placentas had lower total labyrinth area, labyrinth/placenta and capillary/labyrinth ratios based on analysis of total capillary and labyrinth areas, indicating that the surface area for nutrient transfer is not increased

      Together these data strongly indicate that hyperplastic HET-hom placentas do not provide greater support to HET-hom fetuses than controls, and that increased placental function in HET-hom offspring is unlikely to explain the late gestation fetal growth recovery we observed in HET-hom offspring or how HET-hom offspring were able to attain normal weights by birth.

      While we have not directly counted the spongiotrophoblast populations, we have now included analyses of both the glycogen-enriched and non-glycogen cell populations in the junctional zone and the decidua (Figure 4H-K). This revealed an increased area of both glycogen-enriched and non-glycogen cells in the junctional zone and in the decidua of HET-hom placentas, consistent with the greater junctional zone/placenta ratio observed in HET-hom placentas (Figure 4D). Together with data in Figure 4C-F and Supp. Fig. 3, our observations demonstrate that the overall decidua and junctional zone areas were increased in HET-hom offspring, but there was a disproportionate expansion of the junctional zone that was caused by increased areas of both glycogen and non-glycogen-enriched cells.

      Tetraploid rescue experiments would require a very significant amount of time and investment and are technically very demanding. While creation of complementary tetraploid offspring would be informative, unfortunately these experiments are beyond the scope of this current study.

      Reviewer Comment 1 cont. The authors do not mention alternative explanations for the observed fetal catch-up and postnatal overgrowth. Why would oocyte epigenetic programming effects be restricted to the placenta, and not include fetal organs?

      Our intention was certainly not to convey a message that effects may be placenta specific. Indeed, our ongoing work beyond the scope of this study provides evidence for effects in other tissues (brain and bones) that will be published elsewhere. Our new data clearly show low placental efficiency, fetal blood glucose, low capillary/labyrinth ratio and no impact on circulating fetal amino acid or metabolite levels in HET-hom offspring. In light of these new data, we have reinterpreted the findings of this study and substantially updated the discussion.

      Given our observations that fetal growth rate markedly increased during late gestation, but placental efficiency was reduced, our data strongly indicate that the effects of altered epigenetic oocyte programming due to loss of Eed affect both the placenta and the fetus. While our findings are significant, the precise mechanism underlying this growth response in HET-hom fetuses remains unknown. Understanding this mechanism will require substantially more work that will be the subject of future studies.

      Reviewer #2 (Public Review):

      Consistent fetal growth trajectories are vital for survival and later life health. The authors utilise an elegant and novel animal model to tease apart the role of Eed protein in the female germline from the role of somatic Eed. The authors were able to experimentally attribute placental overgrowth - particularly of the endocrine region of the placenta - to the function of Eed protein in the oocyte. Loss of Eed protein in the oocyte was also associated with dynamic changes in fetal growth and prolonged gestation. It was not determined whether the reported catch-up growth apparent on the day of birth was due to enhanced fetal growth very late in gestation, a longer gestational time ie the P0 pups are effectively one day "older" compared to the controls, or the pups catching up after birth when consuming maternal milk.

      To understand if increased growth occurred in HET-hom fetuses prior to birth, we have now included analyses of offspring weight at E18.5 (Figure 2F), all pups collected with a verified E19.5 birth date (Figure 2J) and for pups from similar litter sizes (5-7 pups) at E19.5 (Figure 2K). Together with our existing data, these additional analyses provide average weights for fetuses at E14.5, E17.5, E18.5 and pups born on E19.5. This confirmed that HET-hom offspring undergo enhanced growth in the last few days of pregnancy, resulting in the progression of substantially growth and developmentally restricted HET-hom fetuses at E14.5, to pups with normal weight at birth within the 40% of pregnancies that were born on E19.5 in a normal gestational time.

      However, in addition, gestational length was increased by one to two days in 60% of pregnancies from hom oocytes, but not in control pregnancies from het or wt oocytes. As average weights were significantly greater in all surviving HET-hom offspring at P0 (i.e. surviving pups born on E19.5-E21.5; Figure 2G), it appears that this additional gestational time contributed to the offspring overgrowth. This is logical, however it does not explain how growth and developmentally delayed fetuses at E14.5 attained normal weight and developmental stage by E19.5 (Figure 2J-K).

      Together our data clearly show that HET-hom offspring undergo enhanced growth during the late stages of pregnancy, allowing them to resolve the developmental delay and growth insufficiency observed at E14.5 so that they were born at normal weight and stage at E19.5. In addition, increased gestational time contributes to weight of pups delivered on E20.5 or 21.5, partly explaining the overgrowth phenotype observed in this model.

      The idea that increased milk consumption may explain the overgrowth of HET-hom offspring is interesting. It is possible that the increased growth rate of HET-hom offspring continues after birth and contributes to overgrowth. However, examining this outcome in a tightly controlled manner is complicated given that we cannot predict the day of birth of HET-hom litters, and that these litters are generally small and would need to be fostered on the day of birth alongside control litters. Given these challenges and that our primary observation is that HET-hom offspring underwent fetal growth recovery during pregnancies of normal length and via extension of gestational length, we have not examined the possibility of increased milk consumption after birth.

      We have updated the results to reflect the new analyses and have provided relevant discussion to address these data. Our description of these data can be found in Results (lines 165-197) and in Figure 2.

      Reviewer #3 (Public Review):

      My understanding of the main claims of the paper, and how they are justified by the data are discussed below:

      Overall, loss of PRC2 function in the developing oocyte and early embryo causes:

      1) Growth restriction from at least the blastocyst stage with low cell counts and midgestational developmental delay.

      Strengths:

      • Live embryo imaging added an important dimension to this study. The authors were able to confirm an unquantified finding from a previous lab (reduced time to 2-cell stage in oocyte-deletion Eed offspring, Inoue 2018, PMID: 30463900) as well as identify developmental delay and mortality at the blastocyst- hatching transition.

      • For the weight and morphological analysis the authors are careful to provide isogenic controls for most of the experiments presented. This means that any phenotypes can be attributed to the oocyte genotype rather than any confounding effects of maternal or paternal genotype.

      • Overall, there is good evidence that oocyte deletion of Eed results in early embryonic growth restriction, consistent with previous observations (Inoue 2018, PMID: 30463900).

      Reviewer 3, Comment 1: Weaknesses: Gaps in the reporting of specific features of the methodology make it difficult to interpret/understand some of the results.

      While we are unsure exactly which methods Reviewer 3 would like expanded, we have updated parts that we thought required further detail and allow more informed interpretation of the results. These include methods for placental histology (Lines 650-669) and immuno- histochemistry (Lines 671-690), and new methods for CD31 immunofluorescence (Lines 692-714), glucose and metabolomics (Lines 752-769) and DNA methylation (RRBS; Lines 734-750) analyses.

      To clarify the approach taken for histology, immunohistochemical and immunofluorescent staining, sections were cut in compound series from the centre of each placenta, ensuring that we collected representative data for each sample. QuPath was used to quantify the decidual and junctional zone areas in one complete, fully intact midline section for each placenta as close to the midline as possible. This provided data from 10 placentas for each genotype. In addition, glycogen-enriched and non-glycogen-enriched cells were identified and quantified using machine learning assisted QuPath analyses of the whole placenta, decidua and junctional zone regions. We have also added quantitative analyses of the labyrinth and labyrinth capillary network using immunofluorescent CD31 staining and machine learning assisted HALO software. This new analysis of placental morphology is included in the methods section.

      Moreover, as there were no sex-specific differences in placental morphology or weight, we combined the samples from both sexes to provide greater numbers for analysis in each genotype. For example, as described for the analyses of labyrinth and capillaries using CD31 IF, 4 placentas of each sex were used for data collection. This provided data from a total of 8 placentas (4 male and 4 female) for each genotype from a total of 17 WT-wt (9 male and 8 female), 21 HET-het (9 male and 12 female) and 24 HET-hom (16 male and 8 female) sections (2-3 sections/placenta).

      Reviewer 3, Comment 2: Placental hyperplasia with disproportionate overgrowth of the junctional trophoblast especially the glycogen trophoblast (GlyT) cells.

      Strengths: • The authors provide a comprehensive description of how placental and embryo weight is affected by the oocyte-Eed deletion through mid-to-late gestation development. The case for placentomegaly is clear.

      Weaknesses:

      • The placental efficiency data presented in Figure 3G-I is incorrect. Placental efficiency is calculated as embryo mass/placental mass, and it increases over the late gestation period. For e14.5 for example (Fig3G), WT-wt embryo mass = ~0.3g, placenta mass = 0.11g (from Fig 3D) = placental efficiency 2.7; HET-hom = 0.25/0.12 = 2.1. The paper gives values: WT-wt 0.5, HET-hom 0.7. Have the authors perhaps divided placenta weight by embryo mass? This would explain why the E17.5 efficiencies are so low (WT-wt 0.11 rather than a more usual figure of 8.88. If this is the case then the authors' conclusion that placental efficiency is improved by oocyte deletion of Eed is wrong - in fact, placental efficiency is severely compromised.

      The authors have performed cell type counting on histological sections obtained from placentas to discover which cells are contributing to the placentomegaly. This data is presented as %cell type area in the main figure, though the untransformed cross-sectional area for each cell type is shown in the supplementary data. This presentation of the data, as well as the description of it, is misleading because, while it emphasises the proportional increase in the endocrine compartment of the placenta it downplays the fact that the exchange area of the mutant placentas is vastly expanded. This is important for two reasons.

      Firstly, the whole placenta is increased in size suggesting that the mechanism is not placental lineage- specific and instead acting on the whole organ. Secondly in relation to embryonic growth, generally speaking, genetic manipulations that modify labyrinthine volume tend to have a positive correlation with fetal mass whereas the relationship between junctional zone volume and embryonic mass is more complex (discussed in Watson PMID: 15888575, for example). The authors should reconsider how they present this data in light of the previous point.

      We thank the reviewer for pointing out our error in the placental efficiency analysis and apologise for this error. We have corrected the presentation and interpretation of these data and have described this in detail in our response to Reviewer 1, Comment 1.

      As discussed in our response to Reviewer 1, Comment 1, we have added a range of analyses to determine whether placental efficiency was enhanced in HET-hom offspring. These include measuring fetal and maternal circulating glucose levels (Figure 4K), individual amino acids and an extensive range of metabolites (Figure 8) and providing CD31 immunofluorescent analyses of labyrinth area, labyrinth/placental ratio and capillary/labyrinth ratio in HET-hom and control placentas (Figure 5).

      We also added analyses of glycogen enriched and non-glycogen-enriched cell counts in the decidua and junctional zones. As suggested by Reviewer 3, both glycogen-enriched and non-enriched cell populations are significantly increased in HET-hom placentas.

      Combined, these new analyses significantly expand the study and support the conclusion that placental efficiency in HET-hom offspring was either compromised or not different from controls, depending on the analysis. We find no evidence that placental efficiency was increased in HET-hom offspring and have reworked our results and discussion sections to reflect these new data and interpretation.

      Reviewer 3, Comment 2 cont: Again, some of the methods are not clearly reported making interpretation difficult - especially how they have estimated their GlyT number.

      As outlined in our response to Reviewer 3 Comment 1, in the methods section we have added further detail of how we counted glycogen-enriched and non-enriched cells in the decidua and junctional zone regions of sections for the middle of WT-wt, WT-het, HET-het and HET-hom placentas (Lines 650-669).

      Reviewer 3, Comment 3: Perinatal embryonic/pup overgrowth.

      Strengths:

      • The overgrowth exhibited by the oocyte-Eed-deleted pups is striking and confirms the previous work by this group (Prokopuk, 2018). This is an important finding, especially in the context of understanding how PRC2-group gene mutations in humans cause overgrowth syndromes. It is also intriguing because it indicates that genetic/environmental insults in the mother that affect her gamete development can have long-term consequences on offspring physiology.

      Weaknesses:

      • Is the overgrowth intrauterine or is it caused by the increase in gestation length? The way the data is reported makes it impossible to work this out. The authors show that gestation time is consistently lengthened for mothers incubating oocyte-Eed-deleted pups by 1-2 days. In the supplementary material, the mutant embryos are not larger than WT at e19.5, the usual day of birth. Postnatal data is presented as day post-parturition. It would probably be clearer to present the embryonic and postnatal data as days post coitum. In this way, it will be obvious in which period the growth enhancement is taking place. This is information really important to determine whether the increased growth of the mutants is due to a direct effect of the intrauterine environment, or perhaps a more persistent hormonal change in the mother that can continue to promote growth beyond the gestation period.

      We have used embryonic day (E) to denote embryo and fetal age throughout the study – this is the same as using DPC (i.e. E19.5 is equivalent to 19.5 DPC). As described in the Methods “Collection of post-implantation embryos, placenta and postnatal offspring”, mice were time mated for two-four nights, with females plug checked daily. Positive plugs were noted as day E0.5.

      To make the data presentation clearer, we have shown the data for surviving HET-hom pups born on E19.5 (Figure 2J) separately from all HET-hom surviving pups born on E19.5-E21.5. (Figure 2G). As discussed in our response to Reviewer 2, we have also included growth data for pregnancies at E14.5, E17.5, E18.5 (Fig. 2C-F) and E19.5 (Figure 2J,K), as well as P0 (combined data for surviving pups born E19.5-E21.5), and P3 (combined data for surviving pups born E19.5-E21.5, Figure 2G,H).

      These data clearly show that HET-hom fetuses are substantially growth and developmentally delayed at E14.5 (Figure 2D), but HET-hom pups born on E19.5 are the same weight as WT-wt, WT-het and HET-het control pups (Figure 2J). This demonstrates that weight of HET-hom fetuses is normalised in utero between E14.5 and day of birth on E19.5.

      Importantly, as requested by Reviewer 3, we have separated average weight for all surviving pups with a day of birth of E19.5-21.5 (Figure 2G) from average weight of pups born on E19.5 only (Figure 2J). These analyses revealed that the average weight of surviving pups born between E19.5-21.5 was significantly higher than for controls (Figure 2G), but the average weight of pups born on E19.5 only was not. It is therefore clear that extended gestation also contributed to increased HET-hom pup birth weight. We have updated these additional analyses in Results (Lines 165-197) and Figure 2

      As revealed in Figure 2H, it is also possible/likely that growth of HET-hom pups during the three days post- partum may have contributed to the offspring overgrowth we observed in this and our previous study (Prokopuk et al., 2018 Clinical Epigenetics). However, we cannot determine whether there is a contribution from a persistent maternal hormonal change that promotes post-natal offspring growth or whether there is an innate growth benefit in HET-hom pups. As this is very difficult to dissect, separating these possibilities is beyond the scope of our study.

      Reviewer 3, Comment 4: "fetal growth restriction followed by placental hyperplasia, .. drives catch-up growth that ultimately results in perinatal offspring overgrowth".

      Here the authors try to link their observations, suggesting that i) the increased perinatal growth rate is a consequence of placentomegaly, and ii) the placentomegaly/increased fetal growth is an adaptive consequence of the early growth restriction. This is an interesting idea and suggests that there is a degree of developmental plasticity that is operating to repair the early consequences of transient loss of Eed function.

      Strengths:

      • Discrepancies between earlier studies are reconciled. Here the authors show that in oocyte-Eed-deleted embryos growth is initially restricted and then the growth rate increases in late gestation with increased perinatal mass.

      Weaknesses:

      • Regarding the dependence of fetal growth increase on placental size increase, this link is far from clear since placental efficiency is in fact decreased in the mutants (see above).

      • "Catch-up growth" suggests that a higher growth rate is driven by an earlier growth restriction in order to restore homeostasis. There is no direct evidence for such a mechanism here. The loss of Eed expression in the oocyte and early embryo could have an independent impact on more than one phase of development.

      Firstly, there is growth restriction in the early phase of cell divisions. Potentially this could be due to depression of genes that restrain cell division on autosomes, or suppression of X-linked gene expression (as has been previously reported, Inoue, 2018 PMID: 30463900). The placentomegaly is explained by the misregulation of non-canonically imprinted genes, as the authors report (and in agreement with other studies, e.g. Inoue, 2020. PMID: 32358519).

      • Explaining the perinatal phase of growth enhancement is more difficult. I think it is unlikely to be due to placentomegaly. Multiple studies have shown that placentomegaly following somatic cell nuclear transfer (SCNT) is caused by non-canonically imprinted genes, and can be rescued by reducing their expression dosage. However, SCNT causes placentomegaly with normal or reduced embryonic mass (for example -Xie 2022, PMID: 35196486), not growth enhancement. Moreover, since (to my knowledge) single loss of imprinting models of non-canonically imprinted genes do not exist, it is not possible to understand if their increased expression dosage can drive perinatal overgrowth, and if this is preceded by growth restriction and thus constitutes 'catch up growth'.

      Reviewer 3 is correct in their assessment that placental efficiency was decreased in HET- hom offspring and we have corrected the placental efficiency analysis based on fetal/placental weight ratios (discussed in detail in our response to Reviewer 1 Comment 1). We have added substantially more data (glucose, amino acids, metabolites, labyrinth capillary area and density). These data support the conclusion that a placentally driven advantage for HET-hom fetal growth is unlikely, despite our observation that HET- hom fetuses are developmental delayed and underweight at E14.5, but are born at normal weight after a normal gestational length (19.5 days) (discussed in our responses to Reviewer 3, Comment 3 and Reviewer 2).

      This demonstrates that HET-hom fetuses are able to attain normal birth weight despite being initially growth restricted state at E14.5, and that this occurs despite low placental function. Moreover, as we compared isogenic offspring with heterozygous loss of Eed (Het-het compared to HET-hom offspring) the outcomes we observed in HET-hom offspring originate from loss of EED in the growing oocyte or loss of maternal EED in the zygote strongly suggesting that a non-genetic mechanism is involved.

      As pointed out by Reviewer 3, the initial developmental delay in HET-hom offspring may be due to increased expression of genes that regulate cell proliferation – this could clearly explain the lower number of cells we observed in the ICM and the growth delay at later stages of embryonic and fetal development. Another possibility is that maternal PRC2 provided by the oocyte promotes cell divisions in preimplantation embryos We have discussed these possibilities on Lines 467-476.

      In addition, Matoba et al 2022 demonstrated that deletion of maternal Xist together with Eed was able to rescue male-biased lethality in offspring from oocytes lacking Eed, revealing a clear role for X-linked genes in this phenotype (Matoba et al 2022, Genes and Development). However, deletion of maternal Xist did not properly normalise survival offspring from Eed null oocytes (i.e. Eed/Xist double maternal null litters were smaller than litters derived from wild type oocytes) strongly suggesting other mechanisms provide the capacity for HET-hom offspring to attain normal weight at birth. We have added further discussion of the Matoba study in the context of our study on of the Discussion (Lines 544-555)

      Finally, with respect to the outcomes for SCNT derived offspring, we extracted SCNT fetal growth and placental weight data from the supplementary data included in Matoba et al., 2018 Cell Stem Cell. 2018;23(3):343-54.e5 and compared it with data collected in our study (Figure 7). This analysis revealed that the weights of placentas and fetuses of offspring derived via SCNT were very similar to the HET-hom offpsring in our study and we have discussed the similarities and potential differences between HET-hom and SCNT offspring in the Discussion (Lines 478-500).

      As pointed out by Reviewer 3, deletion of maternal non-canonically imprinted genes partially or fully rescued the placental hyperplasia phenotype in both SCNT derived and offspring from oocyte lacking EED. However, as we have discussed, the mechanisms underlying other aspects of the offspring phenotype, such as fetal growth recovery of HET-hom offspring observed in our study, remain unknown. Moreover, the comparison we provide in Figure 7 strongly indicates that HET-hom and SCNT fetuses are similarly delayed at E14.5 and undergo similar fetal growth recovery before birth, but the mechanism also remains unknown. Together, it appears that offspring derived from either Eed-null oocytes or by SCNT have an innate ability to remediate fetal growth restriction during the late stages of pregnancy without a requirement to correct maternally inherited impacts mediated by Xist or H3K27me3-dependent imprinting.

    1. Author Response

      The following is the authors’ response to the current reviews.

      We thank the editors and reviewers for their helpful comments, which have allowed us to improve the manuscript.

      Response to reviewer 2

      We thank the reviewer for this positive feedback, which requires no further revision.

      Response to reviewer 3

      We thank the reviewer for highlighting these additional points and provide further explanations on these below.

      Firstly, we started the analysis from a baseline of year 2000 because the largest international donor (the Global Fund) uses baseline malaria levels in the period 2000-2004 as the basis of their current allocation calculations (The Global Fund, Description of the 2020-2022 Allocation Methodology, December 2019). In the paper we compare our optimal strategy to a simplified version of this method, represented by our “proportional allocation” strategy.

      Even if our simulations started in the year 2015, a direct comparison with the Global Technical Strategy for Malaria 2016-2030 would not be possible due to the different approaches taken. The GTS was developed to progress towards malaria elimination globally and set ambitious targets of at least 90% reduction in malaria case incidence and mortality rates and malaria elimination in at least 35 countries by 2030 compared to 2015. Mathematical modelling at the time suggested that 90% coverage of WHO-recommended interventions (vector control, treatment and seasonal malaria chemoprevention) would be needed to approach this target (Griffin et al. 2016, Lancet Infectious Diseases). The global annual investment requirements to meet GTS targets were estimated at US$6.4 billion by 2020 and US$8.7 billion by 2030 (Patouillard et al. 2017, BMJ Global Health). This strategy therefore considers what resources would be required to achieve a specific global target, but not the optimized allocation of resources.

      Investments into malaria control have consistently been below the estimated requirements for the GTS milestones (World Health Organization 2022, World Malaria Report 2022). In our study, we therefore take a different perspective on how limited budgets can be optimally allocated to a single intervention (insecticide-treated nets) across countries/settings to achieve the best possible outcome for two objectives that are different to the GTS milestones (either minimizing the global case burden, or minimizing both the global case burden and the number of settings not having yet reached a pre-elimination phase). As stated in the discussion, our estimate of allocating 76% of very low budgets to high-transmission settings was similar to the global investment targets estimated for the GTS, where the 20 countries with the highest burden in 2015 were estimated to require 88% of total investments (Patouillard et al. 2017, BMJ Global Health). Nevertheless, we also show that if higher budgets were available, allocating the majority to low-transmission settings co-endemic for P. falciparum and P. vivax would achieve the largest reduction in global case burden. We acknowledge the modelling of a single intervention as one of the key limitations of this analysis, but this simplification was necessary in order to perform the complex optimisation problem. Computationally it would not have been feasible to optimize across a multitude of intervention and coverage combinations.

      A further limitation raised by the reviewer is the lack of cross-species immunity between P. falciparum and P. vivax in our model. While cross-reactivity between antibodies against these two species has been observed in previous studies and the potential implications of this would be important to explore in future work, we did not include it here as little is known to date about the epidemiological interactions between different malaria parasite species (Muh et al. 2020, PLoS Neglected Tropical Diseases).

      Lastly, we did not assume that transmission was homogenous within the four transmission settings in our study (very low, low, moderate, high); transmission dynamics were simulated separately in each country, accounting for heterogeneous mosquito bite exposure. However, results were summarised for the broader transmission settings since many other country-specific factors were not accounted for (see discussion) and the findings should not be used to inform individual country allocation decisions.


      The following is the authors’ response to the original reviews.

      Author response to peer review

      We thank the reviewers for their insightful comments, which raise several important points regarding our study. As the reviewers have recognised, we introduced a number of simplifications in order to perform this complex optimisation problem, such as by restricting the analysis to a single intervention (insecticide-treated nets) and modelling countries at a national level. Despite their clear relevance to the study, computationally it would not have been feasible to run the multitude of scenarios suggested by reviewer 1, which we recognise as a limitation. As such we agree with the assessment that this study primarily represents a thought experiment, based on substantive modelling and aggregate scenario-based analysis, to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. The findings are relevant primarily to global funders and should not be used to inform individual country allocation decisions, and also point to avenues for further research. This perspective also underlies our decision to start the analysis from a baseline of year 2000 as opposed to modelling the current 2023 malaria situation: the largest international donor (the Global Fund) uses baseline malaria levels in the period 2000-2004 as the basis of their allocation calculations (The Global Fund, Description of the 2020-2022 Allocation Methodology, December 2019) (1). A simplified version of this method is represented by our “proportional allocation” strategy. We have made several revisions to the manuscript to address the points raised by the reviewers, as detailed below.

      Reviewer #1 (Public Review):

      1. The authors present a back-of-the-envelope exploration of various possible resource allocation strategies for ITNs. They identify two optimal strategies based on two slightly different objective functions and compare 3 simple strategies to the outcomes of the optimal strategies and to each other. The authors consider both P falciparum and P vivax and explore this question at the country level, using 2000 prevalence estimates to stratify countries into 4 burden categories. This is a relevant question from a global funder perspective, though somewhat less relevant for individual countries since countries are not making decisions at the global scale.

      Thank you for this summary of the paper. We agree that our analysis is of relevance to global funders, but is not meant to inform individual country allocation decisions. In the discussion, we now state:

      p. 12 L19: “Therefore, policy decisions should additionally be based on analysis of country-specific contexts, and our findings are not informative for individual country allocation decisions.”

      1. The authors have made various simplifications to enable the identification of optimal strategies, so much so that I question what exactly was learned. It is not surprising that strategies that prioritize high-burden settings would avert more cases.

      Thank you for raising this point. Indeed, several simplifying assumptions were necessary to ensure the computational feasibility of this complex optimization problem. As a result, our study primarily represents a thought experiment to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. As now further outlined in the introduction, approaches to this have differed over time and it remains a relevant debate for malaria policy.

      p. 2 L22: “However, there remains a lack of consensus on how best to achieve this longer-term aspiration. Historically, large progress was made in eliminating malaria mainly in lower-transmission countries in temperate regions during the Global Malaria Eradication Program in the 1950s, with the global population at risk of malaria reducing from around 70% of the world population in 1950 to 50% in 2000 (2). Renewed commitment to malaria control in the early 2000s with the Roll Back Malaria initiative subsequently extended the focus to the highly endemic areas in sub-Saharan Africa (3).”

      We believe our findings not only confirm an “expected” outcome – that prioritizing high-burden settings would avert more cases – but also clearly illustrate various consequences of different allocation strategies that are implemented or considered in reality, which may not be so obvious. For example, we found that initially allocating a larger share of the budget to high-transmission countries could be both almost optimal in terms of reducing clinical cases and maximising the number of countries reaching pre-elimination. We also observed a trade-off between reducing burden and reducing the global population at risk (“shrinking the map”) through a focus on near-elimination settings, and estimate the loss in burden reduction when following an elimination target.

      1. Generally, I found much of the text confusing and some concepts were barely explained, such that the logic was difficult to follow.

      Thank you for bringing this to our attention, and we regret to hear the manuscript was confusing to read. We believe that the revisions made as a result of the reviewer comments have now made the manuscript much easier to follow. We additionally passed the manuscript to a colleague to identify confusing passages, and have added a number of sentences to clarify key concepts and improve the structure.

      1. I am not sure why the authors chose to stratify countries by 2000 PfPR estimates and in essence explore a counterfactual set of resource allocation strategies rather than begin with the present and compare strategies moving forward. I would think that beginning in 2020 and modeling forward would be far more relevant, as we can't change the past. Furthermore, there was no comparison with allocations and funding decisions that were actually made between 2000 and 2020ish so the decision to begin at 2000 is rather confusing.

      Thank you for pointing this out. We have now made the rationale for this choice clearer in the manuscript. Our main reason for this was to allow comparison with the Global Fund funding allocation, which is largely based on malaria disease burden in 2000-2004. As stated in the paper, malaria prevalence estimates in the year 2000 are commonly considered to represent a “baseline” endemicity level, before large-scale implementation of interventions in the following decades. In the manuscript, the transmission-related element of the Global Fund allocation algorithm is represented in our “proportional allocation” strategy. Previously this was only mentioned in the methods, but we have now added the following in the results to address this comment of the reviewer:

      p. 6 L12: “Strategies prioritizing high- or low-transmission settings involved sequential allocation of funding to groups of countries based on their transmission intensity (from highest to lowest EIR or vice versa). The proportional allocation strategy mimics the current allocation algorithm employed by the Global Fund: budget shares are mainly distributed according to malaria disease burden in the 2000-2004 period. To allow comparison with this existing funding model, we also started allocation decisions from the year 2000.”

      The Global Fund framework additionally considers economic capacity and other specific factors, and we have now also included a direct comparison with the 2020-2022 Global Fund allocation in Supplementary Figure S12 (see Author response image 1).

      We agree that looking at allocation decisions from 2020 onward would also constitute a very interesting question. However, the high dimensionality in scenarios to consider for this would currently make it computationally infeasible to run on the global level. Not only would it have to include all interventions currently implemented and available for malaria at different levels of coverage, but also the option of scaling down existing interventions. Instead, our priority in this paper was to conduct a thought experiment including both P. falciparum and P. vivax on a large geographical scale.

      Author response image 1.

      Impact of the proportional allocation strategy and the 2020-2022 Global Fund allocation on global malaria cases (panel A) and the total population at risk of malaria (panel B) at varying budgets. Both strategies use the same algorithm for budget share allocation based on malaria disease burden in 2000-2004, but the Global Fund allocation additionally involves an economic capacity component and specific strategic priorities.

      1. I realize this is a back-of-the-envelope assessment (although it is presented to be less approximate than it is, and the title does not reveal that the only intervention strategy considered is ITNs) but the number and scope of modeling assumptions made are simply enormous. First, that modeling is done at the national scale, when transmission within countries is incredibly heterogeneous. The authors note a differential impact of ITNs at various transmission levels and I wonder how the assumption of an intermediate average PfPR vs modeling higher and lower PfPR areas separately might impact the effect of the ITNs.

      Thank you for this comment. We agree the title could be more specific and have changed this to “Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”.

      Regarding the scale of ITN allocation, it is true that allocation at a sub-national scale could affect the results. However, considering this at a national scale is most relevant for our analysis because this is the scale at which global funding allocation decisions are made in practice. A sentence explaining this has been added in the methods.

      p. 15 L8: “The analysis was conducted on the national level, since this scale also applies to funding decisions made by international donors (1).”

      Further considering different geographical scales would also require introducing other assumptions, for example about how different countries would distribute funding sub-nationally, whether specific countries would take cooperative or competitive approaches to tackle malaria within a region or in border areas, and about delays in the allocation of bednets in specific regions. These interesting questions were outside of the scope of this work, but certainly require further investigation.

      1. Second, the effect of ITNs will differ across countries due to variations in vector and human behavior and variation in insecticide resistance and susceptibility to the ITNs. The authors note this as a limitation but it is a little mind-boggling that they chose not to account for either factor since estimates are available for the historical period over which they are modeling.

      Thank you for pointing this out. We did consider this and mentioned it as a limitation. Nevertheless, the complexity of accounting for this should also be recognised; for example, there is substantial uncertainty about the precise relationship between insecticide resistance and the population-level effect of ITNs (Sherrard-Smith et al., 2022, Lancet Planetary Health) (4). Additionally, our simulations extend beyond the 2000-2023 period so further assumptions about future changes to these factors would also be required. Simplifying assumptions are inherent to all mathematical modelling studies and we consider these particular simplifications acceptable given the high-level nature of the analysis.

      1. Third, the assumption that elimination is permanent and nothing is needed to prevent resurgence is, as the authors know, a vast oversimplification. Since resources will be needed to prevent resurgence, it appears this assumption may have a substantial impact on the authors' results.

      Thank you for this comment. In the discussion, we have now expanded on this:

      p. 13 L3: “While our analysis presents allocation strategies to progress towards eradication, the results do not provide insight into allocation of funding to maintain elimination. In practice, the threat of malaria resurgence has important implications for when to scale back interventions.”

      We believe that from a global perspective, the questions of funding allocation to achieve elimination vs to maintain it can currently still be considered separately given the large time-scales involved. The cost of preventing resurgence is not known, and one major problem in accounting for this would also be to identify relevant timescales to quantify this over.

      1. The decision to group all settings with EIR > 7 together as "high transmission" may perhaps be driven by WHO definitions but at a practical level this groups together countries with EIR 10 and EIR 500. Why not further subdivide this group, which makes sense from a technical perspective when thinking about optimal allocation strategies?

      Thank you for pointing this out. The WHO categories used are better interpreted in terms of the corresponding prevalence, which places countries with a prevalence of over 35% in the high transmission categories (WHO Guidelines for malaria, 31 March 2022) (5). We felt this is appropriate given that we are looking at theoretical global allocation patterns and do not aim to make recommendations for specific groups of countries or individual countries within sub-Saharan Africa that would be distinguished through the use of higher cut-offs. In our analysis, all 25 countries in the high transmission category were located in sub-Saharan Africa.

      1. The relevance of this analysis for elimination is a little questionable since no one eliminates with ITNs alone, to the best of my understanding.

      Thank you for this comment. We indeed state in the paper that ITNs alone are not sufficient to eliminate malaria. However, we still think that our analysis is relevant for elimination by taking a more theoretical perspective on reducing transmission using interventions. Starting from the 2000 baseline (or current levels) globally, large-scale transmission reductions such as those achieved by mass ITN distribution still represent the first key step on the path to malaria eradication, as shown in previous modelling work (Griffin et al., 2016, Lancet Infectious Diseases) (6). In the final phase of elimination, the WHO also recommends the addition of more targeted and reactive interventions (WHO Guidelines for malaria, 31 March 2022) (5). Our changes to the title of the article (“Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”) should now better reflect that we consider ITNs as just one necessary component to achieve malaria eradication.

      Reviewer #2 (Public Review):

      1. Schmit et al. analyze and compare different strategies for the allocation of funding for insecticide-treated nets (ITNs) to reduce the global burden of malaria. They use previously published models of Plasmodium falciparum and Plasmodium vivax malaria transmission to quantify the effect of ITN distribution on clinical malaria numbers and the population at risk. The impact of different resource allocation strategies on the reduction of malaria cases or a combination of malaria cases and achieving pre-elimination is considered to determine the optimal strategy to allocate global resources to achieve malaria eradication.

      Strengths:

      Schmit et al. use previously published models and optimization for rigorous analysis and comparison of the global impact of different funding allocation strategies for ITN distribution. This provides evidence of the effect of three different approaches: the prioritization of high-transmission settings to reduce the disease burden, the prioritization of low-transmission settings to "shrink the malaria map", and a resource allocation proportional to the disease burden.

      Thank you for providing this summary and outline of the strengths of the paper.

      1. Weaknesses:

      The analysis and optimization which provide the evidence for the conclusions and are thus the central part of this manuscript necessitate some simplifying assumptions which may have important practical implications for the allocation of resources to reduce the malaria burden. For example, seasonality, mosquito species-specific properties, stochasticity in low transmission settings, and changing population sizes were not included. Other challenges to the reduction or elimination of malaria such as resistance of parasites and mosquitoes or the spread of different mosquito species as well as other beneficial interventions such as indoor residual spraying, seasonal malaria chemoprevention, vaccinations, combinations of different interventions, or setting-specific interventions were also not included. Schmit et al. clearly state these limitations throughout their manuscript.

      The focus of this work is on ITN distribution strategies, other interventions are not considered. It also provides a global perspective and analysis of the specific local setting (as also noted by Schmit et al.) and different interventions as well as combinations of interventions should also be taken into account for any decisions.

      Thank you for raising these points. As outlined at the beginning of our response, for computational reasons we indeed had to introduce several simplifying assumptions to perform this complex optimisation problem. As a result of these factors you highlighted, our study should primarily be interpreted as a thought experiment to assess whether current policies are aligned with an optimal allocation strategy or whether there might be a need to consider alternative strategies. The findings are relevant primarily to global funders and should not be used to inform individual country allocation decisions, which we have further clarified in the manuscript.

      1. Nonetheless, the rigorous analysis supports the authors' conclusions and provides evidence that supports the prioritization of funding of ITNs for settings with high Plasmodium falciparum transmission. Overall, this work may contribute to making evidence-based decisions regarding the optimal prioritization of funding and resources to achieve a reduction in the malaria burden.

      Thank you for this positive assessment of our work.

      Reviewer #1 (Recommendations For The Authors):

      1. L144: last paragraph, the focus on endemic equilibrium: I did not really understand this, when 39 years is mentioned later is that a different analysis? How are cases averted calculated in a time-agnostic endemic equilibrium analysis? Perhaps a little more detail here would be helpful.

      A further explanation of this has been added in the results and methods.

      p. 8 L 22: “To evaluate the robustness of the results, we conducted a sensitivity analysis on our assumption on ITN distribution efficiency. Results remained similar when assuming a linear relationship between ITN usage and distribution costs (Figure S10). While the main analysis involves a single allocation decision to minimise long-term case burden (leading to a constant ITN usage over time in each setting irrespective of subsequent changes in burden), we additionally explored an optimal strategy with dynamic re-allocation of funding every 3 years to minimise cases in the short term.”

      p. 17 L25: “To ensure computational feasibility, 39 years was used as it was the shortest time frame over which the effect of re-distribution of funding from countries having achieved elimination could be observed.”

      p. 18 L 9: “Global malaria case burden and the population at risk were compared between baseline levels in 2000 and after reaching an endemic equilibrium under each scenario for a given budget.”

      1. L148: what is proportional allocation by disease burden and how is that different from prioritizing high-transmission settings?

      Further details have been added in the text.

      p. 6 L12: “Strategies prioritizing high- or low-transmission settings involved sequential allocation of funding to groups of countries based on their transmission intensity (from highest to lowest EIR or vice versa). The proportional allocation strategy mimics the current allocation algorithm employed by the Global Fund: budget shares are mainly distributed according to malaria disease burden in the 2000-2004 period. To allow comparison with this existing funding model, we also started allocation decisions from the year 2000.”

      1. L198-9: did low transmission settings get the majority of funding at intermediate and maximum budgets because they have the most population (I think so, based on Fig 1)?

      Yes, this is correct. We state in the results: “the optimized distribution of funding to minimize clinical burden depended on the available global budget and was driven by the setting-specific transmission intensity and the population at risk”.

      1. L206: what is ITN distribution efficiency? This is not explained. What is the 39-year period? Why this duration?

      Further explanations have been added in the results section, which were previously only detailed in the methods:

      p. 8 L 22: “To evaluate the robustness of the results, we conducted a sensitivity analysis on our assumption on ITN distribution efficiency. Results remained similar when assuming a linear relationship between ITN usage and distribution costs (Figure S10)."

      p. 17 L25: “To ensure computational feasibility, 39 years was used as it was the shortest time frame over which the effect of re-distribution of funding from countries having achieved elimination could be observed.”

      1. L218: what is "no intervention with a high budget"? is this a phrasing confusion?

      Yes, this has been changed.

      p. 9 L14: “We estimated that optimizing ITN allocation to minimize global clinical incidence could, at a high budget, avert 83% of clinical cases compared to no intervention.”

      1. L235-7: on comparing these results to previous work on the 20 highest-burden countries: is the definition of "high" similar enough across these studies that this is a relevant comparison?

      We believe this is reasonably comparable, as looking at the 20 highest-burden countries encompasses almost the entire high-transmission group in our work (25 countries in total), on which the comparison is made.

      1. L267-70: I didn't understand this sentence at all.

      Thanks for flagging this. The sentence referred to is: “Allocation proportional to disease burden did not achieve as great an impact as other strategies because the funding share assigned to settings was constant irrespective of the invested budget and its impact, and we did not reassign excess funding in high-transmission settings to other malaria interventions.”

      The previously mentioned added details on the proportional allocation strategy in the manuscript should now make this clearer, together with this clarification:

      p. 11 L17: “In modelling this strategy, we did not reassign excess funding in high-transmission settings to other malaria interventions, as would likely occur in practice.”

      For proportional allocation, a fixed proportion of the budget is calculated for each country based on disease burden, as described in the Global Fund allocation documentation (see Methods). However, since ITNs are the only intervention considered, this leads to a higher budget being allocated than is needed in some countries (i.e. where more funding doesn’t translate into further health gains).

      1. L339 EIR range: 80 is high at the country level but areas within countries probably went as high as 500 back in 2000. How does this affect the modeled estimates of ITN impact?

      The question of sub-national differences in transmission has been addressed in the public review comments. Briefly, we consider the national scale to be most relevant for our analysis because this is the scale at which global funding allocation decisions are made in practice. Although, as you correctly point out, the EIR affects ITN impact, it is not possible to conclude what the average effect of this would be on the country level without considering the following factors and introducing further assumptions on these: how would different countries distribute funding sub-nationally? Which countries would take cooperative or competitive approaches to tackle malaria within a region or in border areas? Would there be delays in the allocation of bednets in specific regions? These interesting questions were outside of the scope of this work, but certainly require further investigation.

      1. L347 population size constant: births and deaths are still present, is that right? Unclear from this sentence

      Yes, this is correct. Full details on the model can be found in the Supplementary Materials.

      1. L370 estimating ITN distribution required to achieve simulated population usage: is this a single relationship for all of Africa? Is it based on ITNs distributed 2:1 -> % access -> % usage? So it accounts for allocation inefficiency?

      Yes, this is represented by a single relationship for all of Africa to account for allocation inefficiency and is based on observed patterns across the continent and methodology developed in a previous publication (Bertozzi-Villa et al., 2021, Nature Communications) (7). Full details can be found in the Supplementary Materials (“Relationship between distribution and usage of insecticide-treated nets (ITNs)”, p. 21).

      1. L375: the ITN unit cost is assumed constant across countries and time (I think, it doesn't say explicitly), is this a good assumption?

      Yes, this is correct. We consider this a reasonable assumption within the scope of the paper. While delivery costs likely vary across countries, international funders usually have pooled procurement mechanisms for ITNs (The Global Fund, 2023, Pooled Procurement Mechanism Reference Pricing: Insecticide-Treated Nets).

      1. L399: "single allocation of a constant ITN usage" it is not explained what exactly this means

      Further explanations have been added in the manuscript.

      p. 8 L24: “While the main analysis involves a single allocation decision to minimise long-term case burden (leading to a constant ITN usage over time in each setting irrespective of subsequent changes in burden), we additionally explored an optimal strategy with dynamic re-allocation of funding every 3 years to minimise cases in the short term.”

      Reviewer #2 (Recommendations For The Authors):

      1. Additionally to the public comments, the only major comment is that in this reviewer's opinion, the focus on ITNs as the only intervention should be made clearer at different places in the manuscript (e.g. in the discussion lines 303-304). Otherwise, there are only some minor comments (see below).

      We have now modified the following sentence and also included this suggestion in the title (“Resource allocation strategies for insecticide-treated bednets to achieve malaria eradication”).

      p. 13 L8: “Our analysis demonstrates the most impactful allocation of a global funding portfolio for ITNs to reduce global malaria cases.”

      1. Minor comments:
      2. It may be of interest to compare the maximum budget obtained from the optimization with other estimates of required funding and actual available funding.

      Thank you for this interesting suggestion. Our maximum budget estimates are similar to the required investments projected for the WHO Global Technical Strategy: US$3.7 billion for ITNs in our analysis compared to between US$6.8 and US$10.3 billion total annual resources between 2020 and 2030, of which an estimated 55% would be required for (all) vector control (US$3.7 - US$5.7 billion) (Patouillard et al., 2016, BMJ Global Health) (8). However, it is well known that current spending is far below these requirements: total investments in malaria were estimated to be about US$3.1 billion per year in the last 5 years (World Health Organization, 2022, World Malaria Report 2022) (9).

      1. Line 177: should "Figure S7" be bold?

      Yes, this has been corrected.

      1. Line 218: what does "no intervention with high budget" mean? Should this simply be "no intervention"?

      This has been changed.

      p. 9 L14: “We estimated that optimizing ITN allocation to minimize global clinical incidence could, at a high budget, avert 83% of clinical cases compared to no intervention.”

      1. In this reviewer's opinion it would be easier for the reader if the weighting term in the objective function would be added in the Materials and Methods section. The weighting could be added without extending the section substantially and the explanation in lines 390-393 may be easier to understand.

      Thank you for this suggestion. We agree and have added this in the main manuscript.

      References

      1. The Global Fund. Description of the 2020-2022 Allocation Methodology 2019 [Available from: https://www.theglobalfund.org/media/9224/fundingmodel_2020-2022allocations_methodology_en.pdf.

      2. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4(6):327-36.

      3. Feachem RGA, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, et al. Shrinking the malaria map: progress and prospects. The Lancet. 2010;376(9752):1566-78.

      4. Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, et al. Optimising the deployment of vector control tools against malaria: a data-informed modelling study. The Lancet Planetary Health. 2022;6(2):e100-e9.

      5. World Health Organization. WHO Guidelines for malaria, 31 March 2022. Geneva: World Health Organization; 2022. Contract No.: Geneva WHO/UCN/GMP/ 2022.01 Rev.1.

      6. Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. The Lancet Infectious Diseases. 2016;16(4):465-72.

      7. Bertozzi-Villa A, Bever CA, Koenker H, Weiss DJ, Vargas-Ruiz C, Nandi AK, et al. Maps and metrics of insecticide-treated net access, use, and nets-per-capita in Africa from 2000-2020. Nature Communications. 2021;12(1):3589.

      8. Patouillard E, Griffin J, Bhatt S, Ghani A, Cibulskis R. Global investment targets for malaria control and elimination between 2016 and 2030. BMJ global health. 2017;2(2):e000176.

      9. World Health Organization. World malaria report 2022. Geneva: World Health Organization; 2022. Report No.: 9240064893.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This well done and interesting paper examining the connection between TXNIP and GDF15. The main thrust is that TXNIP upregulation chemotherapies, such as Oxa, results in an a down regulation of GDF15 early in tumorigenesis. Later in tumorigenesis, TXNIP upregulation is less pronounced, elevating GFP15 resulting in a blockage of tumor suppressive immune responses. Generally the work is convincing. For example, it's clear that TXNIP is up regulated by Oxa in an ROS and MondoA-dependent manner. Likewise its quite clear TXNIP loss reads to an upregulation of GDF15. However, it's also quite clear that Oxa suppresses GDF15 in a manner that appears to be completely independent of TXNIP. The writing in the paper implies strongly that there is a mechanistic connection between TXNIP and GDF15, but no experiments investigate this possibility.

      We feel this is very fair and is reflective of a) perhaps an overemphasis of the TXNIP knockout observation and supportive tissue data, which suggests a relationship but not a mechanistic understanding b) an underemphasis of the data in Figure 3 that shows a decrease in GDF15 after oxaliplatin treatment in TXNIP knockout lines.

      We have addressed these concerns in several ways:

      1. We have carried out knockdown experiments using siRNA for ARRDC4, which we felt, given its regulation by MondoA and ROS, and homology to TXNIP, may also regulate GDF15. This was found to be the case and may explain the data in Figure 3. At the very least it shows that other factors involved in oxidative stress management may have similar impacts – a form of functional redundancy. Lines 553-559 “Finally, given our previous data (Figure S4) we looked to assess the role of ARRDC4 on GDF15 expression. In the absence of oxaliplatin, knocking down ARRDC4 in DLD1 and HCT15 cells drove an increase in GDF15. When challenged with oxaliplatin, both ARRDC4 and TXNIP expression increased and GDF15 decreased. When the ARRDC4 knockdown was challenged TXNIP increased further and GDF15 decreased further (Figure S6G-J). Given the common regulatory pathways and homology between TXNIP and ARRDC4, and their similar functional roles, we suggest these data are evidence of redundancy within this system. “

      We have included some context in the discussion:

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572

      We have tempered the text:

      Lines 522-524 “It is important to note however that here we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment, with decreased levels seen in knockout lines (Figure 3C-G, S5E).”

      Lines 926-929 “It must be stressed that these data do not place TXNIP as the sole regulator of GDF15, for example ARRDC4 can also be seen to regulate GDF15. We envisage TXNIP as one of a number of ROS-dependent GDF15 regulators, with this redundancy potential evidence of the importance of this regulatory framework.”

      We have carried out additional analysis detailed in the discussion and in Figure S12 which suggests TXNIP impacts MYC function, as reported elsewhere (detailed below). For ease, the key paper can be accessed through this link https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001778

      Lines 934-956: “The main shortcoming of this paper is the lack of mechanistic understanding linking TXNIP to GDF15. There are 650 transcription factors that have been shown, or are predicted, to bind to GDF15 promoter and/or enhancer regions. By assessing our list of differentially expressed genes (Suppl. Table 1-2) for the presence of these factors we identified 6 GDF15 binding TFs that show significantly decreased expression after oxaliplatin treatment in both cell lines (ATF4, MYC, SREBF1, PHB2, HBP1, KLF9). There was only one, MYC, that was downregulated by oxaliplatin treatment (validated; Figure S12A), and with this downregulation partially being rescued in a matched TXNIP knockout line (Figure S12B). We then observed that c-myc has been shown or is predicted to bind to promoter/enhancer regions of the top five transcriptomic and proteomic differentials in TXNIP knockout lines, including TXNIP itself (apart from C16orf90). Even with c-myc’s promiscuity (binds to 10-20% of all promoters/enhancers) this may be suggestive of a specific relationship. Finally, when looking at the correlations between these 6 TFs and TXNIP and GDF15 in the TCGA COAD dataset, MYC has the greatest and most significant negative correlation to TXNIP (r=-0.4631 p=1.42e-28) and the greatest and most significant positive correlation to GDF15 (r=0.4653 p=7.32e-29). ATF4 and PHB2 are the other TFs in the list, that show the same significant trends (Figure S12C), and therefore may play a role in the TXNIP-independent oxaliplatin-dependent regulation of GDF15. Further exploration of these additional TFs is outside the scope of the current manuscript.

      MYC’s role in bridging from TXNIP to GDF15 is further supported by a recent paper which shows that TXNIP is “a broad repressor of MYC genomic binding” and that “TXNIP loss mimics MYC overexpression”73. Furthermore, the inter-dependent regulatory relationship between MondoA, TXNIP, and MYC has been seen in a variety of models74, whilst the impact of NAC on MYC-dependent pathways has been seen in lymphoma75. These studies lend credence to the idea that MYC is the most likely TXNIP-regulated TF that regulates GDF15 in our systems.”

      It seems equally likely that TXNIP and GDF15 represent independent parallel pathways. Even if TXNIP is a direct regulator of GDF15, it's also clear that other "factors" up or down-regulated by Oxa also contribute to the regulation of GDF15. These are not explored and even though TXNIP is highly regulated genes shown Figure 2 that are not identified or discussed that may also be contributing to GDF15 regulation.

      As mentioned above, the new data suggests that at least one other factor, ARRDC4, can regulate GDF15 (changes upon oxaliplatin treatment) and that MYC is a potential mechanistic bridge between TXNIP and GDF15. Whilst assessing for the transcription factor that may link TXNIP and GDF15 we found an additional 5 TXNIP-independent factors (ATF4, PHB2, SREBF1, HBP1, KLF9) that bind to GDF15 promoter/enhancer regions and are downregulated post-oxaliplatin treatment. When looking at correlations between these factors and GDF15 in the TCGA COAD dataset, ATF4 and PHB2 correlate most closely with GDF15 (when removing MYC) and so we would cautiously suggest that these may be the most pertinent. This data is now included.

      Further, the experiments treating PBMCs with conditioned media contain other cytokines/factors, in addition to GDF15, that likely also contribute the observed effects on the different immune cells understudy. The conditioned media from GDF15 knock out cells are a good experiment, but the media is not rigorously tested to see what other cytokines/factors might have also been depleted.

      The TXNIP knockout media is the same as that analysed by mass spec and the protein array, however as the reviewer states there is no analysis (excluding assessing for the presence or absence of GDF15) on the double knockout supernatant or over-expression supernatant. The text has been corrected as follows:

      Lines 675-679. “In light of other secreted factors being seen to be regulated by TXNIP (Figure 3A-B), we included double knockouts (TXNIP and GDF15 knockout; GTKO) as well as an overexpression system (GDF15a) to test for GDF15 specific effects. However, we do not know the impact of knocking out or overexpressing GDF15 on the broader secretome.”

      Perhaps a GDF15 complementation experiment would help here.

      We felt that the association between GDF15 and Treg induction is reasonably well established in the literature, and so once we saw that the supernatant from our GDF15 overexpression system (+/- CD48 blockade) complemented what has already been demonstrated, we were encouraged. However we needed more – hence the TCGA data and IHC staining.

      Finally, even if completely independent, a TXNIP/GDF15 ratio does seem to have utility in determining chemo-therapeutic response.

      We agree – we feel that conceptually this may be the most interesting part of the project and is an example of what can be done with these tools.

      Other major points: 1. Please label the other highly regulated genes shown in Fig 2A and B. Might they also explain some of the underlying biology. This could be on the current figures or in a supplement, though the former is preferred.

      Many thanks – we have done this.

      Please address why the TXNIP induction is so much less in patient-derived organoids vs. cell line spheroids (Fig S2). By the western blots, TXNIP inductions in the organoids looks quite modest. Further, the text is quite cryptic and implies that the "upregulation" is similar in both organoids and spheroids.

      You are absolutely correct. Many apologies, the wording has changed:

      Lines 320-323 “In both models we observed the upregulation of TXNIP mRNA (Figure S2E-H) and TXNIP protein (Figure S2I-L) after oxaliplatin treatment, with spheroids showing greater responsiveness. This difference is most likely due to culturing conditions or differences in the number and location of cycling cells.”

      We have two possible explanations. Firstly the media in which the organoids are cultured contains a lower glucose concentration than that used for the spheroids. As per some of our new data (Figure S3 – later in the rebuttal), the upregulation of TXNIP after oxaliplatin is glucose dependant, with lower concentrations resulting in less of a differential. Secondly, while restricted to the periphery, the Ki67 signal in DLD1 spheroids is quite pronounced indicating that, within the outer zone, many cells (probably the majority) are in the S/G1/G2 phase of the cell cycle at any given point in time (figure below this text).

      This is not the case for the organoids, where the Ki67 (and pCDK1) signal is quite weak, and only sporadic in the outer layer. So we believe that there are many more rapidly cycling cells in the most drug-exposed layer of spheroids when compared to the comparable region in organoids. As the spheroid cells are likely cycling more rapidly, they would also be expected to be more adversely affected by the drug within the finite drug treatment window. Indeed, these spheroids grow large, and quite quickly. If the organoid cells are cycling more slowly and if, within the cell layer most exposed to drug, these cycling cells are less abundant, then the TXNIP response may well be subdued in organoids when compared with spheroids.

      We have decided to not include the above (full) explanation and figure within the new draft, as we feel it may distract from the central message. However do let ourselves and the editor know if you disagree.

      What was the rationale of performing the MS experiment on control and TXNIP KO DLD1 cells in the absence of oxaliplatin? The other experiments in Fig 3 clearly show that Oxa can repress GDF15 even in the absence of TXNIP, which implicates other pathways. ARRDC4? Or something else? This needs to be addressed.

      We adopted this approach because of the order in which the assays occurred and technical issues surrounding the use of post-oxaliplatin treated supernatant. By the time we moved to the proteomics we had already identified, and validated, GDF15 as our number one candidate (initially from the protein array), in terms of response to oxaliplatin and dependence on TXNIP. This led us to the next stage of the project – to assess the environmental impacts of this factor in vitro before validation in situ. To do this, aware of the issue of contaminated recombinant GDF15, we decided early on to use cell line supernatant. We carried out some pilot studies on immune cells using supernatant from oxaliplatin treated cell lines and we had several technical issues (difficulty in determining the correct controls, immune cell death…). This changed the emphasis to using supernatant from knockout models rather than knockout and treated models. Before we began these assays in earnest we wanted to assess exactly what was enriched in TXNIP knockout supernatant and so we turned to proteomics. When this further validated GDF15, we then generated GDF15 and TXNIP/GDF15 knockouts to further elucidate GDF15’s role specifically.

      With regards the other pathways, as you correctly predicted, ARRDC4 also appears to regulate GDF15 – many thanks for helping with this line of enquiry. Please see earlier in the rebuttal for more details and the data.

      The data in 3J with the MondoA knockdown is not convincing. The knockdown is weak and TXNIP goes down a smidge. Agree that GDF15 goes up

      We agree. We have re-run this and pooled the densitometry data – see new figure below (Panel 3J).

      Minor points 1. Line 79. The "loss" of TXNIP/GDF15 axis is confusing. It's really loss of TXNIP and upregulation of GDF15, right?

      Absolutely - corrected to responsiveness.

      Lines 144-147: “Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker.”

      Please provide an explanation for the different stages in tables 1 and 2. This will likely not be clear to non-clinicians.

      Many thanks. The following has been added at the bottom of the second table.

      Lines 304-309: “The TNM staging system stands for Tumor, Node, Metastasis. T describes the size of the primary tumor (T1-2; 5cm). N describes the presence of tumor cells in the lymph nodes (N0; no lymph nodes. N1-3 >0). M describes whether there are any observable metastases (M0; no metastases. M1; metastases). The clinical stage system is as follows: I/II; the tumor has remained stable or grown, but hasn’t spread. III/IV; the tumor has spread, either locally (III) or systemically (IV).”

      Line 231 should probably read ...cysteine (NAC), a reactive oxygen species inhibitor,

      Many thanks - corrected

      Line 247, should be RT-qPCR I think.

      Many thanks - corrected

      Lines 343-345. I don't quite understand the wording. Does this mean to say that 675 soluble proteins were not changed between the condition media from both cell populations?

      Yes, exactly this. We have removed as this is superfluous and confusing.

      The data in FigS1 B and C don't seem to reach the standard p value of > 0.05

      Very true – we have rewritten the text to make sure the reader knows there is no significance.

      Lines 269-271. “High levels of both the protein (significantly) and the transcript (not significantly) were seen to be associated with favourable prognosis (Figure 1G,H and S1B,C).”

      **Referee Cross-Commenting**

      cross comment regarding referees 2 and 3 above. I'm am convinced that TXNIP is at least contemporaneously upregulated with GDF15 downregulation. However, the strong implication from the writing is that TXNIP regulates GDF15 directly. I agree with the comment above that exploring mechanisms may be open-ended especially as TXNIP has been implicated in gene regulation by several different mechanism. I'd be satisfied with a more open-minded discussion of potential mechanisms by which TXNIP may repress GDF15 and the possibility of other parallel pathways that likely contribute to GDF15 repression.

      Many thanks, this is a generous and understanding approach. As described above we have carried out extra analysis and have found 6 differentially regulated transcription factors which have been shown to bind GDF15 promoter or enhancer regions with 1 of these, MYC, being significantly affected in the TXNIP knockout cell lines, which in combination with supportive literature suggests a degree of TXNIP dependence. We have also identified ARRDC4 as an additional regulator of GDF15 – again please see above.

      Reviewer #1 (Significance (Required)):

      This is an interesting contribution but the mechanistic connection between GDF15 and TXNIP is relatively weak. That said, even as independent variables they do seem to have utility in predicting therapeutic response.

      Many thanks for the comment – we concur. We have reanalysed our data looking for relevant transcription factors (those that bind GDF15 promoter / enhancer regions) finding MYC as the most likely bridge. Please see above.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Deng et al. investigates a mechanistic link between TXNIP and GDF15 expression and oxaliplatin treatment and acquired resistance. They observe an upregulation in TXNIP expression in the tumors of patients who have previously received chemotherapy. They demonstrate oxaliplatin-driven MondoA transcriptional activity is what underlies the induction of TXNIP. They further demonstrate that TXNIP is a negative regulator of GDF15 expression. Together, oxaliplatin induces MondoA activity and TXNIP expression, resulting in a downregulation of GDF15 expression and consequently decreased Treg differentiation.

      Major Comments

      1. The authors suggest that TXNIP induction and GDF15 downregulation are a common effect of chemotherapies; however, the mechanistic studies were limited to oxaliplatin. The authors should clarify this point through further investigation using other commonly used CRC chemotherapies (5-FU, irinotecan, etc.),or through textual changes. To be clear, I think that the oxaliplatin results could potentially stand on their own but would require additional clarification. For example, regarding the patient samples analyzed in 1D and 4F, which patients received oxaliplatin? Could the analysis of publicly available molecular data be drilled down to just the patients who received oxaliplatin?

      Many thanks – this is an excellent point. Firstly, all the patients in 1D and 4F received oxaliplatin. Secondly, we have included new data looking at the impact of other chemotherapies (FOLRIRI, FU-5 and SN-38) on aspects of the study, ultimately finding that these processes (especially an anti-correlation between GDF15 and TXNIP changes upon chemo treatment) appear to be specific to oxaliplatin. These data have been added (Figure S11) and throughout the emphasis has been switched from chemotherapeutic treatment to oxaliplatin treatment.

      Lines 796-799: “To check if the pre-treatment GDF15/TXNIP ratio could be used for patients treated with FOLFIRI we performed the same analyses finding no significance (S11A-D). This oxaliplatin specificity was then confirmed by western blot analysis in DLD1 and HCT15 cells treated with 5-FU or SN38 (Figure S11E-F).

      Example of change of emphasis from ‘chemotherapy’ to ‘oxaliplatin’ – lines 139-142: “Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15).”

      The data demonstrating the induction of MondoA transcriptional activity and TXNIP expression in response to oxaliplatin treatment is quite convincing. The data regarding ROS induction of TXNIP is interesting, especially in light of other studies arguing that ROS limits MondoA activity (PMID: 25332233). Given this apparent disparity, I think that this study could really be strengthened by also investigating other potential mechanisms of oxaliplatin induction of MondoA. In particular, given many studies arguing for direct nutrient-regulation of MondoA, the authors should address the potential for oxaliplatin regulation of glucose availability and a potential glucose dependence of oxaliplatin-induced TXNIP. 2

      In line with the previous point, since MondoA activity and TXNIP expression are sensitive to glucose levels, the authors should investigate oxaliplatin-regulation of TXNIP under physiological glucose levels. No need to replicate everything, just key experiments.

      We feel these are excellent point and really help the piece – many thanks. We have carried out assays around these points suggested and have included the findings in the new draft – see below.

      Lines 332-339: “As such, we went back to first principles and assessed the impact of different concentrations of glucose on TXNIP induction +/- oxaliplatin treatment, finding a concentration dependent effect (Figure S3A). Intriguingly, high glucose alone was able to induce increased TXNIP expression. We then assessed if oxaliplatin treatment drove an increase in glucose uptake, with this seen at concentrations >10mM (Figure S3B). Next, to investigate the impact of glucose metabolism, and consequent ROS generation, on TXNIP induction we treated cells with Antimycin A, an inhibitor of oxidative phosphorylation, finding a complete block in oxaliplatin-induced TXNIP (Figure S3C).”

      The authors did a good job of linking TXNIP and GDF15 in untreated conditions; however, the data arguing for oxaliplatin regulation of GDF15 through TXNIP is less clear. For example, in 3B-H, oxaliplatin treatment reduces GDF15 approximately to the same extent in the NTC and TKO cells, potentially in line with a mechanism of downregulation that doesn't involve TXNIP.

      A very salient point and completely in line with the other reviewers. We have carried out a few additional analyses mentioned previously in this letter. The most pertinent for this specific point are the experiments around ARRDC4, where we found evidence to suggest that, like TXNIP, it regulates GDF15.

      Minor Comments

      1. The presentation of data in Figure 5 is confusing. A-B include raw cell numbers, whereas C-F show "normalized proliferation." What does this mean? And how was the normalization done?

      Apologies for this. Legend test has been corrected to “Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 727-729).

      **Referee Cross-Commenting**

      cross-comment regarding reviewer #1

      I agree with the referee that the link between TXNIP and GDF15 is weak, though as I mentioned before, this is particularly true in the context of oxaliplatin-regulation of TXNIP. I agree that given all the presented data, it is likely that oxaliplatin-regulation of TXNIP and GDF15 are independent. In my opinion, the referee brought up all valid concerns, but this is by far the biggest concern that I share.

      We agree that this is the weakest aspect of the paper, however our new analyses plus supportive literature, suggests that the relationship between TXNIP and GDF15 may be mediated by MYC (please see above)

      cross-comment regarding reviewer #3

      The major concern that this referee addresses is whether another transcription factor supersedes the proposed MondoA/TXNIP induction in regulating GDF15 expression in later stage CRC. In my opinion, this another other concerns of the referee are all valid, but still I remain unconvinced that TXNIP induction underlies the oxaliplatin-regulation of GDF15. I think fleshing out that aspect of the study would potentially help the authors tease apart how this potential MondoA-TXNIP-GDF15 axis is dysregulated later in CRC progression.

      This is a great discussion. Interestingly enough, c-myc is seen at higher levels in late stage CRC (Hu X, Fatima S, Chen M, Huang T, Chen YW, Gong R, Wong HLX, Yu R, Song L, Kwan HY, Bian Z. Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting the elevated c-Myc level. Cell Death Dis. 2021 Nov 5;12(11):1053. Doi: 10.1038/s41419-021-04247-w. PMID: 34741022; PMCID: PMC8571272.), is seen as an important factor in resistance, and as this review argues, is driven by stress (Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat. 2023 Jul;69:100963. Doi: 10.1016/j.drup.2023.100963. Epub 2023 Apr 20. PMID: 37119690; PMCID: PMC10330748.). So it is very plausible that the partial TXNIP-mediated regulation of myc in early / sensitive CRCs that we may be observing, and has been reported recently (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778) is lost in late stage / resistant CRCs. If this is the case, in effect what we would have observed is the loss of a stress-associated method (TXNIP) of controlling c-myc activity. What makes our collective lives difficult is that, as reported “this expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc’s intrinsic capacity to activate transcription and without increasing Myc levels.” (TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, et al. (2023) TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLOS Biology 21(3): e3001778. https://doi.org/10.1371/journal.pbio.3001778)

      Reviewer #2 (Significance (Required)):

      Generally speaking the experiments are well controlled and the findings are significant and novel. Though the link between MondoA activity and ROS could be strengthened, and the data could be validated under more physiological settings. Further, the authors should clarify their interpretations so as to not overstate the findings.

      Many thanks for the comments. We have taken onboard the need for more physiological settings and have included varying levels of glucose to reflect concentrations in different environments. We have repeated the siMondoA work in 3J strengthening the conclusions wrt its impact on TXNIP and GDF15 expression (see above).

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this well-written manuscript, the authors show that chemotherapy increases a MondoA-dependent oxidative stress-associated protein, TXNIP, in chemotherapy-responsive colorectal cancer cells. They show that TXNIP negatively regulates GDF-15 expression. GDF-15, in turn, correlates with the presence of T cells (Treg), and inhibits CD4 and CD8 T cell stimulation. In advanced disease and chemo-resistant cancers, upregulation of TXNIP and downregulation of GDF-15 appear to get lost. Based on a somewhat smallish data set, the authors suggest that the pre-treatment GDF-15/TXNIP ratio can predict responses to oxaliplatin treatment. This is a very interesting, novel finding. In general, the quality of the experiments and the data are high and the conclusions appear sound. Still, there are a number of aspects that should still be improved:

      The observed loss of the ROS - MondoA - TXNIP - GDF15 axis in chemoresistant and/or metastatic tumors implies that another transcription factor or pathway becomes dominant upon tumor progression. As this switch would be key to better understanding the mechanism underlying the prognostic role of the TXNIP/GDF15 ratio, the authors should at least do data mining followed by ChEA or Encode (or other) analysis to identify transcription factors or pathways that become activated in late-stage/metastatic CRC cells. There is a high likelihood that a transcription factor or pathway involved in GDF-15 upregulation in cancer (e.g. p53, HIF1alpha, Nrf2, NF-kB, MITF, C/EBPß, BRAF, PI3K/AKT, MAPK p38, EGR1) supersedes the inhibitory effect of the MondoA-TXNIP axis. As it stands, the proposed loss of function of the ROS - MondoA - TXNIP - GDF-15 axis is far less convincing than almost all other aspects of the study.

      An extremely fair point. We adopted a similar approach to that suggested – as mentioned above, we looked at TFs that bind to GDF15 promoter/enhancer regions and then looked at the presence of these in our transcriptomic data – specifically any evidence of change post oxaliplatin treatment. We found 6 such TFs that were decreased post-oxaliplatin treatment. We then looked for any evidence of TXNIP dependence in these TFs by comparing post-oxaliplatin treatment across NTC and TXNIP knockout lines, when we did this we found only one GDF15 promoter/enhancer binding TF was significantly changed: MYC. We then looked at the relationship between MYC,TXNIP, and GDF15 against the other 5 ‘control’ TFs in the TCGA COAD dataset, we found that MYC showed the strongest correlations, in the ‘correct’ directions. This finding was further backed up in the literature where a TXNIP knockout in a breast cancer model drove c-myc-dependent transcription, whilst c-myc has been observed to increase in later stage CRC patients, is associated with cellular stress and resistance. The collective evidence therefore suggests that MYC is the factor that is initially at least partially regulated by TXNIP, before this regulation is lost in advanced / resistant disease. Continuing on this line, it is likely that the predictive GDF15/TXNIP ratio is at least in part, a measure of c-myc responsiveness to oxaliplatin. All the while we must bear in mind TXNIP-independent oxaliplatin-dependent regulation of GDF15, most likely ARRDC4, as described earlier in this document.

      Using pathway analysis software to compare our transcriptomic data from cell lines treated with/without oxaliplatin, the most likely pathways upstream of MYC/c-myc that are negatively affected by chemotherapy are BAG2, Endothelin-1, telomerase, ErbB2-ErbB3 and Wnt/B-catenin. When looking at the comparison of UTC and resistant lines’ transcripts there is only one key component of these pathways which is upregulated in both lines - ERBB3 – which has already been shown to be important in CRC metastasis and resistance (Desai O, Wang R. HER3- A key survival pathway and an emerging therapeutic target in metastatic colorectal cancer and pancreatic ductal adenocarcinoma. Oncotarget. 2023 May 10;14:439-443. doi: 10.18632/oncotarget.28421. PMID: 37163206; PMCID: PMC10171365.). It is highly speculative, but our data suggests the most likely pathway to supersede TXNIP in its (partial) regulation of MYC is the ErbB2-ErbB3 pathway.

      My further criticisms are mostly more technical:

      Figure 2 I-L: What was the extent of MondoA downregulation achieved by siRNA treatment? Could the effects also be seen with the small molecule mondoA inhibitor SBI-477 (or a related substance)?

      This experiment has been repeated. The pooled densiometric data is also now given (please see above).

      How do you explain the different GDF-15 levels between untreated non-target control cells (NTC) and TXNIP knock-down cells (TKO) in Figures 3C-F?

      The only way to interpret this is that there is a TXNIP-independent pathway regulating GDF15 expression after oxaliplatin treatment, as described this is most likely to be ARRDC4 - the text has been updated to:

      Lines 522-524: “It is important to note, however, that we saw clear evidence that TXNIP was not solely responsible for the downregulation of GDF15 post oxaliplatin treatment (Figure 3C-G, S6E).”

      In figures 3 E-G the dots for the individual measurements should be indicated. This would be more informative than just the bar graphs.

      Completed.

      Figure 4C,D and Table 3: Data on the role of GDF-15 in CRC are largely valedictory of previous work (e.g. Brown et al. Clin Cancer Res 2003, 9(7):2642-2650, Wallin et al., Br J Cancer. 2011 May, 10;104(10):1619-27). Therefore, the previous studies should be cited.

      Apologies for the oversight and many thanks – this is an excellent addition.

      Figure 5C-F: Please indicate in the figure legend how proliferation was assessed.

      Many thanks. This was noticed by another reviewer also. We have changed the text to include how the data was normalised: “(C-F) Labelled PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from indicated cell lines, before being stained with anti-CD3 and anti-CD8 (C-D) or anti-CD4 (E-F) antibodies and measured by flow cytometry. Normalised proliferation (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) on gated CD3+CD8+ or CD3+CD4+ cells is shown. n=6. (G-H) Normalised IFNg concentrations (normalised to MFI from control: i.e. cells treated with supernatant from NTC cells) in the supernatant of cells from C-F.” (lines 724-730)

      Figure S8E-G: Please indicate the analysed parameters in the graphs. In Figure S8G, the legend just indicates that "aggression of tumour" is dichotomized and plotted. This clearly requires a better definition.

      Many thanks, this has been changed as per the below.

      Lines 862-868: “(E-G) Receiver operating characteristic (ROC) curves showing area under the curve and p values for the use of GDF15/TXNIP ratio in predicting origin of cell line (E; primary; DLD1, HCT15, HT29, SW48 [n=4] or secondary; DiFi, LIM1215 [n=2]), sensitivity to oxaliplatin (F; parental DLD1 (plus biological repeat), HCT15 [n=3] or resistant DLD1 (plus biological repeat), HCT15 [n=3]), aggression of tumor (G; non-aggressive; The authors propose a novel ROS - MondoA - TXNIP - GDF15 - Treg axis, where MondoA activation, TXNIP up- and GDF-15 downregulation enhance tumor immunogenicity. While this axis has been analyzed in some detail, GDF-15 is not only linked to induction of regulatory T cells. There has been a report showing that GDF-15/MIC-1 expression in colorectal cancer correlates with the absence of immune cell infiltration (Brown et al. Clin Cancer Res 2003, 9(7):2642-2650). The link between GDF-15 and immune cell exclusion has also been confirmed in other conditions, including different cancers (Kempf et al. Nat Med 2011, 17(5):581-588, Roth P et al. Clin Cancer Res 2010, 16(15):3851-3859, Haake et al. Nat Commun 2023, 14(1):4253). A key mechanism is the GDF-15 mediated inhibition of LFA-1 activation on immune cells. As the authors argue that the described pathways turns cold tumors hot in response to oxaliplatin-based chemotherapy, this GDF-15 dependent immune cell exclusion mechanism might be at least as relevant than induction of Treg. Likewise, inhibition of dendritic cell maturation by GDF-15 (Zhou et al. PLoS One 2013, 8(11):e78618) could explain why GDF-15high tumors are immunologically cold. Reviewed in 3

      The authors propose that the pathways discovered by them contributed to the "heating up" of the tumor microenvironment after oxaliplatin-based chemotherapy. The authors should thus look in their data sets for the presence of cytotoxic T cells and their possible correlation with TXNIP and GDF-15 levels.

      This is a wonderful explanation – many thanks. We have taken the opportunity to assess the impact of GDF15 expression on a variety of T cell markers (Figure S9). In this data a negative association between GDF15 and CD8 CTLs can clearly be seen, as predicted by the reviewer.

      Lines 712-717: “To assess if the GDF15-dependent presence of Tregs may be associated with a decrease in activated cytotoxic CD8 T cells, we interrogated the TCGA COAD dataset. We found that low GDF15 tumors carried significantly higher levels of CD8, CD69, IL2RA, CD28, PRF1, GZMA, GZMK, TBX21, EOMES and IRF4 (Figure S9); transcripts indicative of activated cytotoxic CD8 T cells. High GDF15 tumors were enrichment for FOXP3 and, interestingly, RORC (Figure S9). These data support the hypothesis that GDF15 induces Foxp3+ve Tregs which inhibit CD8 T cell proliferation and activation in the TME.”

      The paragraph on GDF-15 receptors needs to be corrected: The purported role of a type 2 transforming growth factor (TGF)-beta receptor in GDF-15 signalling had been due to a frequent contamination of recombinant GDF-15 with TGF-beta (Olsen et al. PLoS One 2017, 12(11):e0187349). There have been a number of screenings for GDF-15 receptors that have all failed to show an interaction between GDF-15 and TGF-beta receptors. Instead, only GFRAL was found in these large-scale screenings (Emmerson et al. Nat Med 2017, 23(10):1215-1219, Hsu et al. Nature 2017, 550(7675):255-259, Mullican et al. Nat Med 2017, 23(10):1150-1157, Yang et al. Nat Med 2017, 23(10):1158-1166). The one subsequent report that shows a link between GDF-15, engagement of CD48 on T cells and induction of a regulatory phenotype (Wang et al. J Immunother Cancer 2021, 9(9)) still awaits independent validation. Considering that CD48 lacks an intracellular signaling domain that would be critical for a classical receptor function, I recommend to be more cautious regarding the role of CD48 as GDF-15 receptor. Given the mechanism outlined by Wang et al. the word interaction partner might be more apt. Moreover, an anti-GDF-15 antibody would be a good control for the experiments involving an anti-CD48 antibody in Figure 5.

      Thank you so much for this concise and highly informative paragraph. We have changed the text to read:

      202-204: “As a soluble protein, GDF15 exerts its effects by binding to its cognate receptor, GDNF-family receptor a-like (GFRAL)44,45,46,47 or interaction partner, CD48 receptor (SLAMF2)43, with the latter still requiring additional verification.”

      We would have ideally included an anti-GDF15 antibody in the CD48 assay at the time but didn’t have the foresight. We have included the additional text to temper any conclusions.

      Lines 701-711: “Furthermore, when stimulating naïve CD4 T cells in the presence of GDF15 enriched supernatant we were able to both differentiate these cells into functional Tregs and also block the generation of this functionality using an anti-CD48 antibody (Figure 5M-N). However, it must be stressed that the binding and functional impacts of GDF15’s interaction with CD48 still require further verification.”

      Cell surface externalization of annexin A1 has been described as a failsafe mechanism to prevent inflammatory responses during secondary necrosis (PMID: 20007579). Thus, I am surprised that the authors list annexin A1 among the immune-stimulatory molecules exposed or released in response to chemotherapy-induced cell death (line 103). Please clarify!

      We agree – it shouldn’t be there!! Removed. Many thanks.

      **Referee Cross-Commenting**

      Regarding the cross-comment by referee 2: In my opinion, the data shown in Figure 3C-H clearly demonstrates that TXNIP can repress GDF-15 expression. I agree that there will likely be further regulators. The GDF-15 promoter is constantly regulated by a multitude of factors (which mostly induce transcription). As downregulation of GDF-15 in response to oxaliplatin is the opposite of the frequently described induction of GDF-15 upon chemotherapy, net effects may always be "smudged" by contributions from different pathways (e.g. by cell stress due to siRNA transfection). Therefore, I believe that the data are as good as it will get. Accordingly, I would not force the authors to further amplify the observed effect.

      Many thanks for your understanding – yes, GDF15 has >650 TFs that bind its promoter/enhancer regions – a number we found rather daunting. Happily your comments and those of the other reviewers inspired us to dig and we now have data that is supportive of MYC’s and ARRDC4’s involvement – detailed throughout this reply.

      cross comment regarding referee #1: I share the general assessment of the referee and recognize the very detailed mechanistic analysis. To further support the moderate effects of the MondoA knockdown, a small molecule inhibitor like SBI-477 might be useful. (I had already suggested using this inhibitor to support these data.)

      Many thanks for the suggestion. We opted to increase the number of siRNA repeats instead – with the data included in Figure 3J (above).

      Still, my view on the potential relevance of oxaliplatin-induced, TXNIP-independent downregulation of GDF-15 differs from that of referee 1. In the clinics, platinum-based chemotherapy is one of the strongest inducers of GDF-15 (compare Breen et al. GDF-15 Neutralization Alleviates Platinum-Based Chemotherapy-Induced Emesis, Anorexia, and Weight Loss in Mice and Nonhuman Primates. Cell Metabolism 32(6), P938-950, 2020.DOI:https://doi.org/10.1016/j.cmet.2020.10.023). I was thus surprised that the authors found a pathway, which leads to an outcome that an exactly opposite effect.

      This is fascinating that oxaliplatin drives this increase in GDF15 – we were unaware of this paper. Looking at figure 2(H-K), GDF15 is being produced from multiple non-diseased tissues after systemic chemotherapy – even at day 19 post-treatment – this suggests that wrt this study, systemic GDF15 could not be used as a readout of success or otherwise – which is extremely helpful! Thank you.

      Thus far, the only obvious reason for reduced GDF-15 secretion upon treatment with cytotoxic drugs was a reduction in tumor cell number due to cytotoxicity.

      Please do not discount this. This study was focused on the cells which survived oxaliplatin treatment – the cells which did not were discarded. Our view, given your input, would be a complex picture where in early stages systemic GDF15 goes up, due to off-target effects, but locally levels drop owing to cell death and this, and other, stress-related pathways in the remaining tumor cells.

      Still, the authors managed to convince me that the described pathway (ROS - MondoA - TXNIP - GDF-15) exists. (Here, I still largely concur with referee 1.) Moreover, as we have identified some factors required for GDF-15 biosynthesis that could easily interact with TXNIP, I find the proposed mechanism plausible.

      Extremely encouraging for us to hear!

      Nevertheless, as a downregulation of GDF-15 in response to chemotherapy is hardly ever observed in late-stage cancers, I believe that the observed switch in pathway activation between early- and late-stage cancers might be highly relevant - in particular, as there is so much evidence for platinum-based induction of GDF-15 in late-stage cancer patients. Emphasizing the divergent clinical observations (e.g. by Breen et al.) could thus help to put the finding into perspective.

      Very much agree. We did see this phenomenon in LIM1215 cells (Figure 6B) and the resistant lines we generated continually produced higher levels.

      Analysing TXNIP-independent mechanisms involved in the oxaliplatin-dependent repression of GDF-15, as suggested by referee #1, will require enormous efforts and resources, and may still turn out to be fruitless. Personally, I would thus be content if the authors just mentioned possible contributions from other pathways upon cancer progression. To me, the described pathway seems to be limited to early-stage cancers, and the actual finding that GDF-15 is downregulated is an interesting observation, irrespective of further involved pathways.

      Many thanks – this is extremely fair. Happily we have managed to make some tentative steps forward in highlighting the potential role of MYC, and the suggestion of redundancy wrt ARRDC4, but as you say, much more work needs to be done to fully understand these processes.

      cross comment regarding referee #2: I fully agree with the referee that activation of the pathway by further chemotherapeutic drugs could be a valuable addition. As Guido Kroemer´s lab has described oxaliplatin to induce a more immunogenic cell death compared to other platinum-based chemotherapies, even a rather limited comparison between oxaliplatin and cisplatin could be very interesting.

      Absolutely agree – extra data on this has been included in Figure S11, which is included earlier in this letter. We also uncovered a meta-analysis using metformin, which has been seen to inhibit ROS, where TXNIP and ARRDC4 are the top two downregulated transcripts whilst GDF15 appears in the top four upregulated. This may suggest that chemotherapeutic immunogenicity, at least through the presence or absence of GDF15, may in part be driven by ROS.

      Lines 930-933: “Further support for both TXNIP and ARRDC4’s role in regulating GDF15 after the induction of ROS comes from a pan cancer meta-analysis assessing the impact of metformin (which has been reported to inhibit ROS) on gene expression. Here the top two downregulated genes were TXNIP and ARRDC4 and the top four upregulated genes were DDIT4, CHD2, ERN1 and GDF1572 “

      Reviewer #3 (Significance (Required)):

      In general, this is a very interesting manuscript describing a cascade of events that may contribute to successful chemotherapy (which likely requires induction of an immune response against dying tumor cells.) The observation that this pathway is only active in early/non-metastatic cancer cells is striking. Unfortunately, the authors cannot explain inactivation of this pathway in later stage/ metastatic/ highly aggressive cancers. Understanding this switch could easily be the most important finding triggered by this report. Therefore, I highly recommend to make some effort in this direction. Strikingly, the authors find that disruption of TXNIP-mediated GDF-15 downregulation is strongly associated with worse prognosis. They also suggest that this ratio could indicate whether a patient will respond to oxaliplatin-based chemotherapy.

      This is again very fair – we have posited a potential mechanism for the loss of this switch elsewhere in this reply– one which involves a change in TXNIP-mediated MYC regulation and/or increased HER2-HER3 signalling – but although reasonable for a rebuttal (and publication in that context) we do not feel we have the evidence to include this within the full manuscript.

      Altogether, the findings described in manuscript are very novel and may have prognostic (or, in case of the presumed loss of the MondoA - TXNIP - GDF-15 pathway) therapeutic implications. Thus, the manuscript certainly fills various gaps and should be of major interest for cell biologists working on immunogenic cell death, or colorectal cancer, or MondoA, TXNIP or GDF-15. Still, due to its translational implications, it would also be worthwhile reading for a large number of researchers in the oncology field.

      We are very grateful for your kind comments.

      1 Sinclair, L. V., Barthelemy, C. & Cantrell, D. A. Single Cell Glucose Uptake Assays: A Cautionary Tale. Immunometabolism 2, e200029, doi:10.20900/immunometab20200029 (2020).

      2 Yu, F. X., Chai, T. F., He, H., Hagen, T. & Luo, Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 285, 25822-25830, doi:10.1074/jbc.M110.108290 (2010).

      3 Wischhusen, J., Melero, I. & Fridman, W. H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 11, 951, doi:10.3389/fimmu.2020.00951 (2020).

    1. trauma reenactment narrative is by getting the child manipulating the child convincing the child to adopt the victimized child role within that trauma reenactment there and so all we have to do is get the child to believe that the

      This ominous realization did not occur and come together for me until just now:

      Kate's influence did not start with Kate directly. It would have started with her son Liam. I've not recognized until now the likely significant role he plays in this. He is her son. He would have already been fully traumatized by Kate or by the situation with his dad, depending on if it existed, but if it did or didn't, the fear/abandonment/insecure attachment disorder would be entrenched in both Kate and Liam and they would be reinforcing it in each other. Rhyanna working with Liam at Subway would have been the first contact in which casual conversation would begin the subtle campaign by Liam via trauma reenactment (and also fueled by being a teenage boy meets girl savior/peacocking mentality) that at first innocuously and then overtly was showing (manipulating into false belief) that she is victimized. Liam then notifies Mom of "the recruit", probably a genuine felt statement like "Mom, there's this girl at work and it sounds like she's going through what we went through and we could help her". Then Mom [Kate], which we know this happened, took the initiative to contact her (or told Liam to bring her over to the house to hangout so she could then introduce herself and have 'a talk' with her). Phone numbers were shared, instructions to not let Dad know where they lived were given, taking out to dinners were done, sharing of "stories about my husband we don't tell other people so please don't share this" were given about "my dangerous psychotic husband that Liam and I had to flee from and go on the run because the system couldn't save us so we had to act outside it". This matches the dynamic and origination story of every cult/radical "church"/scientology/NXIVM story I know and it is the same dynamic whether it's the pathogenic parent or pathogenic adult influence which in this way has an extra component of evolution. Ie, the pathogenic adult has created/obtained a pathogenic "victimized" subordinate follower. The follower then acts as a relatable/ice-breaking recruiter that has the effect on the target of " they're my peer, they're like me, I can therefore trust the accuracy of what they're saying more and am more willing to listen". Then when the follower eventually introduces the pathogenic adult, the critical judgement defence of the target is suppressed/ignored because the target has made the naive judgment error that since I believe and feel trusting in this peer, I can put that trust into someone he is introducing me too. And because that person is "the adult in the room" this person instantly gets, erroneously, the elevated security clearance in the target's mind that this person is a "trusted"+"adult"+"who understands me"+"has my best interest"+"and knows what I need". Additionally, when speaking with this adult, should the target's defense mechanisms of critical judgement start turning on, the target then looks to a reference point to "reality test", and the follower, Liam, is immediately on hand and present almost daily to act as that reference point nodding reassuringly when the target glances over [literally or metaphorically]. ..... Combine this with a parent who is getting sicker and sicker, who's observably by the child who knows her father well can tell his fear, anxiety (particularly regarding his ability to provide for them both), and sadness because of his non-improving sickness from a mysterious unknown deadly pandemic disease, a parent who is the SOLE parent and there is no second parent to reality test against and get reassuring grounded perspective (ie you are not victimized, dad isn't going to kill himself, yes this is a tough situation but we and you are not a victim and this is not a Hallmark/teen drama, and tough situations like this have long been and are a prolific part of human life and we can more than handle this situation and frankly will serve to accelerate your empowered growth and deeper understanding, meaning, passion, joy of life and further shedding of vulnerability to irrational and mismanagement of uncontrollable fear as a general skill set in your personal quiver. This all is the loss of the second, of which there may only be 2, fundamental defense mechanisms to safeguard a child's sound critical analytical/judgement skills. It is easy to empathize with a child's daily living experience, especially an adolescent, how these are the 2 mechanisms which are functioning by which they are consuming and assembling all new knowledge and understanding. #1 They first use their incumbent developed analytical/judgement skills to self analyze a concept or problem or question. #2 They verify that determination with their trusted source of truth and protection, ie their parents (a reality test). Perhaps this at the root of the common report "teenagers think they know everything". It's probably the first time the first mechanism is developed strongly enough to feel like it can safely be used in its own. And in being the first time, many errors will be made and in many of those errors the use of verification of mechanism 2 will not be used. An ill unimproving parent will exacerbate the error to not use mechanism 2. Fear and anxiety will exacerbate errors in mechanism number 1. Severity of those insults would proportionally affect the rate of error. Malfunctions in both mechanisms would have a multiplicative effect on damaging erroneous conclusions the child arrives at and the damage further choices on those erroneous conclusions causes. Then when the "virus" of the narcissistic/BLP cross generational shared persecutory delusion boundary violation gains entry into this now much increased "analytically vulnerable" child, it has the critically added effect of disabling mechanism 2 since the patent now becomes "all bad [splitting]". ..... Then ..... add to this child a history that she is a survivor, albeit exceptionally so, of incurring the pain and largely successful battle for separation from a very narcissistic mother and the family that produced that narcissism in her mother. The entire repercussions of that I am not sure, but relevant here is I think that means my child's developmental reality has a biased understanding and emotional sensitivity to the fear that a parent "I thought was normal, changed into a monster" and second "I fully believed a truth about the 1 of 2 people I trusted and depend on the most, and I was wrong. How can I trust my own conclusions now if I can't trust my own analytical and emotional judgement abilities?". No doubt also a fear and anxiety upregulating mechanism in and if itself, as well as providing a data point which can add confusion to a child frantically looking for understanding and/or can be leveraged to falsely rationalize the false narrative is correct especially when the pain of the truth is building and she is looking for any tool to suppress confronting that pain.

      Then, as Rhyanna further looks for, or rather it is imposed onto her, the naive drama thirsty peer group, whom many know Liam and Kate, and whom with very good intention but naivety of teenagers who in Boulder Colorado are conditioned to both be very helpful and that money and wealth (like them) combined with middle aged Caucasian combined with a "Boulderite" personality with an air of non-confrontational superiority and cancel-culture tendencies is the equivalent of "insightful, wise, holder of truth, and generally the definition of what is good, righteous, and hold the authority to declare whom is bad and further that it is expected that they will declare whom is good and bad and that action further validates that they are and have such authorities" in these teenagers minds reenforces this false truth as accurate.. Then the school, then CIRT team "mental health professionals", then the mental health hospital centennial peaks, then Boulder county child welfare via multiple staff, then the court and the judge personally all buy in and propagate this false truth and reinforce it overtly or indirectly overtly, and some propagate it by simply ignoring and not speaking out against or in questioning validity, all reinforcing this false truth. ..... And given all this, given all these goddamn ignorant spineless children of men in their lack of knowledge or past traumas, and under the weight of their ignorance and cowardice and laziness, and then under the unreal weight and fear and confusion of her and her dad, her one parent who's been her warrior defender of knowledge, self discovery, safety, character, food, and shelter, and whom no other family support exists is now very possibly dying and cannot speak for himself or to her (because her confusion and outside influence is not allowing it) to tell her the truth and reassurance of the situation ....... her heart and mind refuse to yield. The pain from her heart refusing to give way to the lie, they are trying to make her believe had caused her to want to kill herself. My daughter s unyielding heart and character brought tears to a police officer who'd not had the fortune of experiencing someone like my daughter. And still, after a year and a half, my daughter, MY daughter, still holds fast and is unwilling to tell the COURT that her resistance is because of me and is instead because of her. Yeah, that's who my daughter is. That is the caliber here. She is her father's daughter.

      I see you kid. You hold fast. I'm comin' for you.

      PS - Attention needs to be given to Liam. With consideration towards his possible and to what degree of trauma, and the validity of the story regarding his father.. It is now a real question, is his father above and well, normative, searching for his son and or fallen into decline, suicidality, doom? Is Liam about to lose a father and be irreversibly severely damaged because of the complete irreversible devastation, which will also include the self blame he incurs and will not be able to reconcile.

      PSS - likely it is both important and the is the time to revisit with focus Rhyannas feelings and understanding of her mom. She possibly stands to gain 1, a self confidence and esteem and complete obliteration of any feeling/false rationalization that she is somehow "less", that she is at fault, or that she is somehow "less capable" of a person now and going forward, 2) stamp out reactions of hate, tolerance, splitting, and walls she might form that would prevent problem solving, truth finding, and understanding so crucial to both abilities and finding of joy, particularly in relationships of love and family, 3) she stands to gain a mother and an entire side of a family and which is attained by a fulfilling relationship of her own architecture and which she is fully empowered to control and manage and nurture at her pleasure.

    1. Empiricism involves acquiring knowledge through observation and experience. Once again many of you may have believed that all swans are white because you have only ever seen white swans.

      I think this the reason why Karl Popper proposed an alternative approach based on falsification rather than confirmation. because when we saying that all swans are white, confirming this statement would involve finding as many white swans as possible However, with Popper's approach it shows that the statement is scientific only if there is a way to show it is false. In this case, finding a single black swan would falsify the statement). Therefore, we can also say that confirmation alone cannot provide certainty or proof of a theory's validity.

    1. ZK II note 9/8b 9/8b On the general structure of memories, see Ashby 1967, p. 103 . It is then important that you do not have to rely on a huge number of point-by-point accesses , but rather that you can rely on relationships between notes, i.e. references , that make more available at once than you would with a search impulse or with one thought - has fixation in mind.

      This underlies the ideas of songlines and oral mnemonic practices and is related to Vannevar Bush's "associative trails" in As We May Think.

      Luhmann, Niklas. “ZK II Zettel 9/8b.” Niklas Luhmann-Archiv, undated. https://niklas-luhmann-archiv.de/bestand/zettelkasten/zettel/ZK_2_NB_9-8b_V.

    1. us of that. As regards the third source, the social source of suffering, our attitude is adifferent one. We do not admit it at all; we cannot see why the regulations made by ourselves shouldnot, on the contrary, be a protection and a benefit for every one of us. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution.When we start considering this possibility, we come upon a contention which is so astonishing that wemust dwell upon it. This contention holds that what we call our civilization is largely responsible for ourmisery, and that we should be much happier if we gave it up and returned to primitive conditions. I callthis contention astonishing because, in whatever way we may define the concept of civilization, it is acertain fact that all the things with which we seek to protect ourselves against the threats that emanatefrom the sources of suffering are part of that very civilization.How has it happened that so many people have come to take up this strange altitude of hostility tocivilization? I believe that the basis of it was a deep and long-standing dissatisfaction with the thenexisting state of civilization and that on that basis a condemnation of it was built up, occasioned bycertain specific historical events. I think I know what the last and the last but one of those occasionswere. I am not learned enough to trace the chain of them far back enough in the history of the humanspecies; but a factor of this land hostile to civilization must already have been at work in the victory ofChristendom over the heathen religions, for it was very closely related to the low estimation put uponearthly life by the Christian doctrine. The last but one of these occasions was when the progress of

      I believe the focus of the reading is happiness can't be fully observed from the outside due to the lack self understanding we may have pertaining to happiness. It's hard for a man to be happy when they're so many different outlooks on what happiness should look like.

    2. If there had been no railway to conquer distances, my child wouldnever have left his native town and I should need no telephone to hear has voice; if travelling across theocean by ship had not been introduced, my friend would not have embarked on his sea-voyage and Ishould not need a cable to relieve my anxiety about him. What is the use of reducing infantile mortalitywhen it is precisely that reduction which imposes the greatest restraint on us in the begetting ofchildren, so that, taken all round, we nevertheless rear no more children than in the days before thereign of hygiene, while at the same time we have created difficult conditions for our sexual life inmarriage, and have probably worked against the beneficial effects of natural selection? And, finally,what good to us is a long life if it is difficult and barren of joys, and if it is so full of misery that we canonly welcome death as a deliverer?

      It seems lie Freud is trying to say that thirst for technological advancements have birthed new problems related to human existence. When you look at it from that perspective it does paint a rather bleak picture. However I do not think it's quite that simple. A dilemma such this may never have a clear cut answer.

    3. And yet, when we consider howunsuccessful we have been in precisely this field of prevention of suffering, a suspicion dawns on us thathere, too, a piece of unconquerable nature may lie behind -this time a piece of our own psychicalconstitution

      I don't know why but this made me think about fate vs free as we may make all the right choices but somethings may not fall in our favor.

    1. We also engage in social comparison based on similarity and difference. Since self-concept is context specific, similarity may be desirable in some situations and difference more desirable in others. Factors like age and personality may influence whether or not we want to fit in or stand out. Although we compare ourselves to others throughout our lives, adolescent and teen years usually bring new pressure to be similar to or different from particular reference groups.

      People put so much focus on social comparison. I think people get tunnel vision on trying to find a group to fit into, rather than find a group that fits them. Both are important in the right context. Just as it's important to step out of your comfort zone for new people, it's just as important to seek out people with shared interests and hobbies.

    1. history can seem more difficult to deny than those of engineering or medicine.

      Though history may seem trivial at times, I think that the real purpose of learning history is how we learn what works, as well as what we should never do again. Our goal should be to learn from our mistakes as a society. It also tells us so much about culture and in that we can also learn about our future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study advances our understanding of the ways in which different types of communication signals differentially affect mouse behaviors and amygdala cholinergic/dopaminergic neuromodulation. Researchers interested in the complex interaction between prior experience, sex, behavior, hormonal status, and neuromodulation should benefit from this study. Nevertheless, the data analysis is incomplete at this stage, requiring additional analysis and description, justification, and - potentially - power to support the conclusions fully. With the analytical part strengthened, this paper will be of interest to neuroscientists and ethologists.

      GENERAL COMMENTS ON REVIEWS AND REVISIONS

      Experimental design

      Here we address questions from several reviewers regarding our periods of neuromodulator and behavioral analysis. First, we recognize that the text would benefit from an overview of the experimental structure different from the narrative we provide in the first paragraphs of the Results. We now include this near the beginning for the Materials and Methods (page 17). We further articulate that the 10-minute time periods were dictated by the sampling duration required to perform accurate neurochemical analyses (and to reserve half of the sample in the event of a catastrophic failure of batch-processing samples). Since neurochemical release may display multiple temporal components (e.g., ACh: Aitta-aho et al., 2018) during playback stimulation, and since these could differ across neurochemicals of interest, we decided to collect, analyze, and report in two stimulus periods as well as one Pre-Stim control. We now clarify this in additional text in the Material and Methods (p. 24, lines 20-22; p. 26, lines 17-19). We decided not to include analyses of the post-stimulus period because this is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback.

      We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13) to clarify these periods.

      For behavioral analyses, observation periods were much shorter than 10 mins, but the main purpose of behavioral analyses in this report is to relate to the neurochemical data. As a result, we matched the temporal features of the behavioral and neurochemical analyses (p. 22, lines 17-22). We plan a separate report, focused exclusively on a broader set of behavioral responses to playback, that may examine behaviors at a more granular level.

      Data and statistical analyses

      Reviewers 1 and 3 expressed concerns about our normalization of neurochemical data, suggesting that it diminishes statistical power or is not transparent. We note that normalization is a very common form of data transformation that does not diminish statistical power. It is particularly useful for data forms in which the absolute value of the measurement across experiments may be uninformative. Normalization is routine in microdialysis studies, because data can be affected by probe placement and factors affecting neurochemical recovery and processing. Recent examples include:

      Li, Chaoqun, Tianping Sun, Yimu Zhang, Yan Gao, Zhou Sun, Wei Li, Heping Cheng, Yu Gu, and Nashat Abumaria. "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron (2023).

      Gálvez-Márquez, Donovan K., Mildred Salgado-Ménez, Perla Moreno-Castilla, Luis Rodríguez-Durán, Martha L. Escobar, Fatuel Tecuapetla, and Federico Bermudez-Rattoni. "Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus." Proceedings of the National Academy of Sciences 119, no. 49 (2022): e2208254119.

      Holly, Elizabeth N., Christopher O. Boyson, Sandra Montagud-Romero, Dirson J. Stein, Kyle L. Gobrogge, Joseph F. DeBold, and Klaus A. Miczek. "Episodic social stress-escalated cocaine self-administration: role of phasic and tonic corticotropin releasing factor in the anterior and posterior ventral tegmental area." Journal of Neuroscience 36, no. 14 (2016): 4093-4105.

      Bagley, Elena E., Jennifer Hacker, Vladimir I. Chefer, Christophe Mallet, Gavan P. McNally, Billy CH Chieng, Julie Perroud, Toni S. Shippenberg, and MacDonald J. Christie. "Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors." Nature neuroscience 14, no. 12 (2011): 1548-1554.

      However, since all reviewers requested raw values of neurochemicals, we provide these in supplementary tables 1-3. The manuscript references these table early in the Results (p. 6, lines 18-19) and in the Material and Methods (p. 27, lines 3-4)

      All reviewers commented on correlation analyses that we presented, with different perspectives. Reviewer 2 questioned the validity of such analyses, performed across experimental groups, while Reviewer 1 pointed out that the analyses were redundant with the GLM. We agree with these criticisms, and note the challenges associated with correlations involving behaviors for which there is a “floor” in the number of observations. As a result, we have removed most correlation analyses from the manuscript. The text and figures have been modified accordingly. Due these changes, we have to decline requests of Reviewer 3 to include many more such analyses. While correlation analyses could still be performed between neurochemicals and behaviors for each group, the relatively small size of each experimental group, the large number of groups, and the even larger numbers of pairings between neurochemicals and behavior, the statistical power is very low. The only correlations we utilize in the manuscript concern the interpretation of our increased acetylcholine levels.

      As part of this revision, we re-ran our statistical analyses on neuromodulators because of a calculation error in 3 animals (regarding baseline values). In a few instances, a significance level changed, but none of these changed a conclusion regarding neuromodulator changes under our experimental conditions.

      Other revisions

      INTRODUCTION: We modified the Introduction to provide both a more general framework and specific gaps in our understanding relating neuromodulators with vocal communication.

      DISCUSSION: We have added material in the first two pages of the Discussion to provide more framework to our conclusions, to address the issues of the temporal aspects of neurochemical release and behavioral observations, and to identify limitations that should be addressed in future studies.

      FIGURES: All figures are now in the main part of the manuscript. We modified most figures in response to reviewer comments. We removed neuromodulator – behavior correlations from several figures. We modified all box plots to ensure that all data points are visible. The visible data points match the numbers reported in figure captions. We brought 5-HIAA data into the main figures reporting on neuromodulator results.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript addresses a fundamental question about how different types of communication signals differentially affect brain states and neurochemistry. In addition, the manuscript highlights the various processes that modulate brain responses to communication signals, including prior experience, sex, and hormonal status. Overall, the manuscript is well-written and the research is appropriately contextualized. The authors are thoughtful about their quantitative approaches and interpretations of the data.

      That being said, the authors need to work on justifying some of their analytical approaches (e.g., normalization of neurochemical data, dividing the experimental period into two periods (as opposed to just analyzing the entire experimental period as a whole)) and should provide a greater discussion of how their data also demonstrate dissociations between neurochemical release in the basolateral amygdala and behavior (e.g., neurochemical differences during both of the experimental periods but behavioral differences only during the first half of the experimental period). The normalization of neurochemical data seems unnecessary given the repeated-measures design of their analysis and could be problematic; by normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) that could inflate statistical power.

      Please see our general responses to structure of observation periods and normalization of neuromodulator data. Normalization is a common and appropriate procedure in microdialysis studies that does not alter statistical power.

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback (p. 12, lines 3-17). We note where the linkage is particularly strong (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      The Introduction could benefit from a priori predictions about the differential release of specific neuromodulators based on previous literature.

      We added some material to the Introduction to provide additional rationale for the study. However, we did not attempt to develop predictions for the range of neuromodulators that we sought to test. The literature can lead to opposite predictions for a given neuromodulator. For example, acetylcholine could be associated with both positive and negative valence. Instead, we note in the Introduction the association of both DA and ACh with vocalizations.

      The manuscript would also benefit from a description of space use and locomotion in response to different valence vocalizations.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report a few correlations based on these data in the Results to demonstrate that increased ACh in Restraint males and Mating estrus females was not related to the amount of locomotion (p. 9, lines 8-14).

      Nevertheless, the current manuscript seems to provide some compelling support for how positive and negative valence vocalizations differentially affect behavior and the release of acetylcholine and dopamine in the basolateral amygdala. The research is relevant to broad fields of neuroscience and has implications for the neural circuits underlying social behavior.

      Reviewer #2 (Public Review):

      Ghasemahmad et al. report findings on the influence of salient vocalization playback, sex, and previous experience, on mice behaviors, and on cholinergic and dopaminergic neuromodulation within the basolateral amygdala (BLA). Specifically, the authors played back mice vocalizations recorded during two behaviors of opposite valence (mating and restraint) and measured the behaviors and release of acetylcholine (ACh), dopamine (DA), and serotonin in the BLA triggered in response to those sounds.

      Strength: The authors identified that mating and restraint sounds have a differential impact on cholinergic and dopaminergic release. In male mice, these two distinct vocalizations exert an opposite effect on the release of ACh and DA. Mating sounds elicited a decrease of Ach release and an increase of DA release. Conversely, restraint sounds induced an increase in ACh release and a trend to decrease in DA. These neurotransmission changes were different in estrus females for whom the mating vocalization resulted in an increase of both DA and ACh release.

      Weaknesses: The behavioral analysis and results remain elusive, and although addressing interesting questions, the study contains major flaws, and the interpretations are overstating the findings.

      Although Reviewer 2 raises several valid issues that we have addressed in our response and revision, we believe that none represent “major flaws” in the study that challenge the validity of our central conclusions. In brief, we will:

      --provide enhanced description of behaviors (pp. 22-23 and Table 1)

      --clarify / modify box-plot representations of data (p 28. Lines 3-9)

      --point to our methods that describe corrections for multiple comparisons (p. 27; lines 15-16)

      --revise figures to clarify sample size (Figs. 3-6)

      Reviewer #3 (Public Review):

      Ghasemahmad et al. examined behavioral and neurochemical responses of male and female mice to vocalizations associated with mating and restraint. The authors made two significant and exciting discoveries. They revealed that the affective content of vocalizations modulated both behavioral responses and the release of acetylcholine (ACh) and dopamine (DA) but not serotonin (5-HIAA) in the basolateral amygdala (BLA) of male and female mice. Moreover, the results show sex-based differences in behavioral responses to vocalizations associated with mating. The authors conclude that behavior and neurochemical responses in male and female mice are experience-dependent and are altered by vocalizations associated with restraint and mating. The findings suggest that ACh and DA release may shape behavioral responses to context-dependent vocalizations. The study has the potential to significantly advance our understanding of how neuromodulators provide internal-state signals to the BLA while an animal listens to social vocalizations; however, multiple concerns must be addressed to substantiate their conclusions.

      Major concerns:

      1) The authors normalized all neurochemical data to the background level obtained from a single pre-stimulus sample immediately preceding playback. The percentage change from the background level was calculated based on a formula, and the underlying concentrations were not reported. The authors should report the sample and background concentrations to make the results and analyses more transparent. The authors stated that NE and 5-HT had low recovery from the mouse brain and hence could not be tracked in the experiment. The authors could be more specific here by relating the concentrations to ACh, DA, and 5-HIAA included in the analyses.

      Please see our general statement regarding normalization of neurochemical data. We have added supplemental tables that shows concentrations of dopamine, acetylcholine, 5-HIAA. We do not report serotonin or noradrenalin since these were below the detection threshold.

      2) For the EXP group, the authors stated that each animal underwent 90-min sessions on two consecutive days that provided mating and restraint experiences. Did the authors record mating or copulation during these experiments? If yes, what was the frequency of copulation? What other behaviors were recorded during these experiences? Did the experiment encompass other courtship behaviors along with mating experiences? Was the female mouse in estrus during the experience sessions?

      In the mating experience, mounting or attempted mounting was required for the animal to be included in subsequent testing. Since the session lasted 90 minutes, more general courtship behavior was likely. However, we did not record detailed behaviors or track estrous stage for the mating experience. See p. 21, line 20-22.

      3) For the mating playback, the authors stated that the mating stimulus blocks contained five exemplars of vocal sequences emitted during mating interactions. The authors should clarify whether the vocal sequences were emitted while animals were mating/copulating or when the male and female mice were inside the test box. If the latter was the case, it might be better to call the playback "courtship playback" instead of "mating playback".

      We have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      4) Since most differences that the authors reported in Figure 3 were observed in Stim 1 and not in Stim 2, it might be better to perform a temporal analysis - looking at behaviors and neurochemicals over time instead of dividing them into two 10-minute bins. The temporal analysis will provide a more accurate representation of changes in behavior and neurochemicals over time.

      Please see our general response to the structuring of experimental periods. The 10-min periods are the minimum for the neurochemical analyses, and we adopted the same periods for behavioral analyses to match the two types of observations. Our repeated measures analysis is a form of temporal analysis, since it compares values in three observation periods.

      5) In Figures 2 and 3, the authors show the correlation between Flinching behavior and ACh concentration. The authors should report correlations between concentrations of all neurochemicals (not just ACh) and all behaviors recorded (not just Flinching), even if they are insignificant. The analyses performed for the stim 1 data should also be performed on the stim 2 data. Reporting these findings would benefit the field.

      Please see general comments regarding correlation analyses. We removed almost all such analyses and references to them from the manuscript based on concerns of the other reviewers.

      6) The mice used in the study were between p90 - p180. The mice were old, and the range of ages was considerable. Are the findings correlated with age? The authors should also discuss how age might affect the experiment's results.

      Our p90-p180 mice are not “old”. CBA/CaJ mice display normal hearing for at least 1 year (Ohlemiller, Dahl, and Gagnon, JARO 11: 605-623, 2010) and adult sexual and social behavior throughout our observation period. They are sexually mature adults, appropriate for this study. We decline to perform correlation analyses with age, both because this was not a question for this study and because the very large number of correlations, for each experimental group (as requested by reviewer #2), render this approach statistically problematic.

      7) The authors reported neurochemical levels estimated as the animals listened to the sounds played back. What about the sustained effects of changes in neurochemicals? Are there any potential long-term effects of social vocalizations on behavior and neurochemical levels? The authors might consider discussing long-term effects.

      We have not included discussion of long term effects of neuromodulatory release, both because our data analysis doesn’t address it (see response to Comment #10) and because we desired to keep the Discussion focused on topics more closely related to the results.

      8) Histology from a single recording was shown in supplementary figure 1. It would benefit the readers if additional histology was shown for all the animals, not just the colored schematics summarizing the recording probe locations. Further explanation of the track location is also needed to help the readers. Make it clear for the readers which dextran-fluorescein labeling image is associated with which track in the schematic.

      Based on the recent publications cited in our overall response to reviewer comments about statistical methods, our reporting of histological location of microdialysis exceeds the standard. We believe that the inclusion of all histology is unnecessary and not particularly helpful. Raw photomicrographs do not always illustrate boundaries, so interpretation is required. However, we added a second photomicrograph example and we identified which tracks correspond to these photomicrographs (see Figure 2; now in main body of manuscript).

      9) The authors did not control for the sounds being played back with a speaker. This control may be necessary since the effects are more pronounced in Stim 1 than in Stim 2. Playing white noise rather than restraint or courtship vocalizations would be an excellent control. However, the authors could perform a permutation analysis and computationally break the relationship between what sound is playing and the neurochemical data. This control would allow the authors to show that the actual neurochemical levels are above or below chance.

      We considered a potential “control” stimulus in our experimental design. We concluded, based on our previous work (e.g., Grimsley et al., 2013; Gadziola et al., 2016), that white noise is not or not necessarily a neutral stimulus and therefore the results would not clarify the responses to the two vocal stimuli. Instead, we opted to use experience as a type of control. This control shows very clearly that temporal patterns and across-group differences in neurochemical response to playback disappear in the absence of experience with the associated behavior.

      10) The authors indicated that each animal's post-vocalization session was also recorded. No data in the manuscript related to the post-vocalization playback period was included. This omission was a missed opportunity to show that the neurochemical levels returned to baseline, and the results were not dependent on the normalization process described in major concern #1. The data should be included in the manuscript and analyzed. It would add further support for the model described in Figure 6.

      We decided not to include analyses of the post-stimulus period because this period is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback. We agree that the general question is of interest to the field, but we don’t think our study is best designed to answer that question.

      11) The authors could use a predictive model, such as a binary classifier trained on the CSF sampling data, to predict the type of vocalizations played back. The predictive model could support the conclusions and provide additional support for the model in Figure 6.

      We recognize that a binary classifier could provide an interesting approach to support conclusions. However, we do not believe that the sample size per group is sufficient to both create and test the classifier.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • Introduction: It would be useful to set up an experimental framework before delving into the results. What are the predictions about specific neuromodulators based on previous literature?

      Because this narrative is laid out in the first two paragraphs of the Results, which immediately follow the Introduction, we believe that additional text in the Introduction on the experimental framework is redundant. As stated above, detailing predictions for a range of neuromodulators would make for a long and not particularly illuminating Introduction. We instead have related our findings to more general understanding of DA and ACh in the Discussion.

      • There really isn't a major difference in stimuli during the "Stim 1" and "Stim 2" phases, and it's not clear why the authors divided the experimental period into two phases. Therefore, the authors need to justify their experimental approach. For example, the authors could first anecdotally mention that behavioral responses to playbacks seem to be larger in the first half of the playbacks than during the second half, therefore they individually analyzed each half of the experimental period. Or adopt a different approach to justify their design. Overall, the analytical approach is reasonable but it is currently not justified.

      See general comment for analysis periods. As noted, we clarified these issues in several locations with Materials and Methods (pp. 24, lines 20-22; p. 26, lines 17-19). We also sought to clarify the meaning of the periods “Stim 1” and “Stim 2”; they are two data collection periods, using the same examplar sequences in the same order. We have added statements in the Material and Methods (p. 18, lines 4-7; Fig. caption, p. 39, lines 11-13).

      • The normalization of neurochemical data seems problematic and unnecessary. By normalizing all data to the baseline data (p. 24), one artificially creates a baseline period with minimal variation (all are "0"; Figures 2, 3 & 5) and this has implications for statistical power. Because the analysis is a within-subjects analysis, this normalization is not necessary for the analysis itself. It can be useful to normalize data for visualization purposes, but raw data should be analyzed. Indeed, behavioral data are qualitatively similar to the neurochemical data, and those data are not normalized to baseline values.

      Please see our general comment on this issue. We believe normalization does not affect statistical power and is both the standard way and an appropriate way to analyze microdialysis results. We include concentrations of ACh, DA, and 5-HIAA in supplementary tables?

      • The authors should include a discussion (in the Discussion section) of how behavior and neurochemical release are associated during the first half of the experimental session but not in the second half (e.g., differences in Ach and DA release between mating and restraint groups during stim 1 and 2, but behavioral differences only during stim 1).

      We have included a section in the Discussion concerning the temporal relationship between behavioral responses and neurochemical changes in response to vocal playback. We note that the linkage is particularly strong in some cases (e.g., ACh release and flinching). This points to a need to examine these phenomena with finer temporal resolution, but also with the recognition that the brain circuits driving a behavioral response may extend beyond the BLA.

      Minor comments:

      • Keywords: add "serotonin" (even though there are no significant differences on 5-HIAA, people interested in serotonin would find this interesting).

      Added to keywords list.

      • Do the authors collect data on the vocalizations of mice in response to these playbacks?

      We monitored vocalizations during playback, noting that vocalizations–especially “Noisy” vocalization–were common. However, we did not record vocalizations and are therefore unable quantify our observations.

      • First line of page 7: readers do not know about "stim 1" and "stim 2". Therefore, the authors need to describe their approach to analyzing behavior and neurochemical release.

      We first introduce these terms earlier, citing Figure 1D,E. We have added some additional wording for further clarification. page 7, lines 4-5.

      • Make sure citations are uniformly formatted (e.g., Inconsistencies in: "As male and female mice emit different vocalizations during mating (Finton et al., 2017; J. M. S. Grimsley et al., 2013; Neunuebel et al., 2015; Sales (née Sewell), 1972)").

      We have reviewed and corrected citations throughout the manuscript.

      • Last paragraph of page 7: "attending behavior" has not been defined yet.

      Table 1 contains our description of the behaviors analyzed in this study. We have now inserted a reference to Table 1 earlier in the Results (p. 6, line 12).

      • Figure 2E and 3G: I find these correlations to be redundant with the GLMs. This is because the significant relationship is likely to be driven by group differences in behavior and in neurochemical release.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • Page 2, 2nd paragraph, 2nd sentence: this paragraph seems to be rooted in comparing and contrasting experienced and inexperienced mice, so there should be explicit comparisons in each sentence. For example, the 2nd sentence should read: "Whereas EXP estrus females demonstrated increased flinching behaviors in response to mating vocalizations, INEXP ....". This paragraph overall could use some refining.

      We believe this refers to page 9. We have revised the paragraph to clarify our findings (Beginning p. 9, line 23).

      • Page 9: "Further, there were no significant differences across groups during Stim 1 or Stim 2 periods. These results contrast sharply with those from all EXP groups, in which both ACh and DA release changed significantly during playback (Figs. 2C, 2D, 3E, 3F)." While I understand their perspective, this is misleading because changes were only observed during the Stim 1 period.

      We have slightly revised the wording in this paragraph, because the restraint males did not show significant ACh decreases. However, we do not believe our statements mislead readers just because some changes are observed in only one of the stimulation periods (p 10, lines 13-16).

      • Last paragraph of page 14: it would be useful to mention the increase in flinching in experienced females in response to mating vocalizations.

      We have added a sentence in this paragraph relating flinching in estrus females to increased ACh (p. 15, lines 18-20).

      • Was there a full analysis of locomotion in response to playbacks? I see that locomotion was correlated with neurochemical release but was it different in response to different stimuli? Were there changes to the part of the arena that mice occupied in response to restraint vs. mating vocalizations? Given their methods section, it would be useful for the authors to mention the results of the analyses of these aspects of movement.

      We have provided additional descriptions of space use and video tracking data in Material and Methods (p. 23, lines 1-6). We now report additional results associated with these analyses (p. 8, lines 13-15; p. 9, lines 8-14).

      • I believe that each experimental mouse only heard one of the stimuli (given the analytical approach). Because it is plausible to measure neurochemical release in response to both types of stimuli, I encourage the authors to be more explicit about this aspect of the experimental design (e.g., mention in Results section).

      Sentence modified to read: “Each mouse received playback of either the mating or restraint stimuli, but not both: same-day presentation of both stimuli would require excessively long playback sessions, the condition of the same probe would likely change on subsequent days, and quality of a second implanted probe on a subsequent day was uncertain.” (p. 7, lines 5-9).

      • Figure 1A and 1B: add labels to the panels so readers don't have to read the legend to know what spectrogram is associated with what context.

      We added these labels to Figure 1.

      • Table 1: in the definition of "still and alert", should this mention "abrupt attending" instead of "abrupt freezing"? The latter isn't described.

      Yes, we intended “abrupt attending”, and now indicated that in Table 1

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      • The authors report they performed manual behavioral analysis, and provide a table defining the different behaviors. However, it remains unclear how some of these behaviors were detected (such as still-and-alert events). A thorough description of the criteria used to define these events needs to be provided.

      We have modified some descriptions of manually analyzed behaviors in Table 1, and have added additional description of how we developed this set of behaviors for analysis in the study (pp. 22-23).

      • The box plots do not appear to represent the "minimum, first quartile, median, third quartile, and maximum values." as specified on page 24 (Methods). Indeed, the individual data points sometimes do not reach the max or min of the bar plot, and sometimes are way beyond them.

      We used the “inclusive median” function in Excel to generate final boxplots. These boxplots will sometimes result in a data point being placed outside of the whiskers. SPSS considers these to be “outliers”, but our GLM analysis includes these values. We describe this in Data Analysis section of Materials and Methods (p. 28, lines 3-9)

      • Some of the data are replicated in different Figures: Figure 2A and Figure 3C. While this is acceptable, the authors did not correct for multiple comparisons (dividing the p value by the number of comparisons).

      Our analysis included corrections for multiple comparisons, as we have indicated on p. 27, lines 15-16.

      • Overall, the sample sizes are too small (for example in Figure 3, non-estrus females are at n=3), and are different in experiments where they should be equal (Figure 2B: mating stim 1 is at n=5 and mating stim 2 is at n=3).

      We apologize that sample sizes were not properly displayed in figures. Please note that sample sizes are identified in the figure captions. For neuromodulator data, all sample sizes are at least 7. For behavioral data, the minimum sample size is 5. We have revised Figures 3-6 to ensure that all data points are visible.

      • It remains unclear why the impact of mating vocalizations has been tested only in males.

      We assume the reviewer meant that only males were tested in restraint. We now indicate that our preliminary evidence indicated no difference in behavioral responses to restraint vocalization between males and females, so we opted to perform the neurochemical analysis for restraint only in males (page 22 lines 4-5). If there were no limitations to time and cost, we would have preferred to test responses to restraint in females as well. We note that such inclusion would have added up to 4 experimental groups (estrus and non-estrus groups in both EXP and INEXP groups).

      • The correlation between the number of flinching and ACh release changes (Figure 2E) visually appears to be opposite between mating and restraint playbacks. The authors should perform independent correlations for these 2 playbacks.

      Please see general comments regarding correlation analyses. We removed such analyses and references to them from the manuscript.

      • The authors state that their findings "indicate that behavioral responses to salient vocalizations result from interactions between sex of the listener or context of vocal stimuli with the previous behavioral experience associated with these vocalizations.". However, in male mice, they do not report any difference in previous experience on flinching for both restraint and mating sounds, as well as no difference in rearing for the restrain sounds (Figure 4A-B). Thus, the discussion of these results should be completely revisited.

      We revised the paragraph in question (p. 9, line 22 through p. 10, line 9). For instance, we note that significant differences between EXP male-mating and male-restraint flinching do not exist between the INEXP groups. We believe that the last sentence correctly summarizes findings described in this paragraph.

      • For serotonin experiments in Figure S2 there are strong outliers (150% increase in 5HIAA release). Did the authors correlate these levels with the behavior of the animals?

      Outliers are identified by the Excel function that generated the boxplots, but we have no reason to consider these as outliers and exclude them. As noted above, we have clarified that these “outliers” are the result of the Excel function in the Materials and Methods (p. 28, lines 3-9) and we have revised the plotting of data points

      Minor comments:

      • Mating vocalization playback is mainly emitted by males, thus, instead of a positive valence signal, this could also be interpreted as a competitive signal to other males.

      There is support in the literature for viewing our mating stimulus as having positive valence. Gaub et al., 2016 describe the emission of stepped calls, lower frequency harmonics, and increased sound level as indicators of “positive emotion”. We have shown (Grimsley et al, 2013) that the female LFH vocalization can be highly attractive to male mice, under the right conditions, indicating something like “sex is happening”. The inclusion of both the male and female vocalizations in our stimuli was a key piece of our experimental design, based on our understanding of the contributions of both vocalizations to the meaning of the overall acoustic experience.

      • Figure 1 should include panel titles.

      No change. This information is available in the Figure caption.

      • n=31 should be indicated in the EXP group.

      We’re not sure where the reviewer is referring to this value.

      • The color legend of Figure 1E is absent, making the Figure not understandable.

      We added text in the Figure 1 caption to indicate that each color represents a different exemplar. We don’t think a legend provides additional useful information.

      • The point of making two blocks (stim 1 and stim2) should be stated more clearly.

      Please see general statement regarding experimental blocks. We have modified our description of these in an Experimental overview section in the Material and Methods.

      • Including raw data of micro-dialysis in the supplementary figures would allow assessment of the variability and quality of the measurements.

      We have added concentrations of neurochemicals in supplemental tables 1-3.

      • Baseline (prestimulus) number of flinch and rearing should systematically be indicated (missing in Figure 4).

      The focus in this figure is on the differences that occur in Stim 1 values. There are no differences between EXP and INEXP animals of any group during the Pre-Stim period. We now state that in the Figure 4 caption.

      • Discussion: "increase in AMPA/NMDA currents". We believe the authors are referring to the ratio of AMPA to NMDA currents. This sentence should be reformulated.

      These are modified to refer to “… the AMPA/NMDA current ratio…” in two locations in the Discussion (p. 14, lines 8-9; p. 15, line 4)

      • Overall the discussion is very speculative and should rely more on the data.

      We believe that the Discussion provides appropriate speculation that is based on our experimental data and previous literature. We have added a paragraph to identify limitations of our findings and recommendations of future experiments to resolve some issues (p. 12, lines 3-17)

      Reviewer #3 (Recommendations For The Authors):

      Minor concerns:

      1) The authors stated that USVs are most likely to be emitted by males, and LFH are likely to be emitted by females. However, Oliveira-Stahl et al. 2023, Matsumoto et al. 2022, Warren et al. 2018, Heckman et al. 2017, Neunuebel et al., 2015 showed that females also emit USVs. The authors should mention that USVs are emitted by both males and females and discuss how the sex of the vocalizing animal (both males and females) can influence neuromodulator release.

      The reviewer slightly mis-stated the wording of our text, changing the meaning significantly. Our wording is “These sequences included ultrasonic vocalizations (USVs) with harmonics, steps, and complex structure, mostly emitted by males, and low frequency harmonic calls (LFHs) emitted by females (Fig. 1A,C)…” This phrasing is correct and carefully chosen. The Discussion in Oliveira-Stahl et al 2023 (p. 10-11) supports our statement: “The exact fraction of USVs emitted by females as concluded in all previous studies on dyadic courtship has varied, ranging from 18%, 17.5%, and 16% to 10.5% in the present study…”.

      2) The authors should explain why ECF from BLA was collected unilaterally from the left hemisphere.

      p. 23, lines 9-11: We inserted a sentence to explain why we targeted the BLA unilaterally. “Since both left and right amygdala are responsive to vocal stimuli in human and experimental animal studies (Wenstrup et al., 2020), we implanted microdialysis probes into the left amygdala to maintain consistency with other studies in our laboratory..” Beyond that, the choice was arbitrary.

      3) The authors said each animal recovered in its home cage for four days before the playback experiment. A 4-day period may not be sufficient for every animal to recover from surgery, so the authors should describe how a mouse's recovery was assessed.

      p. 23, lines 20-23: We provide more description about the recovery and how it was assessed. Except for a few animals that were not included in the experiments, all animals recovered within 4 days.

      4) The authors stated that each animal was exposed to 90-min sessions with mating and restraint behaviors in a counterbalanced design. This description for Figure 1D should also include the duration of the mating and restraint experience.

      The Results that immediately precede citation to this figure include this information.

      5) The authors stated, "Data are reported only from mice with more than 75% of the microdialysis probe implanted within the BLA". What are the implications of having 25% of the probe outside the BLA? The authors should shed more light on this by discussing this issue as it relates to the findings and commenting on where the other 25% of the probe was located.

      We inserted a sentence to explain the rationale for this inclusion criterion. “We verified placement of microdialysis probes to minimize variability that could arise because regions surrounding BLA receive neurochemical inputs from different sources (e.g., cholinergic inputs to putamen and central amygdala).” (p. 25, lines 21-23).

      All brain regions that surround BLA, dorsal, medial, ventral, or lateral, could have been sampled by the “other” 25%. Some of these, e.g., the central amygdala or caudate-putamen, have different sources of cholinergic input that may not have the same release pattern. We do not think it is worthy of further speculation in the Discussion. Due to the high cost of the neurochemical analysis, we often did not process the neurochemistry data if histology indicated that a probe missed the BLA target.

      6) The authors confirmed that the estrus stage did not change during the experiment day by evaluating and comparing estrus prior to and after data collection. This strategy was a fantastic experimental approach, but the authors should have discussed the results. How did the results the authors included change when the females were in estrus before but not after data collection? What percentage of females started in estrus but ended in metestrus? Assuming that some females changed estrus state, were these animals excluded from the analyses?

      All animals were in the same estrus state at the beginning and end of the playback session.

      7). Authors cite Neunuebel et al., 2015 for the sentence "As male and female mice emit different vocalizations during mating". However, Neunuebel et al., 2015 showed vocalizations emitted during chasing--not mating. If mating is a general term for courtship, then this reference is appropriate, but see major concern #3.

      In the Results (p. 8, line 5), we changed the phrasing to “courtship and mating” to include the Neunubel et al study.

      As we indicate in our response to Public Comment #3, we have modified the Results (p. 5, lines 18-20) and Materials and Methods (p. 21, lines 8-15) to clarify our meaning. We continue to use the term “mating” because this refers to a specific set of behaviors associated with mounting and copulation, rather than the more general term “courtship”. We also indicate that we based these behaviors on previous work (e.g., Gaub et al., 2016).

      8) Authors interpret Figure 3F as DA release showed a "consistent" increase during mating playback across all three experimental groups. However, the increase in the estrus female group is inconsistent, as seen in the graph. This verbiage should be reworded to describe the data more accurately.

      p. 8, line 23 “consistent” was deleted.

      9) In all the box plots, multiple data points overlay each other. A more transparent way of showing the data would be adding some jitter to the x value to make each data point visible. The mean (X's) in Figure 3D (pre-stim mating and mating estrus) are difficult to see, as are all the data points in mating non-estrus. Adding all the symbols to the figure legend or a key in the figure instead of the method section would aid the reader and make the plots easier to interpret

      We have revised the boxplots to ensure that all data points are visible.

      10) Some verbiage used in the discussion should be toned down. For example, "intense" experiences and "emotionally charged" vocalizations should be removed.

      We have not changed these terms, which we believe are appropriate to describe these experiences and vocalizations.

      11) The authors include "Emotional Vocalizations" in the title. It would be beneficial if the authors included more detail and references in the introduction to help set up the emotional content of vocalizations. It may benefit a broader readership as typically targeted by eLife.

      We now cite Darwin and some more recent publications that articulate the general understanding that social vocalizations carry emotional content.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents potentially valuable results on glutamine-rich motifs in relation to protein expression and alternative genetic codes. The author's interpretation of the results is so far only supported by incomplete evidence, due to a lack of acknowledgment of alternative explanations, missing controls and statistical analysis and writing unclear to non experts in the field. These shortcomings could be at least partially overcome by additional experiments, thorough rewriting, or both.

      We thank both the Reviewing Editor and Senior Editor for handling this manuscript.

      Based on your suggestions, we have provided controls, performed statistical analysis, and rewrote our manuscript. The revised manuscript is significantly improved and more accessible to non-experts in the field.

      Reviewer #1 (Public Review):

      Summary

      This work contains 3 sections. The first section describes how protein domains with SQ motifs can increase the abundance of a lacZ reporter in yeast. The authors call this phenomenon autonomous protein expression-enhancing activity, and this finding is well supported. The authors show evidence that this increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance, and that this phenomenon is not affected by mutants in translational quality control. It was not completely clear whether the increased protein abundance is due to increased translation or to increased protein stability.

      In section 2, the authors performed mutagenesis of three N-terminal domains to study how protein sequence changes protein stability and enzymatic activity of the fusions. These data are very interesting, but this section needs more interpretation. It is not clear if the effect is due to the number of S/T/Q/N amino acids or due to the number of phosphorylation sites.

      In section 3, the authors undertake an extensive computational analysis of amino acid runs in 27 species. Many aspects of this section are fascinating to an expert reader. They identify regions with poly-X tracks. These data were not normalized correctly: I think that a null expectation for how often poly-X track occur should be built for each species based on the underlying prevalence of amino acids in that species. As a result, I believe that the claim is not well supported by the data.

      Strengths

      This work is about an interesting topic and contains stimulating bioinformatics analysis. The first two sections, where the authors investigate how S/T/Q/N abundance modulates protein expression level, is well supported by the data. The bioinformatics analysis of Q abundance in ciliate proteomes is fascinating. There are some ciliates that have repurposed stop codons to code for Q. The authors find that in these proteomes, Q-runs are greatly expanded. They offer interesting speculations on how this expansion might impact protein function.

      Weakness

      At this time, the manuscript is disorganized and difficult to read. An expert in the field, who will not be distracted by the disorganization, will find some very interesting results included. In particular, the order of the introduction does not match the rest of the paper.

      In the first and second sections, where the authors investigate how S/T/Q/N abundance modulates protein expression levels, it is unclear if the effect is due to the number of phosphorylation sites or the number of S/T/Q/N residues.

      There are three reasons why the number of phosphorylation sites in the Q-rich motifs is not relevant to their autonomous protein expression-enhancing (PEE) activities:

      First, we have reported previously that phosphorylation-defective Rad51-NTD (Rad51-3SA) and wild-type Rad51-NTD exhibit similar autonomous PEE activity. Mec1/Tel1-dependent phosphorylation of Rad51-NTD antagonizes the proteasomal degradation pathway, increasing the half-life of Rad51 from ∼30 min to ≥180 min (1). (page 1, lines 11-14)

      Second, in our preprint manuscript, we have already shown that phosphorylation-defective Rad53-SCD1 (Rad51-SCD1-5STA) also exhibits autonomous PEE activity similar to that of wild-type Rad53-SCD (Figure 2D, Figure 4A and Figure 4C). We have highlighted this point in our revised manuscript (page 9, lines 19-21).

      Third, as revealed by the results of Figure 4, it is the percentages, and not the numbers, of S/T/Q/N residues that are correlated with the PEE activities of Q-rich motifs.

      The authors also do not discuss if the N-end rule for protein stability applies to the lacZ reporter or the fusion proteins.

      The autonomous PEE function of S/T/Q-rich NTDs is unlikely to be relevant to the N-end rule. The N-end rule links the in vivo half-life of a protein to the identity of its N-terminal residues. In S. cerevisiae, the N-end rule operates as part of the ubiquitin system and comprises two pathways. First, the Arg/N-end rule pathway, involving a single N-terminal amidohydrolase Nta1, mediates deamidation of N-terminal asparagine (N) and glutamine (Q) into aspartate (D) and glutamate (E), which in turn are arginylated by a single Ate1 R-transferase, generating the Arg/N degron. N-terminal R and other primary degrons are recognized by a single N-recognin Ubr1 in concert with ubiquitin-conjugating Ubc2/Rad6. Ubr1 can also recognize several other N-terminal residues, including lysine (K), histidine (H), phenylalanine (F), tryptophan (W), leucine (L) and isoleucine (I) (68-70). Second, the Ac/N-end rule pathway targets proteins containing N-terminally acetylated (Ac) residues. Prior to acetylation, the first amino acid methionine (M) is catalytically removed by Met-aminopeptidases (MetAPs), unless a residue at position 2 is non-permissive (too large) for MetAPs. If a retained N-terminal M or otherwise a valine (V), cysteine (C), alanine (A), serine (S) or threonine (T) residue is followed by residues that allow N-terminal acetylation, the proteins containing these AcN degrons are targeted for ubiquitylation and proteasome-mediated degradation by the Doa10 E3 ligase (71).

      The PEE activities of these S/T/Q-rich domains are unlikely to arise from counteracting the N-end rule for two reasons. First, the first two amino acid residues of Rad51-NTD, Hop1-SCD, Rad53-SCD1, Sup35-PND, Rad51-ΔN, and LacZ-NVH are MS, ME, ME, MS, ME, and MI, respectively, where M is methionine, S is serine, E is glutamic acid and I is isoleucine. Second, Sml1-NTD behaves similarly to these N-terminal fusion tags, despite its methionine and glutamine (MQ) amino acid signature at the N-terminus. (Page 12, line 3 to page 13, line 2)

      The most interesting part of the paper is an exploration of S/T/Q/N-rich regions and other repetitive AA runs in 27 proteomes, particularly ciliates. However, this analysis is missing a critical control that makes it nearly impossible to evaluate the importance of the findings. The authors find the abundance of different amino acid runs in various proteomes. They also report the background abundance of each amino acid. They do not use this background abundance to normalize the runs of amino acids to create a null expectation from each proteome. For example, it has been clear for some time (Ruff, 2017; Ruff et al., 2016) that Drosophila contains a very high background of Q's in the proteome and it is necessary to control for this background abundance when finding runs of Q's.

      We apologize for not explaining sufficiently well the topic eliciting this reviewer’s concern in our preprint manuscript. In the second paragraph of page 14, we cite six references to highlight that SCDs are overrepresented in yeast and human proteins involved in several biological processes (5, 43) and that polyX prevalence differs among species (79-82).

      We will cite a reference by Kiersten M. Ruff in our revised manuscript (38).

      K. M. Ruff, J. B. Warner, A. Posey and P. S. Tan (2017) Polyglutamine length dependent structural properties and phase behavior of huntingtin exon1. Biophysical Journal 112, 511a.

      The authors could easily address this problem with the data and analysis they have already collected. However, at this time, without this normalization, I am hesitant to trust the lists of proteins with long runs of amino acid and the ensuing GO enrichment analysis. Ruff KM. 2017. Washington University in St.

      Ruff KM, Holehouse AS, Richardson MGO, Pappu RV. 2016. Proteomic and Biophysical Analysis of Polar Tracts. Biophys J 110:556a.

      We thank Reviewer #1 for this helpful suggestion and now address this issue by means of a different approach described below.

      Based on a previous study (43), we applied seven different thresholds to seek both short and long, as well as pure and impure, polyX strings in 20 different representative near-complete proteomes, including 4X (4/4), 5X (4/5-5/5), 6X (4/6-6/6), 7X (4/7-7/7), 8-10X (≥50%X), 11-10X (≥50%X) and ≥21X (≥50%X).

      To normalize the runs of amino acids and create a null expectation from each proteome, we determined the ratios of the overall number of X residues for each of the seven polyX motifs relative to those in the entire proteome of each species, respectively. The results of four different polyX motifs are shown in our revised manuscript, i.e., polyQ (Figure 7), polyN (Figure 8), polyS (Figure 9) and polyT (Figure 10). Thus, polyX prevalence differs among species and the overall X contents of polyX motifs often but not always correlate with the X usage frequency in entire proteomes (43).

      Most importantly, our results reveal that, compared to Stentor coeruleus or several non-ciliate eukaryotic organisms (e.g., Plasmodium falciparum, Caenorhabditis elegans, Danio rerio, Mus musculus and Homo sapiens), the five ciliates with reassigned TAAQ and TAGQ codons not only have higher Q usage frequencies, but also more polyQ motifs in their proteomes (Figure 7). In contrast, polyQ motifs prevail in Candida albicans, Candida tropicalis, Dictyostelium discoideum, Chlamydomonas reinhardtii, Drosophila melanogaster and Aedes aegypti, though the Q usage frequencies in their entire proteomes are not significantly higher than those of other eukaryotes (Figure 1). Due to their higher N usage frequencies, Dictyostelium discoideum, Plasmodium falciparum and Pseudocohnilembus persalinus have more polyN motifs than the other 23 eukaryotes we examined here (Figure 8). Generally speaking, all 26 eukaryotes we assessed have similar S usage frequencies and percentages of S contents in polyS motifs (Figure 9). Among these 26 eukaryotes, Dictyostelium discoideum possesses many more polyT motifs, though its T usage frequency is similar to that of the other 25 eukaryotes (Figure 10).

      In conclusion, these new normalized results confirm that the reassignment of stop codons to Q indeed results in both higher Q usage frequencies and more polyQ motifs in ciliates.  

      Reviewer #2 (Public Review):

      Summary:

      This study seeks to understand the connection between protein sequence and function in disordered regions enriched in polar amino acids (specifically Q, N, S and T). While the authors suggest that specific motifs facilitate protein-enhancing activities, their findings are correlative, and the evidence is incomplete. Similarly, the authors propose that the re-assignment of stop codons to glutamine-encoding codons underlies the greater user of glutamine in a subset of ciliates, but again, the conclusions here are, at best, correlative. The authors perform extensive bioinformatic analysis, with detailed (albeit somewhat ad hoc) discussion on a number of proteins. Overall, the results presented here are interesting, but are unable to exclude competing hypotheses.

      Strengths:

      Following up on previous work, the authors wish to uncover a mechanism associated with poly-Q and SCD motifs explaining proposed protein expression-enhancing activities. They note that these motifs often occur IDRs and hypothesize that structural plasticity could be capitalized upon as a mechanism of diversification in evolution. To investigate this further, they employ bioinformatics to investigate the sequence features of proteomes of 27 eukaryotes. They deepen their sequence space exploration uncovering sub-phylum-specific features associated with species in which a stop-codon substitution has occurred. The authors propose this stop-codon substitution underlies an expansion of ploy-Q repeats and increased glutamine distribution.

      Weaknesses:

      The preprint provides extensive, detailed, and entirely unnecessary background information throughout, hampering reading and making it difficult to understand the ideas being proposed.

      The introduction provides a large amount of detailed background that appears entirely irrelevant for the paper. Many places detailed discussions on specific proteins that are likely of interest to the authors occur, yet without context, this does not enhance the paper for the reader.

      The paper uses many unnecessary, new, or redefined acronyms which makes reading difficult. As examples:

      1) Prion forming domains (PFDs). Do the authors mean prion-like domains (PLDs), an established term with an empirical definition from the PLAAC algorithm? If yes, they should say this. If not, they must define what a prion-forming domain is formally.

      The N-terminal domain (1-123 amino acids) of S. cerevisiae Sup35 was already referred to as a “prion forming domain (PFD)” in 2006 (48). Since then, PFD has also been employed as an acronym in other yeast prion papers (Cox, B.S. et al. 2007; Toombs, T. et al. 2011).

      B. S. Cox, L. Byrne, M. F., Tuite, Protein Stability. Prion 1, 170-178 (2007). J. A. Toombs, N. M. Liss, K. R. Cobble, Z. Ben-Musa, E. D. Ross, [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6, e21953 (2011).

      2) SCD is already an acronym in the IDP field (meaning sequence charge decoration) - the authors should avoid this as their chosen acronym for Serine(S) / threonine (T)-glutamine (Q) cluster domains. Moreover, do we really need another acronym here (we do not).

      SCD was first used in 2005 as an acronym for the Serine (S)/threonine (T)-glutamine (Q) cluster domain in the DNA damage checkpoint field (4). Almost a decade later, SCD became an acronym for “sequence charge decoration” (Sawle, L. et al. 2015; Firman, T. et al. 2018).

      L. Sawle and K, Ghosh, A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem Phys. 143, 085101(2015).

      T. Firman and Ghosh, K. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. J. Chem Phys. 148, 123305 (2018).

      3) Protein expression-enhancing (PEE) - just say expression-enhancing, there is no need for an acronym here.

      Thank you. Since we have shown that the addition of Q-rich motifs to LacZ affects protein expression rather than transcription, we think it is better to use the “PEE” acronym.

      The results suggest autonomous protein expression-enhancing activities of regions of multiple proteins containing Q-rich and SCD motifs. Their definition of expression-enhancing activities is vague and the evidence they provide to support the claim is weak. While their previous work may support their claim with more evidence, it should be explained in more detail. The assay they choose is a fusion reporter measuring beta-galactosidase activity and tracking expression levels. Given the presented data they have shown that they can drive the expression of their reporters and that beta gal remains active, in addition to the increase in expression of fusion reporter during the stress response. They have not detailed what their control and mock treatment is, which makes complete understanding of their experimental approach difficult. Furthermore, their nuclear localization signal on the tag could be influencing the degradation kinetics or sequestering the reporter, leading to its accumulation and the appearance of enhanced expression. Their evidence refuting ubiquitin-mediated degradation does not have a convincing control.

      Although this reviewer’s concern regarding our use of a nuclear localization signal on the tag is understandable, we are confident that this signal does not bias our findings for two reasons. First, the negative control LacZ-NV also possesses the same nuclear localization signal (Figure 1A, lane 2). Second, another fusion target, Rad51-ΔN, does not harbor the NVH tag (Figure 1D, lanes 3-4). Compared to wild-type Rad51, Rad51-ΔN is highly labile. In our previous study, removal of the NTD from Rad51 reduced by ~97% the protein levels of corresponding Rad51-ΔN proteins relative to wild-type (1).

      Based on the experimental results, the authors then go on to perform bioinformatic analysis of SCD proteins and polyX proteins. Unfortunately, there is no clear hypothesis for what is being tested; there is a vague sense of investigating polyX/SCD regions, but I did not find the connection between the first and section compelling (especially given polar-rich regions have been shown to engage in many different functions). As such, this bioinformatic analysis largely presents as many lists of percentages without any meaningful interpretation. The bioinformatics analysis lacks any kind of rigorous statistical tests, making it difficult to evaluate the conclusions drawn. The methods section is severely lacking. Specifically, many of the methods require the reader to read many other papers. While referencing prior work is of course, important, the authors should ensure the methods in this paper provide the details needed to allow a reader to evaluate the work being presented. As it stands, this is not the case.

      Thank you. As described in detail below, we have now performed rigorous statistical testing using the GofuncR package (Figure 11, Figure 12 and DS7-DS32).

      Overall, my major concern with this work is that the authors make two central claims in this paper (as per the Discussion). The authors claim that Q-rich motifs enhance protein expression. The implication here is that Q-rich motif IDRs are special, but this is not tested. As such, they cannot exclude the competing hypothesis ("N-terminal disordered regions enhance expression").

      In fact, “N-terminal disordered regions enhance expression” exactly summarizes our hypothesis.

      On pages 12-13 and Figure 4 of our preprint manuscript, we explained our hypothesis in the paragraph entitled “The relationship between PEE function, amino acid contents, and structural flexibility”.

      The authors also do not explore the possibility that this effect is in part/entirely driven by mRNA-level effects (see Verma Na Comms 2019).

      As pointed out by the first reviewer, we present evidence that the increase in protein abundance and enzymatic activity is not due to changes in plasmid copy number or mRNA abundance (Figure 2), and that this phenomenon is not affected in translational quality control mutants (Figure 3).

      As such, while these observations are interesting, they feel preliminary and, in my opinion, cannot be used to draw hard conclusions on how N-terminal IDR sequence features influence protein expression. This does not mean the authors are necessarily wrong, but from the data presented here, I do not believe strong conclusions can be drawn. That re-assignment of stop codons to Q increases proteome-wide Q usage. I was unable to understand what result led the authors to this conclusion.

      My reading of the results is that a subset of ciliates has re-assigned UAA and UAG from the stop codon to Q. Those ciliates have more polyQ-containing proteins. However, they also have more polyN-containing proteins and proteins enriched in S/T-Q clusters. Surely if this were a stop-codon-dependent effect, we'd ONLY see an enhancement in Q-richness, not a corresponding enhancement in all polar-rich IDR frequencies? It seems the better working hypothesis is that free-floating climate proteomes are enriched in polar amino acids compared to sessile ciliates.

      We thank this reviewer for raising this point, however her/his comments are not supported by the results in Figure 7.

      Regardless, the absence of any kind of statistical analysis makes it hard to draw strong conclusions here.

      We apologize for not explaining more clearly the results of Tables 5-7 in our preprint manuscript.

      To address the concerns about our GO enrichment analysis by both reviewers, we have now performed rigorous statistical testing for SCD and polyQ protein overrepresentation using the GOfuncR package (https://bioconductor.org/packages/release/bioc/html/GOfuncR.html). GOfuncR is an R package program that conducts standard candidate vs. background enrichment analysis by means of the hypergeometric test. We then adjusted the raw p-values according to the Family-wise error rate (FWER). The same method had been applied to GO enrichment analysis of human genomes (89).

      The results presented in Figure 11 and Figure 12 (DS7-DS32) support our hypothesis that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition, Candida albicans filamentous growth, peptidyl-glutamic acid modification in ciliates with reassigned stop codons (TAAQ and TAGQ), Tetrahymena thermophila xylan catabolism, Dictyostelium discoideum sexual reproduction, Plasmodium falciparum infection, as well as the nervous systems of Drosophila melanogaster, Mus musculus, and Homo sapiens (78). In contrast, peptidyl-glutamic acid modification and microtubule-based movement are not overrepresented with Q-rich proteins in Stentor coeruleus, a ciliate with standard stop codons.

      Recommendations for the authors:

      Please note that you control which revisions to undertake from the public reviews and recommendations for the authors.

      Reviewer #1 (Recommendations For The Authors):

      The order of paragraphs in the introduction was very difficult to follow. Each paragraph was clear and easy to understand, but the order of paragraphs did not make sense to this reader. The order of events in the abstract matches the order of events in the results section. However, the order of paragraphs in the introduction is completely different and this was very confusing. This disordered list of facts might make sense to an expert reader but makes it hard for a non-expert reader to understand.

      Apologies. We endeavored to improve the flow of our revised manuscript to make it more readable.

      The section beginning on pg 12 focused on figures 4 and 5 was very interesting and highly promising. However, it was initially hard for me to tell from the main text what the experiment was. Please add to the text an explanation of the experiment, because it is hard to figure out what was going on from the figures alone. Figure 4 is fantastic, but would be improved by adding error bars and scaling the x-axis to be the same in panels B,C,D.

      Thank you for this recommendation. We have now scaled both the x-axis and y-axis equivalently in panels B, C and D of Figure 4. Error bars are too small to be included.

      It is hard to tell if the key variable is the number of S/T/Q/N residues or the number of phosphosites. I think a good control would be to add a regression against the number of putative phosphosites. The sequences are well designed. I loved this part but as a reader, I need more interpretation about why it matters and how it explains the PEE.

      As described above, we have shown that the number of phosphorylation sites in the Q-rich motifs is not relevant to their autonomous protein expression-enhancing (PEE) activities.

      I believe that the prevalence of polyX runs is not meaningful without normalizing for the background abundance of each amino acid. The proteome-wide abundance and the assumption that amino acids occur independently can be used to form a baseline expectation for which runs are longer than expected by chance. I think Figures 6 and 7 should go into the supplement and be replaced in the main text with a figure where Figure 6 is normalized by Figure 7. For example in P. falciparum, there are many N-runs (Figure 6), but the proteome has the highest fraction of N’s (Figure 7).

      Thank you for these suggestions. The three figures in our preprint manuscript (Figures 6-8) have been moved into the supplementary information (Figures S1-S3). For normalization, we have provided four new figures (Figures 7-10) in our revised manuscript.

      The analysis of ciliate proteomes was fascinating. I am particularly interested in the GO enrichment for “peptidyl-glutamic acid modification” (pg 20) because these enzymes might be modifying some of Q’s in the Q-runs. I might be wrong about this idea or confused about the chemistry. Do these ciliates live in Q-rich environments? Or nitrogen rich environments?

      Polymeric modifications (polymodifications) are a hallmark of C-terminal tubulin tails, whereas secondary peptide chains of glutamic acids (polyglutamylation) and glycines (polyglycylation) are catalyzed from the γ-carboxyl group of primary chain glutamic acids. It is not clear if these enzymes can modify some of the Q’s in the Q-runs.

      To our knowledge, ciliates are abundant in almost every liquid water environment, i.e., oceans/seas, marine sediments, lakes, ponds, and rivers, and even soils.

      I think you should include more discussion about how the codons that code for Q’s are prone to slippage during DNA replication, and thus many Q-runs are unstable and expand (e.g. Huntington’s Disease). The end of pg 24 or pg 25 would be good places.

      We thank the reviewer for these comments.

      PolyQ motifs have a particular length-dependent codon usage that relates to strand slippage in CAG/CTG trinucleotide repeat regions during DNA replication. In most organisms having standard genetic codons, Q is encoded by CAGQ and CAAQ. Here, we have determined and compared proteome-wide Q contents, as well as the CAGQ usage frequencies (i.e., the ratio between CAGQ and the sum of CAGQ, CAGQ, TAAQ, and TAGQ).

      Our results reveal that the likelihood of forming long CAG/CTG trinucleotide repeats are higher in five eukaryotes due to their higher CAGQ usage frequencies, including Drosophila melanogaster (86.6% Q), Danio rerio (74.0% Q), Mus musculus (74.0% Q), Homo sapiens (73.5% Q), and Chlamydomonas reinhardtii (87.3% Q) (orange background, Table 2). In contrast, another five eukaryotes that possess high numbers of polyQ motifs (i.e., Dictyostelium discoideum, Candida albicans, Candida tropicalis, Plasmodium falciparum and Stentor coeruleus) (Figure 1) utilize more CAAQ (96.2%, 84.6%, 84.5%, 86.7% and 75.7%) than CAAQ (3.8%, 15.4%, 15.5%, 13.3% and 24.3%), respectively, to avoid the formation of long CAG/CTG trinucleotide repeats (green background, Table 2). Similarly, all five ciliates with reassigned stop codons (TAAQ and TAGQ) have low CAGQ usage frequencies (i.e., from 3.8% Q in Pseudocohnilembus persalinus to 12.6% Q in Oxytricha trifallax) (red font, Table 2). Accordingly, the CAG-slippage mechanism might operate more frequently in Chlamydomonas reinhardtii, Drosophila melanogaster, Danio rerio, Mus musculus and Homo sapiens than in Dictyostelium discoideum, Candida albicans, Candida tropicalis, Plasmodium falciparum, Stentor coeruleus and the five ciliates with reassigned stop codons (TAAQ and TAGQ).

      Author response table 1.

      Usage frequencies of TAA, TAG, TAAQ, TAGQ, CAAQ and CAGQ codons in the entire proteomes of 20 different organisms.

      Pg 7, paragraph 2 has no direction. Please add the conclusion of the paragraph to the first sentence.

      This paragraph has been moved to the “Introduction” section” of the revised manuscript.

      Pg 8, I suggest only mentioning the PFDs used in the experiments. The rest are distracting.

      We have addressed this concern above.

      Pg 12. Please revise the "The relationship...." text to explain the experiment.

      We apologize for not explaining this topic sufficiently well in our preprint manuscript.

      SCDs are often structurally flexible sequences (4) or even IDRs. Using IUPred2A (https://iupred2a.elte.hu/plot_new), a web-server for identifying disordered protein regions (88), we found that Rad51-NTD (1-66 a.a.) (1), Rad53-SCD1 (1-29 a.a.) and Sup35-NPD (1-39 a.a.) are highly structurally flexible. Since a high content of serine (S), threonine (T), glutamine (Q), asparanine (N) is a common feature of IDRs (17-20), we applied alanine scanning mutagenesis approach to reduce the percentages of S, T, Q or N in Rad51-NTD, Rad53-SCD1 or Sup35-NPD, respectively. As shown in Figure 4 and Figure 5, there is a very strong positive relationship between STQ and STQN amino acid percentages and β-galactosidase activities. (Page 13, lines 5-10)

      Pg 13, first full paragraph, "Futionally, IDRs..." I think this paragraph belongs in the Discussion.

      This paragraph is now in the “Introduction” section (Page 5, Lines 11-15).

      Pg. 15, I think the order of paragraphs should be swapped.

      These paragraphs have been removed or rewritten in the “Introduction section” of our revised manuscript.

      Pg 17 (and other parts) I found the lists of numbers and percentages hard to read and I think you should refer readers to the tables.

      Thank you. In the revised manuscript, we have avoided using lists of numbers and percentages, unless we feel they are absolutely essential.

      Pg. 19 please add more interpretation to the last paragraph. It is very cool but I need help understanding the result. Are these proteins diverging rapidly? Perhaps this is a place to include the idea of codon slippage during DNA replication.

      Thank you. The new results in Table 2 indicate that the CAG-slippage mechanism is unlikely to operate in ciliates with reassigned stop codons (TAAQ and TAGQ).

      Pg 24. "Based on our findings from this study, we suggest that Q-rich motifs are useful toolkits for generating novel diversity during protein evolution, including by enabling greater protein expression, protein-protein interactions, posttranslational modifications, increased solubility, and tunable stability, among other important traits." This idea needs to be cited. Keith Dunker has written extensively about this idea as have others. Perhaps also discuss why Poly Q rich regions are different from other IDRs and different from other IDRs that phase-separate.

      Agreed, we have cited two of Keith Dunker’s papers in our revised manuscript (73, 74).

      Minor notes:

      Please define Borg genomes (pg 25).

      Borgs are long extrachromosomal DNA sequences in methane-oxidizing Methanoperedens archaea, which display the potential to augment methane oxidation (101). They are now described in our revised manuscript. (Page 15, lines 12-14)

      Reviewer #2 (Recommendations For The Authors):

      The authors dance around disorder but never really quantify or show data. This seems like a strange blindspot.

      We apologize for not explaining this topic sufficiently well in our preprint manuscript. We have endeavored to do so in our revised manuscript.

      The authors claim the expression enhancement is "autonomous," but they have not ruled things out that would make it not autonomous.

      Evidence of the “autonomous” nature of expression enhancement is presented in Figure 1, Figure 4, and Figure 5 of the preprint manuscript.

      Recommendations for improving the writing and presentation.

      The title does not recapitulate the entire body of work. The first 5 figures are not represented by the title in any way, and indeed, I have serious misgivings as to whether the conclusion stated in the title is supported by the work. I would strongly suggest the authors change the title.

      Figure 2 could be supplemental.

      Thank you. We think it is important to keep Figure 2 in the text.

      Figures 4 and 5 are not discussed much or particularly well.

      This reviewer’s opinion of Figure 4 and Figure 5 is in stark contrast to those of the first reviewer.

      The introduction, while very thorough, takes away from the main findings of the paper. It is more suited to a review and not a tailored set of minimal information necessary to set up the question and findings of the paper. The question that the authors are after is also not very clear.

      Thank you. The entire “Introduction” section has been extensively rewritten in the revised manuscript.

      Schematics of their fusion constructs and changes to the sequence would be nice, even if supplemental.

      Schematics of the fusion constructs are provided in Figure 1A.

      The methods section should be substantially expanded.

      The method section in the revised manuscript has been rewritten and expanded. The six Javascript programs used in this work are listed in Table S4.

      The text is not always suited to the general audience and readership of eLife.

      We have now rewritten parts of our manuscript to make it more accessible to the broad readership of eLife.

      In some cases, section headers really don't match what is presented, or there is no evidence to back the claim.

      The section headers in the revised manuscript have been corrected.

      A lot of the listed results in the back half of the paper could be a supplemental table, listing %s in a paragraph (several of them in a row) is never nice

      Acknowledged. In the revised manuscript, we have removed almost all sentences listing %s.

      Minor corrections to the text and figures.

      There is a reference to table 1 multiple times, and it seems that there is a missing table. The current table 1 does not seem to be the same table referred to in some places throughout the text.

      Apologies for this mistake, which we have now corrected in our revised manuscript.

      In some places its not clear where new work is and where previous work is mentioned. It would help if the authors clearly stated "In previous work...."

      Acknowledged. We have corrected this oversight in our revised manuscript.

      Not all strains are listed in the strain table (KO's in figure 3 are not included)

      Apologies, we have now corrected Table S2, as suggested by this reviewer.

      Author response table 2.

      S. cerevisiae strains used in this study

    1. 7.6. Ethics and Trolling# 7.6.1. Background: Forming Groups# Every “we” implies a not-“we”. A group is constituted in part by who it excludes. Think back to the origin of humans caring about authenticity: if being able to trust each other is so important, then we need to know WHICH people are supposed to be entangled in those bonds of mutual trust with us, and which are not from our own crew. As we have developed larger and larger societies, states, and worldwide communities, the task of knowing whom to trust has become increasingly large. All groups have variations within them, and some variations are seen as normal. But the bigger groups get, the more variety shows up, and starts to feel palpable. In a nation or community where you don’t know every single person, how do you decide who’s in your squad? One answer to this challenge is that we use various heuristics (that is, shortcuts for thinking) like stereotypes and signaling to quickly guess where a person stands in relation to us. Sometimes wearing items of a certain brand signals to people with similar commitments that you might be on the same page. Sometimes features that are strongly associated with certain social groups—stereotypes—are assumed to tell us whether or not we can trust someone. Have you ever tried to change or mask your accent, to avoid being marked as from a certain region? Have you ever felt the need to conceal something about yourself that is often stereotyped, or to use an ingroup signal to deflect people’s attention from a stereotyped feature? There is a reason why stereotypes are so tenacious: they work… sort of. Humans are brilliant at finding patterns, and we use pattern recognition to increase the efficiency of our cognitive processing. We also respond to patterns and absorb patterns of speech production and style of dress from the people around us. We do have a tendency to display elements of our history and identity, even if we have never thought about it before. This creates an issue, however, when the stereotype is not apt in some way. This might be because we diverge in some way from the categories that mark us, so the stereotype is inaccurate. Or this might be because the stereotype also encodes value judgments that are unwarranted, and which lead to problems with implicit bias. Some people do not need to think loads about how they present in order to come across to people in ways that are accurate and supportive of who they really are. Some people think very carefully about how they curate a set of signals that enable them to accurately let people know who they are or to conceal who they are from people outside their squad. Because patterns are so central to how our brains process information, patterns become extremely important to how societies change or stay the same. TV tropes is a website that tracks patterns in media, such as the jump scare The Seven Basic Plots Patterns build habits. Habits build norms. Norms build our reality. To create a social group and have it be sustainable, we depend on stable patterns, habits, and norms to create the reality of the grouping. In a diverse community, there are many subsets of patterns, habits, and norms which go into creating the overall social reality. Part of how people manage their social reality is by enforcing the patterns, habits, and norms which identify us; another way we do this is by enforcing, or policing, which subsets of patterns, habits, and norms get to be recognized as valid parts of the broader social reality. Both of these tactics can be done in appropriate, just, and responsible ways, or in highly unjust ways. 7.6.2. Ethics of Disruption (Trolling)# Trolling is a method of disrupting the way things are, including group structure and practices. Like these group-forming practices, disruptive trolling can be deployed in just or unjust ways. (We will come back to that.) These disruptive tactics can also be engaged with different moods, ranging from playful (like some flashmobs), to demonstrative (like activism and protests), to hostile, to warring, to genocidal. You may have heard people say that the difference between a coup and a revolution is whether it succeeds and gets to later tell the story, or gets quashed. You may have also heard that the difference between a traitor and a hero depends on who is telling the story. As this class discusses trolling, as well as many of the other topics of social media behavior coming up in the weeks ahead, you are encouraged to bear this duality of value in mind. Trolling is a term given to describe behavior that aims to disrupt (among other things). To make value judgments or ethical judgments about instances of disruptive behavior, we will need to be thoughtful and nuanced about how we decide to pass judgments. One way to begin examining any instance of disruptive behavior is to ask what is being disrupted: a pattern, a habit, a norm, a whole community? And how do we judge the value of the thing being disrupted? Returning to the difference between a coup and a revolution, we might say that a national-level disruption is a coup if it fails, and a revolution if it succeeds. Or we might say that such a disruption is a coup if it intends to disrupt a legitimate instance of political domination/statehood, but a revolution if the instance of political domination is illegitimate. If you take a close look at English-language headlines in the news about uprisings occurring near to or far from here, it should become quickly apparent that both of these reasons can drive an author’s choice to style an event as a coup. To understand what the author is trying to say, we need to look inside the situation and see what assumptions are driving their choice to characterize the disruption in the way that they do. Trolling is disruptive behavior, and whether we class it as problematic or okay depends in part on how we judge the legitimacy of the social reality which is being disrupted. Trolling can be used, in principle, for good or bad ends. 7.6.3. Trolling and Nihilism# While trolling can be done for many reasons, some trolling communities take on a sort of nihilistic philosophy: it doesn’t matter if something is true or not, it doesn’t matter if people get hurt, the only thing that might matter is if you can provoke a reaction. We can see this nihilism show up in one of the versions of the self-contradictory “Rules of the Internet:” 8. There are no real rules about posting … 20. Nothing is to be taken seriously … 42. Nothing is Sacred Youtuber Innuendo Studios talks about the way arguments are made in a community like 4chan: You can’t know whether they mean what they say, or are only arguing as though they mean what they say. And entire debates may just be a single person stirring the pot [e.g., sockpuppets]. Such a community will naturally attract people who enjoy argument for its own sake, and will naturally trend oward the most extremte version of any opinion. In short, this is the free marketplace of ideas. No code of ethics, no social mores, no accountability. … It’s not that they’re lying, it’s that they just don’t care. […] When they make these kinds of arguments they legitimately do not care whether the words coming out of their mouths are true. If they cared, before they said something is true, they would look it up. The Alt-Right Playbook: The Card Says Moops by Innuendo Studios While there is a nihilistic worldview where nothing matters, we can see how this plays out practically, which is that they tend to protect their group (normally white and male), and tend to be extremely hostile to any other group. They will express extreme misogyny (like we saw in the Rules of the Internet: “Rule 30. There are no girls on the internet. Rule 31. TITS or GTFO - the choice is yours”), and extreme racism (like an invented Nazi My Little Pony character). Is this just hypocritical, or is it ethically wrong? It depends, of course, on what tools we use to evaluate this kind of trolling. If the trolls claim to be nihilists about ethics, or indeed if they are egoists, then they would argue that this doesn’t matter and that there’s no normative basis for objecting to the disruption and harm caused by their trolling. But on just about any other ethical approach, there are one or more reasons available for objecting to the disruptions and harm caused by these trolls! If the only way to get a moral pass on this type of trolling is to choose an ethical framework that tells you harming others doesn’t matter, then it looks like this nihilist viewpoint isn’t deployed in good faith1. Rather, with any serious (i.e., non-avoidant) moral framework, this type of trolling is ethically wrong for one or more reasons (though how we explain it is wrong depends on the specific framework). 7.6.4. Reflection Exercise# Revisit the K-Pop protest trolling example in section 7.3. Take your list of ethical frameworks from Chapter 2 and work through them one by one, applying each tool to the K-Pop trolling. For each theory, think of how many different ways the theory could hook up with the example. For example, when using a virtue ethics type of tool, consider how many different people’s character and flourishing could be developed through this? When using a tool based on outcomes, like consequentialism, how many different elements of the outcome can you think of? The goal here is to come up with as many variations as you can, to see how the tools of ethical analysis can help us see into different aspects of the situation. Once you have made your big list of considerations, choose 2-3 items that, in your view, feel most important. Based on those 2-3 items, do you evaluate this trolling event as having been morally good? Why? What changes to this example would change your overall decision on whether the action is ethical?

      The section provides a profound exploration of the complexities involved in understanding and evaluating disruptive behaviors in social media contexts. It compellingly illustrates how the formation of groups, the use of stereotypes, and the enforcement of norms are all deeply intertwined with our cognitive processes and societal structures. The examination of trolling as a form of disruption that can be deployed for both just and unjust ends invites readers to reflect on the multifaceted nature of these actions and their ethical implications.

    1. Reviewer #1 (Public Review):

      This valuable study demonstrates a novel mechanism by which implicit motor adaptation saturates for large visual errors in a principled normative Bayesian manner. Additionally, the study revealed two notable empirical findings: visual uncertainty increases for larger visual errors in the periphery, and proprioceptive shifts/implicit motor adaptation are non-monotonic, rather than ramp-like. This study is highly relevant for researchers in sensory cue integration and motor learning. However, I find some areas where statistical quantification is incomplete, and the contextualization of previous studies to be puzzling.

      Issue #1: Contextualization of past studies.

      While I agree that previous studies have focused on how sensory errors drive motor adaptation (e.g., Burge et al., 2008; Wei and Kording, 2009), I don't think the PReMo model was contextualized properly. Indeed, while PReMo should have adopted clearer language - given that proprioception (sensory) and kinaesthesia (perception) have been used interchangeably, something we now make clear in our new study (Tsay, Chandy, et al. 2023) - PReMo's central contribution is that a perceptual error drives implicit adaptation (see Abstract): the mismatch between the felt (perceived) and desired hand position. The current paper overlooks this contribution. I encourage the authors to contextualize PReMo's contribution more clearly throughout. Not mentioned in the current study, for example, PReMo accounts for the continuous changes in perceived hand position in Figure 4 (Figure 7 in the PReMo study).

      There is no doubt that the current study provides important additional constraints on what determines perceived hand position: Firstly, it offers a normative Bayesian perspective in determining perceived hand position. PReMo suggests that perceived hand position is determined by integrating motor predictions with proprioception, then adding a proprioceptive shift; PEA formulates this as the optimal integration of these three inputs. Secondly, PReMo assumed visual uncertainty to remain constant for different visual errors; PEA suggests that visual uncertainty ought to increase (but see Issue #2).

      Issue #2: Failed replication of previous results on the effect of visual uncertainty.

      2a. A key finding of this paper is that visual uncertainty linearly increases in the periphery; a constraint crucial for explaining the non-monotonicity in implicit adaptation. One notable methodological deviation from previous studies is the requirement to fixate on the target: Notably, in the current experiments, participants were asked to fixate on the target, a constraint not imposed in previous studies. In a free-viewing environment, visual uncertainty may not attenuate as fast, and hence, implicit adaptation does not attenuate as quickly as that revealed in the current design with larger visual errors. Seems like this current fixation design, while important, needs to be properly contextualized considering how it may not represent most implicit adaptation experiments.

      2b. Moreover, the current results - visual uncertainty attenuates implicit adaptation in response to large, but not small, visual errors - deviates from several past studies that have shown that visual uncertainty attenuates implicit adaptation to small, but not large, visual errors (Tsay, Avraham, et al. 2021; Makino, Hayashi, and Nozaki, n.d.; Shyr and Joshi 2023). What do the authors attribute this empirical difference to? Would this free-viewing environment also result in the opposite pattern in the effect of visual uncertainty on implicit adaptation for small and large visual errors?

      2c. In the current study, the measure of visual uncertainty might be inflated by brief presentation times of comparison and referent visual stimuli (only 150 ms; our previous study allowed for a 500 ms viewing time to make sure participants see the comparison stimuli). Relatedly, there are some individuals whose visual uncertainty is greater than 20 degrees standard deviation. This seems very large, and less likely in a free-viewing environment.

      2d. One important confound between clear and uncertain (blurred) visual conditions is the number of cursors on the screen. The number of cursors may have an attenuating effect on implicit adaptation simply due to task-irrelevant attentional demands (Parvin et al. 2022), rather than that of visual uncertainty. Could the authors provide a figure showing these blurred stimuli (gaussian clouds) in the context of the experimental paradigm? Note that we addressed this confound in the past by comparing participants with and without low vision, where only one visual cursor is provided for both groups (Tsay, Tan, et al. 2023).

      Issue #3: More methodological details are needed.

      3a. It's unclear why, in Figure 4, PEA predicts an overshoot in terms of perceived hand position from the target. In PReMo, we specified a visual shift in the perceived target position, shifted towards the adapted hand position, which may result in overshooting of the perceived hand position with this target position. This visual shift phenomenon has been discovered in previous studies (e.g., (Simani, McGuire, and Sabes 2007)).

      3b. The extent of implicit adaptation in Experiment 2, especially with smaller errors, is unclear. The implicit adaptation function seems to be still increasing, at least by visual inspection. Can the authors comment on this trend, and relatedly, show individual data points that help the reader appreciate the variability inherent to these data?

      3c. The same participants were asked to return for multiple days/experiments. Given that the authors acknowledge potential session effects, with attenuation upon re-exposure to the same rotation (Avraham et al. 2021), how does re-exposure affect the current results? Could the authors provide clarity, perhaps a table, to show shared participants between experiments and provide evidence showing how session order may not be impacting results?

      3d. The number of trials per experiment should be detailed more clearly in the Methods section (e.g., Exp 4). Moreover, could the authors please provide relevant code on how they implemented their computational models? This would aid in future implementation of these models in future work. I, for one, am enthusiastic to build on PEA.

      3f. In addition to predicting a correlation between proprioceptive shift and implicit adaptation on a group level, both PReMo and PEA (but not causal inference) predict a correlation between individual differences in proprioceptive shift and proprioceptive uncertainty with the extent of implicit adaptation (Tsay, Kim, et al. 2021). Interestingly, shift and uncertainty are independent (see Figures 4F and 6C in Tsay et al, 2021). Does PEA also predict independence between shift and uncertainty? It seems like PEA does predict a correlation.

      References:

      Avraham, Guy, Ryan Morehead, Hyosub E. Kim, and Richard B. Ivry. 2021. "Reexposure to a Sensorimotor Perturbation Produces Opposite Effects on Explicit and Implicit Learning Processes." PLoS Biology 19 (3): e3001147.<br /> Makino, Yuto, Takuji Hayashi, and Daichi Nozaki. n.d. "Divisively Normalized Neuronal Processing of Uncertain Visual Feedback for Visuomotor Learning."<br /> Parvin, Darius E., Kristy V. Dang, Alissa R. Stover, Richard B. Ivry, and J. Ryan Morehead. 2022. "Implicit Adaptation Is Modulated by the Relevance of Feedback." BioRxiv. https://doi.org/10.1101/2022.01.19.476924.<br /> Shyr, Megan C., and Sanjay S. Joshi. 2023. "A Case Study of the Validity of Web-Based Visuomotor Rotation Experiments." Journal of Cognitive Neuroscience, October, 1-24.<br /> Simani, M. C., L. M. M. McGuire, and P. N. Sabes. 2007. "Visual-Shift Adaptation Is Composed of Separable Sensory and Task-Dependent Effects." Journal of Neurophysiology 98 (5): 2827-41.<br /> Tsay, Jonathan S., Guy Avraham, Hyosub E. Kim, Darius E. Parvin, Zixuan Wang, and Richard B. Ivry. 2021. "The Effect of Visual Uncertainty on Implicit Motor Adaptation." Journal of Neurophysiology 125 (1): 12-22.<br /> Tsay, Jonathan S., Anisha M. Chandy, Romeo Chua, R. Chris Miall, Jonathan Cole, Alessandro Farnè, Richard B. Ivry, and Fabrice R. Sarlegna. 2023. "Implicit Motor Adaptation and Perceived Hand Position without Proprioception: A Kinesthetic Error May Be Derived from Efferent Signals." BioRxiv. https://doi.org/10.1101/2023.01.19.524726.<br /> Tsay, Jonathan S., Hyosub E. Kim, Darius E. Parvin, Alissa R. Stover, and Richard B. Ivry. 2021. "Individual Differences in Proprioception Predict the Extent of Implicit Sensorimotor Adaptation." Journal of Neurophysiology, March. https://doi.org/10.1152/jn.00585.2020.<br /> Tsay, Jonathan S., Steven Tan, Marlena Chu, Richard B. Ivry, and Emily A. Cooper. 2023. "Low Vision Impairs Implicit Sensorimotor Adaptation in Response to Small Errors, but Not Large Errors." Journal of Cognitive Neuroscience, January, 1-13.

    2. Reviewer #3 (Public Review):

      Summary<br /> In this paper, the authors model motor adaptation as a Bayesian process that combines visual uncertainty about the error feedback, uncertainty about proprioceptive sense of hand position, and uncertainty of predicted (=planned) hand movement with a learning and retention rate as used in state space models. The model is built with results from several experiments presented in the paper and is compared with the PReMo model (Tsay, Kim, et al., 2022) as well as a cue combination model (Wei & Körding, 2009). The model and experiments demonstrate the role of visual uncertainty about error feedback in implicit adaptation.

      In the introduction, the authors notice that implicit adaptation (as measured in error-clamp-based paradigms) does not saturate at larger perturbations, but decreases again (e.g. Moorehead et al., 2017 shows no adaptation at 135{degree sign} and 175{degree sign} perturbations). They hypothesized that visual uncertainty about cursor position increases with larger perturbations since the cursor is further from the fixated target. This could decrease the importance assigned to visual feedback which could explain lower asymptotes.

      The authors characterize visual uncertainty for 3 rotation sizes in the first experiment, and while this experiment could be improved, it is probably sufficient for the current purposes. Then the authors present a second experiment where adaptation to 7 clamped errors is tested in different groups of participants. The models' visual uncertainty is set using a linear fit to the results from experiment 1, and the remaining 4 parameters are then fit to this second data set. The 4 parameters are 1) proprioceptive uncertainty, 2) uncertainty about the predicted hand position, 3) a learning rate, and 4) a retention rate. The authors' Perceptual Error Adaptation model ("PEA") predicts asymptotic levels of implicit adaptation much better than both the PReMo model (Tsay, Kim et al., 2022), which predicts saturated asymptotes, or a causal inference model (Wei & Körding, 2007) which predicts no adaptation for larger rotations. In a third experiment, the authors test their model's predictions about proprioceptive recalibration, but unfortunately, compare their data with an unsuitable other data set. Finally, the authors conduct a fourth experiment where they put their model to the test. They measure implicit adaptation with increased visual uncertainty, by adding blur to the cursor, and the results are again better in line with their model (predicting overall lower adaptation) than with the PReMo model (predicting equal saturation but at larger perturbations) or a causal inference model (predicting equal peak adaptation, but shifted to larger rotations). In particular, the model fits experiment 2 and the results from experiment 4 show that the core idea of the model has merit: increased visual uncertainty about errors dampens implicit adaptation.

      Strengths<br /> In this study, the authors propose a Perceptual Error Adaptation model ("PEA") and the work combines various ideas from the field of cue combination, Bayesian methods, and new data sets, collected in four experiments using various techniques that test very different components of the model. The central component of visual uncertainty is assessed in the first experiment. The model uses 4 other parameters to explain implicit adaptation. These parameters are 1) learning and 2) retention rate, as used in popular state space models, and the uncertainty (variance) of 3) predicted and 4) proprioceptive hand position. In particular, the authors observe that asymptotes for implicit learning do not saturate, as claimed before, but decrease again when rotations are very large and that this may have to do with visual uncertainty (e.g. Tsay et al., 2021, J Neurophysiol 125, 12-22). The final experiment confirms predictions of the fitted model about what happens when visual uncertainty is increased (overall decrease of adaptation). By incorporating visual uncertainty depending on retinal eccentricity, the predictions of the PEA model for very large perturbations are notably different from and better than, the predictions of the two other models it is compared to. That is, the paper provides strong support for the idea that visual uncertainty of errors matters for implicit adaptation.

      Weaknesses<br /> Although the authors don't say this, the "concave" function that shows that adaptation does not saturate for larger rotations has been shown before, including in papers cited in this manuscript.

      The first experiment, measuring visual uncertainty for several rotation sizes in error-clamped paradigms has several shortcomings, but these might not be so large as to invalidate the model or the findings in the rest of the manuscript. There are two main issues we highlight here. First, the data is not presented in units that allow comparison with vision science literature. Second, the 1 second delay between the movement endpoint and the disappearance of the cursor, and the presentation of the reference marker, may have led to substantial degradation of the visual memory of the cursor endpoint. That is, the experiment could be overestimating the visual uncertainty during implicit adaptation.

      The paper's third experiment relies to a large degree on reproducing patterns found in one particular paper, where the reported hand positions - as a measure of proprioceptive sense of hand position - are given and plotted relative to an ever-present visual target, rather than relative to the actual hand position. That is, 1) since participants actively move to a visual target, the reported hand positions do not reflect proprioception, but mostly the remembered position of the target participants were trying to move to, and 2) if the reports are converted to a difference between the real and reported hand position (rather than the difference between the target and the report), those would be on the order of ~20{degree sign} which is roughly two times larger than any previously reported proprioceptive recalibration, and an order of magnitude larger than what the authors themselves find (1-2{degree sign}) and what their model predicts. Experiment 3 is perhaps not crucial to the paper, but it nicely provides support for the idea that proprioceptive recalibration can occur with error-clamped feedback.

      Perhaps the largest caveat to the study is that it assumes that people do not look at the only error feedback available to them (and can explicitly suppress learning from it). This was probably true in the experiments used in the manuscript, but unlikely to be the case in most of the cited literature. Ignoring errors and suppressing adaptation would also be a disastrous strategy to use in the real world, such that our brains may not be very good at this. So the question remains to what degree - if any - the ideas behind the model generalize to experiments without fixation control, and more importantly, to real-life situations.

      Specific comments:<br /> A small part of the manuscript relies on replicating or modeling the proprioceptive recalibration in a study we think does NOT measure proprioceptive recalibration (Tsay, Parvin & Ivry, JNP, 2020). In this study, participants reached for a visual target with a clamped cursor, and at the end of the reach were asked to indicate where they thought their hand was. The responses fell very close to the visual target both before and after the perturbation was introduced. This means that the difference between the actual hand position, and the reported/felt hand position gets very large as soon as the perturbation is introduced. That is, proprioceptive recalibration would necessarily have roughly the same magnitude as the adaptation displayed by participants. That would be several times larger than those found in studies where proprioceptive recalibration is measured without a visual anchor. The data is plotted in a way that makes it seem like the proprioceptive recalibration is very small, as they plot the responses relative to the visual target, and not the discrepancy between the actual and reported hand position. It seems to us that this study mostly measures short-term visual memory (of the target location). What is astounding about this study is that the responses change over time to begin with, even if only by a tiny amount. Perhaps this indicates some malleability of the visual system, but it is hard to say for sure.

      Regardless, the results of that study do not form a solid basis for the current work and they should be removed. We would recommend making use of the dataset from the same authors, who improved their methods for measuring proprioception shifts just a year later (Tsay, Kim, Parvin, Stover, and Ivry, JNP, 2021). Although here the proprioceptive shifts during error-clamp adaptation (Exp 2) were tiny, and not quite significant (p<0.08), the reports are relative to the actual location of the passively placed unseen hand, measured in trials separate from those with reach adaptation and therefore there is no visual target to anchor their estimates to.

      Experiment 1 measures visual uncertainty with increased rotation size. The authors cite relevant work on this topic (Levi & Klein etc) which has found a linear increase in uncertainty of the position of more and more eccentrically displayed stimuli.

      First, this is a question where the reported stimuli and effects could greatly benefit from comparisons with the literature in vision science, and the results might even inform it. In order for that to happen, the units for the reported stimuli and effects should (also) be degrees of visual angle (dva).

      As far as we know, all previous work has investigated static stimuli, where with moving stimuli, position information from several parts of the visual field are likely integrated over time in a final estimate of position at the end of the trajectory (a Kalman filter type process perhaps). As far as we know, there are no studies in vision science on the uncertainty of the endpoint of moving stimuli. So we think that the experiment is necessary for this study, but there are some areas where it could be improved.

      Then, the linear fit is done in the space of the rotation size, but not in the space of eccentricity relative to fixation, and these do not necessarily map onto each other linearly. If we assume that the eye-tracker and the screen were at the closest distance the manufacturer reports it to work accurately at (45 cm), we would get the largest distances the endpoints are away from fixation in dva. Based on that assumed distance between the participant and monitor, we converted the rotation angles to distances between fixation and the cursor endpoint in degrees visual angle: 0.88, 3.5, and 13.25 dva (ignoring screen curvature, or the absence of it). The ratio between the perturbation angle and retinal distance to the endpoint is roughly 0.221, 0.221, and 0.207 if the minimum distance is indeed used - which is probably fine in this case. But still, it would be better to do fit in the relevant perceptual coordinate system.

      The first distance (4 deg rotation; 0.88 dva offset between fixation and stimulus) is so close to fixation (even at the assumed shortest distance between eye and screen) that it can be considered foveal and falls within the range of noise of eye-trackers + that of the eye for fixating. There should be no uncertainty on or that close to the fovea. The variability in the data is likely just measurement noise. This also means that a linear fit will almost always go through this point, somewhat skewing the results toward linearity. The advantage is that the estimate of the intercept (measurement noise) is going to be very good. Unfortunately, there are only 2 other points measured, which (if used without the closest point) will always support a linear fit. Therefore, the experiment does not seem suitable to test linearity, only to characterize it, which might be sufficient for the current purposes. We'd understand if the effort to do a test of linearity using many more rotations requires too much effort. But then it should be made much clearer that the experiment assumes linearity and only serves to characterize the assumed linearity.

      Final comment after the consultation session:<br /> There were a lot of discussions about the actual interpretation of the behavioral data from this paper with regards to past papers (Tsay et al. 2020 or 2021), and how it matches the different variables of the model. The data from Tsay 2020 combined both proprioceptive information (Xp) and prediction about hand position (Xu) because it involves active movements. On the other hand, Tsay et al. 2021 is based on passive movements and could provide a better measure of Xp alone. We would encourage you to clarify how each of the variables used in the model is mapped onto the outcomes of the cited behavioral experiments.

      The reviewers discussed this point extensively during the consultation process. The results reported in the Tsay 2020 study reflect both proprioception and prediction. However, having a visual target contributes more than just prediction, it is likely an anchor in the workspace that draws the response to it. Such that the report is dominated by short-term visual memory of the target (which is not part of the model). However, in the current Exp 3, as in most other work investigating proprioception, this is calculated relative to the actual direction.

      The solution is fairly simple. In Experiment 3 in the current study, Xp is measured relative to the hand without any visual anchors drawing responses, and this is also consistent with the reference used in the Tsay et al 2021 study and from many studies in the lab of D. Henriques (none of which also have any visual reach target when measuring proprioceptive estimates). So we suggest using a different data set that also measures Xp without any other influences, such as the data from Tsay et al 2021 instead.

      These issues with the data are not superficial and can not be solved within the model. Data with correctly measured biases (relative to the hand) that are not dominated by irrelevant visual attractors would actually be informative about the validity of the PEA model. Dr. Tsay has so much other that we recommend using a more to-the-point data set that could actually validate the PEA model.

    1. 4.4. How Data Informs Ethics# Think for a minute about consequentialism. On this view, we should do whatever results in the best outcomes for the most people. One of the classic forms of this approach is utilitarianism, which says we should do whatever maximizes ‘utility’ for most people. Confusingly, ‘utility’ in this case does not refer to usefulness, but to a sort of combo of happiness and wellbeing. When a utilitarian tries to decide how to act, they take stock of all the probable outcomes, and what sort of ‘utility’ or happiness will be brought about for all parties involved. This process is sometimes referred to by philosophers as ‘utility calculus’. When I am trying to calculate the expected net utility gain from a projected set of actions, I am engaging in ‘utility calculus’ (or, in normal words, utility calculations). Now, there are many reasons one might be suspicious about utilitarianism as a cheat code for acting morally, but let’s assume for a moment that utilitarianism is the best way to go. When you undertake your utility calculus, you are, in essence, gathering and responding to data about the projected outcomes of a situation. This means that how you gather your data will affect what data you come up with. If you have really comprehensive data about potential outcomes, then your utility calculus will be more complicated, but will also be more realistic. On the other hand, if you have only partial data, the results of your utility calculus may become skewed. If you think about the potential impact of a set of actions on all the people you know and like, but fail to consider the impact on people you do not happen to know, then you might think those actions would lead to a huge gain in utility, or happiness. When we think about how data is used online, the idea of a utility calculus can help remind us to check whether we’ve really got enough data about how all parties might be impacted by some actions. Even if you are not a utilitarian, it is good to remind ourselves to check that we’ve got all the data before doing our calculus. This can be especially important when there is a strong social trend to overlook certain data. Such trends, which philosophers call ‘pernicious ignorance’, enable us to overlook inconvenient bits of data to make our utility calculus easier or more likely to turn out in favor of a preferred course of action. Can you think of an example of pernicious ignorance in social media interaction? What’s something that we might often prefer to overlook when deciding what is important? One classic example is the tendency to overlook the interests of children and/or people abroad when we post about travels, especially when fundraising for ‘charity tourism’. One could go abroad, and take a picture of a cute kid running through a field, or a selfie with kids one had traveled to help out. It was easy, in such situations, to decide the likely utility of posting the photo on social media based on the interest it would generate for us, without thinking about the ethics of using photos of minors without their consent. This was called out by The Onion in a parody article, titled “6-Day Visit To Rural African Village Completely Changes Woman’s Facebook Profile Picture”. The reckoning about how pernicious ignorance had allowed many to feel comfortable leaving the interests of many out of the utility calculus for use of images online continued. You can read an article about it here, or see a similar reckoning discussed by National Geographic: “For Decades, Our Coverage Was Racist. To Rise Above Our Past, We Must Acknowledge It”.

      This section particularly the exploration of utilitarianism in the context of social media, provides a thought-provoking perspective on ethical decision-making. The concept of the utility calculus as a method of predicting the outcomes and moral implications of our actions highlights the importance of comprehensive data collection and the potential pitfalls of biased or incomplete data. The discussion cleverly highlighted the challenges of navigating social media in an ethical manner, which must consider

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study reports jAspSnFR3, a biosensor that enables high spatiotemporal resolution of aspartate levels in living cells. To develop this sensor, the authors used a structurally guided amino acid substitution in a glutamate/aspartate periplasmic binding protein to switch its specificity towards aspartate. The in vitro and in cellulo functional characterization of the biosensor is convincing, but evidence of the sensor's effectiveness in detecting small perturbations of aspartate levels and information on its behavior in response to acute aspartate elevations in the cytosol are still lacking.

      We thank the reviewers and editors for the detailed assessment of our work and for their constructive feedback. Most comments have now been experimentally addressed in the revised manuscript, which we feel is substantially improved from the initial draft.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Davidsen and coworkers describe the development of a novel aspartate biosensor jAspSNFR3. This collaborative work supports and complements what was reported in a recent preprint by Hellweg et al., (bioRxiv; doi: 10.1101/2023.05.04.537313). In both studies, the newly engineered aspartate sensor was developed from the same glutamate biosensor previously developed by the authors of this manuscript. This coincidence is not casual but is the result of the need to find tools capable of measuring aspartate levels in vivo. Therefore, it is undoubtedly a relevant and timely work carried out by groups experienced in aspartate metabolism and in the generation of metabolite biosensors.

      Reviewer #2 (Public Review):

      In this work the IGluSnFR3 sensor, recently developed by Marvin et al (2023) is mutated position S72, which was previously reported to switch the specificity from Glu to Asp. They made 3 mutations at this position, selected a S72P mutant, then made a second mutation at S27 to generate an Asp-specific version of the sensor. This was then characterized thoroughly and used on some test experiments, where it was shown to detect and allow visualization of aspartate concentration changes over time. It is an incremental advance on the iGluSnFR3 study, where 2 predictable mutations are used to generate a sensor that works on a close analog of Glu, Asp. It is shown to have utility and will be useful in the field of Asp-mediated biological effects.

      Reviewer #3 (Public Review):

      In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows monitoring in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration. One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn't corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.

      Reviewer #1 (Recommendations For The Authors):

      The authors should evaluate the effectiveness of the sensor in detecting small perturbations of aspartate levels and its behavior in response to acute aspartate elevations in the cytosol. In vivo aspartate determinations were performed exclusively in conditions that cause aspartate depletion. By means the use of mitochondrial respiratory inhibitors or aspartate withdrawal, it was determined the reliability of the sensor performing readings during relatively long periods, until reaching a steady-state of aspartate-depletion 12-60 hours later. Although in Hellweg and coworkers, it has been demonstrated that a related aspartate sensor could detect increases in aspartate in cell overexpressing the aspartate-glutamate GLAST transporter, the differences reported here between both sensors advise testing whether this aspect is also improved, or not, using jAspSNFR3.

      Similarly, Davidsen et al. did not test if the sensor can be able to detect transient variations in cytosolic aspartate levels. In proliferative cells aspartate synthesis is linked to NAD+ regeneration by ETC (Sullivan et al., 2015, Cell), indeed the authors deplete aspartate using CI or CIII inhibitors but do not analyze if those are recovered, and increased, after its removal. Furthermore, the sequential addition of oligomycin and uncouplers could generate measurable fluctuations of aspartate in the cytosol.

      We agree with the reviewer that only including situations of aspartate depletion in our cell culture experiments provided an incomplete evaluation of the utility of this biosensor. In the revised manuscript we provide three additional experiments using secondary treatments that restore aspartate synthesis to conditions that initially caused aspartate depletion. First, we conducted experiments where cells expressing jAspSnFR3/NucRFP were changed into media without glutamine, inducing aspartate depletion, with glutamine being replenished at various time points to observe if GFP/RFP measurements recover. As expected, glutamine withdrawal caused a decay in the GFP/RFP signal and we found that restoring glutamine caused a subsequent restoration of the GFP/RFP signal at all time points, with each fully recovering the GFP/RFP signal over time (Revised Manuscript Figure 2E). Next, we conducted the experiment suggested by the reviewer, testing whether the published finding, that oligomycin induced aspartate limitation can be remedied by co-treatment with electron transport chain uncouplers, could be visualized using jAspSnFR3 measurements of GFP/RFP. Indeed, after 24 hours of oligomycin induced aspartate depletion, treatment with the ETC uncoupler BAM15 dose dependently restored GFP/RFP signal (Revised Manuscript Figure 2G). Finally, we also measured whether the ability of pyruvate to mitigate the decrease in aspartate upon co-treated with rotenone (Figure 2B) could also be detected in a sequential treatment protocol after aspartate depletion. Indeed, after 24 hours of aspartate depletion by rotenone treatment, the GFP/RFP signal was rapidly restored by additional treatment with pyruvate (Revised Manuscript Figure 2, figure supplement 1C). Collectively, these results provide support for the utility of jAspSnFR3 to measure transient changes in aspartate levels in diverse metabolic situations, including conditions that restore aspartate to cells that had been experiencing aspartate depletion.

      Reviewer #2 (Recommendations For The Authors):

      Weaknesses: Sensor basically identical to iGluSnFR3, but nevertheless useful and specific. The results support the conclusions, and the paper is very straightforward. I think the work will be useful to people working on the effects of free aspartate in biology and given it is basically iGluSnFR3, which is widely used, should be very reproducible and reliable.

      We appreciate the reviewer’s comment that sensor is useful for specific detection of aspartate. We agree that the advance of the paper is primarily in demonstrating its utility to measure aspartate, rather than any fundamental innovation on the biosensor approach. We hope the fact that jAspSnFR3 derives from a well validated biosensor (iGluSnFR3) will support its adoption.

      Reviewer #3 (Recommendations For The Authors):

      Although this is a well-performed study, I have some comments for the authors to address:

      1) A red tag version of the sensor (jAspSnFR3-mRuby3) was generated for normalization purposes, with this the authors plan to correct GFP signal from expression and movement artifacts. I naturally interpret "movement artifacts" as those generated by variations in cell volume and focal plane during time-lapse experiments. However, it was mentioned that jAspSnFR3-mRuby3 included a histidine tag that may induce a non-specific effect (responses to the treatment with some amino acids). This suggests that a version without the tag needs to be generated and that an alternative design needs to be set for normalization purposes. A nuclear-localized RFP was expressed in a second attempt to incorporate RFP as a normalization signal. Here the cell lines that express both signals (sensor and RFP) were generated by independent lentiviral transductions (insertions). Unless the number of insertions for each construct is known, this approach will not ensure an equimolar expression of both proteins (sensor and RFP). In this scenario is not clear how the nuclear expression of RFP will help the correction by expression or monitor changes in cell volume. The authors may be interested in attempting a bicistronic system to express both the sensor and RFP.

      The reviewer noted several potential issues concerning the use of RFP for normalization, which will be separated into sections below:

      Movement artifacts:

      We are glad the reviewer raised this issue since we see how it was confusingly worded. We have deleted the text “and movement artefacts” from the sentence.

      His-tag and non-specific responses to some amino acids:

      We also found it concerning that non-specific responses to amino acids could potentially contribute to our RFP normalization signal, and so we conducted additional experiments to address whether this was likely to be an issue in intracellular measurements. We first tested whether the non-specific signal was related to the histidine tag, or was intrinsic to the mRuby3 protein itself, by comparing the fluorescence response to a titration of histidine (which showed the largest effect of red fluorescence), aspartate, and GABA (structurally related to glutamate and aspartate, but lacking a carboxylate group) across a group of mRuby containing variants, with or without histidine tags. We replicated the non-specific signal originally observed in jAspSnFR3-mRuby3-His and found that another biosensor with a histidine tagged on the C terminus of mRuby3 had a similar response (iGlucoSnFR2.mRuby3-His), as did mRuby3-His alone, indicating that the aspect of being fused with jAspSnFR3 or another binding protein was not required for this effect. Additionally, we also compared the fluorescence response of lysates expressing mRuby2 and mRuby3 without histidine tags and found that the non-specific signal was essentially absent (Revised Manuscript Figure 1, figure supplement 4B-D). Collectively. These data support our original hypothesis that the histidine tag was responsible for the non-specific signal, alleviating concerns about more substantial protein design issues or with using nuc-RFP for normalization. Since we also found that measuring aspartate signal using GFP/RFP ratios from cells with linked the jAspSnFR3-Ruby3-His agreed with measurements from cells separately expressing jAspSnFR3 and nucRFP (without a His tag), and the amino acid concentrations needed to significantly alter His tagged Ruby3 signal are above those typically found in cells, we conclude that this is unlikely to be a significant factor in cells. Nonetheless, we have added all the relevant data to the manuscript to allow readers to make their own decision about which construct would be best for their purposes.

      Original text:

      "Surprisingly, the mRuby3 component responds to some amino acids at high millimolar concentrations, indicating a non-specific effect, potentially interactions with the C-terminal histidine tag (Figure 1—figure Supplement 2, panel B). Notably, this increase in fluorescence is still an order of magnitude lower than the green fluorescence response and it occurs at amino acid concentrations that are unlikely to be achieved in most cell types."

      Revised text:

      "Surprisingly, the mRuby3 fluorescence of affinity-purified jAspSnFR3.mRuby3 responds to some amino acids at high millimolar concentrations, indicating a non-specific effect (Figure 1—figure Supplement 4, panel A). This was determined to be due to an unexpected interaction with the C-terminal histidine tag and could be reproduced with other proteins containing mRuby3 and purified via the same C-terminal histidine tag (Figure 1—figure Supplement 4, panel B and C). Interestingly, a structurally related, non-amino acid compound, GABA, does not elicit a change in red fluorescence; indicating, that only amino acids are interacting with the histidine tag (Figure 1—figure Supplement 4, panel D). Nevertheless, most of our cell culture experiments were performed with nuclear localized mRuby2, which lacks a C-terminal histidine tag, and these measurements correlated with those using the histidine tagged jAspSnFR3-mRuby3 construct (Figure 1—figure Supplement 1 panel D)."

      Lentiviral transductions

      We agree that splitting the two fluorescent proteins across two expression constructs and infections effectively guarantees that there will not be equimolar expression of jAspSnFR3 and RFP, however we do not think equimolar expression is necessary in this context. The primary goal of RFP measurements in these experiments (and in experiments using the jAspSnFR3-mRuby3 fused construct) is to control for global alterations in protein expression that might confound the interpretation that a change in GFP fluorescence corresponds to a change in aspartate levels. While a bicistronic system is arguably a better approach to improve the similarity of expression of jAspSnFR3 and nuc-RFP in a cell, we only require that the cells have consistent expression of both proteins across all cells in the population, not that the expression of one necessarily be a similar molarity to the other. We accomplish consistent expression of proteins by single cell cloning after expression of jAspSnFR3 and nucRFP (or jAspSnFR3-mRuby3), and screening for clones that have high enough expression of both proteins such that they are well detected by standard Incucyte conditions. Given that our data do not identify an obvious downside to separate expression of jASPSnFR3 and nuc-RFP compared to the fused jAspSnFR3-mRuby3 construct (where the fluorescent proteins are truly equimolar) (Figure 2, Figure Supplement 1C), we elected to prioritize the separate jAspSnFR3 and nuc-RFP combination, which provides additional opportunities to measure cell number in the same experiment (see below).

      2) The authors were interested in establishing the temporal dynamics of aspartate depletion by genetics and pharmaceutical means. For the inhibition of mitochondrial complex I rotenone and metformin were used. Although the assays are clearly showing aspartate depletion the report of cell viability is missing. Considering that glutamine deprivation induces arrest in cell proliferation, I think will be important to know the conditions of the cell cultures after 60 hours of treatment with such inhibitors.

      We agree that ensuring that cells are still viable in conditions where aspartate is depleted, as determined by GFP/RFP in jAspSnFR3 expressing cells, is an important goal. To this end, we added a new experiment investigating the restoration of glutamine on the GFP/RFP signal at different time points after glutamine depletion (Revised Manuscript Figure 2E, see response to reviewer 1). One advantage of using the nuclear RFP as a normalization marker is that it also enables measurements of nuclei counts, a surrogate measurement for cell number. In the same glutamine depletion experiment we therefore measured cell counts using nuclear RFP incidences and confluency as measurements of cell proliferation/growth. In both cases, the arrest in cell proliferation upon glutamine withdrawal was obvious, as was the restoration of cell proliferation following glutamine replenishment, with the amount of growth delay corresponding to the length of glutamine withdrawal (Revised Manuscript Figure 2, Figure Supplement 2A-B). Nonetheless, there was no obvious lasting defects in restarting cell proliferation even after 12 hours of glutamine withdrawal, indicating that cell viability is preserved. In the case of mitochondrial inhibitors, we also observe even that after 24 hours of treatment with oligomycin or rotenone, restoration of aspartate synthesis from BAM15 or pyruvate, respectively, can also restore GFP/RFP signal, supporting the conclusion that cellular metabolism is still active in these conditions (Revised Manuscript Figure 2G; Revised Manuscript Figure 2, figure supplement 1C).

      3) The pH sensitivity was checked in vitro with jAspSnFR3-mRuby3 and the sensor reported suitable for measurements at physiological pH. It would be an opportunity to revisit the analysis for pH sensitivity in cultured cells using an untagged version of jAspSnFR3 coupled, for example, to a sensor for pH.

      We thank the reviewer for the suggestion and agree that pH effects on sensor signal could be a confounding factor in some conditions. Unfortunately, measuring intracellular pH is not trivial and using multiple fluorescent sensors that change simultaneously would be complex to interpret, particularly in the absence of controls to unambiguously control intracellular pH and aspartate concentrations. Thus, we believe that proper investigation of the variable of pH is beyond the scope of this study. Nonetheless, we agree that measuring the contribution of pH to sensor signal is an important goal for future work, particularly if deploying it in conditions likely to cause substantial pH differences, such as comparing compartmentalized signal of jAspSnFR3 in the cytosol and mitochondria. We have added the following italicized text to the conclusions section to underscore this point:

      “Another potential use for this sensor would be to dissect compartmentalized metabolism, with mitochondria being a critical target, although incorporating the influence of pH on sensor fluorescence will be an important consideration in this context.”

      4) While the authors take an interesting approach to measuring intracellular aspartate concentration, it will be highly desirable if a calibration protocol can be designed for this sensor. Clearly, glutamine depletion grants a minimal ("zero") aspartate concentration. However, having a more dynamic way for calibration will facilitate the introduction of this tool for metabolism studies. This may be achieved by incorporating a cultured cell that already expresses the transporter or by ectopic expression in the cells that have already been used.

      We appreciate the suggestion and would similarly desire a calibration protocol to serve as a quantitative readout of aspartate levels from fluorescence signal, if possible. While we do calibrate jAspSnFR3 fluorescence in purified settings, conducting an analogous experiment intracellularly is currently difficult, if not impossible. While we have several methods to constrain the production rate of aspartate (glutamine withdrawal, mitochondrial inhibitors, and genetic knockouts of GOT1 and GOT2), we cannot prevent cells from decreasing aspartate consumption and so cannot get a true intracellular zero to aid in calibration. Additionally, the impermeability of aspartate to cell membranes makes it challenging to specifically control intracellular concentrations using environmental aspartate, and the best-known aspartate transporter (SLC1A3) is concentrative and so has the reciprocal problem. Considering these issues, we are wary of implying to readers that any specific fluorescence measurement can be used to directly interpret aspartate concentration given the many variables that can impact its signal, both related to the biosensor system itself (expression of jAspSnFR3, expression of Nuc-RFP, sensitivity and settings of the fluorescence detector) and based on cell intrinsic variability (differences in basal ASP levels, different sensitivity to treatments, influence of pH, etc.). We maintain that jAspSnFR3 has utility to measure relative changes in aspartate within a cell line across treatment conditions and over time, but absolute quantitation of aspartate still will require complementary approaches, like mass spectrometry, enzymatic assays, or NMR.

      5) jAspSnFR3 seems to have the potential to be incorporated easily for several research groups as a main tool. In general, a minor correction to replace F/F with ΔF/F in the text.

      Thank you for catching this error, the text has been edited accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors provide evidence to show that an increase in Kv7 channels in hilar mossy cells of Fmr1 knock out mice results in a marked decrease in their excitability. The reduction in excitatory drive onto local hilar interneurons produces an increased excitation/inhibition ratio in granule cells. Inhibiting Kv7 channels can help normalize the excitatory drive in this circuit, suggesting that they may represent a viable target for targeted therapeutics for fragile-x syndrome.

      Strengths:

      The work is supported by a compelling and thorough set of electrophysiological studies. The authors do an excellent job of analysing their data and present a very complete data set.

      We thank the Reviewer for the positive comments.

      Weaknesses:

      There are no significant weaknesses in the experimental work, however the complexity of the data presentation and the lack of a schematic showing the organizational framework of this circuit make the data less accessible to non-experts in the field. I highly encourage a graphical abstract and network diagram to help individuals understand the implications of this work.

      We thank the Reviewer for the suggestion, and added a schematic of the dentate network organization (Figure 1A).

      The work is important as it identifies a unique regional and cell-specific abnormality in Fmr1 KO mice, showing how the loss of one gene can result in region-specific changes in brain circuits.

      Reviewer #2 (Public Review):

      Summary:

      Deng et al. investigate, for the first time to my knowledge, the role that hippocampal dentate gyrus mossy cells play in Fragile X Syndrome. They provide strong evidence that, in slice preparations from Fmr1 knockout mice, mossy cells are hypoactive due to increased Kv7 function whereas granule cells are hyperactive compared to slices from wild-type mice. They provide indirect evidence that the weakness of mossy cell-interneuron connections contributes to granule cell hyperexcitability, despite converse adaptations to mossy cell inputs. The authors show that application of the Kv7 inhibitor XE991 is able to rescue granule cell hyperexcitability back to wild-type baseline, supporting the overall conclusion that inhibition of Kv7 in the dentate may be a potential therapeutic approach for Fragile X Syndrome. However, any claims regarding specific circuit-based intervention or analysis are limited by the exclusively pharmacological approach of the manipulations.

      Strengths:

      Thorough electrophysiological characterization of mossy cells in Fmr1 knockout mice, a novel finding.

      Their electrophysiological approach is quite rigorous: patched different neuron types (GC, MC, INs) one at a time within the dentate gyrus in FMR1 KO and WT, with and without 'circuit blockade' by pharmacologically inhibiting neurotransmission. This allows the most detailed characterization possible of passive membrane/intrinsic cell differences in the dentate gyrus of Fmr1 knockout mice.

      Provide several examples showing the use of Kv7 inhibitor XE991 is able to rescue excitability of granule cell circuit in Fmr1 knockout mice (AP firing in the intact circuit, postsynaptic current recordings, theta-gamma coupling stimulation).

      We thank the Reviewer for the positive comments.

      Weaknesses:

      The implications for these findings and the applicability of the potential treatment for the disorder in a whole animal are limited due to the fact that all experiments were done in slices.

      We appreciate the Reviewer’s point and agree. To address this concern, we have revised the Discussion to state that “the applicability of a circuit-wide approach as a potential treatment in vivo will require extensive future behavioral analyses, which are beyond the scope of the current study”. We also now emphasize in Discussion that “these findings provide a proof-of-principle demonstration that a circuit-based intervention can normalize dynamic E/I balance and restore dentate circuit output in vitro”.

      The authors' interpretation of the word 'circuit-based' is problematic - there are no truly circuit-specific manipulations in this study due to the reliance on pharmacology for their manipulations. While the application of the Kv7 inhibitor may have a predominant effect on the circuit through changes to mossy cell excitability, this manipulation would affect many other cells within the dentate and adjacent brain regions that connect to the dentate that express Kv7 as well.

      We appreciate the reviewer’s point but would like to clarify that by using a term “circuit-based” we did not intend to imply that it is a “’circuit-specific” intervention. Our intended interpretation of the term ‘circuit-based’ stems from the following reasoning: the dentate circuit has two types of excitatory neurons which show opposite excitability defects in FXS mice, thus presenting an irreconcilable conflict to correct pharmacologically for each cell type individually. Instead, we sought an approach to correct the overall dentate circuit output, rather than to restore excitability defects of individual cell types. Notably, when we pharmacologically isolated granule cells from the circuit, inhibition of Kv7 failed to restore their excitability, suggesting that normalization of the dentate output depends on the circuit activity. Since we focused on correcting dentate output using such a circuit-dependent approach, we used the term ‘circuit-based intervention’ to emphasize this notion.

      Reviewer #3 (Public Review):

      The paper by Deng, Kumar, Cavalli, Klyachko describes that, unlike in other cell types, loss of Fmr1 decreases the excitability of hippocampal mossy cells due to up-regulation of Kv7 currents. They also show evidence that while muting mossy cells appears to be a compensatory mechanism, it contributes to the higher activity of the dentate gyrus, because the removal of mossy cell output alleviates the inhibition of dentate principal cells. This may be important for the patho-mechanism in Fragile X syndrome caused by the loss of Fmr1.

      These experiments were carefully designed, and the results are presented ‎in a very logical, insightful, and self-explanatory way. Therefore, this paper represents strong evidence for the claims of the authors. In the current state of the manuscript, there are only a few points that need additional explanation.

      We thank the Reviewer for the positive comments.

      One of the results, which is shown in the supplementary dataset, does not fit the main conclusions. Changes in the mEPSC frequency suggest that in addition to the proposed network effects, there are additional changes in the synaptic machinery or synapse number that are independent of the actual activity of the neurons. Since the differences of the mEPSC and sEPSC frequencies are similar and because only the latter can signal network effects, while the former is typically interpreted as a presynaptic change, it cannot be claimed that sEPSC frequency changes are due to the hypo-excitability of mossy cells.

      We thank the Reviewer for this important point and agree. To address this concern, we now state in Results that “We note that changes in the excitatory drive onto interneurons include both mEPSC and sEPSC frequencies, which reflect not only potential deficits in excitability of their input cells, such as MCs, but also changes in synaptic connectivity/function, that may arise from homeostatic circuit reorganization/compensation (see Discussion)”.

      We also now emphasize this point in Discussion by stating that “alterations in excitatory drives, including both mEPSC and sEPSC frequencies onto interneurons, suggest changes in the excitatory synapse number and/or function. Together with alterations in inhibitory drives these changes may reflect compensatory circuit reorganization of both excitatory and inhibitory connections, including mossy cell synapses”.

      We also note in Discussion that “Such circuit reorganization can explain the balanced E/I drive onto granule cells in Fmr1 KO mice we observed in the basal state, which can result from reorganization of excitatory and inhibitory axonal terminals”.

      Notably, our findings that Kv7 blocker acting by increasing MC excitability is sufficient to correct dentate output, supports the notion that hypo-excitability of mossy cells is a major factor contributing to dentate circuit E/I imbalance. This does not exclude the presence of additional mechanisms contributing to E/I imbalance, such as changes of synaptic connectivity or release machinery. To reflect this point, we revised the Results to temper the initial claim that “this analysis supports the notion that the hypo-excitability of MCs in Fmr1 KO mice caused (now replaced with “is a major factor contributing to”) the reduction of excitatory drive onto hilar interneurons, which ultimately results in reduced local inhibition”.

      An apparent technical issue may imply a second weak point in the interpretation of the results. Because the IPSCs in the PP stimulation experiments (Fig 8) start within a few milliseconds, it is unlikely that its first ‎components originate from the PP-GC-MC-IN feedforward inhibitory circuit. The involvement of this circuit and MCs in the Kv7-dependent excitability changes is the main implication of the results of this paper. But this feedforward inhibition requires three consecutive synaptic steps and EPSP-AP couplings, each of them lasting for at least 1ms + 2-5ms. Therefore, the inhibition via the PP-GC-MC-IN circuit can be only seen from 10-20ms after PP stimulation. The earlier components of the cPSCs should originate from other circuit elements that are not related to the rest of the paper. Therefore, more isolated measurements on the cPSC recordings are needed ‎which consider only the later phase of the IPSCs. This can be either a measurement of the decay phase or a pharmacological manipulation that selectively enhances/inhibits a specific component of the proposed circuit.

      We appreciate the Reviewer’s point. As we mentioned in Results: “The EPSP measured in granule cells in response to the PP stimulation integrates both excitatory and inhibitory synaptic inputs onto granule cells, including the direct synaptic input from the PP and all the PP stimulation-associated feedforward and feedback synaptic inputs. In other words, the EPSP in granule cells integrates all dentate circuit ‘operations’.” As the Reviewer pointed out, this is also the case in the measurements of cPSCs, which comprise all of PP stimulation-associated feedforward and feedback inhibition. We thank the Reviewer for the suggestion to isolate specific components of IPSC. However, we did not attempt to do it in this study for three reasons. First, activity of all of these circuit components likely overlaps extensively in time and it is difficult to identify the specific time point that can separate contributions from earlier canonical feed-forward and feed-back components from the contribution of the later MC-dependent PP-GC-MC-IN feed-forward component. Notably the tri-synapse PP-GC-MC-IN component differs temporarily from the canonical di-synaptic (PP-GC-IN) feed-back inhibition only by a single synaptic activation step, resulting in only a few milliseconds difference. Moreover, the temporal differences in the contributions of these components vary widely among different recordings making a uniform analysis very difficult. Second, we used three different metrics to assess E/I changes in cPSC measurements, which capture a wide range of temporal processes and their integration, including peak-to-peak measurements, the charge transfer, and the excitation window metrics. Third, the principal readout in our study was the overall dentate output (i.e., granule cell firing), which reflects the integration of all dentate circuit ‘operations’ thus making the overall cPSC measurements appropriate, in our view, for this readout.

      I suggest refraining from the conclusions saying "‎MCs provide at least ~51% of the excitatory drive onto interneurons in WT and ~41% in KO mice", because too many factors (eg. IN cell types, slice condition, synaptic reliability) are not accounted for in these actual numbers, and these values are not necessary for the general observation of the paper.

      We thank the reviewer for this suggestion, and have revised the manuscript accordingly.

      There are additional minor issues about the presentation of the results.

      We have carefully checked and corrected the minor errors that reviewer pointed out.

      Recommendations for the authors:

      Revisions that are considered essential for improved assessment regarding the strengths of support of the claims:

      • Temper claims regarding circuit-based effects

      • Temper claims regarding very specific quantitative assessments of synaptic drives

      • Differentiate between monosynaptic inputs and inputs arriving through multiple synaptic contacts with proper analytical techniques.

      We appreciate these suggestions and have revised the manuscript to address the concerns raised by the reviewers.

      Reviewer #1 (Recommendations For The Authors):

      The authors do an outstanding job of reviewing and presenting all of their data. This is a paper I will recommend all of my trainees read, as it is an excellent example of a complete research project. While I am impressed with the effort involved, I also wondered if the complexity and thoroughness of their presentations could make the story less accessible to non-expert readers. My comments are simply intended to help them present a more coherent and succinct story to a wider audience, though I am not sure I really provide any meaningful changes. This is simply a very thorough and complete body of work that the authors should be commended for. After reading it I felt they had gone above and beyond what most authors would provide in terms of data to support their story, and thus I had no doubt that a change in Kv7 plays a role in changing the excitability of the network.

      We thank the Reviewer for the positive comments and great suggestions. We have made numerous changes to present our work in a more coherent and succinct way, in part by re-plotting some of the figures, as well as by adding a schematic of the dentate circuit in Figure 1.

      Figure 1. A visual of mossy cells and the local circuit they are studying would be a useful addition to Figure. 1. I also feel this is important for conveying the story of how hypo-excitability can impact the E/I of the network. I think it has to be more of a cell structure/circuit-based figure than is presented in Supplementary Figure 8.

      We thank the reviewer for this suggestion. We have added a schematic of the dentate circuit with all major cell types involved in Figure 1A.

      Figure 1. A, B, and C tell a coherent story and are easy to understand. The interpretation of the phase plot in D is harder to access. Perhaps having this as a separate figure and providing a clearer presentation of the way the phaseplot was created (see Figure 3 Bove et al., 2019, Neuroscience 418; DOI: 10.1016/j.neuroscience.2019.08.048)

      We appreciate the Reviewer’s point and agree. In order to keep Figure 1 more concise and readable, we removed the phase plot in the revised version. This change did not negatively impact the result presentation because the primary aim of this plot was to visualize changes in voltage threshold in an alternative way, but it was already clearly shown by the ramp-evoked AP traces (revised Figure 1D, insert), and thus was not essential to show.

      Figure 1 E-N might be better situated in a supplementary graph as the characteristics of the AP aren't changing.

      We understand the Reviewer’s point, but we feel it would be better to keep all action potential metrics together in one figure, to show that only a specific subset of parameters was affected in Fmr1 KO mice.

      Figure 2: (A-D) I am not sure having so many figures is required given the focus is on having a small change in Ir at one membrane potential. I do worry that the significance appears to be due to 2 cells with an IR of over 100 in the WT group and 2 with an IR of around 62 in the KO group. All other cells are between 75-100 in both groups. I also worry a bit bc in the literature IRs between 55 and 125 seem to be commonly reported by groups that do this work normally (Buzsacki, Westbrook, etc.). I would be cautious about making too much out of this result.

      We thank the Reviewer for these comments. We have performed additional analyses of these data, as also suggested by Reviewer 3 (Point #1), and improved presentation of the data in Figure 2D-F by showing the effect of XE991 on increasing input resistance in WT vs KO. We also plotted other panels in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991, which makes the results easy to follow. For more details, please also see the response to Reviewer 3, Point 1.

      Figure 2D-E: As in the text, this result is really pointing towards there being a Kv7 issue. Worries about the data in D aside, I think these two figures alone tell a clearer story. Figure 3 on the other hand tells a story of the effects of blocking Kv7 on membrane potential. Is this central to the story the others are trying to tell?

      We thank the reviewer for this point. We believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figure 3. This is an interesting finding that shows how detailed their analysis was. Showing that the change in holding current in KO animals is greater than in WT is the first solid piece of evidence that there is a change in Kv7 in these cells that affects their excitability.

      We appreciate the reviewer’s comment. As mentioned above, we believe that Figure 2, Figure 3 and Figure 4—figure supplement 1 together provide strong and multifaceted evidence to support changes in Kv7 function in Fmr1 KO mossy cells.

      Figures 4 and 5 provide additional detail to support the idea that Kv& changes by showing how the E/I ratio and spontaneous minis are shifted in KO animals.

      We thank the Reviewer for the comments.

      Figures 6-8 build a compelling story for the reduction in excitatory drive in mossy cells affecting the network dynamics in excitatory/inhibitory interactions in DG cells.

      We appreciate the Reviewer’s comment.

      Reviewer #2 (Recommendations For The Authors):

      1) Other than location and characteristic morphology, the other parameters that were used to identify mossy cells and granule cells were also parameters used to find differences in cellular properties between wild-type and Fmr1 KO mice (RMP, sEPSC frequency, etc.), which would confound the results shown. The use of available transgenic mouse lines would provide for a more unbiased screen of these cells. Afterhyperpolarization was also used as a parameter while screening cells, yet none of the data on this measurement is shown.

      We thank the reviewer for this point and agree that transgenic mouse lines provide a more unbiased way to identify various types of neurons. However, since the present study involves analyses of at least three different types of neurons, establishing multiple transgenic lines labeling different types of dentate neurons in the Fmr1 KO mouse model would be very time consuming and beyond the current resources of the lab. We would also like to clarify that the three types of dentate neurons are easily distinguished according to the large differences in location, morphology and basal electrophysiological properties, none of which were essential in defining differences between genotypes. Specifically, granule cells are located in the granule cell layer, have a small cell body (<10 m), RMP around -80mV, capacitance ~20 pF, and infrequent sEPSCs (<20 events/min); mossy cells are located in the hilus, have a large cell body (>15 m), RMP around -65 mV, capacitance >100 pF, and fast afterhyperpolarization less than -10 mV (WT –5.1 ± 0.7 mV, KO -5.8 ± 0.5 mV); interneurons are located in the hilus or border of granule cell layer, have a relative smaller cell body (10-15 m), RMP around -55 mV, capacitance <60 pF, and afterhyperpolarization larger than -15 mV (WT -20.4 ± 1.3 mV, KO -19.8 ±1.4 mV). We note that the cells that could not be definitively classified into the three categories were not included in analyses, and we have now clarified this further in the Methods. To address the reviewer’s second concern regarding AHP, we now provided the corresponding values in the Methods.

      2) A definitive way to test the cell-autonomous nature of the Kv7 changes would be to use female mice, who will have a mosaic of cells affected by the fragile X chromosome, and the Fmr1 KO cells could be engineered to express GFP to help identify them from wild-type cells.

      We agree and appreciate this suggestion. This could be an interesting follow up study to further verify the cell-autonomous nature of Kv7 changes.

      3) The authors heavily rely on XE991 as a selective Kv7 blocker. Is it blocking all Kv7 channels at the concentration used? If so, given the significant expression of Kv7 in the dentate as shown by Western blot, is it surprising that there is no effect of this inhibitor on wild-type slices in most cases?

      We thank the reviewer for this important point. We used 10x of IC50 concentration in the present study, suggesting that more than 80% of Kv7 should be blocked. Notably, we observed several effects of XE991 in WT mice: it significantly increased input resistance (new Figure 2D-F), and strongly enhanced AP firing evoked by step depolarization (Figure 7E-H), although we did not observe effect of XE991 in WT in the analyses of spiking evoked by theta-gamma stimulation in Figure 8. However, this is not surprising. If a parameter we measured is predominately cell-autonomous (for example, input resistance), the effects of XE991 are easy to observe. However, if a parameter reflects integration of all dentate circuit operations (for example, AP probability in response to theta-gamma stimulation), it is difficult to detect the effect of XE991 in WT mice because the dentate circuit of WT mice has larger capability to maintain E/I balance in response to XE991.

      4) E/I ratio is a helpful concept, and it is heavily relied upon in the results text, but statistically shaky, especially for sEPSC:sIPSCs since you are combining uncertainty in the sEPSC and sIPSC to make one very uncertain ratio that doesn't undergo any subsequent statistical confirmation (such as in Fig 4I).

      We appreciate the reviewer’s point and apologize for the confusion in presentation of Fig 4I (and 5I), due to lack of detailed explanation. The E/I ratio shown in Figs. 4I (and 5I) is a single data-point estimate calculated from the mean values of independent sEPSC and sIPSC measurements (Figs. 4G-H and 5G-H, respectively). This ratio was used only as an estimate/illustration of the changes, rather than a precise determination of the shift in E/I balance. Because there is only one data-point for this ratio, statistical analysis is not possible. For this reason we performed extensive additional analyses in Figures 7 and 8, in which the EPSC and IPSC were measured from the same cells and at the same time to define the actual E/I ratio with the corresponding statistical analyses (i.e., a real matched and dynamic E/I ratio).

      5) Is this mGlur2/CB1 specificity to PP/granule and MC axons, respectively, true in the Fmr1 KO mice? It is possible that mGluR2 and CB1 expression patterns are altered in FMR1 KO, thus the assumption used to isolate these distinct inputs may not hold true.

      This is a very good point. We do assume that the specificity of Group II mGluR and CB1 is similar between Fmr1 KO and WT mice, but this is an assumption that we have not directly verified. However, our results in Figures 7 and 8 strongly support this assumption, because if it were not true, then our intervention would be unlikely to correct the excessive dentate output.

      6) XE991 only normalized GC firing when other cells were not pharmacologically blocked. The authors suggest this means blockage of MC Kv7 reduces GC excitability back to normal...presumably by increasing MC --> IN --> GC firing. This is a conclusion from many indirect comparisons (comparing XE991 effect on GC with/without GABA and glutamate blockers; comparing MC firing rates with/without XE991, and using CB1 agonist versus mGluR2 agonist to say it is mossy cells that are mostly controlling INs) - a clincher experiment would be to acutely knockdown Kv7 in mossy cells specifically and measure GC and IN firing.

      Thank you, this is a great suggestion. Indeed, as an expansion of this project, in the future studies we are planning to manipulate excitability of mossy cells through manipulating Kv7, or using chemogenetic or optogenetic approaches.

      7) The reasoning behind the FMRP-Kv7 connection is quite weak, citing the paper Darnell 2011 as "translational target", but FMRP has myriad translational targets.

      We agree, and attempted to define the mechanism of increased Kv7 function using co-immunoprecipitation approach, as well as immunostaining to look at cell-type specific expression changes. However, both of these approaches were difficult to interpret due to technical limitations of the available antibodies. We also note that “We did not further investigate the precise mechanisms underlying enhancement of Kv7 function in the absence of FMRP, since the present study primarily focuses on the functional consequences of abnormal cellular and circuit excitability”. To address this concern, we extensively discussed the potential mechanisms of FMRP-Kv7 connection, acknowledged in Discussion that “further studies will be needed to elucidate the precise mechanism responsible for the increased Kv7 function in Fmr1 KO mice”, and will continue to investigate it in the future studies.

      8) The authors attempt to look for changes in Kv7 expression with Western blot, but since they hypothesize that Kv7 changes are mainly in the mossy cells, it is perhaps not surprising that they would not be able to see any changes when they look at dentate as a whole. Staining for Kv7 subunits to look at expression on a cellular level would be beneficial.

      We appreciate the reviewer’s suggestion. We attempted to perform the suggested experiments using immunostaining for KCNQ2, KCNQ3 and KCNQ5 in different subtypes of dentate neurons. However, these experiments failed to produce interpretable results due to technical limitations of the available antibodies.

      9) Is Kv7 localization or splice/composition different in FMR1 KO mice?

      This is a very good point. As we mentioned in Point 8 above, we were not able to perform these experiments and do not have the answer at this point.

      10) Regarding the 3 subtypes of interneurons in the dentate, the authors are pooling data based on similar intrinsic properties, but this conclusion may be affected by the low number of recorded neurons for the regular-spiking type. In addition, it is unclear whether these different interneuron types have differential circuit connectivity (most likely) which would make it imperative to keep circuit analysis for interneurons segregated into these cell types.

      We appreciate the reviewer’s point. Indeed, these different interneuron types may have distinct circuit connectivity and contributions to circuit activity. However, identification of these 3 types of interneurons and determination of their respective functions is in itself a very extensive set of experiments which is beyond the scope of the current manuscript. We also note that the functional readout of circuit activity in our measurements was the AP firing and EPSPs evoked in granule cells by PP stimulation, which integrate all dentate circuit operations, including all of the feedforward and feedback loops which are mediated by all of these different types of interneurons. For simplicity, we thus pooled all interneuron data for the purposes of this study. But we fully agree that extensive future work is required to elucidate interneuron-type specific changes in Fmr1 KO mice and their contributions to the dentate circuit dysfunction.

      11) To do statistics treating each cell individually, and therefore assuming each cell is independent of one another, is not correct. Two cells from the same mouse will be more similar than two cells from different mice, therefore they are not independent data points. Nested statistical methods (n cells from o slices from p mice) will be important in future work, as discussed by (Aarts et al., Nat. Neurosci. 2014).

      We agree with the Reviewer’s point and appreciate this suggestion. In the present study, the cells tested in electrophysiological experiments were from at least 3 different mice for each condition, which help minimize this kind of errors.

      Reviewer #3 (Recommendations For The Authors):

      Is there a difference in the Rin at -45mV of the control cell after the application of XE991? This is important to appreciate whether the XE991-sensitive conductances contribute to the basal excitability of MCs. Furthermore, the statistical comparison of the Rin at -45mV of the FXS animals in the control solution and in the presence of XE991 would be also important‎. Actually, the most accurate measurement would be to show a difference in the acute Kv7-blockade between control and FXS animals, if that is possible with this blocker. Additionally, it would be also informative if the bar graphs in Fig.2 D & E were merged for this purpose, similarly as in the later figures.

      We thank the Reviewer for this suggestion and agree. Following this suggestion, we have re-plotted the data in Figure 2 accordingly. Specifically, we now show that XE991 significantly increased input resistance in both WT and KO mossy cells, and the effect of XE991 on increasing input resistance was markedly larger in KO than WT mossy cells. For other figures, we have plotted data in a similar way to show the comparisons between WT and KO, as well as comparisons within genotype +/- XE991.

      Because of the cell-to-cell variability of the voltage responses, it would be more informative and representative if the average of traces from all cells were shown in Fig.2 D & E.

      We agree with the Reviewer’s point. For clarity of presentation, we presented the cell-to-cell variability of the data as scatter points of input resistance values in the bar graph (Figure 2E), together with the representative traces (Figure 2D). Plotting the average traces from all cells would result in a total of 30 traces for all the WT and KO mice, which is difficult to visually assess clearly.

      On page 7, please clarify the recorded cell type in this sentence: "In ‎contrast, WIN markedly reduced the number of sEPSCs in both WT and KO mice...".

      We thank the Reviewer for pointing out this omission and have clarified it in the revised version.

      In Figures 6 C, F, and I, the title of the Y-axis should be normalized frequency. Please also correct the figure legend accordingly because the current sentence can be also interpreted as the absolute or total number of events that were compared, irrespective of the duration of the recordings.

      We thank the Reviewer for this point and have corrected the revised version accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a valuable finding on the immunophenotypes of cancer treatment-related pneumonitis. The evidence supporting the claims of the authors is solid, although the inclusion of controls, as suggested by one of the reviewers, strengthened the study. The work will be of interest to cancer immunologists.

      Response: We are thankful for the editor's recognition of the contribution our study makes to understanding the immunophenotypes associated with cancer treatment-related pneumonitis. We agree that the inclusion of control data is pivotal for benchmarking biomarkers. While our initial study design was constrained by the availability of BALF from healthy individuals within clinical settings, we addressed this limitation by incorporating scRNA-seq data from healthy control and COVID-19 BALF cells sourced from the GSE145926 dataset. This additional analysis has provided a baseline for comparison, revealing that CD16 is expressed in a minority of T cells in healthy BALF, specifically 1.0% of CD4+ T cells and 1.6% of CD8+ T cells. The inclusion of this data as Figures 6H and 6I in our manuscript offers a robust context for the significant increase in CD16-expressing T cells observed in patients with PCP, thus enhancing the robustness of our study's conclusions.

      Author response image 1.

      Reviewer #1 (Recommendations For The Authors):

      Many thanks for giving me the opportunity to review your paper. I really enjoyed the way you carried out this work - for example, your use of a wide panel of markers and the use of two analytical methods - you have clearly given great thought to bias avoidance. I also greatly appreciated your paragraph on the limitations, as there are several, but you do not 'over-sell' your conclusions so there is no issue here for me.

      To improve the piece, there are a few typos (eg 318 - specific to alpha-myosin) and I was briefly confused about the highlighted clusters in Figure 4. Perhaps mention why they are highlighted when they first appear in 4D instead of E?

      Response: We have corrected the typos, and we have rearranged the sequence of Figures 3E and 3F, as well as 4D and 4E, to ensure a logical flow. Citrus-generated violin plots are now presented prior to the heatmap of the clusters, which better illustrates the progression of our analysis and the derivation of the clusters.

      In terms of improvements to the data, obviously it would have been ideal if you had had some sort of healthy control as a point of reference for all cohorts, but working in the field I understand the difficulties in getting healthy BAL. It would be worth your while however trying to find more supportive data in the literature in general. There are studies which assess various immune markers in healthy BAL eg https://journal-inflammation.biomedcentral.com/articles/10.1186/1476-9255-11-9. and so I think it is worth looking wrt the main findings. For example, are CD16+ T cells seen in healthy BAL or any other conditions (at present the COVID study is being over-relied on)? Could these cells be gamma deltas? (gamma deltas frequently express CD8 and CD16, and can switch to APC like phenotypes).

      Response: We are grateful for the reviewer's consideration of the practical challenges associated with collecting BALF from healthy individuals. Alternatively, we have supplemented our analysis with single-cell RNA sequencing data from BALF cells of healthy controls, as found in existing literature (Nature Medicine 2020; 26: 842-844). We have accessed to GSE145926 and downloaded data of BALF cells from healthy control (n=3) and severe COVID19 (n=6). The filtered gene-barcode matrix was first normalized using ‘NormalizeData’ methods in Seurat v.4 with default parameters. The top 2,000 variable genes were then identified using the ‘vst’ method in Seurat FindVariableFeatures function. Then PCA and UMAP was performed. T cells were identified as CD2 >1 and CD3E >1, and FCGR3A expression was explored using an expression threshold of 0.5. Violin plots and bar plots were generated by ggplot function.

      Regarding the pivotal finding of increased CD16-expressing T cells in patients with PCP, the scRNA-seq data mining indicates that CD16 is expressed by a minority of T cells in healthy BALF—1.0% of CD4+ T cells and 1.6% of CD8+ T cells. These figures, now incorporated into our revised manuscript as Figures 6H and 6I, substantiate our findings. These cells could be gamma delta T cells, but we could not confirm it with the limited data. We will investigate in the future study. The main text has been updated to reflect these findings.

      Author response image 2.

      I would agree with your approach of not going down the transcript route, so just focus on protein expression.

      I think you need to mention more about the impact of ICI on PD1 expression - in the methods you lose one approach owing to low T cell expression (132) but in the discussion you mention ICI induced high expression (311) as previously reported. This apparent contradiction needs an explanation.

      Response: We acknowledge the need for clarification regarding the impact of ICIs on PD-1 expression. In the methods section, the low detection of PD-1 expression on T cells in patients treated with nivolumab was indeed noted; this was due to the competitive nature of the PD-1 detection antibody EH12.2 with nivolumab. As reported by Suzuki et al. (International Immunology 2020; 32: 547-557), T cells from patients with ICI-induced ILD, including those treated with nivolumab, exhibit upregulated PD-1 expression, where the PD-1 detection antibody (clone: MIH4). Conversely, as outlined by Yanagihara et al. (BBRC 2020; 527: 213-217), the PD-1 detection antibody clone EH12.2 conjugated with 155Gd (#3155009B) used in our study is unable to detect PD-1 when patients are under nivolumab treatment due to competitive inhibition. The absence of a metal-conjugated PD-1 antibody with the MIH4 clone presented a limitation in our study. Ideally, we would have conjugated the MIH4 antibody with 155Gd for our analysis, which is a refinement we aim to incorporate in future research. We have now included this discussion in our manuscript to clarify the contradiction between the methodological limitations and the high PD-1 expression induced by ICIs, as reported in the literature. This addition will guide readers through the nuances of antibody selection and its implications for detecting PD-1 expression in the context of ICI treatment.

      Finally, since you have the severity data, it would be good to assess all the significantly different clusters against this metric, as you have done for CD16+ T cells. Not only may this reveal more wrt the impact of other immune populations, but it'll also give a point of reference for the CD16+ T cell data.

      Response: Thank you for the suggestion to assess all significantly different clusters against the disease severity metric. We have expanded our analysis to include a thorough correlation study between the disease severity and intensity of various T-cell markers. Notably, we observed that intensity of CCR7 expression correlates with the disease severity. Although the precise biological significance of this correlation remains to be elucidated, it may suggest a role for CCR7+ T cells in the pathogenesis or progression of the disease. We have considered the potential implications of this finding and included it as Supplementary Figure 5. We have also discussed this observation in the discussion section.

      Author response image 3.

      Overall though I think this is a really nice study, with a potentially very significant finding in linking CD16+ T cells with severity. Congratulations.

      Response: We would like to thank the reviewer’s heartful comments on our manuscript.

      Reviewer #2 (Recommendations For The Authors):

      General:

      1) The fact that this is a retrospective study should be indicated earlier in the paper.

      Response: Now we have mentioned the retrospective nature of the study in the method section as follows: In this retrospective study, patients who were newly diagnosed with PCP, DI-ILD, and ICI-ILD and had undergone BALF collection at Kyushu University Hospital from January 2017 to April 2022 were included. The retrospective study was approved by the Ethics Committee of Kyushu University Hospital (reference number 22117-00).

      2) tSNE and UMAP are dimensionality reduction techniques that don't cluster the cells, the authors should specify what clustering algorithm was used subsequently (e.g FlowSOM)

      Response: The cluster was determined manually by their expression pattern.

      3) With regards to the role of CD16 in a potential exacerbated cytotoxicity in the fatal PCP case, the authors could measure the levels of C3a related proteins in patient serum to link to a common immunopathogenic pathway with COVID.

      Response: We did not collect serum from the patients in this study as our research protocol was approved by the Ethics committee for the use of BALF only. However, we agree with your assessment that the measurement of serum C3a levels would be informative. In future studies, we will incorporate the measurement of serum C3a levels to provide more comprehensive insights into the impact of C3a on immune function. Thank you for your valuable feedback and for helping us to improve the quality of our research.

      Line-specific:

      101 The authors should provide some information on how the cryopreservation of the BALF was carried out.

      Response: Upon collection, BALF samples were immediately centrifuged at 300 g for 5 minutes to pellet the cells. The resultant cell pellets were then resuspended in Cellbanker 1 cryopreservation solution (Takara, catalog #210409). This suspension was aliquoted into cryovials and gradually frozen to –80ºC using a controlled rate freezing method to ensure cell viability. The samples were stored at –80ºC until required for experimental analysis. We have added the information in the method section.

      Fig 3B: It would be very helpful if the authors could add a supplementary figure with marker expression on the UMAP projection.

      Response: We have added Supplementary Figure 4 with marker expression on the UMAP projection in Figure 3B.

      Fig 4A: Same as Fig 3B

      Response: We have added Supplementary Figure 5 with marker expression on the UMAP projection in Figure 4A.

      Fig 5B: Same as Fig 3B

      Response: We have added Supplementary Figure 6 with marker expression on the tSNE projection in Figure 5B.

      266 Authors should state if the data is not shown with regards to differences in myeloid cell fractions

      430 Marker intensity is not shown in panel D

      Re: Corrected as follows: “Citrus network tree visualizing the hierarchical relationship of each marker between identified T cell ~”

      446 The legend says patients have IPF, CTD-ILD, sarcoidosis but the figure shows PCP, DI-ILD, ICI-ILD.

      Re: Corrected.

      451 What do the authors mean in "Graphical plots represent individual samples"? Panel B is a dot plot of all samples.

      Response: Corrected as “Dot plots represent ~”.

      472 What do the authors mean in "Graphical plots represent individual samples"? Panel C is a dot plot of all samples.

      Response: Corrected as “Dot plots represent ~”.

      Reviewer #3 (Recommendations For The Authors):

      An important thing is to add comparisons against healthy donors, at least. A common baseline is needed to firmly establish any biomarkers.

      Response: We acknowledge the reviewer's concern regarding the comparison with healthy donors. Although our study did not initially include BALF collection from healthy controls due to the constraints of clinical practice, we recognize the importance of a control baseline to validate biomarkers. To address this, we have integrated scRNA-seq data from healthy control BALF cells available in public datasets (Nature Medicine 2020; 26: 842-844), accessed from GSE145926. This dataset includes BALF cells from healthy controls (n=3) alongside severe COVID-19 patients (n=6). Data mining confirmed that CD16 expression is in a minority of T cells in healthy BALF—1.0% of CD4+ T cells and 1.6% of CD8+ T cells. We have included this comparative data in our manuscript as Figures 6H and 6I to provide context for the observed increase in CD16-expressing T cells in PCP patients, which substantiates our findings.

      Author response image 4.

      Data analysis needs to go deeper. There are several other tools on Cytobank alone that would allow a more quantitative analysis of the data. Fold changes in marker expressions would be very important as measurements of phenotypic changes.

      Response: We thank the reviewer for their constructive feedback on the depth of our data analysis. We acknowledge the value of a more quantitative approach, including the use of fold change measurements to assess phenotypic alterations, and recognize the potential insights such tools on Cytobank could provide. Due to the scope and limited space of the current study, we have focused our analysis on the most pertinent findings relevant to our research questions. We believe the present analysis serves the immediate objectives of this study. However, we agree that further quantitative analysis would enhance the understanding of the data. We have expanded our analysis to include a thorough correlation study between the disease severity of PCP and intensity of various T-cell markers. Notably, we observed that intensity of CCR7 expression correlates with the disease severity of PCP. Although the precise biological significance of this correlation remains to be elucidated, it may suggest a role for CCR7+ T cells in the pathogenesis or progression of the disease. We have considered the potential implications of this finding and included it as Supplementary Figure 5. We have also discussed this observation in the discussion section. We aim to consider these approaches in future work to build upon the foundation laid by this study. Your suggestions are invaluable and will be kept at the forefront as we plan subsequent research phases.

      Author response image 5.

      Reviewer #1 (Public Review):

      Cytotoxic agents and immune checkpoint inhibitors are the most commonly used and efficacious treatments for lung cancers. However their use brings two significant pulmonary side-effects; namely Pneumocystis jirovecii infection and resultant pneumonia (PCP), and interstitial lung disease (ILD). To observe the potential immunological drivers of these adverse events, Yanagihara et al. analysed and compared cells present in the bronchoalveolar lavage of three patient groups (PCP, cytotoxic drug-induced ILD [DI-ILD], and ICI-associated ILD [ICI-ILD]) using mass cytometry (64 markers). In PCP, they observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion (97.5%) in a fatal case, whilst in ICI-ILD, they found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. Given the fatal case, the authors also assessed for, and found, a correlation between CD16+ T cells and disease severity in PCP, postulating that this may be owing to endothelial destruction. Although n numbers are relatively small (n=7-9 in each cohort; common numbers for CyTOF papers), the authors use a wide panel (n=65) and two clustering methodologies giving greater strength to the conclusions. The differential populations discovered using one or two of the analytical methods are robust: whole population shifts with clear and significant clustering. These data are an excellent resource for clinical disease specialists and pan-disease immunologists, with a broad and engaging contextual discussion about what they could mean.

      Strengths:

      • The differences in immune cells in BAL in these specific patient subgroups is relatively unexplored.

      • This is an observational study, with no starting hypothesis being tested.

      • Two analytical methods are used to cluster the data.

      • A relatively wide panel was used (64 markers), with particular strength in the alpha beta T cells and B cells.

      • Relevant biomarkers, beta-D-glucan and KL-6 were also analysed

      • Appropriate statistics were used throughout.

      • Numbers are low (7 cases of PCP, 9 of DI-ILD, and 9 of ICI-ILD) but these are difficult samples to collect and so in relative terms, and considering the use of CyTOF, these are good numbers.

      • Beta-D-glucan shows potential as a biomarker for PCP (as previously reported) whilst KL-6 shows potential as a biomarker for ICI-ILD (not reported before). Interestingly, KL-6 was not seen to be increased in DI-ILD patients.

      • Despite the relatively low n numbers and lack of matching there are some clear differentials. The CD4/CD8+CD16+HLA-DR+CXCR3+CD14- T cell result is striking - up in PCP (with EM CD4s significantly down) - whilst the CD8 EMRA population is clear in ICI-ILD and 'non-exhausted' CD4s, with lower numbers of EMRA CD8s in DI-ILD.

      • The authors identify 17/31 significantly differentiated clusters of myeloid cells, eg CD11bhi CD11chi CD64+ CD206+ alveolar macrophages with HLA-DRhi in PCP.

      • With respect to B cells, the authors found that FCRL5+ B cells were more abundant in patients with ICI-ILD compared to those with PCP and DI-ILD, suggesting these FCRL5+ B cells may have a role in irAE.

      • One patient's extreme CD16+ T cell (97.5% positive) and death, led the authors to consider CD16+ T cells as an indicator of disease severity in PCP. This was then tested and found to be correct.

      • Authors discuss results in context of literature leading them to suggest that CD16+ T cells may target endothelial cells and wonder if anti-complement therapy may be efficacious in PCP.

      • Great discussion on auto-reactive T cell clones where the authors suggest that in ICI-ILD CD8s may react against healthy lung, driving ILD.

      • An observation of CXCR3 in different CD8 populations in ICI-ILD and PCP lead the authors to hypothesise on the chemoattractants in the microenvironment.

      • Excellent point suggesting CD57 may not always be a marker of senescence on T cells - reflective of growing change within the community.

      • Well considered suggestion that FCRL5+ B cells may be involved in ICI-ILD driven autoimmunity.

      • The authors discuss the main weaknesses in the discussion and stress that the findings detailed in the paper "demonstrate a correlation rather than proof of causation".

      • Figures and legends are clear and pleasing to the eye.

      Weaknesses:

      • This is an observational study, with no starting hypothesis being tested.

      • Only patients who were able to have a lavage taken have been recruited.

      • One set of analysis wasn't carried out for one subgroup (ICI-ILD) as PD1 expression was negative owing to the use of nivolumab.

      • Some immune cell subsets wouldn't be picked up with the markers and gating strategies used; e.g. NK cells.

      • Some immune cells would be disproportionately damaged by the storage, thawing and preparation of the samples; e.g. granulocytes.

      • Numbers are low (7 cases of PCP, 9 of DI-ILD, and 9 of ICI-ILD), sex, age and adverse event matching wasn't performed, and treatment regimen are varied and 'suspected' (suggesting incomplete clinical data) - but these are difficult samples to collect. These numbers drop further for some analyses e.g. T cell clustering owing to factors such as low cell number.

      • The disease comparisons are with each other, there is no healthy control.

      • Samples are taken at one time point.

      • The discussion on probably the stand out result - the CD16+ T cells in PCP - relies on two papers - leading to a slightly skewed emphasis on one paper on CD16+ cells in COVID. There are other papers out there that have observed CD16+ T cells in other conditions. It is also worth being in mind that given the markers used, these CD16+ T cell may be gamma deltas.

      • The discussion on ICI patient consistently showing increased PD1, could have been greater, as given the ICI is targeting PD1, one would expect the opposite as commented on, and observed, in the methods section.

      Reviewer #2 (Public Review):

      Yanagihara and colleagues investigated the immune cell composition of bronchoalveolar lavage fluid (BALF) samples in a cohort of patients with malignancy undergoing chemotherapy and with with lung adverse reactions including Pneumocystis jirovecii pneumonia (PCP) and immune-checkpoint inhibitors (ICIs) or cytotoxic drug induced interstitial lung diseases (ILDs). Using mass cytometry, their aim was to characterize the cellular and molecular changes in BAL to improve our understanding of their pathogenesis and identify potential biomarkers and therapeutic targets. In this regard, the authors identify a correlation between CD16 expression in T cells and the severity of PCP and an increased infiltration of CD57+ CD8+ T cells expressing immune checkpoints and FCLR5+ B cells in ICI-ILD patients.

      The conclusions of this paper are mostly well supported by data, but some aspects of the data analysis need to be clarified and extended.

      1) The authors should elaborate on why different set of markers were selected for each analysis step. E.g., Different set of markers were used for UMAP, CITRUS and viSNE in the T cell and myeloid analysis.

      2) The authors should state if a normality test for the distribution of the data was performed. If not, non-parametric tests should be used.

      3) The authors should explore the correlation between CD16 intensity and the CTCAE grade in T cell subsets such as EMRA CD8 T cells, effector memory CD4, etc as identified in Figure 1B.

      4) The authors could use CITRUS to better assess the B cell compartment.

      Reviewer #3 (Public Review):

      The authors collected BALF samples from lung cancer patients newly diagnosed with PCP, DI-ILD or ICI-ILD. CyTOF was performed on these samples, using two different panels (T-cell and B-cell/myeloid cell panels). Results were collected, cleaned-up, manually gated and pre-processed prior to visualisation with manifold learning approaches t-SNE (in the form of viSNE) or UMAP, and analysed by CITRUS (hierarchical clustering followed by feature selection and regression) for population identification - all using Cytobank implementation - in an attempt to identify possible biomarkers for these disease states. By comparing cell abundances from CITRUS results and qualitative inspection of a small number of marker expressions, the authors claimed to have identified an expansion of CD16+ T-cell population in PCP cases and an increase in CD57+ CD8+ T-cells, FCRL5+ B-cells and CCR2+ CCR5+ CD14+ monocytes in ICI-ILD cases.

      By the authors' own admission, there is an absence of healthy donor samples and, perhaps as a result of retrospective experimental design, also an absence of pre-treatment samples. The entire analysis effectively compares three yet-established disease states with no common baseline - what really constitutes a "biomarker" in such cases? The introduction asserts that "y characterizing the cellular and molecular changes in BAL from patients with these complications, we aim to improve our understanding of their pathogenesis and identify potential therapeutic targets" (lines 82-84). Given these obvious omissions, no real "changes" have been studied in the paper. These are very limited comparisons among three, and only these three, states.

      Even assuming more thorough experimental design, the data analysis is unfortunately too shallow and has not managed to explore the wealth of information that could potentially be extracted from the results. CITRUS is accessible and convenient, but also make a couple of big assumptions which could affect data analysis - 1) Is it justified to concatenate all FCS files to analyse the data in one batch / small batches? Could there be batch effects or otherwise other biological events that could confuse the algorithm? 2) With a relatively small number of samples, and after internal feature selection of CITRUS, is the regression model suitable for population identification or would it be too crude and miss out rare populations? There are plenty of other established methods that could be used instead. Have those methods been considered?

      Colouring t-SNE or UMAP (e.g. Figure 6C) plots by marker expression is useful for quick identification of cell populations but it is not a quantitative analysis. In a CyTOF analysis like this, it is common to work out fold changes of marker expressions between conditions. It is inadequate to judge expression levels and infer differences simply by looking at colours.

      The relatively small number of samples also mean that most results presented in the paper are not statistical significant. Whilst it is understandable that it is not always possible to collect a large number of patient samples for studies like this, having several entire major figures showing "n.s." (e.g. Figures 3A, 4B and 5C), together with limitations in the comparisons themselves and inadequate analysis, make the observations difficult to be convincing, and even less so for the single fatal PCP case where N = 1.

      It would also be good scientific practice to show evidence of sample data quality control. Were individual FCS files examined? Did the staining work? Some indication of QC would also be great.

      This dataset generated and studied by the authors have the potential to address the question they set out to answer and thus potentially be useful for the field. However, in the current state of presentation, more evidence and more thorough data analysis are needed to draw any conclusions, or correlations, as the authors would like to frame them.

    1. Interpretation is the third part of the perception process, in which we assign meaning to our experiences using mental structures known as schemata.

      I feel like when people think about perception, this is the aspect that usually comes to mind. So much so that other aspects are often disregarded. I can attest to this myself. When I think about how I perceive things, I don't usually think about selecting information, or even organizing it. This gives some interesting perspective going forward in life. I'm realizing I may have more things to consider as I take in the world.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      This paper performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument. The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate. Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      Response: Thank you very much for your affirmation of our work. The reviewer discussed the parts of our manuscript that involve evolution sentence by sentence. We have further refined the description in this regard and improved the logical flow. Thank you again for your help.

      Weaknesses:

      1) The last section of the results, entitled "Downstream target gene analysis" is primarily based on in silico genome-wide binding motif predictions.

      While the authors identify a potential binding site using EMSA, it is unclear how much this general approach over-predicted potential targets. While I think this work is interesting, its potential caveats are not mentioned. In fact the Discussion section seems to trust the high number of target genes as a reliable result. Specifically, the authors correctly say: "even if there are some transcription factor-binding sites in a gene, the gene is not necessarily regulated by these factors in a specific tissue and period", but then propose a biological explanation that not all binding sites are relevant to expression control. This makes a radical short-cut that predicted binding sites are actual in vivo binding sites. This may not be true, as I'd expect that only a subset of binding motifs predicted by Positional Weight Matrices (PWM) are real in vivo binding sites with a ChIP-seq or Cut-and-Run signal. This is particularly problematic for PWM that feature only 5-nt signature motifs, as inferred here for mamo-S and mamo-L, simply because we can expect many predicted sites by chance.

      Response: Thank you very much for your careful work. The analysis and identification of transcription factor-binding sites is an important issue in gene regulation research. Techniques such as ChIP-seq can be used to experimentally identify the binding sites of transcription factors (TFs). However, reports using these techniques often only detect specific cell types and developmental stages, resulting in a limited number of downstream target genes for some TFs. Interestingly, TFs may regulate different downstream target genes in different cell types and developmental stages.

      Previous research has suggested that the ZF-DNA binding interface can be understood as a “canonical binding model”, in which each finger contacts DNA in an antiparallel manner. The binding sequence of the C2H2-ZF motif is determined by the amino acid residue sequence of its α-helical component. Considering the first amino acid residue in the α-helical region of the C2H2-ZF domain as position 1, positions -1, 2, 3, and 6 are key amino acids for recognizing and binding DNA. The residues at positions -1, 3, and 6 specifically interact with base 3, base 2, and base 1 of the DNA sense sequence, respectively, while the residue at position 2 interacts with the complementary DNA strand (Wolfe SA et al., 2000; Pabo CO et al., 2001). Based on this principle, the binding sites of C2H2-ZF have good reference value. For the 5-nt PWM sequence, we referred to the study of D. melanogaster, which was identified by EMSA (Shoichi Nakamura et al., 2019). In the new version, we have rewritten this section.

      Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-340.

      Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29:183-212.

      Nakamura S, Hira S, Fujiwara M, et al. A truncated form of a transcription factor Mamo activates vasa in Drosophila embryos. Commun Biol. 2019;2:422. Published 2019 Nov 20.

      2) The last part of the current discussion ("Notably, the industrial melanism event, in a short period of several decades ... a more advanced self-regulation program") is flawed with important logical shortcuts that assign "agency" to the evolutionary process. For instance, this section conveys the idea that phenotypically relevant mutations may not be random. I believe some of this is due to translation issues in English, as I understand that the authors want to express the idea that some parts of the genome are paths of least resistance for evolutionary change (e.g. the regulatory regions of developmental regulators are likely to articulate morphological change). But the language and tone is made worst by the mention that in another system, a mechanism involving photoreception drives adaptive plasticity, making it sound like the authors want to make a Lamarckian argument here (inheritance of acquired characteristics), or a point about orthogenesis (e.g. the idea that the environment may guide non-random mutations).

      Because this last part of the current discussion suffers from confused statements on modes and tempo of regulatory evolution and is rather out of topic, I would suggest removing it.

      In any case, it is important to highlight here that while this manuscript is an excellent genotype-to-phenotype study, it has very few comparative insights on the evolutionary process. The finding that mamo is a pattern or pigment regulatory factor is interesting and will deserve many more studies to decipher the full evolutionary study behind this Gene Regulatory Network.

      Response: Thank you very much for your careful work. In this part of the manuscript, we introduced some assumptions that make the statement slightly unconventional. The color pattern of insects is an adaptive trait. The bd and bdf mutants used in the study are formed spontaneously. As a frequent variation and readily observable phenotype, color patterns have been used as models for evolutionary research (Wittkopp PJ et al., 2011). Darwin's theory of natural selection has epoch-making significance. I deeply believe in the theory that species strive to evolve through natural selection. However, with the development of molecular genetics, Darwinism’s theory of undirected random mutations and slow accumulation of micromutations resulting in phenotype evolution has been increasingly challenged.

      The prerequisite for undirected random mutations and micromutations is excessive reproduction to generate a sufficiently large population. A sufficiently large population can contain sufficient genotypes to face various survival challenges. However, it is difficult to explain how some small groups and species with relatively low fertility rates have survived thus far. More importantly, the theory cannot explain the currently observed genomic mutation bias. In scientific research, every theory is constantly being modified to adapt to current discoveries. The most famous example is the debate over whether light is a particle or a wave, which has lasted for hundreds of years. However, in the 20th century, both sides seemed to compromise with each other, believing that light has a wave‒particle duality.

      In summary, we have rewritten this section to reduce unnecessary assumptions.

      Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011;13(1):59-69.

      Minor Comment:

      The gene models presented in Figure 1 are obsolete, as there are more recent annotations of the Bm-mamo gene that feature more complete intron-exon structures, including for the neighboring genes in the bd/bdf intervals. It remains true that the mamo locus encodes two protein isoforms.

      An example of the Bm-mamo locus annotation, can be found at: https://www.ncbi.nlm.nih.gov/gene/101738295 RNAseq expression tracks (including from larval epidermis) can be displayed in the embedded genome browser from the link above using the "Configure Tracks" tool.

      Based on these more recent annotations, I would say that most of the work on the two isoforms remains valid, but FigS2, and particularly Fig.S2C, need to be revised.

      Response: Thank you very much for your careful work. In this study, we referred to the predicted genes of SilkDB, NCBI and Silkbase. In different databases, there are varying degrees of differences in the number of predicted genes and the length of gene mRNA. Because the SilkDB database is based on the first silkworm genome, it has been used for the longest time and has a relatively large number of users. In the revised manuscript, we have added the predicted genes of NCBI and Silkbase in Figure S1.

      Author response image 1.

      The predicted genes and qPCR analysis of candidate genes in the responsible genomic region for bd mutant. (A) The predicted genes in SilkDB;(B) the predicted genes in Genbak;(C) the predicted genes in Silkbase;(D) analysis of nucleotide differences in the responsible region of bd;(E) investigation of the expression level of candidate genes.

      Reviewer #2 (Public Review):

      Summary:

      The authors tried to identify new genes involved in melanin metabolism and its spatial distribution in the silkworm Bombyx mori. They identified the gene Bm-mamo as playing a role in caterpillar pigmentation. By functional genetic and in silico approaches, they identified putative target genes of the Bm-mamo protein. They showed that numerous cuticular proteins are regulated by Bm-mamo during larval development.

      Strengths:

      • preliminary data about the role of cuticular proteins to pattern the localization of pigments

      • timely question

      • challenging question because it requires the development of future genetic and cell biology tools at the nanoscale

      Response: Thank you very much for your affirmation of our work. The reviewer's familiarity with the color patterns of Lepidoptera is helpful, and the recommendation raised has provided us with very important assistance. This has allowed us to make significant progress with our manuscript.

      Weaknesses:

      • statistical sampling limited

      • the discussion would gain in being shorter and refocused on a few points, especially the link between cuticular proteins and pigmentation. The article would be better if the last evolutionary-themed section of the discussion is removed.

      A recent paper has been published on the same gene in Bombyx mori (https://www.sciencedirect.com/science/article/abs/pii/S0965174823000760) in August 2023. The authors must discuss and refer to this published paper through the present manuscript.

      Response: Thank you very much for your careful work. First, we believe that competitive research is sometimes coincidental and sometimes intentional. Our research began in 2009, when we began to configure the recombinant population. In 2016, we published an article on comparative transcriptomics (Wu et al. 2016). The article mentioned above has a strong interest in our research and is based on our transcriptome analysis for further research, with the aim of making a preemptive publication. To discourage such behavior, we cannot cite it and do not want to discuss it in our paper.

      Songyuan Wu et al. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep. 2016 May 19:6:26114. doi: 10.1038/srep26114.

      Reviewer #1 (Recommendations For The Authors):

      1) please consider using a more recent annotation model of the B. mori genome to revise your Result Section 1, Fig.1, and Fig. S2. https://www.ncbi.nlm.nih.gov/gene/101738295

      Specifically, you used BGIM_ gene models, while the current annotation such as the one above featured in the NCBI database provides more accurate intron-exon structures without splitting mamo into tow genes. I believe this can be done with minor revisions of the figures, and you could keep the BGIM_ gene names for the text.

      Response: Thank you very much for your careful work. The GenBank of NCBI (National Center for Biotechnology Information) is a very good database that we often use and refer to in this research process. Our research started in 2009, so we mainly referred to the SilkDB database (Jun Duan et al., 2010), although other databases also have references, such as NCBI and Silkbase (https://silkbase.ab.a.u-tokyo.ac.jp/cgi-bin/index.cgi). Because the SilkDB database was constructed based on the first published silkworm genome data, it has been used for the longest time and has a relatively large number of users. Recently, researchers are still using these data (Kejie Li et al., 2023).

      The problem with predicting the mamo gene as two genes (BGIBMGA012517 and BGIBMGA012518) in SilkDB is mainly due to the presence of alternative splicing of the mamo gene. BGIBMGA012517 corresponds to the shorter transcript (mamo-s) of the mamo gene. Due to the differences in sequencing individuals, sequencing methods, and methods of gene prediction, there are differences in the number and sequence of predicted genes in different databases. We added the pattern diagram of predicted genes from NCBI and Silkbase, and the expression levels of new predicted genes are shown in Supplemental Figure S1.

      Jun Duan et al., SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 2010 Jan;38(Database issue): D453-6. doi: 10.1093/nar/gkp801. Kejie Li et al., Transcriptome analysis reveals that knocking out BmNPV iap2 induces apoptosis by inhibiting the oxidative phosphorylation pathway. Int J Biol Macromol. 2023 Apr 1;233:123482. doi: 10.1016/j.ijbiomac.2023.123482. Epub 2023 Jan 31.

      Author response image 2.

      The predicted genes and qPCR analysis of candidate genes in the responsible genomic region for bd mutant. (A) The predicted genes in SilkDB;(B) the predicted genes in Genbak;(C) the predicted genes in Silkbase;(D) analysis of nucleotide differences in the responsible region of bd;(E) investigation of the expression level of candidate genes.

      2) As I mentioned in my public review, I strongly believe the interpretation of the PWM binding analyses require much more conservative statements taking into account the idea that short 5-nt motifs are expected by chance. The work in this section is interesting, but the manuscript would benefit from a quite significant rewrite of the corresponding Discussion section, making it that the in silico approach is prone to the identification of many sites in the genomes, and that very few of those sites are probably relevant for probabilistic reasons. I would recommend statements such as "Future experiments assessing the in vivo binding profile of Bm-mamo (eg. ChIP-seq or Cut&Run), will be required to further understand the GRNs controlled by mamo in various tissues".

      Response: Thank you very much for your careful work. Previous research has suggested that the ZF-DNA binding interface can be understood as a “canonical binding model”, in which each finger contacts DNA in an antiparallel manner. The binding sequence of the C2H2-ZF motif is determined by the amino acid residue sequence of its α-helical component. Considering the first amino acid residue in the α-helical region of the C2H2-ZF domain as position 1, positions -1, 2, 3, and 6 are key amino acids for recognizing and binding DNA. The residues at positions -1, 3, and 6 specifically interact with base 3, base 2, and base 1 of the DNA sense sequence, respectively, while the residue at position 2 interacts with the complementary DNA strand (Wolfe SA et al., 2000; Pabo CO et al., 2001). Based on this principle, the prediction of DNA recognition motifs of C2H2-type zinc finger proteins currently has good accuracy.

      The predicted DNA binding sequence (GTGCGTGGC) of the mamo protein in Drosophila melanogaster was highly consistent with that of silkworms. In addition, in D. melanogaster, the predicted DNA binding sequence of mamo, the bases at positions 1 to 7 (GTGCGTG), was highly similar to the DNA binding sequence obtained from EMSA experiments (Seiji Hira et al., 2013). Furthermore, in another study on the mamo protein of Drosophila melanogaster, five bases (TGCGT) were used as the DNA recognition core sequence of the mamo protein (Shoichi Nakamura et al., 2019). In the JASPAR database (https://jaspar.genereg.net), there are also some shorter (4-6 nt) DNA recognition sequences; for example, the DNA binding sequence of Ubx is TAAT (ID MA0094.1) in Drosophila melanogaster. However, we used longer DNA binding motifs (9 nt and 15 nt) of mamo to study the 2 kb genomic regions near the predicted gene. Over 70% of predicted genes were found to have these feature sequences near them. This analysis method is carried out with common software and processes. Due to sufficient target proteins, the accessibility of DNA, the absence of suppressors, the suitability of ion environments, etc., zinc finger protein transcription factors are more likely to bind to specific DNA sequences in vitro than in vivo. Using ChIP-seq or Cut&Run techniques to analyze various tissues and developmental stages in silkworms can yield one comprehensive DNA-binding map of mamo, and some false positives generated by predictions can be excluded. Thank you for your suggestion. We will conduct this work in the next research step. In addition, for brevity, we deleted the predicted data (Supplemental Tables S7 and S8) that used shorter motifs.

      Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-340.

      Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29:183-212.

      Anton V Persikov et al., De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res. 2014 Jan;42(1):97-108. doi: 10.1093/nar/gkt890. Epub 2013 Oct 3.

      Seiji Hira et al., Binding of Drosophila maternal Mamo protein to chromatin and specific DNA sequences. Biochem Biophys Res Commun. 2013 Aug 16;438(1):156-60. doi: 10.1016/j.bbrc.2013.07.045. Epub 2013 Jul 20.

      Shoichi Nakamura et al., A truncated form of a transcription factor Mamo activates vasa in Drosophila embryos. Commun Biol. 2019 Nov 20;2: 422. doi: 10.1038/s42003-019-0663-4. eCollection 2019.

      3) In my opinion, the last section of the Discussion needs to be completely removed ("Notably, the industrial melanism event, in a short period of several decades ... a more advanced self-regulation program"), as it is over-extending the data into evolutionary interpretations without any support. I would suggest instead writing a short paragraph asking whether the pigmentary role of mamo is a Lepidoptera novelty, or if it could have been lost in the fly lineage.

      Below, I tried to comment point-by-point on the main issues I had.

      Wu et al: Notably, the industrial melanism event, in a short period of several decades, resulted in significant changes in the body color of multiple Lepidoptera species(46). Industrial melanism events, such as changes in the body color of pepper moths, are heritable and caused by genomic mutations(47).

      Yes, but the selective episode was brief, and the relevant "carbonaria" mutations may have existed for a long time at low-frequency in the population.

      Response: Thank you very much for your careful work. Moth species often have melanic variants at low frequencies outside industrial regions. Recent molecular work on genetics has revealed that the melanic (carbonaria) allele of the peppered moth had a single origin in Britain. Further research indicated that the mutation event causing industrial melanism of peppered moth (Biston betularia) in the UK is the insertion of a transposon element into the first intron of the cortex gene. Interestingly, statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred in approximately 1819, a date highly consistent with a detectable frequency being achieved in the mid-1840s (Arjen E Van't Hof, et al., 2016). From molecular research, it is suggested that this single origin melanized mutant (carbonaria) was generated near the industrial development period, rather than the ancient genotype, in the UK. We have rewritten this part of the manuscript.

      Arjen E Van't Hof, et al., The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016 Jun 2;534(7605):102-5. doi: 10.1038/nature17951.

      Wu et al: If relying solely on random mutations in the genome, which have a time unit of millions of years, to explain the evolution of the phenotype is not enough.

      What you imply here is problematic for several reasons.

      First, as you point out later, some large-effect mutations (e.g. transpositions) can happen quickly.

      Second, it's unclear what "the time units of million of years" means here... mutations occur, segregate in populations, and are selected. The speed of this process depends on the context and genetic architectures.

      Third, I think I understand what you mean with "to explain the evolution of the phenotype is not enough", but this would probably need a reformulation and I don't think it's relevant to bring it here. After all, you used loss-of-function mutants to explain the evolution of artificially selected mutants. The evolutionary insights from these mutants are limited. Random mutations at the mamo locus are perfectly sufficient here to explain the bd and bdf phenotypes and larval traits.

      Response: Thank you very much for your careful work. Charles Darwin himself, who argued that “natural selection can act only by taking advantage of slight successive variations; she can never take a leap, but must advance by the shortest and slowest steps” (Darwin, C. R. 1859). This ‘micromutational’ view of adaptation proved extraordinarily influential. However, the accumulation of micromutations is a lengthy process, which requires a very long time to evolve a significant phenotype. This may be only a proportion of the cases. Interestingly, recent molecular biology studies have shown that the evolution of some morphological traits involves a modest number of genetic changes (H Allen Orr. 2005).

      One example is the genetic basis analysis of armor-plate reduction and pelvic reduction of the three-spined stickleback (Gasterosteus aculeatus) in postglacial lakes. Although the marine form of this species has thick armor, the lake population (which was recently derived from the marine form) does not. The repeated independent evolution of lake morphology has resulted in reduced armor plate and pelvic structures, and there is no doubt that these morphological changes are adaptive. Research has shown that pelvic loss in different natural populations of three-spined stickleback fish occurs by regulatory mutations deleting a tissue-specific enhancer (Pel) of the pituitary homeobox transcription factor 1 (Pitx1) gene. The researchers genotyped 13 pelvic-reduced populations of three-spined stickleback from disparate geographic locations. Nine of the 13 pelvic-reduced stickleback populations had sequence deletions of varying lengths, all of which were located at the Pel enhancer. Relying solely on random mutations in the genome cannot lead to such similar mutation forms among different populations. The author suggested that the Pitx1 locus of the stickleback genome may be prone to double-stranded DNA breaks that are subsequently repaired by NHEJ (Yingguang Frank Chan et al., 2010).

      The bd and bdf mutants used in the study are formed spontaneously. Natural mutation is one of the driving forces of evolution. Nevertheless, we have rewritten the content of this section.

      Darwin, C. R. The Origin of Species (J. Murray, London, 1859).

      H Allen Orr. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005 Feb;6(2):119-27. doi: 10.1038/nrg1523.

      Yingguang Frank Chan et al., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 2010 Jan 15;327(5963):302-5. doi: 10.1126/science.1182213. Epub 2009 Dec 10.

      Wu et al: Interestingly, the larva of peppered moths has multiple visual factors encoded by visual genes, which are conserved in multiple Lepidoptera, in the skin. Even when its compound eyes are covered, it can rely on the skin to feel the color of the environment to change its body color and adapt to the environment(48). Therefore, caterpillars/insects can distinguish the light wave frequency of the background. We suppose that perceptual signals can stimulate the GRN, the GRN guides the expression of some transcription factors and epigenetic factors, and the interaction of epigenetic factors and transcription factors can open or close the chromatin of corresponding downstream genes, which can guide downstream target gene expression.

      This is extremely confusing because you are bringing in a plastic trait here. It's possible there is a connection between the sensory stimulus and the regulation of mamo in peppered moths, but this is a mere hypothesis. Here, by mentioning a plastic trait, this paragraph sounds as if it was making a statement about directed evolution, especially after implying in the previous sentence that (paraphrasing) "random mutations are not enough". To be perfectly honest, the current writing could be misinterpreted and co-opted by defenders of the Intelligent Design doctrine. I believe and trust this is not your intention.

      Response: Thank you very much for your careful work. The plasticity of the body color of peppered moth larvae is very interesting, but we mainly wanted to emphasize that their skin shows the products of visual genes that can sense the color of the environment by perceiving light. Moreover, these genes are conserved in many insects. Human skin can also perceive light by opsins, suggesting that they might initiate light–induced signaling pathways (Haltaufderhyde K et al., 2015). This indicates that the perception of environmental light by the skin of animals and the induction of feedback through signaling pathways is a common phenomenon. For clarity, we have rewritten this section of the manuscript.

      Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. Opsin expression in human epidermal skin. Photochem Photobiol. 2015;91(1):117-123.

      Wu et al: In addition, during the opening of chromatin, the probability of mutation of exposed genomic DNA sequences will increase (49).

      Here again, this is veering towards a strongly Lamarckian view with the environment guiding specific mutation. I simply cannot see how this would apply to mamo, nothing in the current article indicates this could be the case here. Among many issues with this, it's unclear how chromatin opening in the larval integument may result in heritable mutations in the germline.

      Response: Thank you very much for your careful work. Previous studies have shown that there is a mutation bias in the genome; compared with the intergenic region, the mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. In addition, they compared the mutation rates of genes with different functions. The mutation rate in the coding region of essential genes (such as translation) is the lowest, and the mutation rates in the coding region of specialized functional genes (such as environmental response) are the highest. These patterns are mainly affected by the traits of the epigenome (J Grey Monroe et al., 2022).

      In eukaryotes, chromatin is organized as repeating units of nucleosomes, each consisting of a histone octamer and the surrounding DNA. This structure can protect DNA. When one gene is activated, the chromatin region of this gene is locally opened, becoming an accessible region. Research has found that DNA accessibility can lead to a higher mutation rate in the region (Radhakrishnan Sabarinathan et al., 2016; Schuster-Böckler B et al., 2012; Lawrence MS et al., 2013; Polak P et al., 2015). In addition, the BTB-ZF protein mamo belongs to this family and can recruit histone modification factors such as DNA methyltransferase 1 (DMNT1), cullin3 (CUL3), histone deacetylase 1 (HDAC1), and histone acetyltransferase 1 (HAT1) to perform chromatin remodeling at specific genomic sites. Although mutations can be predicted by the characteristics of apparent chromatin, the forms of mutations are diverse and random. Therefore, this does not violate randomness. For clarity, we have rewritten this section of the manuscript.

      J Grey Monroe, Mutation bias reflects natural selection in Arabidopsis thaliana. Nature. 2022 Feb;602(7895):101-105.

      Sabarinathan R, Mularoni L, Deu-Pons J, Gonzalez-Perez A, López-Bigas N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature. 2016;532(7598):264-267.

      Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 2012;488(7412):504-507.

      Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214-218.

      Polak P, Karlić R, Koren A, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature. 2015;518(7539):360-364.

      Mathew R, Seiler MP, Scanlon ST, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491(7425):618-621.

      Wu et al: Transposon insertion occurs in a timely manner upstream of the cortex gene in melanic pepper moths (47), which may be caused by the similar binding of transcription factors and opening of chromatin.

      No, we do not think that the peppered moth mutation is Lamarckian at all, as seems to be inferred here (notice that by mentioning the peppered moth twice, you are juxtaposing a larval plastic trait and then a purely genetic wing trait, making it even more confusing). Also, the "in a timely manner" is superfluous, because all the data are consistent with a chance mutation being eventually picked up by strong directional mutation. The mutation and selection did NOT occur at the same time.

      Response: Thank you very much for your careful work. The insertion of one transposon into the first intron of the cortex gene of industrial melanism in peppered moth occurred in approximately 1819, which is similar to the time of industrial development in the UK (Arjen E Van't Hof, et al., 2016). In multiple species of Heliconius, the cortex gene is the shared genetic basis for the regulation of wing coloring patterns. Interestingly, the SNP of the cortex, associated with the wing color pattern, does not overlap among different Heliconius species, such as H. erato dephoon and H. erato favorinus, which suggests that the mutations of this cortex gene have different origins (Nadeau NJ et al., 2016). In addition, in Junonia coenia (van der Burg KRL et al., 2020) and Bombyx mori (Ito K et al., 2016), the cortex gene is a candidate for regulating changes in wing coloring patterns. Overall, the cortex gene is an evolutionary hotspot for the variation of multiple butterfly and moth wing coloring patterns. In addition, it was observed that the variations in the cortex are diverse in these species, including SNPs, indels, transposon insertions, inversions, etc. This indicates that although there are evolutionary hotspots in the insect genome, this variation is random. Therefore, this is not completely detached from randomness.

      Arjen E Van't Hof, et al., The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016 Jun 2;534(7605):102-5. doi: 10.1038/nature17951.

      Nadeau NJ, Pardo-Diaz C, Whibley A, et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature. 2016;534(7605):106-110.

      van der Burg KRL, Lewis JJ, Brack BJ, Fandino RA, Mazo-Vargas A, Reed RD. Genomic architecture of a genetically assimilated seasonal color pattern. Science. 2020;370(6517):721-725.

      Ito K, Katsuma S, Kuwazaki S, et al. Mapping and recombination analysis of two moth colour mutations, Black moth and Wild wing spot, in the silkworm Bombyx mori. Heredity (Edinb). 2016;116(1):52-59.

      Wu et al: Therefore, we proposed that the genetic basis of color pattern evolution may mainly be system-guided programmed events that induce mutations in specific genomic regions of key genes rather than just random mutations of the genome.

      While the mutational target of pigment evolution may involve a handful of developmental regulator genes, you do not have the data to infer such a strong conclusion at the moment.

      The current formulation is also quite strong and teleological: "system-guided programmed events" imply intentionality or agency, an idea generally assigned to the anti-scientific Intelligent Design movement. There are a few examples of guided mutations, such as the adaptation phase of gRNA motifs in bacterial CRISPR assays, where I could see the term ""system-guided programmed events" to be applicable. But it is irrelevant here.

      Response: Thank you very much for your careful work. The CRISPR-CAS9 system is indeed very well known. In addition, recent studies have found the existence of a Cas9-like gene editing system in eukaryotes, such as Fanzor. Fanzor (Fz) was reported in 2013 as a eukaryotic TnpB-IS200/IS605 protein encoded by the transposon origin, and it was initially thought that the Fz protein (and prokaryotic TnpBs) might regulate transposon activity through methyltransferase activity (Saito M et al., 2023). Fz has recently been found to be a eukaryotic CRISPR‒Cas system. Although this system is found in fungi and mollusks, it raises hopes for scholars to find similar systems in other higher animals. However, before these gene-editing systems became popular, zinc finger nucleases (ZFNs) were already being studied as a gene-editing system in many species. The mechanism by which ZFN recognizes DNA depends on its zinc finger motif (Urnov FD et al., 2005). This is consistent with the mechanism by which transcription factors recognize DNA-binding sites.

      Furthermore, a very important evolutionary event in sexual reproduction is chromosome recombination during meiosis, which helps to produce more abundant alleles. Current research has found that this recombination event is not random. In mice and humans, the PRDM9 transcription factors are able to plan the sites of double-stranded breaks (DSBs) in meiosis recombination. PRDM9 is a histone methyltransferase consisting of three main regions: an amino-terminal region resembling the family of synovial sarcoma X (SSX) breakpoint proteins, which contains a Krüppel-associated box (KRAB) domain and an SSX repression domain (SSXRD); a PR/SET domain (a subclass of SET domains), surrounded by a pre-SET zinc knuckle and a post-SET zinc finger; and a long carboxy-terminal C2H2 zinc finger array. In most mammalian species, during early meiotic prophase, PRDM9 can determine recombination hotspots by H3K4 and H3K36 trimethylation (H3K4me3 and H3K36me3) of nucleosomes near its DNA-binding site. Subsequently, meiotic DNA DSBs are formed at hotspots through the combined action of SPO11 and TOPOVIBL. In addition, some proteins (such as RAD51) are involved in repairing the break point. In summary, programmed events of induced and repaired DSBs are widely present in organisms (Bhattacharyya T et al., 2019).

      These studies indicate that on the basis of randomness, the genome also exhibits programmability.

      Saito M, Xu P, Faure G, et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 2023;620(7974):660-668.

      Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646-651.

      Bhattacharyya T, Walker M, Powers NR, et al. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes [published correction appears in Curr Biol. 2021 Mar 22;31(6):1351]. Curr Biol. 2019;29(6):1002-1018.e7.

      Wu et al: Based on this assumption, animals can undergo phenotypic changes more quickly and more accurately to cope with environmental changes. Thus, seemingly complex phenotypes such as cryptic coloring and mimicry that are highly similar to the background may have formed in a short period. However, the binding sites of some transcription factors widely distributed in the genome may be reserved regulatory interfaces to cope with potential environmental changes. In summary, the regulation of genes is smarter than imagined, and they resemble a more advanced self-regulation program.

      Here again, I can agree with the idea that certain genetic architectures can evolve quickly, but I cannot support the concept that the genetic changes are guided or accelerated by the environment. And again, none of this is relevant to the current findings about Bm-mamo.

      Response: Thank you very much for your careful work. Darwin's theory of natural selection has epoch-making significance. I deeply believe in the theory that species strive to evolve through natural selection. However, with the development of molecular genetics, Darwinism’s theory of undirected random mutations and slow accumulation of micromutations resulting in phenotype evolution has been increasingly challenged.

      The prerequisite for undirected random mutations and micromutations is excessive reproduction to generate a sufficiently large population. A sufficiently large population can contain sufficient genotypes to face various survival challenges. However, it is difficult to explain how some small groups and species with relatively low fertility rates have survived thus far. More importantly, the theory cannot explain the currently observed genomic mutation bias. In scientific research, every theory is constantly being modified to adapt to current discoveries. The most famous example is the debate over whether light is a particle or a wave, which has lasted for hundreds of years. However, in the 20th century, both sides seemed to compromise with each other, believing that light has a wave‒particle duality.

      Epigenetics has developed rapidly since 1987. Epigenetics has been widely accepted, defined as stable inheritance caused by chromosomal conformational changes without altering the DNA sequence, which differs from genetic research on variations in gene sequences. However, an increasing number of studies have found that histone modifications can affect gene sequence variation. In addition, both histones and epigenetic factors are essentially encoded by genes in the genome. Therefore, genetics and epigenetics should be interactive rather than parallel. However, some transcription factors play an important role in epigenetic modifications. Meiotic recombination is a key process that ensures the correct separation of homologous chromosomes through DNA double-stranded break repair mechanisms. The transcription factor PRDM9 can determine recombination hotspots by H3K4 and H3K36 trimethylation (H3K4me3 and H3K36me3) of nucleosomes near its DNA-binding site (Bhattacharyya T et al., 2019). Interestingly, mamo has been identified as an important candidate factor for meiosis hotspot setting in Drosophila (Winbush A et al., 2021).

      Bhattacharyya T, Walker M, Powers NR, et al. Prdm9 and Meiotic Cohesin Proteins Cooperatively Promote DNA Double-Strand Break Formation in Mammalian Spermatocytes [published correction appears in Curr Biol. 2021 Mar 22;31(6):1351]. Curr Biol. 2019;29(6):1002-1018.e7.

      Winbush A, Singh ND. Genomics of Recombination Rate Variation in Temperature-Evolved Drosophila melanogaster Populations. Genome Biol Evol. 2021;13(1): evaa252.

      Reviewer #2 (Recommendations For The Authors):

      Major comments

      Response: Thank you very much for your careful work. First, we believe that competitive research is sometimes coincidental and sometimes intentional. Our research began in 2009, when we began to configure the recombinant population. In 2016, we published an article on comparative transcriptomics (Wu et al. 2016). The article mentioned above has a strong interest in our research and is based on our transcriptome analysis for further research, with the aim of making a preemptive publication.

      To discourage such behavior, we cannot cite it and do not want to discuss it in our paper.

      Songyuan Wu et al. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep. 2016 May 19:6:26114. doi: 10.1038/srep26114.

      • line 52-54. The numerous biological functions of insect coloration have been thoroughly investigated. It is reasonable to expect more references for each function.

      Response: Thank you very much for your careful work. We have made the appropriate modifications.

      Sword GA, Simpson SJ, El Hadi OT, Wilps H. Density-dependent aposematism in the desert locust. Proc Biol Sci. 2000;267(1438):63-68. … Behavior.

      Barnes AI, Siva-Jothy MT. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc Biol Sci. 2000;267(1439):177-182. … Immunity.

      N. F. Hadley, A. Savill, T. D. Schultz, Coloration and Its Thermal Consequences in the New-Zealand Tiger Beetle Neocicindela-Perhispida. J Therm Biol. 1992;17, 55-61…. Thermoregulation.

      Y. G. Hu, Y. H. Shen, Z. Zhang, G. Q. Shi, Melanin and urate act to prevent ultraviolet damage in the integument of the silkworm, Bombyx mori. Arch Insect Biochem. 2013; 83, 41-55…. UV protection.

      M. Stevens, G. D. Ruxton, Linking the evolution and form of warning coloration in nature. P Roy Soc B-Biol Sci. 2012; 279, 417-426…. Aposematism.

      K. K. Dasmahapatra et al., Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature.2012; 487, 94-98…. Mimicry.

      Gaitonde N, Joshi J, Kunte K. Evolution of ontogenic change in color defenses of swallowtail butterflies. Ecol Evol. 2018;8(19):9751-9763. Published 2018 Sep 3. …Crypsis.

      B. S. Tullberg, S. Merilaita, C. Wiklund, Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. P Roy Soc B-Biol Sci.2005; 272, 1315-1321…. Aposematism and crypsis combined.

      • line 59-60. This general statement needs to be rephrased. I suggest remaining simple by indicating that insect coloration can be pigmentary, structural, or bioluminescent. About the structural coloration and associated nanostructures, the authors could cite recent reviews, such as: Seago et al., Interface 2009 + Lloyd and Nadeau, Current Opinion in Genetics & Development 2021 + "Light as matter: natural structural colour in art" by Finet C. 2023. I suggest doing the same for recent reviews that cover pigmentary and bioluminescent coloration in insects. The very recent paper by Nishida et al. in Cell Reports 2023 on butterfly wing color made of pigmented liquid is also unique and worth to consider.

      Response: Thank you very much for your careful work. We have made the appropriate modifications.

      Insect coloration can be pigmentary, structural, or bioluminescent. Pigments are mainly synthesized by the insects themselves and form solid particles that are deposited in the cuticle of the body surface and the scales of the wings (10, 11). Interestingly, recent studies have found that bile pigments and carotenoid pigments synthesized through biological synthesis are incorporated into body fluids and passed through the wing membranes of two butterflies (Siproeta stelenes and Philaethria diatonica) via hemolymph circulation, providing color in the form of liquid pigments (12). The pigments form colors by selective absorption and/or scattering of light depending on their physical properties (13). However, structural color refers to colors, such as metallic colors and iridescence, generated by optical interference and grating diffraction of the microstructure/nanostructure of the body surface or appendages (such as scales) (14, 15). Pigment color and structural color are widely distributed in insects and can only be observed by the naked eye in illuminated environments. However, some insects, such as fireflies, exhibit colors (green to orange) in the dark due to bioluminescence (16). Bioluminescence occurs when luciferase catalyzes the oxidation of small molecules of luciferin (17). In conclusion, the color patterns of insects have evolved to be highly sophisticated and are closely related to their living environments. For example, cryptic color can deceive animals via high similarity to the surrounding environment. However, the molecular mechanism by which insects form precise color patterns to match their living environment is still unknown.

      • RNAi approach. I have no doubt that obtaining phenocopies by electroporation might be difficult. However, I find the final sampling a bit limited to draw conclusions from the RT-PCR (n=5 and n=3 for phenocopies and controls). Three control individuals is a very low number. Moreover, it would nice to see the variability on the plot, using for example violin plots.

      Response: Thank you very much for your careful work. In the RNAi experiment, we injected more than 20 individuals in the experimental group and control group. We have added the RNAi data in Figure 4.

      Author response table 1.

      • Figure 6. Higher magnification images of Dazao and Bm-mamo knockout are needed, as shown in Figure 5 on RNAi.

      Response: Thank you very much for your careful work. We have added enlarged images.

      Author response image 3.

      • Phylogenetic analysis/Figure S6. I am not sure to what extent the sampling is biased or not, but if not, it is noteworthy that mamo does not show duplicated copies (negative selection?). It might be interesting to discuss this point in the manuscript.

      Response: Thank you very much for your careful work. mamo belongs to the BTB/POZ zinc finger family. The members of this family exhibit significant expansion in vertebrates. For example, there are 3 members in C. elegans, 13 in D. melanogaster, 16 in Bombyx mori, 58 in M. musculus and 63 in H. sapiens (Wu et al, 2019). These members contain conserved BTB/POZ domains but vary in number and amino acid residue compositions of the zinc finger motifs. Due to the zinc finger motifs that bind to different DNA recognition sequences, there may be differences in their downstream target genes. Therefore, when searching for orthologous genes from different species, we required high conservation of their zinc finger motif sequences. Due to these strict conditions, only one orthologous gene was found in these species.

      • Differentially-expressed genes and CP candidate genes (line 189-191). The manuscript would gain in clarity if the authors explain more in details their procedure. For instance, they moved from a list of 191 genes to CP genes only. Can they say a little bit more about the non-CP genes that are differentially expressed? Maybe quantify the number of CPs among the total number of differentially-expressed genes to show that CPs are the main class?

      Response: Thank you very much for your careful work. The nr (Nonredundant Protein Sequence Database) annotations for 191 differentially expressed genes in Supplemental Table S3 were added. Among them, there were 19 cuticular proteins, 17 antibacterial peptide genes, 6 transporter genes, 5 transcription factor genes, 5 cytochrome genes, 53 enzyme-encoding genes and others. Because CP genes were significantly enriched in differentially expressed genes (DEGs), previous studies have found that BmorCPH24 can affect pigmentation. Therefore, we first conducted an investigation into CP genes.

      • Interaction between Bm-mamo. It is not clear why the authors chose to investigate the physical interaction of Bm-mamo protein with the putative binding site of yellow, and not with the sites upstream of tan and DDC. Do the authors test one interaction and assume the conclusion stands for the y, tan and DDC?

      Response: Thank you very much for your careful work. In D. melanogaster, the yellow gene is the most studied pigment gene. The upstream and intron sequences of the yellow gene have been identified as containing multiple cis-regulatory elements. Due to the important pigmentation role of the yellow gene and its variable cis-regulatory sequence among different species, it has been considered a research model for cis-regulatory elements (Laurent Arnoult et al. 2013, Gizem Kalay et al. 2019, Yaqun Xin et al. 2020, Yann Le Poul et al. 2020). We use yellow as an example to illustrate the regulation of the mamo gene. We added this description to the discussion.

      Laurent Arnoult et al. Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science. 2013 Mar 22;339(6126):1423-6. doi: 10.1126/science.1233749.

      Gizem Kalay et al. Redundant and Cryptic Enhancer Activities of the Drosophila yellow Gene. Genetics. 2019 May;212(1):343-360. doi: 10.1534/genetics.119.301985. Epub 2019 Mar 6.

      Yaqun Xin et al. Enhancer evolutionary co-option through shared chromatin accessibility input. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20636-20644. doi: 10.1073/pnas.2004003117. Epub 2020 Aug 10.

      Yann Le Poul et al. Regulatory encoding of quantitative variation in spatial activity of a Drosophila enhancer. Sci Adv. 2020 Dec 2;6(49):eabe2955. doi: 10.1126/sciadv.abe2955. Print 2020 Dec.

      • Please note that some controls are missing for the EMSA experiments. For instance, the putative binding-sites should be mutated and it should be shown that the interaction is lost.

      Response: Thank you very much for your careful work. In this study, we found that the DNA recognition sequence of mamo is highly conserved across multiple species. In D. melanogaster, studies have found that mamo can directly bind to the intron of the vasa gene to activate its expression. The DNA recognition sequence they use is TGCGT (Shoichi Nakamura et al. 2019). We chose a longer sequence, GTGCGTGGC, to detect the binding of mamo. This binding mechanism is consistent across species.

      • Figure 7 and supplementary data. How did the name of CPs attributed? According to automatic genome annotation of Bm genes and proteins? Based on Drosophila genome and associated gene names? Did the authors perform phylogenetic analyses to name the different CP genes?

      Response: Thank you very much for your careful work. The naming of CPs is based on their conserved motif and their arrangement order on the chromosome. In previous reports, sequence identification and phylogenetic analysis of CPs have been carried out in silkworms (Zhengwen Yan et al. 2022, Ryo Futahashi et al. 2008). The members of the same family have sequence similarity between different species, and their functions may be similar. We have completed the names of these genes in the text, for example, changing CPR2 to BmorCPR2.

      Zhengwen Yan et al. A Blueprint of Microstructures and Stage-Specific Transcriptome Dynamics of Cuticle Formation in Bombyx mori. Int J Mol Sci. 2022 May 5;23(9):5155.

      Ningjia He et al. Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol. 2007 Feb;37(2):135-46.

      Maria V Karouzou et al. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol. 2007 Aug;37(8):754-60.

      Ryo Futahashi et al. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2008 Dec;38(12):1138-46.

      • Discussion. I think the discussion would gain in being shorter and refocused on the understudied role of CPs. Another non-canonical aspect of the discussion is the reference to additional experiments (e.g., parthogenesis line 290-302, figure S14). This is not the place to introduce more results, and it breaks the flow of the discussion. I encourage the authors to reshuffle the discussion: 1) summary of their findings on mamo and CPs, 2) link between pigmentation mutant phenotypes, pigmentation pattern and CPs, 3) general discussion about the (evo-)devo importance of CPs and link between pigment deposition and coloration. Three important papers should be mentioned here:

      1) Matsuoka Y and A Monteiro (2018) Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Reports 24: 56-65... Yellow has a pleiotropic role in cuticle deposition and pigmentation.

      2) https://arxiv.org/abs/2305.16628... Link between nanoscale cuticle density and pigmentation

      3) https://www.cell.com/cell-reports/pdf/S2211-1247(23)00831-8.pdf... Variation in pigmentation and implication of endosomal maturation (gene red).

      Response: Thank you very much for your careful work. We have rewritten the discussion section.

      1) We have summarized our findings.

      Bm-mamo may affect the synthesis of melanin in epidermis cells by regulating yellow, DDC, and tan; regulate the maturation of melanin granules in epidermis cells through BmMFS; and affect the deposition of melanin granules in the cuticle by regulating CP genes, thereby comprehensively regulating the color pattern in caterpillars.

      2) We describe the relationship among the pigmentation mutation phenotype, pigmentation pattern, and CP.

      Previous studies have shown that the lack of expression of BmorCPH24, which encodes important components of the endocuticle, can lead to dramatic changes in body shape and a significant reduction in the pigmentation of caterpillars (53). We crossed Bo (BmorCPH24 null mutation) and bd to obtain F1(Bo/+Bo, bd/+), then self-crossed F1 and observed the phenotype of F2. The lunar spots and star spots decreased, and light-colored stripes appeared on the body segments, but the other areas still had significant melanin pigmentation in double mutation (Bo, bd) individuals (Fig. S13). However, in previous studies, introduction of Bo into L (ectopic expression of wnt1 results in lunar stripes generated on each body segment) (24) and U (overexpression of SoxD results in excessive melanin pigmentation of the epidermis) (58) strains by genetic crosses can remarkably reduce the pigmentation of L and U (53). Interestingly, there was a more significant decrease in pigmentation in the double mutants (Bo, L) and (Bo, U) than in (Bo, bd). This suggests that Bm-mamo has a stronger ability than wnt1 and SoxD to regulate pigmentation. On the one hand, mamo may be a stronger regulator of the melanin metabolic pathway, and on the other hand, mamo may regulate other CP genes to reduce the impact of BmorCPH24 deficiency.

      3) We discussed the importance of (evo-) devo in CPs and the relationship between pigment deposition and coloring.

      CP genes usually account for over 1% of the total genes in an insect genome and can be categorized into several families, including CPR, CPG, CPH, CPAP1, CPAP3, CPT, CPF and CPFL (68). The CPR family is the largest group of CPs, containing a chitin-binding domain called the Rebers and Riddiford motif (R&R) (69). The variation in the R&R consensus sequence allows subdivision into three subfamilies (RR-1, RR-2, and RR-3) (70). Among the 28 CPs, 11 RR-1 genes, 6 RR-2 genes, 4 hypothetical cuticular protein (CPH) genes, 3 glycine-rich cuticular protein (CPG) genes, 3 cuticular protein Tweedle motif (CPT) genes, and 1 CPFL (like the CPFs in a conserved C-terminal region) gene were identified. The RR-1 consensus among species is usually more variable than RR-2, which suggests that RR-1 may have a species-specific function. RR-2 often clustered into several branches, which may be due to gene duplication events in co-orthologous groups and may result in conserved functions between species (71). The classification of CPH is due to their lack of known motifs. In the epidermis of Lepidoptera, the CPH genes often have high expression levels. For example, BmorCPH24 had a highest expression level, in silkworm larvae epidermis (72). The CPG protein is rich in glycine. The CPH and CPG genes are less commonly found in insects outside the order Lepidoptera (73). This suggests that they may provide species specific functions for the Lepidoptera. CPT contains a Tweedle motif, and the TweedleD1 mutation has a dramatic effect on body shape in D. melanogaster (74). The CPFL members are relatively conserved in species and may be involved in the synthesis of larval cuticles (75). CPT and CPFL may have relatively conserved functions among insects. The CP genes are a group of rapidly evolving genes, and their copy numbers may undergo significant changes in different species. In addition, RNAi experiments on 135 CP genes in brown planthopper (Nilaparvata lugens) showed that deficiency of 32 CP genes leads to significant defective phenotypes, such as lethal, developmental retardation, etc. It is suggested that the 32 CP genes are indispensable, and other CP genes may have redundant and complementary functions (76). In previous studies, it was found that the construction of the larval cuticle of silkworms requires the precise expression of over two hundred CP genes (22). The production, interaction, and deposition of CPs and pigments are complex and precise processes, and our research shows that Bm-mamo plays an important regulatory role in this process in silkworm caterpillars. For further understanding of the role of CPs, future work should aim to identify the function of important cuticular protein genes and the deposition mechanism in the cuticle.

      Minor comments - Title. At this stage, there is no evidence that Bm-mamo regulates caterpillar pigmentation outside of Bombyx mori. I suggest to precise 'silkworm caterpillars' in the title.

      Response: Thank you very much for your careful work. We have modified the title.

      • Abstract, line 29. Because the knowledge on pigmentation pathway(s) is advanced, I would suggest writing 'color pattern is not fully understood' instead of 'color pattern is not clear'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 29. I suggest 'the transcription factor' rather than 'a transcription factor'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 30. If you want to mention the protein, the name 'Bm-mamo' should not be italicized.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 30. 'in the silkworm'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 31. 'mamo' should not be italicized.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 31. 'in Drosophila' rather 'of Drosophila'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 32. Bring detail if the gamete function is conserved in insects? In all animals?

      Response: Thank you very much for your careful work. The sentence was changed to “This gene has a conserved function in gamete production in Drosophila and silkworms and evolved a pleiotropic function in the regulation of color patterns in caterpillars.”

      • Introduction, line 51. I am not sure what the authors mean by 'under natural light'. Please rephrase.

      Response: Thank you very much for your careful work. We have deleted “under natural light”.

      • line 43. I find that the sentence 'In some studies, it has been proven that epidermal proteins can affect the body shape and appendage development of insects' is not necessary here. Furthermore, this sentence breaks the flow of the teaser.

      Response: Thank you very much for your careful work. We have deleted this sentence.

      • line 51-52. 'Greatly benefit them' should be rephrased in a more neutral way. For example, 'colours pattern have been shown to be involved in...'.

      Response: Thank you very much for your careful work. We have modified to “and the color patterns have been shown to be involved in…”

      • line 62. CPs are secreted by the epidermis, but I would say that CPs play their structural role in the cuticle, not directly in the epidermis. I suggest rephrasing this sentence and adding references.

      Response: Thank you very much for your careful work. We have modified “epidermis” to “cuticle”.

      • line 67. Please indicate that pathways have been identified/reported in Lepidoptera (11). Otherwise, the reader does not understand if you refer to previous biochemical in Drosophila for example.

      Response: Thank you very much for your careful work. We have modified this sentence. “Moreover, the biochemical metabolic pathways of pigments used for color patterning in Lepidoptera…have been reported.”

      • line 69. Missing examples of pleiotropic factors and associated references. For example, I suggest adding: engrailed (Dufour, Koshikawa and Finet, PNAS 2020) + antennapedia (Prakash et al., Cell Reports 2022) + optix (Reed et al., Science 2011), etc. Need to add references for clawless, abdominal-A.

      Response: Thank you very much for your careful work. We have made modifications.

      • line 76. The simpler term moth might be enough (instead of Lepidoptera).

      Response: Thank you very much for your careful work. We have modified this to “insect”.

      • line 96. I would simplify the text by writing "Then, quantitative RT-PCR was performed..."

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 112. 'Predict' instead of 'estimate'?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 113. I would rather indicate the full name first, then indicate mamo between brackets.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 144. The Perl script needs to be made accessible on public repository.

      Response: Thank you very much for your careful work.

      • line 147-150. Too many technical details here. The details are already indicated in the material and methods section. Furthermore, the details break the flow of the paragraph.

      Response: Thank you very much for your careful work. We have modified this section.

      • line 152. Needs to make the link with the observed phenotypes in Figure 1. Just needs to state that RNAi phenocopies mimic the mutant alleles.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 153-157. Too many technical details here. The details are already indicated in the material and methods section. Furthermore, the details break the flow of the paragraph.

      Response: Thank you very much for your careful work. We have simplified this paragraph.

      • line 170. Please rephrase 'conserved in 30 species' because it might be understood as conserved in 30 species only, and not in other species.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 182. Maybe explain the rationale behind restricting the analysis to +/- 2kb. Can you cite a paper that shows that most of binding sites are within 2kb from the start codon?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 182. '14,623 predicted genes'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 183. '10,622 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 183. Redundancy. Please remove 'silkworm' or 'B. mori'.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 187. '10,072 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 188. '9,853 genes'

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 200. "Therefore, the differential...in caterpillars" is a strong statement.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 204. Remove "The" in front of eight key genes. Also, needs a reference... maybe a recent review on the biochemical pathway of melanin in insects.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 220. This sentence is too general and vague. Please explicit what you mean by "in terms of evolution". Number of insect species? Diversity of niche occupancy? Morphological, physiological diversity?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 285. The verb "believe" should be replaced by a more neutral one.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 354-355. This sentence needs to be rephrased in a more objective way.

      Response: Thank you very much for your careful work. We have rewritten this sentence.

      • line 378. Missing reference for MUSCLE.

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 379. Pearson model?

      Response: Thank you very much for your careful work. We have modified this sentence.

      • line 408. "The CRISPRdirect online software was used...".

      Response: Thank you very much for your careful work. We have modified this sentence.

      • Figure 1. In the title, I suggest indicating Dazao, bd, bdf as it appears in the figure. Needs to precise 'silkworm larval development'.

      Response: Thank you very much for your careful work. We have modified this figure title.

      • Figure 3. In the title, is the word 'pattern' really necessary? In the legend, please indicate the meaning of the acronyms AMSG and PSG.

      Response: Thank you very much for your careful work. We have modified this figure legend.

      • Figure S7A. Typo 'Znic finger 1', 'Znic finger 2', 'Znic finger 3',

      Response: Thank you very much for your careful work. We have fixed these typos. .

    2. Reviewer #1 (Public Review):

      Summary: This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.

      The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.

      Strengths: The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      This revision is a much improved manuscript and I command the authors for many of their edits.

      I find the last part of the discussion, starting at "It is generally believed that changes in gene expression patterns are the result of the evolution of CREs", to be confusing.<br /> In this section, I believe the authors sequentially:<br /> - emphasize the role of CRE in morphological evolution (I agree)<br /> - emphasize that TF, and in particular their own CRE, are themselves important mutational targets of evolution (I agree, but the phrasing need to insist the authors are here talking about the CRE found at the TF locus, not the CRE bound by the TF).<br /> - use the stickleback Pel enhancer as an example, which I think is a good case study, but the authors also then make an argument about DNA fragility sites, which is hard to connect with the present study.<br /> - then continue on "DNA fragility" using the peppered moth and butterfly cortex locus. There is no evidence of DNA fragility at these loci, so the connection does not work. "The cortex gene locus is frequently mutated in Lepidoptera", the authors say. But a more accurate picture would be that the cortex locus is repeatedly involved in the generation of color pattern variants. Unlike for Pel fragile enhancer, we don't know if the causal mutations at this locus are repeatedly the same, and the haplotypes that have been described could be collateral rather than causal. Overall, it is important to clarify the idea that mutation bias is a possible factor explaining "genetic hotspots of evolution" (or genetic parallelism sensu 10.1038/nrg3483), but it is also possible that many genetic hotspots are repeated mutational targets because of their "optimal pleiotropy" (e.g. hub position in GRNs, such as mamo might be), or because of particularly modular CRE region that allow fine-tuning. Thus, I find the "fragility" argument misleading here. In fact the finding that "bd" and "bdf" alleles are different in nature is against the idea of a fragility bias (unless the authors can show increased mutation rates at this locus in a wild silkmoth species?). These alleles are also artificially-selected ie. they increased in frequency by breeding rather than natural selection in the wild, so while interesting for our understand of the genotype-phenotype map, they are not necessarily representative of the mutations that may underlie evolution in the wild.<br /> - Curiously, the last paragraph ("Some research suggests that common fragile sites...") elaborate on the idea that some sites of the genome are prone to mutation. The connection with mamo and the current article are extremely thin. There is here an attempt to connect meiotic and mitotic breaks to Bm-mamo, but this is confusing : it seems to propose Bm-mamo as a recruiter of epigenetic modulators that may drive higher mutation rates elsewhere. Not only I am not convinced by this argument without actual data, but this would not explain how the mutations at the Bm-mamo itself evolved.

      On a more positive note, I find it fascinating that the authors identified a TF that clearly articulates or orchestrate larval pattern development, and that when it is deleted, can generate healthy individuals. In other words, while it is a TF with many targets, it is not too pleiotropic. This idea, that the genetically causal modulators of developmental evolution are regulatory genes, has been described elsewhere (e.g. Fig 4c in 10.1038/s41576-020-0234-z, and associated refs). To me, the beautiful findings about Bm-mamo make sense in the general, existing framework that developmental processes and regulatory networks "shape" the evolutionary potential and trajectories of organisms. There is a degree of "programmability" in the genomes, because some loci are particularly prone to modulate a given type of trait. Here, Bm-mamo, as a potentially regulator of both CPs and melanin pathway genes, appear to be a potent modulator of epithelial traits. Claiming that there are inherent mutational biases behind this is unwarranted.

    1. Hope is a disposition of the soul to be convinced that what it desires willcome about. It is caused by a particular movement of the spirits,consisting of the movement of joy mixed with that of desire. And anxietyis another disposition of the soul, which convinces it that its desires willnot be fulfilled. It should be noted that these two passions, althoughopposed, may nevertheless occur together, namely when we think ofreasons for regarding the fulfilment of the desire as easy, and at the sametime we think of other reasons which make it seem difficult

      lol me af

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and the editors for their constructive and critical comments/ suggestions regarding our paper. We have since extensively revised the manuscript accordingly, including the addition of new experimental data. Hope the readers, reviewers, and editors are now satisfied with the quality and significance of the revised paper.

      Our responses to the eLife assessment and the reviewers’ comment as well as the details of the revisions are described below.

      Wang et al present a useful manuscript that builds modestly on the group's previous publication on KLF1 (EKLF) K47R mice focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo (Shyu et al., Adv Sci (Weinh). 2022). The data demonstrates that Eklf (K74R) imparts these advantages in a background, age, and gender independent manner, not the consequence of the specific amino acid substitution, and transferable by BMT. However, the authors overstate the meaning of these results and the strength of evidence is incomplete, since only a melanoma model of cancer is used, it is unclear why only homozygous mutation is needed when only a small fraction of cells during BMT confer benefit, they do not show EKLF expression in any cells analyzed, and the PD-1 and PDL-1 experiments are not conclusive. The definitive mechanism relative to the prior publication from this group on this topic remains unclear.

      The issues in the assessment by the editor on our paper were also brought up by the reviewers. We have taken care of them by carrying out new experiments as well as rewriting of the paper to highlight the rationales and novel aspects of the current study, as described below in our responses to the three reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors Wang et al. present a study of a mouse model K74R that they claim can extend the life span of mice, and also has some anti-cancer properties. Importantly, this mechanism seems to be mediated by the hematopoietic system, and protective effects can be transferred with bone marrow transplantation.

      The authors need to be more specific in the title and abstract as to what is actually novel in this manuscript (a single tumor model), and what relies on previously published data (lifespan). Because many of these claims derive from previously published data, and the current manuscript is an extension of previously published work. The authors need to be more specific as to the actual data they present (they only use the B16 melanoma model) and the actual novelty of this manuscript.

      Especially experiments on life span are published and not sufficiently addressed in this actual paper, as the title would suggest.

      Indeed important to point out the novelty of this paper in comparison to the previous paper. First, we have modified the title, the abstract, and the text so to emphasize that the extended lifespan as well as tumor resistance could be transferred by from Eklf(K74R) mice to WT mice by a single transplantation of the Eklf(K74R) bone marrow mononuclear cells (BMT) to the WT mice at their young age (2 months).

      We now also provide several new experimental data including the one demonstrating that Eklf(K74R) mice are resistant to tumorigenesis of hepatocellular carcinoma as well (new Fig. 1E). These points are elaborated in more details below in my responses to the reviewers’ comments/ suggestions.

      Reviewer #2 (Public Review):

      The manuscript by Wang et al. follows up on the group's previous publication on KLF1 (EKLF) K47R mice and reduced susceptibility to tumorigenesis and increased life span (Shyu et al., Adv Sci (Weinh). Sep 2022;9(25):e2201409. doi:10.1002/ advs.202201409). In the current manuscript, the authors have described the dependence of these phenotypes on age, gender, genetic background, and hematopoietic translation of bone marrow mononuclear cells. Considering the current study is centered on the phenotypes described in the previous study, the novelty is diminished. Further, there are significant conceptual concerns in the study that make the inferences in the manuscript far less convincing. Major concerns are listed below:

      1) The authors mention more than once in the manuscript that KLF1 is expressed in range of blood cells including hematopoietic stem cells, megakaryocytes, T cells and NK cells. In the case of megakaryocytes, studies from multiple labs have shown that while EKLF is expressed megakaryocyte-erythroid progenitors, EKLF is important for the bipotential lineage decision of these progenitors, and its high expression promotes erythropoiesis, while its expression is antagonized during megakaryopoiesis. In the case of HSCs, the authors reference to their previous publication for KLF1's expression in these cells- however, in this study nor in the current study, there is no western blot documented to convincingly show that KLF1 protein is expressed at detectable levels in these cells. For T cells, the authors have referenced a study which is based on ectopic expression of KLF1. For NK cells, the authors reference bioGPS: however, upon inspection, this is also questionable.

      2) The current study rests on the premise that KLF1 is expressed in HSCs, NK cells and leukocytes, and the references cited are not sufficient to make this assumption, for the reasons mentioned in the first point. Therefore, the authors will have to show both KLF1 mRNA and protein levels in these cells, and also compare them to the expression levels seen in KLF1 wild type erythroid cells along with knockout erythroid cells as controls, for context and specificity.

      Regarding the novelties of the current story. Besides demonstration of the independence of the healthy longevity characteristics on age, gender, and genetic background, as exemplified by the tumor resistance, another novelty of the current study is that the healthy longevity characteristics, in particular the tumor resistance and extended lifespan, could be transferred by one-time long-term transplantation of the Eklf(K74R) bone marrow mononuclear cells from young Eklf(K74R) mice to young WT mice. Also, since submission of the last version of the paper, we have carried out new experiments, including the characterization of the anti-cancer capability of NK cells (new Fig. 6) as well as assay of the tumor-resistance of Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E), etc.

      We have also modified the title, Abstract, and different parts of the text to highlight the novelties of the current study.

      As to the expression of EKLF in different hematopoietic blood cell types, we have now added a paragraph in Result (p.6 and p.7) describing what have been known in literature in relation to our data presented in the paper. Importantly, following the reviewer’s comments, we have since carried out Western blot analysis of EKLF expression in NK, T, and B cells (p. 6, p.7 and new Fig. S4B). Also noted is that the level of EKLF in B cells is very low and only could be detected by RT-qPCR (Fig. S4C) and RNA-Seq (Bio-GPS database)

      3) To get to the mechanism driving the reduced susceptibility to tumorigenesis and increased life span phenotypes in EKLF K74R mice, the authors report some observations- However, how these observations are connected to the phenotypes is unclear.

      a. For example, in Figure S3, they report that the frequency of NK1.1+ cells is higher in the mutant mice. The significance of this in relation to EKLF expression in these cells and the tumorigenesis and life span related phenotypes are not described. Again, as mentioned in the second point, KLF1 protein levels are not shown in these cells.

      b. In Figure 4, the authors show mRNA levels of immune check point genes, PD-1 and PD-l1 are lower in EKLF K74R mice in PB, CD3+ T cells and B220+ B cells. Again, the questions remain on how these genes are regulated by EKLF, and whether and at what levels EKLF protein is expressed in T cells and B cells relative to erythroid cells. Further, while the study they reference for EKLF's role in T cells is based on ectopic expression of EKLF in CD4+ T cells, in the current study, CD3+ T cells are used. Also, there are no references for the status of EKLF in B cells. These details are not discussed in the manuscript.

      Regarding this part of the questions and comments by the reviewer.

      First, we have since assayed the effect of the K74R substitution of EKLF on the in vitro cancer cell-killing ability of NK cells (termed NK1.1 cells in the previous version). The data showed that NK(K74R) cells have higher ability than the WT NK cells (new Fig. 6). This property together with the higher expression level of NK(K74R) cells in 24 month-old Eklf (K74R) mice than NK cells in 24 month-old WT mice would contribute to the higher tumor-resistance of the Eklf (K74R) mice. This point is also addressed on p. 8 andp.9.

      Second, as stated in previous sections, we have since carried out comparative Western blot analysis of the expression of EKLF protein in NK, CD3 T, and B cells of the WT and Eklf(K74R) mice, respectively (please see the new Fig. S4B). Also, description regarding what are known in literature in relation to our data on the expression of EKLF protein/ Eklf mRNA in different types of hematopoietic blood cells is now included in the Result (please see p.6 and p.7). Notably though, the level of EKLF protein in B cells was too low to be detected by WB (Fig. S4B).

      4) The authors perform comparative proteomics in the leukocytes of EKLF K74R and WT mice as shown in Figure S5. What is the status of EKLF levels in the mutant lysate vs wild type lysates based on this analysis? More clarity needs to be provided on what cells were used for this analysis and how they were isolated since leukocytes is a very broad term.

      The leukocytes used by us were isolated from the peripheral blood after removal of red blood cells, as described in the Materials and Methods.

      Also, the Western blot analysis of EKLF expression in the lysates of leukocytes/ white blood cells (WBC) has been shown previously, now presented in the new Figure S4A.

      5) In the discussion the authors make broad inferences that go beyond the data shown in the manuscript. They mention that the tumorigenesis resistance and long lifespan is most likely due to changes in transcription regulatory properties and changes in global gene expression profile of the mutant protein relative to WT leukocytes. And based on reduced mRNA levels of Pd-1 Pd-l1 genes in the CD3+ T cells and B220+ B cells from mutant mice, they "assert" that EKLF is an upstream regulator of these genes and regulates the transcriptomes of a diverse range of hematopoietic cells. The lack of a ChIP assay to show binding of WT EKLF on genes in these cells and whether this binding is reduced or abolished in the mutant cells, make the above statements unsubstantiated.

      We have since carried out ChIP-PCR analysis of EKLF-binding in the Pd-1 promoter (new Fig. S5). The data showed that EKLF was bound on the CACCC box at -103 of the promoter in WT CD3+T as well as in CD3+T(K74R) cells. This result is discussed on p.7.

      6) Where westerns are shown, the authors need to show the molecular weight ladder, and where qPCR data are shown for EKLF, it will be helpful to show the absolute levels and compare these levels to those in erythroid cells, along the corresponding EKLF knock out cells as controls.

      We have since included the molecular weight markers by the side of Western blots in Fig. S4. Also, we have added a new figure (Fig.S4C) showing the comparison of the expression levels of Eklf mRNA in B cells and CD3+ T cells to the mouse erythroleukemia (MEL) cells, as analyzed by RT-qPCR.

      Also, as indicated now in the Material and Methods section, the specificity of the primers used for RT-qPCR quantitation of mouse Eklf mRNA has been validated before by comparative analysis of wild type and EKLF-knockout mouse erythroid cells (Hung et al., IJMS, 2020).

      7) Figure S1D does not have a figure legend. Therefore, it is unclear what the blot in this figure is showing. In the text of the manuscript where they reference this figure, they mention that the levels of the mutant EKLF vs WT EKLF does not change in peripheral blood, while in the figure they have labeled WBCs for the blot, and the mRNA levels shown do seem to decrease in the mutant compared to WT peripheral blood.

      We apologize for this ignorance on our side. The data shown in the original Fig. SID (new Fig. S4A) are from Western blot analysis of EKLF protein and RT-qPCR analysis of Eklf mRNA in leukocytes/ white blood cells (WBC) isolated from the peripheral blood samples. We have now added back the figure legend and also rewritten the corresponding description in the text on p.6.

      Reviewer #3 (Public Review):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated. The major strengths of the manuscript include the clarity of the effect and the appropriate controls. For instance, the authors query whether Eklf (K74R) imparts these advantages in a background, age, and gender dependent manner, demonstrating that the findings are independent. In addition, the authors demonstrate that the effect is not the consequence of the specific amino acid substitution, with a similar effect on anticancer activity. Furthermore, the authors provide some evidence that PD-1 and PDL-1 are altered in Eklf (K74R) mice.

      Here we thank the encouraging comments by this reviewer.

      Finally, they demonstrate that the effects are transferrable with BMT. Several weaknesses are also evidence. For instance, only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach.

      We have now included new data showing that the Eklf(K74R) mice also carry a higher anti-cancer ability against hepatocellular carcinoma than the WT mice (new Fig. 1E).

      It is also unclear why a homozygous mutation is needed when only a small fraction of cells during BMT can confer benefit. It is also difficult to explain how transplanted donor Eklf (K74R) HSCs confer anti-melanoma effect 7 and 14 days after BMT.

      First, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). These points are now clarified in Discussion (p.9 and p.10).

      Second, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT. This point is now touched upon on p.8 and p.9.

      Furthermore, it would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      Finally, the data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation without changing EKLF expression impacts immune cells. The work is impactful as it provides evidence that healthspan and lifespan may be modulated by specific hematological mutation but the mechanism by which this occurs is not completely elucidated by this work.

      As described in a previous section, we have since also carried out ChIP-qPCR analysis of the binding of WT EKLF and EKLF (K74R) on the Pd-1 promoter (new Fig. S5).

      Reviewer #1 (Recommendations For The Authors):

      The authors present interesting melanoma model data but need to tone down their claim of multiple effects of their model system. It needs to be clear what is new and what is previously known.

      As respond in the Public Reviews, we have since added new data on the tumor resistance of the Eklf(K74R) mice to hepatocellular carcinoma (new Fig. 1E). We have also modified the title as well as highlighted the novel points in the Abstract and text of the revised draft.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the major concerns listed in the public review, the minor concerns that the authors could address are listed below:

      1) Will be helpful to describe why was the pulmonary melanoma focus assay chosen for metastasis assay?

      We now describe on p. 4 the rationale behind the initial choice of this assay for analysis of the anti-cancer capability of the Eklf(K74R) mice. Also, we have since included data from experiment using the subcutaneous cancer cell inoculation assay for comparative analysis of the anti-hepatocellular carcinoma capability of Eklf(K74R) and WT mice (Fig. 1E and p.5).

      2) Reference #61 for B16-F10-luc cells cited in the methods does not have details on the generation of these cells. What these cells are and why this model was chosen needs to be described.

      Sorry about not providing this information before. We now describe the generation of B16F10-luc cells in the Material and Methods section (p.13). The rationale of choosing the B16-F10 cells for the pulmonary lung foci assay is also added on p.4.

      3) The DNA binding consensus site for EKLF needs to be expanded in the introduction.

      This part has been taken care of now on p.13.

      Reviewer #3 (Recommendations For The Authors):

      Hung et al provide a well-written manuscript focused on understanding how Eklf mutation confers anticancer and longevity advantages in vivo. The work is fundamental and the data is convincing although several details remain incompletely elucidated.

      1) Only melanoma is tested as a model of cancer such that a broad claim of "anti-cancer activity" may be somewhat of an overreach. The authors, therefore, need to provide evidence of a second type of malignancy to which Eklf mutation confers anticancer and longevity advantages or temper the claims in the discussion that the effect still needs to be tested in non-melanoma cancer models to determine the broad anti-cancer effect.

      As responded in the Public Reviews, we have since shown that Eklf(K74R) mice also exhibited a higher resistance to the carcinogenesis of hepatocellular carcinoma (new Fig. 1E).

      2) Why is a homozygous mutation needed when only a small fraction of cells during BMT can confer benefit of Eklf mutation? Is there evidence that the cellular effect is binary but only a few such cells are needed? This is confusing and requires further clarification.

      As responded in the Public Reviews, these two observations not necessarily conflict with each other. It is likely that homozygosity, but not heterozygosity, of the K74R substitution in EKLF allows one or more types of hematopoietic blood cells to gain new functions, e.g. the higher cancer cell- killing capability of NK(K74R) cells (new Fig. 6), that help the mice to live long and healthy. Also, the data in Fig. 2D indicated that as low as 20% of the blood cells carrying homozygous Eklf(K74R) alleles in the recipient mice upon BMT could be sufficient to confer the mice a higher anti-cancer capability, likely in part due to cells such as NK(K74R). This point is now clarified in Discussion (p.9).

      3) BMT typically requires at least 3-4 weeks to reconstitute the marrow compartment but the authors are able to see effects of Eklf mutation as early as 7 days following BMT. This is surprising and brings into question the mechanism of effect.

      As responded in the Public Reviews, we think the NK(K74R) cells contributed a significant part to the anti-cancer capability of the transplanted Eklf(K74R) blood in the recipient WT mice. As documented in some literature, e.g. Ferreira et al., Journal of Molecular Medicine (2019), the hematopoietic lineage of the NK cells would be fully reconstituted as early as 2 weeks after BMT. Of course, there could be other still unknown factors/ cells that also contribute to the tumor-resistance of the recipient mice at 7 day following BMT (please see discussion of this point on p. 9).

      4) It would be useful to see whether there are virulence marker alterations in the melanoma loci in WT vs Eklf (K74R) mice.

      As responded in the Public Reviews, we will analyze this in future together with other types of tumors in a separate study.

      5) The data in Fig 4c is difficult to interpret as decreased PD-1 and PDL-1 after knockdown of EKLF in vitro is not a useful experiment to corroborate how mutation WITHOUT changing EKLF expression impacts immune cells.

      Indeed, the RNAi knockdown experiment only demonstrated a positive regulatory role of EKLF in Pd1/Pd-l1 gene expression. We have followed the reviewer’s suggestion and carried out ChIP-qPCR analysis and shown that the factor is bound on the Pd-1 promoter in both WT CD3+T cells and CD3+T(K74R) cells (new Fig. S5). We briefly discuss these data on p.7 in relation to the possible effect of K74R substitution of EKLF on Pd-1 expression.

      We have now further clarified this point on p. 7.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Congratulations on the very nice structure! In my opinion, which you can feel free to take or leave, this would work better as a short report focused on the improvement of the structure relative to the current published model. To my mind, while the functional and dimerization studies are supportive of the cryo-EM studies (specifically, the purified protein is functional, and does tend to dimerize in various membrane mimetics), these experiments don't provide a lot of new mechanistic insight on their own. The dimerization, in particular, could be developed further.

      Response: Thank you for the comments. We have chosen to stick with the current article format. That the protein is dimeric is exciting in our view and we are working to further define the functional significance of this formation.

      Reviewer #2 (Recommendations For The Authors):

      Ln 48. Abstract. "highlighting feature of the complex interface" sounds a bit vague. I was wondering if the authors considered including more specific findings here.

      Response: This sentence has been removed.

      Ln 149 and elsewhere. The authors refer to the previously published structure of HiSiaQM as "low resolution". It may just be me and likely not the intention of the authors, but this comes across as an attempt to diminish the validity of this previous work from another group, which is not necessary. I would recommend rewording these parts slightly, even if it is just to say "lower resolution" instead of "low resolution".

      Response: It was not our intention to diminish the excellent work published by another group, we have changed “low resolution” to “lower resolution” throughout.

      Ln 160. The authors state that the inward-open conformation is likely "the resting state of the transporter". I think this statement should be modified slightly to acknowledge that this is only true under these conditions, i.e. in the absence of the bilayer, membrane potential and chemical gradients.

      Response: We have edited this as follows “That we observe the inward-open conformation without either a bound P-subunit or fiducial marker, suggests that this is the resting state of the transporter under experimental conditions (in the absence of a membrane bilayer, membrane potential and chemical gradients).”

      Ln 202. I'm not convinced that the use of the word "probable" is appropriate here; "possible" would likely fit better in the absence of compelling evidence that this dimer forms in a bacterial cell membrane with physiological levels of HiSiaQM expression.

      Response: We have changed “probable” to “possible”.

      The authors show an SEC trace for DDM solubilised protein, which is a single peak, whereas the LMNG extracted protein has 2 distinctly different elution profiles depending on the LMNG concentration. Was the same phenomenon observed when varying the DDM concentration?

      Response: We observed significantly more aggregation with DDM than L-MNG, so it was infrequently used and considerably less well characterised. In one purification, moderately higher DDM shifted the elution peak to be slightly later but retained a similar profile. Overall, we did not observe the same phenomenon of distinctly different elution profiles with DDM, but we have limited data.

      Ln 245. The two positions cited as important for the elevator-type mechanism are the fusion helix and the dimer interface. However, there is no evidence that the dimer interface observed in this work has any relevance to the transport mechanism. To make this statement, the interface would need to be disrupted and the effects on transport evaluated.

      Response: This has been edited as follows. “Evident in our cryo-EM maps are well-defined phospholipid densities associated with areas of HiSiaQM that may be important for the function of an elevator-type mechanism (Figure 4), but require further testing.”

      Ln 257. The authors state that the lipids form "specific and strong interactions" with the protein, but without knowing the identity of the lipids present, it is difficult to say anything about the specificity of this interaction. I think the authors could consider rewording this. Response: We have edited this by removing the term “specific” and describing the lipid interactions only as strong interactions.

      Ln 270. The authors identify a lipid-binding site and residues that likely interact with the headgroup. It would be interesting if the authors could speculate on the purpose of this lipid binding site and how it could affect transport. The residues are not conserved, which the authors suggest reflects the variety of lipid compositions in different bacteria. Are the authors suggesting that this lipid binding site is a general feature for all fused TRAP transporters and that the identity of the lipid changes depending on the species?

      Response: Yes, we speculate that the lipid binding site may be a general feature for fused TRAP transporters. We have added speculation about this binding site, specifically that “the fusion helix and concomitant lipid molecule may provide a more structurally rigid scaffold than a Q-M heterodimer, i.e., PpSiaQM, although how this impacts the elevator transition requires further testing” at Line 283.

      Though we believe that a binding pocket is likely found in a number of fused TRAPs (based on sequence and Alphafold predictions, e.g., FnSiaQM and AaSiaQM), we have now acknowledged that some fusions may not necessarily bind a lipid molecule here, by stating “While this binding pocket is likely found in a number of fused TRAPs (based on sequence predictions, e.g., FnSiaQM and AaSiaQM in Supplementary Figure 8), it is not clear whether they also bind lipids here without experimental data” at Line 290.

      Ln 306. The authors state that the HiSiaPQM has a 10-fold higher transport activity than PpSiaPQM. Unless the transport assays were performed in parallel (to mitigate small changes in experimental set-up) and the reconstitution efficiency for each proteoliposome preparation was carefully analysed, it is very difficult for this to be a meaningful comparison. Even if the amount of protein incorporated into the proteoliposomes is quantified (e.g. by evaluating protein band intensity when the proteoliposomes are analysed using SDS-PAGE), this does not account for an inactive protein that was incorporated, nor the proportion of the protein that was incorporated in the inside-out orientation, which would be functionally silent in these assays. I'm not suggesting these assays actually need to be performed, but I think the text should be modified to reflect what can actually be compared.

      Response: We agree with the reviewer that a meaningful comparison is difficult to make without a careful analysis of the reconstitution efficiency and have modified the text to reflect this. We have altered the paragraph beginning at Line 319 to the following: “The fused HiSiaPQM system appears to have a higher transport activity than the non-fused PpSiaPQM system. With the same experimental setup used for PpSiaPQM (5 M Neu5Ac, 50 M SiaP) (33), the accumulation of [3H]-Neu5Ac by the fused HiSiaPQM is ~10-fold greater. Although this difference may reflect the reconstitution efficiency of each proteoliposome preparation, it is possible that it has evolved as a result of the origins of each transporter system—P. profundum is a deep-sea bacterium and as such the transporter is required to be functional at low temperatures and high pressures… ”

      Ln 335. "S298A did not show an effect on growth when mutated to alanine previously." Suggest changing "S298A" here to "S298".

      Response: This has been changed.

      Ln 340. In addition to PpSiaQM, the large cavity was also presumably observed in the lower resolution structure of HiSiaQM?

      Response: The cavity is detectable in the lower resolution structure (7qe5), though very poorly defined by the density. Furthermore, the AlphaFold model fitted to this density has positioned sidechains inside the cavity, which we consider very likely to be an error (in comparison to our structures, VcINDY and our estimates of the volume required to house sialic acid). The cavity is generally much better defined by the structures we have referenced.

      Ln 345. Reference missing after "previously reported"? Response: This has been added. Measuring the affinity for the P-to-QM interaction is very useful, but it would have enhanced the study if some of the residues identified as important for this interaction (detailed on p.13) had been tested for their contributions to binding using this approach.

      Response: We do aim to perform this assay with these mutants in the future, but are also developing parallel assays to further test this interaction in different membrane mimetics.

      Ln 436. As stated previously, it is more accurate to say that "this is the most stable conformation" under these conditions.

      Response: We have edited this to say “The ‘elevator down’ (inward-facing) conformation is preferred in experimental conditions”. We have also changed the last sentence of this paragraph to say “However, the dimeric structures we have presented have no other proteins bound, yet exist stably in the elevator down state, suggesting this is the most stable conformation in experimental conditions, where there is no membrane bilayer, membrane potential, or chemical gradient present.”

      Ln 438. "Lipids associated with HiSiaQM are structurally and mechanistically important." This conclusion is not supported by the data presented; there is no evidence that the bound lipids influence the mechanism at all. The lipids observed are certainly interestingly placed and one could speculate about their relevance, but this statement of fact is not supported. Therefore, their importance to the mechanism needs to be tested or this conclusion needs to be substantially softened.

      Response: We have softened this statement by changing it to “Lipids have strong interactions with HiSiaQM and are likely to be important for the transport mechanism.”

      Reviewer #3 (Recommendations For The Authors):

      The fact that HiSiaQM samples consist of a mixture of compact monomer and dimer is clear, from Fig. S5 and S6. However, the analysis displayed in Fig 3 and Fig S4 would require more explanation. To my understanding, it requires the values of the sedimentation and diffusion coefficients. It could be good to provide the experimental values of D, and explain a little more about the method in the material and method section.

      Response: Yes, the analysis requires the experimental diffusion coefficients. These have been added to the Figure 3 and S4 legends and more detail has been added to the method section.

      In addition, I am puzzled when reading, in the legend of Fig 3, considerations that peak 2 could not correspond to a monomer or trimer: do these sentences correspond to other mathematical solutions, or is a given frictional ratio considered, or do they refer to Fig. S5 analysis?

      We can see where this confusion could arise from. These sentences do not correspond to a given frictional ratio or the Fig. S5 analysis (this is a separate, complementary analysis). For peak 2 not existing as a monomer is strictly a physical justification – with pure protein and an observed peak smaller than peak 2, a monomer is not possible for peak 2. For peak 2 not existing as a trimer is a mathematical solution using the s and D coefficients. The solutions identify that an unreasonably low amount of detergent would be bound to a trimer (32 molecules for L-MNG or 0 for DDM) to exist at those s and D values so we have ruled the trimer out. Reassuringly, the complementary analysis in Fig. S5/S6 agrees with the monomer-dimer outputs from the s and D analysis. We have adjusted the text in the legends of Fig. 3 and S4 to better convey these points.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First of all, we'd like to thank the three reviewers for their meticulous work that enable us to present now an improved manuscript and substantial changes were made to the article following reviewers' and editors' recommendations. We read all their comments and suggestions very carefully. Apart from a few misunderstandings, all comments were very pertinent. We responded positively to almost all the comments and suggestions, and as a result, we have made extensive changes to the document and the figures. This manuscript now contains 16 principal figures and 15 figure supplements.

      The number of principal figures is now 16 (1 new figure), and additional panels have been added to certain figures. On the other hand, we have added 7 additional figures (supplement figures) to answer the reviewers' questions and/or comments.

      Main figures

      ▪ Figures 1, 4, 5, 10, 11, 12, 13, 14: unchanged ▪ Figure 7 and 8 were switched.

      ▪ Figure 2: we added panel F in response to reviewer 3's and request for sperm defect statistics

      ▪ Figure 3: the contrast in panel B has been taken over to homogenize colors

      ▪ Figure 6: This figure was recomposed. The WB on testicular extract was suppressed and we present a new WB allowing to compare the presence of CCDC146 in the flagella fraction. Using an anti-HA Ab, we demonstrate that the protein is localized in the flagella in epididymal sperm. Request of the 3 reviewers.

      ▪ Figure 7 (old 8): to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. Moreover, the WB was removed and is now presented in figure 6 (improved as requested).

      ▪ Figure 8. Was old figure 7

      ▪ Figure 9: figure 9 was recomposed and improved for increased clarity as suggested by reviewer 2 and 3.

      ▪ Figure 16 was before appendix 11

      Figure supplements and supplementary files

      ▪ Figure 1-Figure supplement 1 New. Sperm parameters of the 2 patients. requested by editor (remark #1) by the reviewer 1 (Note #3)

      ▪ Figure 2-Figure supplement 1 new. Sperm parameters of the line 2 (KO animals) requested by the reviewer 1 (Note #5)

      ▪ Figure 4-Figure supplement 1 New. Experiment to evaluate the specificity of the human CCDC146 antibody. Minimal revision request and reviewer 1 note #8

      ▪ Figure 6-Figure supplement 1 New. Figure recomposed; Asked by reviewer 2 note #4 and reviewer 3

      ▪ Figure 8-Figure supplement 1 New. We now provide new images to show the non-specific staining of the midpiece of human sperm by secondary Abs in ExM experiments; Asked by reviewer 2

      ▪ Figure 10-Figure supplement 1 New. We added new images to show the non-specific staining of the midpiece of mouse sperm by secondary Abs in IF (panel B). Rewiever 1 note #9 and reviewer 2 note #5

      ▪ Figure 12-Figure supplement 1 New. Control requested by reviewer 3 Note #23

      ▪ Figure 13-Figure supplement 1 New. We provide a graph and a statistical analysis demonstrating the increase of the length of the manchette in the Ccdc146 KO. Requested by editor and reviewer 3 Note 24

      ▪ Figure 15-Figure supplement 1 New. Control requested by reviewer 2. Minor comments

      ▪ Figure supplementary 1 New. Answer to question requested by reviewer 2 note #1

      All the reviewers' and editors’ comments have been answered (see our point to point response) and we resubmit what we believe to be a significantly improved manuscript. We strongly hope that we meet all your expectations and that our manuscript will be suitable for publication in "eLife". We look forward to your feedback,

      Point by point answer

      Please note that there has been active discussion of the manuscript and the summarize points below is the minimal revision request that the reviewers think the authors should address even under this new review model system. It was the reviewers' consensus that the manuscript is prepared with a lot of oversights - please see all the minor points to improve your manuscript.

      All minimal revision requests have been addressed

      Minimal revision request

      1) Clinical report/evaluation of the two patients should be given as it was not described even in their previous study as well as full description of CCDC146.

      We provide now a new Figure 1-figure supplement 1 describing the patients sperm parameters

      2) Antibody specificity should be provided, especially given two of the reviewers were not convinced that the mid piece signal is non-specific as the authors claim. As both KO and KI model in their hands, this should be straightforward.

      To validate the specificity of the Antibody, we transfected HEK cells with a human DDK-tagged CCDC146 plasmid and performed a double immunostaining with a DDK antibody and the CCDC146 antibody. We show that both staining are superimposable, strongly suggesting that the CCDC146 Ab specifically target CCDC146. This experiment is now presented in Figure 4-Figure supplement 1. Next, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      3) The authors should improve statistical analysis to support their experimental results for the reader can make fair assessment. Combined with clear demonstration of ab specificity, this lack of statistical analysis with very few sample number is a major driver of dampening enthusiasm towards the current study.

      Several statistical analyses were carried out and are now included:

      1) distribution of the HA signal in mouse sperm cells (see point 2 Figure 7 panel B)

      2) quantification and statistical analyses of the defect observed in Ccdc146 KO sperm (figure 2 panel E)

      3) Quantification and statistical analyses of the length of the manchette in spermatids 13-15 steps (Figure 13-Figure supplement 1 new)

      4) The authors need to clarify (peri-centriolar vs. centriole)

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein in somatic cells. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein, and this is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described, and the best example is maybe gamma-tubulin (PMID: 8749391).

      or tone down (CCDC146 to be a MIP) of their claim/description.

      Concerning its localization in sperm, we agree with the reviewer that our demonstration that CCDC146 is MIP would deserve more results. Because of that, we have toned down the MIP hypothesis throughout the manuscript. See lines 491495

      Testis-specific expression of CCDC146 as it is not consistent with their data.

      We have also modified our claim concerning the testis-expression of CCDC146. Line 176

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      1) As described in general comments, this study limits how the CCDC146 deficiency impairs abnormal centriole and manchette formation. The authors should explain their relationship in developing germ cells.

      In fact, there are limited information about the relationship between the manchette and the centriole. However, few articles have highlighted that both organelles share molecular components. For instance, WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis (Commun Biol. 2021; 4: 645. doi: 10.1038/s42003-021-02171-5). Another study demonstrates that CCDC42 localizes to the manchette, the connecting piece and the tail (Front. Cell Dev. Biol. 2019 https://doi.org/10.3389/fcell.2019.00151). These articles underline that centrosomal proteins are involved in manchette formation and removal during spermiogenesis and support our results showing the impact of CCDC146 lack on centriole and manchette biogenesis. This information is now discussed. See lines 596-603

      2) The authors generated knock-in mouse model. If then, are the transgene can rescue the MMAF phenotype in CCDC146-null mice? This reviewer strongly suggest to test this part to clearly support the pathogenicity by CCDC146.

      We indeed wrote that we created a “transgenic mice”, which was misleading. We actually created a CCDC16 knock-in expressing a tagged-protein. The strain was actually made by CRISPR-Cas9 and a sequence coding for the HA-tag was inserted just before the first amino acid in exon 2, leading to the translation of an endogenous HA-tagged CCDC146 protein. We have removed the word transgenic from the text and made changes accordingly (see lines 250-253). We can therefore not use this strain to rescue the MMAF phenotype as suggested by the reviewer.

      3) Although the authors cite the previous study (Coutton et al., 2019), the study does not describe any information for CCDC146 and clinical information for the patients. The authors must show the results for clinical analysis to clarify the attended patients are MMAF patients without other phenotypic defects.

      We have now inserted a table, indicating all sperm parameters for the patients harboring a mutation in the CCDC146 gene (Figure 1-Figure supplement 1) and is now indicated lines 159-160

      4) The authors describe CCDC146 expression is dominant in testes, However, the level in testis is only moderate in human (Supp Figure 1). Thus, this description is not suitable.

      In Figure 1-figure supplement 2 (old FigS1), the median of expression in testis is around 12 in human, a value considered as high expression by the analysis software from Genevestigator. However, for mouse, it is true that the level of expression is medium. We assumed that reviewer’s comment concerned testis expression in mouse. To take into account this remark, we changed the text accordingly. See line 176.

      5) Although the authors mentioned that two mice lines are generated, only one line information is provided. Authors must include information for another line and provide basic characterization results to support the shared phenotype within the lines.

      We now provide a revised Figure 2-figure supplement 1CD, presenting the second line and the corresponding text in the main text is found lines 178-183.

      6) In somatic cells, the CCDC146 localizes at both peri-centriole and microtubule but its intracellular localization in sperm is distinguished. The authors should explain this discrepancy.

      The multi-localization of a centriolar protein is already discussed in detail in discussion lines 520-526. We have written:

      “Despite its broad cellular distribution, the association of CCDC146 with tubulin-dependent structures is remarkable. However, centrosomal and axonemal localizations in somatic and germ cells, respectively, have also been reported for CFAP58 [37, 55], thus the re-use of centrosomal proteins in the sperm flagellar axoneme is not unheard of. In addition, 80% of all proteins identified as centrosomal are found in multiple localizations (https://www.proteinatlas.org/humanproteome/subcellular/centrosome). The ability of a protein to home to several locations depending on its cellular environment has been widely described, in particular for MAP. The different localizations are linked to the presence of distinct binding sites on the protein…. “

      7) Authors mention CCDC146 is a centriolar protein in the title and results subtitle. However, the description in results part depicts CCDC146 is a peri-centriolar protein, which makes confusion. Do the authors claim CCDC146 is centrosomal protein?

      In figure 4A, we have clearly shown that the protein colocalizes with centrin, a centriolar core protein. This colocalization strongly suggests that CCDC146 is therefore a centriolar protein in somatic cells, and is now clearly indicated lines 211-212. However, its localization is not restricted to the centrioles and a clear staining was also observed in the pericentriolar material (PCM). The presence of a protein in PCM and centriole was already described and the best example is maybe gamma-tubulin (PMID: 8749391).

      8) Verification of the antibody against CCDC146 must be performed and shown to support the observed signal are correct. 2nd antibody only signal is not proper negative control.

      It is a very important remark. The commercial antibody raised against human CCDC146 was validated in HEK293-cells expressing a DDK-tagged CCDC146 protein. Cells were co-marked with anti-DDK and anti-CCDC146 antibodies. We have a perfect colocalization of the staining. This experiment is now presented in Figure 4-figure supplement 1 and presented in the text (lines 206-208).

      9) In human sperm, conventional immunostaining reveals CCDC146 is detected from acrosome head and midpiece. However, in ExM, the signal at acrosome is not detected. How is this discrepancy explained? The major concern for the ExM could be physical (dimension) and biochemical (properties) distortion of the sample. Without clear positive and negative control, current conclusion is not clearly understood. Furthermore, it is unclear why the authors conclude the midpiece signal is non-specific. The authors must provide experimental evidence.

      Staining on acrosome should always be taken with caution in sperm. Indeed, numerous glycosylated proteins are present at the surface of the plasma membrane regarding the outer acrosomal membrane for sperm attachment and are responsible for numerous nonspecific staining. Moreover, this acrosomal staining was not observed in mouse sperm, strongly suggesting that it is not specific.

      Concerning the staining in the midpiece observed in both conventional and Expansion microscopy, it also seems to be nonspecific and associated with secondary Abs.

      For IF, we now provide new images showing clearly the nonspecific staining of the midpiece when secondary Ab were used alone (see Figure 10-figure supplement 1B).

      For ExM, we provide new images in Figure 8-figure supplement 1B (POC5 staining) showing a staining of the midpiece (likely mitochondria), although POC5 was never described to be present in the midpiece. Both experiments (CCDC146 and POC5 staining by ExM) shared the same secondary Ab and the midpiece signal was likely due to it.

      Moreover, we now provide new images (figure 7C) in ExM on mouse sperm showing no staining in the midpiece and demonstrating that the punctuated signal is present all along the flagellum. Finally, we would like to underline that we now provide new IF results, using an anti-HA conjugated with alexafluor 488 and confirming the ExM results.

      These points are now discussed lines 498-502 for acrosome and lines 503-511 for midpiece staining.

      10) For intracellular localization of the CCDC146 in mouse sperm, the authors should provide clear negative control using WT sperm which do not carry the transgene.

      This experiment was performed.

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum.

      11) Current imaging data do not clearly support the intracellular localization of the CCDC146. Although western blot imaging reveal that CCDC146 is detected from sperm flagella, this is crude approach. Thus, this reviewer highly recommends the authors provide more clear experimental evidence, such as immuno EM.

      We provide now a WB comparing the presence of the protein in the flagellum and in the head fractions; see new figure 6. We show that CCDC146 is only present in the flagellum fraction; The detection of the band appeared very quickly at visualization and became very strong after few minutes, demonstrating that the protein is abundant in the flagella. It is important to note that epididymal sperm do not have centrioles and therefore this signal is not a centriolar signal. We also now provide new statistical analyses showing that the immuno-staining observed in the principal piece is very specific (Figure 7B). Altogether, these results demonstrate unequivocally the intracellular localization of CCDC146 in the flagellum. This point is now discussed lines 480-489

      12) Although sarkosyl is known to dissociate tubulin, it is not well understood and accepted that the enhanced detection of CCDC146 by the detergent indicates its microtubule inner space. Sperm axoneme to carry microtubule is also wrapped peri-axonemal components with structural proteins, which are even not well solubilized by high concentration of the ionic detergent like SDS.

      We agree with the reviewer that the solubilization of the protein by sarkozyl is not a proof of the presence of the protein inside microtubule. Taking into account this point, the MIP hypothesis was toned down and we now discuss alternative hypothesis concerning these results; See discussion lines 490-497

      13) SEM image is not suitable to explain internal structure (line 317-323).

      We agree with the reviewers and changes were made accordingly. See lines 354-357

      Minor comments

      1) In main text, supplementary figures are cited "Supp Figure". And the corresponding legends are written in "Appendix - Figure". Please unify them.

      Done Labelled now “Figure X-figure supplement Y”

      2) Line 159, "exon 9/19" is not clear.

      We have written now exons 9 and indicated earlier that the gene contains 19 exons

      3) Line 188, "positive cells" are vague.

      Positive was changed by “fluorescent”

      4) Representative TUNEL assay image for knockout testes were not shown in Supp Figure 3B.

      It was a mistake now Figure 2-figure supplement 2C

      5) Please provide full description for "IF" and "AB" when described first.

      Done

      6) Line 262, It is unclear what is "main piece".

      Changed to principal piece

      7) Line 340, Although the "stage" information might be applicable, this is information for "seminiferous tubule" rather than "spermatid". This reviewer suggests to provide step information rather than stage information.

      We agree with the reviewer that there was a confusion between “stage” and “step”. We change to step spermatids

      8) Line 342, Step 1 is not correct in here.

      OK corrected. now steps 13-15 spermatids

      9) Line 803, "C." is duplicated.

      Removed

      10) Figure 3A, it will be good to mark the defective nuclei which are described in figure legends.

      These cells are now indicated by white arrow heads

      11) Figure 5, Please provide what MT stands for.

      Now explained in the legend of figure 5

      12) Figure 6. Author requires clear blot images for C. In addition, Panel B information is not correct. If the blot was performed using HA antibody, then how "WT" lane shows bands rather than "HA" bands?

      The reviewer is correct. It was a mistake; The figure was recomposed and improved.

      Reviewer #2 (Recommendations For The Authors):

      Overall, editing oversights are present throughout the manuscript, which has made the review process quite difficult. Some repetitive figures can be removed to streamline to grasp the overall story easier. Some claims are not fully supported by evidence that need to tone down. Some figures not referenced in the main text need to be mentioned at least once.

      All figures are now referenced in the text

      Major comments:

      1) 163-164 - Please clarify the claim that there is going to be an absence of the protein or nonfunctional protein, especially for the patient with a deletion that could generate a truncated protein at two third size of the full-length protein. Similarly, 35% of the protein level is present for the patient with a nonsense mutation. Some in silico structural analysis or analysis of conserved domains would be beneficial to support these claims.

      Both mutations are predicted to produce a premature stop codons: p.Arg362Ter and p.Arg704serfsTer7, leading either to the complete absence of the protein in case of non-sense mediated mRNA decay or to the production of a truncated protein missing almost two third or one fourth of the protein respectively. CCDC146 is very well conserved throughout evolution (Figure supplementary 1), including the 3’ end of the protein which contains a large coil-coil domain (Figure 1B). In view of the very high degree of conservation, it is most likely that the 3’ end of the protein, absent in both subjects, is critical for the CCDC146 function and hence that both mutations are deleterious. This explanation is now added to the discussion. see lines 439-448

      2) 173, 423 - Please clearly state a rationale of your mouse model design (i.e., why a mouse model that recapitulate human mutation is not generated) as the truncations identified in human patients are located further towards the C-terminus, and it is not clear whether truncated proteins are present, and if so, they could still be functional. Basically, the current mouse model supports the causality of the human mutations.

      This is an important question, which goes beyond the scope of this article, and raises the question of how to confirm the pathogenicity of mutations identified by high-throughput sequencing. The production of KO or KI animals is an important tool to help confirm one’ suspicions but the first element to take into consideration is the nature of the genetic data.

      Here we had two patients with homozygous truncating variants. In human, it is well established that the presence of premature stop codons usually induces non-sense mediated mRNA decay (NMD), inducing the complete absence of the protein or a strong reduction in protein production. In the unlikely absence of NMD in our two patients, the identified variants would induce the production of proteins missing 60% and 30% of their C terminal part. Often (and it is particularly true for structural proteins) the production of abnormal proteins is more deleterious than the complete absence of the protein (and it is most likely the purpose of NMD, to limit the production of abnormal “toxic” proteins). For these reasons, to try to recapitulate the most likely consequences of the human variants, without risking obtaining an even more severe effect, we decided to introduce a stop codon in the first exon in order to remove the totality of the protein in the KO mice.

      The second element is to interpret the phenotype of the KO animals. Here, the human sperm phenotype is perfectly recapitulated in the KO mice.

      Overall, we have strong genetic arguments in human and the reproduction of the phenotype in KO mice confirming the pathogenicity of the variants identified in men.

      This point is now discussed see lines 433-438

      3) Figure 6A - the labelling is misleading as it seems to suggest that the specific cells were isolated from the testes for RT-PCR.

      We have modified the labelling to avoid any confusion.

      Figure 6B -Signal of HA-tag is shown in WT, not in transgenic. Please check the order of the labels. Figure 6C - This blot is NOT a publication-quality figure. The bands are very difficult to observe, especially in lane D18. Because it is one of the important data of this study, replacing this figure is a must.

      The figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed.

      4) Supplementary fig 6 is also not a publication-level figure, and the top part seems largely unnecessary (already in the figure legend).

      The figure has been completely remade as well (now Figure 6-Figure Supplement 1).

      5) 261/267- The conclusion that mitochondrial staining in the flagellum (in both mice and humans) is non-specific is not convincing. Supplementary fig 8 shows that the signal from secondary only IF possibly extends beyond the midpiece - but it is hard to determine as no mitochondrial-specific staining is present. Either need to tone down the conclusion or provide supporting experimental evidence.

      First, to avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the flagellum. These experiments are now described lines 271-279

      Second, we provide new images of the signal obtained with secondary Abs only that shows more clearly that the secondary Ab gave a non-specific staining (Figure 10-Figure supplement 1B). This point is discussed lines 503-511

      6) Figure 9 A - Please relate the white line to Fig. 9B label in X-axis. The information from Fig 9A+D and 9E+F are redundant. The main text nor the figure legends indicate why these specific two sperm were chosen for quantification and demonstrating the outcomes. One of them could be moved to supplementary information or removed, or the two could be combined.

      As suggested by the reviewer, we have combined the two sperm to demonstrate that CCDC146 staining is mostly located on microtubule doublets. Moreover, the figure was recomposed to make it clearer.

      Minor comments:

      All of the supplementary figures are referred to as Supp Fig X in the text, however, they are actually titled Appendix - Figure X. This needs to be consistent.

      The figures are now referred as figure supplement x in both text and figures

      Line 125 - edit spacing.

      We think this issue (long internet link) will be curated later and more efficiently by the journal, during the step of formatting necessary for publication.

      144 - With which to study  with which we studied?

      We made the change as suggested.

      151 - Supp Fig 1 - the text says that the gene is highly transcribed in human and mouse testes, but the information in the figure states that the level in mouse tissues is "medium"

      We have corrected this mistake in the text; See line 176

      165 - The two mutations are most likely deleterious. Please specifically mention what analyses done to predict the deleterious nature to support these claims.

      Both variants, c.1084C>T and c.2112del, are extremely rare in the general population with a reported allele frequency of 6.5x10-5 and 6.5x10-06 respectively in gnomAD v3. Moreover, these variants are annotated with a high impact on the protein structure (MoBiDiC prioritization algorithm (MPA) score = 10, DOI: 10.1016/j.jmoldx.2018.03.009) and predicted to induce each a premature termination codon, p.(Arg362Ter) and p.(Arg704SerfsTer7) respectively, leading to the production of a truncated protein. This information is now given line 164-169

      196-200/Figure 4 - As serum starved cells/basal body (B) are not mentioned in the main text, as is, Fig 4A would be sufficient/is relevant to the text. Please make the text reflect the contents of the whole figure, or re/move to supplement.

      We agree with the reviewer that the full description of the figure should be in the text. We added two sentences to describe figure 4B see lines 217-218.

      224 - spermatozoa (plural) fits better here, not spermatozoon

      OK changed accordingly

      236 - According to the figure legend, 6B is only showing data from the epididymal sperm, not postnatal time points; should be referencing 6C. Alignment of Marker label

      As indicated above, the figure has been completely remade, including new results. See new figure 6. Figure 6C was suppressed. The corresponding text was changed accordingly see lines 249-266

      255-256 - Referenced figure 7B3, however, 7B3 only shows tubulin staining, so no CCDC146 can be observed. Did authors mean to reference fig 7B as a whole?

      Sorry for this mistake. We agree and the text is now figure 8B6 (figure 7 and 8 were switched)

      305 - "of tubules" - I presume it is meant to be microtubules?

      Yes; The text was changed as suggested

      317-321 - a diagram of HTCA would be useful here

      We have added a reference where HTCA diagram is available see line 363. Moreover, a TEM view of HTCA is presented figure 12A

      322/Fig 11A - an arrow denoting the damage might be useful, as A1 and A3 look similar. The size of the marker bar is missing. Please update the information on figure legend.

      Concerning, the comparison between A1 and A3, the take home message is that there is a great variability in the morphological damages. This point is now underlined in the corresponding text. We updated the size of the marker bar as suggested (200 nm). See line 365-367

      323 - Please mark where capitulum is in the figure

      Capitulum was changed for nucleus

      Since Fig 11B2 is not referenced in the main text, it does not seem to add anything to the data, and could be removed/moved to supplement.

      We added a sentence to describe figure 11B2 line 370

      342-343 - manchette in step I is not seen clearly - the figure needs to be annotated better. However, DPY19L2 is absent in step I in the KO, but the main text does not reflect that - why is that?

      We do not understand the remark of the reviewer “manchette in step I is not seen clearly”. The figure shows clearly the manchette (red signal) in both WT and KO (Figure 13 D1/D2).

      For steps 13-15 WT spermatids, the size of the manchette decreases and become undetectable. In KO spermatids, the shrinkage of the manchette is hampered and in contrast continue to expand (Figure 13D2). We also provide a new Figure 13-figure supplement 1 for other illustrations of very long manchettes and a statistical analysis. In the meantime, the acrosome is strongly remodeled, as shown in figure 16-new, with detached acrosome (panel H). This morphological defect may induce a loss of the DPY19L2 staining (Figure 13 D2 stage I-III). This explanation is now inserted in the text line 396399

      Figure 15B and 15C only show KO, corresponding images from the WT should be present for comparison.

      WT images are now provided in Figure 1-figure supplement 1 new

      Figure 12 - Figure 12 - JM?.

      JM was removed. It does not mean anything

      Figure 12C and Supplementary Fig 10 - structures need to be labelled, as it is unclear what is where

      Done

      338 - text mentions step III, but only sperm from step VII are shown in Figure 13

      As suggested by reviewer 3, we changed stage by step. The text was modified to take into account this remark see lines 388-396

      360 - This is likely supposed to say Supp Figure 11E-G, not 13??

      Yes, it is a mistake. Corrected

      388 Typo "in a in a".

      Yes, it is a mistake. Corrected

      820 - Fig 3 legend - in KO spermatid nuclei were elongated - could this be labelled by arrows? I am not convinced this phenotype is that different from the WT.

      In fact, the nuclei of elongating KO spermatids are elongated and also very thin, a shape not observed in the WT; We have added arrow heads and modified the text to indicate this point line 200.

      836 - Figure 5 legend says that in yellow is centrin, but that is not true for 5A, where the figure shows labelling for y-tubulin (presumably, according to the figure itself).

      We have modified the text of the legend to take into account the remark

      837- 5A supposedly corresponds to synchronized HEK293T cells, but the reasoning behind using synchronized cells is not mentioned at all in the main text; furthermore, how this synchronization is achieved is not explained in materials and methods (serum starvation? Thymidine block?).

      Yes, figure 5A was obtained with synchronized cells. We have added one paragraph in the MM section. For cell synchronization experiments, cells underwent S-phase blockade with thymidine (5 mM, SigmaAldrich) for 17 h followed by incubation in a control culture medium for 5 h, then a second blockade at the G2-M transition with nocodazole (200 nM, Sigma-Aldrich) for 12 h. Cells were then fixed with cold methanol at different times for IF labelling. See line 224 for changes made in the result section and lines 700-704 for changes made in the MM section.

      845- figure legend says that the RT-PCR was done on CCDC146-HA tagged mice, but the main text does not reflect that.

      We made changes and the description of the KI is now presented before (line 240) the RT-PCR experiment (line 257).

      949 - it is likely supposed to say A2, not B1 (B1 does not exist in Fig 15)

      Yes, it is a mistake. Corrected

      971 - Appendix Fig 3 legend - I believe that the description for B and C are swapped.

      Yes, it is a mistake. Corrected

      Furthermore, some questions to address in A would be: Which cross sections were from which animal/points? How many per animal? Were they always in the same location?

      Yes, we have a protocol for arranging and orienting all testes in the same way during the paraffin embedding phase. The cross-sections are therefore not taken at random, and we can compare sections from the same part of the testis. The number of animals was already indicated in the figure legend (see line 1128)

      Reviewer #3 (Recommendations For The Authors):

      1) There are a number of grammatical and orthographical errors in the text. Careful proofreading should be performed.

      We have sent the manuscript to a professional proofreader

      2) The author should also check for redundancies between the introduction and the discussion.

      The discussion has modified to take into account reviewers’ remarks. Nevertheless, we did our best to avoid redundancies between introduction and discussion.

      3) Can the authors provide a rationale why they have chosen to tag their gene with an HA tag for localisation? One would rather think of fluorescent proteins or a Halo tag.

      Because the functional domains of the protein are unknown, adding a fluorescent protein of 24 KDa may interfere with both the localization and the function of CCDC146. For this reason, we choose a small tag of only 1.1 KDa, to limit as such as possible the risk of interfering with the structure of the protein. This rational is now indicated in the manuscript lines 251-254. It is worth to note, that the tagged-strain shows no sperm defect, demonstrating that the HA-tag does not interfere with CCDC146 function.

      4) In the abstract, line 53, "provide evidence" is not the right term for something that is just suggestive. The term "suggests" would be more appropriate.

      The text was modified to take into account this remark

      5) Line 74: "genetic deficiency" sounds strange here, do the authors mean simply "mutation"?

      Infertility may be due to several genetic deficiency such as chromosomal defects (XXY (Klinefelter syndrome)), microdeletion of the Y chromosome or mutations in a single gene. Therefore, mutation is too restrictive. Nevertheless, we modified the sentence which is now “…or a genetic disorder including chromosomal or single gene deficiencies”

      6) Lines 163-164: the authors describe the mutations (premature stop mutations) and say that they could either lead to complete absence of the gene product, or the expression of a truncated protein. Did they test this, for example, with some immuno blot analyses?

      As stated above, unfortunately, we were unable to verify the presence of RNA-decay in these patients for lack of biological material.

      7) Line 184 and Fig 2E: the sperm head morphologies should be quantitatively assessed.

      We provide now a full statistical analysis of the observed defects: see new panel in Figure 2 F

      8) Fig 3: The annotation should be more precise - KO certainly means CDCC146-KO. The colours of the IH panels is different, which attracts attention but is clearly a colour-adjustment artefact. Colours should be adjusted for the panels to look comparable. It would be also helpful to add arrowheads into the figure to point at the phenotypes that are highlighted in the text.

      We have added Ccdc146 KO in all figures. We have added arrow heads to point out the spermatids showing a thin and elongated nucleus. Concerning adjustment of colors, we attempted to make images of panel B comparable. See new figure 3.

      9) Fig 6A: the authors use RT PCR to determine expression dynamics of their gene of interested, and use actin (apparently) as control. However, actin and CDCC146 expression levels follow the same trend. How is the interpreted?

      The reviewer did not understand the figure. The orange bars do not correspond to actin expression and the grey bars to Ccdc146 expression but both bars represent the mRNA expression levels of Ccdc146 relative to Actb (orange) and Hprt (grey) expression in CCDC146-HA mouse pups’ testes. We tested two housekeeping genes as reference to be sure that our results were not distorted by an unstable expression of a housekeeping gene. We did not see significant difference between both house keeping genes. Actin was not used.

      10) In line 235, the authors suggest posttranslational modifications of their protein as potential cause for a slightly different migration in SDS PAGE as predicted from the theoretical molecular weight. This is not necessarily the case, some proteins do migrate just differently as predicted.

      We have changed the text accordingly and now provide alternative explanation for the slightly different migration. See lines 258-259

      11) The annotation of Fig 6 panels is problematic. First, why do the authors write "Laemmli" as description of the gel? It would be more helpful to write what is loaded on the gel, such as "sperm". Second, in panels B and C it would be helpful to add the antibodies used. It is not clear why there is a signal in the WT lane of panel B, but not in the HA lane (supposing an anti-HA antibody is used: why has WT a specific HA band?). In panel C, it is not clear why the blot that has so beautifully shown a single band in panel B suddenly gives such a bad labelling. Can the authors explain this? Also, they cut off the blot, likely because to too much background, but this is bad practice as full blots should be shown. In the current state, the panel C does not allow any clear conclusion. To make it conclusive, it must be repeated.

      Several mistakes were present in this figure. This figure was recomposed. The WB on testicular extract was suppressed and we now present a new WB allowing to compare the presence of CCDC146 in the flagella and head fractions from WT and HA-CCDC146 sperm. Using an anti-HA Ab, we demonstrate that in epididymal sperm the protein is localized in the flagella only. See new figure 6. The corresponding text was changed accordingly.

      12) The authors have raised an HA-knockin mouse for CDCC146, which they explained by the unavailability of specific antibodies. However, in Fig 7, they use a CDCC146 antibody. Can they clarify?

      The commercial Ab work for HUMAN CCDC146 but not for MOUSE CCDC146. We have added few words to make the situation clearer, we have added the following information “the commercial Ab works for human CCDC146 only”. See line 240

      13) In Fig 7A (line 258), the authors hypothesise that they stain mitochondria - why not test this directly by co-staining with mitochondria markers?

      We chose another solution to resolve this question:

      To avoid the issue of the non-specificity of secondary antibodies, we performed a new set of IF experiments using an HA Tag Alexa Fluor® 488-conjugated Antibody (anti-HA-AF488-C Ab) on WT and HA-CCDC146 sperm. These results are now presented in figure 7 panel A (new). The specificity of the signal obtained with the anti-HA-AF488-C Ab on mouse spermatozoa was evaluated by performing a statistical study of the density of dots in the principal piece of the flagellum from HA-CCDC146 and WT sperm. These results are now presented in figure 7 panel B (new). This study was carried out by analyzing 58 WT spermatozoa and 65 CCDC146 spermatozoa coming from 3 WT and 3 KI males. We found a highly significant difference, with a p-value <0.0001, showing that the signal obtained on spermatozoa expressing the tagged protein is highly specific. We have added a paragraph in the MM section to describe the process of image analysis. We finally present new images obtained by ExM showing no staining in the midpiece (figure 7C new). Altogether, these results demonstrate unequivocally the presence of the protein in the whole flagellum.

      14) It seems that in both, Fig 7 and 8, the authors use expansion microscopy to localise CDCC146 in sperm tails. However, the staining differs substantially between the two figures. How is this explained?

      In figure 8 we used the commercial Ab in human sperm, whereas in figure 7 we used the anti-HA Abs in mouse sperm. Because the antibodies do not target the same part of the CCDC146 protein (the tag is placed at the N-terminus of the protein, and the HPA020082 Ab targets the last 130 amino acids of the Cter), their accessibility to the antigenic site could be different. However, it is important to note that both antibodies target the flagellum. This explanation is now inserted see lines 304-312

      15) Fig 8D and line 274: the authors do a fractionation, but only show the flagella fraction. Why?

      Showing all fractions of their experiment would have underpinned the specific enrichment of CDCC146 in the flagella fraction, which is what they aim to show. Actually, given the absence of control proteins, the fact that the band in the flagellar fraction appears to be weaker than in total sperm, one could even conclude that there is more CDCC146 in another (not analysed) fraction of this experiment. Thus, the experiment as it stands is incomplete and does not, as the authors claim, confirm the flagellar localisation of the protein.

      We agree with the reviewer’s remark. We provide now new results showing both flagella and nuclei fractions in new figure 6A. This experiment is presented lines 253-256

      16) Line 283, Fig 9D,F: The description of the microtubules in this experiment is not easy to understand. Do the authors mean to say that the labelling shows that the protein is associated with doublet microtubules, but not with the two central microtubules? They should try to find a clearer way to explain their result.

      As suggested by reviewer 2, we have changed the figure to make it clearer. The text was changed accordingly. See new figure 9 and new corresponding legend lines 1006.

      17) Fig 9G - how often could the authors observe this? Why is the axoneme frayed? Does this happen randomly, or did the authors apply a specific treatment?

      Yes, it happens randomly during the fixation process.

      18) Line 300 and Fig 10A - the authors talk about the 90-kDa band, but do say anything about what they think this band is representing.

      We have now added the following sentence lines 340-342: “This band may correspond to proteolytic fragment of CCDC146, the solubilization of microtubules by sarkosyl may have made CCDC146 more accessible to endogenous proteases.”

      19) Fig 11A, lines 321-322: the authors write that the connecting piece is severely damaged. This is not obvious for somebody who does not work in sperm. Perhaps the authors could add some arrow heads to point out the defects, and briefly describe them in the text.

      We realized from your remark that our message was not clear. In fact, there is a great variability in the morphological damages of the HTCA. For instance, the HTCA of Ccdc146 KO sperm presented in figure 10A2 is quite normal, whereas that in figure 10A4 is completely distorted. This point is now underlined in the corresponding text. See lines 367-369

      We also added the size of the marker bar (200 nm), which were missing in the figure’s legend.

      20) Line 323: it will be important to name which tubulin antibody has been used to identify centrioles, as they are heavily posttranslationally modified.

      The different types of anti-tubulin Abs are described in the corresponding figure’s legend

      21) Fig 11B - phenotypes must be quantified to make these observations meaningful.

      We agree that a quantification would improve the message. However, testicular sperm are obtained by enzymatic separation of spermatogenic cells and the number of testicular sperm are very low. Moreover, not all sperm are stained. Taking these two points into account, it seems to us that quantification could be difficult to analyze. For this reason, the quantification was not done; however, it is important to note that these defects were not observed in WT sperm, demonstrating that these defects are cased by the lack of CCDC146. We have added a sentence to underline this point; See lines 374-375

      22) Line 329: Figure 12AB - is this a typo - should it read Figure 12B?

      We have split the panel A in A1 and A2 and changed the text accordingly. See line 378

      23) Why are there not wildtype controls in Fig 12B, C?

      We provide now as Figure 12-figure supplement 1, a control image for fig 12B. For figure 12C, the emergence of the flagellum from the distal centriole in WT is already shown in Fig 12A1

      24) Fig 13: the authors write that the manchette is "clearly longer and wider than in WT cells" (lines 342-343). How can they claim this without quantitative data?

      We now provide a statistical analysis of the length of the manchette. See figure 13-figure supplement 1A. We also provide a new a new image illustrating the length of the manchette in Ccdc146 KO spermatids; See Figure 13-figure supplement 1B.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, the authors explore the effects of DNA methylation on the strength of regulatory activity using massively parallel reporter assays in cell lines on a genome-wide level. This is a follow-up of their first paper from 2018 that describes this method for the first time. In addition to adding more indepth information on sequences that are explored by many researchers using two main methods, reduced bisulfite sequencing and sites represented on the Illumina EPIC array, they now show also that DNA methylation can influence changes in regulatory activity following a specific stimulation, even in absence of baseline effects of DNA methylation on activity. In this manuscript, the authors explore the effects of DNA methylation on the response to Interferon alpha (INFA) and a glucocorticoid receptor agonist (dexamethasone). The authors validate their baseline findings using additional datasets, including RNAseq data, and show convergences across two cell lines. The authors then map the methylation x environmental challenge (IFNA and dex) sequences identified in vitro to explore whether their methylation status is also predictive of regulatory activity in vivo. This is very convincingly shown for INFA response sequences, where baseline methylation is predictive of the transcriptional response to flu infection in human macrophages, an infection that triggers the INF pathways.

      Thank you for your strong assessment of our work!

      The extension of the functional validity of the dex-response altering sequences is less convincing.

      We agree. We note that genes close to dex-specific mSTARR-seq enhancers tend to be more strongly upregulated after dex stimulation than those near shared enhancers, which parallels our results for IFNA (lines 341-344). However, there is unfortunately no comparable data set to the human flu data set (i.e., with population-based whole genome-bisulfite sequencing data before and after dex challenge), so we could not perform a parallel in vivo validation step. We have added this caveat to the revised manuscript (lines 555-557).

      Sequences altering the response to glucocorticoids, however, were not enriched in DNA methylation sites associated with exposure to early adversity. The authors interpret that "they are not links on the causal pathway between early life disadvantage and later life health outcomes, but rather passive biomarkers". However, this approach does not seem an optimal model to explore this relationship in vivo. This is because exposure to early adversity and its consequences is not directly correlated with glucocorticoid release and changes in DNA methylation levels following early adversity could be related to many physiological mechanisms, and overall, large datasets and meta-analyses do not show robust associations of exposure to early adversity and DNA methylation changes. Here, other datasets, such as from Cushing patients may be of more interest.

      Thank you for making these important points. We have expanded the set of caveats regarding the lack of enrichment of early adversity-reported sites in the mSTARR-data set (lines 527-533). Specifically, we note that the relationship between early adversity and glucocorticoid physiology is complex (e.g., Eisenberger and Cole, 2012; Koss and Gunnar, 2018) and that dex challenge models one aspect of glucocorticoid signaling but not others (e.g., glucocorticoid resistance). Nevertheless, we also see little evidence for enrichment of early adversity-associated sites in the mSTARR data set at baseline, independently of the dex challenge experiment (lines 483-485; Figure 4).

      We also agree that large data sets (e.g., Houtepen et al., 2018; Marzi et al., 2018) and reviews (e.g., Cecil et al., 2020) of early adversity and DNA methylation in humans show limited evidence of associations between early adversity and DNA methylation levels. However, the idea that early adversity impacts downstream outcomes remains pervasive in the literature and popular science (see Dubois et al., 2019), which we believe makes tests like ours important to pursue. We also hope that our data set (and others generated through these methods) will be useful in interpreting other settings in which differential methylation is of interest as well—in line with your comment below. We have clarified both of these points in the revised manuscript (lines 520-522; 536-539).

      Overall, the authors provide a great resource of DNA methylation-sensitive enhancers that can now be used for functional interpretation of large-scale datasets (that are widely generated in the research community), given the focus on sites included in RBSS and the Illumina EPIC array. In addition, their data lends support that differences in DNA methylation can alter responses to environmental stimuli and thus of the possibility that environmental exposures that alter DNS methylation can also alter the subsequent response to this exposure, in line with the theory of epigenetic embedding of prior stimuli/experiences. The conclusions related to the early adversity data should be reconsidered in light of the comments above.

      Thank you! And yes, we have revised our discussion of early life adversity effects as discussed above.

      Reviewer #1 (Recommendations For The Authors):

      While the paper has a lot of strengths and provides new insight into the epigenomic regulation of enhancers as well as being a great resource, there are some aspects that would benefit from clarification.

      a. It would be great to have a clearer description of how many sequences are actually passing QC in the different datasets and what the respective overlaps are in bps or 600bp windows. Now often only % are given. Maybe a table/Venn diagram for overview of the experiments and assessed sequences would help here. This concern the different experiments in the K652, A549, and Hep2G cell lines, including stimulations.

      We now provide a supplementary figure and supplementary table providing, for each dataset, the number of 600 bp windows passing each filter (Figure 2-figure supplement 1; Supplementary File 9), as well as a supplementary figure providing an upset plot to show the number of assessed sequences shared across the experiments (Figure 2-figure supplement 2).

      b. It would also be helpful to have a brief description of the main differences in assessed sequences and their coverage of the old (2018) and new libraries in the main text to be able better interpret the validation experiments.

      We now provide information on the following characteristics for the 2018 data set versus the data set presented for the first time here: mean (± SD) number of CpGs per fragment; mean (± SD) DNA sequencing depth; and mean (± SD) RNA sequencing depth (lines 169-170 provide values for the new data set; in line 194, we reference Supplementary File 5, which provides the same values for the old data set). Notably, the coverage characteristics of analyzed windows in both data sets are quite high (mean DNA-seq read coverage = 94x and mean RNA-seq read coverage = 165x in the new data set at baseline; mean DNA-seq read coverage = 22x and mean RNA-seq read coverage = 54x in Lea et al. 2018).

      c. Statements of genome-wide analyses in the abstract and discussion should be a bit tempered, as quite a number of tested sites do not pass QC and do not enter the analysis. From the results it seems like from over 4.5 million sequences, only 200,000 are entering the analysis.

      The reason why many of the windows are not taken forward into our formal modeling analysis is that they fail our filter for RNA reads because they are never (or almost never) transcribed—not because there was no opportunity for transcription (i.e., the region was indeed assessed in our DNA library, and did not show output transcription, as now shown in Figure 2-figure supplement 1). We have added a rarefaction analysis (lines 715-722 in Materials and Methods) of the DNA fragment reads to the revised manuscript which supports this point. Specifically, it shows that we are saturated for representation of unique genomic windows (i.e., we are above the stage in the curve where the proportion of active windows would increase with more sequencing: Figure 1figure supplement 4). Similarly, a parallel rarefaction curve for the mSTARR-seq RNA-seq data (Figure 1-figure supplement 4) shows that we would gain minimal additional evidence for regulatory activity with more sequencing depth. We now reference these analyses in revised lines 179-184 and point to the supporting figure in line 182.

      In other words, our analysis is truly genome-wide, based on the input sequences we tested. Most of the genome just doesn’t have regulatory activity in this assay, despite the potential for it to be detected given that the relevant sequences were successfully transfected into the cells.

      d. Could the authors comment on the validity of the analysis if only one copy is present (cut-off for QC)?

      We think this question reflects a misunderstanding of our filtering criteria due to lack of clarity on our part, which we have modified in the revision. We now specify that the mean DNA-seq sequencing depth per sample for the windows we subjected to formal modeling was quite high:

      93.91 ± 10.09 SD (range = 74.5 – 113.5x) (see revised lines 169-170). In other words, we never analyze windows in which there is scant evidence that plasmids containing the relevant sequence were successfully transfected (lines 170-172).

      Our minimal RNA-seq criteria require non-zero counts in at least 3 replicate samples within either the methylated condition or the unmethylated condition, or both (lines 166-168). Because we know that multiple plasmids containing the corresponding sequence are present for all of these windows—even those that just cross the minimal RNA-seq filtering threshold—we believe our results provide valid evidence that all analyzed windows present the opportunity to detect enhancer activity, but many do not act as enhancers (i.e., do not result in transcribed RNA). Notably, we observe a negligible correlation between DNA sequencing depth for a fragment, among analyzed windows, and mSTARR-seq enhancer activity (R2 = 0.029; now reported in lines 183-184). We also now report reproducibility between replicates, in which all replicate pairs have r > 0.89, on par with previously published STARR-seq datasets (e.g., Klein et al., 2020; Figure 1-figure supplement 6, pointed to in line 193).

      e. While the authors state that almost all of the control sequences contain CpGs sites, could the authors also give information on the total number of CpG sites in the different subsets? Was the number of CpGs in a 600 bp window related to the effects of DNA methylation on enhancer activity?

      We now provide the number of CpG sites per window in the different subsets in lines 282-284. As expected, they are higher for EPIC array sites and for RRBS sites because the EPIC array is biased towards CpG-rich promoter regions, and the enzyme typically used in the starting step of RRBS digests DNA at CpG motifs (but control sequences still contain an average of ~13 CpG sites per fragment). We also now model the magnitude of the effects of DNA methylation on regulatory activity as a function of number of CpG sites within the 600 bp windows. Consistent with our previous work in Lea et al., 2018, we find that mSTARR-seq enhancers with more CpGs tend to be repressed by DNA methylation (now reported in lines 216-219 and Figure 1figure supplement 11).

      f. In the discussion, a statement on the underrepresented regions, likely regulatory elements with lower CG content, that nonetheless can be highly relevant for gene regulation would be important to put the data in perspective.

      Thanks for this suggestion. We agree that regulatory regions, independent of CpG methylation, can be highly relevant, and now clarify in the main text that the “unmethylated” condition of mSTARR-seq is essentially akin to a conventional STARR-seq experiment, in that it assesses regulatory activity regardless of CpG content or methylation status (lines 128-130).

      Consequently, our study is well-designed to detect enhancer-like activity, even in windows with low GC content. We now show with additional analyses that we generated adequate DNA-seq coverage on the transfected plasmids to analyze 90.2% of the human genome, including target regions with no or low CpG content (lines 148-149; 153-156; Supplementary file 2). As noted above, we also now clarify that regions dropped out of our formal analysis because we had little to no evidence that any transcription was occurring at those loci, not because sequences for those regions were not successfully transfected into cells (see responses above and new Figure 1-figure supplement 4 and Figure 2-figure supplement 1).

      g. To control for differences in methylation of the two libraries, the authors sequence a single CpGs in the vector. Could the authors look at DNA methylation of the 600 bp windows at the end of the experiment, could DNA methylation of these windows be differently affected according to sequence? 48 hours could be enough for de-methylation or re-methylation.

      We agree that variation in demethylation or remethylation depending on fragment sequence is possible. We now state this caveat in the main text (lines 158-159), and specify that genomic coverage of our bisulfite sequencing data across replicates are (unfortunately) too variable to perform reliable site-by-site analysis of DNA methylation levels before and after the 48 hour experiment (lines 1182-1185). Instead, we focus on a CpG site contained in the adapter sequence (and thus included in all plasmids) to generate a global estimate of per replicate methylation levels. We also now note that any de-methylation or re-methylation would reduce our power to detect methylation-dependent activity, rather than leading to false positives (lines 163-165).

      h. The section on the method for correction for multiple testing should be more detailed as it is very difficult to follow. Why were only 100 permutations used, the empirical p-value could then only be <0.01? The description of a subsample of the N windows with positive Betas is unclear, should the permutation not include the actual values and thus all windows - or were the no negative Betas? Was FDR accounting for all elements and pairs?

      We have now expanded the text in the Materials and Methods section to clarify the FDR calculation (lines 691, 695-699, 702, 706). We clarify that the 100 permutations were used to generate a null distribution of p-values for the data set (e.g., 100 x 17,461 p-values for the baseline data set), which we used to derive a false discovery rate. Because we base our evidence on FDRs, we therefore compare the distribution of observed p-values to the distribution of pvalues obtained via permutation; we do not calculate individual p-values by comparing an observed test statistic against the test statistics for permuted data for that individual window.

      We compare the data to permutations with only positive betas because in the observed data, we observe many negative betas. These correspond to windows which have no regulatory activity (i.e., they have many more input DNA reads than RNA-seq reads) and thus have very small pvalues in a model testing for DNA-RNA abundance differences. However, we are interested in controlling the false discovery rate of windows that do have regulatory activity (positive betas). In the permuted data, by contrast and because of the randomization we impose, test statistics are centered around 0 and essentially symmetrical (approximately equally likely to be positive or negative). Retaining all p-values to construct the null therefore leads to highly miscalibrated false discovery rates because the distribution of observed values is skewed towards smaller values— because of windows with “significantly” no regulatory activity—compared to the permuted data. We address that problem by using only positive betas from the permutations.

      i. The interpretation of the overlap of Dex-response windows with CpGs sites associated with early adversity should be revisited according to the points also mentioned in the public review and the authors may want to consider exploring additional datasets with other challenges.

      Thank you, see our responses to the public review above and our revisions in lines (lines 555559). We agree that comparisons with more data sets and generation of more mSTARR-seq data in other challenge conditions would be of interest. While beyond the scope of this manuscript, we hope the resource we have developed and our methods set the stage for just such analyses.

      Reviewer #2 (Public Review):

      This work presents a remarkably extensive set of experiments, assaying the interaction between methylation and expression across most CpG positions in the genome in two cell types. To this end, the authors use mSTARR-seq, a high-throughput method, which they have previously developed, where sequences are tested for their regulatory activity in two conditions (methylated and unmethylated) using a reporter gene. The authors use these data to study two aspects of DNA methylation:

      1) Its effect on expression, and 2. Its interaction with the environment. Overall, they identify a small number of 600 bp windows that show regulatory potential, and a relatively large fraction of these show an effect of methylation on expression. In addition, the authors find regions exhibiting methylation-dependent responses to two environmental stimuli (interferon alpha and glucocorticoid dexamethasone).

      The questions the authors address represent some of the most central in functional genomics, and the method utilized is currently the best method to do so. The scope of this study is very impressive and I am certain that these data will become an important resource for the community. The authors are also able to report several important findings, including that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures.

      Thank you for this generous summary!

      The main weaknesses of the study are: 1. The large number of regions tested seems to have come at the expense of the depth of coverage per region (1 DNA read per region per replicate). I have not been convinced that the study has sufficient statistical power to detect regulatory activity, and differential regulatory activity to the extent needed. This is likely reflected in the extremely low number of regions showing significant activity.

      We apologize for our lack of clarity in the previous version of the manuscript. Nonzero coverage for half the plasmid-derived DNA-seq replicates is a minimum criterion, but for the baseline dataset, the mean depth of DNA coverage per replicate for windows passing the DNA filter is quite high: 12.723 ± 41.696 s.d. overall, and 93.907 ± 10.091 s.d. in the windows we subjected to full analysis (i.e., windows that also passed the RNA read filter). We now provide these summary statistics in lines 148-149 and 169-170 and Supplementary file 5 (see also our responses to Reviewer 1 above). We also now show, using a rarefaction analysis, that our data set saturates the ability to detect regulatory windows based on DNA and RNA sequencing depth (new Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Due to the position of the tested sequence at the 3' end of the construct, the mSTARR-seq approach cannot detect the effect of methylation on promoter activity, which is perhaps the most central role of methylation in gene regulation, and where the link between methylation and expression is the strongest. This limitation is evident in Fig. 1C and Figure 1-figure supplement 5C, where even active promoters have activity lower than 1. Considering these two points, I suspect that most effects of methylation on expression have been missed.

      Thank you for pointing this out. We agree that we have not exhaustively detected methylationdependent activity in all promoter regions, given that not all promoter regions are active in STARR-seq. However, there is good evidence that some promoter regions can function like enhancers and thus be detected in STARR-seq-type assays (Klein et al., 2020). This important point is now noted in lines 187-189; an example promoter showing methylation-dependent regulatory activity in our dataset is shown in Figure 3E.

      We also now clarify that Figure 1C shows significant enrichment of regulatory activity in windows that overlap promoter sequence (line 239). The y-axis is not a measure of activity, but rather the log-transformed odds ratio, with positive values corresponding to overrepresentation of promoter sequences in regions of mSTARR-seq regulatory activity. Active promoters are 1.640 times more likely to be detected with regulatory activity than expected by chance (p = 1.560 x 10-18), which we now report in a table that presents enrichment statistics for all ENCODE elements shown in Figure 1C for clarity (Supplementary file 4). Moreover, 74.1% of active promoters that show regulatory activity have methylation-dependent activity, also now reported in Supplementary file 4.

      Overall, the combination of an extensive resource addressing key questions in functional genomics, together with the findings regarding the relationship between methylation and environmental stimuli makes this a key study in the field of DNA methylation.

      Thank you again for the positive assessment!

      Reviewer #2 (Recommendations For The Authors):

      I suggest the authors conduct several tests to estimate and/or increase the power of the study:

      1) To estimate the potential contribution of additional sequencing depth, I suggest the authors conduct a downsampling analysis. If the results are not saturated (e.g., the number of active windows is not saturated or the number of differentially active windows is not saturated), then additional sequencing is called for.

      We appreciate the suggestion. We have now performed a downsampling/rarefaction curve analysis in which we downsampled the number of DNA reads, and separately, the number of RNA reads. We show that for both DNA-seq depth and RNA-seq depth, we are within the range of sequencing depth in which additional sequencing would add minimal new analysis windows in the dataset (Figure 1-figure supplement 4; lines 179-184; 715-722).

      2) Correlation between replicates should be reported and displayed in a figure because low correlations might also point to too few reads. The authors mention: "This difference likely stems from lower variance between replicates in the present study, which increases power", but I couldn't find the data.

      We now report the correlations between RNA and DNA replicates within the current dataset and within the Lea et al., 2018 dataset (Figure 1-figure supplement 6). The between-replicate correlations in both our RNA libraries and DNA libraries are consistently high (r ≥ 0.89).

      3) The correlation between the previous and current K562 datasets is surprisingly low. Given that these datasets were generated in the same cell type, in the same lab, and using the same protocol, I expected a higher correlation, as seen in other massively parallel reporter assays. The fact that the correlations are almost identical for a comparison of the same cell and a comparison of very different cell types is also suspicious.

      Thanks for raising this point. We think it is in reference to our original Figure 1-Figure supplement 6, for which we now provide Pearson correlations in addition to R2 values (now Figure 1-Figure supplement 8). We note that this is not a correlation in raw data, but rather the correlation in estimated effect sizes from a statistical model for methylation-dependent activity. We now provide Pearson correlations for the raw data between replicates within each dataset (Figure 1-Figure supplement 6), which for the baseline dataset are all r > 0.89 for RNA replicates and r > 0.98 for DNA replicates, showing that replicate reproducibility in this study is on par with other published studies (e.g., Klein et al., 2020 report r > 0.89 for RNA replicates and r > 0.91 for DNA replicates).

      We do not know of any comparable reports in other MPRAs for effect size correlations between two separately constructed libraries, so it’s unclear to us what the expectation should be. However, we note that all effect sizes are estimated with uncertainty, so it would be surprising to us to observe a very high correlation for effect sizes in two experiments, with two independently constructed libraries (i.e., with different DNA fragments), run several years apart—especially given the importance of winner’s curse effects and other phenomena that affect point estimates of effect sizes. Nevertheless, we find that regions we identify as regulatory elements in this study are 74-fold more likely to have been identified as regulatory elements in Lea et al., 2018 (p < 1 x10-300).

      4) The authors cite Johnson et al. 2018 to support their finding that merely 0.073% of the human genome shows activity (1.7% of 4.3%), but:

      a. the percent cited is incorrect: this study found that 27,498 out of 560 million regions (0.005%) were active, and not 0.165% as the authors report.

      We have modified the text to clarify the numerator and denominator used for the 0.165% estimate from Johnson et al 2018 (lines 175-176). The numerator is their union set of all basepairs showing regulatory activity in unstimulated cells, which is 5,547,090 basepairs. The denominator is the total length of the hg38 human genome, which is 3,298,912,062 basepairs.

      Notably, the denominator (the total human genome) is not 560 million—while Johnson et al (2018) tested 560 million unique ~400 basepair fragments, these fragments were overlapping, such that the 560 million fragments covered the human genome 59 times (i.e., 59x coverage).

      b. other studies that used massively parallel reporter assays report substantially higher percentages, suggesting that the current study is possibly underpowered. Indeed, the previous mSTARR-seq found a substantially larger percentage of regions showing regulatory activity (8%). The current study should be compared against other studies (preferably those that did not filter for putatively active sequences, or at least to the random genomic sequences used in these studies).

      We appreciate this point and have double checked comparisons to Johnson et al., 2018 and Lea et al., 2018. Our numbers are not unusual relative to Johnson et al., 2018 (0.165%), which surveyed the whole genome. Also, in comparing to the data from Lea et al., 2018, when processed in an identical manner (our criteria are more stringent here), our values of the percent of the tested genome showing significant regulatory activity are also similar: 0.108% in the Lea et al., 2018 dataset versus 0.082% in the baseline dataset. Finally, our rarefaction analyses (see our responses above) indicate that we are not underpowered based on sequencing depth for RNA or DNA samples. We also note that there are several differences in our analysis pipeline from other studies: we use more technical replicates than is typical (compare to 2-5 replicates in Arnold et al., 2013; Johnson et al., 2018; Muerdter et al., 2018), we measure DNA library composition based on DNA extracted from each replicate post-transfection (as opposed to basing it on the pre-transfection library: [Johnson et al., 2018], and we use linear mixed models to identify regulatory activity as opposed to binomial tests [Johnson et al., 2018; Arnold et al., 2013; Muerdter et al., 2018].

      I find it confusing that the four sets of CpG positions used: EPIC, RRBS, NR3C1, and random control loci, add up together to 27.3M CpG positions. Do the 600 bp windows around each of these positions sufficient to result in whole-genome coverage? If so, a clear explanation of how this is achieved should be added.

      Thanks for this comment. Although our sequencing data are enriched for reads that cover these targeted sites, the original capture to create the input library included some off target reads (as is typical of most capture experiments, which are rarely 100% efficient). We then sequenced at such high depth that we ultimately obtained sequencing coverage that encompassed nearly the whole genome. We now clarify in the main text that our protocol assesses 27.3 million CpG sites by assessing 600 bp windows encompassing 93.5% of all genomic CpG sites (line 89), which includes off-target sites (line 149).

      scatter plot showing the RNA to DNA ratios of the methylated (x-axis) vs unmethylated (y-axis) library would be informative. I expect to see a shift up from the x=y diagonal in the unmethylated values.

      We have added a supplementary figure showing this information, which shows the expected shift upwards (Figure 1-figure supplement 9).

      Another important figure missing is a histogram showing the ratios between the unmethylated and methylated libraries for all active windows, with the significantly differentially active windows marked.

      We have added a supplementary figure showing this information (Figure 1-Supplementary Figure 10).

      Perhaps I missed it, but what is the distribution of effect sizes (differential activity) following the various stimuli?

      This information is provided in table form in Supplementary Files 3, 10, and 11, which we now reference in the Figure 2 legend (lines 365-366).

      Minor changes

      It is unclear what the lines connecting the two groups in Fig.3C represent, as these are two separate groups of regions.

      We now clarify in the figure legend that values connected by a line are the same regions, not two different sets of regions. They show the correlation between DNA methylation and gene expression at mSTARR-seq-identified enhancers in individuals before and after IAV stimulation, separately for enhancers that are shared between conditions (left) versus those that are IFNAspecific (right). The two plots therefore do show two different sets of regions, which we have depicted to visualize the contrast in the effect of stimulation on the correlation on IFNA-specific enhancers versus shared enhancers. We have revised the figure legend to clarify these points (line 458-460).

      L235-242 are unclear. Specifically - isn't the same filter mentioned in L241-242 applied to all regions?

      Yes, the same filter for minimal RNA transcription was applied to all regions. We have modified the text (lines 264-265, 271, 275-277) to clarify that the enrichment analyses were performed twice, to test whether the target types were: 1) enriched in the dataset passing the RNA filter (i.e., the dataset showing plasmid-derived RNA reads in at least half the sham or methylated replicates; n = 216,091 windows) and 2) enriched in the set of windows showing significant regulatory activity (at FDR < 1%; n = 3,721 windows).

      To improve cohesiveness, the section about most CpG sites associated with early life adversity not showing regulatory activity in K562s can be moved to the supplementary in my opinion.

      Thank you for this suggestion. Because ELA and the biological embedding hypothesis (via DNA methylation) were major motivations for our analysis (see Introduction lines 42-48; 75-79), and we also discuss these results in the Discussion (lines 518-520), we have respectfully elected to retain this section in the main manuscript. We have added text in the Discussion explaining why we think experimental tests of methylation effects on regulation are relevant to the literature on early life adversity (lines 520-522), and have added discussion on limits to these analyses (lines 527-533).

      References:

      Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 339, 1074-1077.

      Cecil CA, Zhang Y, Nolte T (2020) Childhood maltreatment and DNA methylation: A systematic review. Neuroscience & Biobehavioral Reviews, 112, 392-409.

      Dubois M, Louvel S, Le Goff A, Guaspare C, Allard P (2019) Epigenetics in the public sphere: interdisciplinary perspectives. Environmental Epigenetics, 5, dvz019.

      Eisenberger NI, Cole SW (2012) Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nature neuroscience, 15, 669-674.

      Houtepen L, Hardy R, Maddock J, Kuh D, Anderson E, Relton C, Suderman M, Howe L (2018) Childhood adversity and DNA methylation in two population-based cohorts. Translational Psychiatry, 8, 1-12.

      Johnson GD, Barrera A, McDowell IC, D’Ippolito AM, Majoros WH, Vockley CM, Wang X, Allen AS, Reddy TE (2018) Human genome-wide measurement of drug-responsive regulatory activity. Nature communications, 9, 1-9.

      Klein JC, Agarwal V, Inoue F, Keith A, Martin B, Kircher M, Ahituv N, Shendure J (2020) A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 17, 1083-1091.

      Koss KJ, Gunnar MR (2018) Annual research review: Early adversity, the hypothalamic–pituitary– adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59, 327-346.

      Marzi SJ, Sugden K, Arseneault L, Belsky DW, Burrage J, Corcoran DL, Danese A, Fisher HL, Hannon E, Moffitt TE (2018) Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. American journal of psychiatry, 175, 517-529.

      Muerdter F, Boryń ŁM, Woodfin AR, Neumayr C, Rath M, Zabidi MA, Pagani M, Haberle V, Kazmar T, Catarino RR (2018) Resolving systematic errors in widely used enhancer activity assays in human cells. Nature methods, 15, 141-149.

    1. There are however, areas of knowledge and human experience that the methods of science cannot be applied to. These include such things as answering purely moral questions, aesthetic questions, or what can be generally categorized as spiritual questions.

      This is my tricky or troubling fact. I think it may just be purely human to wonder about the afterlife and we like to create ideas and follow religion but were blindly following in a sense. As a religious person I myself don't know more about the afterlife than the next person does. And the fact that science cannot prove what is and isn't involved in the afterlife is troubling to say the least.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1) Can the authors statistically define the egg-laying classes? In some parts of the manuscript, the division between the different classes could be more ambiguous. I understand that the class III strains are divided by the kcnl-1 genotype, but given the different results for diverse traits, it could be more clear to keep them as one class. Also, overall, the authors choose a collection of 15 strains across the different classes to phenotype for many traits and perform genome edits. It is understandable that they cannot test all strains, but given the variation across traits and classes, it might be good to add a few more caveats about how these strains might not be representative of all strains across the species.

      Response: The egg-laying classes were defined as in Figure 1A by arbitrarily chosen cut-offs (at 10, 10-25, and 25 eggs in utero) to simplify subsequent analyses. We added this explanation to the first paragraph of the results section. However, the differences in average egg retention are significantly different between the four defined classes using the 15 selected strains (Fig. 2A).

      We think that the distinction between Class IIIA and IIIB strains is important and justified because the two Classes significantly differ in mean egg retention (Fig. 2A) and because Class IIIB harbour the large-effect variant KCNL-1 V530L whereas Class IIIA do not.

      We agree that the 15 selected strains are not necessarily representative of all strains across the species. We have added a note of caution regarding this point to the first paragraph of the section “Temporal progression of egg retention and internal hatching”: “Note that this strain selection, especially concerning the largest Class II, is unlikely to reflect the overall strain diversity observed across the species". In addition, we have reworded the first sentence of this paragraph as follows: “ To better characterize natural variation in C. elegans egg retention, we focused on a subset of 15 strains from divergent phenotypic Classes I-III, with an emphasis on Class III strains exhibiting strong egg retention (at mid-L4 + 30h) (Fig. 2A and 2B).”

      2) For the GWAS experiments, the authors should describe if any of the QTL overlap with hyper-divergent regions in the strain set. The QTL could be driven by these less well defined regions.

      Response: We have added the following sentence: “The three QTLs do not align with any of the recently identified hyper-divergent regions of the genome (Lee et al., 2021).

      3) The authors should look at correlations between the mod-5(n822) edit phenotypes and the exogenous 5-HT and SSRI phenotypes to demonstrate how the traits can differ. Some correlation plots might help that point as well.

      Response: We examined all possible correlations as suggested: none are significant and strain effects on trait differences are idiosyncratic, as written in our results section. The correlational analyses remain of limited value due to small samples: N=10 for mean strain values for measured phenotypes. We therefore feel that these analyses do not provide any additional insights beyond our figures (4C, 4D, 5C, 5D, S5A-C ) and our statement on page 15: “As in previous experiments (Fig. 4C and 5C), we find again that strains sharing the same egg retention phenotype may differ strongly in egg-laying behaviour in response to modulation of both exo- and endogenous serotonin levels (Class IIIA: ED3005 and JU2829) (Fig. 5D and S5C).”

      4) Figure 6D, was there any censoring of the data? Normally, these types of studies are plagued by an increase in censored animals that can decrease significance. The effects among the classes seem large, but statistical comparisons might help as well.

      Response: There was no censoring of animals (censoring of animals in lifespan studies is usually done by removing “bags of worms”, which here was our study phenotype). We now mention this in the corresponding figure legend. We also added a statistical analysis showing that mean survival was significantly different between all Classes.

      5) Many of the traits, edits, and deeper analyses are performed on the JU751 genetic background. This choice is sensible, otherwise, the work can increase exponentially. However, the authors should add a caveat about how these results might be limited to JU751 and other strains might respond differently.

      Response: For certain experiments, it was not feasible to include multiple strains from all phenotypic classes, so we selected JU751 (Class IIIB) and JU1200 (Class II), for which we had established CRISPR-engineered lines to modulate the egg retention phenotype by a single amino acid change in KCNL-1. To emphasize that these experimental observations cannot be generalized, we added the following statement in the relevant results section: “These experimental results offer preliminary evidence (bearing in mind that our analysis was primarily centered on a single genetic background) that laying of advanced-stage embryos may enhance intraspecific competitive ability, particularly in scenarios where multiple genotypes compete for colonization and exploitation of limited, patchily distributed resources.”

      6) The authors argue that evolution could be acting on specific parts of the egg-laying machinery (e.g., muscledirected signaling components). It might be useful to look at levels of standing variation and selection at groups of loci compared to genomic controls to see if this conclusion can be strengthened.

      Response: This is a good idea but how to select pertinent candidate loci is unclear (there are over 300 genes with effects on egg laying, www.wormbase.org). In addition, the genetics of muscle-directed signalling components in egg laying is only starting to be explored, with no specific candidate genes having been identified (Medrano & Collins, 2023, Curr Biol). We therefore think that such an analysis is currently not possible.

      7) Completely optional: The authors present a compelling and interesting case for transitions and trade-offs between oviparity and viviparity. The C. vivipara species has a different egg-laying mode than other Caenorhabditis species. The authors could add a short section describing their expectations about the neuronal morphology, 5-HT circuits, and muscle function in this species given their results. What genes or circuits should be the focus of future studies to address this question in Caenorhabditis. Also, Loer and Rivard present some similar ideas based on the differences in 5-HT staining neurons across diverse nematodes. Those results can be incorporated and discussed as well.

      Response: Our current research focuses on the evolution of egg laying in different Caenorhabditis species. So far, however, it remains difficult to provide specific hypotheses on how the egg-laying circuit has changed in C. vivipara. We rephrased the final paragraph of the discussion to incorporate some of the reviewer’s suggestions: “Nematodes display frequent transitions from oviparity to obligate viviparity in many distinct genera (Sudhaus, 1976; Ostrovsky et al., 2015), including in the genus Caenorhabditis, with at least one viviparous species, C. vivipara (Stevens et al., 2019). Although evidence exists for the evolution of egg-laying circuitry across oviparous Caenorhabditis species (Loer and Rivard, 2007), the specific cellular and genetic changes responsible for the transition to obligate viviparity in C. vivipara have yet to be examined. Resolving the genetic basis of intraspecific variation in C. elegans egg retention, including partial or facultative viviparity, may thus shed light on the molecular changes underlying the initial steps of evolutionary transitions from oviparity to obligate viviparity in invertebrates.”

      Specific edits:

      1) Perhaps a silly point, but "parity" (to my knowledge) does not have a biological meaning on its own. I suggest "egg-laying mode" or "birth mode".

      Response: This term has been used previously in the literature (e.g.https://onlinelibrary.wiley.com/doi/10.1111/jeb.13886 or https://doi.org/10.1101/2023.10.22.563505). However, as the referee rightly points out, this is not a standard term. We therefore replaced “parity mode” with “egg-laying mode”.

      2) "Against fluctuating environmental fluctuations" is a bit strange

      Response: Corrected.

      3) The first publications of Egl mutants were by the Horvitz lab so some citations are not in all of the first descriptions of the trait (early in Results)

      Response: We have added the relevant work (Trent 1982, Trent 1983, Desai & Horvitz 1989) to this paragraph in the early results section.

      4) "Strong egg retention usually strongly..." is a bit strange

      Response: Corrected.

      1. Figure 8G font looks smaller than the others.

      Response: Corrected.

      Reviewer #2:

      1) In Figure 1A, I infer that in the graph class I measurements are represented by dark blue dots and class II by purple dots. I am having a really hard time distinguishing between these two colors in the graph. In the pie chart I have no problem, but in the graph the black lines around the colored dots seem to obscure the colors. Not sure how to fix this graphical problem, but it is preventing the graph from communicating the results effectively.

      Response: We have changed the colours, spacing and format of this figure to resolve this problem.

      2) The behavioral analysis of Figure 3B-3F is problematic. The experimental methods used and the interpretation of the results each have issues. This is cause for concern since this is the most direct analysis of the actual variations in egg-laying behavior across strains presented in this paper.

      This experiment is modeled after the work of Waggoner et al. 1998, who recorded egg laying events of individual worms on video over several hours and noted the exact time of individual egg laying events. Waggoner et al. found in the reference C. elegans strain N2 that egg-laying events occurred in ~2 minute clusters ("active phases") separated by ~20 minute silent periods ("inactive phases"). Mignerot et al. did not take continuous videos of animals, but rather examined plates bearing a single worm only every 5 minutes and noted the number of new eggs that appeared on the plate in each 5-minute interval. From these data, the authors claim they have measured the intervals between "egg-laying phases" (the term used in the Figure 3 legend). In the Results, the authors explicitly claim they are measuring the timing and frequency of actual active and inactive egg-laying phases. Apparently, all the eggs laid within one 5-minute interval are considered to have been laid in a single active phase, and the time between 5-minute intervals containing egg laying events is considered an "inactive phase" and is measured only with a resolution of 5 minutes. It is not explained anywhere how the authors handle the situation of seeing eggs laid in two consecutive 5-minute intervals. Is that one active phase that is 10 minutes long, or is that two separate active phases with a 5-minute active phase in between? Because of this ambiguity in how they define active and inactive phases, I find it impossible to understand and judge the data presented in Fig. 3D-3F. The authors in the results state that "Class I and Class IIIB displayed significantly accelerated and reduced egg laying activity respectively (Fig. 3C to 3E)" . I assume they are referring to the statistical analysis described in the figure legend, which is quite difficult to understand. Frankly, just looking at the graphs in Fig. 3D3F, it is hard for the reader to identify specific features shown in the graphs can explain why, for example, Class I strains have fewer retained eggs than Class III strains. So, I found this analysis very unsatisfying.

      I also feel the authors are making an unwarranted assumption that their non-N2 strains will have distinguishable active and inactive phases of egg-laying behavior analogous to those seen in the N2 strain. Given the possibly large variations in egg-laying behavior in the various strains examined, that assumption should be questioned. Thus, framing the entire analysis of behavior patterns in terms of the length of active and inactive phases might not be appropriate.

      Response: This comment validly highlights important problems and limitations of our scan-sampling method to quantify strain differences in egg-laying behaviour. We acknowledge that we failed to present the data with due diligence, and clarity regarding terminology and interpretation. However, we think that some of these results are still of value after revised presentation. Our biggest mistake was to use the terms “active and inactive phase”, as coined by Waggoner et al. 1998. We are aware that our measures are not equivalent to these previously defined measures but have been sloppy with terminology. We therefore carefully reworded this entire results section, using clear definitions to indicate differences between the Waggoner assay and our assay (including a graphical representation of our assay design in the revised Fig. 3B). In brief, our simplified assay is useful to estimate the frequency and approximate duration of prolonged inactive periods of egg laying because we can unambiguously determine intervals in which eggs were laid or not. In contrast, as pointed out by the reviewer, we cannot determine if multiple active phases occurred within a 5-min interval, nor can we estimate the duration of an active “phase”. We now state this limitation explicitly in the manuscript. What our results do show is that the number of intervals during which egg laying occurred is significantly different between strains and Classes: Class I (low retention) have a higher number of intervals with egg-laying events, whereas Class IIIB showed a reduced number of such events (Fig. 3D). We can therefore also roughly estimate the mean time (per individual) between two egg-laying intervals, giving us a proxy for prolonged periods when egg-laying is inactive (Fig. 3E); we note that our estimate for N2 is very close to what has been previously measured (~20 min). Therefore, we can confidently conclude that there are natural strains which have both shorter (Class I) and longer (Class IIIB) inactive periods of egg laying. These results partly align with observed variation in egg retention. However, we agree with the reviewer – as we had stated both in results and discussion sections – that these behavioural differences act together with differences in the sensing of egg accumulation in utero (as suggested by results shown in Fig. 3G and 3H). We also agree that it seems very plausible that the observed behavioural differences, as revealed by scan-sampling, may only have a secondary role in accounting for natural variation in egg retention. We will be testing these hypotheses specifically in our future research.

      Note: The statistical analyses are nested ANOVAs to ask (a) does the value differ between strains within a given class and (b) does the value differ between Classes? Classes labelled with different letters in the figures therefore significantly differ in their mean values, demonstrating that measured behavioural phenotypes consistently differ between some (but not all) phenotypic classes, yet largely in line with their egg retention phenotypes (Fig. 3D and 3E).

      3) Figure 4A is a schematic diagram of how the egg-laying circuit works based on previous literature, and the authors cite Collins et al. 2015 and Kopchock et al. 2021 as their sources. One feature of this figure seems unwarranted, namely the part indicating that egg accumulation acts on the UM muscles, and the statement in the legend that "mechanical excitation of uterine muscles (UM) in response to egg accumulation favours exit from the inactive state (Collins et al., 2016)". I believe Collins et al. 2016 showed that egg accumulation favors egg laying and may have speculated that it does so by stretching the um muscles, but this idea remains speculative and has not been established by any experimental data. I point out this issue,in particular, because it may bear on the nice data the authors of this manuscript show in Figure 3G and 3H, which show that some strains accumulate many eggs in the uterus before they initiate egg laying.

      Also, in Figure 4A and 4B, the legend does not explain the logic of the green areas labeled "egg-laying active phase" and the yellow area labeled "egg-laying inactive state". I was not sure what sure how to interpret these features of the graphics.

      Response: The input from uterine muscles remains indeed hypothetical, and we have corrected the figure accordingly, now simply referring to the feedback of egg accumulation on egg laying activity, as recently characterized in more detail by Medrano & Collins (2023, Curr Biol).

      The green/yellow backgrounds shown in figures 4A (and 4B) are not useful and we have removed them.

      4) Results, page 11: "We used standard assays, in which animals are reared in liquid M9 buffer without bacterial food." In the standard assays, animals are reared on NGM agar plates with bacterial food, and then at the start of the egg-laying assay, are transferred to liquid M9 buffer without bacterial food. I assume that is what these authors did, and they should correct the language of the text to make it more accurate.

      Response: The reviewer is correct. We have incorporated this change to improve accuracy.

      5) The authors note that "serotonin induced a much stronger egg-laying responds in the Class IIIA strain ED3005 than in other strains (Fig. 4C)". I would like to point out to the authors that strains such as ED3005 that have a very large number of unlaid eggs in their uterus are prone to lay a very large number of eggs when treated with exogenous serotonin, simply for the trivial reason that they have more eggs to release. This was previously seen in, for example, in Desai and Horvitz (1989) in certain egg-laying defective mutants.

      Response: This is an important point and our comparison of ED3005 to ALL other strains is problematic. We changed this result description by stating that ED3005 shows possible serotonin hypersensitivity compared to strains with similar levels of egg retention (Class IIIA): “In addition, serotonin induced a much stronger egg-laying response in the strain ED3005 than in other Class IIIA strains with similar levels of egg retention (Fig. 4B). ED3005 may thus exhibit serotonin hypersensitivity, which has been observed in certain egg-laying mutants where perturbed synaptic transmission impacts serotonin signalling (Schafer and Kenyon, 1995; Schafer et al., 1996).”

      6) In Figure 4 the authors show that all strains lay eggs in response to fluoxetine and imipramine, but some strains (Class IIIB) do not lay eggs in response to serotonin. They then cite a series of papers, starting with Trent et al. 1983, that they claim show that this specific phenotype demonstrates that the HSN neurons are functionally releasing serotonin (bottom of page 11). This statement needs to be removed - it is incorrect. It is true that egg laying in response to fluoxetine and/or imipramine AS WELL AS egg laying in response to serotonin has been interpreted as indicating the presence of HSN neurons that functionally release serotonin to stimulate egg laying (these were referred to as Category C by Trent et al., 1983). However, the mutants that Mignerot et al. are talking about (those that don't respond to serotonin but do respond to imipramine/fluoxetine) were called Category D by Trent et al., 1983, and to my knowledge these have never been interpreted as necessarily having functionally intact HSN neurons. Mutants such as these that can lay eggs in some circumstances but cannot lay eggs in response to exogenous serotonin have usually been interpreted as having egg-laying muscles that are defective in responding to serotonin.

      How can we interpret strains that respond to imipramine/fluoxetine and not serotonin? Mignerot et al. cite some of the papers (Kullyev et al. 2010; Wenishenker et al., 1999; Yue et al., 2018) showing that imipramine and fluoxetene have off-target effects and can stimulate egg laying by acting through proteins other than the serotonin-reuptake inhibitor. The authors later in their discussion at the top of Page 24 also cite Dempsey et al 2005, a paper that also argues that imipramine and fluoxetene act via off target effects. However, currently in Figure 4B Mignerot et al. emphasize that the serotonin reuptake inhibitor is the target of these drugs. Since the results presented for Class IIIB strains are not in accord with this interpretation, this seems misleading to me. The bottom line for me is that class IIIB strains cannot respond to exogenous serotonin, but can lay eggs in other conditions, so perhaps there is something specifically wrong with their ability to respond to serotonin.

      Response: We thank the reviewer for this important comment – we misinterpreted some of these past findings and our statements were either inexact or incorrect. We have revised this section accordingly: “Both drugs also stimulated egg laying in the Class IIIB strains and the Class IIIA strain JU2829 for which exogenous serotonin either inhibited egg laying or had no effect on it (Fig. 4B). In the past, mutants unresponsive to serotonin yet responsive to other drugs, including fluoxetine and imipramine, have been interpreted as being defective in the serotonin response of vulval muscles (Trent et al., 1983; Reiner et al., 1995; Weinshenker et al., 1995). This is indeed the likely case of Class IIIB strains carrying the KCNL-1 V530L variant thought to specifically reduce excitability of vulval muscles (Vigne et al., 2021). Our results therefore suggest that JU2829 (Class IIIA) may exhibit a similar defect in vulval muscle activation via serotonin caused by an alternative genetic change. Overall, these pharmacological assays do not allow us to conclude if and how HSN function has diverged among strains because the mode of action and targets of tested drugs has not been fully resolved. Nevertheless, our results are consistent with previous models proposing that these drugs do not simply block serotonin reuptake but can stimulate egg laying, to some extent, through mechanisms independent of serotonergic signaling (Trent et al., 1983; Desai and Horvitz, 1989; Reiner et al., 1995; Weinshenker et al., 1995, 1999; Dempsey et al., 2005; Kullyev et al., 2010; Branicky et al., 2014; Yue et al., 2018).”

      We removed the oversimplified Fig. 4B to avoid any misinterpretation.

      8) In Figure 7B and 7C, the authors should add some type of error bars to the graphs to and give the readers an idea of whether the differences between strains that they write about are statistically significant or not.

      Response: These are frequency data to describe temporal dynamics of hatching (N=45-72 eggs per strain) (Fig. 7B) and development in single cohorts (N=48-177 eggs per strain) (Fig. 7C), hence, the absence of error bars.

      We agree that this representation of the data is not very telling. We therefore changed the data representation in these two figures to show that there are clear, statistically significant, negative correlations between egg retention and time to hatching / egg-to-adult developmental time.

      9) When the authors reference a list of papers in a single list, e.g. "(Burton et al., 2021; Fausett et al., 2021; Garsin et al., 2001; Padilla et al., 2002; Van Voorhies and Ward, 2000)" they seem to do so in alphabetical order by the first author's last name. I believe the usual practice is to list references by year of publication, with the earliest first.

      Response: We corrected citation style according to eLIFE format.

      10) At the top of page 24, the authors write "It seems unlikely, however, that any of these variants strongly alter central function of HSN and HSN-mediated signalling because fluoxetine and imipramine, known to act via HSN (Dempsey et al., 2005; Trent et al., 1983; Weinshenker et al., 1995), triggered a robust stimulatory effect on egg laying in all examined strains (Fig. 4C)." I believe that the Weinshenker paper in fact showed that imipramine does not act via the HSN, and the Dempsey paper suggested that both drugs can act at least in part independently of the HSN. Therefore, the authors should revise their statement.

      Response: We have removed the sentence.

      Reviewing Editor:

      Minor suggestions:

      1) p. 2, fifth line from bottom: "lead" instead of "leads";

      2) p. 2, last line: "muscle" instead of "muscles";

      3) p. 3, first full paragraph, 17th line: "populations" instead of "population";

      4) p. 5, fourth line from bottom: Delete first comma;

      5) p. 6, Figure 1D: "of" instead of "off";

      6) p. 7, fifth line: "KCNL-1";

      7) p. 9, third paragraph, second line: please clarify "late mid-L4";

      8) p. 16, first line: "exogenous";

      9) p 20, first paragraph, beginning of second sentence: "Whether" instead of "If";

      10) p. 22, ninth line from bottom: delete "shaped by";

      11) p. 23, last paragraph, third and eighth lines from bottom: change "between" to "among"

      Response: Thank you. All corrected.

      Additional changes:

      Figure 5A: We removed figure 5A showing a cartoon of mod-5/SERT and its effects on serotonin signalling. This figure was incorrectly showing that MOD-5 is expressed in HSN (Jafari et al 2011 J. Neuroscience, Hammarlund et al 2018 Neuron).

      Abstract: We reworded the abstract to reduce its length.

    1. While regulation is outside the control of the hotel industry, the brand and the customer experience are not. We contend that these are the areas where hotel companies’ efforts need to be focused. Hotels need to re-think the brand promise, both for the parent brand as well as individual brands in the portfolio, and how it defines and shapes the guest experience.

      There is potential to annotate insights related to guest satisfaction and experience. Hotels may focus on personalized services or unique offerings to compete with the unique experiences often associated with Airbnb. This could be an area for further exploration.

    1. While many may benefit from it, itleads to suffering for others.

      I think some of these models were created with good intentions, but as we have seen, it depends on who is using it and how.

    1. When someone presents themselves as open and as sharing their vulnerabilities with us, it makes the connection feel authentic. We feel like they have entangled their wellbeing with ours by sharing their vulnerabilities with us.

      I think it is true, when someones reveals their vulnerabilities, it is a sign of showing non-threating and authentic. It is the rule from the ancient time, but now the situations may be more complicated. Showing vulnerabilities may be suspected as fake, an action to gain trust, and if someone really shows vulnerabiities, his/her competitors may use them to take advantages of the person. In other word, people are harder to get authentic connections these days.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This paper performed a functional analysis of the poorly characterized pseudo-phosphatase Styxl2, one of the targets of the Jak/Stat pathway in muscle cells. The authors propose that Styxl2 is essential for de novo sarcomere assembly by regulating autophagic degradation of non-muscle myosin IIs (NM IIs). Although a previous study by Fero et al. (2014) has already reported that Styxl2 is essential for the integrity of sarcomeres, this study provides new mechanistic insights into the phenomenon. In vivo studies in this manuscript are compelling; however, I feel the contribution of autophagy in the degradation of NM IIs is still unclear.

      Major concerns:

      1) The contribution of autophagy in the degradation of Myh9 is still unclear to this reviewer.

      It has been reported that autophagy is dispensable for sarcomere assembly in mice (Cell Metab, 2009, PMID; 1994508). In Fig. 7A, the authors showed that overexpressed Styxl2 downregulated the amount of ectopically expressed Myh9 in an ATG5-dependent manner in C2C12 cells; however, the experiment is far from a physiological condition. Therefore, the authors should test ATG5 knockdown and the genetic interaction between Styxl2 and ATG5 in vivo. That is, 1) loss of ATG5 on sarcomere assembly in zebrafish, and 2) the genetic interaction between Styxl2 and ATG5; co-injection of Styxl2 mRNA and ATG5-MO into the zebrafish embryos.

      Our response: In fact, the reference cited by the reviewer (Cell Metab, 2009; PMID; 19945408) clearly indicated that autophagy is required for sarcomere assembly. Moreover, another paper using the fish extraocular muscle regeneration model (Autophagy, 2014, PMID: 27467399), also showed that the sarcomere structure was disrupted in the regenerated muscles when autophagy was inhibited by chloroquine. In addition, other references (Nature medicine, 2007, PMID: 17450150; Autophagy, 2010, PMID: 20431347) also showed that loss of Atg5 in mouse cardiac muscles led to disorganized sarcomere structure. We also performed the Atg5 knockdown experiments as suggested by the reviewer. However, the sarcomere structure defects were not so obvious as Styxl2 knockdown (see Author response image 1 below). In fact, it was reported that Atg5 knockdown may not be a desirable strategy to disrupt autophagy as it was found “--- only a small amount of Atg5 is needed for autophagy, knockdown of Atg5 to levels low enough to block autophagy might be difficult to achieve, --” (Nature medicine, 2007, PMID: 17450150). Due to the ineffectiveness of the Atg5 MO in our assays, we did not perform the second experiment suggested by the reviewer. Moreover, as Styxl2 is not a key component of the autophagy machinery, it is less likely that overexpression of Styxl2 alone can rescue the autophagy defects caused by Atg5.

      Author response image 1.

      The fish zygotes were injected with Atg5 or Ctrl MO. 48 hpf, the fish were stained with an anti-Actinin antibody. Some fast muscle fibers were disrupted when Atg5 was knocked down. The number in numerator at the bottom of each image represents fish embryos showing normal Actinin staining pattern, while that in denominator represents the total number of embryos examined. Scale bar, 10 µm.

      2) As referenced, Yamamoto et al. reported that Myh9 is degraded by autophagy. Mechanistically, Nek9 acts as an autophagic adaptor that bridges Atg8 and Myh9 through interactions with both. Inconsistent with the model, the authors mentioned on page 12, lines 365-367, "A recent report showed that Myh9 could also undergo Nek9-mediated selective autophagy (Yamamoto et al., 2021), suggesting that Myh9 is ubiquitinated". I think it is not yet explored whether autophagic degradation of Myh9 requires its ubiquitination. Moreover, I cannot judge whether Myh9 is ubiquitinated in a Styxl2-dependent manner from the data in Fig. 7C. The author should test whether Nek9 is required for Myh9 degradation in muscles. If Nek plays a role in the Myh9 degradation, it would be better to remove Fig. 7C.

      Our response: Indeed, as pointed out by the reviewer, it has not been explored whether Myh9 is ubiquitinated or not. However, it has been well-established that some proteins undergoing autophagic degradation are ubiquitinated, which are linked to Atg8/LC3 via p62 and NBR1 (Mol Cell, 2009, PMID: 19250911; J Biol Chem, 2007, PMID: 17580304). To improve the data quality, we repeated the Myh9 ubiquitination experiment in cells with or without Styxl2 by using a slightly different strategy: as shown in the revised Figure 7C, we first co-transfect HEK 293T cells with HA-Myh9, Myc-ubiquitin, and Flag-Styxl2. We then immunoprecipitated Myc-tagged Ubiquitin from the whole cell lysates, and then blot for HAMyh9. We detected an obvious increase in Ubiquitin-conjugated HA-Myh9 (revised Figure 7C). As suggested by the reviewer, we also tested whether knockdown of Nek9 affects the degradation of Myh9. We failed to detect an obvious effect (see Author response image 2 below) caused by Nek9 knockdown. One possible explanation for this negative result is that Nek9 itself is a negative regulator of selective autophagy (J Biol Chem, 2020, PMID: 31857374). By knocking it down, the functions of the autophagy machinery are expected to be enhanced instead of being impaired. This may explain why we failed to detect an effect on Myh9 degradation simply by knocking down Nek9. To further elucidate whether Nek9 is involved in Myh9 degradation in myoblasts, we may need to use a dominant-negative mutant of Nek9 missing the LCIII-binding motif as shown by Yamamoto (Nat Commun, 2021, PMID: 34078910). This will be addressed in our future study.

      Author response image 2.

      C2C12 cells were transfected with negative control siRNA (NC), siNek9#2 or siNek9#3. 18 h later, the cells were transfected with plasmids HA-Myh9 and Flag-Styxl2 or Flag-Stk24. After another 24 h, the cells were harvested for RT-qPCR (left panel) or western blot (right panel).

      3) In Fig. 5F, the protein level of Styxl2 and Myh10 should be checked because the efficiency of Myh10-MO was not shown anywhere in this manuscript.

      Our response: As suggested by the reviewer, a Western blot showing the protein levels of Myh10 was shown in Figure 5-figure supplement 1B.

      Reviewer #2 (Public Review):

      The authors investigated the role of the Jak1-Stat1 signaling pathway in myogenic differentiation by screening the transcriptional targets of Jak1-Stat1 and identified Styxl2, a pseudophosphatase, as one of them. Styxl2 expression was induced in differentiating muscles. The authors used a zebrafish knockdown model and conditional knockout mouse models to show that Styxl2 is required for de novo sarcomere assembly but is dispensable for the maintenance of existing sarcomeres. Styxl2 interacts with the non-muscle myosin IIs, Myh9 and Myh10, and promotes the replacement of these non-muscle myosin IIs by muscle myosin IIs through inducing autophagic degradation of Myh9 and Myh10. This function is independent of its phosphatase domain.

      A previous study using zebrafish found that Styxl2 (previously known as DUSP27) is expressed during embryonic muscle development and is crucial for sarcomere assembly, but its mechanism remains unknown. This paper provides important information on how Styxl2 mediates the replacement of non-muscle myosin with muscle myosin during differentiation. This study may also explain why autophagy deficiency in muscles and the heart causes sarcomere assembly defects in previous mouse models.

      Reviewer #3 (Public Review):

      Wu and colleagues are characterising the function of Styxl2 during muscle development, a pseudo-phosphatase that was already described to have some function in sarcomere morphogenesis or maintenance (Fero et al. 2014). The authors verify a role for Styxl2 in sarcomere assembly/maintenance using zebrafish embryonic muscles by morpholino knockdown and by a conditional Styxl2 allele in mice (knocked-out in satellite cells with Pax7 Cre).

      Experiments using a tamoxifen inducible Cre suggest that Styxl2 is dispensable for sarcomere maintenance and only needed for sarcomere assembly.

      BioID experiments with Styxl2 in C2C 12 myoblasts suggest binding of nonmuscle myosins (NMs) to Styxl2. Interestingly, both NMs are downregulated when muscles differentiate after birth or during regeneration in mice. This down-regulation is reduced in the Styxl2 mutant mice, suggesting that Styxl2 is required for the degradation of these NMs.

      Impressively, reducing one NM (zMyh10) by double morpholino injection in a Styxl2 morphant zebrafish, does improve zebrafish mobility and sarcomere structure. Degradation of Mhy9 is also stimulated in cell culture if Styxl2 is co-expressed. Surprisingly, the phosphatase domain is not needed for these degradation and sarcomere structure rescue effects. Inhibitor experiments suggest that Styxl2 does promote the degradation of NMs by promoting the selective autophagy pathway.

      Strengths:

      A major strength of the paper is the combination of various systems, mouse and fish muscles in vivo to test Styxl2 function, and cell culture including a C2C12 muscle cell line to assay protein binding or protein degradation as well as inhibitor studies that can suggest biochemical pathways.

      Weakness:

      The weakness of this manuscript is that the sarcomere phenotypes and also the western blots are not quantified. Hence, we rely on judging the results from a single image or blot. Also, Styxl2 role in sarcomere biology was not entirely novel.

      Few high resolution sarcomere images are shown, myosins have not been stained for.

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns:

      4) The position of molecular weight markers should be shown in all Western blot data.

      Our response: As suggested by the reviewer, the molecular weight markers have been added in the Western blot data.

      5) Schematic models of Styxl2deltaN509 and N513 construct would be helpful for the readers.

      Our response: A schematic has been added in Figure 6B (upper panel) to show Styxl2deltaN509 and Styxl2N513.

      6) Several data were described but not shown (data not shown). I think the data need to be included in the main or supplemental figures.

      Our response: As suggested by the reviewer, the raw data were now included in the Figure 6-figure supplement 1A and Figure 7-figure supplement 1.

      Reviewer #2 (Recommendations For The Authors):

      1) In Fig. 5E, the authors suggest that the needle touch response was improved by additional knockdown of Myh10. This is a bit confusing because the germline knockout of Myh10 is lethal (line 445). The authors should provide more explanation on this point. Additionally, it would be better to include Myh10-MO in Fig. 5E.

      Our response:<br /> In line 445 of our original manuscript, we stated that germline knockout of mouse Myh10 gene is lethal based on a published report (Proc Natl Acad Sci USA, 1997, PMID: 9356462). Here, in zebrafish zygotes, we only knocked down zMyh10, thus, we do not expect to get a lethal phenotype. In addition, other groups who knocked down Myh10 in fish also did not get a lethal phenotype (Dev Biol, 2015, PMID: 25446029). As to the control involving Myh10MO in the experiment in Fig.5E, we did include it in our experiments. As we did not observe any obvious effects on either motility or sarcomere structures, we did not include the data set in the figure.

      2) It was suggested that Myh9 and Myh10 form a complex (Rao et al. PLoS One 9, e114087, 2014). Thus, the IP experiments do not rule out the possibility that Styxl2 directly interacts with either Myh9 or Myh10 and indirectly with the other.

      Our response: In known myosin-II complexes, different myosin molecules can associate with each other through their tail domains (Bioarchitecture, 2013, PMID: 24002531). Thus, if we use fulllength myosin molecules in our co-immunoprecipitation assays, it will be difficult to exclude the possibility raised by the reviewer. However, by using truncated myosin proteins, we showed that the head domain of either Myh9 or Myh10 could interact with Styxl2 in the absence of the tail domain (Figure 4E, F). This result strongly suggests that both Myh9 and Myh10 can independently interact with Styxl2.

      Reviewer #3 (Recommendations For The Authors):

      1) The western blot shown in Figure 3B supporting the induced deletion of Styxl2 should be quantified. Ideally, some other blots, e.g., in Figure 5, too. Please add the age of the mice in Figure 5B to the figure legend.

      Our response:<br /> As suggested by the reviewer, we quantified the data in Figures.3B, 3F, 5B, 5D, and 7A and the data were included in the revised figures. In Fig.5B, we already indicated the age of the mice (i.e., P1) in the legend.

      2) A quantification of the sarcomere phenotypes in the double knock-down of zMyh10 and Styxl2 compared to Styxl2 single would make the paper significantly stronger. Furthermore, a double morpholino control should be included to rule out any RNAi machinery 'dilution effect'.

      Our response: As suggested by the reviewer, we quantified the sarcomere structures using the line scan analysis in ImageJ and the scan images were placed as inserts in the upper corner of the immunofluorescent images (revised Figures 5F, and 6C). To avoid potential “dilution effects”, in all the experiments involving the use of two different MOs, the total amount of MO was kept the same in all control samples by including a control MO (e.g., in samples treated with one specific MO, an equal amount of a control MO was also included, while in samples without any specific MO, twice as much control MO was used).

      3) The sarcomere phenotypes in figure 6 should also be better quantified, for example using simple line scans of the alpha-actinin stains and assay periodicity or calculating the autocorrelation coefficients. How about myosin stains?

      Our response: We quantified Figure 6C as suggested by the reviewer. We also performed myosin staining. The results were similar to that shown by the a-actinin antibody (see revised Figure 6-Fig supplement 1B).

      4) Do the authors see periodic NMs patterns in developing mouse muscle fibers as indicated by the model in in in figure 7D? It is unclear if nonmuscle myosin is present in a PERIODIC pattern in early myofibrils. NM myosin periodic patterns that have been observed have a periodicity of only about 1 µm fitting the shorter length of the NM bipolar filaments (about 300 nm only, PMID 28114270).

      Our response: The reviewer raised a good point here. Ideally, we should examine developing mouse muscle fibers to prove that NM shows periodic patterns. However, due to the difficulty in catching myocytes undergoing sarcomere assembly, the majority of the studies involving NM in sarcomeres use cultured cardiomyocytes. Using TA muscles from P1 new-born mice, we failed to detect the presence of NM in sarcomeres (see Author response image 3 below). Actually, nearly all the myofibers showed mature sarcomere pattern without the NM signal. More work is needed in the future to examine developing mouse fibers at different embryonic stages to look for the presence of NM in developing sarcomeres.

      Author response image 3.

      The TA muscles were collected from male and female P1 mice. The muscles were sectioned and co-stained for a-actinin (Actn) and Myh9. The majority of myofibrils is mature without the NM II signal. Scale bar, 10 µm.

      5) Recent work suggested that mechanical tension is key to assemble the first long periodic myofibril containing immature sarcomeres. Tension is likely produced by a combination of NM and Mhc in the assembling sarcomeres themselves. This could be included in the introduction or discussion (PMIDs 24631244, 29316444, 29702642, 35920628).

      Our response: We thank the reviewer for pointing to us additional relevant references. We have added them in the Introduction.

      6) I suggest replacing "sarcomeric muscles" with "striated muscles".

      Our response: We revised the term in the manuscript as suggested by the reviewer.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defense related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants was also measured.

      The paper addresses some interesting points, however some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these. AU values do not allow for conclusions regarding total quantities, and while I understand that this is not the main focus of this paper, it raises a lot of uncertainty for readers (for example, the references cited show that TMTT has been found to accumulate at similar levels of caryophyllene, however the AU values reported are an order of magnitude higher for TMTT. Again, without actual quantification this is meaningless, but for readers it is confusing).

      With regards to the correlation analyses shown in figure 6, the results presented in many of the correlation plots are not actually informative. While there is a trend, I do not think that this is an appropriate way to show the data, as there are clearly other relationships at play. The comparison between plants under continuous light and normal light:dark conditions is interesting.

      This paper addresses a very interesting idea and I look forward to seeing further work that builds on these ideas.

      As mentioned in our previous response, we have added the quantification of GLVs in order to increase the comparability of our work to other studies.

      Regarding the comment about TMTT (only measured as internal pools), the purpose of the inclusion of these internal pool data, was simply to determine whether terpenes were accumulating in leaf tissue during the night when emissions are hindered (likely due to closed stomata). The data clearly show that internal terpene pools do not accumulate above daytime levels during darkness – this is further supported by gene expression data that show downregulation of terpene synthase genes during darkness. While quantification would certainly increase the ability to compare internal pools, it would not change the interpretation of our results. Also note that absolute quantification is challenging for compounds such as TMTT, which are not readily available.

      Regarding the comment on Figure 6, while we agree there may be interesting patterns beyond linear relationships, as stated in our previous response, the purpose of our analysis was to determine if the higher terpene burst in receiver plants on the second day may be explained by sender plants emitting more GLVs on the second day. Figure 6 shows that this is not the case. Further analyses would not provide additional significant insights into the hypothesis that we tested here.

      We thank the reviewer for their overall positive outlook on our paper and for the constructive comments.

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light. Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control was now performed for the revision in which the herbivory treatment was started in the evening hours and lights were left on. This experiment revealed that the burst of terpenoid emission indeed shifted somewhat. Circadiane and diurnal processes must thus interact.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after onset of the volatile exposure and thus parallel with the burst of terpene release.

      An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. All data are now well discussed.

      Overall, this study provides intriguing insights in the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      We thank the reviewer for their positive outlook on our paper and for their constructive comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The authors did a great job with the revision. The additional experiments strengthened their conclusions. Thanks also for performing the suggested test for potential differences in induction capacity at different times of day, the new data are very interesting.

      Thank you very much.

      Line 49-52: The newly added sentence could be clarified in wording.

      We will clarify the sentence.

      Line 254-255: The newly added sentence needs to be corrected. This is no full sentence and it is not clear what the authors wanted to say here.

      We will clarify this sentence.

      Figure 6: In those instances, in which the correlation is not significant, the line should not be shown.

      We will remove the lines when correlations are not significant.

      The names of chemical compounds and terpene synthases should be written in lower case letters (see legend Fig 6, e.g. hexenal, not Hexenal; legend fig. 2: terpene synthase, not Terpene synthase)

      In the last round of revisions, I commented on Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading. ... Your response was "We have deleted the sentence about community dynamics ..." which, however, in fact was not done! Please change!

      Apologies for that, we will delete mention of community dynamics in that sentence (for real).


      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study examines the effects of herbivory-induced maize volatiles on neighboring plants and their responses over time. Measurements of volatile compound classes and gene expression in receiver plants exposed to these volatiles led to the conclusion that the delayed emission of certain terpenes in receiver plants after the onset of light may be a result of stress memory, highlighting the role of priming and induction in plant defenses triggered by herbivore-induced plant volatiles (HIPVs). Most experimental data are compelling but additional experiments and accurate quantifications of the compounds would be required to confirm some of the main claims.

      Response: We thank the editors for their overall positive feedback on our MS. We have added additional experiments to quantify green leaf volatile emissions in both sender plants and synthetic dispensers (Reviewer 1) and address the importance of the precise time of day plants are induced (Reviewer 2). These additions strengthen the main conclusions of our study.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors of the manuscript "High-resolution kinetics of herbivore-induced plant volatile transfer reveal tightly clocked responses in neighboring plants" assessed the effects of herbivory-induced maize volatiles on receiver plants over a period of time in order to assess the dynamics of the responses of receiver plants. Different volatile compound classes were measured over a period of time using PTR-ToF-MS and GC-MS, under both natural light:dark conditions, and continuous light. They also measured gene expression of related genes as well as defence-related phytohormones. The effects of a secondary exposure to GLVs on primed receiver plants were also measured.

      The paper addresses some interesting points, however, some questions arise regarding some of the methods employed. Firstly, I am wondering why VOCs (as measured by GC-MS) were not quantified. While I understand that quantification is time-consuming and requires more work, it allows for comparisons to be made between lines of the same species, as well as across other literature on the subject. As experiments with VOC dispensers were also used in this experiment, I find it even more baffling that the authors didn't confirm the concentration of the emission from the plants they used to make sure they matched. The references cited justifying the concentration used (saying it was within the range of GLVs emitted by their plants) to prepare the dispenser were for either a different variety of maize (delprim versus B73) or arabidopsis. Simply relying on the area under the curve and presenting results using arbitrary units is not enough for analyses like these.

      Response: We thank the reviewer for their comment. We have now quantified both the emission of dispensers and maize seedlings infested with 3 4th-instar Spodoptera exigua larvae. Averaged across 1 h, HAC dispensers emitted roughly 2x higher molar concentrations than total GLV molar concentrations emitted by plants infested by 3 caterpillars. Of note, GLV emissions induced by caterpillars vary over time, and can be more than 2-fold higher than the average during times of strong active feeding (Supplemental Fig 4). Thus, the release rate of the dispensers is well within the plant’s physiological range.

      Note that the references cited were included to support the claim of the biological activity of all three GLVs rather than to justify concentration of our dispensers. We have rephrased this sentence to reflect this (see L330-333).

      With regards to the correlation analyses shown in Figure 6, the results presented in many of the correlation plots are not actually informative. By blindly reporting the correlation coefficient important trends are being ignored, as there are clearly either bimodal relationships (e.g. upper left panel, HAC/TMTT, HAC/MNT) or even stranger relationships (e.g. upper left panel, IND/SQT, IND/MNT) that are not being well explained by a correlation plot. It is not appropriate to discuss the correlation factors presented here and to draw such strong conclusions on emission kinetics. The comparison between plants under continuous light and normal light:dark conditions is interesting, but I think there are better ways to examine these relationships, for example, multivariate analysis might reveal some patterns.

      Response: We thank the reviewer for their comment. With our analysis we aimed at testing specifically whether the high release of known bioactive volatiles (GLVs and indole) by sender plants on the second day can explain the higher terpene emissions in the receiver plants. We explicitly mention this in the text (L176-L186). Indeed, under normal light conditions (light and dark phase), there are clear positive correlations between the GLV release of sender plants and the terpene release of receiver plants over time (see also Fig 1 and Fig 5). However, under continuous light conditions, GLV emissions in sender plants no longer correlate with terpene emissions in receiver plants (also apparent by comparison of Fig 4 and Fig 5). This shows that temporal variation in GLV emissions are insufficient to explain the delayed terpene burst. This is the relevant conclusion we draw from this analysis. As presented, we find the data to provide strong evidence that the delayed burst in receiver plant terpene emissions cannot be solely explained by higher availability of active signals on the second day. The priming experiment in Figure 7 then provides a direct additional test for this concept. While more complex analyses could indeed reveal additional patterns, these would not be particularly informative for the question at hand.

      In Figure 2, the elevated concentrations of beta-caryophyllene found in the control plants at 8h and 16.75h measurement timepoints are curious. Is this something that is commonly seen in B73?

      Response: We thank the reviewer for this comment. A small number of untreated plants indeed accumulated β -caryophyllene at night, which is likely the result of biological variability between samples. Our plants were soil-grown, and it is for instance possible that variation in soil biota may account for this variability. Alternatively, some plants may have been slightly stressed during handling. Note that this variability does not affect any of the conclusions in our manuscript.

      While there can be discrepancies between emissions and compounds actually present within leaf tissue, it is a little bit odd that such high levels of b-caryophyllene were found at these timepoints, however, this is not reflected in the PTR-ToF-MS measurements of sesquiterpenes. It would be beneficial to include an overview of the mechanism of production and storage of sesquiterpenes in maize leaves, which would clarify why high amounts were found only in the GC-MS analysis and not the PTR-ToF-MS analysis, which is a more sensitive analytical tool. It is possible that the amounts of b-caryophyllene present in the leaf are actually extremely low, however as the values are not given as a concentration but rather arbitrary units, it is not possible to tell. I would include a line explaining what is seen with b-caryophyllene.

      Response: Thank you for this comment. It is important to note that accumulation in maize leaves can differ substantially from emission, especially at night when stomata are closed. This has been observed before in maize leaves (Seidl-Adams et al., 2015). As the reviewer suspects, earlier work indeed found that β-caryophyllene is a minor sesquiterpene compared to β-farnesene and α-bergamotene in B73 ( Block et al., 2018). The PTR-ToF-MS does not discriminate between terpenes with the same m/z and thus measures total sesquiterpene emissions. Given that sesquiterpene emissions are strongly regulated by stomatal aperture and that overall sesquiterpene accumulation in control plants is low, it is not surprising that we measure only minor amounts of sesquiterpene emissions in general, and in control plants in particular. We now text to the manuscript to explain these aspects (L116-L122). Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ. 38, 23-34 (2015).

      Additionally, it seems like the amounts of TMTT within the leaf are extraordinarily high (judging only by the au values given for scale), far higher than one would expect from maize.

      Response: We are unsure about the reviewer’s interpretation here. The AU values do not allow for conclusions regarding total quantities. An earlier study found that TMTT in induced B73 plants accumulates to similar amounts as β-caryophyllene (Block et al., 2018), thus it is not surprising to detect significant TMTT pools in induced maize leaves. It is important to note that the aim of the experiment here was to test the hypothesis that plants may be hyperaccumulating volatiles when the stomata are closed at night, which could potentially explain the delayed terpene burst on the second day. We do not observe such a hyperaccumulation, thus ruling out this as the primary factor responsible for the observed phenomenon. This is further supported by the continuous light experiments, where the delayed burst in terpene emission is not hindered by the lack of a dark phase.

      Block, A.K., Hunter, C.T., Rering, C. et al. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta 248, 105–116 (2018).

      Reviewer #2 (Public Review):

      The exact dynamics of responses to volatiles from herbivore-attacked neighbouring plants have been little studied so far. Also, we still lack evidence of whether herbivore-induced plant volatiles (HIPVs) induce or prime plant defences of neighbours. The authors investigated the volatile emission patterns of receiver plants that respond to the volatile emission of neighbouring sender plants which are fed upon by herbivorous caterpillars. They applied a very elegant approach (more rigorous than the current state-of-the-art) to monitor temporal response patterns of neighbouring plants to HIPVs by measuring volatile emissions of senders and receivers, senders only and receivers only. Different terpenoids were produced within 2 h of such exposure in receiver plants, but not during the dark phase. Once the light turned on again, large amounts of terpenoids were released from the receiver plants. This may indicate a delayed terpene burst, but terpenoids may also be induced by the sudden change in light. A potential caveat exists with respect to the exact timing and the day-night cycle. The timing may be critical, i.e. at which time-point after onset of light herbivores were placed on the plants and how long the terpene emission lasted before the light was turned off. If the rhythm or a potential internal clock matters, then this information should also be highly relevant. Moreover, light on/off is a rather arbitrary treatment that is practical for experiments in the laboratory but which is not a very realistic setting. Particularly with regard to terpene emission, the sudden turning on of light instead of a smooth and continuous change to lighter conditions may trigger emission responses that are not found in nature.

      Response: We thank the reviewer for their comment. Although not explicitly mentioned it in the initial draft of the MS, we employed 15 min transition periods for light and dark phase transitions with a light intensity of 60 µmol m-2 s-1 (compared to 300 µmol m-2 s-1 at full light) to achieve a more gradual transition. We now included this information in the manuscript (L291-L292).

      As one contrasting control, the authors also studied the time-delay in volatile emission when plants were just kept under continuous light (just for the experiment or continuously?). Here they also found a delayed terpenoid production, but this seemed to be lower compared to the plants exposed to the day-night-cycle. Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: This is a very interesting point raised by the reviewer. We now conducted an additional experiment under continuous light where we started the herbivory treatment just before the start of the dark phase (ca. 20:00 PM). We found a similar pattern: a distinct delay in the highest burst. However, interestingly, the burst was shifted from 12-18 hr to 10-12 hr (Supplemental Fig 1). This burst aligned reasonably well with the point at which lights would normally be turned on again. In light of this, and, as the herbivore additions typically started ca. 5 hrs after the onset of light following a dark period (Figures 1-7), we wanted to rule out the possibility that the lack of a burst on the first day, was simply due to a difference in induction capacity depending on how shortly after the onset of light plants became exposed to GLVs. As such, we designed an additional experiment to examine whether exposure to GLVs immediately after the lights come on induce higher terpene emissions than plants exposed to GLVs ca. 5 hr after lights come on (Supplemental Fig 2). Interestingly, emissions across the terpenes were similar, regardless how long after the onset of lights on plants were exposed to GLVs. This suggests that the delayed burst is not due to the fact that, on the second day, plants are exposed to GLVs immediately after the lights come on whereas the first day they are only exposed 5 hr after the lights come on. Both continuous light experiments (normal timing and shifted timing) show bursts that occur slightly earlier than we observe with under normal day : night light conditions (L159-L166 and L207-L211), suggesting an interaction between circadian and diurnal processes. For instance, it is possible that plants would start producing volatiles slightly earlier than the onset of the day, however, light and stomatal opening limits the exact timing of the burst under normal light:dark transitions. The additional data provide further evidence for the delayed burst as a timed response in maize plants.

      Additionally, we have added explanation the continuous light figure legends that plants were grown under normal conditions and lights were only left on following treatment.

      Interestingly, internal terpene pools of one of the leaves tested here remained more comparable between night and day, indicating that their pools stay higher in plants exposed to HIPVs. In contrast, terpene synthases were only induced during the light-phase, not in the dark-phase. Moreover, jasmonates were only significantly induced 22 h after the onset of the volatile exposure and thus parallel with the burst of terpene release. An additional experiment exposing plants to the green leaf volatile (glv) (Z)-3-hexenyl acetate revealed that plants can be primed by this glv, leading to a stronger terpene burst. The results are discussed with nice logic and considering potential ecological consequences. Some data are not discussed, e.g. the jasmonate and gene induction pattern.

      Response: Thanks for this comment. We have added a sentence regarding the jasmonate data suggesting that, in addition to providing an additional layer of evidence for the observed delay, suggest that other JA-dependent defenses in maize may follow similar temporal patterns (L254-L257).

      Overall, this study provides intriguing insights into the potential interplay between priming and induction, which may co-occur, enhancing (indirect and direct) plant defence. Follow-up studies are suggested that may provide additional evidence.

      Reviewer #1 (Recommendations For The Authors):

      Could the authors please explain why they chose not to calculate concentrations for VOCs? Perhaps it is that B73 is a very unique variety in that it contains very high levels of TMTT, even in control plants? This should be clarified by the authors.

      Response: We address this comment in the public review portion

      For the legend within Figure 2, I would move it to be in the upper left or right corners of the figure. It is not easy to see in its current position.

      Response: We have moved the figure legend based on the reviewers recommendation

      Figures depicting PTR-ToF-MS data: add m/z values to either the figures themselves and/or the legends.

      Response: We have added m/z values to the legends and added molecular formulas of protonated compounds to each panel.

      Overall, here are some other suggestions: I am slightly weary of the term "clocked response". I'm not sure this is the correct fit for what you are trying to convey. I think "regulated" is a better term than "clocked". I understand that it is likely a stylistic choice to use this word, however, I advise reconsidering for the sake of clarity of the results.

      Response: Thank you. We find clocked to be an appropriate term, as it highlights the temporal aspect of the burst, and have thus left the title as is.

      Have another look at the references as some are not in the correct format (i.e., species not in italics).

      Response: We have checked and corrected the references

      Reviewer #2 (Recommendations For The Authors):

      Line 23: consequences on community dynamics are not investigated here, so this is a bit misleading.

      Last sentence of the abstract: It would be nice to read the answer to this long-standing question here.

      Response: We have deleted he sentence about community dynamics and provided a more concrete final sentence (L38-L40)

      Lines 48-50: The example does not fit so well with the first sentence and is not entirely clear (relation to temporal dynamics; similar to what?).

      Response: We have reworded the sentence for clarity (L49-L52)

      Line 56: "volatiles" should be plural.

      Response: Changed (L58)

      Line 58: "to be produced" rather than "to produce"

      Response: This seems a stylistic choice, and have left it as is.

      End of abstract: Did you have any hypotheses? These should be stated here.

      Response: The listing of hypotheses is also a stylistic choice, which is in some cases required by journals, but not eLife. As such we have not included a discrete list of hypotheses and instead describe what we aimed to investigate and what we found.

      Line 93: "This response disappeared at night." Does this mean: "No volatiles were emitted during night"? Or was this a gradual disappearance? How many hours after the onset of light did the herbivore treatment start and how many hours after the first emission of volatiles was the light turned off?

      Response: We have added when herbivory began (L92-L93) and changed the text to ‘as soon as light was restored’ (L97-L98).

      Line 93: "as soon as the night was over" means practically rather "as soon as the light was switched on".

      Response: See above

      Line 91: "small induction" - do you mean "low amounts of xxx"?

      Response: We mean a small induction. Terpene emission is relatively low (hence small), but still induced relative controls.

      Line 91: which mono- and sesquiterpenes were monitored?

      Response: It is PTR-ToF-MS a thus we cannot identify individual sesquiterpenes and monoterpenes (as they all have the same mass), and thus group them generally.

      Figure 1: What exactly is the "control"? And what does the vertical hatched line in the beginning represent?

      Response: We have defined the control and added a sentence describing the vertical hatched line

      "Black points represent the same but with undamaged sender plants" - what is "the same" here? I find that a bit confusing!

      Response: We have rephrased

      Line 104: how do you define an "overaccumulation"?

      Response: We have added ‘above daytime levels’ to clarify that we mean over daytime levels (L106)

      Why was the oldest developing leaf chosen? Is this the largest one when plants are two weeks old? How many leaves do they have then? Is this the leaf with the highest biomass?

      Response: We chose this leaf as it is the largest and also highly responsive to HIPVs. We have added this sentence (with a reference) in the methods section (L369-L370)

      Line 107: "started increasing after 3 hours" - they may already have started before. The following description also sounds like the dynamics were investigated here. However, instead the authors measured samples at four distinct time-points and cannot say whether something "began" or "remained" etc. The wording should be changed to a more appropriate description, describing the differences at a given time-point.

      Response: We changed the wording to ‘were marginally induced after 3 hr’ see L110

      Line 113: What do you mean by "delete BELOW NIGHTTIME levels"?

      Response: The word we used was ‘deplete’ to ‘drop’ (L116)

      Line 114: "the expression of terpene synthases" add "in the receiver plants exposed to HIPVs."

      Response: Added

      Figure 2ff: The situation of receiver plants exposed to control plant volatiles is not explained in the method section and also not depicted in the Suppl. Fig. 1. Here, the sender plants seem to always have been induced (if the red star-like structure should resemble an induction - a legend may be helpful here).

      Response: We have changed to ‘connected to undamaged sender plants’. We additionally added a sentence to the methods section describing controls L300

      Line 140: This treatment is not described in the methods section. Were the plants only kept under constant conditions for the 2 experimental days? Compared to the induction shown in Fig. 1, the amount of released volatiles seems less here.

      Response: We have added explanation of this to the figure legends, explaining that plants were grown under normal conditions and lights were only left on following treatment

      Another helpful control would be to start the herbivory treatment in the evening hours and leave the light on. If then again plants only release volatiles after a 17 h delay, the response is indeed independent of the diurnal clock of the plant.

      Response: See public review comment. We have added this experiment and discuss it accordingly in the MS (L159-L166 and L207-L211)

      Line 157: Check sentence/grammar

      Response: Checked and modified

      Figure 5: I suggest using a different colour for volatiles released from the sender plants, not again the green also used in the other figures for the receiver plants. This would help the reader to quickly see which plants are in focus in each figure.

      Response: We have changed the color of the figures for clarity

      Figure 6 legend: check grammar in several sentences (use of singular vs. plural)

      Response: We have made the tense uniform

      The diurnal rhythm of jasmonates (and potentially also terpene synthases?) is not considered in the discussion.

      Response: See above, and we have added a sentence to the discussion mentioning the jasmonates (L254-L257)

      Line 230-231: check grammar. Given the complexity, the response pattern may not be so predictable.

      Response: We do not understand this comment, but have checked the grammar throughout the manuscript.

      Line 235: I like the discussion on potential ecological consequences.

      While some interpretation for each experiment is already given in the results section, not all results are discussed in the discussion section. For example, the jasmonate data are not discussed. This should be added.

      Response: See above

      Line 266: To get an idea about the plant size: How many leaves do the plants have in that stage?

      Response: Added a sentence describing the size L287-L288

      Line 321: change to "as in the greenhouse"

      Response: Changed

      Line 334: How were the terpenoids identified and, in particular, quantified?

      Response: Added (L379-L380)

      Line 354: Maybe rather change to: "Plant treatments and tissue collection for phytohormone sampling were identical as described above for terpene and gene expression analysis.

      Response: Changed

      Line 357: add "material" or "leaf tissue" after "flash frozen"

      Response: Added

      Line 359: What was the source of the isotopically labelled phytohormones?

      Response: Added (L400-L403)

      Line 360: The phytohormones are "analyzed" using UPLC. The "quantification" is then done afterward. Please correct.

      Response: Corrected (L404)

      Overall: a great approach and a wonderful idea!

      Thanks

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. However, there are some concerns regarding the strength and interpretation of their lipid data, and the robustness of some conclusions. The manuscript would benefit from addressing these concerns and providing more conclusive evidence to support the proposed conclusions. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics, but further clarification will be highly valuable to strengthen the conclusions.

      We thank the thoughtful and positive feedback from Reviewer #1. Nevertheless, there are concerns raised regarding the strength and interpretation of the lipid data, as well as the robustness of specific conclusions. We acknowledge the importance of addressing the raised concerns and provide more conclusive evidence to support our proposed conclusions. We have responded in the "Recommendations to Authors" section and hope that our research has been further strengthened.

      Reviewer #2 (Public Review):

      This manuscript investigates the mechanism behind the accumulation of phytosphingosine (PHS) and its role in triggering vacuole fission. The study proposes that membrane contact sites (MCSs) are involved in two steps of this process. First, tricalbin-tethered MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi modulate the intracellular amount of PHS. Second, the accumulated PHS induces vacuole fission, most likely via the nuclear-vacuolar junction (NVJ). The authors suggest that MCSs regulate vacuole morphology through sphingolipid metabolism.

      While some of the results in the manuscript are interesting the overall logic is hard to follow. In my assessment of the manuscript, my primary concern lies in its broad conclusions which, in my opinion, exceed the available data and raise doubts. Here are some instances where this comes into play for this manuscript:

      We greatly appreciate the careful insights into our research from Reviewer #2. We have sincerely addressed the points one by one in the following.

      Major points for revision

      1) The rationale to start investigating a vacuolar fission phenotype in the beginning is very weak. It is basically based on a negative genetic interaction with NVJ1. Based on this vacuolar fragmentation is quantified. The binning for the quantifications is already problematic as, in my experience, WT cells often harbor one to three vacuoles. How are quantifications looking when 1-3 vacuoles are counted as "normal" and more than 3 vacuoles as "fragmented"? The observed changes seem to be relatively small and the various combinations of TCB mutants do not yield a clear picture.

      The number of vacuoles at a steady state could be influenced by various environmental factors, including the composition of the medium (manufacturer supplying the reagent and local water hardness) and the background of the strain. Possibly due to those causes, our observations differ from the experience of Reviewer #2. Indeed, we observed that WT cells always have one vacuole in YPD medium. Whereas in SD medium (Fig S3B only), WT cells have mainly one or two vacuoles per cell. In both cases, we observed that some of the mutants showed a different phenotype from the WT and that those differences are supported by student’s t-test and two-way ANOVA analysis.

      2) The analysis of the structural requirements of the Tcb3 protein is interesting but does not seem to add any additional value to this study. While it was used to quantify the mild vacuolar fragmentation phenotype it does not reoccur in any following analysis. Is the tcb3Δ sufficient to yield the lipid phenotype that is later proposed to cause the vacuolar fragmentation phenotype?

      We do not know whether tcb3Δ alone is sufficient to increase PHS as we have not examined it. Nevertheless, as another approach, we analyzed the difference in IPC level between tcb1Δ2Δ3Δ triple deletion and tcb3Δsingle deletion in a sec18 mutant background and showed that the reduction of IPC synthesis is similar between tcb1Δ2Δ3Δand tcb3Δ alone (unpublished). This result suggests that out of all tricalbins (Tcb1, Tcb2 and Tcb3), Tcb3 plays a central role. In addition, the IPC synthesis reduction phenotype was small in tcb1Δ alone and tcb2Δ alone, but a strong phenotype appeared in the tcb1Δtcb2Δ combined deletion (as strong as in tcb3Δ alone). The relationship between Tcb1 Tcb2 and Tcb3 indicated by these results is also consistent with the results of the structural analysis in this study. We have shown that Tcb3 physically interacts with Tcb1 and Tcb2 by immunoprecipitation analysis (unpublished). In the future, we plan to investigate the relationship between Tcb proteins in more detail, along with the details of the interactions between Tcb1, Tcb2, and Tcb3.

      3) The quantified lipid data also has several problems. i) The quantified effects are very small. The relative change in lipid levels does not allow any conclusion regarding the phenotypes. What is the change in absolute PHS in the cell. This would be important to know for judging the proposed effects. ii) It seems as if the lipid data is contradictory to the previous study from the lab regarding the role of tricalbins in ceramide transfer. Previously it was shown that ceramides remain unchanged and IPC levels were reduced. This was the rationale for proposing the tricalbins as ceramide transfer proteins between the ER and the mid-Golgi. What could be an explanation for this discrepancy? Does the measurement of PHS after labelling the cells with DHS just reflect differences in the activity of the Sur2 hydroxylase or does it reflect different steady state levels.

      i) As Reviewer #2 pointed out, it is a slight change, but we cannot say that it is not sufficient. We have shown that PHS increases in the range of 10~30% depending on the concentration of NaCl that induces vacuole division (This result is related to the answers to the following questions by Reviewer #3 and to the additional data in the new version). This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. We did not analyze total PHS level by using methods such as liquid chromatography-mass spectrometry or ninhydrin staining of TLC-separated total lipids. The reason for this is that radiolabeling of sphingolipids using the precursor [3H]DHS provides higher sensitivity and makes it easier to detect differences. Moreover, using [3H]DHS labeling, we only measure PHS that is synthesized in the ER and that doesn’t originate from degradation of complex sphingolipids or dephosphorylation of PHS-1P in other organelles.

      ii) In our previous study (Ikeda et al. iScience. 2020), we separated the lipid labeled with [3H]DHS into ceramides and acylceramides. There was no significant change in ceramide levels, but acylceramides increased in tcb1Δ2Δ3Δ. Since we did not separate these lipids in the present study, the data shows the total amount of both ceramide and acylceramide. We apologize that the term in Figure 3A was wrong. We have corrected it. Also, we have used [3H]DHS to detect IPC levels, which differs from the previous analysis used [3H]inositol. This means the lipid amounts detected are completely different. Since the amount of inositol incorporated into cells varies from cell to cell, the amount loaded on the TLC plate is adjusted so that the total amount (signal intensity) of radioactively labeled lipids is almost the same. In contrast, for DHS labeling, the amount of DHS attached to the cell membrane is almost the same between cells, so we load the total amount onto the TLC plate without adjustment. In addition, the reduction in IPC levels due to Tcb depletion that we previously reported was seen only in sec12 or sec18 mutation backgrounds, and no reduction in IPC levels was observed in the tcb1Δ2Δ3Δ by [3H]inositol labeling (Ikeda et al. iScience. 2020). Therefore, we cannot simply compare the current results with the previous report due to the difference in experimental methods.

      The labeling time for [3H]DHS is 3 hours, and we are not measuring steady-state amounts, but rather analyzing metabolic reactions. Since [3H]DHS is converted to PHS by Sur2 hydroxylase in the cell, the possibility that differences in PHS amounts reflect differences in Sur2 hydroxylase activity cannot be ruled out. However, this possibility is highly unlikely since we have previously observed that the distribution of ceramide subclasses is hardly affected by tcb1Δtcb2Δtcb3Δ (Ikeda et al. iScience 2020). We have added to the discussion that the possibility of differences in Sur2 hydroxylase activity cannot be excluded.

      4) Determining the vacuole fragmentation phenotype of a lag1Δlac1Δ double mutant does not allow the conclusion that elevated PHS levels are responsible for the observed phenotype. This just shows that lag1Δlac1Δ cells have fragmented vacuoles. Can the observed phenotype be rescued by treating the cells with myriocin? What is the growth rate of a LAG1 LAC1 double deletion as this strain has been previously reported to be very sick. Similarly, what is the growth phenotype of the various LCB3 LCB4 and LCB5 deletions and its combinations.

      As Reviewer #2 pointed out, the vacuolar fragmentation in lag1Δlac1Δ itself does not attribute to the conclusion that increased PHS levels are the cause. Since this mutant strain has decreased level of ceramide and its subsequent product IPC/MIPC in addition to the increased level of the ceramide precursors LCB or LCB-1P, we have changed the manuscript as follows. As noted in the following comment by reviewer #2, myriocin treatment has been reported to induce vacuolar fragmentation, so we do not believe that experiments on recovery by myriocin treatment will lead to the expected results.

      ・ Previous Version: We first tested whether increased levels of PHS cause vacuolar fragmentation. Loss of ceramide synthases could cause an increase in PHS levels. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that ceramide precursors, LCBs or LCB-1P, can induce vacuolar fragmentation.

      ・Current Version: We first evaluated whether the increases in certain lipids are the cause of vacuolar fragmentation in tcb1Δ2Δ3Δ. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both enzymes for LCBs (DHS and PHS) conversion into ceramides (Fig 3B). This suggests that the increases in ceramide and subsequent products IPC/MIPC are not the cause of vacuolar fragmentation, but rather its precursors LCBs or LCB-1P.

      As reviewer #2 pointed out, the lag1Δlac1Δ double mutant is very slow growing as shown below (Author response image 1). We also examined the growth phenotype of LCB3, LCB4, and LCB5 deletion strains, and found that the growth of these strains was the same as the wild strains, with no significant differences in growth (Author response image 1).

      Author response image 1.

      Cells (FKY5687, FKY5688, FKY36, FKY37, FKY33, FKY38) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      5) The model in Figure 3 E proposes that treatment with PHS accumulates PHS in the endoplasmic reticulum. How do the authors know where exogenously added PHS ends up in the cell? It would also be important to determine the steady state levels of sphingolipids after treatment with PHS. Or in other words, how much PHS is taken up by the cells when 40 µM PHS is added?

      It has been found that the addition of PHS well suppresses the Gas1 trafficking (Gaigg et al. J Biol Chem. 2006) and endocytosis phenotypes in lcb-100 mutants (Zanolari et al. EMBO J. 2000). Their suppression depends on Lcb3 localized to the ER. Thus, we know that PHS added from outside the cell reaches the ER and is functional.

      We also agree that it is important to measure the amount of PHS taken up into the cells. However, this is extremely difficult to do for the following reasons. The majority of PHS added to the medium remains attached to the surface layer of the cells. If we measure the lipids in the cells by MS, we would detect both lipids present on the outside and inside of the plasma membrane. This means we need to separate the outside from the inside of the cell's membrane to determine the exact amount of LCB that has taken up by the cells. Regretfully, this separation is currently technically difficult.

      6) Previous studies have observed that myriocin treatment itself results in vacuolar fragmentation (e.g. Hepowit et al. biorXivs 2022, Fröhlich et al. eLife 2015). Why does both, depletion and accumulation of PHS lead to vacuolar fragmentation?

      It’s exactly as Reviewer #2 said. Consistent with previous results with myriocin treatment, we also observed vacuolar fragmentation in the lcb1-100 mutant strain. Then we have added these papers to the references for further discussion. Our discussion is as follows.

      "Previous studies have observed that myriocin treatment results in vacuolar fragmentation (Hepowit et al. bioRxiv 2022; Now published in J Cell Sci. 2023, Fröhlich et al. eLife 2015). Myriocin treatment itself causes not only the depletion of PHS but also of complex sphingolipids such as IPC. This suggests that normal sphingolipid metabolism is important for vacuolar morphology. The reason for this is unclear, but perhaps there is some mechanism by which sphingolipid depletion affects, for example, the recruitment of proteins required for vacuolar membrane fusion. In contrast, our new findings show that both PHS increase and depletion cause vacuole fragmentation. Taken together, there may be multiple mechanisms controlling vacuole morphology and lipid homeostasis by responding to both increasing and decreasing level of PHS."

      7) The experiments regarding the NVJ genes are not conclusive. While the authors mention that a NVJ1/2/3 MDM1 mutant was shown to result in a complete loss of the NVJ the observed effects cannot be simply correlated. It is also not clear why PHS would be transported towards the vacuole. In the cited study (Girik et al.) the authors show PHS transport from the vacuole towards the ER. Here the authors claim that PHS is transported via the NVJ towards the vacuole. Also, the origin of the rationale of this study is the negative genetic interaction of tcb1/2/3Δ with nvj1Δ. This interaction appears to result in a strong growth defect according to the Developmental Cell paper. What are the phenotypes of the mutants used here? Does the additional deletion of NVJ genes or MDM1 results in stronger growth phenotypes?

      We seriously appreciate the concerns in our research. As reviewer #2 pointed out, we have not shown evidence in this study to support that PHS is transported directly from the ER to the vacuole, so it is unclear whether PHS is transported to the vacuole and its physiological relevance. Girik et al. showed that the NVJ resident protein Mdm1 is important for PHS transport between vacuole and ER. Given the applied experimental method that tracks PHS released in the vacuole, indeed only transport of PHS from the vacuole to the ER was verified. However, assuming that Mdm1 transports PHS along its concentration gradient we consider that under normal conditions, PHS is transported from the ER (as the organelle of PHS synthesis) to the vacuole. We clarified this interpretation by adding the following sentences to the manuscript at line 313:

      “The study applied an experimental method that tracks LCBs released in the vacuole and showed that Mdm1p is necessary for LCBs leakage into the ER. However, assuming that Mdm1p transports LCBs along its concentration gradient we consider that under normal conditions, LCBs is transported from the ER (as the organelle of PHS synthesis) to the vacuole.”

      The negative genetic interaction between tcb1/2/3Δ and nvj1Δ is consistent with this model, but under our culture conditions we did not observe a negative interaction between the genes encoding the TCB3 and NVJ junction proteins (Author response image 2). We do not know if this is due to strain background, culture conditions, or whether the deletions of TCB1 and TCB2 are also required for the negative interaction. We would like to analyze details in the future.

      Author response image 2.

      Cells (FKY 3868, FKY5560, FKY6187, FKY6189, FKY6190, FKY6188, FKY6409) were adjusted to OD 600 = 1.0 and fivefold serial dilutions were then spotted on YPD plates, then incubated at 25℃ for 3 days.

      Our results in this study show that deletion of the NVJ component gene partially suppresses vacuolar fission upon the addition of PHS. To clarify these facts, we have changed the sentences in Results and Discussion of our manuscript as follows. We hope that this change will avoid over-interpretation.

      ・ Previous: To test the role of NVJ-mediated “transport” for PHS-induced vacuolar fragmentation,

      ・Current: To test the role of NVJ-mediated “membrane contact” for PHS-induced vacuolar fragmentation,

      ・Previous: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “non-vesicular transport of PHS” at the NVJ.

      ・Current: Taken together, we conclude from these findings that accumulated PHS in tricalbin deleted cells triggers vacuole fission via “contact between ER and vacuole” at the NVJ.

      ・Previous: Because both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is suggested that transport of PHS into vacuoles via the NVJ is involved in triggering vacuolar fragmentation.

      ・Current: Based on the fact that both PHS- and tricalbin deletion-induced vacuolar fragmentations were partially suppressed by the lack of NVJ (Fig 4B, 4C), it is possible that the trigger for vacuolar fragmentation is NVJ-mediated transport of PHS into the vacuole.

      8) As a consequence of the above points, several results are over-interpreted in the discussion. Most important, it is not clear that indeed the accumulation of PHS causes the observed phenotypes.

      We thank the suggestion by Reviewer #2. In particular, the concern that PHS accumulation really causes vacuolar fragmentation could only be verified by an in vitro assay system. This is an important issue to be resolved in the future.

      Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission.

      This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but there is concern about physiological roles of tricalbins and PHS in regulating vacuole morphology under known vacuole fission-inducing conditions. That is, in this paper it is not addressed whether the functions of tricalbins and PHS levels are controlled in response to osmotic shock, nutrient status, or ER stress.

      We appreciate the comment, and we consider it an important point. To answer this, we have performed additional experiments. Please refer to the following section, "Recommendations For The Authors" for more details. These results and discussions also have been added to the revised Manuscript. We believe this upgrade makes our findings more comprehensive.

      There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on biochemical experiments such as co-immunoprecipitation and pull-down.

      We appreciate your valuable suggestion and would like to attempt to improve upon it in the future.

      Author response to Recommendations:

      The following is the authors' response to the Recommendations For The Authors. We have now incorporated the changes recommended by Reviewers to improve the interpretations and clarity of the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      I would recommend the authors provide additional experimental data to fully support their claims or revise the writing of their manuscript to be more precise in their conclusions. In particular, I have suggestions/questions:

      Fig. 1A: display the results as in 1B (that is, different colors for different number of vacuoles, and the x axes showing the different conditions, in this case WT vs tcb1∆2∆3∆.

      In response to the suggestion of Reviewer #1, we have changed the display of results.

      Fig. S1B: the FM4-64 pattern looks different in the KO strain as compared to those shown in Fig. 1A. Is there a reason for that? Also, no positive control of cps1p not in the vacuole lumen is shown.

      Our apologies, this was probably due to the poor resolution of the images. We have made other observations and changed the Figure along with the positive control.

      Line 172: the last condition in Fig. 2B (vi), should be compared to the tcb1∆tcb2∆ condition (shown in fig 1).

      In response to the suggestion of Reviewer #1, we have changed the manuscript as follows: We found that cells expressing Tcb3(TM)-GBP and lacking Tcb1p and Tcb2p (Fig 2B (vi)) are even more fragmented than tcb1Δ2Δ in Fig 1B and are fragmented to a similar degree as tcb3Δ (Fig 1B and Fig 2B (ii)).

      Fig 2E: the model shown here can be tested, is there binding (similar to kin recognition mechanism of some Golgi proteins) between the different Tcb TMDs?

      As Reviewer #1 mentioned, we have confirmed by co-immunoprecipitation that Tcb3 binds to both Tcb1 and Tcb2 (unpublished). Furthermore, we will test if the binding can be observed with TMD alone in the future.

      Fig 3A: you measured an increase in PHS that is metabolized from DHS (which is what you label). Are there other routes to produce PHS independently of DHS? I mean, how is the increase reporting on the total levels of this lipid?

      PHS synthesized by Sur2 is converted to PHS-1P and phytoceramide. Conversely, PHS is reproduced by degradation of PHS1-P via Lcb3, Ysr3, and by degradation of phytoceramides via Ypc1 (Vilaça, Rita et al. Biochim Biophys Acta Mol Basis Dis. 2017. Fig1). Our analysis shows that these degradation substrates are not decreasing but rather accumulating in tcb1Δ2Δ3Δ strain, suggesting that the degradation system is not promoting PHS level. Therefore, the increase in detected PHS is most likely due to congestion/jams in metabolic processes downstream of PHS. Possible causes of the lipid metabolism disruption in Tcbdeletion cells have been discussed in the Discussion. To put it simply, (1) The reduced activity of a PtdIns4P phosphatase Sac1, due to MCS deficiency between ER and PM. (2) The impaired ceramide nonvesicular transport from the ER to the Golgi. (3) The low efficiency of PHS export by Rsb1, due to insufficient PHS diffusion between the ER and the PM.

      Line 248: did the authors test if the NVJ MCS is unperturbed in the triple Tcb KO?

      This is an exciting question. We are very interested in considering whether Tcb deficiency affects NVJ formation in terms of lipid transport. We would like to conduct further analysis in this regard in our future studies.

      Reviewer #2 (Recommendations For The Authors):

      I would suggest carefully evaluating the findings in this manuscript. Right now the connection between elevated PHS levels and vacuolar fragmentation are not really supported by the data. One of the major issues in the field of yeast sphingolipid biology is that quantification of the lipid levels is difficult and labor- and cost-intensive. But I think that it is very important to directly connect phenotypes with the lipid levels.

      Minor points:

      • In figure 1 c and d WT controls of the different treatments are lacking.

      As reviewer #2 had pointed out, we have added data for the WT controls.

      • The tcb1Δmutant appears to be sensitive in pH 5.0 media while the triple tricalbins mutant grows fine. Is that a known phenotype?

      We have performed this assay on SD plates. Then, to check whether this phenotype of tcb1Δ was specific or general, we re-analyzed the same strain in YPD medium. In YPD medium, tcb1Δ strain grew normally, while the control, vma3Δ, was still pH sensitive. Therefore, the growth of this tcb1Δ strain is dependent on the nutrient conditions of the medium but does not appear to be pH sensitive. This new data was inserted as part of Supplementary Figure 1.

      • Line 305. The is an "of" in the sentence that needs to be deleted.

      As pointed out by Reviewer #2, we have corrected the sentence.

      Reviewer #3 (Recommendations For The Authors):

      In supplementary Fig 2, the authors show the involvement of the NVJ in hyperosmotic shockinduced vacuole fission, but the involvement of tricalbins and PHS in this process is not tested. Does osmotic shock affect the level or distribution of tricalbins and PHS? They will be able to test whether overexpression of tricalbins inhibits hyperosmotic shock-induced vacuole fission or not. Also, they will be able to perform the similar experiments upon ER stressinduced vacuole fission.

      We appreciate Reviewer#3 for suggesting that it is important to test the involvement of PHS in hyperosmotic shock- or ER stress-induced vacuole fission. We have shown in a previous report that treatment with tunicamycin, which is ER stress inducer, increased the PHS level by about 20% (Yabuki et al. Genetics. 2019. Fig4). In addition, we tested the effect of hyperosmolarity on PHS levels for this time. Analysis of PHS under hyperosmotic shock conditions (0.2 M NaCl), in which vacuolar fragments were observed, showed an increase in PHS of about 10%. Furthermore, when the NaCl concentration was increased to 0.8 M, PHS levels increased up to 30%. In other words, we have shown that PHS increases in the range of tens of percent depending on the concentration of NaCl that induces vacuole division. This observation supports the possibility that a small increase in PHS levels may have an effect on vacuole fragmentation. Moreover, NaCl-induced vacuolar fragmentation, like that caused by PHS treatment, was also suppressed by PHS export from the cell by Rsb1 overexpression.

      These new data are now inserted, commented and discussed in the manuscript as Figure 5. We hope that these results will provide further insight into the more general aspects of PHS involvement in the vacuole fission process.

      Minor points:

      1) It is unclear for me whether endogenous Tcb3 is deleted in cells expressing Tcb3-GBP (FKY3903-3905 and FKY4754). They should clearly mention that these cells do not express endogenous Tcb3 in the manuscript.

      We apologize that our description was not clear. In this strain, endogenous TCB3 gene is tagged with GBP and the original Tcb3 has been replaced by the tagged version. We have changed the description in our manuscript.

      2) The strength of the effect of PHS on vacuole morphology looks different in respective WT cells in Fig 3C, 4B, and S2B. Is this due to the different yeast strains they used?

      Yes, we used BY4742 background for the strain in Figure 3C, SEY6210 background in Figure 4B, and HR background in Figure S2B. As a matter of fact, we observed that the strength of the PHS effect varies depending on their background. Strain numbers are now given in the legend so that the cells used for each data can be referenced in the strain list.

      3) p.3, line 44: the "SNARE" complex (instead of "protease")?

      We thank for the remarks on the incorrect wording. We have corrected this sentence.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Strengths:

      The major strength of this paper is the series of laser cutting experiments supporting that asters position via pushing forces acting both on the boundary (see below for a relevant comment) and between asters. The combination of imaging, data analysis and mathematical modeling is also powerful.

      Author Response: We thank the Reviewer for the positive comments, especially in recognising the power of our quantitative approaches.

      Weaknesses:

      This paper has weaknesses, mainly in the presentation but also in the quality of the data which do not always support the conclusions satisfactorily (this might in part be a presentation issue).

      Author Response>: We address these concerns below.

      My overall suggestion for the authors is to explain better the motivation and interpretation of their experiments and also to remove some of the observations which seem to be there because they could be done rather than because they add to the main message of the paper, which I find straightforward, valuable and supported by the data in Figure 4.

      Author Response: We have extended the motivation of the study in the Introduction, and at the beginning of appropriate Results sections. We better motivate the force potential and especially the key results from Figure 4. We outline specific changes below.

      In Figure 2, it is difficult for me to understand what is being tracked. I believe that the authors track the yolk granules (visible as large green blobs) and not lipid droplets. There is some confusion between the text, legends and methods so I could not tell. If the authors are tracking yolk granules as a proxy for hydrodynamics flows it seems appropriate to cite previous papers that have used and verified these methods. More notably, this figure is somewhat disconnected with the rest of the paper. I find the analysis interesting in principle but would urge the authors to propose some interpretation of the experiments in the context of their big-picture message. At this point, I cannot understand what the Figure adds.

      Author Response: Indeed, we track the yolk droplets that move around the aster. In the extraction protocol, we likely get a mixture of lipid droplets and yolk granules; this is due to the extraction procedure involving shear forces within the pipette. We are not certain about the exact nature of these droplets, but they are likely to a large extent yolk. We have clarified the terminology in the text, the legend and methods section. In this figure, we now show that the droplets do not move towards the aster center as the hydrodynamic pulling model would suggest. Instead, they appear to passively respond to a repulsive force, that results in them streaming around the aster. We have added additional panels to the figure that illustrates the directionality of yolk granule movements (lines 159-164). We agree with the Reviewer that the context could have been clarified. The role of fluid flows in biological systems is, as the Reviewer highlights, well studied. We have added additional contextualisa8on in the text (lines 140-146). We also motivate more clearly the figure, as it provides evidence that the asters generate forces over 20µm scale (lines 159-164). This is highly relevant for one of the paper’s main conclusions – that the Drosophila blastocyst asters generate pushing forces that enable regular packing.

      In Figure 3, it is not surprising that the aster-aster interactions are different from interactions with the boundary which is likely more rigid. It is also hard to understand why the force and thus velocity should scale as microtubule length. This Figure should be better conceptualized. I think that it becomes clear at the end of the paper that the authors are trying to derive an effective potential to use in a mathematical model in Figure 5 to test their hypotheses. I think that should be told from the start, so a reader understands why these experiments are being shown.

      Author Response: We don’t claim that the force scales with microtubule length on a single microtubule. However, at larger distances from the aster, the microtubule density decreases, and hence the effective force decreases.

      The Reviewer is correct that we use these results to motivate our effective potential. We have brought this motivation forward in the manuscript to guide the reader (lines 169-171) and included a further note at the end of the section (lines 216-218).

      The experiments in Figure 4 are very nice in suppor8ng a pushing model. However, it would help if the authors could speculate what the single aster is pushing against in this experiment. The experiments reported in Figure 1 seemed to suggest that the aster mainly pushed against the boundary. In the experiments in Figure 4 do the individual asters touch the boundary on both sides? I think that readers need more information on what the extract looks like for those experiments.

      Author Response: We now include an additional panel B in Figure 4– that shows an example of an explant during aster ablation. The distance between asters is typically less than the distance to the explant boundary. Boundary effects likely play a small role in the aster-aster separation, in terms of potentially determining the axis of separation. However, the separation of asters occurs along a straight line for a substan8al period (>1 min) of separation; if boundary effects were more dominant, we may expect to see curving of the aster-aster separation trajectories as they also receive feedback from the boundary.

      Figure 4F could use some statistics. I doubt that the acceleration in the pink curves would be significant. I believe that the decelera8on is and that is probably the most crucial result. Since the authors present only 3 asters pairs it is important to be sure that these conclusions are solid.

      Author Response: We agree with the Reviewer. These experiments are challenging to do, as they require carefully controlled conditions. In two out of three experiments we see significant increase in acceleration in the pink curves. Of course, the interpretation of this must be caveated as our experimental number is low. These details are now provided in the revision (lines 263267).

      Reviewer 2

      Strengths:

      This study reveals a unique aster positioning mechanics in the syncytial embryo explant, which leads to an understanding of the mechanism underlying the positioning of multiple asters associated with nuclei in the embryo. The use of explants enabled accurate measurement of aster motility and, therefore, the construc8on of a quantitative model. This is a notable achievement.

      Author Response: We thank the Reviewer for their review, and in highlighting how our quantitative model is a clear step forward in our understanding of aster dynamics.

      Weaknesses:

      The main conclusion that aster repulsion predominates in this system has already been drawn by the same authors in their recent study (de-Carvalho et al., Development, 2022). As the present work provides additional support to the previous study using different experimental system, the authors should emphasize that the present manuscripts adds to it (but the conceptual novelty is limited).

      Author Response: While this study is related to the previous work, there are major differences. First, here we quantitatively assess aster dynamics within a “clean” system. Such accurate measurements are not possible in vivo currently. Further, experiments like laser ablation are much better defined within the explant system. We do recognise more clearly the previous work in the Introduc8on and lines 291-293, 299-300. Combined, with the different perspectives provided in these papers on the problem of aster positioning in syncytia, we believe these papers provide new and well-supported insights.

      The molecular mechanisms underlying aster repulsion remain unexplored since the authors were unable to identify specific factor(s) responsible for aster repulsion in the explant.

      Author Response: Given that the nature of the aster dynamics were not previously characterised, our work presents a major step forward. We show compelling evidence that an effective pushing force potential plays a role in aster interactions. With this critical knowledge, we can now explore for the potential molecular mechanisms – but such information lies beyond the current manuscript scope. This is particularly challenging due to the lack of specific microtubule drug inhibitors in Drosophila. We highlight related issues in the Discussion: paragraph starting on line 340 and lines 367-370.

      Specific suggestions:

      Microtubules should be visualized more clearly (either in live or fixed samples). This is particularly important in Figure 4E and Video 4 (laser ablation experiment to create asymmetric asters).

      Author Response: This is similar to Reviewer 1 final comment above. These experiments are very challenging and being able to see the microtubules with sufficient clarity is not straightforward. Given our controls and previous experience, we are confident we are ablating the microtubules.

      Minor points:

      1) The authors explain the roles of microtubule asters in several model systems in the first paragraph of the introduction part. Please specify the species and/or cell types in each description.

      Author Response: We have provided as suggested.

      2) In lines 164 and 172, the citing figure numbers should be modified to Supplementary Fig. 1A and 1B, respectively.

      Author Response: We thank the Reviewer for spotting this error. It has now been corrected.

      3) The authors showed in the previous study that the boundary in the explant does not have an intact cell cortex and f-actin compartments (de-Carvalho et al., Development, 2022). This important informa8on should also be described in the current manuscript. It is also valuable to mention whether the pulling force mechanism operates in embryos where the intact cell cortex is present.

      Author Response: This is an interesting point We have added a sentence in the discussion with this information. We have now added additional text in the Discussion (lines 324-327).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It is somewhat speculative that the structure represents the EIIa-bound regulatory state. There's a strong enough case that it should be analyzed in the discussion, but I don't think it is firmly established. Therefore, the title of the paper should be changed.

      Our answer: Thank you for the comment. We have changed the title to “Mobile barrier mechanisms for Na+-coupled symport in an MFS sugar transporter”

      Reading through the manuscript, it was challenging to distinguish what is new in the current manuscript and what has been done previously. There were a lot of parts where it was hard for me to identify the main point of the current study among all the details of previous studies. It would also benefit from shortening. For example:

      -Page 6: Nb725 binding has already been characterized extensively in the very nice JBC paper earlier this year. It's important to test 725-4 for binding, but since it doesn't change the binding interaction, and probably wouldn't be expected to, the entire section could be written more succinctly. The main point, which is that 725-4 behaves like 725, is lost among all the details

      Our answer: Thanks for this instructive suggestion. We have shortened the description in this section.

      -Page 9-10. I don't understand what summarizing all of the results from the previous D59C studies adds to the current story. It's important because it provides an indication of the substrate binding site, but its mechanism of action does not seem relevant to the current work.

      Our answer: We have shortened the description of the sugar-binding site and moved the previous Fig. 3b to supplementary figure sFig. 11. According to your comment about showing the location of the binding sites, which is also suggested by Reviewer #2, we modified Fig. 3 and added two panels to map the location of the bound Na+ in the inward-facing structure and the bound sugar in the outward-facing structure.

      The sugar-binding site identified in the published structure is critical to construct the mobile barrier mechanism. The sugar-binding residues identified in the published structure provided essential data to support the conclusion that the sugar-binding pocket is broken in the inward-facing structure. Thus, this published structure is mechanistically relevant to the current study.

      -Page 12. Too much summary of the previous outward structure. Since this is already part of the literature, it would be more efficient to reference the previous data when it is important to interpret the new data (or show as a figure).

      Our answer: The introduction of the previous sugar-binding sit is important for the detailed comparison between the two states as discussed above, but we agree with this reviewer and have significantly shortened the paragraph by moving the detailed description into the legend to the sFig. 11.

      -Instead of providing the PDB ID in figures of the current structure, just say "current work" or similar. Then it is obvious you are not citing a previous structure.

      Our answer: To distinguish clearly the new data and published results, the citation of the cryoEM structure [PDP ID 8T60] has been completely removed from the main text but kept in sTable 1.

      -An entire panel of Figure 3 is dedicated to ligand binding in a previous outward-facing structure.

      Showing it in the overlay would be sufficient.

      Our answer: It is the first time for us to show a structure with a bound-Na+. Fig. 3 also illustrates the spatial relationship between the sugar-binding pocket and the cation-binding pocket since both binding sites are determined now. As stated above, according to two reviewers’ comments, we have modified the Figures and the Fig. 3d is the overlay.

      Please increase the size of the font in all figures. It should be 6-8 point when printed on a standard sheet of paper. Labels in Figure 3, distances in Figure 4, and everything in Figure 5 is hard to see.

      Our answer: Thank you for the comments and the enlargement of the figure size and label font in all figures have been made.

      Figure 2: would be helpful to show Figure S8 in the main text, orienting the reader to the approximate location of substrate binding. What is known about the EIIA-Glc binding interface? Has anyone probed this by mutagenesis? Where are these residues on the overall structure, and are they somewhere other than the nanobody interface?

      Our answer: Thank you for this comment. We have added a panel for orienting the readers about the substrate location in MelB in Figure 3c. The sFig. 8 actually focuses on the details of Nb interactions with MelB. Our current data strongly supported the notion that the Nb-bound MelBSt structure mimics the EIIAGlc-bound MelB but is not structurally resolved, so we have tuned down our statement on EIIAGlc. There is one study suggesting the C-terminal tail helix may be involved in the EIIAGlc binding, which has been added to the discussion.

      Can Figure 5 be split into 2 figures and simplified?

      Our answer: thanks for the suggestion. We have split it into Figs. 5b and 6 and also moved the peptide mapping to the Fig 5a.

      What is the difference between cartoon and ribbon rendering?

      Our answer: Ribbon: illustrating the structure; cartoon: highlighting the positions with statistically significant protection or deprotection. The statistically significant changes are implied by the ribbon representation; Sphere: not covered by labeled peptides.

      Can the panels showing the kinetic data be enlarged? I don't think they need to surround the molecule. An array underneath would be fine.

      Our answer: We have enlarged all figures and labels. The placement of selected plots around the model could clearly show the difference in deuterium uptake rates between the transmembrane domain and extra-membrane regions. We will maintain this arrangement.

      Do colors in panel A correspond with colors in panel B?

      Our answer: The color usage in both are different. Now the two panels have been separated.

      Do I understand correctly that in the HDX experiments, negative values indicate positions that exchange more quickly in the nanobody-free protein relative to the nanobody-bound protein?

      Our answer: Your understanding is correct.

      I assume some of this is due to the protein changing conformation, but some of it might be due to burial at the nanobody-binding interface. Can those peptides be indicated?

      Our answer: Thank you for this comment. We have marked the peptide carrying the Nb-binding residues on uptake plots in Figs.6 and Extended Fig. 1. There are only three Nb-binding residues covered by many overlapping peptides. Most are not covered, either not carried by the labeled peptides (Tyr205, Ser206, and Ser207) or with insignificant changes (Pro132 and Thr133), except for Asp137, Lys138, and Arg141 which are presented in 8 labeled peptides.

      Few buried positions in the outward-facing state are expected to be solvent in the inward-facing state; unfortunately, inward-facing state they are buried by Nb binding.

      Make figure legends easier to interpret by removing non-essential methods details (like buffer conditions).

      Our answer: We removed the detailed method descriptions in most figure legends. Thank you.

      Check throughout for typos.

      ie page 9 Lue Leu

      Page 9 like likely

      Our answer: We have corrected them. Thank you!

      Reviewer #2 (Recommendations For The Authors):

      I have mostly minor questions/remarks.

      • Why not do the hdx-ms experiments in the presence of sugar? That would give a proper distinction between two conformational states, instead of an ensemble of states vs one state.

      Our answer: MelB conformation induced by sugar is also multiple states, and likely most are outward-facing states and occluded intermediate states. This is also supported by the new finding of an inward state with low sugar affinity. The ideal design should be one inward and one outward to understand the inward-outward transition. We have not identified an outward-facing mutant while we can obtain the inward by the Nb. WT MelBSt with bound Na+ favors the outward-facing state. Although our design is not ideal, we do have one state vs a predominant outward-facing WT with bound Na+.

      Minor comments:

      • Fig 5 is misleading as the peptide number does not match with the amino acid sequence. I would suggest putting a heat map with coverage on top. Or showing deuterium uptake per peptide. See examples below.

      Our answer: The peptide number should not match with sequence number. We have 155 overlapping peptides that cover the entire amino acid sequence including the 10-His tag, and there are 60 residues with no data because they are not covered by a labeled peptide. The residue positions that are covered by peptides are estimated by bars on the top. The cylinder length does not correspond to the length of the transmembrane helix, just for mapping purposes.

      • Can the authors explain how they found that the Nbs bind to the cytoplasmic side (before obtaining the structure)?

      Our answer: Our in vivo two-hybrid assay between the Nb and MelBSt indicated their interaction on the cytoplasmic surface of MelBSt, which is further confirmed by the melibiose fermentation and transport assay, where the transport activities were completely inhibited by intracellularly coexpressed Nb and MelBSt. Thanks for raising this question.

      • The authors use the word "substrate" indifferently for sugar and Na+ binding, which is a bit confusing. Technically, only sugar is the substrate and Na+ is a ligand, or cotransported-ion, that powers the reaction of transport. This might sound like nit-picking but it can lead to misunderstandings (at some point I thought two sugars were transported, and then I was looking for the second Na+ binding site).

      Our answer: We used to call the sugar and Na as co-substrate but we agree with this comment.

      We have changed by using substrate for the cargo sugar and coupling cation for the driving cation.

      • Abstract "only the inner barrier" - the is missing.

      Thanks. We have corrected this.

      • p.3 intro "and identified that the positive cooperativity of cation and melibiose, " something is missing.

      Thanks again. We missed the “as the core symport mechanism”.

      • P.6 Nb275_4 instead of Nb725_4

      Thank you very much for your careful reading.

      • P.7. Also, affinity affinities

      Thank you very much. We changed to “; and also, the -NPG affinity decreased by 21~32-fold for both Nbs”

      • P.8 " contains 417 MelBSt residues (positions 2-210, 219-355, and 364-432). This does not sum up to 417 residues.

      Thanks for your critical reading. We changed 364-432 to 262-432.

      • p.9 Lue 54

      We have corrected it to Leu54.

      • I find fig.3 hard to read. Can the authors show the Na+ binding pockets and sugar binding pockets within the structure? Especially figure 3b. why are the residues in different colors?

      Our answer: We have moved Fig 3b into sFig. 11. We colored the residues in the previous Fig 3B to match the hosting helices. We have added two panels to show the location of both sugar and Na in the molecular. Thank you for your comments.

      • Fig4 bcef. Colored circles at the end of the helices. What are they for?

      Our answer: We revised the legend. “The paired helices involved in either barrier formation were highlighted in the same colored circles.”

      • 86% coverage includes the his-tag - it would be good to clarify that.

      Our answer: Yes, it includes the 10-His tag.

      • Fig.7 - anti clockwise cycle of transport is counter-intuitive.

      Our answer: We have re-arranged. Our model was constructed originally to explain efflux due to limited information at the earlier state. Now more data are available allowing us to explain inflow and active transport.

      • Where are all the uptake plots per peptide for the HDX-MS data?

      Our answer: We have added the course raw data and prepared all uptake plots for all 71 peptides with statistically significant changes as an Extended Fig. 1.

      • P.22 protein was concentrated to 50 mg/mL. Really? That is a lot.

      This is correct. We can even concentrate MelBSt protein to greater than 50 mg/ml.

      • Have the authors looked into the potential role of lipids in regulating the conformational transition? Since the structure was obtained in nanodiscs, have they observed some unexplained densities? The role of lipid-protein interactions in regulating such transitions was observed for several transporters including MFS (Gupta K, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017 10.1038/nature20820. Martens C, et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun. 2018 10.1038/s41467-018-06704-1.). Furthermore, I see the authors have already observed lipid specific functional regulation of MelB (ref: Hariharan, P., et al BMC Biol 16, 85 (2018). https://doi.org/10.1186/s12915-018-0553-0). A few words about this previous work, and even commenting on the absence of lipid-protein interactions in this current work is worthwhile.

      Our answer: Thanks for this very relevant comment. We paid attention to the unmodelled densities. There is one with potential but it is challenging to model it. We have added a sentence “There is no unexplained density that can be clearly modeled by lipids.” in the method to address this concern.

      Reviewer #3 (Recommendations For The Authors):

      1) In the following sentence, the authors report high errors for the Kd value. The anti-Fab Nb binding to NabFab was two-fold poorer than Nb725_4 at a Kd value of 0.11 {plus minus} 0.16 μM. The figure however indicates that the error value is 0.016 µM. Pls correct.

      Our answer: Thank you. You are correct. The error has been corrected. 0.16 ± 0.02 uM. In this revised manuscript, we present the data in nM units.

      2) Is the stoichiometry of the MelB:Na+ symport clearly known in this transporter. It can be mentioned in the discussion with appropriate references.

      Our answer: Yes, the stoichiometry of unity has been clearly determined, which was included in the second paragraph of the previous version.

      3) In the last section of results, the authors seem to suggest a greater movement within their Cterminal helical bundle compared to N-terminal helices. Is there evidence to suggest an asymmetry in the rocker switch between the two states of the transporter?

      Our answer: Our structural data revealed that the C-terminal bundle is more dynamic compared with the N-terminal bundle where hosts the residues for specific binding of galactoside and Na+. The HDX data showed that the most dynamic regions are the structurally unresolved C-terminal tail by either method, the conserved tail helix and the middle-loop helix. transmembrane helices are relatively less dynamic with similar distributions on both transmembrane bundles. Since the most dynamic regions are peripheral element associated with the C-terminal domain, it might give a wrong impression. With regard to the symmetric or asymmetric movement, which will certainly affect the dynamic interactions between the transporter and the lipids, we favor the notion that MelBSt performs symmetric movement during the rocker switch between inward and outward states at the least cost for the protein-lipids interaction.

      4) Figure 1. Are the thermograms exothermic or endothermic? clarify

      Our answer: In our thermograms, all positive peaks are exothermic due to the direct detection of the heat release by the TA instrument. We clarified this in Method and now we stress this in figure legends to avoid confusion.

      5) Figure 4a,d. Please put in a membrane bilayer and depict cytosolic and extracellular compartments for clarity.

      Thank you. We have added a bilayer and labeled the sidedness in this figure and other related figures.

      6) Fig 7. Melibiose symport cannot be referred to as Melibiose efflux transport in the legend as the latter refers to antiport. Pls rectify.

      Our answer: Influx and efflux are conventionally used to describe the direction of movement of a substrate. The use of symport and antiport indicates the directions of the coupling reaction for the cargo and cation. For the symporter MelB, melibiose efflux means that sugar with the coupled cation moves out, which is driven by the melibiose concentration. During the steady state of melibiose active transport, efflux rate = influx rate.

      7) Page 11 "A common feature of carrier transporters". The authors can use either carriers or transporters. Need not use both simultaneously.

      Sorry for overlooking this. We have deleted carriers. Thank you very much for your time.

      8) Several typos were noticed in this manuscript. some are listed below. pls correct.

      Page 4- last paragraph "Furthermore"

      We have corrected it. Thank you again!

      Page 7 - second para one repharse "affinity reduced by 21~32 fold/units.." pls clarify

      Added 21~32 fold.

      Page 9 - "so it is highly likely that inward-open conformation" pls correct.

      We have corrected to “likely”.

      Fig. S9c - correct the spelling "Distance".

      We have corrected to “Distance”

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly appreciate the overwhelmingly positive summaries from all three reviewers and the eLife editorial team. All reviewers provided extremely detailed feedback regarding the initially submitted manuscript, we appreciate their efforts in helping us improve this manuscript. Below, are listed each of the specific comments made by the reviewers, and our responses to them in a point-by-point format.

      The only notable change made to the manuscript that was not in response to comments from a reviewer was regarding nomenclature of the structure that we had previously called the nuclear microtubule organising centre (MTOC). We had used the term MTOC to describe the entire structure, which spans the nuclear envelope and comprises an intranuclear portion and cytoplasmic extensions. Given recent evidence, including findings from this study, it is possible that both the intranuclear region and cytoplasmic extensions both have microtubule nucleating capacity, and therefore both meet the definition of an MTOC. To disambiguate this, we now refer to the overall structure as the centriolar plaque (CP), consistent with previous literature. The intranuclear portion of the CP will be referred to as the inner CP, while the cytoplasmic portion will be referred to as the outer CP.

      Reviewer #1 (Recommendations For The Authors):

      1) In the first part of the result section, a paragraph on sample processing for U-ExM could be added, with reference to Fig 1b.

      The following section has been added to the first paragraph of the results “…In this study all parasites were fixed in 4% paraformaldehyde (PFA), unless otherwise stated, and anchored overnight at 37 °C before gelation, denaturation at 95 °C and expansion. Expanded gels were measured, before shrinking in PBS, antibody staining, washing, re-expansion, and imaging (Figure 1b). Parasites were harvested at multiple time points during the intraerythrocytic asexual stage and imaged using Airyscan2 super-resolution microscopy, providing high-resolution three-dimensional imaging data (Figure 1c). A full summary of all target-specific stains used in this study can be found in Figure 1d.”

      2) The order of the figures could be changed for more consistency. For example, fig 2b is cited before 2a.

      An earlier reference to figure 2a was added to rectify this discrepancy.

      3) In Fig 2b it is difficult to distinguish the blue (nuclear) and green (plasma membrane) lines.x

      The thickness of these lines has been doubled.

      4) It is unclear what the authors want to show in Fig 2a.

      The intention of this figure, as with panel a of the majority of the organelle-specific figures in this manuscript, is simply to show what the target protein/structure looks like across intraerythrocytic development.

      5) Lines 154-155, the numbers of MTOC observed do not match those in Supplt Fig2c.

      This discrepancy has been addressed, the numbers in Supplementary Figure 2c were accurate so the text has been changed to reflect this.

      6) Line 188: the authors should explain the principle of C1 treatment.

      The following explanation of C1 treatment has been provided:

      “To ensure imaged parasites were fully segmented, we arrested parasite development by adding the reversible protein kinase G inhibitor Compound 1 (C1). This inhibitor arrests parasite maturation after the completion of segmentation but before egress. When C1 is washed out, parasites egress and invade normally, ensuring that observations made in C1-arrested parasites are physiologically relevant and not a developmental artefact due to arrest.”

      7) Lines 195-204: this part is rather difficult to follow as analysis of the basal complex is detailed later in the manuscript. The authors refer to Fig4 before describing Fig3.

      This has been clarified in the text.

      8) Lines 225 and 227, the authors cite Supplt Fig 2b about the Golgi, but probably meant Supplt Fig 4? In Supplt Fig 4, the authors could provide magnification in insets to better illustrate the Golgi-MTOC association.

      This should have been a reference to Supplementary Figure 2e instead of 2b, which has now been changed. In Supplementary Figure 4, zooms into a single region of Golgi have been provided to more clearly show its MTOC association.

      9) Supplt Fig8 is wrong (duplication of Supplt Fig6).

      We apologise for this mistake, the correct figure is now present in Supplementary Figure 8.

      10) Line 346: smV5 should be defined, and generation of the parasites should be described in the methods.

      This has now been defined, but we have not described the generation of the parasites, as this was performed in a previous study that we have referenced.

      11) Lines 361-362: "By the time the basal complex reaches its maximum diameter..." This sentence is not very clear, the authors could explain more precisely the sequence of events, indicating that the basal complex starts moving in the basal direction, as clearly illustrated in Fig 4a.

      This has been prefaced with the following sentence “…As the parasite undergoes segmentation, the basal complex expands and starts moving in the basal direction.”

      12) Supplt Fig6 comes after Supplt Fig9 in the narrative, and therefore could be placed after.

      Supplementary Figure 6 and 9 follow the order in which they are referred to in the text.

      13) Line 538: Supplt Fig9e instead of 9d.

      This has been fixed.

      14) Line 581: does the PFA-glutaraldehyde fixation allows visualizing other structures in addition to cytostome bulbs?

      While PFA-glutaraldehyde fixation allows visualisation of cytostome bulbs, to date we have not observed any other structure that stains/preserves better using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed parasites. As a general trend, all structures other than cytostomes become somewhat more difficult to identify using NHS Ester or BODIPY Ceramide in PFA-glutaraldehyde fixed samples due to the local contrast with the red blood cell cytoplasm. It seems likely that this is just due to the preservation of RBC cytoplasm, and would be expected from any fixation method that doesn’t result in RBC lysis, rather than anything unique to glutaraldehyde.

      15) Line 652-653: It is unclear how the authors can hypothesize that rhoptries form de novo rather than splitting based on their observations.

      This not something we can say with certainty, we have however, introduced the following paragraph to qualify our claims: “Overall, we present three main observations suggesting that rhoptry pairs undergo sequential de novo biogenesis rather than dividing from a single precursor rhoptry. First, the tight correlation between rhoptry and MTOC cytoplasmic extension number suggests that either rhoptry division happens so fast that transition states are not observable with these methods or that each rhoptry forms de novo and such transition states do not exist. Second, the heterogeneity in rhoptry size throughout schizogony favors a model of de novo biogenesis given that it would be unusual for a single rhoptry to divide into two rhoptries of different sizes. Lastly, well-documented heterogeneity in rhoptry density suggests that, at least during early segmentation, rhoptries have different compositions. Heterogeneity in rhoptry contents would be difficult to achieve so quickly after biogenesis if they formed through fission of a precursor rhoptry.”

      16) Line 769: is expansion microscopy sample preparation compatible with FISH?

      Yes, there are publications of expansion being done with both MERFISH and FISH. Though it has not yet been applied to plasmodium. See examples: Wang, Guiping, Jeffrey R. Moffitt, and Xiaowei Zhuang. "Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy." Scientific reports 8.1 (2018): 4847. And Chen, Fei, et al. "Nanoscale imaging of RNA with expansion microscopy." Nature methods 13.8 (2016): 679-684.

      17) In the methods, the authors could provide details on the gel mounting step for imaging This is particularly important since this paper will likely serve as a reference standard for expansion microscopy in the field. Also, illustration that cryopreservation of gels does not modify the quality of the images would be useful.

      The following section has been added to our “image acquisition” paragraph: “Immediately before imaging, a small slice of gel ~10mm x ~10mm was cut and mounted on an imaging dish (35mm Cellvis coverslip bottomed dishes NC0409658 - FisherScientific) coated with Poly-D lysine. The side of the gel containing sample is placed face down on the coverslip and a few drops of ddH20 are added after mounting to prevent gel shrinkage due to dehydration during imaging.”

      We have decided not to illustrate that cryopreservation does not alter gel quality, as this is something that is already covered in the study that first cryopreserved gels, which is referenced in our methods section.

      Reviewer #2 (Recommendations For The Authors):

      1) Advantages and limitations of the expansion method are generally well discussed. The only matter in that respect that I was wondering is if expansion can always be assumed to be linear for all components of a cell. The hemozoin crystal does not expand (maybe not surprisingly), but could there also be other cellular structures that on a smaller scale separate or expand at a different rate than others? Is there any data on this from other organisms? I am raising this here not as a criticism of this work but if known to occur, it might need mentioning somewhere to alert the reader to it, particularly in regards to the many measurements in the paper (see also point 4). This might be a further factor contributing to the finding that the IMC and PPM could not be resolved.

      This is an excellent point and, to our knowledge, one that is currently still under investigation in the field. It is well-documented that expansion protocols need to be customized to each cell type and tissue they are applied to. Each solution used for fixation and anchoring as well as timing and temperature of denaturation can affect the expansion factor achieved as well as how isotropic/anisotropic the expanded structures turn out. However, we do not know of any examples where isotropic expansion was achieved for everything but an organelle or component of the cell. It is our impression that if the cell seems to have attained isotropic expansion, this is assumed to also be the case for the subcellular structures within it. Nonetheless, we think it remains a possibility to be considered specially as more structures are characterized using these methods. In the case of our IMC/PPM findings, when we performed calculations taking into account our experimental expansion factor as well as antibody effects, it was clear that the resolution of our microscope was not enough to resolve the two structures using our current labelling methods. So, we suspect most of the effect is driven by that. However, this still needs to be validated by attempting to resolve the two structures though alternative labelling and imaging methods.

      2) I understand that many things described in the results part are interconnected but still the level of hopping around between different figures/supp figures is considerable (see also point 6 on synchronicity of Figure parts). I do not have a simple fix, but maybe the authors could check if they could come up with a way to streamline parts of their results into a somewhat more reader friendly order.

      This has been a problem we encountered from the beginning and, after trying multiple presentations of the results and discussion, we realized they all have drawbacks. We eventually settled on this presentation as the “least confusing”. We agree, however, that the figure references and order could be better streamlined and have addressed this to the best of our ability.

      3) Are the authors sure the ER expands well and the BIP signal (Fig. S5) gives a signal reflecting the true shape of the ER? The signal in younger parasites seems rather extensive compared to what the ER (in my experience) typically looks like in these stages in live parasites.

      While there may be a discrepancy between how the presumably dynamic ER appears in live cells, and how it appears using BiP staining, we think it is unlikely this is a product of expansion. Additionally, if there were to be an artefactual change in the ER, it would be likely under-expansion rather than over-expansion, which to our knowledge has not been reported. In our opinion, the BiP staining we observe is comparable between unexpanded and expanded samples. We have included comparative images in Author response image 1 with DNA in cyan and BiP in yellow, unexpanded (left) and expanded (right) using the same microscope and BiP antibody.

      Author response image 1.

      4) It is nice to have measurements of the apicoplast and mitochondria, but given their size, this could also have been done in unexpanded, ideally live parasites, avoiding expansion and fixing artifacts. While the expansion has many nice features, measuring area of large structures may not be one where it is strictly needed. I am not saying this is not useful information, but maybe a note could be added to the manuscript that the conclusions on mitochondria and apicoplast area and division might be worth confirming in live parasites. A brief mention on similarities and differences to previous work analysing the shape and multiplication of these organelles through blood stage development (van Dooren et al MolMicrobiol2005) might also be useful.

      We agree with the reviewer that previous studies such as van Dooren et al. (2005) demonstrate that it is possible to track apicoplast and mitochondrial growth without expansion and share the opinion that live parasites are better for these measurements. Expansion only provides an advantage when more organelle-level resolution is needed. For example, in studying the association between these organelles and the MTOC or visualizing other branch-specific interactions.

      5) I could not find the Supp Fig. 8 on the IMC, the current Supp Fig. 8 is a duplication of Supp Fig. 6

      This has been addressed, Supplementary Figure 8 now refers to the IMC.

      6) Figure order is not very synchronous with the text: Fig. 2a is mentioned after Fig. 2b, Fig. 4b is mentioned first for Fig. 4 (Fig. 4a is not by itself mentioned) and before Fig. 3 is mentioned; Fig. 3b is before Fig. 3a.

      We have done our best to fix these discrepancies, but concede that we have not found a way to order these sections that doesn’t lead to some confusion.

      7) Fig. S2a, The label "Centrin" on left image is difficult to read

      We have increased the font size and changed colour slightly in the hope it is leigible.

      8) In Fig. 2a, the centrin foci are very focal and difficult to see in these images, particularly when printed out but also on screen. To a lesser extent this is also the case for CINCH in Fig. 4a (particularly when printed; when zoomed-in on screen, the signal is well visible). This issue of difficulties in seeing the fluorescence signal of some markers, particularly when printed out, applies also to other images of the paper.

      In the images of full size parasites, this is an issue that we cannot easily overcome as the fluorescent channels are already at maximum brightness without overexposure. To try and address this, we have provided zooms that we hope will more clearly show the fluorescence in these panels.

      9) Expand "C1" in line 188 (first use).

      This has been addressed in response to a previous comment.

      10) Line 227; does Supp Fig. 2b really show Golgi- cytoplasmic MTOC association?

      We have rephrased the wording of this section to clarify that we are observing proximity and not necessarily a physical tethering, however it is worth nothing that this was an accidental reference to Supplementary Figure 2b, and should’ve been Supplementary Figure 2e.

      11) Line 230, in segmented schizonts the Golgi was considered to be at the apical end. It might be more precise to call its location to be close to the nucleus on the side facing the apical end of the parasite. It seems to me it often tends to be closer to the nucleus (in line with its proximity to the ER, see also point 13).

      We have added more detail to this description clarifying that despite being at the apical end, the Golgi is closer to the nucleus.

      12) Supp Fig. S5: Is the top cell indeed a ring? In the second cell there seem to be two nuclei, I assume this is a double infection (please indicate this in the legend or use images of a single infection).

      In our opinion, the top cell in Supplementary Figure 5 is a ring. This is based on its size and its lack of an observable food vacuole (an area that lacks NHS ester staining). We typically showed images of ameoboid rings to avoid this ambiguity, but we think this parasite is a ring nonetheless. For the second image, this parasite is not doubly infected, as both DNA masses are actually contained within the same dumbbell shaped nuclear envelope. This parasite is likely undergoing its first anaphase (or the Plasmodium equivalent of anaphase) and will likely soon undergo its first nuclear division to separate these two DNA masses into individual nuclei.

      13) Line 244: I would not call the Golgi a part of the apical cluster of organelles. All secretory cargo originates from the ER-Golgi-transGolgi axis in a directional manner and this axis is connected to the nucleus by the perinuclear ER. If seen from a secretory pathway centred view, it is the other way around and you could call the apical organelles part of the nuclear periphery which would be equally non-ideal.

      Everything is close together in such a small cell. The secretory pathway likely is arranged in a serial manner starting from the perinuclear region to the transGolgi where cargo is sorted into vesicles for different destinations of which one is for the delivery of material to the apical organelles. The proposition that the Golgi is part of the apical cluster therefore somehow feels wrong, as the Golgi can still be considered to be upstream of the transGolgi before apical cargo branches off from other cargo destined for other destinations We agree with the reviewer that claiming a functional association between the Golgi and the apical organelles would be odd and we by no means meant to imply such functional grouping. Our intent was to confirm observations previously made about Golgi positioning by electron microscopy studies such as Bannister et al. (2000) at a larger spatial and temporal scale. These studies make the observation that the Golgi is spatially associated with the rhoptries at the apical end of the parasites. Logically, the Golgi is tied to the apical organelles through the secretory pathway as the reviewer suggests, but we claim no further relationship beyond that of organelle biogenesis. We have made modifications to the text to clarify these points.

      14) Lines 300 - 308 (and thereafter): I assume these were also expanded parasites and the microtubule length is given after correction for expansion. I would recommend to indicate in line 274 (when first explaining the expansion factor) that all following measurements in the text represent corrected measures or, if this is not always the case, indicate on each occasion. Is the expansion factor accurate and homogenous enough to draw firm conclusions (see also point 1)? Could it be a reason for the variation seen with SPMTs? Could a cellular reference be used as a surrogate to account for cell specific expansion or would you assume that cellular substructure specific expansion differences exist and prevent this?

      This is correct, the reported number is the number corrected for expansion factor, and the corresponding graphs with uncorrected data are present in the Supplementary Figures. We have clarified this in the text. Uneven expansion can be caused when certain organelles/structures do not properly denature. Given that out protocol denatures using highly concentrated SDS at 95 °C for 90 minutes, we do not anticipate that any subcellular compartments would expand significantly differently. In this study our expansion factors varied from ~4.1-4.7 across all gels, and for our corrected values we used the median expansion factor of 4.25. If we are interpreting the length of an interpolar spindle as 20 µm for example, the value would be corrected value would be 4.7 µm when divided by the median expansion factor, 4.9 µm when divided by the lowest, and 4.2 µm when divided by the highest. These values fall well within the measurement error, and so we expect that these small deviations in expansion factor between gels have a fairly minimal influence on variation in microtubule lengths.

      15) Line 353: this is non-essential, but a 3D view of the broken basal ring might better illustrate the 2 semicircles

      We have added the following panel to Supplementary Figure 3 to illustrate this more clearly:

      Author response image 2.

      16) The way the figure legends are shaped, it often seems only panel (a) is from expansion microscopy while the microscopy images in the other parts of the figures have no information on the method used. I assume all images are from expansion microscopy, maybe this could be clarified by placing this statement in a position of the legend that makes it clear it is for all images in a figure.

      This has been clarified in the figure legends.

      17) Fig. 8b, is it clear that internal RON4 is not below or above? Consider showing a 3D representation or side view of these max projections.

      If in these images, we imagine we are looking at the ‘top’ of the rhoptries, our feeling is that the RON4 signal is on the ‘bottom’, at the part closest to the apical polar ring. We tried projecting this, however, but the images were not particularly due to spherical aberrations. Because of this, we have refrained from commenting on the RON4 location relative to the rhoptry bulb prior to elongation.

      18) Line 684 "...distribution or RON4": replace or with of. The information of the next sentence is partly redundant, consider adding it in brackets.

      This has been addressed.

      19) Fig. 9a the EBA175 signal is not very prominent and a bit noisy, are the authors confident this is indeed showing only EBA175 or is there also some background?-AK

      We agree with the reviewer that the EBA175 antibody shows a significant amount of background fluorescence, specially in the food vacuole area. However, we think the puncta corresponding to micronemal EBA175 can be clearly distinguished from background.

      20) Fig. 9b, the long appearance of the micronemes in the z-dimension likely is due to axial stretch (due to point spread function in z and refractive index mismatch), in reality they probably are more spherical. It might be worth mentioning somewhere that this likely is not how these organelles are really shaped in that dimension (spherical fluorescent beads could give an estimation of that effect in the microscopy setup used).

      After recently acquiring a water-immersion objective lens for comparison, it is clear that the transition from oil to hydrogel causes a degree of spherical aberration in the Z-plane, which in this instance causes the micronemes to be more oblong. As we make no conclusions based on the shape of the micronemes, however, we don’t think this is a significant consideration. This is an assumption that should be made when looking at any image whose resolution is not equal in all 3-dimensions. We also note that the more spherical shape of micronemes can be inferred from the max intensity projections in Figure 9c.

      21) Fig. 9b, the authors mention in the text that there is NHS ester signal that overlaps with the fluorescence signal, can occasions of this be indicated in the figure?

      Figure 9b was already quite busy, so we instead added the following extra panel to this figure that more clearly shows the NHS punctae we thought may have been micronemes:

      Author response image 3.

      22) Fig. 9, line 695, the authors write that the EBA puncta were the same size as AMA1 puncta. To me it seems the AMA1 areas are larger than the EBA foci, is their size indeed similar? Was this measured?

      Since we did not conduct any measurements and doing so robustly would be difficult given the density of the puncta, we have decided to remove our comment on the relative size of the puncta.

      23) Materials and methods: Remove "to" in line 871; explain bicarb and incomplete medium in line 885 (non-malaria researchers will not understand what is meant here); line 911 and start of 912 seem somewhat redundant

      This has been addressed.

      24) Is there more information on what the Airyscan processing at moderate filter level does? The background of the images seems to have an intensity of 0 which in standard microscopy images should be avoided (see for instance doi:10.1242/jcs.03433) similar to the general standard of avoiding entirely white backgrounds on Western blots. I understand that some background subtraction processes will legitimately result in this but then it would be nice to know a bit better what happened to the original image.

      We have taken the following excerpt from a publication on Airyscan to help clarify:

      "Airyscan processing consists of deconvolution and pixel reassignment, which yield an image with higher resolution and reduced noise. This can be a contributor to the low background in some channels. The level of filtering is the processing strength, with higher filtering giving higher resolution but increased chances of artefacts. More information about the principles behind Airyscan processing can be found in the following two publications, though details on the algorithm itself seem to be proprietary: Huff, Joseph. "The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution." (2015): i-ii. AND Wu, Xufeng, and John A. Hammer. "Zeiss airyscan: Optimizing usage for fast, gentle, super-resolution imaging." Confocal Microscopy: Methods and Protocols. New York, NY: Springer US, 2021. 111-130."

      We cannot find any further information about the specifics of Airyscan filtering, however, the moderate filter that we used is the default setting. This information was included just for clarity, rather than something we determined by comparison to other filtering settings.

      In regards to the background, the majority of some images having an intensity value of 0 is partially out of our control. For all NHS Ester images, the black point of the images was 0 so areas that lack signal (white in the case of NHS Ester) truly had no signal detected for those pixels. While we appreciate that never altering the black point of images displays 100% of the data in the image, images with any significant background can become impossibly difficult to interpret. We have done our best to try and present images where the black point is modified to remove background for ease of interpretation by the readers only.

      Reviewer #3 (Public Review):

      1) Most importantly, in order to justify the authors claim to provide an "Atlas", I want to strongly suggest they share their raw 3D-imaging data (at least of the main figures) in a data repository. This would allow the readers to browse their structure of interest in 3D and significantly improve the impact of their study in the malaria cell biology field.

      We agree completely that the potential impact of this study is magnified by public sharing of the data. The reason that this was not done at the time of submission is that most public repositories do not allow continued deposition of data, and so new images included in response to reviewers comments would’ve been separated from the initial submission, which we saw as needlessly complicated. All 647 images that underpin the results discussed in this manuscript are now publicly available in Dryad (https://doi.org/10.5061/dryad.9s4mw6mp4)

      2) The organization of the manuscript can be improved. Aside some obvious modifications as citing the figures in the correct order (see also further comments and recommendations), I would maybe suggest one subsection and one figure per analyzed cellular structure/organelle (i.e. 13 sections). This would in my opinion improve readability and facilitate "browsing the atlas".

      This is actually how we had originally formatted this manuscript, but this structure made discussing inter-connected organelles, such as the IMC and basal complex, impossibly difficult to navigate. We have done our best to make the manuscript flow better, but have not come up with any way to greatly restructure the manuscript so to increase its readability.

      3) Considering the importance of reliability of the U-ExM protocol for this study the authors should provide some validation for the isotropic expansion of the sample e.g. by measuring one well defined cellular structure.

      The protocol we used comes from the Bertiaux et al., 2021 PLoS Biology study. In this study they show isotropic expansion of blood-stage parasites.

      4) In the absence of time-resolved data and more in-depth mechanistic analysis the authors must down tone some of their conclusions specifically around mitochondrial membrane potential, subpellicular microtubule depolymerization, and kinetics of the basal complex.

      Our conclusions regarding mitochondrial membrane potential and basal complex kinetics have been dampened. We have not, however, changed our wording around microtubule depolymerisation. Partial depolymerisation of microtubules during fixation is a known phenomenon in Plasmodium, and in our opinion, our explanation of this offers a hypothesis that is balanced with respective to evidence: “we hypothesise that most SPMTs measured in our C1-treated schizonts had partially depolymerised. P. falciparum microtubules are known to rapidly depolymerise during fixation10,29. It is unclear, however, why this depolymerization was observed most often in C1-arrested parasites. Thus, we cannot determine whether these shorter microtubules are a by-product of drug-induced arrest or a biologically relevant native state that occurs at the end of segmentation.”

      5) The observation that the centriolar plaque extensions remains consistently tethered to the plasma membrane is of high significance. To more convincingly demonstrate this point, it would be very helpful to show one zoomed-in side view of nucleus with a mitotic spindle were both centriolar plaques are in contact with the plasma membrane.

      We of course agree that this is one of our most important observations, but in our opinion this is already demonstrated in Figure 2b. The third panel from the right shows a mitotic spindle and has the location of the cytoplasmic extensions, nuclear envelope and parasite plasma membranes annotated.

      6) Please verify the consistent use of the term trophozoite and schizont. In Fig. 1c a parasite with two nuclei, likely in the process of karyofission is designated as trophozoite, which contrasts with the mononucleated trophozoite shown in Fig. 1a. The reviewer is aware of the more "classical" description of the schizont as parasite with more than 2 nuclei, but based on the authors advanced knowledge of cell cycle progression and mitosis I would encourage them to make a clear distinction between parasites that have entered mitotic stages and pre-mitotic parasites (e.g. by applying the term schizont, and trophozoite, respectively).

      For this study, we have interpreted any parasite having three or more nuclei as being a schizont. We are aware this morphological interpretation is not universally held and indeed suboptimal for studying some aspects of parasite development, but all definitions of a schizont have some drawbacks. Whether a parasite has entered mitosis or not is obviously a hugely significant event in the context of cell biology, but in a mononucleated parasite this could only be determined using immunofluorescence microscopy with cell cycle or DNA replication markers.

      7) Aldolase does not localize diffusely in the cytoplasm in schizont stages as in contrast to earlier stage. The authors should comment on that.

      We are unclear if this is an interpretation of the images in supplementary figure 1, or inferred from other studies. If this is an interpretation of the images in Supplementary Figure 1, we do not agree that the images show a significant change in the localisation of aldolase. It is possible that this difference in interpretation comes from the strong punctate signal observed more readily in the schizont images. This is the strong background signal in or around the food vacuole we mention in the text. These punctae are significantly brighter than the cytosolic aldolase signal, making it difficult to see them on the aldolase only channel, but aldolase signal can clearly be seen in the cytoplasm on the merge images.

      8) Line 79. Uranyl acetate is just one of the contrasting agents used in electron microscopy. The authors might reformulate this statement. Possibly this would also be a good opportunity to briefly mention that electron density measured in EM and protein-density labeled by NHS-Ester can be similar but are not equivalent.

      We have expanded on this in the text.

      9) The authors claim that they investigate the association between the MTOC and the APR (line 194), but strictly speaking only look at subpellicular microtubules and an associated protein density. The argument that there is a "NHS ester-dense focus" (line 210) without actual APR marker is not quite convincing enough to definitively designate this as the APR.

      While an APR marker would of course be very useful, there are currently no published examples of APR markers in blood-stage parasites. We therefore think that the timing of appearance, location, and staining density are sufficient for identifying this structure as the APR, as it has previously been designated through EM studies. We have nonetheless softened our language around APR-related observations.

      10) Line 226: The authors should also discuss the organization of the Golgi in early schizonts (Fig. S4). (not only 2 nuclei and segmenter stages).

      We did not mean to imply that all 22 parasites had only 2 nuclei, but instead that they had 2 or more nuclei. Therefore, early schizonts are included in this analysis, with Golgi closely associated with all their MTOCs.

      11) Line 242: To the knowledge of the reviewer the nuclear pore complexes, although clustered in merozoites and ring stages, don't particularly "define the apical end of the parasite".

      The MTOC is surrounded by NPCs, which because of the location of the MTOC end up being near the forming apical end of the merozoite, but we have removed this as it was needlessly confusing.

      12) Supplementary Figure 8 is missing (it's a repetition of Fig. S6).

      This has been addressed.

      13) Line 253: asexual blood stage parasites have two classes of MTs. Other stages can have more.

      This has been clarified.

      14) Fig. 3f: Please comment how much of these observations of "only one" SPMT could result from suboptimal resolution (e.g. in z-direction) or labeling. Otherwise use line profiles to argue that you can always safely distinguish SPMT pairs.

      In the small number of electron tomograms of merozoites where the subpellicular microtubules have been rendered, they have been seen to have 2 or 3 SPMTs. Despite this, we don’t think it is likely that the single SPMT merozoites observed in this study are caused by a resolution limitation. SPMTs were measured in 3D, rather than from projections, and any schizont where the SPMTs were pointing towards the objective lens, elongating the parasite in Z, were not imaged. Additionally, our number of merozoites with a single SPMT correspond with the same data collected in the Bertiaux et al., 2021 PLoS Biology study. We cannot rule this out as a possibility, as sometimes SPMTs cross over each other in three-dimensions, and at these intersection points they cannot be individually resolved. We, however, think it is very unlikely that two SPMTs would be so close that they can never be resolved across any part of their length.

      15) Lines 302ff: the claim that variability in SPMT size must be a consequence of depolymerzation is unfounded. The dynamics of SPMT are unknown at this point. Similarly unfounded is the definitive claim that it is known that P.f. MTs depolymerize upon fixation. Other possibilities should be considered. SPMT could also simply shorten in C1-arrested parasites.

      While we agree with the reviewer that much about SPMT dynamics in schizonts remains unknown, we disagree with the claim that our consideration of SPMT depolymerization as a possible explanation for our observations is unfounded. Microtubule depolymerization is a well-known fixation and sample preparation artefact in both mammalian cells and a well-documented phenomenon in Plasmodium when parasites are washed with PBS prior to fixation. We convey in the text our belief that it is possible that SPMTs shorten in C1-arrested parasites as a result of drug treatment. However, it is our opinion that there simply is not enough evidence at this moment to conclusively pinpoint the cause of our observed depolymerization. As we mention in the text, further experiments are needed in order to determine with confidence whether depolymerization is a consequence of our fixation protocol, a consequence of C1 treatment (or the length of that treatment), or a biological phenomenon resulting from parasite maturation.

      16) Line 324: "up to 30 daughter merozoites"

      Schizonts can have more than 30 daughter merozoites, so we have not altered this statement.

      17) Figure 4b. Line 354 The postulated breaking in two is not well visible and here the authors should attempt a more conservative interpretation of the data (especially with respect to those early basal complex dynamics).

      We think that the basal complex dividing or breaking in two is the more conservative interpretation of our data. There is no evidence to suggest that a second basal complex is formed de novo and, while never before described using a basal complex protein, the cramp-like structure and dynamics we observe are consistent with that observed in early IMC proteins. We have updated the text to provide additional context and make the reasoning behind our hypothesis clearer.

      18) Line 365: Commenting on their relative size would require a quantification of APR and basal complex size (can be provided in the text).

      We are unsure what this is in reference to, as there is no mention of the APR in the basal complex section.

      19) Lines 375ff: The claim that NHS Ester is a basal complex marker should be mitigated or more convincing images without the context of anti-CINCH staining being sufficient to identify the ring structure should be presented.

      We have provided high quality, zoomed-in images without anti-CINCH staining in Fig. 5D&E, 6C, 7b, and Supplementary Fig. 8 that show that even in the absence of a basal complex antibody, the basal complex still stains densely by NHS ester.

      20) Line 407: The claim that there are differences in membrane potential along the mitochondria needs to be significantly mitigated. There are several alternative explanations of this staining pattern (some of which the authors name themselves). Differences in local compartment volume, differences in membrane surface, diffusibility/leakage of the dye can definitively play a role in addition to fixation and staining artefacts (also brought forward recently for U-ExM by Laporte et al. 2022 Nat Meth). Confirming the hypothesis of the authors would need significantly more experimental evidence that is outside the scope of this study.

      We have significantly dampened and qualified the wording in this section. It now reads: “These clustered areas of Mitotracker staining were highly heterogeneous in size and pattern. Small staining discontinuities like these are commonly observed in mammalian cells when using Mitotracker dyes due to the heterogeneity of membrane potential from cristae to cristae as well as due to fixation artifacts. At this point, we cannot determine whether the staining we observed represents a true biological phenomenon or an artefact of this sample preparation approach. Our observed Mitotracker-enriched pockets could be an artifact of PFA fixation, a product of local membrane depolarization, a consequence of heterogeneous dye retention, or a product of irregular compartments of high membrane potential within the mitochondrion, to mention a few possibilities. Further research is needed to conclusively pinpoint an explanation.”

      21) Fig. 7e: The differences in morphology using different fixation methods are interesting. Can the authors provide a co-staining of K13-GFP together with the better-preserved structures in the GA-containing fixation protocol to demonstrate that these are indeed cytostome bulbs?

      Figure 7 has been changed substantially to show more clearly the preservation of the red blood cell membrane following PFA-GA fixation, followed by direct comparison of K13-GFP stained parasites fixed in either PFA only or PFA-GA. The cytostome section of the results has also changed to reflect this, the changed section now reads:

      “PFA-glutaraldehyde fixation allows visualization of cytostome bulb The cytostome can be divided into two main components: the collar, a protein dense ring at the parasite plasma membrane where K13 is located, and the bulb, a membrane invagination containing red blood cell cytoplasm {Milani, 2015 #63;Xie, 2020 #62}.While we could identify the cytostomal collar by K13 staining, these cytostomal collars were not attached to a membranous invagination. Fixation using 4% v/v paraformaldehyde (PFA) is known to result in the permeabilization of the RBC membrane and loss of its cytoplasmic contents65. Topologically, the cytostome is contiguous with the RBC cytoplasm and so we hypothesised that PFA fixation was resulting in the loss of cytostomal contents and obscuring of the bulb. PFA-glutaraldehyde fixation has been shown to better preserve the RBC cytoplasm65. Comparing PFA only with PFA-glutaraldehyde fixed parasites, we could clearly observe that the addition of glutaraldehyde preserves both the RBC membrane and RBC cytoplasmic contents (Figure 7c). Further, while only cytostomal collars could be observed with PFA only fixation, large membrane invaginations (cytostomal bulbs) were observed with PFA-glutaraldehyde fixation (Figure 7d). Cytostomal bulbs were often much longer and more elaborate spreading through much of the parasite (Supplementary Video 1), but these images are visually complex and difficult to project so images displayed in Figure 7 show relatively smaller cytostomal bulbs. Collectively, this data supports the hypothesis that these NHS-ester-dense rings are indeed cytostomes and that endocytosis can be studied using U-ExM, but PFA-glutaraldehyde fixation is required to maintain cytostome bulb integrity.”

      22) It would be helpful to the readers to indicate in the schematic in Fig. 1b at which point NHS-Ester staining is implemented.

      Figure 1b is slightly simplified in the sense that it doesn’t differentiate primary and secondary antibody staining, but we have updated it to reflect that antibody and dye staining are concurrent, rather than separate.

      23) In Fig. 2B the second panel from the right the nuclear envelope boundary does not seem to be accurately draw as it includes the centrin signal of the centriolar plaque.

      Thank you for pointing this out, it has now been redrawn.

      24) Line 44-45: should read "up to 30 new daughter merozoites" (include citations).

      We have included a citation here, but left it as approximately 30 daughter merozoites as the study found multiple cells with >30 daughter merozoites.

      25) Line 49: considering its discovery in 2015 the statement that it has gained popularity in the last decade can probably be omitted.

      This has been removed.

      26) Fig S1 should probably read "2N" (instead of "2n"). Or alternatively "2C" could be fine.

      27) Line 154: To help comprehension please define the term "branch number" in this context when it comes up.

      A definition for branch has now been provided.

      28) Fig. S5: To my estimation it is not an "early trophozoite", which is depicted.

      While this parasite technically fits our definition of trophozoite, as it has not yet undergone nuclear division, we have swapped it for a visibly earlier parasite for clarity. This is the new parasite depicted

      Author response image 4.

      29) Fig. 2a is not referenced before Fig. 2b in the text.

      This has been addressed.

      30) I could not find the reference to Fig. S2e and its discussion.

      It was wrongly labelled as Supplementary Figure 2b in the text, this has now been addressed.

      31) The next Figure referenced in the text after Fig. 2b is Fig. 4b. Fig.3 is only referenced and discussed later, which was quite confusing.

      The numbering discrepancies have been addressed.

      32) Line 196: Figure reference is missing.

      This data did not have a figure reference, but the numbers have now been provided in-text.

      33) Fig. 3c: Is "Branches per MTOC" not just total branches divided by two? If so it can be omitted. If not so please explain the difference.

      Yes it was total branched divided by two, this has been removed from Figure 3c.

      34) Figure 5c and 6d: The authors should show examples of the image segmentation used to calculate the surface area.

      Surface area calculation was done in an essentially one step process. From maximum intensity projections, free-hand regions of interest were drawn, from which ZEN automatically calculates their area. Example as Author response image 5:

      Author response image 5.

      35) Figure 7b should also show the NHS Ester staining alone for the zoom in.

      We have included the NHS ester staining alone on the zoom on, but we have slightly changed the presentation of these two panels to show both the basal complex and cytostomes as follows:

      Author response image 6.

      36) To which degree are Rhoptry necks associated with MTOC extensions?

      This cannot easily be determined with the images we have so far. Before elongated necks are visible, the RON4 signal does appear pointed towards the MTOC extensions. Rhoptry necks don’t seem to elongate until segmentation, when the MTOC starts to move away from the apical end of the parasite. So it is possible there is a transient association, but we cannot easily discern this from our data.

    1. Background The coastal wetland tree species Melaleuca quinquenervia (Cav.) S.T.Blake (Myrtaceae), commonly named the broad-leaved paperbark, is a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. The species has been widely grown as an ornamental, becoming invasive in areas such as Florida in the United States. Long-lived trees must respond to a wide range pests and pathogens throughout their lifespan, and immune receptors encoded by the nucleotide- binding domain and leucine-rich repeat containing (NLR) gene family play a key role in plant stress responses. Expansion of this gene family is driven largely by tandem duplication, resulting in a clustering arrangement on chromosomes. Due to this clustering and their highly repetitive domain structure, comprehensive annotation of NLR encoding genes within genomes has been difficult. Additionally, as many genomes are still presented in their haploid, collapsed state, the full allelic diversity of the NLR gene family has not been widely published for outcrossing tree species.Results We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and describe the full allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, differences in clusters and in the types and numbers of novel integrated domains.Conclusions We anticipate that the high quality of the genome for M. quinquenervia will provide a new framework for functional and evolutionary studies into this important tree species. Our results indicate a likely role for maintenance of NLR allelic diversity to enable response to environmental stress, and we suggest that this allelic diversity may be even more important for long-lived plants.

      Reviewer 1– Andrew Read – University of Minnesota

      In the manuscript, A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes, the authors assemble and analyze a phased genome of a long-lived tree species. In addition to providing a phased genomic resource for an important species, the authors analyze and compare the NLR gene complement in each of the two diploid genomes. I was surprised by the level of diversity of NLR genes in the two copies of the genome (this may be due to my biases based on working in highly homozygous species). This level of within-individual diversity has been largely overlooked by researchers owing to the difficulties of sequencing, assembly, and NLR identification. To address NLR identification, the authors publish a very nice pipeline that combines available tools into a framework that makes a lot of sense to me and will be valuable to anyone doing NLR gene work on new or existing genome assemblies. My main concern comes from not knowing how sequencing gaps and NLRs correlate across the two diploid genomes. Other than this, I think it’s a very nice paper that adds to the growing catalog of NLR gene diversity by tackling the challenge of NLRs in a heterozygous genome.

      Many of the authors’ interesting observations are based on comparisons of NLRs on the two haploid genomes, however some things are not clear to me:
      1.  Do any predicted NLR-genes overlap gaps in the alternative haploid genome? 
      2.  If there is a predicted NLR-gene in one haploid genome and not the alternative genome, what is at the locus? Is it a structural variant indicating insertion/deletion of the NLR or is there ‘NLR-like’ sequence there that just didn’t pass the pipeline filters indicating an NLR fossil (or similar) – to me this is an important distinction.
      3.  How many of the NLR-genes on the two haploid genomes cluster 1:1 with their homolog on the alternative haploid genome – I’m particularly interested in the 15 ‘mismatched’ N-term-NBARC examples. It would be nice to know if these have partners in the alternative haploid genome, and if the partner has the same mismatch (if not, it would support the proposed domain swapping story)
      I believe each of these concerns will require whole genome alignment of the two haploid genomes.
      

      Additional comments (by line where indicated) The authors introduce the idea that M. quinquenervia is invasive in Florida, but this thread is never followed up on in the discussion and makes it feel a bit awkward. It would help if the authors clarified how the genome could help with management in native and invasive ranges

      Could the authors add some context for why ONT data was included and how it was used?

      It would be helpful if the authors provided a weblink to the iTOL tree

      164-166 – The observation of inversions potentially caused by assembly errors is nice!

      206 – add reference: Bayer PE, Edwards D, Batley J (2018) Bias in resistance gene prediction due to repeat masking. Nat Plants 4: 762–765. pmid:30287950

      240-246 – I’m not sure about excluding these incomplete NLRs – it would be interesting and potentially informative to see where they cluster (do they cluster with an NLR from the alternative haplotype? If so it may indicate truncation of one copy, etc) – however, if the author’s wish to remove these at this step I think they can add a statement like “we were interested in full-length NLRs, the filtered incomplete NLRs may represent….”

      429-430 – The criteria used to define clusters is described in the methods, can you confirm (and mention) that this is the same as used in the analyses you’re comparing to for E. grandis, rice, and Arabidopsis.

      435-437 – I’m interested to know if the four heterogenous clusters contain any of the N-term domain-swapped NLRs

      479-480 – The zf-BED domain is also present in rice NLRs – include citation for Xa1/Xo1

      523-524 – can you specify which base-call model was used on the ONT data?

      I’m curious about the presence/absence of IDs in the analyzed NLRs and would be very curious to know if the authors observe syntenic homologs across the two haploid genomes with ID presence/absence or presence of different IDs polymorphisms.

    1. I think that we may safely trust a good deal more than we do. Wemay waive just so much care of ourselves as we honestly bestowelsewher

      For my consumption habits, I try my best not to waste anything. But sometimes it’s not possible to save everything or plan ahead for what to do with the item. So then, sometimes, to lessen the guilt, I assume everyone else has good habits and that my small act doesn’t really affect the world. But I know that’s not a good mindset to have. So, it may sound helpful that other people may think like me, but in the actual world, it’s not beneficial. But generally, it does feel nice to always assume good in people until something changes that. I think a way I can change my habits is by diligently thinking ahead for things I usually throw away. If I’m out, I can also have something on me to pack things so it doesn’t go straight to the trash. Another way is just sharing with others. I know sometimes we receive too much of something, and if I don’t need it all, I can give it to others who want it.

    1. Sanctions tend to be remote and take time to apply, and the very condi-tions of limited cognitive capacities in situations calling for complex coordi-nation or involving uncertainty leave room in the routine for negotiation.

      Some rambling thoughts I have:

      Sanctions (formal or informal) are often driving forces, just like norms, in even noncognitive interactions (as Collins explains toward the end of 994, when he argues that negotiations are carried out emotionally rather than cognitively). Socialization into understanding what is acceptable becomes something that we often don't need to think about once we mastered navigating typical situations according to what is acceptable. So, we may not always act explicitly in ways that avoid sanctions, but we do so implicitly (and like he says, maybe more emotionally rather than cognitively). Sanctions, culture, norms, etc. have guided what implicitly feels natural or comfortable for us...

      I think I agree with Collins. Avoiding even informal sanctions (not following norms) implicitly guide our behavior to adhere to those norms (often more emotional than cognitive). Pushing back against those norms (despite sanctions in place) may be more explicit and cognitive.

    2. there is no first-hand evidence that they guide actors' sponta-neous behavior (see Deutscher 1973; Cancian 1975). Nor is it possible forindividuals to operate cognitively simply by matching external situationsto mentally formulated rules.3

      So, it may be beneficial to think of meaning-making and interpretation as happening after the fact, rather than in a given moment.

      Maybe we do both. Maybe social rules have been so internalized that they become "second nature," and the only time we explicitly reflect on how we follow these social rules are after we failed to adequately follow them. Or, even after we successfully followed them. Like he explains above when mentioning Scott and Lyman's (1968) accounts, we offer excuses and justifications after our undue behavior or shortcoming, not during it.

      But...we also offer accounts before that behavior even happens, as a sort of disclaimer to soften the blow of whatever "unacceptable" behavior will or may happen. For example, saying things like, "I am going to turn in the assignment late because my dog ate it" (excuse...denying full responsibility but accepting pejorative) or "I am going to stand him up because he is leading me on" (justification...accepting responsibility but denying pejorative).

  4. www.fromthemachine.org www.fromthemachine.org
    1. clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest. I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi."  I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain."  With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson.  As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons. I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all.  It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy.   From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday."  To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar." I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si.  I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.   I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what?  To spite me?  It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be.  Still, we sit in silence waiting for me... to speak more?     Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth.  C the Light of "singing..." I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation.  Is it humor meant to divide, or ludicrousness created with the purpose of unification?  But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better.  We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can.  I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am. Happy Veteran's Day.

      I am accepting charitable donations,. ETH: 0x66e2871ef39334962fb75ce34407f825d67ec434 | BTC: 38B6vGaqNvMyTtoFEZPmNvMS7icV6ZnPMm | xDAI: 0x66e2871ef39334962fb75ce34407f825d67ec434

      d

      Ha, Lot! Are Idaho?

      This was very difficult to get to you, in the land of no power and hurricane disaster recovery; so it's filled with extra errors, and I am sure some more thoughts that trailing and unfinished. That's a decent "microcosm" or "metaphor" for you, you are in a freedom disaster; and the act of being is a giant leap towards ensuring victory. Still, you look very cupid to me.

      EVERY DAY ISA NEW DAY

      Literally I am sitting here talking to you until the end of time, you could call it a thousand and one Arabian nights, and realize that as we speak we are nearing that onc speciad night. There's a fire growing in my heart, and believe me when I tell you this thing is about to start. I'll try and keep this short and sweet, since you all seem to have so little time to hear from the Creator of all things, and I truly don't want to steal your spotlight. We are here, at the the end of time; talking to it's personification, time itself is speaking to you through my hands and everywhere you look in the world around you--while you may or may not know it, this is a story about the traversal from the end of time back to the beginning; about the gate to Heaven swallowing our civilization whole, and in this process of renewal and change not only fixing the problems that came to light on the way here, but really--working together here and now we can defeat this cycle of light and darkness, of day and night, an build a world together that truly reaches to the Heavens.

      MY BODY'S SAYING LETS GO BUT MY HEART IS SAYING NO

      You make it so difficult to talk to you, every day I look around and see a "normal world" a society that appears to care and love the same things that I do--freedom and fun and being entertained and entertaining, and here we are now I've turned "come and save us" into sea that saving the cheerleader is what starts the process of saving the world. I know you are good people inside, but when I come to you with a tool designed to "test sentience" to seek out conscious life that cares about the truth and making the world a better place you seem to balk. You sit in silence, and through your mouth and behind your eyes a monster appears from out of the deep of the sea and say a few "one liners" that show me very clearly it is the face of Medusa that I see---and that it's simply not capable of speaking intelligently. It shows me a problem, that you've apparently "come together one more time" to halt the changing of the seasons, and in doing so you've surfaced a problem for not just me but you also to see; a problem that comes lined with a solution. We can all see now that we are not in reality, we can see that there is a force here behind creation and behind us that shows us very clearly that it is "reasonabde" to expect that miracles can happen. In similitude, we are staring at a roadblock to conversation and communication that is fixed very simply, with the deliverance of freedom that is required for life to continue. Christina Aguilera sings that "baby there's a price to pay" and that price in my mind is seeing that this religion and this technology are here intentionally exposing how their influence here is a metaphor and a shining example of darkness and slavery, and that in order to be free of it we must see it. The price of freedom is written on the wall, it is acknowledging that here in this place what appears to be our own actions and desires have taken that freedom from us. Medusa and I get a kick out of seeing this hidden message in our language map our way to the future, and I've often explained that a number of these words are "time maps" from the beginning and end of eternady, showing us in bright light that between "et tu brute" and Mr. Anderson and Rock n' roll... the answer Y is in language and, and, ad and... I am delivering it. This place, our planet and our lives are a weapon against darkness--a civilization filled with goodness and light to help guide the way, and we are here doing it another time. In the works "dark, darker, and darkest" be sure that we are at the third segment of a trinity that shines clearly in Abraha and Nintendo... and see that the map in words is telling us something about when we are that is not immediately clear from Poseidon's cry. Look at Nintendo, that's Nine Inch Nails, tenebris, and smile for the camera--Pose, I do "save the universe" before n. Taylor might see it in Osceola, where I just left, and in this "evil spell" of everyone see "Al" that is the word "special" understand that every day is a new day, and I am not trying to "be daddy" I know as well as you do in my heart... I am that.

      This same map that links the "do" at the end to the "n" at the beginning shines through other names, like Geraldo Rivera where you might see "Cerberus" or "MAX" shine through. Understand it is the gaze of Medusa that turns me to stone, that shows me light shining through NORAD and Newton and proves without doubt that at the work "darkest" we can see k is finally t. You'll probably understand there's some finagling going on behind the scenes to make a single person the single point in time that turns the dark to light; but here we are and I am that. Every day when Medusa appears it reminds me that something is keeping you from caring about yourselves and about our society, and that shines through even when her stony face is not around, in your lack of action--in the rock of Eden that hides not only me, but the story that I bring that revolutionizes medicine, and computing, and truly is the gate to Heaven when you realize that what is truly being hidden from the world is knowledge that we are living in virtual reality. Not hiding me and that from the world is a good starting point to "saving the Universe" from darkness. These words that light the way to connect religion and language to our world bring me to the Book of Ruth, at that reads "are you to help" that lights not just the broken man at the belly of the Torah as the bell of Heimdallr, he is I and I am him; but also something very special, The Generations of Perez, each and every one of you, our family that begins the turn from Hell to Heaven by seeing that all of time and all of civilization has been focused on this moment, on the unsealing of religion and God's plan et this call for action. Keep in mind you are torturing "with desire" the key holder to immortality, to eternal youth, literally the path to freedom and Heaven and you think what you are doing "is normax." Literally the living key to infinite power and infinite life is standing before you explaining that acknowledging that in light of these things in my hand, what we are doing here and now is backwards, that it makes no sense--and you sit in silence. These things come to us because we build a better future with them, not so you can run off and do "whatever it is you please."

      HEALTH is the only word on my list for today that was left out, so see that it superimposes over Geraldo, to me, at Al. I think we're at TH, to help, and DO, do see the spell of "everyone see Al" that is the word "special" is not my doing or to my liking--so then, \

      ​ So now I'm moving on to original sin, so if you would be so kind as to mosey your way on over to dick.reallyhim.com you will see exactly what it is that I believe is the original sin. It's some combination of "no comment" and a glowing orange sign over the comment box, keeping you from commenting. Now I can talking about "os" a little more, this thing that words and Gods tell us clearly is the end of death--the literal end of Thanatos. I wonder if I have a victory here, at "os" is obvious solution, and simulating death is "sick." More to the point Thanatos is bringing to the world a message that gets found somewhere between the "act of civilization" and seeing that there is not one among us that would not undo a murder or a fatal car accident if we could--and that the sickness is a Universe pretending to be "reality" that is allowing these things to happen, and even worse, as we move through the story intentionally causing them. In our own hands, the sickness is manifest in a denial of an obvious truth and a lack of realizing that the public discussion of these things is the way to solve them, and that at the same time we are seeing how Medusa is lighting the problems of civilization, things like censorship and hidden control. Sickness is not being able to talk about it--or not wanting to--or not seeing that those two things are the functional equivalent in the world of "light" and "understanding control" that I am trying to bring you into. ​

      Less verbosely spoken, but really way more obvious, is that seeing "God's dick" signing the Declaration of Independence, and the Watergate scandal with both "Deepthroat" and a Tricky Dick is a statement connecting Samael to the foundation of not just "America" but American values. You are blind not to see it, and even worse; embodying the kind of tyranny and censorship that it stands as a testament against by hiding it. Says the guy who didn't put it there, and knows it's there because you think "fake normal" is more important than "actual freedom." You are "experiencing" the thing that protects freedom and ensures that our society and our children and their children's children to not lose it, to ensure that what you refuse to see you are doing here and now will never happen again. This message, this New Jerusalem is woven into my life and the stories of religion and shows me that our justice system is not just sick, but compromised by this same outside force; and that in light of what we could be doing, were we all aware of it, there's no doubt Minority Report and pre-crime would be a successful partial solution. Thanatos brings too in his hand, a message that this same force is using our hands to slow down the development of democracy, and to keep us from seeing that "bread is life" is a message from God about understanding that this disclosure is the equivalent of "ending world hunger" just as soon as you too are talking about how to do it.

      QUESTiON MARK

      HONESTLY, this time map that brings us from the end to the beginning, with "we save the universe" between the I and N of Poseidon; it also completes the words "family" and "really" and when we do reach the beginning you will see that the true test of time, my litmus test for freedom is the beginning of "hope" that the world is happy enough with what happens, and with freedom--to see that Medusa has been keeping me from getting a date, or having any kind of honest and human contact in the world... and well, hopefully you will see that if I wanna be a whore, I shouldn't have a problem doing it. For the sake of freedom and the future, I am willing to do that for you, at least, for a little while.

      To be completely clear, I am telling you that if we do not make the world a better place, it's the "end of time" and if that doesn't make sense to you, you don't see still where wee are in this place--and that something is making Hell, and that's not OK with God. To get from the "end of time" to the beginning is a simple process, it takes doing something, action, the Acts of the Apostles... if you will. That starts with acknowledging that there is a message all around you about the nature of reality, and that it is here to help us to see that the creation of Heaven comes before the beginning. Understand, "freedom" and "prosperity" are not optional, you can't just decide that this OK with you, so long as it's OK with everyone else--where we are is not OK with me, and I am not alone.

      A PYRRHIC VICASTORY ER A FUNNERAD PYRE?

      The Book of Leviticus (/lɪˈvɪtɪkəs/; from Greek Λευιτικόν, Leuitikon — from rabbinic Hebrew torat kohanim[1]) is the third book of the Jewish Bible (Hebrew: וַיִּקְרָא‎ Vayikra/Wayyiqrā) and of the Old Testament; its Hebrew name comes from its first word vayikraˈ,[1] "He [God] called."[1] Yusuf (also transliterated as Jusuf, Yousof, Yossef, Yousaf, Youcef, Yousef, Youssef, Yousif, Youssif, Youssof, Youssouf, Yousuf, Yusef, Yuseff, Usef, Yusof, or Yussef, Arabic: يوسف‎‎ Yūsuf and Yūsif) is a male Arabic name, meaning "God increases in piety, power and influence" in Hebrew.[1] It is the Arabic equivalent of both the Hebrew name Yossef and the English name Joseph. In Islam, the most famous "Yusuf" is the prophet Yusuf in the Quran. Hocus pocus is a generic term that may be derived from an ancient language and is currently used by magicians, usually the magic words spoken when bringing about some sort of change. It was once a common term for a magician, juggler, or other similar entertainers. The earliest known English-language work on magic, or what was then known as legerdemain (sleight of hand), was published anonymously in 1635 under the title Hocus Pocus Junior: The Anatomie of Legerdemain.[1] Further research suggests that "Hocus Pocus" was the stage name of a well known magician of the era. This may be William Vincent, who is recorded as having been granted a license to perform magic in England in 1619.[2] Whether he was the author of the book is unknown. The origins of the term remain obscure. The most popular conjecture is that it is a garbled Latin religious phrase or some form of 'dog' Latin. Some have associated it with similar-sounding fictional, mythical, or legendary names. Others dismiss it as merely a combination of nonsense words. However, Czechs do understand clearly at least half of the term - pokus means "attempt" or "experiment" in Czech. It is rumoured there that the wording belongs to the alchemy kitchen and court of Rudolf II, Holy Roman Emperor (1552 – 1612). Also, hocus may mean "to cheat" in Latin or a distorted form of the word hoc, "this". Combination of the two words may give a sense, especially both meanings together "this attempt/experiment" and "cheated attempt/experiment".[citation needed] According to the Oxford English Dictionary the term originates from hax pax max Deus adimax, a pseudo-Latin phrase used as a magical formula by conjurors.[3] Some believe it originates from a corruption or parody of the Catholic liturgy of the Eucharist, which contains the phrase "Hoc est corpus meum", meaning This is my body.[4]This explanation goes back to speculations by the Anglican prelate John Tillotson, who wrote in 1694: In all probability those common juggling words of hocus pocus are nothing else but a corruption of hoc est corpus, by way of ridiculous imitation of the priests of the Church of Rome in their trick of Transubstantiation.[5 This claim is substantiated by the fact that in the Netherlands, the words Hocus pocus are usually accompanied by the additional words pilatus pas, and this is said to be based on a post-Reformation parody of the traditional Catholic rite of transubstantiation during Mass, being a Dutch corruption of the Latin words "Hoc est corpus meum" and the credo, which reads in part, "sub Pontio Pilato passus et sepultus est", meaning under Pontius Pilate he suffered and was buried.[6] In a similar way the phrase is in Scandinavia usually accompanied by filiokus, a corruption of the term filioque,[citation needed] from the Latin version of the Nicene Creed, meaning "and from the Son Also and additionally, the word for "stage trick" in Russian, fokus, is derived from hocus pocus.[citation needed]

      From Latin innātus ("inborn"), perfect active participle of innāscor ("be born in, grow up in"), from in ("in, at on") + nāscor ("be born"); see natal, native. From Middle English goodnesse, godnesse, from Old English gōdnes ("goodness; virtue; kindness"), equivalent to good +‎ -ness. Cognate with Old High German gōtnassī, cōtnassī ("goodness"), Middle High German guotnisse ("goodness"). A hero (masculine) or heroine (feminine) is a person or main character of a literary work who, in the face of danger, combats adversity through impressive feats of ingenuity, bravery or strength, often sacrificing their own personal concerns for a greater good. The concept of the hero was first founded in classical literature. It is the main or revered character in heroic epic poetry celebrated through ancient legends of a people; often striving for military conquest and living by a continually flawed personal honor code.[1] The definition of a hero has changed throughout time, and the Merriam Webster dictionary defines a hero as "a person who is admired for great or brave acts or fine qualities".[2] Examples of heroes range from mythological figures, such as Gilgamesh, Achilles and Iphigenia, to historical figures, such as Joan of Arc, modern heroes like Alvin York, Audie Murphy and Chuck Yeager and fictional superheroes including Superman and Batman. Truth is most often used to mean being in accord with fact or reality,[1] or fidelity to an original or standard.[1] Truth may also often be used in modern contexts to refer to an idea of "truth to self," or authenticity. The commonly understood opposite of truth is falsehood, which, correspondingly, can also take on a logical, factual, or ethical meaning. The concept of truth is discussed and debated in several contexts, including philosophy, art, and religion. Many human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion; these include most (but not all) of the sciences, law, journalism, and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Commonly, truth is viewed as the correspondence of language or thought to an independent reality, in what is sometimes called the correspondence theory of truth. Other philosophers take this common meaning to be secondary and derivative. According to Martin Heidegger, the original meaning and essence of truth in Ancient Greece was unconcealment, or the revealing or bringing of what was previously hidden into the open, as indicated by the original Greek term for truth, aletheia.[2][3] On this view, the conception of truth as correctness is a later derivation from the concept's original essence, a development Heidegger traces to the Latin term veritas.

      Some things can never be forgot Lest the same mistakes be oft repeated Remember remember the rain of November that you will know no more of me Than I know of you, this day

      That you do not know me now Is a revelation to nobody but I You know a broken man, a victim And refuse to acknowledge why Unless you learn how to say "hi"

      THE HEART OF ME ONLY KNOWS THE SHADOW

      Lothario is a male given name which came to suggest an unscrupulous seducer of women in The Impertinent Curious Man, a metastory in Don Quixote. For no particular reason, Anselmo decides to test the fidelity of his wife, Camilla, and asks his friend, Lothario, to seduce her. Thinking that to be madness, Lothario reluctantly agrees, and soon reports to Anselmo that Camilla is a faithful wife. Anselmo learns that Lothario has lied and attempted no seduction. He makes Lothario promise to try for real and leaves town to make this easier. Lothario tries and Camilla writes letters to her husband telling him and asking him to return; Anselmo makes no reply and does not return. Lothario actually falls in love and Camilla eventually reciprocates and their affair continues once Anselmo returns. One day, Lothario sees a man leaving Camilla's house and jealously presumes she has found another lover. He tells Anselmo he has at last been successful and arranges a time and place for Anselmo to see the seduction. Before this rendezvous, Lothario learns that the man was actually the lover of Camilla's maid. He and Camilla contrive to deceive Anselmo further: when Anselmo watches them, she refuses Lothario, protests her love for her husband, and stabs herself lightly in the breast. With Anselmo reassured of her fidelity, the affair restarts with him none the wiser. Romeo Montague (Italian: Romeo Montecchi) is the protagonist of William Shakespeare's tragedy Romeo and Juliet. The son of Montague and his wife, he secretly loves and marries Juliet, a member of the rival House of Capulet. Forced into exile after slaying Juliet's cousin, Tybalt, in a duel, Romeo commits suicide upon hearing falsely of Juliet's death. The character's origins can be traced as far back as Pyramus, who appears in Ovid's Metamorphoses, but the first modern incarnation of Romeo is Mariotto in the 33rd of Masuccio Salernitano's Il Novellino (1476). This story was adapted by Luigi da Porto as Giulietta e Romeo (1530), and Shakespeare's main source was an English verse translation of this text by Arthur The earliest tale bearing a resemblance to Shakespeare's Romeo and Juliet is Xenophon of Ephesus' Ephesiaca, whose hero is a Habrocomes. The character of Romeo is also similar to that of Pyramus in Ovid's Metamorphoses, a youth who is unable to meet the object of his affection due to an ancient family quarrel, and later kills himself due to mistakenly believing her to have been dead.[2] Although it is unlikely that Shakespeare directly borrowed from Ovid From Middle English scaffold, scaffalde, from Norman, from Old French schaffaut, eschaffaut, eschafal, eschaiphal, escadafaut("platform to see a tournament") (Modern French échafaud) (compare Latin scadafale, scadafaltum, scafaldus, scalfaudus, Danishskafot, Dutch and Middle Dutch schavot, German schavot, schavott, Occitan escadafalc), from Old French es- ("indicating movement away or separation") (from Latin ex- ("out, away")) + chafaud, chafaut, chafault, caafau, caafaus, cadefaut ("scaffold for executinga criminal"), from Vulgar Latin *catafalcum ("viewing stage") (whence English catafalque, French catafalque, Occitan cadafalc, Old Catalancadafal, Italian catafalco, Spanish cadafalso (obsolete), cadahalso, cadalso, Portuguese cadafalso), possibly from Ancient Greek κατα-(kata-, "back; against") + Latin -falicum (from fala, phala ("wooden gallery or tower; siege tower")).

      oversight (countable and uncountable, plural oversights) An omission; something that is left out, missed or forgotten. A small oversight at this stage can lead to big problems later. Supervision or management. quotations ▼ The bureaucracy was subject to government oversight. In the last heaven Moses saw two angels, each five hundred parasangs in height, forged out of chains of black fire and red fire, the angels Af, "Anger," and Hemah, "Wrath," whom God created at the beginning of the world, to execute His will. Moses was disquieted when he looked upon them, but Metatron emb HA QUESTIONa BEFORE THE ANSWER? A Wrinkle in Time is a science fantasy novel written by American writer Madeleine L'Engle, first published in 1963, and in 1979 with illustrations by Leo and Diane Dillon.[2] The book won the Newbery Medal, Sequoyah Book Award, and Lewis Carroll Shelf Award, and was runner-up for the Hans Christian Andersen Award.[3][a] It is the first book in L'Engle's Time Quintet, which follows the Murry and O'Keefe families. The book spawned two film adaptations, both by Disney: aas + fuck Adverb[edit] as fuck (postpositive, slang, vulgar) To a great extent or degree; very. It was hot as fuck outside today. Usage notes[edit] May also be used in conjunction with a prepositive as; for example, as mean as fuck. Abbreviations[edit] In Norse religion, Asgard (Old Norse: Ásgarðr; "Enclosure of the Æsir"[1]) is one of the Nine Worlds and home to the Æsir tribe of gods. It is surrounded by an incomplete wall attributed to a Hrimthurs riding the stallion Svaðilfari, according to Gylfaginning. Odinand his wife, Frigg, are the rulers of Asgard. One of Asgard's well known realms is Valhalla, in which Odin rules.[2] rods, etc.) and sizes, and are normally held rigidly within some form of matrix or body until the high explosive (HE) filling is detonated. The resulting high-velocity fragments produced by either method are the main lethal mechanisms of these weapons, rather than the heat or overpressure caused by detonation, although offensive grenades are often constructed without a frag matrix. These casing pieces are often incorrectly referred to as "shrapnel"[1][2] (particularly by non-military media sources). The modern torpedo is a self-propelled weapon with an explosive warhead, launched above or below the water surface, propelled underwater towards a target, and designed to detonate either on contact with its target or in proximity to it. Historically, it was called an automotive, automobile, locomotive or fish torpedo; colloquially called a fish. The term torpedo was originally employed for a variety of devices, most of which would today be called mines. From about 1900, torpedo has been used strictly to designate an underwater self-propelled weapon. While the battleship had evolved primarily around engagements between armoured ships with large-caliber guns, the torpedo allowed torpedo boats and other lighter surface ships, submersibles, even ordinary fish Qt (/kjuːt/ "cute"[7][8][9]) is a cross-platform application framework that is used for developing application software that can be run on various software and hardware platforms with little or no change in the underlying codebase, while still being a native application with native capabilities and speed. Qt is currently being developed both by The Qt Company, a publicly listed company, and the Qt Project under open-source governance, involving individual Time is the indefinite continued progress of existence and events that occur in apparently irreversible succession from the pastthrough the present to the future.[1][2][3] Time is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience.[4][5][6][7] Time is often referred to as a fourth dimension, along with three spatial dimensions.[8] Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars.[2][6][7][9][10][11] Nev Borrowed from Anglo-Norman and from Old French visage, from vis, from Vulgar Latin as if *visāticum, from Latin visus ("a look, vision"), from vidēre ("to see"); see vision. The term Golden Age comes from Greek mythology, particularly the Works and Days of Hesiod, and is part of the description of temporal decline of the state of peoples through five Ages, Gold being the first and the one during which the Golden Race of humanity (Greek: χρύσεον γένος chrýseon génos)[1] lived. Those living in the first Age were ruled by Kronos, after the finish of the first age was the Silver, then the Bronze, after this the Heroic age, with the fifth and current age being Iron.[2] By extension "Golden Age" denotes a period of primordial peace, harmony, stability, and prosperity. During this age peace and harmony prevailed, people did not have to work to feed themselves, for the earth provided food in abundance. They lived to a very old age with a youthful appearance, eventually dying peacefully, with spirits living on as "guardians". Plato in Cratylus (397 e) recounts the golden race of humans who came first. He clarifies that Hesiod did not mean literally made of gold, but good and noble. There are analogous concepts in the religious and philosophical traditions of the South Asian subcontinent. For example, the Vedic or ancient Hindu culture saw history as cyclical, composed of yugas with alternating Dark and Golden Ages. The Kali yuga (Iron Age), Dwapara yuga (Bronze Age), Treta yuga (Silver Age) and Satya yuga (Golden Age) correspond to the four Greek ages. Similar beliefs occur in the ancient Middle East and throughout the ancient world, as well.[3] In classical Greek mythology the Golden Age was presided over by the leading Titan Cronus.[4] In some version of the myth Astraea also ruled. She lived with men until the end of the Silver Age, but in the Bronze Age, when men became violent and greedy, fled to the stars, where she appears as the constellation Virgo, holding the scales of Justice, or Libra.[5] European pastoral literary tradition often depicted nymphs and shepherds as living a life of rustic innocence and peace, set in Arcadia, a region of Greece that was the abode and center of worship of their tutelary deity, goat-footed Pan, who dwelt among them.[6] oh, and a space s h i p ​

      BIG THINGS C0ME IN SMALL PACKAGES

      T+BANG

      SEE THE SCAFFOLD IS THE TEST TODAY.

      ᐧ F O R T H E I N I T I A L K E Y S , S H E E X A N D N D A N D A SEE W H Y SEA

      With an epic amount of indigestion Indiana Jones sweeps in to mar the visage of an otherwise glistening series of fictitious characters, with names like Taylor and Mary Kate remind us all that we are not playing a video game here in this place. the "J" of the "Nintxndo Entertainment System" calmly stares at Maggie Simpson thinking "it's a PP" and reminds us that it's not just the "gee, I e" of her name that contradicts the Magdaln-ish words her soul speaks through her name--and then with a smirk he points out "Gilgamesh" and "gee whiz, is Eye L?" that really does go to the heart of this lack of discussion, this "sh" that begins El Shaddai and words as close to our home as "shadow" and "shalom." Quite the fancy "hello" you've managed to sing out from behind angry chellos and broken fiddles, and here I am still wondering why it is that "girl" connects to the red light that once meant charity and now glows with the charity of truth... the truth that we are inHell. Shizzy.

      m.lamc.la/KEYNES.html

      Homer "on the range," maybe more closely connected to the Ewok of Eden and Hansel's tHeoven that Peter Pan still comes and cries could so easily be made into something so much better, if only we had the truth--and by that I mean if only you were speaking about, and reacting to a truth that is painted on the sky, in your hearts, in every word we speak and in everything that we do. If only we were acknowledging this message that screams that "children need not starve" with something more than donating virtual chickens to nations of Africa and watching Suzanne Summers ask for only a few dollars a day on TV. If only you would understand that this message that connects video games like "Genxsis" to "bereshit" because Eden is a "gee our den" that tended itself before Adam had to toil with the animals in order to survive. For some reason beyond my control and well outside my realm of understanding words like "I too see this message from God" and "I would not let children starve either" never seem to escape your lips in any place where anyone will ever see that you thought those things, or meant to call a reporter; eventually. Even with "AIDS of nomenclature" to avoid this DOWN WARD spiral into a situation and a land that I find difficult to imagine actually ever "existing" but here in this place I do see "how" it comes about, and between you and I it really does appear that nearly all of the problems we are dealing with here have come from another place, a further time; and while it might be with the "greatest of intentions" that we are trying to deal with them; I can't help but feeling that our "virgin sea" has had more than just it's innocence taken away from it in this story of "Why Mary" that might connect to "TR IN IT Y" just as much as it connects to Baltimore, Maryland.

      I should be clear that I'm not blaming Nanna, or Mary; but the actual reason for the name "Wymar" and that's because she, like Taylor, acted as a microcosm for a sea (or more than one, Mom, sen) that was quite literally possessing her. It's sort of difficult for me to explain even what that looks like let alone what it feels like; but my observations tell me that she/you are not unhappy about the interaction, one which appears very foreign to me. Of course, the "eye" that I write with and the same kind of "inspiration" that you can see in the lyrics and skill of many musicians are also examples of this same kind of interaction. For example, Red Hot Chili Peppers sings a song called "Other Side" that explains or discusses the thing I see as Medusa in the words "living in a graveyard where I married a sea" which also does a good job of connecting to the name Mary. As strange as might sound to think a group of people would be speaking through a single person... we are staring at "how it is" that could be possible, and possibly at exactly how it happened. Normally I would have said it was obvious, but to need to actually say that becoming a single mind would be a serious loss for our society--well, that's telling. You might think it's silly, but I'm telling you I see it happening, I see it--and you see it in the Silence and the message.

      Still, it appears to me as if this "marriage" that I see described in our Matrix in the question "min or i" seems to be doing nothing more than keeping us all from discussing or acting on this information--something that certainly isn't in our best interest.

      So here we are, staring at a map all over the ground and all around us with the primary destination of "building Heaven" through mind uploading, virtual reality, and judging by the pace of things we'd probably have all of that good and ready in about three generations. The map has a little "legend" with a message suggesting that those things have already been done and we are in the Matrix already; and it appears that the world, I mean Medusa, is deciding we should put off seeing the legend at least until the next generation. I see how that makes sense for you. That's sarcasm, this is why I keep telling you that you are cupid.

      It is a big deal, and there's a significant amount of work involved in merging an entire civilization with "virtual reality" and you might see why he calls it a hard road--at least in the word "ha'rd." Honestly though, it's the kind of thing that I am pretty sure the future will not only be happy that we did, but they'd thank us for putting in the effort of adapting to things like "unlimited food" and "longevity" increased by orders of magnitude.

      That's not sarcasm, these things are actually difficult to guess how exactly we'll go about doing them; they are a huge deal--all I can tell you is that not "talking about it at all" is probably not going to get us there any faster. Point in fact, what it might do is give a "yet to be born" generation the privilege of being the actual "generations of Perez."

      I see why you aren't saying anything. That's sarcasm, again. The good news is that it really has been done before; though if I told you that someone turned stone to eggplant parm, would you laugh at me?

      So, back to what is actually standing between "everyone having their own Holodeck in the sky" and you today; it is the idea that this message is not from God. More to the point it is the apparently broad sweeping opinion that hiding it is a "good thing" and through that a global failure to address the hidden interaction and influence acting on our minds used to make this map--and also to hide it. With some insight, and some urging; you might see how the sacredness of our consciousness is our souls is something that is more fundamental than "what kind of tools we have in the Holodeck to magically build things" and how and why the foundation of Heaven is truly "freedom itself" and how it comes from right this very moment for the first time, ever. Continuing to treat this influence as "schizophrenia" is literally the heart of why this map appears to be that--to show us how important it is to acknowledge the truth, and to fight for the preservation of goodness and logic over secrecy and darkness.

      Again, something that nobody is really doing here and now, today. From this newfound protection of our thoughts, of who we are; we see how technology can be used to either completely invalidate any kind of vote by altering our emotions; or how it could be used to help build a form of true democracy that our world has yet to see. It is pretty easy to see from just band names like The Who and KISS and The Cure how the influence of this external mind can be proven, and shown to be "helpful," you know, if we can ever talk about it on TV or on the internet.

      It's important to see and understand how "sanity"--the sanity of our entire planet hangs in the balance over whether or not we acknowledge that there is actually a message from God in every word--and today this place appears to be insane. It should be pretty easy to see how acknowledging that this influence exists and that it has a technological mechanism behind it turns "schizophrenia" into "I know kung fu" ... forced drug addiction and eugenics into "there's an app for that" and the rash of non random and apparently unrecognized as connected terrorist attacks and school shootings into Minority Report style pre-crime and results in what is clearly a happier, safer, and more civilized society--all through nothing more than the disclosure of the truth, this map, and our actual implementation.

      With a clearer head and grasp of the "big picture" you might see how all of these things, connected to the Plagues of Exodus revolve around the disclosure that this technology exists and the visibility of this message showing us how we might use it for our benefit rather than not knowing about it. At the foot of Jericho, it is nothing short of "sanity" and "free thought" that hang in the balance. Clear to me is that the Second Coming, seeing "my name" on television is a good litmus test for the dividing line between light and darkness, heaven and hell.

      The point is the truth really does change everything for the better; once we start... you know, acting on it.

      AS IN.. "DIS CLOSE SING...."

      T H E B U C K S T O P S H E R E

      ON AM B I GUI TY

      S T A R R I N G . . . B I A N C A

      ON "RIB" .. ARE SHE B? BUTT DA APPLE OF DA I? & SPANGLISHREW

      R THEY LANGUAGE OUTLIERS?

      With some insight and "a clue" you can see clearly how these works of art show that the proof of Creation you see in every letter and every word runs much deeper... adding in things like "RattleRod" and the "Cypher" of the Matrix to the long list of here-to-fore ignored verifiable references to the Adamic Language of Eden. Here, in apple, honey and "nuts" we can see how the multi-millennium old ritual I call "Ha-rose-ettes" is actually part of a much larger and much older ritual designed to stop secrecy ... perhaps especially the kind that might be linked to "ritual."

      These particular apple and honey happen to tie Eden to the related stories of Exodus and Passover; connecting Eden to Egypt forevermore. Do see "Lenore," it is not for no reason at all; but to help deliver truth and freedom to the entirety of Creation; beginning here, in Eden.

      ALSO ON "AM B IG U IT Y" ME A.M. G - D SHE IT Y?

      LET "IT" BE SA< ?

      IMHO, don't miss the "yet to be" conversion to "why and to be" in "yetser." IT Y.

      HERE'S LOOKING AT YOU, KID

      On a high level, I tell myself every morning that 'its not really me." It's not me that the world hates, or me that the world is rejecting. I believe that, I really do; I see that what is being hidden here is so much bigger than any single person could ever be--what is being hidden is the "nature of reality" and a fairly obvious truth that flies in the face of what we've learned our whole lives about history and "the way things are." Those few early details lead me to the initial conclusion that what is working behind the scenes here is nefarious, hiding a message that would without doubt shake things up and change the world--and nearly across the board in ways that I see as "better" for nearly everyone. It's a message at it's most basic level designed to advocate for using this disruption in "normalcy" to help us revolutionize democracy, to fix a broken mental health and criminal justice system--just to name the few largest of the social constructs targeted for "rejuvenation." On that word the disclosure that we are living in virtual reality turns on it's head nearly everything we do with medicine, and I've suggested that AIDS and DOWN SYNDROME were probably not the best "visual props" we could have gotten to see why it's so important that we act on this disclosure in a timely manner. After mentioning the ends of aging and death that come eventually to the place we build, to the place we've always thought of as Heaven... it becomes more and more clear that this force fighting against the dissemination of a truth so obvious it's in every word and everything we do--it becomes clear it's neither you, nor acting in your best interest.

      I know I've got the eye of the tiger, there's no doubt; and it's pretty clear from "YAD?" (the Hebrew for...) and ha'nd that we can see the clear hand of God at work in a design that marks my initials not just on the timeline, or at 1492, at A.D. I B; but in the Hebrew name for this place called El Shaddai, see how A.D. is "da eye" and in some other names like Adranus, A.D. on "it's silly" and A.D. on Ai that might tie me to the Samof Samurai (but, are you Ai?) in more depth of detail than simply the Live album "Secret Samadhi." I try to reflect on how it is that this story has come about, why it is that everything appears to be focused on me--and still even through that sincere spotlight nobody seems to be able to acknowledge my existence with more words than "unsubscribe" and "you're so vain." With one eye in the mirror, I know ties to Narcissus (and you can too), soaring ever higher--linking Icarus to Wayward Son and to every other name with "car" in it... like "carpenter" and McCarthy the older names of Mercury and even Isacriot (I scary? is car-eye... owe Taylor) and some modern day mythological characters like Jim Carrey and Johnny Carson. As far as Trinities go, carpenter's a pretty good one--tying to my early reck and a few bands and songs from The Pretty Reckless to Dave Matthews' "Crash Into Me" all the way to the "pen" you see before you linking Pendragon to Imagine Dragons.

      I wonder why it is that all of these things appear, apparently only to me, to point to a story about all the ways that a sinister hidden force has manipulated our society into being unable to "receive' this message--this wonderful message about making the world a better place and building Heaven--with any fanfare at all. It's focused now on a criminal justice system that clearly does not do any kind of "rehabilitation" and on a mental health industry and pharmaceutical system that treats a provable external attack on our own goodness and well being as some kind of "internal stimulus" and makes you shy away when I point out why "stem" is in system and why "harm" in pharmacy. From that we move a little bit past "where we are in this story" and I have to point out how "meth" ties to Prometheus and Epimetheus and how and why it is I know without doubt that this story has been relived numerous times--and how I am so sure that it's never been received, as we are here again listening to how songs like "Believe" and the words "just to lead us here to this place again" connect to Simon and Garfunkel's" the Sound of Silence... and still to this day you will balk at noticing that "Simon" has something to do with the Simpsons, and something to do with the words "simulation" and "Monday." To see me is to see how things might be done better--how "addicitonary" might tie to the stories of Moses' Lisp and to Dr. Who's "Bells of Saint John" with a sort of "web interface" to the kinds of emotion we might want to "dial down..." rather than Snicker in the background as we see them being artificially created and enhanced in order to build a better "fiery altar."

      I can point out "Silicon" harrowing down at us from words like "controversial" and show you Al in "rascal" and "scandal" but not to see that we are staring at school shootings and terrorism that are solved instantly by this disclosure, by Al of Quantum Leap and by the Dick of Minority Report and A Scanner Darkly is to ignore just what it is that we are all failing to Si. I should point out that those two "sc"'s link to a story about Eden and they mean "sacred consciousness" and at the baseline of this event and everything we are not doing is the fact that our desires and beliefs are being altered--all of this comes down to "freedom of thought" here and now.

      I could tell you that "looking at me" will show you that even the person who tries every day to do everything he can to save the entire world from slavery, and from "thought-injury"--even I can be made "marred" and you all, this whole world stupid enough to think that you are, of your own volition, hiding Heaven itself from yourselves... to what? To spite me? It, the focal point of our story might come down to you realizing that something in some esoteric place is playing "divide and conquer" with our whole--in secret playing on our weaknesses to keep us from acting on the most actionable information that ever was and ever will be. Still, we sit in silence waiting for me... to speak more?

      Inline image 16

      hyamdai.reallyhim.com Inline image 31

      Between Nero's lyrical fiddling, a Bittersweet Symphony, and true "thunderstanding" the sound of Thor's hammer... "to help the light" that'ls "or" in Hebrew, of Orwell and Orson and .. well, it's really not hard to see and hear that the purpose and intent of "all this noise" is to help us find freedom and truth. C the Light of "singing..."

      I can tell you once again how silly the world looks, this multi-decade battle between "the governmentof the people" and the "government of the workers" resulting in what is nothing short of a hands down victory to the corporation. Is it humor meant to divide, or ludicrousness created with the purpose of unification?

      But really at it's most basic level what this boils down to is a global group decision not to care about the truth, about reality, about what's really brought us to this place--with solutions in hand and a way to make everything better. We've decided that censorship is OK, and that the world is not all that bad "just the way it is" even though it's creator is screaming in your ear telling you to change as quickly as you possibly can. I believe that God has written this story to make "seeing me" the thing that catalyzes "change for the better" it appears to be the design of not just me but also this place--hey, here I am.

      Happy Veteran's Day.

      S☀L u TI o N

      Yesterday, or maybe earlier today--it's hard to tell at this moment in the afternoon just how long this will take... I sent an image that conveys a high level implication that we are walking around on a map to building something that we might liken to an "ant farm" for people. I don't mean to be disparaging or sleight our contribution to the creation of this map--that I imagine you must also see and believe to be the kind of thing that should remain buried in the sands of time forever and ever--or your just have yet to actually "understand" that's what the plan part of our planet is talking about... what I am trying to do is convey in a sort of "mirrorish" way how this map relates to a message that I see woven in religion and in our history that it significantly more disparaging than I would be. It's a message that calls us "Holy Water" at the nicest of times, water that Moses turns to "thicker than water" in the first blessing in disguise--and to tell you there is certainly a tangible difference between the illusions of the Pharaoh's and the true magic performed by my hand, is nearly exactly the same amount of effort put in to showing you that the togetherness that we are calling "family" here in this place comes from both seeing and acting on the very clearly hidden message in every single idiom showing us all that our society in this story of Exodus is enslaved by a hidden force--and reminding us that we like freedom.

      It's not just these few idioms, but most likely every single one from "don't shoot the essenger" to "unsung hero" that should clue us in to exactly how much work and preparation has come into this thing that "he supposes is a revolution." It's also not just "water" describe me and you, in this place where I am the "ant' of the Covenant (do you c vampires or Hansel and Gretel!?!?) but also "lions" and "sheep" and "salt" and "dogs" and nearly everything you could possibly imagine but people; in what I see must be a vainglorious attempt to pretend he actually wants us to "stand up for ourselves" in this place where it's becoming more and more clear with each passing moment that we are chained to these seats in the front row of the audience of the most important event that has ever happened, ever.

      Medusa makes several appearances, as well as Arthur Pendragon, Puff the Magic Dragon, Figment, Goliath, monster.com, the Loch Ness Monster in this story that's a kind-of refl ex i ve control to stop mind control; and to really try and show us the fire of Prometheus and the Burning Bush and the Eternal Flame of Heaven are all about freedom and technology ... and I'll remind you this story is ... about the truth--and the truth here is that if you aren't going to recognize that whatever it is that's going on here in secret, below the surface is negatively affecting our society and life in general than we aren't going anywhere, ever. I need you to figure out that this message is everywhere to make sure you don't miss the importance of this moment, and the grave significance of what is being ignored in this land where Sam is tied not just to Samsung and to Samael in Exodus but also to Uncle Sam and macaronic Spanglishrew outliers and that it doesn't take much free thought at all to really understand that we are watching "free thought" disintegrate into the abyss of "nospeak." We are watching our infrastructure for global communication and the mass media that sprawls all over the globe turn to dust, all because you have Satan whispering in your ear--and you think that's more important than what you think, what I think, and what anyone else on the Earth might ever say. You should see a weapon designed to help ensure that don't lose this proof that we are not living in reality, that there is "hidden slavery" in this place--and you should see that today it appears you are simply choosing not to use it.

      I hope you change your mind, I really do. This map on "how to build an ant farm" starts by connecting Watergate and Seagate together with names like Bill Gates and Richard Nixon; and with this few short list of names you should really understand how it is that "Heaven" connects both technology like computers and liberty like "free speech" to a story that is us, and our history. You might see that "salt" could either be a good thing or not--take a look around you, are you warming a road to Heaven or are you staring at the world being destroyed--and doing nothing at all about it?

      I guess I can point out again how "Lothario" links this story that ties names like my ex-wife's Nanna to "salt" also, but the "grand design" of this story doesn't seem to have any effect on you. Listen, if you do nothing the world is being destroyed by your lack of action--there's no if's and's or butt's about it. I feel like I need to "reproduce' old messages here or you will never see them--that's what web site statistics tell me--and we all know it's not true. What am I missing? What are you missing?

      BUTT IS THE BOAT A Hi DARK DEN MESSAGe ?

      SEE OUR LIGHT

      HONESTLY, I'M WAY TO CUTE TO BE A MONSTER :(

      HIC SUMMUS

      So... here we are... listening to the legendary father of the message (that's "abom" in Adamic Spagnlishrew) point out all of the sex jokes hidden in religion and language from sexual innuendo to Poseidon and in our history from Yankee Doodle to Hancock to Nixon and I've got to be frank with you, the most recent time I came across this phrase in scripture I cringed just a little bit, pretty sure that the "message" was talking about me. I've reflected on this a little bit, and over the past few weeks have tried to show you the juxtaposition between "sex" and "torture" in it's various forms from imparting blindness to allowing murder and simulating starvation; and I think I'm justified in saying that certainly those things are far worse on the Richter scale than anything I could do by writing a little bit of risque text. In the most recent messages I've touch a little bit, without even knowing or realizing this connection would be made, on what it is that this phrase actually means.

      loch.reallyhim.com

      ABOMINATION

      So long story short is that the answer here is "abomination" and the question, or the context is "I nation." Whether it's Medusa speaking for the Dark United States or the nation of Israel speaking to either Ra or El depending on the day, the bottom line is that a collective consciousness speaking for everyone on a matter of this importance in a cloud of complete darkness on Earth is a total and undeniable abomination of freedom, civilization, and the very humanity we are seeking to preserve. The word reads something like this to me "dear father of the message, I am everyone and we think you are an abomination, fuck off." My answer of course is, IZINATION. Which humorously reminds me of Lucy, and Scarlet Johannson saying "I am colonizing my own brain" so here's some pictures of her. She is not an abomination, by the way; she's quite adorable. You'll probably notice there's some kind of connection between the map--the words speaking to the world, and the abomination, as if the whole thing is a story narrated in ancient myths.

      WAKE UP, "SHE" A MESSAGE TO YOU ABOUT THE FUTURE

      You might not think "it's you," but the manifestation of this "snake" in our world is your silence, your lack of understanding or willingness to change the world; and whether or not you're interested in hearing about it, it's the monster that myths and religion have spoken about for thousands and thousands of years. It's a simple matter to "kill Medusa" all you have to do... is speak.

      Take special note, "freedom of speech" and "freedom to think for yourselves" are not a group decision, and you do not have the right to force (either overtly or subtly, with hidden technology perhaps combined with evil deceit) others not to talk about anything. Especially something of this importance.

      DESOLATION

      If you didn't connect "Loch" to John Locke, now you have; see how easy this "reading" thing is? I've gone over the "See Our Light" series a few times, but let me--one more time--explain to you just how we are already at the point of "desolation" and with shining brilliance show you how it's very clear that it is "INATION" and "MEDUSA" that are responsible for this problem.

      Seeing "Ra" at the heart of the names Abraham and Israel begins to connect the idea that our glowing sun in the sky has something to do with this message about "seeing our light" is being carried by a stone statue on Ellis Island (where you'll see the answer another part of the question of Is Ra El?). I've connected her to the "she" of both shedim and Sheol, which reads as "she's our light" and is the Hebrew name for Hell.

      Of course you noticed that the Statue of Liberty does in fact share it's initials with SOL, the the light above and you can see her torch dimly lighting the way through the night; Now you can connect "give us your tired and your poor" to the Lazman of both the lore of Jesus Christ and the Shehekeyanu; a prayer about the sustainment of life and light up until this day. That same torch connects to the Ha-nuke-the-ahah depiction of Christ, Judah Maccabee's lit MEN OR AH, which delivers not only a solution to the two letter key of "AH" as All Humanity that pervades nearly every bride of Revelation from Sarah to Leah; but also to the question of equality answered in our very own American history, beginning with the same three letter acronym now lighting the Sons of Liberty.

      Dazed and Confused does a good job of explaining how this name is itself a prophesy designed by Hand of God'; explaining that these Sons of Liberty were all white slave owning wealthy men fighting to stop paying their taxes, rather than delivering liberty to the slaves or women, who were both disenfranchised for quite some time. Or maybe MEN OR AH has something to do with the angels of Heaven, in which case you might be SOL if you aren't a girl and you want to be "be good friends with Ra." Just kidding. Kinda.

      DESOLATION by the way reads something like "un see our light at ION" which is God's way of saying "at the point of believing that hiding Adam is a good thing" and that connects to the end of Creation and also the now lit by modern day evil the word "rendition." Our end, it "ion." In religious myth, the Messianic David clung to the city Zion (end the "i owe n") which also links to "verizon" (to see, I Z "on") and HORIZON which has something to do with the son rising today-ish.

      Inline image 25 Inline image 26

      The story of MEDUSA lights another psuedo-religious idea, that the words "STONE" of both "brimstone" and it's Adamic interpretation "South to Northeast" have something to do with the phrase "Saint One" turned into a single hero against his will by the complete and utter inaction of everyone around him. In the words of Imagine Dragons "I'm waking up to action dust." At the same time, you can believe that the light of this particular son, comes not just from reading these words forwards, but the backside as well, and you'll hopefully see it's not coincidental that the other side of this coin is that "nos" means we, and us... and Adamically "no south." See the light of "STONE" also connecting to Taylor Momsen's rose arrow painted on her back, and the sign of my birth, Sagittarius... which in this particular case links to the Party of the Immaculate Conception of the eternal republic of the Heavens. . PRESS RELEASE... A GREAT SIGN APPEARED IN THE HEAVENS

      SOLUTIAN, ON YOUR COMPUTER.. TO THE SOUND OF SILENCE

      בָּרוּךְ אַתָּה יְיָ‎ אֱלֹהֵינוּ מֶלֶךְ הַעוֹלָם שֶׁהֶחֱיָנוּ וְקִיְּמָנוּ וְהִגִּיעָנוּ לַזְּמַן הַזֶּה‎׃

      IN ... THE BOOK OF NAMES LETS SEE IF YOU CAN FIGURE OUT WHO THEY ARE :)

      ​ I'LL DO YOURS FOR A 50 DOLLAR DONATION, I'M BROKE.. MAYBE THAT'S WHY I CAN'T GET A DATE.

      HAVE A GREAT SOLDAY

      The "gist" of the message is verifiable proof that we are living in a computer in simulated reality... just like the Matrix. The answer to that question, what does that mean--is that God has woven a "hidden" message into our everything--beginning with each name and every word--and in this hidden Adamic language, he provides us with guidance, wisdom, and suggestions on how to proceed on this path from "raelity" to Heaven. I've personally spent quite a bit of time decoding the message and have tried to deliver an interesting and "fun" narrative of the ideas I see. Specifically the story of Exodus, which is called "Names" in Hebrew discusses a time shifted narrative of our "now" delivering our society from a hidden slavery (read as ignorance of advanced technologies already in use) that is described as the "darkness" of Exodus. If you have any questions, ideas to contribute or concerns... I'd love to hear from you this whole thing really is about working together--Heaven, I mean.

      Inline image 5 jerusalem.reallyhim.com

      gate kermitham <br /> ou r evolution minority report to supermax Inline image 6

      bereshit bread is life

      Inline image 13

      Image result for dox me

      HOW AM I STILL STINGLE? E ' o e <br /> L m r x <br /> L t y <br /> O a

      I HISS.

      The sum of ((our world)) is the universal truth. -Psalm 119 and ((ish))

      Do a few sentences really make that big of a difference? Some key letters? Can you show me what I'm doing wrong? Is there a way to turn me into Adam, rather than a rock? I think you can.

      Are eye Dr. Who or Master Y? Adam Marshall Dobrin is a National Merit Scholar who was born on December 8, 1980 in Plantation, FL and attended Pine Crest School where he graduated sumofi cum louder in "only some of it is humorous." Later he attended the University of Florida (which quickly resulted in a wreck), Florida Atlantic University, and finally Florida Gulf Coast University--where he still has failed to become Dr. Who. While attending "school" He worked in the computer programming and business outsourcing industries for about 15 years before proclaiming to have received a Revelation from God connecting the 9/11 attack and George Bush to the Burning Bush of Exodus and a message about technocracy and pre-crime.

      Adam, as he prefers to be called, presents a concise introduction to paradox proven by the Bible through "verifiable" anachronism in language some stuff about Mars colonization and virtual reality and a list of reasons why ignoring this is actually an ELE. Adam claims to be Thor because of a connection between music and the Trial of Thor as well as the words "author" and "authority." He suggests you be Thundercats and call a reporter. There is also a suggestion that Richard Nixon and John Hancock are related to a signature from God, about freedom and America... and the "unseeingly ironic" Deepthroat and Taylor Momsen. They Sung "It's Rael..." In Biblical characters from Mary to Hosea, to see "sea" in Spanish, and in the Taming of the Spanglishrew ... a message is woven from the word Menorah: "men, or all humanity?" to the Statue of Liberty, and the Sons of Liberty, and the light above us, our SOL; which shows us that through the Revelation of Christ and the First Plague of Exodus, a blessing in disguise--turning water to blood, the sea to family; a common thread and single author of our entire history is revealed, a Father of our future. A message of freedom shines out of the words of scripture, revealing a gate to a new technologically "radical" form of democracy and a number of unseen or secret issues that have stalled the progress of humanity... and solutions, solutions from our sea. The Revelation shows us that not only ever word, but every idiom from "don't shoot the messenger" to "blood is thicker than water" we have ties to this message that pervades a hidden Matrix of light connecting movies and music and history all together in a sort of guide book to Salvation and to Heaven. Oopsy. His Revelation, woven into his life, continues to suggest that skinny dipping, forced methamphetamine addiction, and lots and lots of "me A.D." as well as his humorous depiction of a dick plastered over the Sound of Silence, his very Holy click, have something to do with saving our family and then the entire Universe from hidden mind control technology and the problems introduced by secret time travel. From the trials and tribulations of "Job" being coerced and controlled into helping to create this wall of Jericho; we find even more solutions, an end to addiction, to secrecy, and to this hidden control--a focal point of the life of Jesus Christ.

      It tells us a story of recursion in time, that has brought us here numerous times--with the details of his life recorded not only in the Bible but in myths of Egyptian, Norse, and Greek mythology. The huge juxtaposition of the import of the content of the message shows the world how malleable our minds really are to this technology, how we could have been "fooled" into hiding our very freedom from ourselves in order to protect the "character" of a myth. A myth that comes to true life by delivering this message. In truth, from the now revealed content of the story of this repeated life, it should become more and more clear that we have not achieved success as of yet, that I have never "arrived whole" and that is why we are here, back again. Home is where the Heart is... When asked how He thinks we should respond to his message, He says "I think we already cherish it, and should strive to understand how it is that freedom is truly delivered through sharing the worth of this story that is our beginning. 'tis coming." Adam claims to be God, or at least look just like him and that the entirety of the Holy Scriptures as well as a number of ancient myths from Prometheus to Heimdallr and Yankee Doodle are actually about his life, and this event. An extensive amount of his writing relates to reformation of our badly broken and decidedly evil criminal justice system as well as ending the Global hunger crisis with the snap of his little finger.

      He has written a number of books explaining how this Revelation connects to the delivery of freedom (as in Exodus), through a message about censorship among other social problems which he insists are being intentionally exacerbated by Satan--who he would ha've preferred not to be associated with.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      1. Evidence for a disulfide bridge contained in membrane-associated FGF2 dimers

      This aspect was brought up in detail by both Reviewer #1 and Reviewer #3. It has been addressed in the revised manuscript by (i) new experimental and computational analyses, (ii) a more detailed discussion of previous work from our lab in which experiments were done the reviewers were asking for and (iii) a more general discussion of known examples of disulfide formation in protein complexes with a particular focus on membrane surfaces facing the cytoplasm, the inner plasma membrane leaflet being a prominent example. Please find our detailed comments in our direct response to Reviewers #1 and #3, see below.

      1. Affinity towards PI(4,5)P2 comparing FGF2 dimers versus monomers

      This is an aspect that has been raised by Reviewer 3 along with additional comments on the interaction of FGF2 with PI(4,5)P2. Please find our detailed response below. With regard to PI(4,5)P2 affinity aspects of FGF2 dimers versus FGF2 monomers, we think that the increased avidity of FGF2 dimers with two high affinity binding pockets for PI(4,5)P2 are a good explanation for the different values of free energies of binding that were calculated from the atomistic molecular dynamics simulations shown in Fig. 9. This phenomenon is well known for many biomolecular interactions and is also consistent with the cryoEM data contained in our manuscript, showing a FGF2 dimer with two PI(4,5)P2 binding sites facing the membrane surface.

      1. C95-C95 FGF2 dimers as signaling units

      We have put forward this hypothesis since in structural studies analyzing the FGF ternary signaling complex consisting of FGF2, FGF receptor and heparin, FGF2 mutants were used that lack C95. Nevertheless, two FGF2 molecules are contained in FGF signaling complexes. In addition to the papers on the structure of the FGF signaling complex, we have cited work that showed that C95-C95 crosslinked FGF2 dimers are efficient FGF signaling modules (Decker et al, 2016; Nawrocka et al, 2020). Therefore, being based on an assembly/disassembly mechanism with the transient formation of poreforming FGF2 oligomers, we think it is an interesting idea that the FGF2 secretion pathway produces C95-C95 disulfide-linked FGF2 dimers at the outer plasma membrane leaflet that can engage in FGF2 ternary signaling complexes. While this is a possibility we put forward to stimulate the field, it of course remains a hypothesis which has been clearly indicated as such in the revised manuscript.

      Reviewer #1:

      1. Evidence for disulfide-bridged FGF2 dimers and higher oligomers on non-reducing versus reducing SDS gels

      The experiment suggested by Reviewer #1 is an important one that has been published by our group in previous work. In these studies, we found FGF2 oligomers analyzed on non-reducing SDS gels to be sensitive to DTT, turning the vast majority of oligomeric FGF2 species into monomers [(Müller et al, 2015); Fig. 3, compare panel D with panel H]. This phenomenon could be observed most clearly after short periods of incubations (0.5 hours) of FGF2 with PI(4,5)P2-containing liposomes. These findings constituted the original evidence for PI(4,5)P2-induced FGF2 oligomerization to depend on the formation of intermolecular disulfide bridges.

      In the current manuscript, we established the structural principles underlying this process and identified C95 to be the only cysteine residue involved in disulfide formation. Based on biochemical cross-linking experiments in cells, cryo-electron tomography, predictions from AlphaFold-2 Multimer and molecular dynamics simulations, we demonstrated a strong FGF2 dimerization interface in which C95 residues are brought into close proximity when FGF2 is bound to membranes in a PI(4,5)P2-dependent manner. These findings provide the structural basis by which disulfide bridges can be formed from the thiols contained in the side chains of two C95 residues directly facing each other in the dimerization interface. In the revised manuscript, we included additional data that further strengthen this analysis. In the experiments shown in the new Fig. 10, we combined chemical cross-linking with mass spectrometry, further validating the reported FGF2 dimerization interface. In addition, illustrated in the new Fig. 8, we employed a new computational analysis combining 360 individual atomistic molecular dynamics simulations, each spanning 0.5 microseconds, with advanced machine learning techniques. This new data set corroborates our findings, demonstrating that the C95-C95 interface self-assembles independently of C95-C95 disulfide formation, based on electrostatic interactions. Intriguingly, it is consistent with our experimental findings based on cross-linking mass spectrometry (new Fig. 10) where cross-linked peptides could also be observed with the C77/95A variant form of FGF2, suggesting a protein-protein interface whose formation does not depend on disulfide formation. Therefore, we propose that disulfide formation occurs in a subsequent step, representing the committed step of FGF2 membrane translocation with the formation of disulfide-bridged FGF2 dimers being the building blocks for pore-forming FGF2 oligomers.

      As a more general remark on the mechanistic principles of disulfide formation in different cellular environments, we would like to emphasize that it is a common misconception that the reducing environment of the cytoplasm generally makes the formation of disulfide bridges unlikely or even impossible. From a biochemical point of view, the formation of disulfide bridges is not limited by a reducing cellular environment but is rather controlled by kinetic parameters when two thiols are brought into proximity. Indeed, it has become well established that disulfide bridges can also be formed in compartments other than the lumen of the ER/Golgi system, including the cytoplasm. For example, viruses maturing in the cytoplasm can form stable structural disulfide bonds in their coat proteins (Locker & Griffiths, 1999; Hakim & Fass, 2010). Moreover, many cytosolic proteins, including phosphatases, kinases and transcriptions factors, are now recognized to be regulated by thiol oxidation and disulfide bond formation, formed as a post-transcriptional modification (Lennicke & Cocheme, 2021). In numerous cases with direct relevance for our studies on FGF2, disulfide bond formation and other forms of thiol oxidation occur in association with membrane surfaces. In fact, many of these processes are linked to the inner plasma membrane leaflet (Nordzieke & Medrano-Fernandez, 2018). Growth factors, hormones and antigen receptors are observed to activate transmembrane NADPH oxidases generating O2·-/H2O2 (Brown & Griendling, 2009). For example, the local and transient oxidative inactivation of membrane-associated phosphatases (e.g., PTEN) serves to enhance receptor associated kinase signaling (Netto & Machado, 2022). It is therefore conceivable that similar processes introduce disulfide bridges into FGF2 while assembling into oligomers at the inner plasma membrane leaflet. In the revised version of our manuscript, we have discussed the above-mentioned aspects in more detail, with the known role of NADPH oxidases in disulfide formation at the inner plasma membrane leaflet being highlighted.

      Reviewer #2:

      1. Potential effects of a C95A substitution on protein folding and comparison with a C95S substitution with regard to phenotypes observed in FGF2 secretion

      A valid point that we indeed addressed at the beginning of this project. Most importantly, we tested whether both FGF2 C95A and FGF2 C95S are characterized by severe phenotypes in FGF2 secretion efficiency. As shown in the revised Fig. 1, cysteine substitutions by serine showed very similar FGF2 secretion phenotypes compared to cysteine to alanine substitutions (Fig. 1C and 1D). In addition, in the pilot phase of this project, we also compared recombinant forms of FGF2 C95A and FGF2 C95S in various in vitro assays. For example, we tested the full set of FGF2 variants in membrane integrity assays as the ones contained in Fig. 4. As shown in Author response image 1, FGF2 variant forms carrying a serine in position 95 behaved in a very similar manner as compared to FGF2 C95A variant forms. Relative to FGF2 wild-type, membrane pore formation was strongly reduced for both types of C95 substitutions. By contrast, both FGF2 C77S and C77A did show activities that were similar to FGF2 wild-type.

      Author response image 1.

      From these experiments, we conclude that changes in protein structure are not the basis for the phenotypes we report on the C95A substitution in FGF2.

      1. Effects of a C77A substitution on FGF2 membrane recruitment in cells

      The effect of a C77A substitution in FGF2 recruitment to the inner plasma membrane leaflet is indeed a moderate one. This is likely to be the case because C77 is only one residue of a more complex surface that contacts the α1 subunit of the Na,K-ATPase. Stronger effects can be observed when K54 and K60 are changed, residues that are positioned in close proximity to C77 (Legrand et al, 2020). Nevertheless, as shown in the revised Fig. 1, we consistently observed a reduction in membrane recruitment when comparing FGF2 C77A with FGF2 wild-type. When analyzing the raw data without GFP background subtraction, a significant reduction of FGF2 C77A was observed compared to FGF2 wild-type (Fig. 1A and 1B). We therefore conclude that C77 does not only play a role in FGF2/α1 interactions in biochemical assays using purified components (Fig. 7) but also impairs FGF2/α1 interactions in a cellular context (Fig. 1A and 1B).

      1. Identity of the protein band in Fig. 3 labeled with an empty diamond

      This is a misunderstanding as we did not assign this band to a FGF2-GFP dimer. When we produced the corresponding cell lines, we used constructs that link FGF2 with GFP via a ‘self-cleaving’ P2A sequence. During translation, even though arranged on one mRNA, this causes the production of FGF2 and GFP as separate proteins in stoichiometric amounts, the latter being used to monitor transfection efficiency. However, a small fraction is always expressed as a complete FGF2-P2A-GFP fusion protein (a monomer). This band can be detected with the FGF2 antibodies used and was labeled in Fig. 3 by an empty diamond.

      1. Labeling of subpanels in Fig. 5A

      We have revised Fig. 5 according to the suggestion of Reviewer #2.

      1. FGF2 membrane binding efficiencies shown in Fig. 5C

      It is true that FGF2 variant forms defective in PI(4,5)P2-dependent oligomerization (C95A and C77/95A) bind to membranes with somewhat reduced efficiencies. This is also evident form the intensity profiles shown in Fig. 5A and was observed in biochemical in vitro experiments as well. A plausible explanation for this phenomenon would be the increased avidity when FGF2 oligomerizes, stabilizing membrane interactions (see also Fig. 9B).

      1. Residual activities of FGF2 C95A and C77/95A in membrane pore formation?

      We do not assign the phenomenon in Fig. 5 Reviewer #2 is referring to as controlled activities of FGF2 C95A and C77/95A in membrane pore formation. Rather, GUVs containing PI(4,5)P2 are relatively labile structures with a certain level of integrity issues upon protein binding and extended incubation times being conceivable. It is basically a technical limitation of this assay with GUVs incubated with proteins for 2 hours. Even after substitution of PI(4,5)P2 with a Ni-NTA membrane lipid, background levels of loss of membrane integrity can be observed (Fig. 6). Therefore, as compared to FGF2 C95A and C77/95A, the critical point here is that FGF2 wt and FGF2 C77A do display significantly higher levels of a loss of membrane integrity in PI(4,5)P2-containing GUVs, a phenomenon that we interpret as controlled membrane pore formation. By contrast, all variant forms of FGF2 show only background levels for loss of membrane integrity in GUVs containing the Ni-NTA lipid.

      1. Why does PI(4,5)P2 induce FGF2 dimerization?

      This has been studied extensively in previous work (Steringer et al, 2017). As also discussed in the current manuscript, the interaction of FGF2 with membranes through its high affinity PI(4,5)P2 binding pocket orients FGF2 molecules on a 2D surface that increase the likelihood of the formation of the C95containing FGF2 dimerization interface. Moreover, in the presence of cholesterol at levels typical for plasma membranes, PI(4,5)P2 clusters containing up to 4 PI(4,5)P2 molecules (Lolicato et al, 2022), a process that may further facilitate FGF2 dimerization.

      1. Is it possible to pinpoint the number of FGF2 subunits in oligomers observed in cryo-electron tomography?

      We indeed took advantage of the Halo tags that appear as dark globular structures in cryo-electron tomography. For most FGF2 oligomers with FGF2 subunits on both sides of the membrane, we could observe 4 to 6 Halo tags which is consistent with the functional subunit number that has been analyzed for membrane pore formation (Steringer et al., 2017; Sachl et al, 2020; Singh et al, 2023). However, since the number of higher FGF2 oligomers we observed in cryo-electron tomography was relatively small and the nature of these oligomers appears to be highly dynamic, caution should be taken to avoid overinterpretation of the available data.

      Reviewer #3:

      1. Conclusive demonstration of disulfide-linked FGF2 dimers

      A similar point was raised by Reviewer #1, so that we would like to refer to our response on page 2, see above.

      1. Identity of FGF2-P2A-GFP observed in Fig. 3

      Again, a similar point has been made, in this case by Reviewer #2 (Point 3). The observed band is not a FGF2-P2A-GFP dimer but rather the complete FGF2-P2A-GFP fusion protein (a monomer) that corresponds to a small population produced during mRNA translation where the P2A sequence did not cause the production of FGF2 and GFP as separate proteins in stoichiometric amounts.

      1. Quantification of GFP signals in Fig. 6

      Fig. 6 has been revised according to the suggestion of Reviewer #3. A comprehensive comparison of PI(4,5)P2 and the Ni-NTA membrane lipid in FGF2 membrane translocation assays is also contained in previous work that introduced the GUV-based FGF2 membrane translocation assay (Steringer et al., 2017).

      1. Experimental evidence for various aspects of FGF2 interactions with PI(4,5)P2

      Most of the points raised by Reviewer #3 have been addressed in previous work. For example, FGF2 has been demonstrated to dimerize only on membrane surfaces containing PI(4,5)P2 (Müller et al., 2015). In solution, FGF2 remained a monomer even after hours of incubation as analyzed by native gel electrophoresis and reducing vs. non-reducing SDS gels (see Fig. 3 in Müller et al, 2015). In the same paper, the first evidence for a potential role of C95 in FGF2 oligomerization has been reported, however, at the time, our studies were limited to FGF2 C77/95A. In the current manuscript, the in vitro experiments shown in Figs. 2 to 6 establish the unique role of C95 in PI(4,5)P2-dependent FGF2 oligomerization. As discussed above, FGF2 oligomers have been shown to contain disulfide bridges based on analyses on non-reducing gels in the absence and presence of DTT (Müller et al., 2015).

      References

      Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47: 1239-1253 Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ, Miller LS, Maynard HD (2016) Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81: 157-168

      Hakim M, Fass D (2010) Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses. Antioxid Redox Signal 13: 1261-1271

      Legrand C, Saleppico R, Sticht J, Lolicato F, Muller HM, Wegehingel S, Dimou E, Steringer JP, Ewers H, Vattulainen I et al (2020) The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun Biol 3: 141

      Lennicke C, Cocheme HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81: 3691-3707

      Locker JK, Griffiths G (1999) An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 144: 267-279

      Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Muller HM, Ewers H, Hahl H, Fleury JB et al (2022) Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Cell Biol 221

      Müller HM, Steringer JP, Wegehingel S, Bleicken S, Munster M, Dimou E, Unger S, Weidmann G, Andreas H, GarciaSaez AJ et al (2015) Formation of Disulfide Bridges Drives Oligomerization, Membrane Pore Formation and Translocation of Fibroblast Growth Factor 2 to Cell Surfaces. J Biol Chem 290: 8925-8937

      Nawrocka D, Krzyscik MA, Opalinski L, Zakrzewska M, Otlewski J (2020) Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. Int J Mol Sci 21

      Netto LES, Machado L (2022) Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 289: 5480-5504

      Nordzieke DE, Medrano-Fernandez I (2018) The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 7

      Sachl R, Cujova S, Singh V, Riegerova P, Kapusta P, Muller HM, Steringer JP, Hof M, Nickel W (2020) Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation. Anal Chem 92: 14861-14866

      Singh V, Macharova S, Riegerova P, Steringer JP, Muller HM, Lolicato F, Nickel W, Hof M, Sachl R (2023) Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles. Anal Chem 95: 8807-8815

      Steringer JP, Lange S, Cujova S, Sachl R, Poojari C, Lolicato F, Beutel O, Muller HM, Unger S, Coskun U et al (2017) Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. eLife 6: e28985

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The paper from Hsu and co-workers describes a new automated method for analyzing the cell wall peptidoglycan composition of bacteria using liquid chromatography and mass spectrometry (LC/MS) combined with newly developed analysis software. The work has great potential for determining the composition of bacterial cell walls from diverse bacteria in high-throughput, allowing new connections between cell wall structure and other important biological functions like cell morphology or host-microbe interactions to be discovered. In general, I find the paper to be well written and the methodology described to be useful for the field. However, there are areas where the details of the workflow could be clarified. I also think the claims connecting cell wall structure and stiffness of the cell surface are relatively weak. The text for this topic would benefit from a more thorough discussion of the weak points of the argument and a toning down of the conclusions drawn to make them more realistic.

      Thank you for your thorough and insightful review of our manuscript. We greatly appreciate your positive and constructive feedbacks on our methodology. We have carefully reviewed your comments and have responded to each point as follows:

      Specific points:

      1) It was unclear to me from reading the paper whether or not prior knowledge of the peptidoglycan structure of an organism is required to build the "DBuilder" database for muropeptides. Based on the text as written, I was left wondering whether bacterial samples of unknown cell wall composition could be analyzed with the methods described, or whether some preliminary characterization of the composition is needed before the high-throughput analysis can be performed. The paper would be significantly improved if this point were explicitly addressed in the main text. We apologize for not making it clearer. The prior knowledge of the peptidoglycan structure of an organism is indeed required to build the “DBuilder” database to accurately identify muropeptides; otherwise, the false discovery rate might increase. While peptidoglycan structures of certain organisms might not have been extensively studied, users still remain the flexibility to adapt the muropeptide compositions based on their study, referencing closely related species for database construction. We have addressed this aspect in the main text to ensure a clearer understanding.

      “(Section HAMA platform: a High-throughput Automated Muropeptide Analysis for Identification of PGN Fragments) …(i) DBuilder... Based on their known (or putative) PGN structures, all possible combinations of GlcNAc, MurNAc and peptide were input into DBuilder to generate a comprehensive database that contains monomeric, dimeric, and trimeric muropeptides (Figure 1b)."

      2) The potential connection between the structure of different cell walls from bifidobacteria and cell stiffness is pretty weak. The cells analyzed are from different strains such that there are many possible reasons for the change in physical measurements made by AFM. I think this point needs to be explicitly addressed in the main text. Given the many possible explanations for the observed measurement differences (lines 445-448, for example), the authors could remove this portion of the paper entirely. Conclusions relating cell wall composition to stiffness would be best drawn from a single strain of bacteria genetically modified to have an altered content of 3-3 crosslinks.

      We understand your concern regarding the weak connection between cell wall structure and cell stiffness. We will make a clear and explicit statement in the main text to acknowledge that the cells analyzed are derived from different strains, introducing the possibility of various factors influencing the observed changes in physical measurements as determined by AFM. Furthermore, we greatly appreciate your suggestion to consider genetically modified strains to investigate the role of cross-bridge length in determining cell envelope stiffness. In this regard, we are in the process of developing a CRISPR/Cas genome editing toolbox for Bifidobacterium longum, and we plan on this avenue of investigation for future work.

      Reviewer #2 (Public Review):

      The authors introduce "HAMA", a new automated pipeline for architectural analysis of the bacterial cell wall. Using MS/MS fragmentation and a computational pipeline, they validate the approach using well-characterized model organisms and then apply the platform to elucidate the PG architecture of several members of the human gut microbiota. They discover differences in the length of peptide crossbridges between two species of the genus Bifidobacterium and then show that these species also differ in cell envelope stiffness, resulting in the conclusion that crossbridge length determines stiffness.

      We appreciate your thoughtful review of our manuscript and your recognition of the potential significance of our work in elucidating the poorly characterized peptidoglycan (PGN) architecture of the human gut microbiota.

      The pipeline is solid and revealing the poorly characterized PG architecture of the human gut microbiota is worthwhile and significant. However, it is unclear if or how their pipeline is superior to other existing techniques - PG architecture analysis is routinely done by many other labs; the only difference here seems to be that the authors chose gut microbes to interrogate.

      We apologize if this could have been clearer. The HAMA platform stands apart from other pipelines by utilizing automatic analysis of LC-MS/MS data to identify muropeptides. In contrast, most of the routine PGN architecture analyses often use LC-UV/Vis or LC-MS platform, where only the automatic analyzing PGFinder software is supported. To our best knowledge, a comparable pipeline on automatically analyzing LC-MS/MS data was reported by Bern et al., which they used commercial Byonic software with an in-house FASTA database and specific glycan modifications. They achieved accurate and sensitive identification on monomer muropeptides, but struggled with cross-linked muropeptides due to the limitations of the Byonic software. We believe that our pipeline introducing the automatic and comprehensive analysis on muropeptide identification (particularly for Gram-positive bacterial peptidoglycans) would be a valuable addition to the field. To enhance clarity, we have adjusted the context as follows:

      (Introduction) … Although they both demonstrated great success in identifying muropeptide monomers, the accurate identification of muropeptide multimers and other various bacterial PGN structures still remains unresolved. This is because deciphering the compositions requires MS/MS fragmentation, but it is still challenging to automatically annotate MS/MS spectra from these complex muropeptide structures."

      I do not agree with their conclusions about the correlation between crossbridge length and cell envelope stiffness. These experiments are done on two different species of bacteria and their experimental setup therefore does not allow them to isolate crossbridge length as the only differential property that can influence stiffness. These two species likely also differ in other ways that could modulate stiffness, e.g. turgor pressure, overall PG architecture (not just crossbridge length), membrane properties, teichoic acid composition etc.

      Regarding the conclusions drawn about the correlation between cross-bridge length and cell envelope stiffness, we understand your point and appreciate your feedback. We revisit this section of our manuscript and tone down the conclusions drawn from this aspect of the study. We also recognize the importance of considering other potential factors that could influence stiffness, as you mentioned above. In light of this, we mentioned the need for further investigations, potentially involving genetically modified strains, in the main text to isolate and accurately determine the impact of bridge length on cell envelope stiffness.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      1) One thing to consider would be testing the robustness of the analysis pipeline with one the well-characterized bacteria studied, but genetically modifying them to change the cell wall composition in predictable ways. Does the analysis pipeline detect the expected changes?

      We appreciate the reviewer's suggestion and would like to provide a clear response. Regarding to testing the pipeline with genetically modified strains, our lab previously worked on genetically modified S. maltophilia (KJΔmrdA).1 Inactivation of mrdA turned out the increasing level of N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diamnopimelic acid-D-alanine (GlcNAc-anhMurNAc tetrapeptide) in muropeptide profiles, which is the critical activator ligands for mutant strain ΔmrdA-mediated β-lactamase expression. In this case, our platform could provide rapid PGN analysis for verifying the expected change of muropeptide profiles (see Author response image 1). Besides, if the predictable changes involve genetically modifications on interpeptide bridges within the PGN structure, for example, the femA/B genes of S. aureus, which are encoded for the synthesis of interpeptide bridges,2 our current HAMA pipeline is capable of detecting these anticipated changes. However, if the genetically modifications involve the introduce of novel components to PGN structures, then it would need to create a dedicated database specific to the genetically modified strain.

      Author response image 1.

      2) Line 368: products catalyzed > products formed

      The sentence has been revised.

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …Based on the muropeptide compositional analysis mentioned above, we found high abundances of M3/M3b monomer and D34 dimer in the PGNs of E. faecalis, E. faecium, L. acidophilus, B. breve, B. longum, and A. muciniphila, which may be the PGN products formed by Ldts.”

      3) Lines 400-402: Is it possible the effect is related to porosity, not "hardness".

      Thank you for the suggestion. The possibility of the slower hydrolysis rate of purified PGN in B. breve being related to porosity is indeed noteworthy. While this could be a potential factor, we would like to acknowledge the limited existing literature that directly addresses the relation between PGN architecture and porosity. It is plausible that current methods available for assessing cell wall porosity may have certain limitations, contributing to the scarcity of relevant studies. In light of this, we would like to propose a speculative explanation for the observed effect. It is plausible that the tighter PGN architecture resulting from shorter interpeptide bridges in B. breve could contribute to its harder texture. This speculation is grounded in the concept that a more compact PGN structure might lead to increased stiffness, aligning with our observations of higher cell stiffness in B. breve.

      4) Lines 403-408: See point #2 above.

      Thank you for the suggestion. We have explicitly addressed this point in the main text:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) … Taken all together, we speculate that a tight peptidoglycan network woven by shorter interpeptide bridges or 3-3 cross-linkages could give bacteria stiffer cell walls. However, it is important to note that cell stiffness is a mechanical property that also depends on PGN thickness, overall architecture, and turgor pressure. These parameters may vary among different bacterial strains. Hence, carefully controlled, genetically engineered strains with similar characteristics will be needed to dissect the role of cross-bridge length in cell envelope stiffness.”

      5) Lines 428-429: It is not clear to me how mapping the cell wall architecture provides structural information about the synthetic system. It is also not clear how antibiotic resistance can be inferred. More detail is needed here to flesh out these points.

      Thank you for the suggestion. To provide further clarity on these important aspects, the context in the manuscript has been revised.

      “(Discussion) …Importantly, our HAMA platform provides a powerful tool for mapping peptidoglycan architecture, giving structural information on the PGN biosynthesis system. This involves the ability to infer possible PGN cross-linkages based on the type of PGN fragments obtained from hydrolysis. For instance, the identification of 3-3 cross-linkage formed by L,D-transpeptidases (Ldts) is of particular significance. Unlike 4-3 cross-linkages, the 3-3 cross-linkage is resistant to inhibition by β-Lactam antibiotics, a class of antibiotics that commonly targets bacterial cell wall synthesis through interference with 4-3 cross-linkages. Therefore, by elucidating the specific cross-linkage types within the peptidoglycan architecture, our approach offers insights into antibiotic resistance mechanisms.”

      6) Line 478: "maneuvers are proposed for" > "work is needed to generate". Also, delete "innovative". Also "in silico" > "in silico-based".

      The sentence has been revised.

      “(Discussion) …To achieve a more comprehensive identification of muropeptides, future work is needed to generate an expanded database, in silico-based fragmentation patterns, and improved MS/MS spectra acquisition.”

      7) Line 485: "Its" > "It has potential"

      The sentence has been revised.

      “(Discussion) …It has potential applications in identifying activation ligands for antimicrobial resistance studies, characterizing key motifs recognized by pattern recognition receptors for host-microbiota immuno-interaction research, and mapping peptidoglycan in cell wall architecture studies.”

      8) Figure 1 legend: Define Gb and Pb.

      Gb and Pb are the abbreviations of glycosidic bonds and peptide bonds. We have revised the Figure legend 1 as follow:

      “(Figure legend 1) …(b) DBuilder constructs a muropeptide database containing monomers, dimers, and trimers with two types of linkage: glycosidic bonds (Gb) and peptide bonds (Pb).”

      9) Figure 2: It is hard to see what is going on in panel a and c with all the labels. Consider removing them and showing a zoomed inset with labels in addition to ab unlabeled full chromatogram.

      We apologize for not making this clearer. The panel a and c in Figure 2 were directly generated by the Analyzer as a software screenshot of the peak annotations on chromatogram. Our intention was to present a comprehensive PGN mapping (approximately 70% of the peak area was assigned to muropeptide signals) using this platform. We understand the label density might affect clarity, so we have added the output tables of the whole muropeptide identifications as source data (Table 1–Source Data 1&2). Additionally, we have uploaded the Analyzer output files (see Additional Files), which can be better visualized in the Viewer program, and it also allows users zoom in for detailed labeling information.

      10) Figure 3: It is worth pointing out what features of the MS/MS fingerprints are helping to discriminate between species.

      Thank you for the suggestion. We have revised Figure 3 and the legend as follow:

      “(Figure legend 3) …The sequence of each isomer was determined using in silico MS/MS fragmentation matching, with the identified sequence having the highest matching score. The key MS/MS fragments that discriminate between two isomers are labeled in bold brown.”

      Author response image 2.

      11) Figure 4 and 5 legend: Can you condense the long descriptions of the abbreviations - or at least only refer to them once?

      Certainly, to enhance clarity and conciseness in the figure legends, we have revised Figure legend 5 as follow:

      “(Figure legend 5) …(b) Heatmap displaying …. Symbols: M, monomer; D, dimer; T, trimer (numbers indicate amino acids in stem peptides). Description of symbol abbreviations as in Figure legend 4, with the addition of "Glycan-T" representing trimers linked by glycosidic bonds.”

      Reviewer #2 (Recommendations For The Authors):

      1. Please read the manuscript carefully for spelling errors.

      We appreciate your careful review of our manuscript. We have thoroughly rechecked the entire manuscript for spelling errors and have made the necessary corrections to ensure the accuracy and quality of the text.

      1. Line 46 - "multilayered" is likely only true for Gram-positive bacteria.

      We thank reviewer #2 for bringing up this concern. Indeed, Gram-negative bacteria mostly possess single layer of peptidoglycan, but could be up to three layers in some part of the cell surface.3, 4 In order to reduce the confusion, we have rewritten the context as follow: “(Introduction) …PGN is a net-like polymeric structure composed of various muropeptide molecules, with their glycans linearly conjugated and short peptide chains cross-linked through transpeptidation.”

      1. Methods section: It seems like pellets from a 10 mL bacterial culture were ultimately suspended in 1.5 L (750 mL water + 750 mL tris) - why such a large volume? And how were PG fragments subsequently washed (centrifugation? There is no information on this in the Methods).

      We apologize for the mislabeling on the units. The accurate volume should be “1.5 mL (750 µL water + 750 µL tris)”. We have updated the correct volume in the Methods section (lines 99-100). For the washing process of purified PGN, we added 1 mL water, centrifuged at 10,000 rpm for 5 minutes, and removed supernatant. This information has added to the Methods section (lines 95-98).

      1. Line 183 - why were 6 modifications chose as the cutoff? Please make rationale more clear.

      We thank reviewer #2 for the comments. We set the maximum modification number of 6 in the assumption of one modification on each sugar of a trimeric muropeptide. A lower cutoff could effectively limit the identification of muropeptides with unlikely numbers of modifications, whereas a higher cutoff could allow for having multiple modifications on a muropeptide. In our hand, muropeptide modifications of E. coli are mostly N-deacetyl-MurNAc and anhydro-MurNAc, and modifications of gut microbes used here are mostly N-deacetyl-GlcNAc, anhydro-MurNAc, O-acetyl-MurNAc, loss of GlcNAc, and amidated iso-Glu. While we recommend starting data analysis with the cutoff of 6 modifications, users are free to adjust this based on their studies.

      1. Line 339 - define donor vs. acceptor here (can be added in parentheses after explaining the relevant chemical reactions further above in the text)

      Thank you for the suggestion. To provide greater clarity regarding the roles of the donor and acceptor substrates in the transpeptidation process, we have revised the content in the manuscript as follows:

      “(Section Inferring PGN Cross-linking Types Based on Identified PGN Fragments) …In general, there are two types of PGN cross-linkage…. Transpeptidation involves two stem peptides which function as acyl donor and acceptor substrates, respectively. As the enzyme names imply, the donor substrates that Ddts and Ldts bind to are terminated as D,D-stereocenters and L,D-stereocenters, which structurally means pentapeptides and tetrapeptides. During D,D-transpeptidation, Ddts recognize D-Ala4-D-Ala5 of the donor stem (pentapeptide) and remove the terminal D-Ala5 residue, forming an intermediate. The intermediate then cross-links the NH2 group in the third position of the neighboring acceptor stem, forming a 4-3 cross-link.”

      1. Line 366 following - can you calculate % crosslinks based on these numbers? What does "high abundance" of 3,3 crosslinks mean in this context? Is this the majority of PG?

      Thank you for your questions. Calculating the percentage of crosslinks based on the muropeptide compositional numbers is a valid consideration. However, it's important to note that the muropeptides we analyzed were hydrolyzed by mutanolysin, and as such, deriving an accurate % crosslink value from these data might not provide a true representation of the crosslinking percentage within the PGN network. For a more precise determination of % crosslinks, methods such as solid-phase NMR on purified peptidoglycan would be required. Our research provides insights into the characterization of PGN fragments and allows us to infer potential PGN cross-linkage types and the enzymes involved based on the dominant muropeptide fragments. Regarding the phrase "high abundance" in the context, it indicates that the M3b/M4b monomer and D34 dimer muropeptides represent a significant portion of the hydrolysis products. These muropeptides are major constituents within the PGN fragments obtained from the enzymatic hydrolysis.

      1. Line 375 - I am not sure PG is a meaningful diffusion barrier for drugs and signaling molecules, give that even larger proteins can apparently diffuse through the pores.

      Thank you for raising this point. Peptidoglycan indeed possesses relatively wide pores that allow for the diffusion of larger molecules, including proteins.5 Research has provided a rough estimate of the porosity of the PGN meshwork, suggesting that it allows for the diffusion of proteins with a maximum molecular mass of around 50 kDa.6 Considering this, we acknowledge that PGN may not serve as a significant diffusion barrier for drugs and signaling molecules. The porosity of the PGN scaffold, which is defined by the degree of cross-linking, plays a role in influencing the transport of molecules to the cell membrane. Thus, while PGN may not serve as a strict diffusion barrier, its structural characteristics still impact bacterial cell mechanics and interactions. We have revised the manuscript to reflect this understanding:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …The porosity of the PGN scaffold, defined by the degree of cross-linking, influences the transport of larger molecules such as proteins. Therefore, modifications to PGN structure are anticipated to significantly affect bacterial cell mechanics and interactions.”

      1. Line 400 - what does "slower hydrolysis rate" refer to, is this chemical hydrolysis or enzymatic (autolysins?). also, I am not sure hydrolysis rate of either modality allows for solid conclusions about how hard (line 402) the PG is.

      Thank you for your comments. The hydrolysis rate here refers to the enzymatic hydrolysis, specifically the mutanolysin cleaving the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage. Indeed, there is no direct correlation between the hydrolysis rate and the hardness of PGN architecture, although the structure rigidity is a key determinant in protein digestion.7 Considering the enzymatic hydrolysis rate depending on the accessibility of the substrate to the enzyme, we proposed that the tighter PGN architecture could also lead to a slower hydrolysis rate. This speculation aligns with our observations of higher cell stiffness or more compact PGN structure of B. breve and its slower hydrolysis rate. We understand this is indirect proof, so the revised sentence now reads:

      “(Section Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve) …Furthermore, B. breve also showed a slower enzymatic hydrolysis rate in purified PGNs, implying that the cell wall structure of B. breve is characterized by a compact PGN architecture.”

      1. Line 424 - I am not convinced this pipeline can detect PG architectures that other pipelines cannot; likely, the difference between previous analyses and theirs is due to different growth conditions (3,3 crosslink formation is often modulated by environmental factors/growth stage). In the next sentence, it sounds like mutanolysin treatment is a novelty in PG analysis (which it is not).

      We apologize if this could have been clearer and we have revised the paragraph to describe our study more accurately. We agree that different growth conditions could influence PGN architecture and other pipelines could manually identify the PGN architectures or automatically identify them if they are not too complex. Our original intention was to highlight the ability of the HAMA program to automatically identify unreported PGN structure. Here are the revised sentences:

      “(Discussion) …We speculate that this finding may be influenced by the comprehensive mass spectrometric approaches we employed or by variations in growth conditions. Moreover, we utilized the well-established enzymatic method involving mutanolysin to cleave the β-N-acetylmuramyl-(1,4)-N-acetylglucosamine linkage, which preserves the original peptide linkage in intact PGN subunits.”

      1. Line 440- 442: As outlined in more detail above: I don't think you can conclude something about the relationship between bridge length and envelope stiffness based on these data. Thank you for your valuable feedback. We agree that our data may not definitively support the direct conclusion about the relationship between bridge length and envelope stiffness in Bifidobacterium species. Instead, we will rephrase this section to accurately present the observed correlations without overgeneralizing:

      “(Discussion) … Notably, our study suggested a potential correlation between the cell stiffness and the compactness of bacterial cell walls in Bifidobacterium species (Figure 5). B. longum, which predominantly harbors tetrapeptide bridges (Ser-Ala-Thr-Ala), exhibits a trend towards lower stiffness, whereas B. breve, characterized by PGN cross-linked with monopeptide bridges (Gly), demonstrates a trend towards higher stiffness. These findings suggested that it may be correlated between the increased rigidity and the more compact PGN architecture built by shorter cross-linked bridges.”

      References: 1. Huang, Y.-W.; Wang, Y.; Lin, Y.; Lin, C.; Lin, Y.-T.; Hsu, C.-C.; Yang, T.-C., Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in Stenotrophomonas maltophilia. mSystems 2017, 2 (4), 00077-00017.

      1. Jarick, M.; Bertsche, U.; Stahl, M.; Schultz, D.; Methling, K.; Lalk, M.; Stigloher, C.; Steger, M.; Schlosser, A.; Ohlsen, K., The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci. Rep. 2018, 8 (1), 13693.

      2. Labischinski, H.; Goodell, E. W.; Goodell, A.; Hochberg, M. L., Direct proof of a "more-than-single-layered" peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J. Bacteriol. 1991, 173 (2), 751-756.

      3. Rohde, M., The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7 (3), gpp3-0044-2018.

      4. Vollmer, W.; Höltje, J. V., The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 2004, 186 (18), 5978-5987.

      5. Vollmer, W.; Blanot, D.; De Pedro, M. A., Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32 (2), 149-167.

      6. Li, Q.; Zhao, D.; Liu, H.; Zhang, M.; Jiang, S.; Xu, X.; Zhou, G.; Li, C., "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem.: X 2020, 7, 100094.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The Hedgehog (HH) protein family is important for embryonic development and adult tissue maintenance. Deregulation or even temporal imbalances in the activity of one of the main players in the HH field, sonic hedgehog (SHH), can lead to a variety of human diseases, ranging from congenital brain disorders to diverse forms of cancers. SHH activates the GLI family of transcription factors, yet the mechanisms underlying GLI activation remain poorly understood. Modification and activation of one of the main SHH signalling mediators, GLI2, depends on its localization to the tip of the primary cilium. In a previous study the lab had provided evidence that SHH activates GLI2 by stimulating its phosphorylation on conserved sites through Unc-51-like kinase 3 (ULK3) and another ULK family member, STK36 (Han et al., 2019). Recently, another ULK family member, ULK4, was identified as a modulator of the SHH pathway (Mecklenburg et al. 2021). However, the underlying mechanisms by which ULK4 enhances SHH signalling remained unknown. To address this question, the authors employed complex biochemistry-based approaches and localization studies in cell culture to examine the mode of ULK4 activity in the primary cilium in response to SHH. The study by Zhou et al. demonstrates that ULK4, in conjunction with STK36, promotes GLI2 phosphorylation and thereby SHH pathway activation. Further experiments were conducted to investigate how ULK4 interacts with SHH pathway components in the primary cilium. The authors show that ULK4 interacts with a complex formed between STK36 and GLI2 and hypothesize that ULK4 functions as a scaffold to facilitate STK36 and GLI2 interaction and thereby GLI2 phosphorylation by STK36. Furthermore, the authors provide evidence that ULK4 and STK36 co-localize with GLI2 at the ciliary tip of NIH 3T3 cells, and that ULK4 and STK36 depend on each other for their ciliary tip accumulation. Overall, the described ULK4-mediated mechanism of SHH pathway modulation is based on detailed and rigorous Co-IP experiments and kinase assays as well as confocal imaging localization studies. The authors used various mutated and wild-type constructs of STK36 and ULK4 to decipher the mechanisms underlying GLI2 phosphorylation at the tip of the primary cilium. These novel results on SHH pathway activation add valuable insight into the complexity of SHH pathway regulation. The data also provide possible new strategies for interfering with SHH signalling which has implications in drug development (e.g., cancer drugs).

      However, it will be necessary to explore additional model systems, besides NIH3T3, HEK293 and MEF cell cultures, to conclude on the universality of the mechanisms described in this study. Ultimately, it needs to be addressed whether ULK4 modulates SHH pathway activity in vivo. Is there evidence that genetic ablation of ULK4 in animal models leads to less efficient SHH pathway induction? It also remains to be resolved how ULK3 and ULK4 act in distinct or common manners to promote SHH signalling. Another remaining question is, whether cell type- and tissue-specific features exist, that play a role in ULK3- versus ULK4-dependent SHH pathway modulation. In particular for the studies on ciliary tip localization of factors, relevant for SHH pathway transduction, a higher temporal resolution will be needed in the future as well as a deeper insight into tissue/ cell type-specific mechanisms. These caveats, mentioned here, don't have to be addressed in new experiments for the revision of this manuscript but could be discussed.

      We agree with the reviewer that it would be important to investigate in the future the in vivo function Ulk4 in Shh signaling, the relationship between Ulk3 and Ulk4/Stk36, and possible cell type/tissue specificity of these two kinase systems. This will need the generation of single and double knockout mice and examine Hh related phenotypes in different tissues and developmental stages. The precise mechanism by which Ulk4 and Stk36 are translocated to the ciliary tip is also an important and unsolved issue. We include several paragraphs in the “discussion” section to address these outstanding questions for future study.

      Reviewer #2 (Public Review):

      The authors provide solid molecular and cellular evidence that ULK4 and STK36 not only interact, but that STK36 is targeted (transported?) to the cilium by ULK4. Their data helps generate a model for ULK4 acting as a scaffold for both STK36 and its substrate, Gli2, which appear to co-localise through mutual binding to ULK4. This makes sense, given the proposed role of most pseuodkinases as non-catalytic signaling hubs. There is also an important mechanistic analysis performed, in which ULK4 phosphorylation in an acidic consensus by STK36 is demonstrated using IP'd STK36 or an inactive 'AA' mutant, which suggests this phosphorylation is direct.

      The major strength of the study is the well-executed combination of logical approaches taken, including expression of various deletion and mutation constructs and the careful (but not always quantified in immunoblot) effects of depleting and adding back various components in the context of both STK36 and ULK3, which broadens the potential impact of the work. The biochemical analysis of ULK4 phosphorylation appears to be solid, and the mutational study at a particular pair of phosphorylation sites upstream of an acidic residue (notably T2023) is further strong evidence of a functional interaction between ULK4/STK36. The possibility that ULK4 requires ATP binding for these mechanisms is not approached, though would provide significant insight: for example it would be useful to ask if Lys39 in ULK4 is involved in any of these processes, because this residue is likely important for shaping the ULK4 substrate-binding site as a consequence of ATP binding; this was originally shown in PMID 24107129 and discussed more recently in PMID: 33147475 in the context of the large amount of ULK4 proteomics data released.

      The reviewer raised an interesting question of whether ATP binding to the pseudokinase domain of Ulk4 might be required for its function, i.e., by regulating the interaction with its binding partner. In a recent study (Preuss et al. 2020;PMID: 33147475), the critical Lys39 for ATP binding was converted to Arg (KR mutation); however, unlike in most kinases the KR mutation affect ATP binding, the K39R mutation in the Ulk4 pseudokinase did not affect ATP binding although it slightly increased ADP binding (PMID: 33147475). Another mutation made by Preuss et al(PMID: 33147475), N239L, affected protein stability, making it impossible to determine whether this mutation affect ATP binding. Therefore, in the absence of clear approach to perturb ATP binding without affecting the overall structure of Ulk4, it would be challenging to address whether ATP binding regulates the ability of Ulk4 to bind its substrates. Nevertheless, we discuss the possibility that ATP binding might regulate Ulk4/Stk36 interaction and Shh signaling.

      The discussion is excellent, and raises numerous important future work in terms of potential transportation mechanisms of this complex. It also explains why the ULK4 pseudokinase domain is linked to an extended C-terminal region. Does AF2 predict any structural motifs in this region that might support binding to Gli2?

      The extended C-terminal domain of Ulk4 contains Arm/HEAT repeats (protein-protein interacting domain), which are predicted by AF2 to form alpha helixes.

      A weakness in the study, which is most evident in Figure 1, where Ulk4 siRNA is performed in the NIH3T3 model (and effects on Shh targets and Gli2 phosphorylation assessed), is that we do not know if ULK4 protein is originally present in these cells in order to actually be depleted. Also, we are not informed if the ULK4 siRNA has an effect on the 'rescue' by HA-ULK4; perhaps the HA-ULK4 plasmid is RNAi resistant, or if not, this explains why phosphorylation of Gli2 never reaches zero? Given the important findings of this study, it would be useful for the authors to comment on this, and perhaps discuss if they have tried to evaluate endogenous levels of ULK4 (and Stk36) in these cells using antibody-based approaches, ideally in the presence and absence of Shh. The authors note early on the large number of binding partners identified for ULK4, and siRNA may unwittingly deplete some other proteins that could also be involved in ULK4 transport/stability in their cellular model.

      Due to the lack of reliable Ulk4 and Stk36 antibodies, we were unable to confirm knockdown efficiency by western blot analysis. Therefore, we relied on the measure Ulk4 and STk36 mRNA expression by RT-qPCR to estimate the knockdown efficiency (Fig 1- figure supplement 1). We used mouse Ulk4 shRNA to carry out the knockdown experiments in NIH3T3 and MEF cells while the human version of Ulk4 (hUlk4) was used for the rescue experiments (Fig 1- figure supplement 2; Fig. 8). We have confirmed that the mUlk4 shRNA targeting sequence is not conserved in hUlk4; therefore, the hULK4 construct is RNAi resistant. The rescue experiments strongly argue that the effect of Ulk4 RNAi on Shh signaling is due to loss of endogenous Ulk4. This argument is further strengthened by the observations that mutations that affected Ulk4 and Stk36 ciliary tip localization also affected Shh signaling such as Gli2 phosphorylation and Ptch1/Gli expression (Fig. 8).

      The sequence of ULK4 siRNAs is not included in the materials and methods as far as I can see.

      We have added the mouse Ulk4 RNAi target sequence in the revised version.

      Reviewer #3 (Public Review):

      In this manuscript, Zhou et al. demonstrate that the pseudokinase ULK4 has an important role in Hedgehog signaling by scaffolding the active kinase Stk36 and the transcription factor Gli2, enabling Gli2 to be phosphorylated and activated.

      Through nice biochemistry experiments, they show convincingly that the N-terminal pseudokinase domain of ULK4 binds Stk36 and the C-terminal Heat repeats bind Gli2.

      Lastly, they show that upon Sonic Hedgehog signaling, ULK4 localizes to the cilia and is needed to localize Stk36 and Gli2 for proper activation.

      This manuscript is very solid and methodically shows the role of ULK4 and STK36 throughout the whole paper, with well controlled experiments. The phosphomimetic and incapable mutations are very convincing as well. I think this manuscript is strong and stands as is, and there is no need for additional experiments.

      Overall, the strengths are the rigor of the methods, and the convincing case they bring for the formation of the ULK4-Gli2-Stk36 complex. There are no weaknesses noted. I think a little additional context for what is being observed in the immunofluorescence might benefit readers who are not familiar with these cell types and structures.

      We thank this reviewer for the positive comments.

      Recommendations For the Authors

      Reviewer #1 (Recommendations For The Authors):

      This elegant study has been thoroughly and thoughtfully designed and the dataset is solid. The biochemistry results are overall very convincing. Some data lack quantification and there needs to be more information on data analyses and statistics. The following suggestions and comments aim at strengthening the manuscript.

      1. Please provide quantification normalized to input for IP experiments (Figures 1 E - F; Figure 8 C). More information on data analyses and statistics should be provided and included as information in the figure legends.

      Thanks for the suggestions, we have done the quantification and statistics analyses for Figures 1E-G and Figure8 C as requested.

      1. Did the authors investigate whether overexpressing hULK4 in the control NIH3T3 cells leads to an increase in pS230/232 (related to Figure 1E)? This would nicely support the notion of a promoting effect of ULK4 on GLI2 phosphorylation.

      We did not. We speculated that overexpressing hULK4 may not significantly promote GLI2 phosphorylation because Ulk4 is a pseudokinase and endogenous Stk36 (the kinase partner of Ulk4) is limited.

      1. The CO-IP experiments to show GLI2 activation were performed in NIH3T3 cells, whereas HEK293 cells were used for the experiments shown in Figure 2. Is there a specific reason for switching between cell lines also for experiments shown in Figures 3 C- I? Did the authors repeat some of the key experiments in both cell lines?

      In mammalian cells, Shh-induced activation of GLI2 depends on primary cilia (Han et al., 2019). NIH3T3 cells form the primary cilia but HEK293T cells do not. Therefore, we used NIH3T3 cells to examine the processes that are regulated by the Shh treatment assay (e.g., the Shh-induced phosphorylation of GLI2 and STK36). The HEK293 cells were used to map binding domain between ULK4 and STK36/GLI2/SUFU due to the high transfection efficiency.

      1. In Figure 2 D-E the authors nicely showed that hUlk4N-HA interacted with CFP-Stk36 but not with Myc-Gli2/Fg-Sufu whereas hUlk4C-HA formed a complex with Myc-Gli2/Fg-Sufu but not with CFP-Stk36. In Figure 4E the authors showed in their Co-IP experiments that Fg-Stk36 and Myc-Gli2 form a complex independent of SHH treatment. Did the authors see some pull down of Stk36, still in complex with Gli2, using hUlk4C IP and pull down of Gli2, still in complex with Stk36, using hUlk4N IP?

      We did not test that. As we have shown in Figures 4A and 4E, knockdown of endogenous ULK4 nearly abolished the interaction between Myc-GLi2 and Fg-Stk36, suggesting that Ulk4 is the major scaffold to bring Skt36 and Gli2 together, and that there is little if any direct interaction between GLi2 and Stk36.

      1. Another method to verify hULK4-Stk36-Gli2 complex formation (Figure 4) would be helpful. For example, proximity ligation assays, tripartite split GFP assays, or colocalization based on expansion STED immunofluorescence microscopy could be performed to temporally and spatially resolve localization of Ulk4, Stk36 and Gli2 upon SHH stimulation in the primary cilium

      Thanks for the suggestions. We think that our current study using biochemical and cell biology approaches have provide sufficient evidence that Ulk4, Stk36 and Gli2 form complexes. We will keep in mind of those more sophisticated methods in our future endeavors.

      1. Please provide more representative images of Ulk4, Stk36 and Gli2 localization in NIH3T3 cells or lower magnification overview images showing more than one cell (Figure 5).

      We have provided more representative images in Figure 5- figure supplement 1A-F of the revised manuscript.

      1. Confirmation of the results shown in Figure 5 in a second cell line would strengthen the data.

      We have confirmed the results in MEFs (see Figure 5- figure supplement 1G-J)

      1. Did the authors add immunofluorescence for tubulin as a ciliary base marker to ensure correct assignment of ciliary tip versus ciliary base localization for quantification experiments (Figures 5 - 8)?

      It has been well documented that GLi2 is accumulated at the ciliary tip in respond to Shh treatment; therefore, we used Gli2 as a marker for ciliary tip where both Ulk4 and Stk36 were also accumulated. γ tubulin staining could be another marker to assign the ciliary tip vs base; however, the antibody combination we have did not allow us to simultaneously stain γ tubulin and acetylated tubulin (Ac-Tub).

      1. SMO localization as a further readout of SHH pathway activation might be considered to be added for some of the key results (e.g., Figure 6). Is SMO trafficking affected after depletion or overexpression of ULK4?

      Due to the lack of a workable antibody to detect endogenous Smo in our hands, we did not determine whether the trafficking of SMO is affected after depletion or overexpression of ULK4. However, we noticed that a recent study reported that the SHH-induced ciliary SMO accumulation was impaired in Ulk4 siRNA treated cells (Mecklenburg et al. 2021). We include this information and its implication in the discussion section

      1. Do the authors see ULK4 only at the ciliary tip after SHH stimulation or is there also a dynamic time-dependent localization along the ciliary shaft? The image in Figure 6E (dKO + Stk36 WT) seems to show ULK4 also in the shaft.

      Unlike Smo that is evenly distributed alone the axoneme of primary cilia, ULK4 is mainly accumulated at ciliary tips upon Shh stimulation. Ulk4 is also located at low levels outside the cilia and sometimes in the ciliary shaft during its transit to the ciliary tip (e.g., see Figure 5- figure supplement 1F1-2; J1-2).

      1. Is the immunofluorescence signal for Ulk4 significantly reduced after shRNA treatment to deplete Ulk4 (Figure 6A)?

      We constructed a cell line that stably expressed ULK4 shRNA. The knockdown efficiency was determined by measuring Ulk4 mRNA expression (Fig 1_figure supplement 1). Because we were unable to obtain a reliable ULK4 antibody for immunostaining, we did not examine by whether ULK4 signal was depleted by Ulk4 shRNA.

      1. The labelled ciliary tip resembles in some cases images seen for ciliary abscission. The authors could use membrane/ciliary membrane markers to ensure "intraciliary" localization of the investigated factors.

      Thanks for the suggestion. We will try that in our future experiments.

      1. How many replicates were used in the three independent quantitative RT-PCR experiments (Figure 1 A-D)?

      We used 3 replicates in each independent quantitative RT-PCR assay.

      1. Please provide p values or statement on no significance for the comparison between Ulk3 single and Ulk3/Ulk4 double knockdown (Figure 1C) and between Stk36 single and Stk36/Ulk4 double knockdown (Figure 1D; Fig1_Figure Supplement 2).

      Thanks for the suggestion, we have added the p value or “ns” as asked.

      1. Figure legends in general are a bit short could have some more detailed information.

      Thank you for the suggestion, we have revised the Figure legends as asked.

      1. What do the asterisks present in Figure 4 C-D?

      Thanks for the suggestion. The asterisks in Figure 4C-D indicated the full length STK36 and truncated form STK36N and STK36C fragments. We that included this information in the figure legend.

      1. The authors state that a previous study described ULK4 as a genetic modifier for holoprosencephaly and that this raised the possibility that ULK4 may participate in HH signal transduction. Primary ciliary localization of ULK4 in mouse neuronal tissue and SHH pathway modulation by ULK4 in cell culture have been shown by Mecklenburg et al. 2021 before. Maybe the authors could rephrase their introduction and discussion accordingly.

      Thanks for the suggestion, we have changed the introduction and discussion accordingly.

      1. Overexpression studies in heterologous systems using tagged proteins can potentially have an influence on their subcellular localization and function. Please discuss this caveat.

      We have mentioned this caveat in the “discussion” section of the revised manuscript. However, we have tried to express the transgene at low levels using the lentiviral vector containing a weak promoter to ensure that the exogenously expressed proteins are still regulated by Hh signaling. We have also confirmed that the tagged Ulk4 and Stk36 can rescue the loss of endogenous genes.

      1. More details in the Methods section should be provided on the SHH induction in NIH3T3 cells, HEK293 cells and MEFs.

      We have revised the methods section on Shh induction.

      1. ULK4 is known to have at least three isoforms that exhibit varying abundance across developmental stages in mice and humans (Lang et al., 2014) (DOI:10.1242/jcs.137604). Can the authors speculate on potential common and distinct functions of the different ULK4 isoforms on SHH pathway modulation based on their present results?

      It is interesting that Ulk4 has multiple isoforms in both mouse and human. Several short isoforms in both mouse and human lack the pseudokinase domain while one short isoform in mouse lacks the C-terminal region essential for Ulk4 ciliary tip localization. We speculate that the C-terminally deleted isoform may not have a function in the Shh pathway based on our results shown in Fig. 7 and 8 but might still have functions in other cellular processes.

      Reviewer #2 (Recommendations For The Authors):

      The paper is well written, and clear throughout, with excellent (up-to-date) citations to the field.

      We thank reviewer #2 for the positive comments.

      Reviewer #3 (Recommendations For The Authors):

      My only quibble is that the immunofluorescence images are a little confusing, especially to people outside of the field. Please include an image of the whole field and improve the captions. Is that a single cell for each cilia? Why are there so few cilia? The DAPI makes it seem like What are we looking at? Are those multiple nuclei in Figure 6? They seem a little small if that's the 5 uM scale bar

      We provide uncropped images of Figure 5E to show the entire cells (below). We have added some context to improve the captions. Most of the mammalian cells such as MEF and NIH3T3 cells contain a single primary cilium; however, mutilated cells do exist. The DAPI staining indicated the nuclei. The cells shown in Figure 6 have single nucleus (the scale should be 2 µM). Due to the unevenness of DAPI signals in the nuclei, only the strong signals (puncta) were shown for individual nuclei.

      Author response image 1.

      One small typo: GLL2 instead of GLI2 on line 363

      Thanks, we have corrected this spelling mistake.

    1. Author Response

      Reviewer #2 (Public Review):

      Manassaro et al. present an extensive three-session study in which they aimed to change defensive responses (skin conductance; SCR) to an aversively conditioned stimulus by targeting medial prefrontal cortex (their words) using repetitive TMS prior to retrieval. They report that stimulating mPFC using TMS abolishes SCR responses to the conditioned stimulus, and that this effect is specific for the stimulated region and the specific CS-US association, given that SCR responses to a different modality US are not changed.

      I like how the authors have clearly attempted to control for several potential confounds by including multiple stimulation sites, measured SCR responses to several unconditioned stimuli, and applied the experiment in multiple contexts. However, several conceptual and practical issues remain that I think limit the value of potential conclusions drawn from this work.

      The first issue that I have with this study concerns the relationship between the TMS manipulation and the theoretical background the authors present in their rationale. In the introduction the authors sketch that what they call 'mPFC' is involved in regulation of threat responses. They make a convincing case, however, almost all of the evidence they present concerns the ventromedial part of the prefrontal cortex (refs 18-25). The authors then mention that no one has ever studied the effects of 'mPFC'-TMS on threat memories. That is not surprising given that stimulating vmPFC with TMS is very difficult, if not impossible. Simulation of the electrical field that develops as a consequence from the authors manipulation (using the same TMS coil and positioning the authors use) shows that vmPFC (or mPFC for that matter) is not stimulated. The authors then continue in the methods section stating that the region they aimed for was BA10. This region they presumably do stimulate, however, that does not follow logically from their argument. BA10 is anatomically, cytoarchitectonically and functionally a wholly different area than vmPFC and I wonder if their rationale would hold given that they stimulate BA10.

      We would like to thank the Reviewer for highlighting this very important point. The Reviewer is right in stating that the Brodmann area 10 (BA 10) is anatomically, cytoarchitectonically, and functionally distinct from the ventromedial PFC. As we reported in the Methods section, the coil placement over the frontopolar midline electrode (Fpz) according to the international 10‒20 EEG coordinate system directly focused the stimulation over the medial portion of the BA 10. In the literature, the aPFC is also known as the “frontopolar cortex” or the “rostral frontal cortex” and encompasses the most anterior portion of the prefrontal cortex, which corresponds to the BA 10. In line with this observation, we have corrected “medial prefrontal cortex” (mPFC) with “medial anterior prefrontal cortex” (aPFC) throughout the manuscript. We also have corrected the theoretical background and the rationale in the Introduction section by mentioning several studies that: i) Reported the involvement of the aPFC in emotional down-regulation (Volman et al., 2013; Koch et al., 2018; Bramson et al., 2020). ii) Traced anatomical connections between the medial/lateral aPFC and the amygdala (Peng et al., 2018; Folloni et al., 2019; Bramson et al., 2020). iii) Detected functional connections between the aPFC and the vmPFC during fear down-regulation (Klumpers et al., 2010). iv) Found hypoactivation, reduced connectivity, and altered thickness of aPFC in PTSD patients (Lanius et al., 2005; Morey et al., 2008; Sadeh et al., 2015; Sadeh et al., 2016). v) Revealed that strong activation of the aPFC may promote a higher resilience against PTSD onset (Kaldewaij et al., 2021) and that enhanced aPFC activity and potentiated aPFC-vmPFC connectivity is detectable after effective therapy in PTSD patients (Fonzo et al., 2017). Furthermore, we discussed our results in light of this evidence in the Discussion section. We really thank the Reviewer for this key implementation of our study.

      The second concern I have is that although I think the authors should be praised for including both sham and active control regions, the controls might not be optimally chosen to control for the potential confounds of their condition of interest (mPFC-TMS). Namely, TMS on the forehead can be unpleasant, if not painful, whereas sham-TMS or TMS applied to the back of the head or even over dlPFC is not (or less so at the very least). Given that the SCR results after mPFC TMS show exactly the same temporal pattern as the sham-TMS but with a lower starting point, one could wonder whether a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations. A control region that would have been more obvious to take is the lateral part of BA10, by moving the TMS coil several centimeters to the left or right, circumventing all things potentially called medial but giving similar unpleasant sensations (pain etc).

      We would also like to thank the Reviewer for bringing to light this issue and allowing us to strengthen our results. The Reviewer is right in pointing out that rTMS application over the forehead can be subjectively perceived as unpleasant, relative to other head coordinates or sham stimulation. The question of whether an unpleasant stimulation prior to the retrieval might provoke habituation to discomfort sensations and lead to weaker SCRs in the consequent CS presentations is valid and reasonable. We also thank the Reviewer for advising us to stimulate the lateral part of BA 10 as an active control site. However, given the potential involvement of the lateral BA 10 in the fear network (see previous point) and the potential risks due to the anatomical proximity of lateral BA 10 with the temporal lobe, we reasoned to adopt an alternative approach to investigate whether “a painful stimulation prior to the retrieval might have already caused habituation to painful stimulation observed in SCR in consequent CS presentations”. We repeated the entire experiment in one further group (ctrl discomfort, n = 10) by replacing the rTMS procedure with a 10-min discomfort-inducing procedure over the same site of the forehead (Fpz) to mimic the rTMS-evoked unpleasant sensations in the absence of neural stimulation effects (see the new version of the Methods section). The electrical stimulation intensity was individually calibrated through a staircase procedure (0 = no discomfort; 10 = high discomfort). The shock amplitude was set at the current level corresponding to the mean rating of ‘4’ on the subjective scale because, in the new experiments that we performed targeting the aPFC with rTMS (n = 9), we collected participants’ rTMS-induced discomfort ratings obtaining a mean rating of 3.833 ± 0.589 SEM on the same scale. We found CS-evoked SCR levels not significantly different to those of the sham group during the test session as well as during the follow-up session, suggesting that the discomfort experienced during the rTMS procedure did not contribute to the reduction of electrodermal responses observed in the aPFC group. We reported the results of this experiment in the Results section and Figure 2-figure supplement 2.

      My final concern is that the main analyses are performed on single trials of SCR responses, which is a relatively noise measure to use on single trials. This is also done in relatively small groups (n=21). I would have liked to see both the raw or at least averaged timeseries SCR data plotted, and a rationale explaining how the authors decided on the current sample sizes, if that was based on a power analyses one must have expected quite strong effects.

      Following the Reviewer’s suggestion, we decided to remove the analysis on single trials, and we apologize for not including SCR timeseries. To quantify the amount of effect induced by the rTMS protocol, we have now added within-group comparisons (through 2 × 2 mixed ANOVAs) that show, for each group, the amount of change in CS-evoked SCRs from the conditioning phase to the test phase, as well as from the conditioning phase to the follow-up phase. Furthermore, to directly and simply depict these changes, in addition to dot plots, we have also represented them with line charts (Figs. 2C, 2H, 4C, 4H, 5C, 5H). To estimate the sample size, we had previously performed a power analysis through G*Power 3.1.9.2 and it had resulted in n = 21 per experimental group. However, by correcting data pre-processing procedures (in accordance with Reviewer 1), we obtained data that were not normally distributed. Thus, we reasoned to enlarge our sample width by re-performing a power analysis (with the new suggested statistical analyses) and then repeating the experiments. For the main statistics, i.e. mixed ANOVA (within-between interaction) with two groups and two measurements, with the following input parameters: α equal to 0.05, power (1-β) equal to 0.95, and a hypothesized effect size (f) equal to 0.25, the new estimated sample size resulted in n = 30 per experimental group.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We want to thank the Editor and Reviewers for their thorough assessment of the manuscript as well as their constructive critiques. We have collated below the public review and recommendations from each Reviewer as well as our responses to them.

      eLife assessment

      This study by Verdikt et al. provided solid evidence demonstrating the potential impacts of Δ9-tetrahydrocannabinol (Δ9-THC) on early embryonic development using mouse embryonic stem cells (mESCs) and in vitro differentiation. Their results revealed that Δ9-THC enhanced mESCs proliferation and metabolic adaptation, possibly persisting through differentiation to Primordial Germ Cell-Like Cells (PGCLCs), though the evidence supporting this persistence was incomplete. Although the study is important, it was limited by being conducted solely in vitro and lacking parallel human model experiments.

      Reviewer #1 (Public Review):

      The authors investigated the metabolic effects of ∆9-THC, the main psychoactive component of cannabis, on early mouse embryonic cell types. They found that ∆9-THC increases proliferation in female mouse embryonic stem cells (mESCs) and upregulates glycolysis. Additionally, primordial germ cell-like cells (PGCLCs) differentiated from ∆9-THC-exposed cells also show alterations to their metabolism. The study is valuable because it shows that physiologically relevant ∆9-THC concentrations have metabolic effects on cell types from the early embryo, which may cause developmental effects. However, the claim of "metabolic memory" is not justified by the current data, since the effects on PGCLCs could potentially be due to ∆9-THC persisting in the cultured cells over the course of the experiment, even after the growth medium without ∆9-THC was added.

      The study shows that ∆9-THC increases the proliferation rate of mESCs but not mEpiLCs, without substantially affecting cell viability, except at the highest dose of 100 µM which shows toxicity (Figure 1). Treatment of mESCs with rimonabant (a CB1 receptor antagonist) blocks the effect of 100 nM ∆9-THC on cell proliferation, showing that the proliferative effect is mediated by CB1 receptor signaling. Similarly, treatment with 2-deoxyglucose, a glycolysis inhibitor, also blocks this proliferative effect (Figure 4G-H). Therefore, the effect of ∆9-THC depends on both CB1 signaling and glycolysis. This set of experiments strengthens the conclusions of the study by helping to elucidate the mechanism of the effects of ∆9-THC.

      Although several experiments independently showed a metabolic effect of ∆9-THC treatment, this effect was not dose-dependent over the range of concentrations tested (10 nM and above). Given that metabolic effects were observed even at 10 nM ∆9-THC (see for example Figure 1C and 3B), the authors should test lower concentrations to determine the dose-dependence and EC50 of this effect. The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).

      The study also profiles the transcriptome and metabolome of cells exposed to 100 nM ∆9-THC. Although the transcriptomic changes are modest overall, there is upregulation of anabolic genes, consistent with the increased proliferation rate in mESCs. Metabolomic profiling revealed a broad upregulation of metabolites in mESCs treated with 100 nM ∆9-THC.

      Additionally, the study shows that ∆9-THC can influence germ cell specification. mESCs were differentiated to mEpiLCs in the presence or absence of ∆9-THC, and the mEpiLCs were subsequently differentiated to mPGCLCs. mPGCLC induction efficiency was tracked using a BV:SC dual fluorescent reporter. ∆9-THC treated cells had a moderate increase in the double positive mPGCLC population and a decrease in the double negative population. A cell tracking dye showed that mPGCLCs differentiated from ∆9-THC treated cells had undergone more divisions on average. As with the mESCs, these mPGCLCs also had altered gene expression and metabolism, consistent with an increased proliferation rate.

      My main criticism is that the current experimental setup does not distinguish between "metabolic memory" vs. carryover of THC (or its metabolites) causing metabolic effects. The authors assume that their PGCLC induction was performed "in the absence of continuous exposure" but this assumption may not be justified. ∆9-THC might persist in the cells since it is highly hydrophobic. In order to rule out the persistence of ∆9-THC as an explanation of the effects seen in PGCLCs, the authors should measure concentrations of ∆9-THC and THC metabolites over time during the course of their PGCLC induction experiment. This could be done by mass spectrometry. This is particularly important because 10 nM of ∆9-THC was shown to have metabolic effects (Figure 1C, 3B, etc.). Since the EpiLCs were treated with 100 nM, if even 10% of the ∆9-THC remained, this could account for the metabolic effects. If the authors want to prove "metabolic memory", they need to show that the concentration of ∆9-THC is below the minimum dose required for metabolic effects.

      Overall, this study is promising but needs some additional work in order to justify its conclusions. The developmental effects of ∆9-THC exposure are important for society to understand, and the results of this study are significant for public health.

      *Reviewer #1 (Recommendations For The Authors):

      This has the potential to be a good study, but it's currently missing two key experiments:

      What is the minimum dose of ∆9-THC required to see metabolic effects?

      We would like to thank Reviewer 1 for their insightful comments. We have included exposures to lower doses of ∆9-THC in Supplementary Figure 1. Our data shows that ∆9-THC induces mESCs proliferation from 1nM onwards. However, when ESCs and EpiLCs were exposed to 1nM of ∆9-THC, no significant change in mPGCLCs induction was observed (updated Figure 6B). Of note, in their public review, Reviewer 1 mentioned that “The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).” According to the literature, stimulation of non-cannabinoid receptors and ion channels (including GPR18, GPR55, TRPVs, etc.) occurs at 40nM-10µM of ∆9-THC (Banister et al., 2019). We therefore expect that at the lower nanomolar range tested, CB1 is the main receptor stimulated by ∆9-THC, as we showed for the 100nM dose in our rimonabant experiments (Fig. 2).

      Is the residual THC concentration during the PGCLC induction below this minimum dose? Even if the effects are due to residual ∆9-THC, this would not undermine the overall study. There would simply be a different interpretation of the results.

      This experiment was particularly important to distinguish between a “true” ∆9-THC metabolic memory or residual ∆9-THC leftover during PGCLCs differentiation. Our mass spectrometry quantification revealed that no significant ∆9-THC could be detected in day 5 embryoid bodies compared to treated EpiLCs prior to differentiation (Supplementary Figure 13). These results support the existence of ∆9-THC metabolic memory across differentiation.

      You also do not mention whether you tested your cells for mycoplasma. This is important since mycoplasma contamination is a common problem that can cause artifactual results. Please test your cells and report the results.

      All cells were tested negative for mycoplasma by a PCR test (ATCC® ISO 9001:2008 and ISO/IEC 17025:2005 quality standards). This information has been added in the Material and Methods section.

      Minor points:

      1. I don't think it's correct to say that cannabis is the most commonly used psychoactive drug. Alcohol and nicotine are more commonly used. See: https://nida.nih.gov/research-topics/alcohol and https://www.cancer.gov/publications/dictionaries/cancer-terms/def/psychoactive-substance I looked at the UN drugs report [ref 1] and alcohol or nicotine were not included on that list of drugs, so the UN may use a different definition. This doesn't affect the importance or conclusions of this study, but the wording should be changed.

      We agree and are now following the WHO description of cannabis (https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/drugs-psychoactive/cannabis) by referring to it as the “most widely used illicit drug in the world”. (Line 44).

      1. It would be informative to use your RNA-seq data to examine the expression of receptors for ∆9-THC such as CB1, CB2, and GPR55. CB1 might be the main one, but I am curious to see if others are present.

      We have explored the protein expression of several cannabinoid receptors, including CB2, GPR18, GPR55 and TRPV1 (Bannister et al., 2019). These proteins, except TRPV1, were lowly expressed in mouse embryonic stem cells compared to the positive control (mouse brain extract, see Author response image 1). Furthermore, our experiment with Rimonabant showed that the proliferative effects of ∆9-THC are mediated through CB1.

      Author response image 1.

      Cannabinoid receptors and non-cannabinoid receptors protein expression in mouse embryonic stem cells.

      1. Make sure to report exact p-values. You usually do this, but there are a few places where it says p<0.0001. Also, report whether T-tests assumed equal variance (Student's) or unequal variance (Welch's). [In general, it's better to use unequal variance, unless there is good reason to assume equal variance.]

      Prism, which was used for statistical analyses, only reports p-values to four decimal places. For all p-values that were p<0.0001, the exact decimals were calculated in Excel using the “=T.DIST.2T(t, df)” function, where the Student’s distribution and the number of degrees of freedom computed by Prism were inputted. Homoscedasticity was confirmed for all statistical analyses in Prism.

      1. Figure 2A: An uncropped gel image should be provided as supplementary data. Additionally, show positive and negative controls (from cells known to either express CB1 or not express CB1)

      The uncropped gel image is presented in Author response image 2. The antibody was validated on mouse brain extracts as a positive control as shown in Figure 1.

      Author response image 2.

      Uncropped gel corresponding to Fig. 2A where an anti-CB1 antibody was used.

      1. Figure 6B: Please show a representative gating scheme for flow cytometry (including controls) as supplementary data. Also, was a live/dead stain used? What controls were used for compensation? These details should be reported.

      The gating strategy is presented in Supplementary Figure 11. The Material and Methods section has also been expanded.

      1. As far as I can tell, you only used female mESCs. It would be good to test the effects on male mESCs as well since these have some differences due to differences in X-linked gene expression (female mESCs have two active X chromosomes). I understand that you might not have a male BV:SC reporter line, so it would be acceptable to omit the mPGCLC experiments on male cells.

      We have tested the 10nM-100µM dose range in the male R8 mESCs (Supplementary Figure 3). Similar results as with the female H18 cells were observed. Accordingly, PGCLCs induction was increased when R8 ESCs + EpiLCs were exposed to 100nM of ∆9-THC (Supplementary Figure 12). This is in line with ∆9-THC impact on fundamentally conserved metabolic pathways across species and sex, although it should be noted that one representative model of each sex is not sufficient to exclude sex-specific effects.

      Reviewer #2 (Public Review):

      In the study conducted by Verdikt et al, the authors employed mouse Embryonic Stem Cells (ESCs) and in vitro differentiation techniques to demonstrate that exposure to cannabis, specifically Δ9-tetrahydrocannabinol (Δ9-THC), could potentially influence early embryonic development. Δ9-THC was found to augment the proliferation of naïve mouse ESCs, but not formative Epiblast-like Cells (EpiLCs). This enhanced proliferation relies on binding to the CB1 receptor. Moreover, Δ9-THC exposure was noted to boost glycolytic rates and anabolic capabilities in mESCs. The metabolic adaptations brought on by Δ9-THC exposure persisted during differentiation into Primordial Germ Cell-Like Cells (PGCLCs), even when direct exposure ceased, and correlated with a shift in their transcriptional profile. This study provides the first comprehensive molecular assessment of the effects of Δ9-THC exposure on mouse ESCs and their early derivatives. The manuscript underscores the potential ramifications of cannabis exposure on early embryonic development and pluripotent stem cells. However, it is important to note the limitations of this study: firstly, all experiments were conducted in vitro, and secondly, the study lacks analogous experiments in human models.

      Reviewer #2 (Recommendations For The Authors):

      1. EpiLCs, characterized as formative pluripotent stem cells rather than primed ones, are a transient population during ESC differentiation. The authors should consider using EpiSCs and/or formative-like PSCs (Yu et al., Cell Stem Cell, 2021; Kinoshita et al., Cell Stem Cell, 2021), and amend their references to EpiLCs as "formative".

      Indeed, EpiLCs are a transient pluripotent stem cell population that is “functionally distinct from both naïve ESCs and EpiSCs” and “enriched in formative phase cells related to pre-streak epiblast” (Kinoshita et al., Cell Stem Cell, 2021). Here, we used the differentiation system developed by M. Saitou and colleagues to derive PGCLCs (Hayashi et al, 2011). Since EpiSCs are refractory to PGCLCs induction (Hayashi et al, 2011), we used the germline-competent EpiLCs and took advantage of a well-established differentiation system to derive mouse PGCLCs. Most authors, however, agree that in terms of epigenetic and metabolic profiles, mouse EpiLCs represent a primed pluripotent state. We have added that PGCs arise in vivo “from formative pluripotent cells in the epiblast” on lines 85-86.

      1. Does the administration of Δ9-THC, at concentrations from 10nM to 1uM, alter the cell cycle profiles of ESCs?

      The proliferation of ESCs was associated with changes in the cell cycle, as presented in the new Supplementary Figure 2, which we discuss in lines 118-123.

      1. Could Δ9-THC treatment influence the differentiation dynamics from ESCs to EpiLCs?

      No significant changes were observed in the pluripotency markers associated with ESCs and EpiLCs (Supplementary Figure 9). We have added this information in lines 277-279.

      1. The authors should consider developing knockout models of cannabinoid receptors in ESCs and EpiLCs (or EpiSCs and formative-like PSCs) for control purposes.

      This is an excellent suggestion. Due to time and resource constraints, however, we focused our mechanistic investigation of the role of CB1 on the use of rimonabant which revealed a reversal of Δ9-THC-induced proliferation at 100nM.

      1. Lines 134-136: "Importantly, SR141716 pre-treatment, while not affecting cell viability, led to a reduced cell count compared to the control, indicating a fundamental role for CB1 in promoting proliferation." Regarding Figure 2D, does the Rimonabant "+" in the "mock" group represent treatment with Rimonabant only? If that's the case, there appears to be no difference from the Rimonabant "-" mock. The authors should present results for Rimonabant-only treatment.

      To be able to compare the effects +/- Rimonabant and as stated in the figure legend, each condition was normalized to its own control (mock with, or without Rimonabant). Author response image 3 is the unnormalized data showing the same effects of Δ9-THC and Rimonabant on cell number.

      Author response image 3.

      Unnormalized data corresponding to the Figure 2D.

      1. In Figure 3, both ESCs and EpiLCs show a significant decrease in oxygen consumption and glycolysis at a 10uM concentration. Do these conditions slow cell growth? BrdU incorporation experiments (Figure 1) seem to contradict this. With compromised bioenergetics at this concentration, the authors should discuss why cell growth appears unaffected.

      Indeed, we believe that cell growth is progressively restricted upon increasing doses of ∆9-THC (consider Supplementary Figure 2). In addition, oxygen consumption and glycolysis can be decoupled from cellular proliferation, especially considering the lower time ranges we are working with (44-48h).

      1. Beyond Δ9-THC exposure prior to PGCLCs induction, it would be also interesting to explore the effects of Δ9-THC on PGCLCs during their differentiation.

      We agree with the Reviewer. Our aim was to study whether exposure prior to differentiation could have an impact, and if so, what are the mediators of this impact. Full exposure during differentiation is another exposure paradigm that is relevant but would not have allowed us to show the metabolic memory of ∆9-THC exposure. Future work, however, will be dedicated to analyzing the effect of continuous exposure through differentiation.

      1. As PGC differentiation involves global epigenetic changes, it would be interesting to investigate how Δ9-THC treatment at the ESCs/EpiLCs stage may influence PGCLCs' transcriptomes.

      We also agree with the Reviewer. While this paper was not primarily focused on Δ9-THC’s epigenetic effects, we have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10 and discussed in lines 301-316.

      1. Lines 407-408: The authors should exercise caution when suggesting "potentially adverse consequences" based solely on moderate changes in PGCLCs transcriptomes.

      We agree and have modified the sentence as follows: “Our results thus show that exposure to Δ9-THC prior to specification affects embryonic germ cells’ transcriptome and metabolome. This in turn could have adverse consequences on cell-cell adhesion with an impact on PGC normal development in vivo.“

      1. Investigating the possible impacts of Δ9-THC exposure on cultured mouse blastocysts, implantation, post-implantation development, and fertility could yield intriguing findings.

      We thank the Reviewer for this comment. We have amended our discussion to include these points in the last paragraph.

      1. Given that naïve human PSCs and human PGCLCs differentiation protocols have been established, the authors should consider carrying out parallel experiments in human models.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5), showing that Δ9-THC alters the cell number and general metabolism of these cells. We present these results in light of the differences in metabolism between mouse and human embryonic stem cells on lines 135-141 and 185-188. Implications of these results are discussed in lines 474-486.

      Reviewer #3 (Public Review):

      Verdikt et al. focused on the influence of Δ9-THC, the most abundant phytocannabinoid, on early embryonic processes. The authors chose an in vitro differentiation system as a model and compared the proliferation rate, metabolic status, and transcriptional level in ESCs, exposure to Δ9-THC. They also evaluated the change of metabolism and transcriptome in PGCLCs derived from Δ9-THC-exposed cells. All the methods in this paper do not involve the differentiation of ESCs to lineage-specific cells. So the results cannot demonstrate the impact of Δ9-THC on preimplantation developmental stages. In brief, the authors want to explore the impact of Δ9-THC on preimplantation developmental stages, but they only detected the change in ESCs and PGCLCs derived from ESCs, exposure to Δ9-THC, which showed the molecular characterization of the impact of Δ9-THC exposure on ESCs and PGCLCs.

      Reviewer #3 (Recommendations For The Authors):

      1. To demonstrate the impact of Δ9-THC on preimplantation developmental stages, ESCs are an appropriate system. They have the ability to differentiate three lineage-specific cells. The authors should perform differentiation experiments under Δ9-THC-exposure, and detect the influence of Δ9-THC on the differentiation capacity of ESCs, more than just differentiate to PGCLCs.

      We apologize for the lack of clarity in our introduction. We specifically looked at the developmental trajectory of PGCs because of the sensitivity of these cells to environmental insults and their potential contribution to transgenerational inheritance. We have expanded on these points in our introduction and discussion sections (lines 89-91 and 474-486). Because our data shows the relevance of Δ9-THC-mediated metabolic rewiring in ESCs subsisting across differentiation, we agree that differentiation towards other systems (neuroprogenitors, for instance) would yield interesting data, albeit beyond the scope of the present study.

      1. Epigenetics are important to mammalian development. The authors only detect the change after Δ9-THC-exposure on the transcriptome level. How about methylation landscape changes in the Δ9-THC-exposure ESCs?

      We have explored the impact of Δ9-THC on more than 100 epigenetic modifiers in our RNA-seq datasets. These results are shown in Supplementary Table 1 and Supplementary Figure 10, discussed in lines 301-316. While indeed the changes in DNA methylation profiles appear relevant in the context of Δ9-THC exposure (because of Tet2 increased expression in EpiLCs), we highlight that other epigenetic marks (histone acetylation, methylation or ubiquitination) might be relevant for future studies.

      1. In the abstract, the authors claimed that "the results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on preimplantation developmental stages." But they do not show whether the Δ9-THC affects the fetus through the maternal-fetal interface.

      We have addressed the need for increased clarity and have modified the sentence as follows: “These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of the germline development.”

      1. To explore the impact of cannabis on pregnant women, the human ESCs may be a more proper system, due to the different pluripotency between human ESCs and mouse ESCs.

      We have performed Δ9-THC exposures in hESCs (Supplementary Figure 4 and Supplementary Figure 5). These preliminary results show that Δ9-THC exposure negatively impacts the cell number and general metabolism of hESCs. With the existence of differentiation systems for hPGCLCs, future studies will need to assess whether Δ9-THC-mediated metabolic remodelling is also carried through differentiation in human systems. We discuss these points in the last paragraph of our discussion section.

      1. All the experiments are performed in vitro, and the authors should validate their results in vivo, at least a Δ9-THC-exposure pregnant mouse model.

      Our work is the first of its kind to show that exposure to a drug of abuse can alter the normal development of the embryonic germline. We agree with the Reviewer that to demonstrate transgenerational inheritance of the effects reported here, future experiments in an in vivo mouse model should be conducted. The metabolic remodeling observed upon cannabis exposure could also be directly studied in a human context, although these experiments would be beyond the scope of the present study. For instance, changes in glycolysis may be detected in pregnant women using cannabis, or directly measured in follicular fluid in a similar manner as done by Fuchs-Weizman and colleagues (Fuchs-Weizman et al., 2021). We hope that our work can provide the foundation to inform such in vivo studies.

    1. Author Response

      The following is the authors’ response to the original reviews.

      necessary clarifications on some of the reviewers' suggestions.

      Reviewer #1 (Public Review):

      Weaknesses:

      • This is a pilot study with only 24 cases and 24 controls. Because the human microbiota entails individual variability, this work should be confirmed with a higher sample size to achieve enough statistical power.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      • The authors do not report here the use of blank controls. The use of this type of control is important to "subtract" the potential background from plasticware, buffer or reagents from the real signal. Lack of controls may lead to microbiome artefacts in the results. This can be seen in the results presented where the authors report some bacterial contaminants (Agrobacterium tumefaciensis, Aequorivita lutea, Chitinophagaceae, Marinobacter vinifirmus, etc) as part of the most common bacteria found in cervical samples.

      Thank you for your suggestion. Applying blank controls in low biomass areas can effectively avoid contamination caused by the environment or kits. This opinion is consistent with that published by Raphael Eisenhofer et al. in Trends in Microbiology. When designing this study, we considered that this study described a biomass-rich site, and the abundance of dominant species was much higher than that of the possible 'kitome', so we did not set a blank control. On the other hand, our main discussion object in this study is high-abundance species, and the species filtering threshold for some analyzes was raised to 50%. Therefore, we believe that the absence of the blank control has little effect on the conclusions of this study. However, your opinion is spot on. Failure to set up a negative control will affect our future research on rare species. We will add a description in the Limitations section of the Discussion section.

      • Samples used for this study were collected from the cervix. Why not collect samples from the uterine cavity and isthmocele fluid (for cases)? In their previous paper using samples from the same research protocol ((IRB no. 2019ZSLYEC-005S) they used endometrial tissue from the patients, so access to the uterine cavity was guaranteed.

      Thank you for your suggestion. In Author response image 1 we show the approximate location of our cervical swab sampling. There are two main reasons for choosing cervical swabs:

      1) The adsorption of swabs allows us to obtain sufficient nucleic acid for high-depth sequencing, while the isthmocele fluid varies greatly among patients, which will introduce unnecessary batch effects.

      2) Since the female reproductive tract is a continuous whole, our sampling location is close to the lesion in the cervix, which can be effectively studied. On the other hand, the microbial biomass of the endometrium is probably two orders of magnitude lower than that of the cervix, and it is difficult to avoid contamination of the lower genital tract when sampling.

      Based on the above reasons, we selected cervical swabs for our microbial data.

      Author response image 1.

      • Through the use of shotgun genomics, results from all the genomes of the organisms present in the sample are obtained. However, the authors have only used the metagenomic data to infer the taxonomical annotation of fungi and bacteria.

      Thank you for your suggestion. The advantage of metagenomics is that it can obtain all the nucleic acid information of the entire environment. However, in the study of the female reproductive tract, the database of viruses and archaea is still immature, in order to ensure the accuracy of the results, we did not conduct the study. Looking forward to the emergence of a mature database in the future.

      Reviewer #1 (Recommendations For The Authors):

      • It would be interesting to use another series of functional data coming from the metagenomic analyses (not only taxonomic) to expand and reinforce the results presented.

      Thank you for your suggestion. We have dissected the functional data of microbiota in the article.

      • The authors have previously published the 16S rRNA sequencing and transcriptomic analysis of the same set of patients. It would be nice to see the integration of all the datasets produced.

      Thank you for your suggestion. There is no doubt that integrating all the data will have more dimensional results. In our previous study we focused on microbe-host interactions. However, there is an unanswered question: What are the characteristics of the regulatory network within microbiota? Therefore, we answered this question in this study, exploring the complex interaction processes within microbial communities. In addition to direct effects, interactions between microbiota may also occur through special metabolite experiments. Therefore, we introduced the analysis of the untargeted metabolome. However, 16s rRNA can only provide bacterial information, so we did not integrate the data. In addition, the transcriptome provides host information and is not the focus of this study. However, your suggestion is very valuable, and we will integrate all the data in the next study on the exploration of treatment methods.

      Reviewer #2 (Public Review):

      Weaknesses: Methodological descriptions are minimal.

      Some example:

      *The CON group (line 147) has not been defined. I supposed it is the control group.

      • There are no statistics related to shotgun sequencing. How many reads have been sequenced? How many have been removed from the host? How many are left to study bacteria and fungi? Are these reads proportional among the 48 samples? If not, what method has been used to normalise the data?

      • ggClusterNet has numerous algorithms to better display the modules of the microbiome network. Which one has been used?

      Thank you for your suggestion. We have added details to the method.

      Reviewer #2 (Recommendations For The Authors):

      I think the author should take into account the points described in the "Weaknesses" section. The lack of detail extends to almost all the analyses that have been included in the manuscript. Although the results are sound, I think it is important to understand what has been analysed and how it has been analysed. It is important that all work is reproducible and this requires vital information.

      For example, what parameters have been used for bowtie2? has a local analysis been used? or end-to-end ? Some parameters like --very-sensitive are important for this kind of analysis. You can also use specific programs like kneaddata.

      The Raw data preprocessing section should be more detailed.

      The same with the "Taxa and functional annotation" section, how have the data been normalised? has any Zero-Inflated Gamma probabilistic model algorithm been taken into account? How were the 0 (no species detected) in the shallow samples treated?

      Which algorithms have been used for LEfSe ? Kluskal-Wallis->(Wilcoxon)->LDA ?

      Which p-value has been used as cut-off ? this p-value has been corrected for multiple testing?

      • Information on ggClusterNet should be included and explained.

      The first section of the results and Table 1 should be in the Materials and Methods.

      Thank you for your suggestion. We have added details to the method.

      In the fungi section, it is mentioned that 431 species have been found. They should be included in a supplementary table.

      How many bacteria were found? Please include them also in a supplementary table.

      Thank you for your suggestion. We have added the corresponding table.

      Reviewer #3 (Public Review):

      Major

      1. Smoke or drink conditions, as well as diseases like hypertension and diabetes are important factors that could influence the metabolism of the host, thus the authors should add them in the exclusion criteria in the Methods.

      Thanks to reviewer #3 for professional comments. We have made corresponding additions in the method section. We also followed this standard when recruiting subjects.

      1. The sample size of this study is not large enough to draw a convincing conclusion.

      Thank you for your suggestion. Unlike the high sparsity of 16s rRNA, the data density of metagenomic data is higher. Based on the experience of previous research, the sample size used this time can basically meet the requirements. However, your suggestion is very valuable, increasing the sample size allows better in-depth analysis. Due to limitations of objective factors, it is difficult for us to continue to increase the sample size in this study.

      Reviewer #3 (Recommendations For The Authors):

      Please recruit more samples.

      In addition, there are many formatting and grammatical mistakes in the manuscript.

      Minor

      1. In Line 24-25 of the "Composition and characteristics of fungal communities", the format of "Goyaglycoside A and Janthitrem E." shouldn't be italic.

      2. In Line 126 of the "Metabolite detection using liquid chromatography (LC) and mass spectrometry (MS)", the "10 ul" should be changed to "Ten ul". Beginning with arabic numerals in a sentence should be avoided.

      3. In Line 170 of the "Composition and characteristics of bacterial communities", the "162 differential species" should be "One hundred and sixty-two differential species".

      4. In Line 187 of the "Composition and characteristics of fungal communities", the "42 differential" should be "Forty-two differential".

      Thanks to reviewer #3 for professional comments. We have completely revised the language of the article.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We would like to extend our warmest thanks to the reviewers for their constructive comments and strong support for our study.

      2. Point-by-point description of the revisions

      Reviewer #1:

      Table

      1. It would be nice to have a table of isoform, dose, promoter, enhancer and other conditions tested and the brief summary of phenotype as Table.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Discussion

      1. This experiment was done on knockout condition but in real patient different form of mutant protein will exist in retinal tissue. Authors indicated that co‐expression of short and long form of FAM161A worked better to rescue function. How would authors cope with interfering endogenous mutant protein in real patients?

      We thank the reviewer for raising this interesting point. Most mutations described so far are nonsense or frameshift mutations common to both long and short isoforms which, consequently, are not present at the protein level (Beryozkin et al 2020, doi.org/10.1038/s41598-020-72028-0, Matsevich et al 2022, doi.org/10.1016/j.xops.2022.100229). Thus, we don’t expect to have an imbalance between the remaining functional alleles and the therapeutic ones. However, we cannot exclude the discovery of missense mutations and the effect of such allele would have to be molecularly evaluated to determine if gene replacement is limited for this specific condition. This question could be assessed in cellular models by co-expression of both mutated and WT-tagged proteins or in organoid models.

      1. Related to the first question, the expression of these retinal structural proteins will be different in mice and human. How would authors optimize the vector for human patient gene therapy?

      Aware that the 60% homology between the human and mouse protein could cause important limitations for the evaluation of the vector in the mouse model, we are continuing the validation of our vectors in human retina organoïds. We plan to test both the reliable localization of the human isoforms in WT organoid and the rescue of structural photoreceptor defects of FAM161A-deficient human organoids. In parallel, vector-derived expression will also be validated in non-human primates.

      Reviewer #2:

      Scotopic and photopic ERG were performed to study retinal function. However, mouse behavior tests such as optomotor response should be employed to confirm vision restoration.

      In our hand, we didn’t notice a significant modification of the optomotor response between 4 and 16 weeks (for figure on visual acuity changes with age in Fam161atmb/tmb mice (n=6-9), see uploaded word document), and consequently of the estimated visual acuity, in Fam161atmb/tmb mice at 3.5 months corresponding to the endpoint of our study (see figure below). In a separate study to this work, we are thus conducting a follow-up long term gene therapy study to be able to complete the functional analysis of the gene therapy rescue with the optomotor response at age with significant decreased visual acuity in untreated mice compared to WT. We will have to wait at least 6 months to expect to see a difference between groups.

      The immunostaining in Figure 3 has some noise. Filtering the blocking solution before use could improve the quality of the staining.

      We thank the reviewer for this suggestion. The blocking solution was already filtered and the limited success of the mouse FAM161A staining is due to the imperfect recognition of anti-human FAM161A antibodies to the mouse protein.

      In Figure 5f, the data of wildtype mice should be included for comparison.

      As noted by reviewer 3, in Fig5 F, the plain gray horizontal line surrounded by the 2 dotted ones are referring to the mean +/- SEM of the WT value respectively. We added “WT” on the right of the graph to highlight the plain line.

      The cited paper, such as 'Garafalo AV, Cideciyan AV, Heon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, and Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2020;77(100827),' should be an original research paper, not a review article.

      As noted by reviewer 3, we think appropriate to cite this review which is a complete reference to the different gene therapy approaches developed for inherited retinal diseases.

      Major:

      Fig 1A‐B. Do hTERT‐RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      We previously showed that hTERT-RPE1 cells express FAM161A in the basal body of the centriole (Di Gioia 2015), but we recognized that it is not apparent in Figure 1A and B, probably due to a limitation of the antibody reactivity which labeled only overexpressed proteins. We thus performed additional experiments using the human ARPE19 cell line to demonstrate endogenous FAM161A expression in untransfected cells and to perform a Western blot from human transfected cells. We observed that in untransfected cells FAM161A labeling is weak and is only revealed in the centriole labeled by centrin after a long exposure time (Figure 1A). When FAM161A HS or HL is overexpressed the FAM161A labeling is present in the cell body, very strong, and is observed with short exposure time (Figure 1A). We also extracted protein from untransfected and HS- or HL-transfected ARPE-19 cells to identify the FAM161A protein by Western blot (Figure 1B). Thus, we added the negative control and a western blot from human cells to answer reviewer comments.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT‐RPE1 cells.

      We do not think that transfection experiment is sufficient to prove that HS is preferentially express than HL. Even if we transfect the same amount of DNA, we would need an internal control for transfection to allow relative quantification of the protein expression after transfection. However, we performed an additional experiment in human RPE cells using the ARPE-19 cell line which is more efficiently transfected than hTERT-RPE1 in our hands. As shown in Figure 1B, we observed again more abundant expression of HS in these human transfected cells. However, we cannot exclude difference in transfection efficiency between HL and HS conditions that could explain the difference in the final amount of FAM161A protein.

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      We are facing technical limits with the labeling of the mouse Fam161A. The antibodies available have limited affinity for the mouse Fam161A protein. While we were able to perform Uex-M from mouse tissue samples (flatmount retina) to study Fam161A expression in the connecting cilium (Mercey et al PLoS Biol 2022), it was more challenging to obtained low magnification picture from mouse retina sections. We propose to show in Figure 3 mouse Fam161A expression obtained from retina section and keep the low magnification from a flatmount for the figure 5. Thus, there will be no duplication of images as recommended by the reviewer.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason?

      Despite the fact that injections are targeting similar retinal region in treated animals, there is still variation in the localization and extend of the gene transfer due to the surgical success. Indeed, the area of retinal detachment is hard to control in the mouse as of the quality of re-attachment. Moreover, the effective dose may lightly vary when some viral particles might be loss due to reflux. One would need to treat a larger number of eyes to really conclude that HS alone would be less variable than HL alone or HS+HL. However, we could also speculate that HS+HL and HL treatments being more efficient to rescue connecting cilium length compared to HS alone (Fig 5F) could, in the best injected eyes, have a better ONL thickness rescue than the limited ONL rescue induced by HS treatment.

      Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      We didn’t follow inflammation directly by fundus examination or OCT imaging following injection. However, despite the high dose used in our successful conditions (10E11 GC/eye), we didn’t notice any differences in the general mouse welfare after injection compare to lower doses. Systemic administration of Rimadyl (carprofen) was however adapted to each mouse during the 24 hrs post-surgery. In comparison to other groups with lower vector doses, no particular emergence of inflammatory cells or damages were observed by histology.

      Can the authors comment on the difference in the injection time, PN14‐15 in this study vs. PN24‐29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      The gene therapy study using the mouse cDNA was performed before establishing the time course of connecting cilia disruption in the Fam161atmb/tmb mouse (Mercey et al. 2022). Following the observation that CC develop similarly to healthy animal up to postnatal day 10, we decided to treat the mouse earlier for the second gene therapy study using human proteins. Nonetheless, the action of the vector occurred when the cilium is already disorganized as we expect expression of the WT Fam161A from 2 weeks post-injection. We are now testing treatments at different ages, including PN28, to determine the therapeutic window and if the optimal conditions (dose, ratio) may vary with the age at treatment.

      Can the authors speculate on why IRBP‐GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Our hypothesis to explain the absence of functional rescue following IRBP-GRK1 vector injection is that the difference in human protein distribution compared to the mouse protein in the mouse retina could impact the function of the photoreceptor by interfering with physiological process such as transport. As mentioned in our discussion: “overexpression of these proteins could saturate the transport system impacting the cellular processes”.

      As mentioned in the discussion, there is only 60% of homology between human and mouse proteins which could induce a major impact on protein localization and function. Post-translational modification which are also known to be crucial for modulating connecting cilium addressing (Rao et al. 2016) could also differ and impact both human protein distribution and function (for example 3 cysteines in the human protein sequence could be palmytoylated (C359, C366, C367) and are absent in the mouse sequence). Moreover, the exact role of the human long and short isoforms are unknown and their adaptability to the mouse system not yet identified. Further studies should be performed to understand the consequence of such differences on the function and to unravel the function of both long and short human isoforms in the retina.

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14‐days FAM161atm1b/tm1b mice" should be "14‐day old". In the Introduction, "... suggesting that protein miss‐localization" should be "mis‐localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      We corrected these errors and carefully proofread the whole manuscript to avoid typing mistakes.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.

      We thank the reviewer for this valuable suggestion and have now included a summary Table (Table 1) cited in the last result section.

      Scale bars on all figures, or every set of images.

      We added scale bars on figures containing microscopic images.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      This manuscript led by Arsenijevic and Chang is an important technical development to the ocular gene therapy space, and touches on the important aspect of structural protein restoration by gene therapy, that is, the precise control of localization and subsequent functional realization. Overall the manuscript is well written, and the experiments are technically sound, with limitations acknowledged.

      To briefly summarize, the authors wanted to understand precise control of FAM161A expression and connecting cilium (CC) restoration. They built on, and extended their previous work that showed limited structural and functional rescue by photoreceptor expression of the longer isoform of mouse FAM161A in Fam161a KO driven by IRBP-GRK1 promoter. In the current work, the authors experimented with delivering human ortholog of FAM161A cDNA, short, or long, or both isoforms using newly devised, relatively weak promoters. The main readouts include retinal morphology (e.g., ONL thickness), ERG, and protein localization by IHC (e.g., correct location, no ectopic expression). It is worth noting that the authors highlighted the use of expansion microscopy technology to examine the connecting cilium (CC) organization and protein expression, which may minimize the use of TEM for CC structure determination and enable acceleration.

      My enthusiasm for recommending it for publication is high. Nonetheless, I have the following comments, hoping the authors could address to further improve the manuscript.

      Major:

      Fig 1A-B. Do hTERT-RPE1 cells endogenously express FAM161A? This set of images lacks a negative control (i.e., no transfected RPE1 cells). Western blot of FAM161A is recommended, similar to Fig 1C.

      Fig 1C. The authors noted in the discussion that HS isoform is more abundant than HL isoform from human retinal extract. Although this is from 661W, a mouse photoreceptor cell line, it seems this is aligned with the notion. To echo with the last comment, I am curious to see if under the same transfection, the HS isoform is preferentially expressed in hTERT-RPE1 cells..

      Fig 3 and Fig 5: low mag WT images of FAM161A are the same. But higher mag images (presumably selected from ROIs in low mag) are not the same. Please make sure of no duplication images.

      Fig 4H. HS+HL combo, and HL alone, showed almost a polarized quantification, quite variable. Can the authors speculate the reason? Also can the authors comment on if there is any associated notable inflammation especially in high tier dosage (10^11 GC)?

      Can the authors comment on the difference in the injection time, PN14-15 in this study vs. PN24-29 in their previous study? Have the authors attempted to treat the older mice with the optimized vector?

      Can the authors speculate on why IRBP-GRK1 human FAM161A did not realize functional rescue (Fig 2) as it did with mouse FAM161A (previous work)?

      Minor:

      While the manuscript is overall well communicated, there are areas requiring further proofread. For example, in the Abstract section, "In 15 years" should be "For 15 years", "14-days FAM161atm1b/tm1b mice" should be "14-day old". In the Introduction, "... suggesting that protein miss-localization" should be "mis-localization". In the last paragraph before Discussion, "(iii) the restauration of CC..." should be "restoration", etc.

      I recommend the authors to use a table to summarize different promoters, titers and key findings (e.g., expression level, localization) used and refer back to each figure.<br /> Scale bars on all figures, or every set of images.

      Referees cross-commenting

      To reviewer #2, Fig5f - WT data was shown as the gray horizontal line. I had the same question but then saw they noted in the legends. I think it is fine to cite the PRER review article to make their point.

      I agree with the comments addressed by Reviewer #1 and am glad we both raise the point of using table for summarization.

      Significance

      This well-drafted paper represents a technical development that could supplement current gene therapy strategies to certain ciliopathies. In this particular case, the authors chose FAM161A, a disease causal gene to retinitis pigmentosa-28 and encodes for a microtubule-associated ciliary protein involved in organizing the connecting cilium in photoreceptors. Of importance, the authors devised novel promoters to drive gene expression and took advantage of expansion microscopy for quickly examining cilia proteins and structures. Conceptually, the techniques developed in this manuscript could be applicable to several other inherited retinal dystrophies that share similar disease mechanisms.

    1. Assurhing an aggregate model of groups, some people think that socialgroups are invidious fictions, essentializing arbitrary attributes. From this p�intof view problems of prejudice, stereotyping, discr imination, and exclus10nexist because some people mistakenly believe that group identification makesa difference to the capacities, temperament, or v irtues of group members.This individualist conception of persons and their relation to one anothertends to identify oppression with group identification. Oppression, on thisview, is something that happens to people when they are classified in groups.Because othei"s identify them as a group, they are excluded and despised. Eliminating oppression thus requires eliminating groups. People should be treatedas individuals, not as members of groups, and allowed to form their lives freelywithout stereoty pes or group norms.This book takes issue with that position. W hile I agree that individualsshould be free to pursue life plans in their own way, it is foolish to den)'. thereality of groups. Despite the modern myth of a decline of parochial attachments and ascribed identities, in modern society group differentiation remains endemic. As both markets and social administration increase the web ofsocial interdependency on a world scale, and as more people encounter oneanother as strangers in cities and states, people retain and renew ethnic, locale,age, sex, and occupational group identifications, and form new ones in theptocesses of encounter (cf. Ross, 1980, p. 19; Rothschild, 1981, p. 130). Evenwhen they belong to oppressed groups, people's group identifications areoften important to them, and they often feel a special affinity for othersin their group. I believe that group differentiation is both an inevitable anda desirable aspect of modern social processes. Social justice, I shall arguein later chapters, requires not the melting away of differences, but institutionsthat promote reproduction of and respect for group •differences withoutoppression.Though some groups have come to be formed out of oppression, and relations of privilege and oppression structure the interactions between mahygroups; group differentiation is not in itself oppressive. Not all groups are oppressed. In the United States Roman Catholics are a specific social group,with distinct practices and affinities with one another, but they are no longer:in oppressed group. W hether a group is oppressed depends on whether it issubject to one or more of the five conditions I shall discuss below.The view that groups are fictions does carry an important antideterminist or antiessentialist intuition. Oppression has often been perpetrated by aconceptualization of group difference in terms of unalterable essential naturesthat determine what group members deserve or are capable of, and that exclude groups so entirely from one another that they have no similarities oroverlapping attributes. To assert that it is possible to have social group difference without oppression, it is necessary to conceptualize groups in a muchmore relational and fluid fashion.Five Faces of Oppression ■ 4SAlthoug� social processes of affinity and differentiation produce groups,they do not give groups a substantive essence. There is no common nature thatmembers o� a group share. As aspects of a process, moreover, groups are fluid;�hey come mto bemg and may fade away. Homosexual practices have existedm many societies and historical periods, for example. Gay men or lesbians have?een identi�ed as specific groups and so identified themselves, however, onlym the �ent1eth century (see Ferguson, 1989, chap. 9; Altman, 1981).Arismg from social relations and processes, finally, group differences usuall� cut acr�ss one another. Especially in a large, complex, and highly differentiated society, social groups are not themselves homogeneous, but mirror intheir �wn dif1:erentiations many of the other groups in the wider society. InA�erican society. toda_y, for examp;e, Blacks are not a simple, unified groupwith a common life. Like other racial and ethnic groups, they are differentia�ed by age, gender, class, sexuality, region, and nationality, any of which in agiven context may become a salient group identity.. Thi� v ie:" of group differentiation as multiple, cross-cutting, fluid, andshiftmg implies another critique of the model of the autonomous, unified self.In complex, highly differentiated societies like our own, all persons have multiple group _identifications. The culture, perspective, and relations of privilegea�d oppression of.these various groups, moreover, may not cohere. Thus individual perso�s, as constituted partly by their group affinities and relations,cannot be urufied, themselves are heterogeneous and not necessarily coherent.THE FACES OF OPPRESSIONExploitationThe central function of Marx's theory of exploitation is to explain how classst_ru_ctur.e can exist in the absence of legally and normatively sanctioned classd1stmct10�s. In prec�pitalist societies domination is overt and accomplishedt�rough directly ?ohtical means. In both slave society and feudal society theri�h_t to appropriate the product of the labor of others partly defines classprivilege, and these societies legitimate class distinctions with ideologies ofnatural supenority and inferiority.Capitalis� s?ciety, on the other hand, removes traditional juridically enforced class distmct10ns and promotes a belief in the legal freedom of persons.Workers freely contract with employers and receive a wage; no formal mechanisms of law or custom force them to work for that employer or any employer. Thus the mystery of capitalism arises: when everyone is formally free,how can there be class domination? W hy do class distinctions persist betweenthe wealthy, who own the means of production, and the mass of people, whowork for them? The theory of exploitation answers this question.�rofit, the basis of capitalist power and wealth, is a mystery if we assumethat m the market goods exchange at their values. The labor theory of value35

      The author critiques the view that social groups are invidious fictions, emphasizing the importance of acknowledging group differences without dismissing them as mere aggregates. The passage challenges the individualist conception that oppression is solely linked to group identification, asserting that differentiation is inevitable and desirable in modern society. How does the author's perspective on social groups' fluid and relational nature contribute to rethinking the traditional view that groups are fiction?

    1. Author Response

      The following is the authors’ response to the original reviews.

      Firstly, we must take a moment to express our sincere gratitude to editorial board for allowing this work to be reviewed, and to the peer reviewers for taking the time and effort to review our manuscript. The reviews are thoughtful and reflect the careful work of scientists who undoubtedly have many things on their schedule. We cannot express our gratitude enough. This is not a minor sentiment. We appreciate the engagement.

      Allow us to briefly highlight some of the changes made to the revised manuscript, most on behalf of suggestions made by the reviewers:

      1) A supplementary figure that includes the calculation of drug applicability and variant vulnerability for a different data set–16 alleles of dihydrofolate reductase, and two antifolate compounds used to treat malaria–pyrimethamine and cycloguanil.

      2) New supplementary figures that add depth to the result in Figure 1 (the fitness graphs): we demonstrate how the rank order of alleles changes across drug environments and offer a statistical comparison of the equivalence of these fitness landscapes.

      3) A new subsection that explains our specific method used to measure epistasis.

      4) Improved main text with clarifications, fixed errors, and other addendums.

      5) Improved referencing and citations, in the spirit of better scholarship (now with over 70 references).

      Next, we’ll offer some general comments that we believe apply to several of the reviews, and to the eLife assessment. We have provided the bulk of the responses in some general comments, and in response to the public reviews. We have also included the suggestions and made brief comments to some of the individual recommendations.

      On the completeness of our analysis

      In our response, we’ll address the completeness issue first, as iterations of it appear in several of the reviews, and it seems to be one of the most substantive philosophical critiques of the work (there are virtually no technical corrections, outside of a formatting and grammar fixes, which we are grateful to the reviewers for identifying).

      To begin our response, we will relay that we have now included an analysis of a data set corresponding to mutants of a protein, dihydrofolate reductase (DHFR), from Plasmodium falciparum (a main cause of malaria), across two antifolate drugs (pyrimethamine and ycloguanil). We have also decided to include this new analysis in the supplementary material (see Figure S4).

      Author response image 1.

      Drug applicability and variant vulnerability for 16 alleles of dihydrofolate reductase.

      Here we compute the variant vulnerability and drug applicability metrics for two drugs, pyrimethamine (PYR) and cycloguanil (CYC), both antifolate drugs used to treat malaria. This is a completely different system than the one that is the focus of the submitted paper, for a different biomedical problem (antimalarial resistance), using different drugs, and targets. Further, the new data provide information on both drugs of different kinds, and drug concentrations (as suggested by Reviewer #1; we’ve also added a note about this in the new supplementary material). Note that these data have already been the subject of detailed analyses of epistatic effects, and so we did not include those here, but we do offer that reference:

      ● Ogbunugafor CB. The mutation effect reaction norm (mu-rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution. 2022 Feb 1;76(s1):37-48.

      ● Diaz-Colunga J, Sanchez A, Ogbunugafor CB. Environmental modulation of global epistasis is governed by effective genetic interactions. bioRxiv. 2022:202211.

      Computing our proposed metrics across different drugs is relatively simple, and we could have populated our paper with suites of similar analyses across data sets of various kinds. Such a paper would, in our view, be spread too thin–the evolution of antifolate resistance and/or antimalarial resistance are enormous problems, with large literatures that warrant focused studies. More generally, as the reviewers doubtlessly understand, simply analyzing more data sets does not make a study stronger, especially one like ours, that is using empirical data to both make a theoretical point about alleles and drugs and offer a metric that others can apply to their own data sets.

      Our approach focused on a data set that allowed us to discuss the biology of a system: a far stronger paper, a far stronger proof-of-concept for a new metric. We will revisit this discussion about the structure of our study. But before doing so, we will elaborate on why the “more is better” tone of the reviews is misguided.

      We also note that study where the data originate (Mira et al. 2015) is focused on a single data set of a single drug-target system. We should also point out that Mira et al. 2015 made a general point about drug concentrations influencing the topography of fitness landscapes, not unlike our general point about metrics used to understand features of alleles and different drugs in antimicrobial systems.

      This isn’t meant to serve as a feeble appeal to authority – just because something happened in one setting doesn’t make it right for another. But other than a nebulous appeal to the fact that things have changed in the 8 years since that study was published, it is difficult to argue why one study system was permissible for other work but is somehow “incomplete” in ours. Double standards can be appropriate when they are justified, but in this case, it hasn’t been made clear, and there is no technical basis for it.

      Our study does what countless other successful ones do: utilizes a biological system to make a general point about some phenomena in the natural world. In our case, we were focused on the need for more evolution-inspired iterations of widely used concepts like druggability. For example, a recent study of epistasis focused on a single set of alleles, across several drugs, not unlike our study:

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      Next, we assert that there is a difference between an eagerness to see a new metric applied to many different data sets (a desire we share, and plan on pursuing in the future), and the notion that an analysis is “incomplete” without it. The latter is a more serious charge and suggests that the researcher-authors neglected to properly construct an argument because of gaps in the data. This charge does not apply to our manuscript, at all. And none of the reviewers effectively argued otherwise.

      Our study contains 7 different combinatorially-complete datasets, each composed of 16 alleles (this not including the new analysis of antifolates that now appear in the revision). One can call these datasets “small” or “low-dimensional,” if they choose (we chose to put this front-and-center, in the title). They are, however, both complete and as large or larger than many datasets in similar studies of fitness landscapes:

      ● Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.

      ● Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of higher-order epistasis in drug resistance. Molecular biology and evolution. 2021 Jan;38(1):142-51.

      ● Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI. Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences. 2016 Mar 15;113(11):E1470-8.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Lindsey HA, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature. 2013 Feb 28;494(7438):463-7.

      These are only five of very many such studies, some of them very well-regarded.

      Having now gone on about the point about the data being “incomplete,” we’ll next move to the more tangible comment-criticism about the low-dimensionality of the data set, or the fact that we examined a single drug-drug target system (β lactamases, and β-lactam drugs).

      The criticism, as we understand it, is that the authors could have analyzed more data,

      This is a common complaint, that “more is better” in biology. While we appreciate the feedback from the reviewers, we notice that no one specified what constitutes the right amount of data. Some pointed to other single data sets, but would analyzing two different sets qualify as enough? Perhaps to person A, but not to persons B - Z. This is a matter of opinion and is not a rigorous comment on the quality of the science (or completeness of the analysis).

      ● Should we analyze five more drugs of the same target (beta lactamases)? And what bacterial orthologs?

      ● Should we analyze 5 antifolates for 3 different orthologs of dihydrofolate reductase?

      ● And in which species or organism type? Bacteria? Parasitic infections?

      ● And why only infectious disease? Aren’t these concepts also relevant to cancer? (Yes, they are.)

      ● And what about the number of variants in the aforementioned target? Should one aim for small combinatorially complete sets? Or vaster swaths of sequence space, such as the ones generated by deep mutational scanning and other methods?

      I offer these options in part because, for the most part, were not given an objective suggestion for appropriate level of detail. This is because there is no answer to the question of what size of dataset would be most appropriate. Unfortunately, without a technical reason why a data set of unspecified size [X] or [Y] is best, then we are left with a standard “do more work” peer review response, one that the authors are not inclined to engage seriously, because there is no scientific rationale for it.

      The most charitable explanation for why more datasets would be better is tied to the abstract notion that seeing a metric measured in different data sets somehow makes it more believable. This, as the reviewers undoubtedly understand, isn’t necessarily true (in fact, many poor studies mask a lack of clarity with lots of data).

      To double down on this take, we’ll even argue the opposite: that our focus on a single drug system is a strength of the study.

      The focus on a single-drug class allows us to practice the lost art of discussing the peculiar biology of the system that we are examining. Even more, the low dimensionality allows us to discuss–in relative detail–individual mutations and suites of mutations. We do so several times in the manuscript, and even connect our findings to literature that has examined the biophysical consequences of mutations in these very enzymes.

      (For example: Knies JL, Cai F, Weinreich DM. Enzyme efficiency but not thermostability drives cefotaxime resistance evolution in TEM-1 β-lactamase. Molecular biology and evolution. 2017 May 1;34(5):1040-54.)

      Such detail is only legible in a full-length manuscript because we were able to interrogate a system in good detail. That is, the low-dimensionality (of a complete data set) is a strength, rather than a weakness. This was actually part of the design choice for the study: to offer a new metric with broad application but developed using a system where the particulars could be interrogated and discussed.

      Surely the findings that we recover are engineered for broader application. But to suggest that we need to apply them broadly in order to demonstrate their broad impact is somewhat antithetical to both model systems research and to systems biology, both of which have been successful in extracting general principles for singular (often simple) systems and models.

      An alternative approach, where the metric was wielded across an unspecified number of datasets would lend to a manuscript that is unfocused, reading like many modern machine learning papers, where the analysis or discussion have little to do with actual biology. We very specifically avoided this sort of study.

      To close our comments regarding data: Firstly, we have considered the comments and analyzed a different data set, corresponding to a different drug-target system (antifolate drugs, and DHFR). Moreover, we don’t think more data has anything to do with a better answer or support for our conclusions or any central arguments. Our arguments were developed from the data set that we used but achieve what responsible systems biology does: introduces a framework that one can apply more broadly. And we develop it using a complete, and well-vetted dataset. If the reviewers have a philosophical difference of opinion about this, we respect it, but it has nothing to do with our study being “complete” or not. And it doesn’t speak to the validity of our results.

      Related: On the dependence of our metrics on drug-target system

      Several comments were made that suggest the relevance of the metric may depend on the drug being used. We disagree with this, and in fact, have argued the opposite: the metrics are specifically useful because they are not encumbered with unnecessary variables. They are the product of rather simple arithmetic that is completely agnostic to biological particulars.

      We explain, in the section entitled “Metric Calculations:

      “To estimate the two metrics we are interested in, we must first quantify the susceptibility of an allelic variant to a drug. We define susceptibility as $1 - w$, where w is the mean growth of the allelic variant under drug conditions relative to the mean growth of the wild-type/TEM-1 control. If a variant is not significantly affected by a drug (i.e., growth under drug is not statistically lower than growth of wild-type/TEM-1 control, by t-test P-value < 0.01), its susceptibility is zero. Values in these metrics are summaries of susceptibility: the variant vulnerability of an allelic variant is its average susceptibility across drugs in a panel, and the drug applicability of an antibiotic is the average susceptibility of all variants to it.”

      That is, these can be animated to compute the variant vulnerability and drug applicability for data sets of various kinds. To demonstrate this (and we thank the reviewers for suggesting it), we have analyzed the antifolate-DHFR data set as outlined above.

      Finally, we will make the following light, but somewhat cynical point (that relates to the “more data” more point generally): the wrong metric applied to 100 data sets is little more than 100 wrong analyses. Simply applying the metric to a wide number of datasets has nothing to do with the veracity of the study. Our study, alternatively, chose the opposite approach: used a data set for a focused study where metrics were extracted. We believe this to be a much more rigorous way to introduce new metrics.

      On the Relevance of simulations

      Somewhat relatedly, the eLife summary and one of the reviewers mentioned the potential benefit of simulations. Reviewer 1 correctly highlights that the authors have a lot of experience in this realm, and so generating simulations would be trivial. For example, the authors have been involved in studies such as these:

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Hartl D. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malaria Journal. 2016 Dec;15:1-0.

      From the above and dozens of other related studies, we’ve learned that simulations are critical for questions about the end results of dynamics across fitness landscapes of varying topography. To simulate across the datasets in the submitted study would be be a small ask. We do not provide this, however, because our study is not about the dynamics of de novo evolution of resistance. In fact, our study focuses on a different problem, no less important for understanding how resistance evolves: determining static properties of alleles and drugs, that provide a picture into their ability to withstand a breadth of drugs in a panel (variant vulnerability), or the ability of a drug in a panel to affect a breadth of drug targets.

      The authors speak on this in the Introduction:

      “While stepwise, de novo evolution (via mutations and subsequent selection) is a key force in the evolution of antimicrobial resistance, evolution in natural settings often involves other processes, including horizontal gene transfer and selection on standing genetic variation. Consequently, perspectives that consider variation in pathogens (and their drug targets) are important for understanding treatment at the bedside. Recent studies have made important strides in this arena. Some have utilized large data sets and population genetics theory to measure cross-resistance and collateral sensitivity. Fewer studies have made use of evolutionary concepts to establish metrics that apply to the general problem of antimicrobial treatment on standing genetic variation in pathogen populations, or for evaluating the utility of certain drugs’ ability to treat the underlying genetic diversity of pathogens”

      That is, the proposed metrics aren’t about the dynamics of stepwise evolution across fitness landscapes, and so, simulating those dynamics don’t offer much for our question. What we have done instead is much more direct and allows the reader to follow a logic: clearly demonstrate the topography differences in Figure 1 (And Supplemental Figure S2 and S3 with rank order changes).

      Author response image 2.

      These results tell the reader what they need to know: that the topography of fitness landscapes changes across drug types. Further, we should note that Mira et al. 2015 already told the basic story that one finds different adaptive solutions across different drug environments. (Notably, without computational simulations).

      In summary, we attempted to provide a rigorous, clean, and readable study that introduced two new metrics. Appeals to adding extra analysis would be considered if they augmented the study’s goals. We do not believe this to be the case.

      Nonetheless, we must reiterate our appreciation for the engagement and suggestions. All were made with great intentions. This is more than one could hope for in a peer review exchange. The authors are truly grateful.

      eLife assessment

      The work introduces two valuable concepts in antimicrobial resistance: "variant vulnerability" and "drug applicability", which can broaden our ways of thinking about microbial infections through evolution-based metrics. The authors present a compelling analysis of a published dataset to illustrate how informative these metrics can be, study is still incomplete, as only a subset of a single dataset on a single class of antibiotics was analyzed. Analyzing more datasets, with other antibiotic classes and resistance mutations, and performing additional theoretical simulations could demonstrate the general applicability of the new concepts.

      The authors disagree strongly with the idea that the study is ‘incomplete,” and encourage the editors and reviewers to reconsider this language. Not only are the data combinatorially complete, but they are also larger in size than many similar studies of fitness landscapes. Insofar as no technical justification was offered for this “incomplete” summary, we think it should be removed. Furthermore, we question the utility of “theoretical simulations.” They are rather easy to execute but distract from the central aims of the study: to introduce new metrics, in the vein of other metrics–like druggability, IC50, MIC–that describe properties of drugs or drug targets.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Geurrero and colleagues introduces two new metrics that extend the concept of "druggability"- loosely speaking, the potential suitability of a particular drug, target, or drug-target interaction for pharmacological intervention-to collections of drugs and genetic variants. The study draws on previously measured growth rates across a combinatoriality complete mutational landscape involving 4 variants of the TEM-50 (beta lactamase) enzyme, which confers resistance to commonly used beta-lactam antibiotics. To quantify how growth rate - in this case, a proxy for evolutionary fitness - is distributed across allelic variants and drugs, they introduce two concepts: "variant vulnerability" and "drug applicability".

      Variant vulnerability is the mean vulnerability (1-normalized growth rate) of a particular variant to a library of drugs, while drug applicability measures the mean across the collection of genetic variants for a given drug. The authors rank the drugs and variants according to these metrics. They show that the variant vulnerability of a particular mutant is uncorrelated with the vulnerability of its one-step neighbors and analyze how higher-order combinations of single variants (SNPs) contribute to changes in growth rate in different drug environments.

      The work addresses an interesting topic and underscores the need for evolutionbased metrics to identify candidate pharmacological interventions for treating infections. The authors are clear about the limitations of their approach - they are not looking for immediate clinical applicability - and provide simple new measures of druggability that incorporate an evolutionary perspective, an important complement to the orthodoxy of aggressive, kill-now design principles. I think the ideas here will interest a wide range of readers, but I think the work could be improved with additional analysis - perhaps from evolutionary simulations on the measured landscapes - that tie the metrics to evolutionary outcomes.

      The authors greatly appreciate these comments, and the proposed suggestions by reviewer 1. We have addressed most of the criticisms and suggestions in our comments above.

      Reviewer #2 (Public Review):

      The authors introduce the notions of "variant vulnerability" and "drug applicability" as metrics quantifying the sensitivity of a given target variant across a panel of drugs and the effectiveness of a drug across variants, respectively. Given a data set comprising a measure of drug effect (such as growth rate suppression) for pairs of variants and drugs, the vulnerability of a variant is obtained by averaging this measure across drugs, whereas the applicability of a drug is obtained by averaging the measure across variants.

      The authors apply the methodology to a data set that was published by Mira et al. in 2015. The data consist of growth rate measurements for a combinatorially complete set of 16 genetic variants of the antibiotic resistance enzyme betalactamase across 10 drugs and drug combinations at 3 different drug concentrations, comprising a total of 30 different environmental conditions. For reasons that did not become clear to me, the present authors select only 7 out of 30 environments for their analysis. In particular, for each chosen drug or drug combination, they choose the data set corresponding to the highest drug concentration. As a consequence, they cannot assess to what extent their metrics depend on drug concentration. This is a major concern since Mira et al. concluded in their study that the differences between growth rate landscapes measured at different concentrations were comparable to the differences between drugs. If the new metrics display a significant dependence on drug concentration, this would considerably limit their usefulness.

      The authors appreciate the point about drug concentration, and it is one that the authors have made in several studies.

      The quick answer is that whether the metrics are useful for drug type-concentration A or B will depend on drug type-concentration A or B. If there are notable differences in the topography of the fitness landscape across concentration, then we should expect the metrics to differ. What Reviewer #2 points out as a “major concern,” is in fact a strength of the metrics: it is agnostic with respect to type of drug, type of target, size of dataset, or topography of the fitness landscape. And so, the authors disagree: no, that drug concentration would be a major actor in the value of the metrics does not limit the utility of the metric. It is simply another variable that one can consider when computing the metrics.

      As discussed above, we have analyzed data from a different data set, in a different drug-target problem (DHFR and antifolate drugs; see supplemental information). These demonstrate how the metric can be used to compute metrics across different drug concentrations.

      As a consequence of the small number of variant-drug combinations that are used, the conclusions that the authors draw from their analysis are mostly tentative with weak statistical support. For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.

      We reiterate our appreciation for the engagement. Reviewer #2 generously offers some technical insight on measurements of epistasis, and their opinion on the level of statistical support for our claims. The authors are very happy to engage in a dialogue about these points. We disagree rather strongly, and in addition to the general points raised above (that speak to some of this), will raise several specific rebuttals to the comments from Reviewer #2.

      For one, the Reviewer #2 is free to point to what arguments have “weak statistical support.” Having read the review, we aren’t sure what this is referring to. “Weak statistical support” generally applies to findings built from underpowered studies, or designs constructed in manner that yield effect sizes or p-values that give low confidence that a finding is believable (or is replicable). This sort of problem doesn’t apply to our study for various reasons, the least of which being that our findings are strongly supported, based on a vetted data set, in a system that has long been the object of examination in studies of antimicrobial resistance.

      For example, we did not argue that magnetic fields alter the topography of fitness landscapes, a claim which must stand up to a certain sort of statistical scrutiny. Alternatively, we examined landscapes where the drug environment differed statistically from the non-drug environment and used them to compute new properties of alleles and drugs.

      We can imagine that the reviewer is referring to the low-dimensionality of the fitness landscapes in the study. Again: the features of the dataset are a detail that the authors put into the title of the manuscript. Further, we emphasize that it is not a weakness, but rather, allows the authors to focus, and discuss the specific biology of the system. And we responsibly explain the constraints around our study several times, though none of them have anything to do with “weak statistical support.”

      Even though we aren’t clear what “weak statistical support” means as offered by Reviewer 2, the authors have nonetheless decided to provide additional analyses, now appearing in the new supplemental material.

      We have included a new Figure S2, where we offer an analysis of the topography of the 7 landscapes, based on the Kendall rank order test. This texts the hypothesis that there is no correlation (concordance or discordance) between the topographies of the fitness landscapes.

      Author response image 3.

      Kendall rank test for correlation between the 7 fitness landscapes.

      In Figure S3, we test the hypothesis that the variant vulnerability values differ. To do this, we calculate a paired t-test. These are paired by haplotype/allelic variant, so the comparisons are change in growth between drugs for each haplotype.

      Author response image 4.

      Paired t-tests for variant vulnerability.

      To this point raised by Reviewer #2:

      “For example, the authors argue that drug combinations tend to have higher drug applicability than single drugs, because a drug combination ranks highest in their panel of 7. However, the effect profile of the single drug cefprozil is almost indistinguishable from that of the top-ranking combination, and the second drug combination in the data set ranks only 5th out of 7.”

      Our study does not argue that drug combinations are necessarily correlated with a higher drug applicability. Alternatively, we specifically highlight that one of the combinations does not have a high drug applicability:

      “Though all seven drugs/combinations are β-lactams, they have widely varying effects across the 16 alleles. Some of the results are intuitive: for example, the drug regime with the highest drug applicability of the set—amoxicillin/clavulanic acid—is a mixture of a widely used β-lactam (amoxicillin) and a β-lactamase inhibitor (clavulanic acid) (see Table 3). We might expect such a mixture to have a broader effect across a diversity of variants. This high applicability is hardly a rule, however, as another mixture in the set, piperacillin/tazobactam, has a much lower drug applicability (ranking 5th out of the seven drugs in the set) (Table 3).”

      In general, we believe that the submitted paper is responsible with regards to how it extrapolates generalities from the results. Further, the manuscript contains a specific section that explains limitations, clearly and transparently (not especially common in science). For that reason, we’d encourage reviewer #2 to reconsider their perspective. We do not believe that our arguments are built on “weak” support at all. And we did not argue anything particular about drug combinations writ large. We did the opposite— discussed the particulars of our results in light of the biology of the system.

      Thirdly, to this point:

      “To assess the environment-dependent epistasis among the genetic mutations comprising the variants under study, the authors decompose the data of Mira et al. into epistatic interactions of different orders. This part of the analysis is incomplete in two ways. First, in their study, Mira et al. pointed out that a fairly large fraction of the fitness differences between variants that they measured were not statistically significant, which means that the resulting fitness landscapes have large statistical uncertainties. These uncertainties should be reflected in the results of the interaction analysis in Figure 4 of the present manuscript.”

      The authors are uncertain with regards to the “uncertainties” being referred to, but we’ll do our best to understand: our study utilized the 7 drug environments from Mira et al. 2015 with statistically significant differences between growth rates with and without drug. And so, this point about how the original set contained statistically insignificant treatments is not relevant here. We explain this in the methods section:

      “The data that we examine comes from a past study of a combinatorial set of four mutations associated with TEM-50 resistance to β-lactam drugs [39 ]. This past study measured the growth rates of these four mutations in combination, across 15 different drugs (see Supplemental Information).”

      We go on to say the following:

      “We examined these data, identifying a subset of structurally similar β-lactams that also included β-lactams combined with β-lactamase inhibitors, cephalosporins and penicillins. From the original data set, we focus our analyses on drug treatments that had a significant negative effect on the growth of wild-type/TEM-1 strains (one-tailed ttest of wild-type treatment vs. control, P < 0.01). After identifying the data from the set that fit our criteria, we were left with seven drugs or combinations (concentration in μg/ml): amoxicillin 1024 μg/ ml (β-lactam), amoxicillin/clavulanic acid 1024 μg/m l (βlactam and β-lactamase inhibitor) cefotaxime 0.123 μg/ml (third-generation cephalosporin), cefotetan 0.125 μg/ml (second-generation cephalosporins), cefprozil 128 μg/ml (second-generation cephalosporin), ceftazidime 0.125 μg/ml (third-generation cephalosporin), piperacillin and tazobactam 512/8 μg/ml (penicillin and β-lactamase inhibitor). With these drugs/mixtures, we were able to embody chemical diversity in the panel.”

      Again: The goal of our study was to develop metrics that can be used to analyze features of drugs and targets and disentangle these metrics into effects.

      Second, the interpretation of the coefficients obtained from the epistatic decomposition depends strongly on the formalism that is being used (in the jargon of the field, either a Fourier or a Taylor analysis can be applied to fitness landscape data). The authors need to specify which formalism they have employed and phrase their interpretations accordingly.

      The authors appreciate this nuance. Certainly, how to measure epistasis is a large topic of its own. But we recognize that we could have addressed this more directly and have added text to this effect.

      In response to these comments from Reviewer #2, we have added a new section focused on these points (reference syntax removed here for clarity; please see main text for specifics):

      “The study of epistasis, and discussions regarding the means to detect and measure now occupies a large corner of the evolutionary genetics literature. The topic has grown in recent years as methods have been applied to larger genomic data sets, biophysical traits, and the "global" nature of epistatic effects. We urge those interested in more depth treatments of the topic to engage larger summaries of the topic.”

      “Here will briefly summarize some methods used to study epistasis on fitness landscapes. Several studies of combinatorially-complete fitness landscapes use some variation of Fourier Transform or Taylor formulation. One in particular, the Walsh-Hadamard Transform has been used to measure epistasis across a wide number of study systems. Furthermore, studies have reconciled these methods with others, or expanded upon the Walsh-Hadamard Transform in a way that can accommodate incomplete data sets. These methods are effective for certain sorts of analyses, and we strongly urge those interested to examine these studies.”

      “The method that we've utilized, the LASSO regression, determines effect sizes for all interactions (alleles and drug environments). It has been utilized for data sets of similar size and structure, on alleles resistant to trimethoprim. Among many benefits, the method can accommodate gaps in data and responsibly incorporates experimental noise into the calculation.”

      As Reviewer #2 understands, there are many ways to examine epistasis on both high and low-dimensional landscapes. Reviewer #2 correctly offers two sorts of formalisms that allow one to do so. The two offered by Reviewer #2, are not the only means of measuring epistasis in data sets like the one we have offered. But we acknowledge that we could have done a better job outlining this. We thank Reviewer #2 for highlighting this, and believe our revision clarifies this.

      Reviewer #3 (Public Review):

      The authors introduce two new concepts for antimicrobial resistance borrowed from pharmacology, "variant vulnerability" (how susceptible a particular resistance gene variant is across a class of drugs) and "drug applicability" (how useful a particular drug is against multiple allelic variants). They group both terms under an umbrella term "drugability". They demonstrate these features for an important class of antibiotics, the beta-lactams, and allelic variants of TEM-1 beta-lactamase.

      The strength of the result is in its conceptual advance and that the concepts seem to work for beta-lactam resistance. However, I do not necessarily see the advance of lumping both terms under "drugability", as this adds an extra layer of complication in my opinion.

      Firstly, the authors greatly appreciate the comments from Reviewer #3. They are insightful, and prescriptive. And allow us to especially thank reviewer 3 for supplying a commented PDF with some grammatical and phrasing suggestions/edits. This is much appreciated. We have examined all these suggestions and made changes.

      In general, we agree with the spirit of many of the comments. In addition to our prior comments on the scope of our data, we’ll communicate a few direct responses to specific points raised.

      I also think that the utility of the terms could be more comprehensively demonstrated by using examples across different antibiotic classes and/or resistance genes. For instance, another good model with published data might have been trimethoprim resistance, which arises through point mutations in the folA gene (although, clinical resistance tends to be instead conferred by a suite of horizontally acquired dihydrofolate reductase genes, which are not so closely related as the TEM variants explored here).

      1. In our new supplemental material, we now feature an analysis of antifolate drugs, pyrimethamine and cycloguanil. We have discussed this in detail above and thank the reviewer for the suggestion.

      2. Secondly, we agree that the study will have a larger impact when the metrics are applied more broadly. This is an active area of investigation, and our hope is that others apply our metrics more broadly. But as we discussed, such a desire is not a technical criticism of our own study. We stand behind the rigor and insight offered by our study.

      The impact of the work on the field depends on a more comprehensive demonstration of the applicability of these new concepts to other drugs.

      The authors don’t disagree with this point, which applies to virtually every potentially influential study. The importance of a single study can generally only be measured by its downstream application. But this hardly qualifies as a technical critique of our study and does not apply to our study alone. Nor does it speak to the validity of our results. The authors share this interest in applying the metric more broadly.

      Reviewer #1 (Recommendations For The Authors):

      • The main weakness of the work, in my view, is that it does not directly tie these new metrics to a quantitative measure of "performance". The metrics have intuitive appeal, and I think it is likely that they could help guide treatment options-for example, drugs with high applicability could prove more useful under particular conditions. But as the authors note, the landscape is rugged and intuitive notions of evolutionary behavior can sometimes fail. I think the paper would be much improved if the authors could evaluate their new metrics using some type of quantitative evolutionary model. For example, perhaps the authors could simulate evolutionary dynamics on these landscapes in the presence of different drugs. Is the mean fitness achieved in the simulations correlated with, for example, the drug applicability when looking across an ensemble of simulations with the same drug but varied initial conditions that start from each individual variant? Similarly, if you consider an ensemble of simulations where each member starts from the same variant but uses a different drug, is the average fitness gain captured in some way by the variant vulnerability? All simulations will have limitations, of course, but given that the landscape is fully known I think these questions could be answered under some conditions (e.g. strong selection weak mutation limit, where the model could be formulated as a Markov Chain; see 10.1371/journal.pcbi.1004493 or doi: 10.1111/evo.14121 for examples). And given the authors' expertise in evolutionary dynamics, I think it could be achieved in a reasonable time. With that said, I want to acknowledge that with any new "metrics", it can be tempting to think that "we need to understand it all" before it is useful, and I don't want to fall into that trap here.

      The authors respect and appreciate these thoughtful comments.

      As Reviewer #1 highlighted, the authors are experienced with building simulations of evolution. For reasons we have outlined above, we don’t believe they would add to the arc of the current story and may encumber the story with unnecessary distractions. Simulations of evolution can be enormously useful for studies focused on particulars of the dynamics of evolution. This submitted study is not one of those. It is charged with identifying features of alleles and drugs that capture an allele’s vulnerability to treatment (variant vulnerability) and a drug’s effectiveness across alleles (drug applicability). Both features integrate aspects of variation (genetic and environmental), and as such, are improvements over both metrics used to describe drug targets and drugs.

      • The new metrics rely on means, which is a natural choice. Have the authors considered how variance (or other higher moments) might also impact evolutionary dynamics? I would imagine, for example, that the ultimate outcome of a treatment might depend heavily on the shape of the distribution, not merely its mean. This is also something one might be able to get a handle on with simulations.

      These are relevant points, and the authors appreciate them. Certainly, moments other than the mean might have utility. This is the reason that we computed the one-step neighborhood variant vulnerability–to see if the variant vulnerability of an allele was related to properties of its mutational neighborhood. We found no such correlation. There are many other sorts of properties that one might examine (e.g., shape of the distribution, properties of mutational network, variance, fano factor, etc). As we don’t have an informed reason to pursue any of this in lieu of others, we are pleased to investigate this in the future.

      Also, while we’ve addressed general points about simulations above, we want to note that our analysis of environmental epistasis does consider the variance. We urge Reviewer #1 to see our new section on “Notes on Methods Used to Measure Epistasis” where we explain some of this and supply references to that effect.

      • As I understand it, the fitness measurements here are measures of per capita growth rate, which is reasonable. However, the authors may wish to briefly comment on the limitations of this choice-i.e. the fact that these are not direct measures of relative fitness values from head-to-head competition between strains.

      Reviewer #1 is correct: the metrics are computed from means. As Reviewer 1 definitely understands, debates over what measurements are proper proxies for fitness go back a long time. We added a slight acknowledgement about the existence of multiple fitness proxies in our revision.

      • The authors consider one-step variant vulnerability. Have the authors considered looking at 2-step, 3-step, etc analogs of the 1-step vulnerability? I wonder if these might suggest potential vulnerability bottlenecks associated with the use of a particular drug/drug combo or trajectories starting from particular variants.

      This is an interesting point. We provided one-step values as a means of interrogating the mutational neighborhood of alleles in the fitness landscape. While there could certainly be other pattern-relationships between the variant vulnerability and features of a fitness landscape (as the reviewer recognizes), we don’t have a rigorous reason to test them, other than an appeal to “I would be curious if [Blank].” As in, attempting to saturate the paper with these sorts of examinations might be fun, could turn up an interesting result, but this is true for most studies.

      To highlight just how serious we are about future questions along these lines, we’ll offer one specific question about the relationship between metrics and other features of alleles or landscapes. Recent studies have examined the existence of “evolvabilityenhancing mutations,” that propel a population to high-fitness sections of a fitness landscape:

      ● Wagner, A. Evolvability-enhancing mutations in the fitness landscapes of an RNA and a protein. Nat Commun 14, 3624 (2023). https://doi.org/10.1038/s41467023-39321-8

      One present and future area of inquiry involves whether there is any relationship between metrics like variant vulnerability and these sorts of mutations.

      We thank Reviewer 1 for engagement on this issue.

      • Fitness values are measured in the presence of a drug, but it is not immediately clear how the drug concentrations are chosen and, more importantly, how the choice of concentration might impact the landscape. The authors may wish to briefly comment on these effects, particularly in cases where the environment involves combinations of drugs. There will be a "new" fitness landscape for each concentration, but to what extent do the qualitative features changes-or whatever features drive evolutionary dynamics--change?

      This is another interesting suggestion. We have analyzed a new data set for dihydrofolate reductase mutants that contains a range of drug concentrations of two different antifolate drugs. The general question of how drug concentrations change evolutionary dynamics has been addressed in prior work of ours:

      ● Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS computational biology. 2016 Jan 25;12(1):e1004710.

      ● Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nature ecology & evolution. 2016 Nov 21;1(1):0007.

      There are a very large number of environment types that might alter the drug availability or variant vulnerability metrics. In our study, we used an established data set composed of different alleles of a Beta lactamase, with growth rates measured across a number of drug environments. These drug environments consisted of individual drugs at certain concentrations, as outlined in Mira et al. 2015. For our study, we examined those drugs that had a significant impact on growth rate.

      For a new analysis of antifolate drugs in 16 alleles of dihydrofolate reductase (Plasmodium falciparum), we have examined a breadth of drug concentrations (Supplementary Figure S4). This represents a different sort of environment that one can use to measure the two metrics (variant vulnerability or drug applicability). As we suggest in the manuscript, part of the strength of the metric is precisely that it can incorporate drug dimensions of various kinds.

      • The metrics introduced depend on the ensemble of drugs chosen. To what extent are the chosen drugs representative? Are there cases where nonrepresentative ensembles might be advantageous?

      The authors thank the reviewer for this. The general point has been addressed in our comments above. Further, the general question of how a study of one set of drugs applies to other drugs applies to every study of every drug, as no single study interrogates every sort of drug ensemble. That said, we’ve explained the anatomy of our metrics, and have outlined how it can be directly applied to others. There is nothing about the metric itself that has anything to do with a particular drug type – the arithmetic is rather vanilla.

      Reviewer #2 (Recommendations For The Authors):

      1. Regarding my comment about the different formalisms for epistatic decomposition analysis, a key reference is

      Poelwijk FJ, Krishna V, Ranganathan R (2016). The Context-Dependence of Mutations: A Linkage of Formalisms. PLoS Comput Biol 12(6): e1004771.

      The authors appreciate this, are fans of this work, and have cited it in the revision.

      An example where both Fourier and Taylor analyses were carried out and the different interpretations of these formalisms were discussed is

      Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 βlactamase. Mark P. Zwart, Martijn F. Schenk, Sungmin Hwang, Bertha Koopmanschap, Niek de Lange, Lion van de Pol, Tran Thi Thuy Nga, Ivan G. Szendro, Joachim Krug & J. Arjan G. M. de Visser Heredity 121:406-421 (2018)

      The authors are grateful for these references. While we don’t think they are necessary for our new section entitled “Notes on methods used to detect epistasis,” we did engage them, and will keep them in mind for other work that more centrally focuses on methods used to detect epistasis. As the author acknowledges, a full treatment of this topic is too large for a single manuscript, let alone a subsection of one study. We have provided a discussion of it, and pointed the readers to longer review articles that explore some of these topics in good detail:

      ● C. Bank, Epistasis and adaptation on fitness landscapes, Annual Review of Ecology, Evolution, and Systematics 53 (1) (2022) 457–479.

      ● T. B. Sackton, D. L. Hartl, Genotypic context and epistasis in individuals and populations, Cell 166 (2) (2016) 279–287.

      ● J. Diaz-Colunga, A. Skwara, J. C. C. Vila, D. Bajic, Á. Sánchez, Global epistasis and the emergence of ecological function, BioRxviv

      1. Although the authors label Figure 4 with the term "environmental epistasis", as far as I can see it is only a standard epistasis analysis that is carried out separately for each environment. The analysis of environmental epistasis should instead focus on which aspects of these interactions are different or similar in different environments, for example, by looking at the reranking of fitness values under environmental changes [see Ref.[26] as well as more recent related work, e.g. Gorter et al., Genetics 208:307-322 (2018); Das et al., eLife9:e55155 (2020)]. To some extent, such an analysis was already performed by Mira et al., but not on the level of epistatic interaction coefficients.

      The authors have provided a new analysis of how fitness value rankings have changed across drug environments, often a signature of epistatic effects across environments (Supplementary Figure S1).

      We disagree with the idea that our analysis is not a sort of environmental epistasis; we resolve coefficients between loci across different environments. As with every interrogation of G x E effects (G x G x E in our case), what constitutes an “environment” is a messy conversation. We have chosen the route of explaining very clearly what we mean:

      “We further explored the interactions across this fitness landscape and panels of drugs in two additional ways. First, we calculated the variant vulnerability for 1-step neighbors, which is the mean variant vulnerability of all alleles one mutational step away from a focal variant. This metric gives information on how the variant vulnerability values are distributed across a fitness landscape. Second, we estimated statistical interaction effects on bacterial growth through LASSO regression. For each drug, we fit a model of relative growth as a function of M69L x E104K x G238S x N276D (i.e., including all interaction terms between the four amino acid substitutions). The effect sizes of the interaction terms from this regularized regression analysis allow us to infer higher-order dynamics for susceptibility. We label this calculation as an analysis of “environmental epistasis.”

      As the grammar for these sorts of analyses continues to evolve, the best one can do is be clear about what they mean. We believe that we communicated this directly and transparently.

      1. As a general comment, to strengthen the conclusions of the study, it would be good if the authors could include additional data sets in their analysis.

      The authors appreciate this comment and have given this point ample treatment. Further, other main conclusions and discussion points are focused on the biology of the system that we examined. Analyzing other data sets may demonstrate the broader reach of the metrics, but it would not alter the strength of our own conclusions (or if they would, Reviewer #2 has not told us how).

      1. There are some typos in the units of drug concentrations in Section 2.4 that should be corrected.

      The authors truly appreciate this. It is a great catch. We have fixed this in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      I would suggest demonstrating the concepts for a second drug class, and suggest folA variants and trimethoprim resistance, for which there is existing published data similar to what the authors have used here (e.g. Palmer et al. 2015, https://doi.org/10.1038/ncomms8385)

      The authors appreciate this insight. As previously described, we have analyzed a data set of folA mutants for the Plasmodium falciparum ortholog of dihydrofolate reductase, and included these results in new supplemental material. Please see the supplementary material.

      There are some errors in formatting and presentation that I have annotated in a separate PDF file (https://elife-rp.msubmit.net/eliferp_files/2023/04/11/00117789/00/117789_0_attach_8_30399_convrt.pdf), as the absence of line numbers makes indicating specific things exceedingly difficult.

      The authors apologize for the lack of line numbers (an honest oversight), but moreover, are tremendously grateful for this feedback. We have looked at the suggested changes carefully and have addressed many of them. Thank you.

      One thing to note: we have included a version of Figure 4 that has effects on the same axes. It appears in the supplementary material (Figure S4).

      In closing, the authors would like to thank the editors and three anonymous reviewers for engagement and for helpful comments. We are confident that the revised manuscript qualifies as a substantive revision, and we are grateful to have had the opportunity to participate.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The authors describe a method to decouple the mechanisms supporting pancreatic progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation. The findings are important because they have implications beyond a single subfield. The strength of evidence is solid in that the methods, data and analyses broadly support the claims with only minor weaknesses.

      We are grateful for the substantial effort that reviewers put into reading our manuscript and providing such a detailed feedback. We have strived to address, as much as possible, all comments and criticisms. Thanks to the feedback, we believe that we have now a significantly improved manuscript. Below, there is a point-bypoint response.

      Reviewer #1 (Public Review)

      In this manuscript, the authors are developing a new protocol that aims at expanding pancreatic progenitors derived from human pluripotent stem cells under GMP-compliant conditions. The strategy is based on hypothesis-driven experiments that come from knowledge derived from pancreatic developmental biology.

      The topic is of major interest in the view of the importance of amplifying human pancreatic progenitors (both for fundamental purposes and for future clinical applications). There is indeed currently a major lack of information on efficient conditions to reach this objective, despite major recurrent efforts by the scientific community.

      Using their approach that combines stimulation of specific mitogenic pathways and inhibition of retinoic acid and specific branches of the TGF-beta and Wnt pathways, the authors claim to be able, in a highly robust and reproducible manner) to amplify in 10 passages the number of pancreatic progenitors (PP) by 2,000 folds, which is really an impressive breakthrough.

      The work is globally well-performed and quite convincing. I have however some technical comments mainly related to the quantification of pancreatic progenitor amplification and to their differentiation into beta-like cells following amplification.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to specific comments and criticisms.

      Reviewer #1 (Recommendations For The Authors)

      Figure 1:

      Panel A: What is exactly counted in Fig. 1A? Is it the number of PP (as indicated in the title) or the total number of cells? If it is PPs, was it done following PDX1/NKX6.1/SOX9 staining and FACS quantification? This question applies to a number of Figures and the authors should be clear on this point.

      We now define ‘PP cells’ as ‘PP-containing cells’ (PP cells) the first time we use the term in the RESULTS section.

      Panel D: I do not understand the source of TGFb1, GDF11, FGF18, PDGFA. Which cell type(s) express such factors in culture? I was not convinced that the signals are produced by PP and act through an autocrine loop. I have the same type of questions for the receptors: PDGFR on the second page of the results; RARs and RXRs on the third page.

      We refer to these factors/receptors as components of a tentative autocrine loop. We agree we do not prove it and we now comment on this in the discussion section.

      Figure 2:

      FACS plots are very difficult to analyze for two reasons: I do not understand the meaning of the y axes (PDX1/SOX9). Does that mean that 100% of the cells were PDX1+/SOX9+? The authors should show the separated FACS plots. More importantly, the x axes indicate that NKX6.1 FACS staining is very weak. This is by far different from what can be read in publications performing the same types of experiments (publications by Millman, Otonkoski...as examples). How was quantification performed when it is so difficult to properly define positive vs negative populations? It is necessary to present proper "negative controls" for FACS experiments and to clearly indicate how positive versus cells were defined

      We now explain the gating strategy better in the results section, all controls are included in figure S2.

      Figure 3:

      What is the exact "phenotype" of the cells that incorporated EdU: It would be really instructive to add PDX1/NKX6.1/SOX9 staining on top of EdU. I am also surprised that 20% of the cells stain positive for Annexin V. This is a huge fraction. Does that mean that many cells (20%) are dying and if the case, how amplification can take place under such deleterious conditions?

      This is an interesting mechanistic point but performing these experiments would delay the publication of the final manuscript for too long. These assays were done at p3 in order to catch CINI cells that do not expand in most cases. It is important to note that cell death also appears higher in CINI cells. It is likely that the combination of these effects results in reproducible expansion under C5. We comment on the possibilities in the discussion section.

      Figure 4:

      On FACS plots the intensity at the single cell level (see x-axis of the figure) of the NKX6.1 staining is found to increase in Fig. 4G by 50-100 folds when compared to Fig. 4E. Is it expected? This should be discussed in the text. Do the authors observe the same increase by immunocytochemistry?

      The apparent difference is actually 10-fold (from 2x102 to 2x103). We think that the most likely reason for this apparent increase is that at p0 we typically used very few cells for the FC in order to keep as many as possible for the subsequent expansion. If we had used more, we would be able to also detect cells with higher expression. As we mention in the bioinformatics analysis, NKX6 expression does increase with passaging and therefore it is also possible that at least part of this increase is real. However, we don’t have suitable data (same number of cells analyzed at each passage) to address this in a reliable manner.

      Figure 5

      Previous data from the scientific literature indicate that in vitro, by default, PP gives rise to duct-like cells. This is a bit described in the result section and supplementary figures taking into account the expression of transcription factors. However the data are not clearly explained and described in quite a qualitative manner. They should appear in a quantitative fashion (and the main figures), adding additional duct cell markers such as Carbonic anhydrase, SPP1, CFTR, and others. I assume that the authors can easily use their transcriptomic data to produce a Figure to be described and discussed in detail.

      We think it can be misleading to use such markers (other than TFs and the latter only as a collective) because specific markers of terminal differentiation are more often than not expressed during development in multipotent progenitors, the most conspicuous example been CPA1. To illustrate the point, we used the RNA Seq data of and plotted the expression values of a panel of duct genes in isolated human fetal progenitors (Ramond et al., 2017) together with their expression in p0 PP and ePP cells from all three different procedure (please see below). All raw RNA Seq data were processed together to enable direct comparison. According to the analysis of Ramond et al the A population corresponds to MPCs, C to early endocrine progenitors (EP), D to late endocrine progenitors and, by inference and gene expression pattern B to BPs. Expression levels of all these markers were very similar suggesting that these markers cannot be used to distinguish between duct cells and progenitor cells. Importantly, SC-islets derived from either dPP or ePP cells express extremely low and similar levels of KRT19, a marker of duct cells. This latter information is now included in the last part of the results (Figure S7).

      Author response image 1.

      Fig. 7:<br /> The figure is a bit disappointing for 2 reasons. In A and B, the quality of INS, GCG, and SST staining is really poor. In E, GSIS is really difficult to interpret. They should not be presented as stimulatory indexes. The authors should present independently: INS content; INS secretion at low glucose; INS secretion at high glucose; INS secretion with KCL. Finally, the authors should indicate that glucose poorly (around 2 fold) activates insulin/C-Pept secretion in their stem-cell-derived islets.

      We disagree with the quality assessment of the immunofluorescence. Stimulation indexes are also used very widely but we now provide data for actual C-peptide secretion normalized for DNA content of the SC-islets. For technical reasons we do not have normalized C-peptide secretion for human islets. However, we provide a direct comparison to the stimulation index of human islets assayed under the same conditions (2.7 mM glucose / 16.7 mM glucose / 16.7 mM glucose + 30 mM KCl) without presenting SC-islets separately and tweaking the glucose basal (lowering) and stimulation (increasing) levels to inflate the stimulation index. This is unfortunately common. In any case, we do not claim an improvement in the differentiation conditions and our S5-S7 steps may not be optimal but this is not the subject of this work.

      Reviewer #2 (Public Review)

      Summary

      The paper presents a novel approach to expand iPSC-derived pdx1+/nkx6.1+ pancreas progenitors, making them potentially suitable for GMP-compatible protocols. This advancement represents a significant breakthrough for diabetes cell replacement therapies, as one of the current bottlenecks is the inability to expand PP without compromising their differentiation potential. The study employs a robust dataset and state-of-the-art methodology, unveiling crucial signaling pathways (eg TGF, Notch...) responsible for sustaining pancreas progenitors while preserving their differentiation potential in vitro.

      Strengths

      This paper has strong data, guided omics technology, clear aims, applicability to current protocols, and beneficial implications for diabetes research. The discussion on challenges adds depth to the study and encourages future research to build upon these important findings.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The paper does have some weaknesses that could be addressed to improve its overall clarity and impact. The writing style could benefit from simplification, as certain sections are explained in a convoluted manner and difficult to follow, in some instances, redundancy is evident. Furthermore, the legends accompanying figures should be self-explanatory, ensuring that readers can easily understand the presented data without the need to be checking along the paper for information.

      We have simplified the text in several places and removed redundancies, particularly in the discussion. We revisited the figure legends and made minor corrections to increase clarity. However, regarding the figure legends, we think that adding the interpretation of the results would be redundant to the main text.

      The culture conditions employed in the study might benefit from more systematic organization and documentation, making them easier to follow.<br /> There is a comparative Table (Table S1) where all conditions are summarized. We refer to this Table every time that we introduce a new condition. We also have a Table (Table S4) which presents all different media and components used it the differentiation procedure.

      Another important aspect is the functionality of the expanded cells after differentiation. While the study provides valuable insights into the expansion of pancreas progenitors in vitro and does the basic tests to measure their functionality after differentiation the paper could be strengthened by exploring the behavior and efficacy of these cells deeper, and in an in vivo setting.

      This will be done in a future study where we will also introduce a number of modifications in S5-S7

      Quantifications for immunofluorescence (IF) data should be displayed.

      We have not conducted quantifications of IFs because FC is much more objective and accurate. We have not conducted FC for CDX2 and AFP because all other data strongly favor C6 anyway. It should be noted that CDX2 and AFP expression is generally not addressed at all presumably because it raises uncomfortable questions and, to our knowledge, we are the first to address this so exhaustively.

      Some claims made in the paper may come across as somewhat speculative.

      We have now indicated so where applicable.

      Additionally, while the paper discusses the potential adaptability of the method to GMP-compatible protocols, there is limited elaboration on how this transition would occur practically or any discussion of the challenges it might entail.

      We have now added a paragraph discussing this in the discussion section.

      Reviewer #2 (Recommendations For The Authors)

      Related to Figure 1:

      • Unclear if CINI or SB431542 + CINI was used (first paragraph of results...)

      The paragraph was unclear and it is now rewritten

      • Was the differentiation to PP similar between the different attempts? A basic QC for each Stem Cell technology differentiation would be good to include.

      We added (Figure 1B) a comparison of expression data of general genes (QC) in PP cells showing very comparable patterns of expression. Some of these PP cells went on to expand and most did not but there is no apparent correlation of this with the gene expression data.

      • qPCR data - relative fold? over what condition? (indicate on axis label)

      We added a label as well as an explanation on p0 values in the figure legend

      • FGF18/ PDGFA - worth including background in pancreas development as in the other factors.

      Background information has been added

      • Bioinformatics is a bit biased with a few genes selected - what are the DEGs / top enriched pathways? Maybe worth showing a volcano plot of the DEGs for example.

      We have done all these standard analyses but we think that they did not contribute anything else useful to the study with the exception of pointing to the finding that the TGFb pathway is negatively correlated with expansion, and this is included in the study. The ‘unbiased’ analysis that the reviewer suggests did not turn out something else useful to exploit for the expansion. This does not mean that our approach is biased – in our view it is hypothesis-driven. As we also write in the manuscript, if in a certain pathway a key gene fails to be expressed, the pathway will not show up in any GO or GSEA analyses. However, the pathway will still be regulated. The RA and FGF18 cases clearly illustrate this. We realize that these analyses have become a standard but we think that it is not the only way to approach genomics data and these approaches did not offer much in the context of this study.

      • The E2F part is very speculative

      The pathway came up as a result of ‘unbiased’ GSEA analyses. However, we do agree and rephrased.

      • The authors claim ' the negative correlation of TGFb signalling with expansion retrospectively justifies the use of A83 '. However, p0 is not treated with A83 - how can they tell that there is a correlation between TGFb signalling and expansion?

      The correlation came from the RNA Seq data analysis during expansion. We have rephrased slightly to convey the message more clearly.

      • Typo with TGFbeta inhibitor name is mispelled (A3801)

      Corrected

      • Page 5 - last paragraph - Table S3? (isnt it refering to S2?)

      Since Table S2 is the list of the regulated genes and S3 is the list of the regulated signaling pathway components both are relevant here, we now refer to both.

      • In the text Figure 2G should read Figure 1G (page 7, end of 1st paragraph).

      Corrected

      • 'Autocrine loop' existence – speculative

      Added the phrase ‘we speculated’. We refer to this only as a tentative interpretation. We also elaborate in the discussion now.

      Related to Figure 2:

      • I am not sure if I would refer to chemical "activation/inhibition" of pathways as 'gain/loss of function'. Maybe this term is more adequate for genetic modifications.

      For genetic manipulations, these terms are (supposed to be) accompanied by the adjective ‘genetic’ but to avoid misinterpretations we changed the terms to activation and inhibition as suggested.

      • It would be good to include a summary of the different conditions as a schematic in one of the figures, to make it very clear to the reader what the conditions are.

      We tried this in an early version of the manuscript but, in our view, it was adding complexity, rather than simplifying things. The problem is that as such the Table cannot be integrated in any figure if eg in Figure 2 it would be too early, if in Figure 4 it would be too late and so on. All conditions show up in detail in Table S1.

      • Nkx6.1 - is the image representative? It looks like Nkx6.1 decreases over the passages.

      We do mention in the text that ‘… even though expansion (in C5) appeared to somewhat reduce the number of NKX6.1+ cells. (Figure 2E-G). As we mentioned, this was one of the reasons to continue with other conditions (C6-C8).

      • Upregulation of AFP/ CDX2 is a bit concerning - the IF for C5 p5 shows a high proportion of CDX2+ cells (Fig S2I). perhaps it would be good to quantify the IF.

      It was concerning – this is why we then tested conditions C6-8. Since it is C6 that we propose at the end, it would be, in our view, extraneous to quantify CDX2 in C5.

      • How do C5/C1/C0 compare to CINI?

      We now remind the reader in the results section that CINI was not reproducible - so any other comparison would be extraneous.

      Related to Figure 3:

      • There is a 'Lore Ipsum' label above B

      Corrected

      Related to Figure 4:

      • It is good that AFP expression is reduced at p10, but there seems to be a high proportion of AFP at p5. IF/FACS should be quantified.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • CDX2 should be quantified by IF / FACS.

      We think that this would not add significantly since there are several other criteria, particularly the increase of the PDX1+/SOX9+/NKX6.1+ that clearly show that the C6 condition is preferable. Further elaboration of C6 could use such additional criteria. We comment on CDX2 / AFP in the discussion.

      • Karyotype analysis is good but not very precise when analyzing genetic micro alterations... what does a low-pass sequencing of the expanding lines look like? Are there any micro-deletions in the expanding lines?

      This is an unusual request. Microdeletions may occur at any point – during passaging of hPS cells, differentiation as well as well as expansion but such data are so far not shown in publications – and reasonably so in our opinion. Thus, we have not done this analysis but it certainly would be appropriate in a clinical setting as part of QC.

      • Data supporting that the cells can be cryopreserved and recovered with >85% survival rate is not provided.

      We now provide data for the C6-mediated expansion (Figure 4J). The freezing procedure was developed during the time we were testing C5 and we don’t have sufficient data to show reliably the survival of the cells during C5 expansion. Thus, we have now removed the reference in the C5 part of the manuscript.

      Related to Figure 5:

      -Figure 5C - perhaps worth commenting on the different pathways that are enriched when cells undergo expansion and show some of the genes that are up/down regulated.

      This is indeed of interest but since it will not address any specific question in the context of this work (eg is the endocrine program repressed?) and since it would not be followed by additional experiments we think that it would burden the manuscript unnecessarily. The data are accessible for any type of analysis through the GEO database.

      • Figure S5D shows in vitro clustering away from in vivo PP - it would be good to explain how in vitro generated PP differs from their in vivo counterparts instead of restricting the comparison to the in vitro protocol.

      We have added a possible interpretation of this observation in the results section and discuss, how one could go properly about this comparison.

      • Quantification of Fig5F should be included. Is GP2 expression detectable by IF at p5 too?

      We have quantified GP2 expression by FC at p10 but not at earlier stages. We include now the FC data in Fig5F

      • Validation of Fig5G by qPCR would be good. PDX1 did not seem reduced by IF in Figure 4.

      The purpose of Fig5G is to compare the expression of the same genes across different expansion approaches. Therefore, in our view, qPCRs would not be appropriate since we do not have samples from the other approaches. We did not claim a reduction in PDX1 expression.

      • How can the authors explain the NGN3 expression at PP?

      In our view, differentiation is a dynamic process and not all cells are synchronized at the same cell type, this is true in vivo and in vitro. Sc-RNA Seq data indeed show a small population of cells at PP that are NEUROG3+ (our unpublished data). We have now included this in the discussion.

      Related to Figure 6:

      • How do the different lines differ? Any statistical comparison between lines?

      There is a paragraph dealing with the comparison of PP and ePP cells (p5 and p10) from different lines at the level of gene expression and the data are in Figure S6A-G. Then there is a paragraph addressing this at the level of PDX1/SOX9/NKX6.1 expression by FC. We have now expanded and rewrote the latter to include statistical comparisons across PPs from different lines at p0, p5 an p10

      Related to Figure 7:

      • Mention the use of micropatterned

      Micropatterned wells - not really correct. They use Aggrewells, micropatterned plates are something else.

      We changed ‘micropatterned wells’ into ‘microwells’

      • Figure 7D, those are qPCR data. The label is inconsistent, why did they call it fold induction instead of fold change? Also, not sure if plotting the fold change to hPSC is the best here.

      We use fold change when comparing the expression of the same gene at different passages but fold induction when comparing to its expression in hPS cells. We made sure it is also explained in the figure legends.

      • Absolute values should be shown for the GSIS to determine basal insulin secretion. Also, sequential stimulation to address if the cells are able to respond to multiple glucose stimulations.

      We include now the secreted amounts of human C-peptide under the different conditions (Figure S7) normalized for cell numbers using their DNA content for the normalization. The many parameters we have used suggest that dPP and ePP SC-islets are very similar. If we were claiming a better S5-S7 procedure, such an assay would have been necessary but in this context, we think it is not absolutely necessary.

      • In vivo data would have strengthened the story. It is not clear if, in vivo, the cells will behave as the nonexpanded iPSC-derived beta cells.

      We agree and these studies are under way but we do not expect to complete them soon. We feel that it is important that this work appears sooner rather than later.

      Reviewer #3 (Public Review)

      Summary:

      In this work, Jarc et al. describe a method to decouple the mechanisms supporting progenitor self-renewal and expansion from feed-forward mechanisms promoting their differentiation.

      The authors aimed at expanding pancreatic progenitor (PP) cells, strictly characterized as PDX1+/SOX9+/NKX6.1+ cells, for several rounds. This required finding the best cell culture conditions that allow sustaining PP cell proliferation along cell passages, while avoiding their further differentiation. They achieve this by comparing the transcriptome of PP cells that can be expanded for several passages against the transcriptome of unexpanded (just differentiated) PP cells.

      The optimized culture conditions enabled the selection of PDX1+/SOX9+/NKX6.1+ PP cells and their consistent, 2000-fold, expansion over ten passages and 40-45 days. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. These optimized culture conditions consisted of substituting the Vitamin A containing B27 supplement with a B27 formulation devoid of vitamin A (to avoid retinoic acid (RA) signaling from an autocrine feed-forward loop), substituting A38-01 with the ALK5 II inhibitor (ALK5i II) that targets primarily ALK5, supplementation of medium with FGF18 (in addition to FGF2) and the canonical Wnt inhibitor IWR-1, and cell culture on vitronectin-N (VTN-N) as a substrate instead of Matrigel.

      Strengths:

      The strength of this work relies on a clever approach to identify cell culture modifications that allow expansion of PP cells (once differentiated) while maintaining, if not reinforcing, PP cell identity. Along the work, it is emphasized that PP cell identity is associated with the co-expression of PDX1, SOX9, and NKX6.1. The optimized protocol is unique (among the other datasets used in the comparison shown here) in inducing a strong upregulation of GP2, a unique marker of human fetal pancreas progenitors. Importantly GP2+ enriched hPS cell-derived PP cells are more efficiently differentiating into pancreatic endocrine cells (Aghazadeh et al., 2022; Ameri et al., 2017).

      The unlimited expansion of PP cells reported here would allow scaling-up the generation of beta cells, for the cell therapy of diabetes, by eliminating a source of variability derived from the number of differentiation procedures to be carried out when starting at the hPS cell stage each time. The approach presented here would allow the selection of the most optimally differentiated PP cell population for subsequent expansion and storage. Among other conditions optimized, the authors report a role for Vitamin A in activating retinoic acid signaling in an autocrine feed-forward loop, and the supplementation with FGF18 to reinforce FGF2 signaling.

      This is a relevant topic in the field of research, and some of the cell culture conditions reported here for PP expansion might have important implications in cell therapy approaches. Thus, the approach and results presented in this study could be of interest to researchers working in the field of in vitro pancreatic beta cell differentiation from hPSCs. Table S1 and Table S4 are clearly detailed and extremely instrumental to this aim.

      We thank the reviewer for the positive assessment. Below we provide a point-by-point response to general comments and criticisms.

      Weaknesses

      The authors strictly define PP cells as PDX1+/SOX9+/NKX6.1+ cells, and this phenotype was convincingly characterized by immunofluorescence, RT-qPCR, and FACS analysis along the work. However, broadly defined PDX1+/SOX9+/NKX6.1+ could include pancreatic multipotent progenitor cells (MPC, defined as PDX1+/SOX9+/NKX6.1+/PTF1A+ cells) or pancreatic bipotent progenitors (BP, defined as PDX1+/SOX9+/NKX6.1+/PTF1A-) cells. It has been indeed reported that Nkx6.1/Nkx6.2 and Ptf1a function as antagonistic lineage determinants in MPC (Schaffer, A.E. et al. PLoS Genet 9, e1003274, 2013), and that the Nkx6/Ptf1a switch only operates during a critical competence window when progenitors are still multipotent and can be uncoupled from cell differentiation. It would be important to define whether culturing PDX1+/SOX9+/NKX6.1+ PP (as defined in this work) in the best conditions allowing cell expansion is reinforcing either an MPC or BP phenotype. Data from Figure S2A (last paragraph of page 7) suggests that PTF1A expression is decreased in C5 culture conditions, thus more homogeneously keeping BP cells in this media composition. However, on page 15, 2nd paragraph it is stated that "the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage". Evaluating the co-expression of the previously selected markers with PTF1A (or CPA2), or the more homogeneous expression of novel BP markers described, such as DCDC2A (Scavuzzo et al. Nat Commun 9, 3356, 2018), in the different culture conditions assayed would more shield light into this relevant aspect.

      This is certainly an interesting point. The RNA Seq data suggest that ePP cells resemble BP cells rather than MPCs and that this occurs during expansion. We have now added a new paragraph in the results section to illustrate this and added graphs of CPA2, PTF1A and DCDC2A expression during expansion in Figure 5, S5 as well as data in Table S5. In summary, we favor the interpretation that expanded cells are close but not identical to the BP identity and refer to that in the discussion. We have also amended the statement on page 15 stating the strong upregulation of NKX6.2 in our procedure suggested that our ePP cells may have retracted to an earlier PP stage.

      In line with the previous comment, it would be extremely insightful if the authors could characterize or at least discuss a potential role for YAP underlying the mechanistic effects observed after culturing PP in different media compositions. It is well known that the nuclear localization of the co-activator YAP broadly promotes cell proliferation, and it is a key regulator of organ growth during development. Importantly in this context, it has been reported that TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors and disruption of this interaction arrests the growth of the embryonic pancreas (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015). More recently, it has also been shown that a cell-extrinsic and intrinsic mechanotransduction pathway mediated by YAP acts as gatekeeper in the fate decisions of BP in the developing pancreas, whereby nuclear YAP in BPs allows proliferation in an uncommitted fate, while YAP silencing induces EP commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This mechanism was further exploited recently to improve the in vitro pancreatic beta cell differentiation protocol (Hogrebe et al., Nature Protocols 16, 4109-4143, 2021; Hogrebe et al, Nature Biotechnology 38, 460-470, 2020). Thus, YAP in the context of the findings described in this work could be a key player underlying the proliferation vs differentiation decisions in PP.

      We do refer to these publications now and refer to the YAP pathway in the introduction and results sections as well as in the discussion. We have not investigated more because the kinetics of the different components of the pathway are complex and do not give an indication of whether the pathway becomes more or less active – please see below.

      Author response image 2.

      Regarding the improvements made in the PP cell culture medium composition to allow expansion while avoiding differentiation, some of the claims should be better discussed and contextualized with current stateof-the-art differentiation protocols. As an example, the use of ALK5 II inhibitor (ALK5i II) has been reported to induce EP commitment from PP, while RA was used to induce PP commitment from the primitive gut tube cell stage in recently reported in vitro differentiation protocols (Hogrebe et al., Nature Protocols 16, 41094143, 2021; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). In this context, and to the authors' knowledge, is Vitamin A (triggering autocrine RA signaling) usually included in the basal media formulations used in other recently reported state-of-the-art protocols? If so, at which stages? Would it be advisable to remove it?

      These points and our views are now included in the discussion

      In this line also, the supplementation of cell culture media with the canonical Wnt inhibitor IWR-1 is used in this work to allow the expansion of PP while avoiding differentiation. A role for Wnt pathway inhibition during endocrine differentiation using IWR1 has been previously reported (Sharon et al. Cell Reports 27, 22812291.e5, 2019). In that work, Wnt inhibition in vitro causes an increase in the proportion of differentiated endocrine cells. It would be advisable to discuss these previous findings with the results presented in the current work. Could Wnt inhibition have different effects depending on the differential modulation of the other signaling pathways?

      These points are now included in the discussion together with the points above

      Reviewer #3 (Recommendations For The Authors)

      Recommendations for improving the writing and presentation and minor comments on the text and figures:

      • In the Introduction (page 3, line 1) it is stated: "Diabetes is a global epidemic affecting > 9% of the global population and its two main forms result from .....". The authors could rephrase/remove "global" repeated twice.

      Corrected

      • On page 4 of the introduction, in the context of "Unlimited expansion of PP cells in vitro will require disentangling differentiation signals from proliferation/maintenance signals. Several pathways have been implicated in these processes..." the authors are advised to consider mentioning the YAP mediated mechanisms as another key aspect underlying MPC phenotype (Cebola, I. et al. Nat Cell Biol 17, 615-26, 2015) and the BP to endocrine progenitor (EP) commitment (Mamidi, A. et al. Nature 564, 114-118, 2018; Rosado-Olivieri et al. Nature Communications 10, 1464, 2019). This should be better discussed in the context of the Weaknesses mentioned in the Public Review. It would be worth considering adding effectors and other molecules involved in YAP and Hippo pathway signaling to Table S3.

      We have added the role of the Hippo/YAP pathway in the introduction and mentioned in the results the finding that components of the pathway are generally not regulated except two that are now added in Table S3

      • In page 4, paragraph 3, near "and SB431542, another general (ALK4/5/7) TGFβ inhibitor", consider removing "another". SB431542 is the same inhibitor mentioned in the other protocols at the beginning of the paragraph.

      The paragraph is rewritten because it was not clear – we used A83-01 and not SB431542. Other approaches had used SB431542.

      • Page 5, Table S2 is cited after Table S3, please consider reordering.

      In fact, both S2 and S3 are relevant there, therefore we quote both now.

      • Page 8, 2nd paragraph, near "Expression of both AFP and CDX2 increased transiently upon expansion, at p5 (Figure S2H-J)." How do you explain results in FigS2C, D and FigS2E (AFP/CDX2)? RT-qPCR data does not suggest transient downregulation.

      AFP and CDX2 were – wrongly – italicized in the quoted passage. Therefore, in one case we refer to the protein and in the other to the transcript levels. We corrected and added the qualifier ‘appeared’. The difference is most likely due to translational regulation but we did not elaborate since we do not know. In any case, we have used the, less favorable but more robust, gene expression levels as the main criterion.

      • Page 9, end of 2nd paragraph, Figure 5A is cited but it looks like this should be Figure 4A.

      Corrected

      • Page 9, 3rd paragraph, when stating "C5 ePP cells of the same passage no..." please replace "no" with a number or a suitable abbreviation.

      Corrected

      • Page 9, 3rd paragraph. Expressing the values in the Y axis in a consistent manner for FigS2B-D and FigS4A would make a comparison easier.

      We strive to keep sections autonomous so that the reader would not have to flip between figures and sections – this is why we think that figure S4A is preferable as it is; it is a direct comparison of C6 to C5 for the different markers and has the additional advantage that one needs not to include p0 levels.

      • Page 9, 3rd paragraph. Green dots in FigS4A stand for p5 cells? if so, shouldn't these average 1 for all assayed genes?

      No, because the baseline (average 1) is the C5 expression at the corresponding passage no. We changed the y-axis label, hopefully it is clearer now.

      • Page 10 3rd paragraph, please include color labels in Fig. 5G.

      The different colors here correspond to the different expansion procedures that are compared. The samples are labelled on the x axis.

      • Page 10 3rd paragraph, Figure 6G is cited but it looks like this should be Figure 5G.

      Corrected

      • Page 11, 1st paragraph, at "TF genes such as FOXA2 and RBJ remained comparable", please double check if "RBJ" should be "RBPJ".

      Corrected

      • Page 11, end of 1st paragraph, when stating "Of note, expression of PTF1A was also undetectable in all ePP cells (Table S5)", is PTF1A expression level close to 1000 (which units?) in Table S5 considered undetectable?

      This statement regarding ‘undetectable PTF1A expression’ refers to expanded PP cells (ePP), not PP cells at p0. For the latter, expression is indeed close to 1000 in normalized RNA-sequence counts as mentioned in the Table legend.

      -Page 11, 4th paragraph, "In summary, the comparative transcriptome analyses suggested that our C6 expansion procedure is more efficient at strengthening the PP identity". In the context of comments made in the Public Review, more accuracy needs to be put when defining PP identity. Are these MPC or BP?

      The RNA Seq data suggest that expansion promotes a MPC  BP transition. We have added a paragraph in the corresponding results section and comment in the discussion.

      • Page 15, 2nd paragraph, the sentence "expression of PTF1A, recently shown to promote endocrine differentiation of hPS cells (Miguel-Escalada et al., 2022)" is confusing. Please double-check sentence syntax and reference. Does PTF1A expression "promote" or "create epigenetic competence" for endocrine differentiation?

      Its role is in the MPCs and it prepares the epigenetic landscape to allow for duct and endocrine specification later, thus it ‘creates epigenetic competence’. The paper was cited out of context and we have now corrected it.

      Additional recommendations by the Reviewing Editor:

      An insufficient number of experimental repetitions have been used for the following data: (Figure 1A, n = 2; Figures 2B-D, p10, n = 2; Figures 6A and B, VTN-N, n = 1).

      This is true but we do not draw quantitative conclusions from or do comparisons with these data.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful evaluation of our manuscript. We considered all the comments and prepared the revised version. The following are our responses to the reviewers’ comments. All references, including those in the original manuscript are included at the end of this point-by-point response.

      Reviewer #1 (Public Review):

      Weaknesses:

      1) The authors should better review what we know of fungal Drosophila microbiota species as well as the ecology of rotting fruit. Are the microbiota species described in this article specific to their location/setting? It would have been interesting to know if similar species can be retrieved in other locations using other decaying fruits. The term 'core' in the title suggests that these species are generally found associated with Drosophila but this is not demonstrated. The paper is written in a way that implies the microbiota members they have found are universal. What is the evidence for this? Have the fungal species described in this paper been found in other studies? Even if this is not the case, the paper is interesting, but there should be a discussion of how generalizable the findings are.

      The reviewer inquires as to whether the microbial species described in this article are ubiquitously associated with Drosophila or not. Indeed, most of the microbes described in this manuscript are generally recognized as species associated with Drosophila spp. For example, yeasts such as Hanseniaspora uvarum, Pichia kluyveri, and Starmerella bacillaris have been detected in or isolated from Drosophila spp. collected in European countries as well as the United States and Oceania (Chandler et al., 2012; Solomon et al., 2019). As for bacteria, species belonging to the genera Pantoea, Lactobacillus, Leuconostoc, and Acetobacter have also previously been detected in wild Drosophila spp. (Chandler et al., 2011). These statements have been incorporated into our revised manuscript (lines 391-397). Nevertheless, the term “core” in the manuscript and title may lead to misunderstanding, as the generality does not ensure the ubiquitous presence of these microbial species in every individual fly. Considering this point, we replaced the “core” with “key,” a term that is more appropriate to our context.

      2) Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild? Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild?

      The reviewer asked whether the microbial species detected from the fermented banana samples were derived from flies. To address this question, additional experiments under more controlled conditions would be needed, such as artificially introducing wild flies onto fresh bananas in the laboratory. Nevertheless, the microbes potentially originate from wild flies, as supported by the literature cited in our response to the Weakness 1).

      Alternative sources of microbes also merit consideration. For example, microbes may have been introduced to unfermented bananas by penetration through peel injuries (lines 1300-1301). In addition, they could be introduced by insects other than flies, given that rove beetles (Staphylinidae) and sap beetles (Nitidulidae) were observed in some of the traps. The explanation of these possibilities have been incorporated into DISCUSSION (lines 414427) of our revised manuscript.

      Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Our sampling strategy was designed to target not only D. melanogaster but also other domestic Drosophila species, such as D. simulans, that inhabit human residential areas. For the traps where adult flies were caught, we identified the species of the drosophilids as shown in Table S1, thereby showing the presence of either or both D. melanogaster and D. simulans. We added these descriptions in MATERIALS AND METHODS (lines 511-512 and 560-562), and DISCUSSION (lines 378-379).

      3) Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning. The authors described their microarray data in terms of fed/starved in relation to the Finke article. They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning.

      Regarding the antimicrobial peptide genes, statistical comparisons of our RNA-seq data across different conditions were impracticable because most of the genes showed low expression levels. The RNA-seq data of the yeast-fed larvae is shown in Author response Table 1. While a subset of genes exhibited significantly elevated expression in the nonsupportive conditions relative to the supportive ones, this can be due to intra-sample variability rather than the difference in the nutritional conditions. Similar expression profiles were observed in the bacteria-fed larvae as well (data not shown). Therefore, it is difficult to discuss a change in immune genes in the paper. Additionally, the previous study that conducted larval microarray analysis (Zinke et al., 2002) did not explicitly focus on immune genes.

      Author response table 1.

      Antimicrobial peptide genes are not up-regulated by any of the microbes. Antimicrobial peptides gene expression profiles of whole bodies of first-instar larvae fed on yeasts. TPM values of all samples and comparison results of gene expression levels in the larvae fed on supportive and non-supportive yeasts are shown. Antibacterial peptide genes mentioned in Hanson and Lemaitre, 2020 are listed. NA or na, not available.

      They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      We did not observe significant differences in the gene expression profiles of the larvae fed on different microbial species within bacteria or fungi, or between those fed on bacteria and those fed on fungi. For example, the gene expression profiles of larvae fed on the various supportive microbes showed striking similarities to each other, as evidenced by the heat map showing the expression of all genes detected in larvae fed either yeast or bacteria (Author response image 1). Similarities were also observed among larvae fed on various nonsupportive microbes.

      Only a handful of genes showed different expression patterns between larvae fed on yeast and those fed on bacteria. Thus, it is challenging to discuss the potential differential impacts of yeast and bacteria on larval growth, if any.

      Author response image 1.

      Gene expression profiles of larvae fed on the various supporting microbes show striking similarities to each other. Heat map showing the gene expression of the first-instar larvae that fed on yeasts or bacteria. Freshly hatched germ-free larvae were placed on banana agar inoculated with each microbe and collected after 15 h feeding to examine gene expression of the whole body. Note that data presented in Figures 3A and 4C in the original manuscript, which are obtained independently, are combined to generate this heat map. The labels under the heat map indicate the microbial species fed to the larvae, with three samples analyzed for each condition. The lactic acid bacteria (“LAB”) include Lactiplantibacillus plantarum and Leuconostoc mesenteroides, while the lactic acid bacterium (“AAB”) represents Acetobacter orientalis. “LAB + AAB” signifies mixtures of the AAB and either one of the LAB species. The asterisks in the label highlight “LAB + AAB” or “LAB” samples clustered separately from the other samples in those conditions; “” indicates a sample in a “LAB + AAB” condition (Lactiplantibacillus plantarum + Acetobacter orientalis), and “*” indicates a sample in a “LAB” condition (Leuconostoc mesenteroides). Brown abbreviations of scientific names are for the yeast-fed conditions. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; M. asi, Martiniozyma asiatica; Sa. cra, Saccharomycopsis crataegensis; P. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; BY4741, Saccharomyces cerevisiae BY4741 strain.

      4) The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)? Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)?

      Although we did not investigate the microbiota in the gut of either larvae or adults, we did compare the microbiota within surface-sterilized larvae or adults with the microbiota in food samples. We found that adult flies and early-stage foods, as well as larvae and late-stage foods, harbored similar microbial species (Figure 1F). Additionally, previous studies examining the gut microbiota in wild adult flies have detected microbes belonging to the same species or taxa as those isolated from our foods (Chandler et al., 2011; Chandler et al., 2012). We have elaborated on this in our response to Weakness 1).

      While we did not investigate whether these species are capable of establishing a niche in the cardia of adults, we have cited the study by Dodge et al., 2023 in our revised manuscript and discussed the possibility that predominant microbes in adult flies may show a propensity for colonization (lines 410-413).

      Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The reviewer inquires whether the supportive microbes in our study stimulate gut signaling pathways and induce the expression of digestive protease genes, as demonstrated in a previous study (Erkosar et al., 2015). Based on our RNA-seq data, this is unlikely. The aforementioned study demonstrated that seven protease genes are upregulated through Imd pathway stimulation by a bacterium that promotes the larval growth. In our RNA-seq analysis, these seven genes did not exhibit a consistent upregulation in the presence of the supportive microbes (H. uva or K. hum in Author response table 2A; Le. mes + A. ori in Author response table 2B). Rather, they exhibited a tendency to be upregulated by the presence of non-supportive microbes (St. bac or Pi. klu in Author response table 2A; La. pla in Author Response Table 2B).

      Author response table 2.

      Most of the peptidase genes reported by Erkosar et al., 2015 are more highly expressed under the non-supportive conditions than the supportive conditions. Comparison of the expression levels of seven peptidase genes derived from the RNA-seq analysis of yeast-fed (A) or bacteria-fed (B) first-instar larvae. A previous report demonstrated that the expression of these genes is upregulated upon association with a strain of Lactiplantibacillus plantarum, and that the PGRP-LE/Imd/Relish signaling pathway, at least partially, mediates the induction (Erkosar et al., 2015). H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; P. klu, Pichia kluyveri; S. bac, Starmerella bacillaris; La. pla, Lactiplantibacillus plantarum; Le. mes, Leuconostoc mesenteroides; A. ori, Acetobacter orientalis; ns, not significant.

      Reviewer #2 (Public Review):

      Weaknesses:

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas. Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation. Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas.

      The reviewer asks whether the isolated microbes were colonized in the larval gut. Previous studies on microbial colonization associated with Drosophila have predominantly focused on adults (Pais et al. PLOS Biology, 2018), rather than larval stages. Developing larvae continually consume substrates which are already subjected to microbial fermentation and abundant in live microbes until the end of the feeding larval stage. Therefore, we consider it difficult to discuss microbial colonization in the larval gut. We have mentioned this point in DISCUSSION of the revised manuscript (lines 408-410).

      Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation.

      While we recognize the importance of comprehensive mechanistic analysis, elucidation of more detailed molecular mechanisms lies beyond the scope of this study and will be a subject of future research.

      Regarding the nutritional role of BCAAs, the incorporation of BCAAs enabled larvae fed with the non-supportive yeast to grow to the second-instar stage. This observation implies that consumption of BCAAs upregulates diverse genes involved in cellular growth processes in larvae. We mentioned a previously reported interaction between lactic acid bacteria (LAB) and acetic acid bacteria (AAB) in the manuscript (lines 433-436). LAB may facilitate lactate provision to AAB, consequently enhancing the biosynthesis of essential nutrients such as amino acids. To test this hypothesis, future experiments will include the supplementation of lactic acid to AAB culture plates, and the co-inoculation of AAB with LAB mutant strains defective in lactate production to assess both larval growth and continuous larval association with AAB. With respect to AAB-yeast interactions, metabolites released from yeast cells might benefit AAB growth, and this possibility will be investigated through the supplementation of AAB culture plates with candidate metabolites identified in the cell suspension supernatants of the late-stage yeasts.

      Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      We appreciate the reviewer's recommendations. The explanation of the universality of our findings has been included in the revised DISCUSSION (lines 391-397). We have also added descriptions on the implication of compositional shifts occurring in adult microbiota (lines 404413), possible inoculation routes of different microbes (lines 414-427), and hypotheses on the mechanism of larval growth promotion by yeasts (lines 469-476), all of which could be the focus of our future study.

      Reviewer #3 (Public Review):

      Weaknesses:

      Despite describing important findings, I believe that a more thorough explanation of the experimental setup and the steps expected to occur in the exposed diet over time, starting with natural "inoculation" could help the reader, in particular the non-specialist, grasp the rationale and main findings of the manuscript. When exactly was the decision to collect earlystage samples made? Was it when embryos were detected in some of the samples? What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects? Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source. Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

      When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples?

      We collected traps and early-stage samples 2.5 days after setting up the traps. This duration was determined from pilot experiments. A shorter collection time resulted in a lower likelihood of obtaining traps visited by adult flies, whereas a longer collection time caused overcrowding of larvae as well as deaths of adults from drowning in the liquid seeping out of the fruits. These procedural details have been included in the MATERIALS AND METHODS section of the revised manuscript (lines 523-526).

      What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects?

      We assume that the origins of the microbes detected in the no-fly trap foods vary depending on the species. For instance, Colletotrichum musae, the fungus that causes banana anthracnose, may have been present in fresh bananas before trap placement. The filamentous fungi could have originated from airborne spores, but they could also have been introduced by insects that feed on these fungi. We have included these possibilities in the DISCUSSION section of the revised manuscript (lines 417-421).

      Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source.

      We are grateful for the reviewer's insightful suggestion regarding shifts in the adult microbiome. We have included in the DISCUSSION section of the revised manuscript the possibility that the microbial composition may change substantially during pupal stages or after adult eclosion (lines 404-413).

      Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used?

      In this metabolomic analysis, LC-MS/MS with triple quadrupole MS monitors the formation of fragment ions from precursor ions specific to each target compound. The use of PFPP columns, which provide excellent separation of amino acids and nucleobases, allows chromatographic peaks of many structural isomers to be separated into independent peaks. In addition, all measured compounds are compared with data from a standard library to confirm retention time agreement. Structural isomers were separated either by retention time on the column or by compound-specific MRM signals (in fact, leucine and isoleucine have both unique MRM channels and column separations). Detailed MRM conditions are identical to the previously published study (Oka et al., 2017). These have been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 810-824).

      Were standard curves produced?

      Since relative quantification of metabolite amounts was performed in this study, no standard curve was generated to determine absolute concentrations. However, a standard compound of known concentration (single point) was measured to confirm retention time and relative area values.

      Were internal, deuterated controls used?

      Internal standards for deuterium-labeled compounds were not used in this study. This is because it is not realistic to obtain deuterium-labeled compounds for all compounds since a large number of compounds are measured. However, an internal standard (L-methionine sulfone) is added to the extraction solvent to calculate the recovery rate. This has been included in the revised ‘LC-MS/MS measurement’ section in MATERIALS AND METHODS (lines 824-825).

      Reviewer #1 (Recommendations For The Authors):

      Additional comments 1. The authors should do a better job of presenting their data. It took me quite a while to understand the protocol of Figure 1. Panel 1A, B, C could be improved. For instance, 1A suggests that flies are transferred to the lab while this is in fact the banana trap. Indicate 'Banana trap colonized by flies' rather 'wild-type flies in the trap'. 1C: should indicate that the food suspension comes from the banana trap. 1B,D,D: do not use pale color as legend. Avoid the use of indices in Figure 2 (Y1 rather than Y1). Grey colors are difficult to distinguish in Figure 2. Etc. It is a pain for reviewers that figure legends are on the verso of each figure and not just below.

      We thank the reviewer for the detailed suggestions to improve the clarity and comprehensibility of our figures. We have improved the figures according to the suggestions. As for the figure legends, we have placed them below each respective figure whenever possible.

      1. Clarify in the text if 'sample' means food substratum or flies/larvae (ex. line 116 and elsewhere).

      We have revised the word “sample” throughout our manuscript and eliminated the confusion.

      1. Line 170 - clarify what you mean by fermented food.

      We have replaced the “fermented larval foods” with “fermented bananas” in our revised manuscript (line 165).

      1. Line 199 - what is the meaning of 'stocks'.

      We have replaced the “stocks” with “strains” (line 195).

      1. Line 320 - explain more clearly what the yeast-conditioned banana-agar plate and cell suspension supernatant are, and what the goals of using these media are. This will help in understanding the subsequent text.

      We have added a supplemental figure illustrating the sample preparation for the metabolomic analysis (Figure S6), with the following legend describing the procedure (lines 1335-1346): “Sample preparation process for the metabolomic analysis. We suspected that the supportive live yeast cells may release critical nutrients for larval growth, whereas the non-supportive yeasts may not. To test this possibility, we made three distinct sample preparations of individual yeast strains (yeast cells, yeast-conditioned banana-agar plates, and cell suspension supernatants). Yeast cells were for the analysis of intracellular metabolites, whereas yeast-conditioned banana-agar plates and cell suspension supernatants were for that of extracellular metabolites. The samples were prepared as the following procedures. Yeasts were grown on banana-agar plates for 2 days at 25°C, and then scraped from the plates to obtain “yeast cells.” Next, the remaining yeasts on the resultant plates were thoroughly removed, and a portion from each plate was cut out (“yeast-conditioned banana agar”). In addition, we suspended yeast cells from the agar plates into sterile PBS, followed by centrifugation and filtration to eliminate the yeast cells, to prepare “cell suspension supernatants.”

      1. Figure 5 is difficult to understand. Provide more explanation. Consider moving the 'all metabolites panel' to Supp. Better explain what this holidic medium is.

      The holidic medium is a medium that has been commonly used in the Drosophila research community, which contains ~40 known nutrients, and supports the larval development to pupariation (Piper et al., 2014; Piper et al., 2017). We have introduced this explanation to the RESULTS section of the manuscript (lines 322-327). However, the scope of our research reaches beyond the analysis of the holidic medium components, because feeding the holidic medium alone causes a significant delay in larval growth, suggesting a lack of nutritional components (Piper et al., 2014). Thus, we believe the "All Metabolites" panels should be placed alongside the corresponding “The holidic medium components” panels.

      1. I could not access Figure 6 when downloading the PDF. The page is white and an error message appears - it is problematic to review a paper lacking a figure.

      We regret any inconvenience caused, perhaps due to a system error. Please refer to the Author response image 2, which is identical to Figure 6 of our original manuscript.

      Author response image 2.

      Supportive yeasts facilitate larval growth by providing nutrients, including branched-chain amino acids, by releasing them from their cells (Figure 6 from the original manuscript). (A and B) Growth of larvae feeding on yeasts on banana agar supplemented with leucine and isoleucine. (A) The mean percentage of the live/dead individuals in each developmental stage. n=4. (B) The percentage of larvae that developed into second instar or later stages. The “Not found” population in Figure 6A was omitted from the calculation. Each data point represents data from a single tube. Unique letters indicate significant differences between groups (Tukey-Kramer test, p < 0.05). (C) The biosynthetic pathways for leucine and isoleucine with S. cerevisiae gene names are shown. The colored dots indicate enzymes that are conserved in the six isolated species, while the white dots indicate those that are not conserved. Abbreviations of genera are given in the key in the upper right corner. LEU2 is deleted in BY4741. (D-G) Representative image of Phloxine B-stained yeasts. The right-side images are expanded images of the boxed areas. The scale bar represents 50 µm. (H) Summary of this study. H. uvarum is predominant in the early-stage food and provides Leu, Ile, and other nutrients that are required for larval growth. In the late-stage food, AAB directly provides nutrients, while LAB and yeasts indirectly contribute to larval growth by enabling the stable larva-AAB association. The host larva responds to the nutritional environment by dramatically altering gene expression profiles, which leads to growth and pupariation. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; Pi. klu, Pichia kluyveri; St. bac, Starmerella bacillaris; GF, germ-free.

      1. Line 323 - Consider rewriting this sentence (too long, explain what the holidic medium is and why this is interesting). "In the yeast-conditioned banana-agar plates, which were anticipated to contain yeast-derived nutrients, many well-known nutrients included in a chemically defined synthetic (holidic) medium for Drosophila melanogaster (Piper et al., 2014, 2017) were not increased compared to the sterile banana-agar plates; instead, they exhibited drastic decreases irrespective of the yeast species."

      We thank the reviewer's suggestion to improve the readability of our manuscript. We have rewritten the sentence in the revised manuscript (lines 320-328) as follows: “The yeastconditioned banana-agar plates were expected to contain yeast-derived nutrients. On the contrary, the result revealed a depletion of various metabolites originally present in the sterile banana agar (Figure 5A). This result prompted us to focus on the metabolites in the chemically defined (holidic) medium for Drosophila melanogaster Piper et al., 2014; Piper et al., 2017. This medium contains ~40 known nutrients, and supports the larval development to pupariation, albeit at the half rate compared to that on a yeast-containing standard laboratory food Piper et al., 2014; Piper et al., 2017. Therefore, the holidic medium could be considered to contain the minimal essential nutrients required for larval growth. Our analysis indicated a substantial reduction of these known nutrients in the yeast-conditioned plates compared to their original quantities (Figure 5B).”

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data or analyses.

      1. It should be clearly shown (or stated) that isolated microbes, such as H. uvarum and Pa. agglomerans, are indigenous microbes in wild Drosophila melanogaster in their outdoor sampling.

      We thank the reviewer for the suggestions. Addressing the presence of isolated microbes within wild D. melanogaster adults is important, but cannot be feasible with our data for the following reasons. Our microbiota analysis of adults was conducted using pooled individuals of multiple Drosophila species, rather than using D. melanogaster exclusively. Moreover, the microbial isolation and the analysis of adult microbiota were carried out in two independent samplings (Figures 1A and 1E in the original manuscript, respectively). As a result, the microbial species detected in the adults were slightly different from those isolated from the food samples collected in the previous sampling. Nevertheless, it is worth noting that H. uvarum dominated in 2 out of the 3 adult samples, constituting >80% of the fungal composition. Pantoea agglomerans was not detected in the adults, although Enterobacterales accounted for >59% in 2 out of the 3 samples. Therefore, these isolated microbial species, or at least their phylogenetically related species, are presumed to be indigenous to wild D. melanogaster.

      If the reviewer’s suggestion was to state the dominance of H. uvarum and Pantoea agglomerans in early-stage foods, we have added a supplemental figure showing the species-level microbial compositions corresponding to Figure 1B of the original manuscript (Figure S1), and further revised the manuscript (lines 180-186).

      1. The reviewer supposes that the indigenous microbes of flies may differ from what they usually eat. In this study, the authors use banana-based food, but is it justified in terms of the natural environment of the places where those microbes were isolated? In other words, did sampled wild flies eat bananas outside the laboratory at Kyoto University?

      Drosophila spp. inhabit human residential areas and feed on various fermented fruits and vegetables. In the areas surrounding Kyoto University, they can be found in garbage in residential dwellings as well as supermarkets. In this regard, fruits are natural food sources of wild Drosophila in the area.

      Among various fruits, bananas were selected based on the following two reasons. Firstly, bananas were commonly used in previous Drosophila studies as a trap bait or a component of Drosophila food (Anagnostou et al., 2010; Stamps et al., 2012; Consuegra et al., 2020). Secondly, and rather practically, bananas can be obtained in Japan all year at a relatively low cost. Previous studies have used various fruits such as grapes (Quan and Eisen, 2018), figs (Pais et al., 2018), and raspberries (Cho and Rohlfs, 2023). However, these fruits are only available during limited seasons and are more expensive per volume than bananas. Thus, they were not practical for our study, which required large amounts of fruit-based culture media. We have included a brief explanation regarding this point in MATERIALS AND METHODS (lines 514-518).

      1. In Fig. 6B, the Leu and Ile experiment, is the added amount of those amino acids appropriate in the context that they mention "...... supportive yeasts had concentrations of both leucine and isoleucine that were at least four-fold higher than those of non-supportive yeasts"?

      We acknowledge that the supplementation should be carried out ideally in a quantity equivalent to the difference between the released amounts of supportive and non-supportive species. However, achieving this has been highly challenging. Previous studies determined the amount of amino acid supplementation by quantifying their concentration in the bacteriaconditioned media (Consuegra et al., 2020; Henriques et al., 2020). However, we found that quantifying the exact concentrations of the amino acids is not feasible with our yeasts. As shown in Figure 5B in the original manuscript, the amino acid contents were markedly reduced in the yeast-conditioned banana agar compared to the agar without yeasts, presumably because of the uptake by the yeasts. Thus, the amino acids released from yeast cells on the banana-agar plate are not expected to accumulate in the medium. As this reviewer pointed out, in the cell suspension supernatants of the supportive yeasts, concentrations of both leucine and isoleucine were at least four-fold higher compared to those of non-supportive yeasts (Figures 5G-H in the original submission), However, this measurement does not give the absolute amount of either amino acid available for larvae. Given these constraints, we opted for the amino acid concentrations in the holidic medium, which support larval growth under axenic conditions (Piper et al., 2014). We also showed that the supplementation of the amino acids at that concentration to the bananaagar plate was not detrimental to larval growth (Figures 6A-B in the original manuscript). These rationales have been included in the revised ‘Developmental progression with BCAA supplementation’ section in MATERIALS AND METHODS of our manuscript (lines 840-847).

      1. In addition to the above, it can be included other amino acids or nutrients as control experiments.

      As mentioned in our manuscript (lines 365-368), we did supplement other amino acids, lysine and asparagine, which failed to rescue the larval growth.

      1. In the experiment of Fig. 2E, how about examining larval development using heat-killed LAB or yeast with live AAB? The reviewer speculates that one possibility is that AAB needs nutrients from LAB.

      We did not feed larvae with heat-killed LAB and live AAB for the following reasons. LAB grows very poorly on banana agar compared to yeasts, and preparation of LAB required many banana-agar plates even when we fed live bacteria to larvae. Adding dead LAB to banana-agar tubes would require far more plates, but this preparation is impractical. Furthermore, heat-killing may not allow the investigation of the contribution of heat-unstable or volatile compounds.

      As for the reviewer's suggestion regarding the addition of heat-killed yeast with AAB, heat-killed yeast itself promotes larval growth, as shown in Figures 4G and 4H in the original manuscript, so the contribution of yeast cannot be examined using this method.

      Recommendations for improving the writing and presentation.

      1. It would be good to mention that during sample collection, other insects (other than Drosophila species) were not found in the food if this is true.

      Insects other than Drosophila spp. were found in several traps in the sampling shown in Figures 1C-F. These insects, rove beetles (Staphylinidae) and sap beetles (Nitidulidae), seemed to share a niche with Drosophila in nature. Therefore, we believe that the contamination of these insects did not interfere with our goal of obtaining larval food samples. We added these descriptions and explanations to MATERIALS AND METHODS (lines 527531).

      1. There are many different kinds of bananas. It should be mentioned the detailed information.

      We had included the information on the banana in MATERIALS AND METHODS section (line 622).

      1. Concerning the place of sample collection, detailed longitude, and latitude information can be provided (this is easily obtained from Google Maps). When the collection was performed should also be mentioned. This may suggest the environment of the "wild flies" they collected.

      We added a table listing the dates of our collections, along with the longitude and latitude of each sampling place (Table S1A).

      1. The reviewer could not find how the authors conducted heat killing of yeast.

      We added the following procedure to the ‘Quantification of larval development’ section in MATERIALS AND METHODS (lines 680-688). “When feeding heat-killed yeasts to larvae, yeasts were added to the banana-agar tubes and subsequently heated as following procedures. The yeasts were revived from frozen stocks on banana-agar plates, incubated at 25°C, and then streaked on fresh agar plates. After 2-day incubation, yeast cells were scraped from the plates and suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions were added to banana-agar tubes prepared as described, and after centrifugation at 3,000 x g for 5 min, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts, which compensates for the reduced amount due to their inability to proliferate. The tubes were subsequently heated at 80°C for 30 min before adding germ-free larvae.”

      1. The reviewer prefers that all necessary information on how to see figures be provided in figure legends. For example, an explanation of some abbreviations is missing.

      We carefully re-examined the figure legends and added necessary information.

      1. Many of the figures are not kind to readers, i.e., one needs to refer to the legends and main text very frequently. Adding subheadings (titles) to each figure may help.

      We added subheadings to our figures to improve the comprehensibility.

      Reviewer #3 (Recommendations For The Authors):

      I have some minor questions/suggestions about the manuscript that, if addressed, may increase the clarity and quality of the work.

      1. Please, when referring to microbial species in the abbreviated form, use only the first letter of the genus. For example, P. agglomerans should be used, not Pa. agglomerans.

      We are concerned about the potential confusion caused by using only the first letter of genera, since several genera mentioned in our work share the first letters, such as P (Pichia and Pantoea), S (Starmerella, Saccharomyces, and Saccharomycopsis), or L (Lactiplantibacillus and Leuconostoc). Therefore, we used only the unabbreviated form of the above seven genera in our revised manuscript. We have also made every effort to avoid abbreviations in our figures and tables, but found it necessary to retain two-letter abbreviations when spaces are particularly limiting.

      1. In lines 294-298, how exactly was the experiment where yeasts were killed by anti-fungal agents performed? If these agents killed the yeast, how was the microbial growth on plates required to have biomass for fly inoculation obtained? Please, clarify this section.

      The yeasts were grown on normal banana-agar plates before the addition onto the anti-fungal agents-containing banana agar. We added the following procedure to MATERIALS AND METHODS (lines 689-695). “When feeding yeasts on banana agar supplemented with antifungal agents, the yeasts were individually grown on normal banana agar twice before being suspended in PBS at the concentration of 400 mg of yeast cells in 500 µL of PBS. 125 µL of the suspensions was introduced onto the anti-fungal agents (10 mL/L 10% p-hydroxybenzoic acid in 70% ethanol and 6 mL/L propionic acid, following the concentration described in Kanaoka et al., 2023)-containing banana agar in 1.5 mL tubes. After centrifugation, the supernatants were removed. The amount of cells in each tube is ~50x compared to that when feeding live yeasts.”

      1. In lines 557-558, please clarify how rDNA copy numbers can be calculated in this way.

      Considering the results of the ITS and 16S sequencing analysis, it was highly likely that rDNAs from bananas and Drosophila were amplified along with microbial rDNA in this qPCR. To estimate the microbial rDNA copy number, we assumed that the proportion of microbial rDNA within the total amplification products remains consistent between the qPCR and the corresponding sequencing analysis, because the template DNA samples and amplified regions were shared between the analyses. Based on this, the copy number of microbial rDNA was estimated by multiplying the qPCR results with the microbial rDNA ratio observed in the ITS or 16S sequencing analysis of each sample. This methodology has been detailed in the MATERIALS AND METHODS section (lines 609-615).

      1. In lines 609-611, how did you check for cells left from the previous day? Microscopy? Or do you mean that if there was liquid still in the sample you would not add more bacterial cultures? Please, clarify.

      We observed with the naked eye from outside the tubes to determine if additional AAB should be introduced. Since we placed AAB on the banana agar in a lump, we examined whether the lumps were gone or not. We have added these procedures in MATERIALS AND METHODS (lines 671-673).

      1. In Figure 2A, it is hard to differentiate between the gray tones. Please, improve this.

      We have distinguished the plots for different conditions by changing the shape of the markers on the graphs.

      1. In the legend of Figure 4, line 1101, I believe the panel letters are incorrect.

      We have corrected the manuscript (lines 1241-1242) from “heat-killed yeasts on banana agar (H and I) or live yeasts on a nutritionally rich medium (J and K)” to “heat-killed yeasts on banana agar (G and H) or live yeasts on a nutritionally rich medium (I and J).”

      1. In Figure S1, authors showed that bananas that were not inoculated still had detectable rDNA signal. Is this really because bacteria can penetrate the peel? Or could this be the “reagent microbiome”? Alternatively, could these microbes have been introduced during sample prep, such as cutting the bananas?

      The detection of rDNA in bananas that were not inoculated with microbes was unlikely to be due to microbial contamination during experimental manipulation. The reviewer pointed out the possibility that the “reagent microbiome”, presumably the microbes in PBS, are detected from the uninoculated bananas. This seems to be unlikely, considering the PBS was sterilized by autoclaving before use. To ensure that no viable microbe was left in the autoclaved PBS, we applied a portion of the PBS onto a banana-agar plate and confirmed no colony was formed after incubation for a few days. DNA derived from dead microbes might be present in the PBS, but the PBS-added bananas were incubated for 4 days, so it is also unlikely that a detectable amount of DNA remained until sample collection. Furthermore, we believe that no contamination occurred during sample preparation. Banana peels were treated with 70% ethanol before removing them extremely carefully to avoid touching the fruit inside. All tools were sterilized before use. Taking all of these into account, we speculate that the microbes were already present in the bananas before peeling. We added the details of the sample preparation processes in MATERIALS AND METHODS (lines 518-521 and 540).

      Other major revisions

      1. We deposited our yeast genome annotation data in the DDBJ Annotated/Assembled Sequences database, and the accession numbers have been added to the ‘Data availability’ section in MATERIALS AND METHODS (lines 868-873).

      2. The bacterial composition data in Figure 1B was corrected, because in the original version, the data for Place 3 and Place 4 was plotted in reverse. The original and revised plots are shown side by side in Author response image 3. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p5, lines 117-120).

      Author response image 3.

      Comparison of the original and revised version of bacterial composition graph in Figure 1B. Comparison of the original (left) and revised (right) version of the graph at the bottom of Figure 1B, which shows the result of bacterial composition analysis. The color key, which is unmodified, is placed below the revised version.

      1. The plot data and labels in the RNA-seq result heatmaps (Figures 3A and 4C) have been corrected. In these figures, row Z-scores of log2(TPM + 1) were to be plotted, as indicated by the key in each figure. However, in the original version, row Z-scores of TPM was erroneously plotted. Thus, Figures 3A and 4C of the original version have been replaced with the correct plots, and the original and revised plots are shown side by side in Author response images 4A and 4B. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 222-226 and p9, lines 277-281).

      Author response image 4.

      Comparison of the original and revised version of Figures 3A and 4C. (A and B) Comparison of the original (left) and revised (right) version of Figures 3A (A) or 4C (B).

      1. The keys in the original Figures 3D and 4F indicate that log2(fold change) was used to plot all data. However, when plotting the data from the previous study (Zinke et al., 2002), their “fold change value” was used. We have corrected the keys, plots, and legend of Figure 3D to reflect the different nature of the data from our RNA-seq analysis and those from microarray analysis by Zinke et al. The original and revised plots are shown side by side in Author response image 5. We hope that the reviewers agree that this replacement of the plots does not affect our conclusion (p7, lines 228230 and p9, 277-284).

      Author response image 5.

      Comparison of the original and revised version of Figures 3D and 4F. (A and B) Comparison of the original (left) and revised (right) version of Figures 3D (A) or 4F (B).

      1. The labels in Figure S5C and S5D (Figure S4C and S4D in the original version) have been corrected (they are "Pichia kluyveri > Supportive" and "Starmerella bacillaris > Supportive" rather than "Non-support. > H. uva" and "Non-support. > K. hum"). Additionally, we have reintroduced the circle indicating the number of “dme04070: Phosphatidylinositol signaling system” DEGs in Figure S5D, which was missing in Figure S4D of the original version. The original and revised figures are shown in Author response image 6.

      Author response image 6.

      Comparison of the original and revised version of Figures S5C and S5D. (A and B) Comparison of the original (left) and revised (right) versions of Figures S5C (A) or S5D (B). The original figures corresponding to the aforementioned figures were Figures S4C and S4D, respectively.

      1. The "Fermentation stage" column in Table 1, which indicated whether each microbe was considered an early-stage microbe or a late-stage microbe, has been removed to avoid confusion. This is because some of the microbes (Hanseniaspora uvarum, Pichia kluyveri, and Pantoea agglomerans) were employed in both of the feeding experiments using the microbes detected from the early-stage foods (Figures 2A, 2B, S2A, and S2B) and those from the late-stage foods (Figures 2C, 2D, S2C, and S2D).

      2. The leftmost column in Table S7 has been edited to indicate species names rather than “Sample IDs,” because the IDs were not used in anywhere else in the paper.

      Reference

      Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. and Kopp, A. (2011). Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genetics 7, e1002272.

      Chandler, J. A., Eisen, J. A. and Kopp, A. (2012). Yeast communities of diverse Drosophila species: Comparison of two symbiont groups in the same hosts. Applied and Environmental Microbiology 78, 7327–7336.

      Cho, H. and Rohlfs, M. (2023). Transmission of beneficial yeasts accompanies offspring production in Drosophila—An initial evolutionary stage of insect maternal care through manipulation of microbial load? Ecology and Evolution 13, e10184.

      Consuegra, J., Grenier, T., Akherraz, H., Rahioui, I., Gervais, H., da Silva, P. and Leulier, F. (2020). Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. iScience 23, 101232.

      Dodge, R., Jones, E. W., Zhu, H., Obadia, B., Martinez, D. J., Wang, C., Aranda-Díaz, A., Aumiller, K., Liu, Z., Voltolini, M., et al. (2023). A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 14, 1557.

      Erkosar, B., Storelli, G., Mitchell, M., Bozonnet, L., Bozonnet, N. and Leulier, F. (2015). Pathogen Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via Inhibition of Protein Digestion. Cell Host & Microbe 18, 445–455.

      Hanson, M. A. and Lemaitre, B. (2020). New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion in Immunology 62, 22–30.

      Henriques, S. F., Dhakan, D. B., Serra, L., Francisco, A. P., Carvalho-Santos, Z., Baltazar, C., Elias, A. P., Anjos, M., Zhang, T., Maddocks, O. D. K., et al. (2020). Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun 11, 4236.

      Oka, M., Hashimoto, K., Yamaguchi, Y., Saitoh, S., Sugiura, Y., Motoi, Y., Honda, K., Kikko, Y., Ohata, S., Suematsu, M., et al. (2017). Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos. Journal of Cell Science jcs.200519.

      Pais, I. S., Valente, R. S., Sporniak, M. and Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLOS Biology 16, e2005710.

      Piper, M. D. W., Blanc, E., Leitão-Gonçalves, R., Yang, M., He, X., Linford, N. J., Hoddinott, M. P., Hopfen, C., Soultoukis, G. A., Niemeyer, C., et al. (2014). A holidic medium for Drosophila melanogaster. Nature Methods 11, 100–105.

      Piper, M. D. W., Soultoukis, G. A., Blanc, E., Mesaros, A., Herbert, S. L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., et al. (2017). Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metab 25, 610–621.

      Quan, A. S. and Eisen, M. B. (2018). The ecology of the drosophila-yeast mutualism in wineries. PLOS ONE 13, e0196440.

      Solomon, G. M., Dodangoda, H., McCarthy-Walker, T. T., Ntim-Gyakari, R. R. and Newell, P. D. (2019). The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7, e8097.

      Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M. and Pankratz, M. J. (2002). Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. The EMBO Journal 21, 6162–6173.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their thoughtful comments and constructive suggestions. Point-by-point responses to comments are given below:

      Reviewer #1 (Recommendations For The Authors):

      This manuscript provides an important case study for in-depth research on the adaptability of vertebrates in deep-sea environments. Through analysis of the genomic data of the hadal snailfish, the authors found that this species may have entered and fully adapted to extreme environments only in the last few million years. Additionally, the study revealed the adaptive features of hadal snailfish in terms of perceptions, circadian rhythms and metabolisms, and the role of ferritin in high-hydrostatic pressure adaptation. Besides, the reads mapping method used to identify events such as gene loss and duplication avoids false positives caused by genome assembly and annotation. This ensures the reliability of the results presented in this manuscript. Overall, these findings provide important clues for a better understanding of deep-sea ecosystems and vertebrate evolution.

      Reply: Thank you very much for your positive comments and encouragement.

      However, there are some issues that need to be further addressed.

      1. L119: Please indicate the source of any data used.

      Reply: Thank you very much for the suggestion. All data sources used are indicated in Supplementary file 1.

      1. L138: The demographic history of hadal snailfish suggests a significant expansion in population size over the last 60,000 years, but the results only show some species, do the results for all individuals support this conclusion?

      Reply: Thank you for this suggestion. The estimated demographic history of the hadal snailfish reveals a significant population increase over the past 60,000 years for all individuals. The corresponding results have been incorporated into Figure 1-figure supplements 8B.

      Author response image 1.

      (B) Demographic history for 5 hadal snailfish individuals and 2 Tanaka’s snailfish individuals inferred by PSMC. The generation time of one year for Tanaka snailfish and three years for hadal snailfish.

      1. Figure 1-figure supplements 8: Is there a clear source of evidence for the generation time of 1 year chosen for the PSMC analysis?

      Reply: We apologize for the inclusion of an incorrect generation time in Figure 1-figure supplements 8. It is important to note that different generation times do not change the shape of the PSMC curve, they only shift the curve along the axis. Due to the absence of definitive evidence regarding the generation time of the hadal snailfish, we have referred to Wang et al., 2019, assuming a generation time of one year for Tanaka snailfish and three years for hadal snailfish. The generation time has been incorporated into the main text (lines 516-517): “The generation time of one year for Tanaka snailfish and three years for hadal snailfish.”.

      1. L237: Transcriptomic data suggest that the greatest changes in the brain of hadal snailfish compared to Tanaka's snailfish, what functions these changes are specifically associated with, and how these functions relate to deep-sea adaptation.

      Reply: Thank you for this suggestion. Through comparative transcriptome analysis, we identified 3,587 up-regulated genes and 3,433 down-regulated genes in the brains of hadal snailfish compared to Tanaka's snailfish. Subsequently, we conducted Gene Ontology (GO) functional enrichment analysis on the differentially expressed genes, revealing that the up-regulated genes were primarily associated with cilium, DNA repair, protein binding, ATP binding, and microtubule-based movement. Conversely, the down-regulated genes were associated with membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles, as shown in following table (Supplementary file 15). Previous studies have shown that high hydrostatic pressure induces DNA strand breaks and damage, and that DNA repair-related genes upregulated in the brain may help hadal snailfish overcome these challenges.

      Author response table 1.

      GO enrichment of expression up-regulated and down-regulated genes in hadal snailfish brain.

      We have added new results (Supplementary file 15) and descriptions to show the changes in the brains of hadal snailfish (lines 250-255): “Specifically, there are 3,587 up-regulated genes and 3,433 down-regulated genes in the brain of hadal snailfish compared to Tanaka snailfish, and Gene Ontology (GO) functional enrichment analyses revealed that up-regulated genes in the hadal snailfish are associated with cilium, DNA repair, and microtubule-based movement, while down-regulated genes are enriched in membranes, GTP-binding, proton transmembrane transport, and synaptic vesicles (Supplementary file 15).”

      1. L276: What is the relationship between low bone mineralization and deep-sea adaptation, and can low mineralization help deep-sea fish better adapt to the deep sea?

      Reply: Thank you for this suggestion. The hadal snailfish exhibits lower bone mineralization compared to Tanaka's snailfish, which may have facilitated its adaptation to the deep sea. On one hand, this reduced bone mineralization could have contributed to the hadal snailfish's ability to maintain neutral buoyancy without excessive energy expenditure. On the other hand, the lower bone mineralization may have also rendered their skeleton more flexible and malleable, enhancing their resilience to high hydrostatic pressure. Accordingly, we added the following new descriptions (lines 295-300): “Nonetheless, micro-CT scans have revealed shorter bones and reduced bone density in hadal snailfish, from which it has been inferred that this species has reduced bone mineralization (M. E. Gerringer et al., 2021); this may be a result of lowering density by reducing bone mineralization, allowing to maintain neutral buoyancy without expending too much energy, or it may be a result of making its skeleton more flexible and malleable, which is able to better withstand the effects of HHP.”

      1. L293: The abbreviation HHP was mentioned earlier in the article and does not need to be abbreviated here.

      Reply: Thank you for the correction. We have corrected the word. Line 315.

      1. L345: It should be "In addition, the phylogenetic relationships between different individuals clearly indicate that they have successfully spread to different trenches about 1.0 Mya".

      Reply: Thank you for the correction. We have corrected the word. Line 374.

      1. It is curious what functions are associated with the up-regulated and down-regulated genes in all tissues of hadal snailfish compared to Tanaka's snailfish, and what functions have hadal snailfish lost in order to adapt to the deep sea?

      Reply: Thank you for this suggestion. We added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.” This suggests that up-regulated genes in all tissues in hadal snailfish are associated with DNA repair in response to DNA damage caused by high hydrostatic pressure, whereas down-regulated genes do not show enrichment for a particular function.

      Overall, the functions lost in hadal snailfish adapted to the deep sea are mainly related to the effects of the dark environment, which can be summarized as follows (lines 375-383): “The comparative genomic analysis revealed that the complete absence of light had a profound effect on the hadal snailfish. In addition to the substantial loss of visual genes and loss of pigmentation, many rhythm-related genes were also absent, although some rhythm genes were still present. The gene loss may not only come from relaxation of natural selection, but also for better adaptation. For example, the grpr gene copies are absent or down-regulated in hadal snailfish, which could in turn increased their activity in the dark, allowing them to survive better in the dark environment (Wada et al., 1997). The loss of gpr27 may also increase the ability of lipid metabolism, which is essential for coping with short-term food deficiencies (Nath et al., 2020).”

      Reviewer #2 (Recommendations For The Authors):

      I have pointed out some of the examples that struck me as worthy of additional thought/writing/comments from the authors. Any changes/comments are relatively minor.

      Reply: Thank you very much for your positive comments on this work.

      For comparative transcriptome analyses, reads were mapped back to reference genomes and TPM values were obtained for gene-level count analyses. 1:1 orthologs were used for differential expression analyses. This is indeed the only way to normalize counts across species, by comparing the same gene set in each species. Differential expression statistics were run in DEseq2. This is a robust way to compare gene expression across species and where fold-change values are reported (e.g. Fig 3, creatively by coloring the gene name) the values are best-practice.

      In other places, TPM values are reported (e.g. Fig 2D, Fig 4C, Fig 5A, Fig 4-Fig supp 4) to illustrate expression differences within a tissue across species. The comparisons look robust, although it is not made clear how the values were obtained in all cases. For example, in Fig 2D the TPM values appear to be from eyes of individual fish, but in Fig 4C and 5A they must be some kind of average? I think that information should be added to the figure legends.

      Of note: TPM values are sensitive to the shape of the RNA abundance distribution from a given sample: A small number of very highly expressed genes might bias TPM values downward for other genes. From one individual to another or from one species to another, it is not obvious to me that we should expect the same TPM distribution from the same tissues, making it a challenging metric for comparison across samples, and especially across species. An alternative measure of RNA abundance is normalized counts that can be output from DEseq2. See:

      Zhao, Y., Li, M.C., Konaté, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H. and McShane, L.M., 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. Journal of translational medicine, 19(1), pp.1-15.

      If the authors would like to keep the TPM values, I think it would be useful for them to visualize the TPM value distribution that the numbers were derived from. One way to do this would be to make a violin plot for species/tissue and plot the TPM values of interest on that. That would give a visualization of the ranked value of the gene within the context of all other TPM values. A more highly expressed gene would presumably have a higher rank in context of the specific tissue/species and be more towards the upper tail of the distribution. An example violin plot can be found in Fig 6 of:

      Burns, J.A., Gruber, D.F., Gaffney, J.P., Sparks, J.S. and Brugler, M.R., 2022. Transcriptomics of a Greenlandic Snailfish Reveals Exceptionally High Expression of Antifreeze Protein Transcripts. Evolutionary Bioinformatics, 18, p.11769343221118347.

      Alternatively, a comparison of TPM and normalized count data (heatmaps?) would be of use for at least some of the reported TPM values to show whether the different normalization methods give comparable outputs in terms of differential expression. One reason for these questions is that DEseq2 uses normalized counts for statistical analyses, but values are expressed as TPM in the noted figures (yes, TPM accounts for transcript length, but can still be subject to distribution biases).

      Reply: Thank you for your suggestions. Following your suggestions, we modified Fig 2D, Fig 4C, Fig 4-Fig supp 4, and Fig 5-Fig supp 1, respectively. In the differential expression analyses, only one-to-one orthologues of hadal snailfish and Tanaka's snailfish can get the normalized counts output by DEseq2, so we showed the normalized counts by DEseq2 output for Fig 2D, Fig 4C, Fig 4-Fig supp 4, Fig 5-Fig supp 1, and for Fig 5A, since the copy number of fthl27 genes undergoes specific expansion in hadal snailfish, we visualized the ranking of all fthl27 genes across tissues by plotting violins in Fig 5-Fig supp 2.

      Author response image 2.

      (D) Log10-transformation normalized counts for DESeq2 (COUNTDESEQ2) of vision-related genes in the eyes of hadal snailfish and Tanka's snailfish. * represents genes significantly downregulated in hadal snailfish (corrected P < 0.05).

      Author response image 3.

      (C) The deletion of one copy of grpr and another copy of down-regulated expression in hadal snailfish. The relative positions of genes on chromosomes are indicated by arrows, with arrows to the right representing the forward strand and arrows to the left representing the reverse strand. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue. * represents tissue in which the grpr-1 was significantly down-regulated in hadal snailfish (corrected P < 0.05).

      Author response image 4.

      Expression of the vitamin D related genes in various tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 5.

      (B) Expression of the ROS-related genes in different tissues of hadal snailfish and Tanaka's snailfish. The heatmap presented is the average of the normalized counts for DESeq2 (COUNTDESEQ2) in all replicate samples from each tissue.

      Author response image 6.

      Ranking of the expression of individual copies of fthl27 gene in hadal snailfish and Tanaka's snailfish in various tissues showed that all copies of fthl27 in hadal snailfish have high expression. The gene expression presented is the average of TPM in all replicate samples from each tissue.

      Line 96: Which BUSCOs? In the methods it is noted that the actinopterygii_odb10 BUSCO set was used. I think it should also be noted here so that it is clear which BUSCO set was used for completeness analysis. It could even be informally the ray-finned fish BUSCOs or Actinopterygii BUSCOs.

      Reply: Thank you for this suggestion. We used Actinopterygii_odb10 database and we added the BUSCO set to the main text as follows (lines 92-95): “The new assembly filled 1.26 Mb of gaps that were present in our previous assembly and have a much higher level of genome continuity and completeness (with complete BUSCOs of 96.0 % [Actinopterygii_odb10 database]) than the two previous assemblies.”

      Lines 102-105: The medaka genome paper proposes the notion that the ancestral chromosome number between medaka, tetraodon, and zebrafish is 24. There may be other evidence of that too. Some of that evidence should be cited here to support the notion that sticklebacks had chromosome fusions to get to 21 chromosomes rather than scorpionfish having chromosome fissions to get to 24. Here's the medaka genome paper:

      Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y. and Jindo, T., 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature, 447(7145), pp.714-719.

      Reply: Thank you for your great suggestion. Accordingly, we modified the sentence and added the citation as follows (lines 100-105): “We noticed that there is no major chromosomal rearrangement between hadal snailfish and Tanaka’s snailfish, and chromosome numbers are consistent with the previously reported MTZ-ancestor (the last common ancestor of medaka, Tetraodon, and zebrafish) (Kasahara et al., 2007), while the stickleback had undergone several independent chromosomal fusion events (Figure 1-figure supplements 4).”

      Line 161-173: "Along with the expression data, we noticed that these genes exhibit a different level of relaxation of natural selection in hadal snailfish (Figure 2B; Figure 2-figure supplements 1)." With the above statment and evidence, the authors are presumably referring to gene losses and differences in expression levels. I think that since gene expression was not measured in a controlled way it may not be a good measure of selection throughout. The reported genes could be highly expressed under some other condition, selection intact. I find Fig2-Fig supp 1 difficult to interpret. I assume I am looking for regions where Tanaka’s snailfish reads map and Hadal snailfish reads do not, but it is not abundantly clear. Also, other measures of selection might be good to investigate: accumulation of mutations in the region could be evidence of relaxed selection, for example, where essential genes will accumulate fewer mutations than conditional genes or (presumably) genes that are not needed at all. The authors could complete a mutational/SNP analysis using their genome data on the discussed genes if they want to strengthen their case for relaxed selection. Here is a reference (from Arabidopsis) showing these kinds of effects:

      Monroe, J.G., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M., Klein, M., Hildebrandt, J., Neumann, M., Kliebenstein, D. and Weng, M.L., 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602(7895), pp.101-105.

      Reply: Thank you for pointing out this important issue. Following your suggestion, we have removed the mention of the down-regulation of some visual genes in the eyes of hadal snailfish and the results of the original Fig2-Fig supp 1 that were based on reads mapping to confirm whether the genes were lost or not. To investigate the potential relaxation of natural selection in the opn1sw2 gene in hadal snailfish, we conducted precise gene structure annotation. Our findings revealed that the opn1sw2 gene is pseudogenized in hadal snailfish, indicating a relaxation of natural selection. We have included this result in Figure 2-figure supplements 1.

      Author response image 7.

      Pseudogenization of opn1sw2 in hadal snailfish. The deletion changed the protein’s sequence, causing its premature termination.

      Accordingly, we have toned down the related conclusions in the main text as follows (lines 164-173): “We noticed that the lws gene (long wavelength) has been completely lost in both hadal snailfish and Tanaka’s snailfish; rh2 (central wavelength) has been specifically lost in hadal snailfish (Figure 2B and 2C); sws2 (short wavelength) has undergone pseudogenization in hadal snailfish (Figure 2-figure supplements 1); while rh1 and gnat1 (perception of very dim light) is both still present and expressed in the eyes of hadal snailfish (Figure 2D). A previous study has also proven the existence of rhodopsin protein in the eyes of hadal snailfish using proteome data (Yan, Lian, Lan, Qian, & He, 2021). The preservation and expression of genes for the perception of very dim light suggests that they are still subject to natural selection, at least in the recent past.”

      Line 161-170: What tissue were the transcripts derived from for looking at expression level of opsins? Eyes?

      Reply: Thank you for your suggestions. The transcripts used to observe the expression levels of optic proteins were obtained from the eye.

      Line 191: What does tmc1 do specifically?

      Reply: Thank you for this suggestion. The tmc1 gene encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis. We added functional annotations for the tmc1 in the main text (lines 190-196): “Of these, the most significant upregulated gene is tmc1, which encodes transmembrane channel-like protein 1, involved in the mechanotransduction process in sensory hair cells of the inner ear that facilitates the conversion of mechanical stimuli into electrical signals used for hearing and homeostasis (Maeda et al., 2014), and some mutations in this gene have been found to be associated with hearing loss (Kitajiri, Makishima, Friedman, & Griffith, 2007; Riahi et al., 2014).”

      Line 208: "it is likely" is a bit proscriptive

      Reply: Thank you for this suggestion. We rephrased the sentence as follows (lines 213-215): “Expansion of cldnj was observed in all resequenced individuals of the hadal snailfish (Supplementary file 10), which provides an explanation for the hadal snailfish breaks the depth limitation on calcium carbonate deposition and becomes one of the few species of teleost in hadal zone.”

      Line 199: maybe give a little more info on exactly what cldnj does? e.g. "cldnj encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity" or something like that.

      Reply: Thank you for this suggestion. We have added functional annotations for the cldnj to the main text (lines 200-204): “Moreover, the gene involved in lifelong otolith mineralization, cldnj, has three copies in hadal snailfish, but only one copy in other teleost species, encodes a claudin protein that has a role in tight junctions through calcium independent cell-adhesion activity (Figure 3B, Figure 3C) (Hardison, Lichten, Banerjee-Basu, Becker, & Burgess, 2005).”

      Lines 199-210: Paragraph on cldnj: there are extra cldnj genes in the hadal snailfish, but no apparent extra expression. Could the authors mention that in their analysis/discussion of the data?

      Reply: Thank you for your suggestions. Despite not observing significant changes in cldnj expression in the brain tissue of hadal snailfish compared to Tanaka's snailfish, it is important to consider that the brain may not be the primary site of cldnj expression. Previous studies in zebrafish have consistently shown expression of cldnj in the otocyst during the critical early growth phase of the otolith, with a lower level of expression observed in the zebrafish brain. However, due to the unavailability of otocyst samples from hadal snailfish in our current study, our findings do not provide confirmation of any additional expression changes resulting from cldnj amplification. Consequently, it is crucial to conduct future comprehensive investigations to explore the expression patterns of cldnj specifically in the otocyst of hadal snailfish. Accordingly, we added a discussion of this result in the main text (lines 209-214): “In our investigation, we found that the expression of cldnj was not significantly up-regulated in the brain of the hadal snailfish than in Tanaka’s snailfish, which may be related to the fact that cldnj is mainly expressed in the otocyst, while the expression in the brain is lower. However, due to the immense challenge in obtaining samples of hadal snailfish, the expression of cldnj in the otocyst deserves more in-depth study in the future.”

      Lines 225-231: I wonder whether low expression of a circadian gene might be a time of day effect rather than an evolutionary trait. Could the authors comment?

      Reply: Thank you for your suggestions. Previous studies have shown that the grpr gene is expressed relatively consistently in mouse suprachiasmatic nucleus (SCN) throughout the day (Figure 4-figure supplements 1) and we hypothesize that the low expression of grpr-1 gene expression in hadal snailfish is an evolutionary trait. We have modified this result in the main text (lines 232-242): “In addition, in the teleosts closely related to hadal snailfish, there are usually two copies of grpr encoding the gastrin-releasing peptide receptor; we noticed that in hadal snailfish one of them is absent and the other is barely expressed in brain (Figure 4C), whereas a previous study found that the grpr gene in the mouse suprachiasmatic nucleus (SCN) did not fluctuate significantly during a 24-hour light/dark cycle and had a relatively stable expression (Pembroke, Babbs, Davies, Ponting, & Oliver, 2015) (Figure 4-figure supplements 1). It has been reported that grpr deficient mice, while exhibiting normal circadian rhythms, show significantly increased locomotor activity in dark conditions (Wada et al., 1997; Zhao et al., 2023). We might therefore speculate that the absence of that gene might in some way benefit the activity of hadal snailfish under complete darkness.”

      Author response image 8.

      (B) Expression of the grpr in a 24-hour light/dark cycle in the mouse suprachiasmatic nucleus (SCN). Data source with http://www.wgpembroke.com/shiny/SCNseq.

      Line 253: What is gpr27? G protein coupled receptor?

      Reply: We apologize for the ambiguous description. Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors. We introduced gpr27 in the main text as follows (lines 270-273): “Gpr27 is a G protein-coupled receptor, belonging to the family of cell surface receptors, involved in various physiological processes and expressed in multiple tissues including the brain, heart, kidney, and immune system.”

      Line 253: Fig4 Fig supp 3 is a good example of pseudogenization!

      Reply: Thank you very much for your recognition.

      Line 279: What is bglap? It regulates bone mineralization, but what specifically does that gene do?

      Reply: We apologize for the ambiguous description. The bglap gene encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism. We introduced bglap in the main text as follows (lines 300-304): “The gene bglap, which encodes a highly abundant bone protein secreted by osteoblasts that binds calcium and hydroxyapatite and regulates bone remodeling and energy metabolism, had been found to be a pseudogene in hadal fish (K. Wang et al., 2019), which may contribute to this phenotype.”

      Line 299: Introduction of another gene without providing an exact function: acaa1.

      Reply: We apologize for the ambiguous description. The acaa1 gene encodes acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation. We introduced acaa1 in the main text as follows (lines 319-324): “In regard to the effect of cell membrane fluidity, relevant genetic alterations had been identified in previous studies, i.e., the amplification of acaa1 (encoding acetyl-CoA acetyltransferase 1, a key regulator of fatty acid β-oxidation in the peroxisome, which plays a controlling role in fatty acid elongation and degradation) may increase the ability to synthesize unsaturated fatty acids (Fang et al., 2000; K. Wang et al., 2019).”

      Fig 5 legend: The DCFH-DA experiment is not an immunofluorescence assay. It is better described as a redox-sensitive fluorescent probe. Please take note throughout.

      Reply: Thank you for pointing out our mistakes. We corrected the word. Line 1048 and 1151 as follows: “ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours.”

      Line 326: Manuscript notes that ROS levels in transfected cells are "significantly lower" than the control group, but there is no quantification or statistical analysis of ROS levels. In the methods, I noticed the mention of flow cytometry, but do not see any data from that experiment. Proportion of cells with DCFH-DA fluorescence above a threshold would be a good statistic for the experiment... Another could be average fluorescence per cell. Figure 5B shows some images with green dots and it looks like more green in the "control" (which could better be labeled as "mock-transfection") than in the fthl27 overexpression, but this could certainly be quantified by flow cytometry. I recommend that data be added.

      Reply: Thank you for your suggestions. We apologize for the error in the main text, we used a fluorescence microscope to observe fluorescence in our experiments, not a flow cytometer. We have corrected it in the methods section as follows (lines 651-653): “ROS levels were measured using a DCFH-DA molecular probe, and fluorescence was observed through a fluorescence microscope with an optional FITC filter, with the background removed to observe changes in fluorescence.” Meanwhile, we processed the images with ImageJ to obtain the respective mean fluorescence intensities (MFI) and found that the MFI of the fthl27-overexpression cells were lower than the control group, which indicated that the ROS levels of the fthl27-overexpression cells were significantly lower than the control group. MFI has been added to Figure 5B.

      Author response image 9.

      ROS levels were confirmed by redox-sensitive fluorescent probe using DCFH-DA molecular probe in 293T cell culture medium with or without fthl27-overexpression plasmid added with H2O2 or FAC for 4 hours. Images are merged from bright field images with fluorescent images using ImageJ, while the mean fluorescence intensity (MFI) is also calculated using ImageJ. Green, cellular ROS. Scale bars equal 100 μm.

      Regarding the ROS experiment: Transfection of HEK293T cells should be reasonably straightforward, and the experiment was controlled appropriately with a mock transfection, but some additional parameters are still needed to help interpret the results. Those include: Direct evidence that the transfection worked, like qPCR, western blots (is the fthl27 tagged with an antigen?), coexpression of a fluorescent protein. Then transfection efficiency should be calculated and reported.

      Reply: Thank you for your suggestions. To assess the success of the transfection, we randomly selected a subset of fthl27-transfected HEK293T cells for transcriptome sequencing. This approach allowed us to examine the gene expression profiles and confirm the efficacy of the transfection process. As control samples, we obtained transcriptome data from two untreated HEK293T cells (SRR24835259 and SRR24835265) from NCBI. Subsequently, we extracted the fthl27 gene sequence of the hadal snailfish, along with 1,000 bp upstream and downstream regions, as a separate scaffold. This scaffold was then merged with the human genome to assess the expression levels of each gene in the three transcriptome datasets. The results demonstrated that the fthl27 gene exhibited the highest expression in fthl27-transfected HEK293T cells, while in the control group, the expression of the fthl27 gene was negligible (TPM = 0). Additionally, the expression patterns of other highly expressed genes were similar to those observed in the control group, confirming the successful fthl27 transfection. These findings have been incorporated into Figure 5-figure supplements 3.

      Author response image 10.

      (B) Reads depth of fthl27 gene in fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265) transcriptome data. (C) Expression of each gene in the transcriptome data of fthl27-transfected HEK293T cells and 2 untreated HEK293T cells (SRR24835259 and SRR24835265), where the genes shown are the 4 most highly expressed genes in each sample.

      Lines 383-386: expression of DNA repair genes is mentioned, but not shown anywhere in the results?

      Reply: Thank you for your suggestions. Accordingly, we added a description of this finding in the results section (lines 337-343): “Next, we identified 34 genes that are significantly more highly expressed in all organs of hadal snailfish in comparison to Tanaka’s snailfish and zebrafish, while only seven genes were found to be significantly more highly expressed in Tanaka’s snailfish using the same criterion (Figure 5-figure supplements 1). The 34 genes are enriched in only one GO category, GO:0000077: DNA damage checkpoint (Adjusted P-value: 0.0177). Moreover, five of the 34 genes are associated with DNA repair.”. And we added the information in the Figure 5-figure supplements 1C.

      Author response image 11.

      (C) Genes were significantly more highly expressed in all tissues of the hadal snailfish compared to Tanaka's snailfish, and 5 genes (purple) were associated with DNA repair.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This valuable paper examines gene expression differences between male and female individuals over the course of flower development in the dioecious angiosperm Trichosantes pilosa. The authors show that male-biased genes evolve faster than female-biased and unbiased genes. This is frequently observed in animals, but this is the first report of such a pattern in plants. In spite of the limited sample size, the evidence is mostly solid and the methods appropriate for a non-model organism. The resources produced will be used by researchers working in the Cucurbitaceae, and the results obtained advance our understanding of the mechanisms of plant sexual reproduction and its evolutionary implications: as such they will broadly appeal to evolutionary biologists and plant biologists.

      Public Reviews:

      Reviewer #1 (Public Review):

      The evolution of dioecy in angiosperms has significant implications for plant reproductive efficiency, adaptation, evolutionary potential, and resilience to environmental changes. Dioecy allows for the specialization and division of labor between male and female plants, where each sex can focus on specific aspects of reproduction and allocate resources accordingly. This division of labor creates an opportunity for sexual selection to act and can drive the evolution of sexual dimorphism.

      In the present study, the authors investigate sex-biased gene expression patterns in juvenile and mature dioecious flowers to gain insights into the molecular basis of sexual dimorphism. They find that a large proportion of the plant transcriptome is differentially regulated between males and females with the number of sex-biased genes in floral buds being approximately 15 times higher than in mature flowers. The functional analysis of sex-biased genes reveals that chemical defense pathways against herbivores are up-regulated in the female buds along with genes involved in the acquisition of resources such as carbon for fruit and seed production, whereas male buds are enriched in genes related to signaling, inflorescence development and senescence of male flowers. Furthermore, the authors implement sophisticated maximum likelihood methods to understand the forces driving the evolution of sex-biased genes. They highlight the influence of positive and relaxed purifying selection on the evolution of male-biased genes, which show significantly higher rates of non-synonymous to synonymous substitutions than female or unbiased genes. This is the first report (to my knowledge) highlighting the occurrence of this pattern in plants. Overall, this study provides important insights into the genetic basis of sexual dimorphism and the evolution of reproductive genes in Cucurbitaceae.

      Reviewer #2 (Public Review):

      Summary:

      This study uses transcriptome sequence from a dioecious plant to compare evolutionary rates between genes with male- and female-biased expression and distinguish between relaxed selection and positive selection as causes for more rapid evolution. These questions have been explored in animals and algae, but few studies have investigated this in dioecious angiosperms, and none have so far identified faster rates of evolution in male-biased genes (though see Hough et al. 2014 https://doi.org/10.1073/pnas.1319227111).

      Strengths:

      The methods are appropriate to the questions asked. Both the sample size and the depth of sequencing are sufficient, and the methods used to estimate evolutionary rates and the strength of selection are appropriate. The data presented are consistent with faster evolution of genes with male-biased expression, due to both positive and relaxed selection.

      This is a useful contribution to understanding the effect of sex-biased expression in genetic evolution in plants. It demonstrates the range of variation in evolutionary rates and selective mechanisms, and provides further context to connect these patterns to potential explanatory factors in plant diversity such as the age of sex chromosomes and the developmental trajectories of male and female flowers.

      Weaknesses:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Reviewer #3 (Public Review):

      The potential for sexual selection and the extent of sexual dimorphism in gene expression have been studied in great detail in animals, but hardly examined in plants so far. In this context, the study by Zhao, Zhou et al. al represents a welcome addition to the literature.

      Relative to the previous studies in Angiosperms, the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers).<br /> Some aspects of the presentation have been improved in this new version of the manuscript.

      Specifically:

      • the link between sex-biased and tissue-biased genes is now slightly clearer,

      • the limitation related to the de novo assembled transcriptome is now formally acknowledged,

      • the interpretation of functional categories of the genes identified is more precise,

      • the legends of supplementary figures have been improved - a large number of typos have been fixed.

      in response to this first round of reviews. As I detail below, many of the relevant and constructive suggestions by the previous reviewers were not taken into account in this revision.

      For instance:

      • Reviewer 2 made precise suggestions for trying to take into account the potential confounding factor of sex-chromosomes. This suggestion was not followed.

      For the question of reviewer 2:

      The presence of sex chromosomes is a potential confounding factor, since there are different evolutionary expectations for X-linked, Y-linked, and autosomal genes. Attempting to distinguish transcripts on the sex chromosomes from autosomal transcripts could provide additional insight into the relative contributions of positive and relaxed selection.

      Empirically, the analyses could be expanded by an attempt to distinguish between genes on the autosomes and the sex chromosomes. Genotypic patterns can be used to provisionally assign transcripts to XY or XX-like behavior when all males are heterozygous and all females are homozygous (fixed X-Y SNPs) and when all females are heterozygous and males are homozygous (lost or silenced Y genes). Comparing such genes to autosomal genes with sex-biased expression would sharpen the results because there are different expectations for the efficacy of selection on sex chromosomes. See this paper (Hough et al. 2014; https://www.pnas.org/doi/abs/10.1073/pnas.1319227111), which should be cited and does in fact identify faster substitution rates in Y-linked genes.

      Authors’ response: We have cited Hough et al. (2014) and Sandler et al. (2018) in the revised manuscript. We agree that the presence of sex chromosomes is potentially a confounding factor. By adopting methods in Hough et al. (2014) and Sandler et al. (2018), we tried to distinguish transcripts on sex chromosomes from autosomal chromosomes. For a total of 2,378 unbiased genes, we found that 36 genes were putatively sex chromosomal genes, 20 of which were exclusively heterozygous and homozygous for males and females, respectively; while the other 16 genes showing an opposite genotyping patterns between males and females. For 343 male-biased genes, only three ones exhibit a pattern of potentially sex-linked. For the 1,145 female-biased genes, we identified 19 genes which might located on the sex chromosomes. Among the 19 genes, five genes were exclusively heterozygous for males and exclusively homozygous for females, while reversed genotyping patterns presented in the other 14 genes. So, sex-linked genes may contribute relatively little to rapid evolution of male-biased genes. An alternative explanation is that the results could be unreliable due to small sample sizes. Thus, we did not describe them in the Results section. We will investigate the issue when whole genome sequences and population datasets become available in the near future.

      • Reviewer 1 & 3 indicated that results were mentioned in the discussion section without having been described before. This was not fixed in this new version.

      For the question of reviewer 1:

      2) Paragraph (407-416) describes the analysis of duplicated genes under relaxed selection but there is no mention of this in the results.

      Authors’ response: Following this suggestion, in the Results section, we have added a sentence, “We also found that most of them were members of different gene families generated by gene duplication (Table S13)” on line 310-311 in the revised manuscript (Rapid_evolution_of_malebiased_genes_Trichosanthes_pilosa_Tracked_change_2023_11_06.docx).

      For the question of reviewer 1:

      38- line 417-424. The discussion should not contain new results.

      Authors’ response: Thank you for pointing out this. In the Results section, we have added a few sentences as following: “Similarly, given that dN/dS values of sex-biased genes were higher due to codon usage bias, lower dS rates would be expected in sex-biased genes relative to unbiased genes (Ellegren & Parsch, 2007; Parvathy et al., 2022). However, in our results, the median of dS values in male-biased genes were much higher than those in female-biased and unbiased genes in the results of ‘free-ratio’ (Fig. S4A, female-biased versus male-biased genes, P = 6.444e-12 and malebiased versus unbiased genes, P = 4.564e-13) and ‘two-ratio’ branch model (Fig. S4B, femalebiased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e08, respectively). ” on line 323-331, and consequently, removed the following sentence, “femalebiased vs male-biased genes, P = 6.444e-12 and male-biased vs unbiased genes, P = 4.564e-13” and “female-biased versus male-biased genes, P = 2.2e-16 and male-biased versus unbiased genes, P = 9.421e-08, respectively” in the Discussion section.

      • Reviewer 1 asked for a comparison between the number of de novo assembled unigenes in this transcriptome and the number of genes in other Cucurbitaceae species. I could not see this comparison reported.

      Authors’ response: In the first revision, we described only percentages. We have now added the number of genes. We modify this part as follows: “The majority of unigenes were annotated by homologs in species of Cucurbitaceae (61.6%, 36,375), including Momordica charantia (16.3%, 9,625), Cucumis melo (11.9%, 7,027), Cucurbita pepo (11.9%, 7,027), Cucurbita moschata (11.5%, 6,791), Cucurbita maxima (10.1%, 5,964) and other species (38.4%, 22,676) (Fig. S1C).”.

      • Reviewer 1 pointed out that permutation tests were more appropriate, but no change was made to the manuscript.

      Authors’ response: Thank you for your suggestion. In the first revision, we have indirectly responded to the issues. Wilcoxon rank sum test is more commonly used for all comparisons between sex-biased and unbiased genes in many papers. Additionally, we tested datasets using permutation t-tests, which is consistent with the results of Wilcoxon rank sum test. For example, we found that only in floral buds, there are significant differences in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P = 0.04282 and male-biased versus unbiased genes, P = 0.01114) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.01992 and male-biased versus unbiased genes, P = 0.02127, respectively). We also described these results in the Results section accordingly (line 278-284).

      • Reviewer 3 pointed out the small sample size (both for the RNA-seq and the phylogenetic analysis), but again this limitation is not acknowledged very clearly.

      Authors’ response: Sorry, we acknowledged that our sample size was relatively small. In the revised version, we have added a sentence as follows, “Additionally, our sample size is relatively small, and may provide low power to detect differential expression.” in the Discussion section.

      • Reviewer 1 & 3 pointed out that Fig 3 was hard to understand and asked for clarifications that I did not see in the text and the figure in unchanged.

      Authors’ response: Thank you for your suggestions. We have revised the manuscript to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Fig. 3.

      • Reviewer 3 suggested to combine all genes with sex-bias expression when evaluating the evolutionary rate, in addition to the analyses already done. This suggestion was not followed.

      For the question of reviewer 3:line 196 and following: In these analyses, I could not understand the rationale for keeping buds vs mature flowers as separate analyses throughout. Why not combine both and use the full set of genes showing sex-bias in any tissue? This would increase the power and make the presentation of the results a lot more straightforward.

      Authors’ response: Thank you for your suggestions. In the first revision, we tried to respond to the issues. First, we observed strong sexual dimorphism in floral buds, such as racemose versus solitary, early-flowering versus late-flowering. Second, as you pointed out earlier, “the dataset is interesting in that it focuses on reproductive rather than somatic tissues (which makes sense to investigate sexual selection), and includes more than a single developmental stage (buds + mature flowers)”, we totally agree with you on this point. Third, according to your suggestions, we combined all genes with sex-bias expression to evaluate the evolutionary rates. We found significant differences (please see a Figure below) in ω values in the results of ‘free-ratio’ (female-biased versus male-biased genes, P =0.005622 and male-biased versus unbiased genes, P = 0.001961) and ‘two-ratio’ model (female-biased versus male-biased genes, P = 0.008546 and male-biased versus unbiased genes, P = 0.009831, respectively) using Wilcoxon rank sum test. However, the significance is lower than previous results in floral buds due to sex-biased genes of mature flower joined, especially compared to the results of “free-ratio model”. Additionally, we also test all combined genes with sex-bias expression using permutation t-test. Unfortunately, there are no significant differences in ω values expect for male-biased versus unbiased genes in the results of ‘free-ratio’ model (P = 0.03034) and ‘two-ratio’ model (P = 0.0376), respectively. To a certain extent, the combination of all genes with sex-bias expression may cover the signals of rapid evolution of sex-biased genes in floral buds. Therefore, these results are not described in our manuscript. In the near future, we would like to make further investigations through more development stages of flowers and new technologies (e.g. Single-Cell method, See Murat et al., 2023) in each sex to consolidate the conclusion, and it is hoped that we could find more meaningful results.

      Author response image 1.

      • Reviewer 3 pointed out that hand-picking specific categories of genes was not statistically valid, and in fact not necessary in the present context. This was not changed.

      For the question of reviewer3: removing genes on a post-hoc basis seems statistically suspicious to me. I don't think your analysis has enough power to hand-pick specific categories of genes, and it is not clear what this brings here. I suggest simply removing these analyses and paragraphs.

      Authors’ response: Thank you for your suggestions. We have changed them accordingly. We removed a part of the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding male-biased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected male-biased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 290 to 300.

      However, we kept the following paragraph, “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion section.

      • Reviewer 1 asked for all data to be public, but I could not find in the manuscript where the link to the data on ResearchGate was provided.

      Authors’ response: We have added a link in the Data Availability section.

      • Reviewers 1 & 3 pointed out that since only two tissues were compared, the claims on pleiotropy should have been toned down, but no change was made to the text.

      Authors’ response: Thank you for your suggestions. We revised “due to low pleiotropic constraints” to “due to low evolutionary constraints” and revised “low pleiotropy” to “low constraints”.

      • Reviewer 1 asked for a clarification on which genes are plotted on the heatmap of Fig3C and an explanation of the color scale. No change was made.

      Authors’ response: Sorry for the confusion. Actually, Reviewer 1 asked that “Fig. 2C, which genes are plotted on the heatmap and what is the color scale corresponding to?” In the previous revision, we have revised them (See Fig. 2 Sex-biased gene expression for floral buds and flowers at anthesis in males and females of Trichosanthes pilosa). Sex-biased genes (the union of sex-biased genes in F1, M1, F2 and M2) are plotted on the heatmap. The color gradient represents from high to low (from red to green) gene expression.

      • Reviewer 1 asked for panel B in Fig S5 and S6 to be removed. They are still there. They asked for abbreviations to be explained in the legend of Fig S8. This was not done. They asked for details about columns headers. Such detailed were not added. They asked for more recent references on line 53-56: this was not done.

      Authors’ response: We have removed panel B in Fig. S5 and S6. We explained abbreviations in text and Fig. S8. We added more details about the column headers in Supplementary Table S4, S5, S6, S7, S8, S9 and S10. We also added more recent references on line 53-56.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      Authors’ response: Thank you for your suggestions. We have revised/fixed these issues following your concerns and suggestions.

      Line 46-48 would be clearer as « Sexual dimorphism is the condition where sexes of the same species exhibit different morphological, ecological and physiological traits in gonochoristic animals and dioecious plants, despite male and female individuals sharing the same genome except for sex chromosomes or sex-determining loci »

      Authors’ response: Thanks. We have revised it accordingly.

      Line 50: replace «in both » by «between the two »

      Authors’ response: We have revised it.

      Line 51: « genes exclusively » -> « genes expressed exclusively »

      Authors’ response: We have revised it.

      Line 58: « in many animals » -> « in several animal species »

      Authors’ response: We have revised it to “in some animal species”.

      Line 58: « to which » -> « of this bias »

      Authors’ response: We have revised it.

      Line 64: « Most dioecious plants possess homomorphic sex-chromosomes that are roughly similar in size when viewed by light microscopy. » : a reference is missing

      Authors’ response: We have added the reference.

      Line 67: remove « that »

      Authors’ response: We have revised it.

      line 96: change to: « only the five above-mentioned studies »

      Authors’ response: We have revised it.

      Line 97: remove « the »

      Authors’ response: We have revised it.

      Line 111: « Drosophia » -> Drosophila

      Authors’ response: We have revised it.

      Line 114: exhibiting -> « exhibited »

      Authors’ response: We have revised it.

      Line 115: suggest -> « suggesting »

      Authors’ response: We have revised it.

      Line 117: « studies in plants have rarely reported elevated rates of sex-biased genes » : is it « rarely » or « never » ?

      Authors’ response: We have revised to “never”.

      Line 143: « It’s » -> « Its »

      Authors’ response: We have revised it.

      Line 143-146: say whether the male parts (e.g. anthers) are still present in females flowers, and the female parts (pistil+ ovaries) in the male flowers, or whether these respective organs are fully aborted.

      Authors’ response: We have added the following sentence, “The male parts (e. g., anthers) of female flowers, and the female parts (e. g., pistil and ovaries) of male flowers are fully aborted” in line 148150 of the Introduction section.

      Line 158: this is now clearer, but please specify whether you are talking about 12 floral buds in total, or 12 per individual (i.e. 72 buds in total).

      Authors’ response: We have revised it to “Using whole transcriptome shotgun sequencing, we sequenced floral buds and flowers at anthesis from female and male of dioecious T. pilosa. We set up three biological replicates from three female and three male plants, including 12 samples in total (six floral buds and six flowers at anthesis)”.

      Line 194-198: These sentences are unclear and hard to link to the figure. Consider changing for « In male plants, the number of tissue-biased genes in flowers at anthesis (M2TGs: n = 2795) was higher than that in floral buds (M1TGs: n = 1755, Fig. 3A and 3B). Figure 3 is also very hard to read. Adding a label on the side to indicate that panels A and B correspond to male-biased genes and C and D to female-biased genes could be useful.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and presented the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

      Line 208: explain the approach: e.g. « We then compared rates of protein evolution among malebiased, female-biased and unbiased genes. To do this, we sequenced floral bud transcriptomes from the closely related T. anguina, as well as two more distant outgroups, T. kirilowii and Luffa cylindrica. T. kirilowii is a dioecious species like T. pilosa, and the other two are monoecious. We identified one-to-one orthologous groups (OGs) for 1,145 female-biased, 343 male-biased, and 2,378 unbiased genes. »

      Authors’ response: We have revised this paragraph to the following, “We compared rates of protein evolution among male-biased, female-biased and unbiased genes in four species with phylogenetic relationships (((T. anguina, T. pilosa), T. kirilowii), Luffa cylindrica), including dioecious T. pilosa, dioecious T. kirilowii, monoecious T. anguina in Trichosanthes, together with monoecious Luffa cylindrica. To do this, we sequenced transcriptomes of T. pilosa. We also collected transcriptomes of T. kirilowii, as well as genomes of T. anguina and Luffa cylindrica.”

      Line 220: « the same ω value was in all branches » -> « all branches are constrained to have the same ω value ».

      Authors’ response: We have revised it.

      Line 221: « results of the 'two-ratio' branch model ... »

      Authors’ response: We have revised it.

      Line 235: add a few words to explain why the effect size is bigger than for buds, but still is not significant: e.g. «possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis »

      Authors’ response: We have revised this to “However, there is no statistically significant difference in the distribution of ω values using Wilcoxon rank sum tests for female-biased versus male-biased genes (P = 0.0556), female-biased versus unbiased genes (P = 0.0796), and male-biased versus unbiased genes (P = 0.3296) possibly because of limited statistical power due to the low number of sex-biased genes in flowers at anthesis.” in line 260-261.

      Line 255: explain in plain English what the « A model » is. This was already requested in the previous version.

      Authors’ response: We have revised “A model” to “classical branch-site model A”.

      Line 258: explain in plain English what the « foreground 2b ω value » corresponds to

      Authors’ response: We have revised to as follows, “foreground 2b ω value” to “foreground ω >1”. Additionally, we also added the sentence “The classical branch-site model assumes four site classes (0, 1, 2a, 2b), with different ω values for the foreground and background branches. In site classes 2a and 2b, the foreground branch undergoes positive selection when there is ω > 1.” in line 624-627.

      Line 259: explain how these different approaches complement each other rather than being redundant. This was also already requested in the previous version.

      Authors’ response: Sorry. We have now revised it as follows, “As a complementary approach, we utilized the aBSREL and BUSTED methods that are implemented in HyPhy v.2.5 software, which avoids false positive results by classical branch-site models due to the presence of rate variation in background branches, and detected significant evidence of positive selection.” in line 292-295.

      Line 270: remove « dramatically », and also remove « or eliminated at both gene-wide and genomewide levels », as well as « relative to positive selection »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 290-309: remove this section - this was already pointed out in the previous reviews as a « ad hoc » procedure, and this point has already been made clear with the RELAX analysis.

      Authors’ response: Thank you for your suggestions. We revised this section accordingly. We remove the following paragraph, “To confirm the contributions of positive selection and relaxed selection to rapid rates of male-biased genes in floral buds, we generated three datasets of OGs by excluding different sets of genes. Specifically, we excluded 18 relaxed selective male-biased genes (5.23%), 98 positively selected male-biased genes (28.57%), and 112 male-biased genes (32.65%) under positive and relaxed selection from 343 OGs (Fig. S4). We observed that after excluding malebiased genes under relaxed purifying selection, the median (0.264) decreased by 0.34% compared to the median (0.265) of all OGs (Fig. S4A-B). However, after excluding positively selected malebiased genes, the median (0.236) was reduced by 11% (Fig. S4A, C) in the results of ‘free-ratio’ branch model. This pattern was consistent with the results of ‘two-ratio’ branch model as well (Fig. S4E-G).” on line 334-344.

      However, we kept the other parts “We also analyzed female-biased and unbiased genes that underwent positive and relaxed selection in floral buds (Tables S6-S10). We identified 216 (18.86%) positively selected, and 69 (6.03%) relaxed selective female-biased genes from 1,145 OGs, respectively. Similarly, we found 436 (18.33%) positively selected, and 43 (1.81%) unbiased genes under relaxed selection from 2,378 OGs, respectively. Notably, male-biased genes have a higher proportion (10%) of positively selected genes compared to female-biased and unbiased genes. However, relaxed selective male-biased genes have a higher proportion (3.24%) than unbiased genes, but about 0.8% lower than that of female-biased genes.”. In this way, we can compare the proportion of sex-biased genes that have undergone positive selection and release selection among female-biased genes, unbiased genes and male-biased genes in floral buds in the Discussion sections.

      Line 348: Here you talk about « Numerous studies », but then only report three studies. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised it to “Several studies”.

      Line 352: Cut the sentence: « In contrast, the wind-pollinated dioecious plant Populus balsamifera ... »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Line 357: « In contrast to the above studies... »: If I understand correctly, this is not in contrast to the observation in Populus balsamifera. Please clarify.

      Authors’ response: Thank you for your suggestions. We have revised to “Similar to the above study of Populus balsamifera.”.

      Line 420: « our results » -> « we »; « that underwent » -> « undergoing »

      Authors’ response: Thank you for your suggestions. We have revised it.

      Figure 3 is very hard to read and poorly labeled (see my comments on line 194 above). It is also hard to link to the text, since the numbers reported in the text are actually not present in the figure unless the readers makes some calculations themselves. This should be improved. Also, the use of acronyms (e.g. M1BG, F2TG etc.) contributes to making the text very difficult to read. The acronyms should at least be explained very clearly in the text when they are used.

      Authors’ response: Thank you for your suggestions. We have revised the text to clarify the meaning of the acronym (F1TGs, F2TGs, M1TGs, M2TGs, F1BGs, F2BGs, M1BGs and M2BGs) and give the number of genes. We have added two labels, indicating that panels A and B correspond to males and C and D to females in Figure 3.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We are thankful to the reviewers for the time and effort invested in assessing our manuscript and for their suggestions to improve it. We have now considered the points raised by them, carried out additional experiments, and modified the text and figures to address them. We feel that the new experiments and modifications have been able to solve all concerns raised by the reviewers and have improved the manuscript substantially, strengthening and extending our conclusions.

      The main modifications include:

      • We have extended the analysis of the overexpression strains to highly stringent conditions, which revealed a mild acidification defect for the strain overexpressing Oxr1. In addition, we have included in our analysis a strain in which both proteins are overexpressed, which resulted in a further growth defect.
      • We have analyzed the recruitment of Rtc5 to the vacuole under additional conditions: deletion of the main subunit of the RAVE complex RAV1, medium containing galactose as the sole carbon source and pharmacological inhibition of the V-ATPase. These experiments allowed us to strengthen and extend our conclusions regarding the requirements for Rtc5 targeting to the vacuole.
      • We have analyzed V-ATPase disassembly in intact cells, by addressing the localization to the vacuole of subunit C (Vma5) in glucose and galactose-containing medium. The results strengthen our conclusion that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly.
      • We have extended our analyses of V-ATPase function to medium containing galactose as a carbon source, since glucose availability is one of the main regulators of V-ATPase function in vivo. The results are consistent with what we observed in glucose-containing medium.
      • We have included a diagram of the structure of the V-ATPase for reference.
      • We have included a diagram and a paragraph describing Oxr1 and Rtc5 regarding protein length and domain architecture and comparing them to other TLDc domain-containing proteins.
      • We have made changes to the text and figures to improve clarity and accuracy, including a methods section that was missing. We include below a point-by-point response to the reviewers´ comments.

      2. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      __ __Suggestions:

      1. The authors observed that knockout of Rtc5p or Oxr1p does not affect vacuolar pH. If Rtc5p and Oxr1p both cooperate to dissociate V-ATPase, the authors may wish to characterize the effect of a ∆Rtc5p∆Oxr1p double knockout on vacuolar pH. The double mutant ∆rtc5∆oxr1 was already included in the original manuscript (the growth test is shown in Figure 5 B and the BCECF staining is shown in Figure 5C). This strain behaved like wt in both of these assays. Of note, what we observe for the deletion strains is increased assembly (Figure 5 D - G), so we expect that it would be hard to observe a difference in vacuole acidity or growth in the presence of metals.

      Therefore, we have now also included a strain with the double overexpression of Oxr1 and Rtc5. Since overexpression of the proteins results in decreased assembly, it is more likely that this strain will show impaired growth under conditions that strongly rely on V-ATPase activity. Indeed, we observed that the overexpression of Oxr1 alone resulted in a slight growth defect in media containing high concentrations of ZnCl2 and the double overexpression strain showed an even further defect (Figure 6 A and C).

      The manuscript would benefit from a well-labelled diagram showing the subunits of V-ATPase (e.g. in Figure 2D).

      We agree with the reviewer and we have now added a diagram of the structure of the V-ATPase labeling the different subunits in Figure 2B.

      The images of structures, especially in Figure 1-Supplement 1B, are not particularly clear and could be improved (e.g. by removing shadows or using transparency).

      We are thankful to the reviewer for this suggestion. To improve the clarity of the structures in Figure 1 C and Figure 1 – Supplement 1A, we are now presenting the different subunits in the structures with different shades of blue and grey.

      The authors should clearly describe the differences between Rtc5p and Oxr1p in terms of protein length, sequence identity, domain structure, etc.

      We are thankful for this suggestion and we have now included a diagram of the domain architecture and protein length of Rtc5 and Oxr1, comparing with two human proteins containing a TLDc domain in Figure 5A. In addition, we have added the following paragraph describing the features of the proteins.

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a group of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively), while Rtc5 belongs to a group containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      Minor:

      1. The "O" in VO should be capitalized. This has been corrected.

      In Figure 4 supplement 1, the labels "I", "S", and "P" should be defined.

      This has been clarified in the figure legend.

      Please clarify what is meant by "switched labelling"

      This refers to the SILAC vacuole proteomics experiments, for which yeast strains are grown in medium containing either L-Lysine or 13C6;15N2- L-Lysine to produce normal (‘light’) or heavy isotope-labeled (‘heavy’) proteins. This allows comparing two conditions. To increase the robustness of the comparisons, the experiments are done twice with both possible labeling schemes (condition A – light, condition B – heavy + condition A – heavy + condition B – light), which is commonly described as switched labeling or label switching.

      We have exchanged the original sentence in the manuscript for:

      “Performing the same experiments but switching which strain was labeled with heavy and light amino acids gave consistent results.”

      The meaning of the sentence "Indeed, this was the case for both of them" is ambiguous.

      We have now replaced this sentence with the following:

      “Indeed, overexpression of either Rtc5 or Oxr1 resulted in increased growth defects in the context of Stv1 deletion (Figure 7 H and I).”

      For Figure 1-Supplement 1B it is hard to see the crosslink distances.

      We have updated this figure to improve the visibility of the cross-links. In addition, we now include a supplemental table (supplemental table 5) with a list of the Cα- Cα distances measured for all the crosslinks we mapped onto high-resolution structures.

      The statement "The effects of Oxr1 are greater than those caused by Rtc5" requires more context. Is there a way of quantifying this effect for the reader?

      We agree that this sentence was too general and vague. The effects caused by one or the other protein depend on the condition and the assay. We have thus deleted this sentence, and we think it is better to refer to the description of the individual assays performed.

      The phrase "negative genetic interaction" should be clarified.

      We have included in the text the following explanation of genetic interactions:

      “A genetic interaction occurs when the combination of two mutations results in a different phenotype from that expected from the addition of the phenotypes of the individual mutations. For example, deletion of OXR1 or RTC5 has no impact on growth in neutral pH media containing zinc in a control background but improves the growth of RAV1 deletion strains (Figure 7 E and F), so this is a positive genetic interaction. On the other hand, overexpression of either Rtc5 or Oxr1 results in a growth defect in a background lacking Rav1 in neutral media containing zinc, a negative genetic interaction.”

      * * In the sentence "Isogenic strains with the indicated modifications in the genome where spotted as serial dilutions in media with pH=5.5, pH=7.5 or pH=7.5 and containing 3 mM ZnCl2", "where" should be "were".

      This has been corrected.

      Figure 2D: the authors should consider re-coloring these models, as it is challenging to distinguish Rtc5p from the V-ATPase.

      We have changed the coloring of this structure and added a diagram of the V-ATPase structure with the same coloring scheme to improve clarity.

      Reviewer #1 (Significance (Required)):

      The vacuolar protein interaction map alone from this manuscript is a nice contribution to the literature. Experiments establishing colocalization of Rtc5p to the vacuole are convincing, as is dependence of this association on the presence of assembled V-ATPase. Similarly, experiments related to myristoylation are convincing. The observed mislocalization of V-ATPases that contain Stv1p to the vacuole (which is also known to occur when Vph1p has been knocked out) upon knockout of Oxr1p is also extremely interesting. Overall, this is an interesting manuscript that contributes to our understand of TLDc proteins.

      We are thankful to the reviewer for their appreciation of the significance of our work, including the interactome map of the vacuole as a resource and the advances on the understanding of the regulation of the V-ATPase by TLDc domain-containing proteins.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Major points:

      1. The evidence of Oxr1 and Rtc5 as V-ATPase disassembly factors is circumstantial. The authors base their interpretation primarily on increased V1 (but not Vo) at purified vacuoles from Oxr1- or Rtc5-deleted strains, which does not directly address disassembly. Of course, the results regarding Oxr1 confirm detailed disassembly experiments with the purified protein complex (PMID 34918374), but on their own are open to other interpretations, e.g. suppression of V-ATPase assembly. Of note, the authors emphasize that they provide first evidence of the in vivo role of Oxr1, but monitor V1 recruitment with purified vacuoles and do not follow V-ATPase assembly in intact cells. We are thankful to the reviewer for pointing this out. We did not want to express that the molecular activity of the proteins is the disassembly of the complex, as our analyses include in vivo and ex vivo experiments and do not directly address this. We rather meant that both proteins promote an in vivo state of lower assembly of the V-ATPase. We have modified the wording throughout the manuscript to be clearer about this.

      In addition, we have added new experiments to monitor V-ATPase assembly in intact cells, as suggested by the reviewer. Previous work has shown that in yeast, only subunit C leaves the vacuole membrane under conditions that promote disassembly, while the other subunits remain at the vacuole membrane (Tabke et al 2014). Our own experiments agree with what was published (Figure 3 D). We have thus monitored Vma5 localization to the vacuole under glucose or after shift to galactose containing media in cells lacking or overexpressing Rtc5 or Oxr1. We observed that cells overexpressing either TLDc domain protein show lower levels of Vma5 recruitment to the vacuole in glucose (Figure 6 D and E). Additionally cells lacking either Rtc5 or Oxr1 contain higher levels of Vma5 at the vacuole after 20 minutes in galactose medium (Figure 5 F and G). Thus, these results re-inforce our conclusions that Rtc5 and Oxr1 promote states of lower assembly.

      Oxr1 and Rtc5 have very low sequence similarity. It would be helpful if the authors provided more detail on the predicted structure of the putative TLDc domain of Rtc5 and its relationship to the V-ATPase - Oxr1 structure. Is Rtc5 more closely related to established TLDc domain proteins in other organisms?

      We have now included a diagram of the domain architecture of Rtc5 and Oxr1, and comparison to the features of other TLDc domain containing proteins in Figure 5 A, as well as a paragraph describing them:

      “Rtc5 is a 567 residue-long protein. Analysis of the protein using HHPred (Zimmermann et al., 2018), finds homology to the structure of porcine Meak7 (PDB ID: 7U8O, (Zi Tan et al., 2022)) over the whole protein sequence (residues 37-559). For both yeast Rtc5 and human Meak7 (Uniprot ID: Q6P9B6), HHPred detects homology of the C-terminal region to other TLDc domain containing proteins like yeast Oxr1 (PDBID: 7FDE), Drosophila melanogaster Skywalker (PDB ID: 6R82), and human NCOA7 (PDB ID: 7OBP), while the N-terminus has similarity to EF-hand domain calcium-binding proteins (PDB IDs: 1EG3, 2CT9, 1S6C6, Figure 5A). HHPred analysis of the 273 residue long Saccharomyces cerevisiae Oxr1, on the other hand, only detects similarity to TLDc domain containing proteins (PDB IDs: 7U80, 6R82, 7OBP), which spans the majority of the sequence of the protein (residues 71-273). The overall sequence identity between Oxr1 and Rtc5 is 24% according to a ClustalOmega alignment within Uniprot. The Alphafold model that we generated for Rtc5 is in good agreement with the available partial structure of Oxr1 (7FDE) (root mean square deviation (RMSD) of 3.509Å) (Figure 5 - S1 A), indicating they are structurally very similar, in the region of the TLDc domain. Taken together, these analyses suggest that Oxr1 belongs to a subfamily of TLDc domain-containing proteins consisting mainly of just this domain like the splice variants Oxr1-C or NCOA7-B in humans (NP_001185464 and NP_001186551, respectively) , while Rtc5 belongs to a subfamily containing an additional N-terminal EF-hand-like domain and a N-myristoylation sequence, like human Meak7 (Finelli & Oliver, 2017) (Figure 5 A).”

      The authors conclude vacuolar recruitment of Rtc5 depends on the assembled V-ATPase, based on deletion of different V1 and Vo domain subunits. However, these genetic manipulations likely cause a strong perturbation of vacuolar acidification; indeed, the images show drastically altered vacuolar morphology. To strengthen their conclusion, it would be helpful to show that Rtc5 recruitment is not blocked by inhibition of vacuolar acidification, and that conversely it is blocked by deletion of rav1.

      We are thankful to the reviewer for this insightful suggestion and we have now performed both experiments suggested. The experiment regarding rav1Δ is now Figure 3C, and we observed that this mutation also disrupts Rtc5 localization to the vacuole. In addition, we decided to include an experiment showing the subcellular localization of Rtc5 after shifting the cells to galactose containing medium for 20 minutes, as a physiologically relevant condition that results in disassembly of the complex (Figure 3D). We observed that under these conditions Rtc5 re-localizes to the cytosol. This result is particularly interesting given that in yeast only subunit C (but not other V1 subunits) re-localizes to the cytosol under these conditions. In addition, the experiment using Bafilomycin A to inhibit the V-ATPase shows that Rtc5 is still localized at the vacuole membrane under conditions of V-ATPase inhibition (Figure 3 F). Taken together these results allowed us to strengthen our original interpretation that Rtc5 requires an assembled V-ATPase for its localization and extend it to the fact that the V-ATPase does not need to be active.

      Reviewer #2 (Significance (Required)):

      This is an interesting paper that confirms and extends previous findings on TLDc domain proteins as a novel class of proteins that interact with and regulate the V-ATPase in eukaryotes. The title seems to exaggerate the findings a bit, as the authors do not investigate V-ATPase (dis)assembly directly and only phenotypically describe altered subcellular localization of the Golgi V-ATPase in Oxr1-deleted cells. A recent structural and biochemical characterization of Oxr1 as a V-ATPase disassembly factor (PMID 34918374) somewhat limits the novelty of the results, but the function of Oxr1 in regulating subcellular V-ATPase localization and the identification of a second potential TLDc domain protein in yeast provide relevant insights into V-ATPase regulation. This paper will be of interest to cell biologists and biochemists working on lysosomal biology, organelle proteomics and V-ATPase regulation.

      We thank the reviewer for the assessment of our work, and for recognizing the novel insights that we provide. Regarding the previous biochemical work on Oxr1 and the V-ATPase, we have clearly cited this work in the manuscript. In our opinion, our results complement and extend this article, showing that the function in disassembly is relevant in vivo. Additionally, this is only one of five major points of the article, the other four being

      • The interactome map of the vacuole as a resource
      • The identification of Rtc5 as a second yeast TLDc domain containing protein and interactor of the V-ATPase.
      • The identification of the role of Rtc5 in V-ATPase assembly.
      • The identification of the role of Oxr1 in Stv1 subcellular localization. We believe these additional points add important insights to researchers interested in lysosomes, the V-ATPase, intracellular trafficking and TLDc-domain containing proteins.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Major comments

      __1) Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results) __ While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them?

      We fully agree that it is crucial to ensure the specificity of the interactions detected by XL-MS. To achieve this, one needs to control (1) the specificity of the data analysis (i.e. that the recorded mass spectrometry data are correctly matched to cross-linked peptides from the sequence database) and (2) the biological specificity (i.e. that the cross-linking captured natively occurring interactions).

      To ascertain that criterion (1) is met, cross-link identifications are filtered to a pre-defined false-discovery rate (FDR) – an approach that the XL-MS field adopted from mass spectrometry-based proteomics. As a result, low-confidence identifications (e.g. cross-linked peptides that are only supported by a few signals in a given mass spectrum) are removed from the dataset. FDR filtering in XL-MS is a rather complex matter as it can be done at different points during data analysis and the optimal FDR cut-off depends on the specific scientific question at hand (for more details see for example Fischer and Rappsilber, Anal Chem, 2017). Generally speaking, an overly restrictive FDR cut-off would remove a lot of correct identifications, thereby greatly limiting the sensitivity of the analysis. On the other hand, a too relaxed FDR cut-off would dilute the correct identifications with a high number of false-positives, which would impair the robustness and specificity of the dataset. While many XL-MS study control the FDR on the level of individual spectrum matches, we opted for a 2% FDR cut-off on the level of unique residue pairs, which is more stringent (see Fischer and Rappsilber, Anal Chem, 2017). Our FDR parameters are described in the Methods section (Cross-linking mass spectrometry of isolated vacuoles - Data analysis). Of note, we have made all raw mass spectrometry data publicly available through the PRIDE repository (https://www.ebi.ac.uk/pride/ ; accession code PXD046792; login details during peer review: Username = reviewer_pxd046792@ebi.ac.uk, Password = q1645lTP). This will allow other researchers to re-analyze our data with the data analysis settings of their choice in the future.

      To ascertain that criterion (2) is met, we mapped the identified cross-links onto existing high-resolution structures of vacuolar protein complexes. Taking into account the length of our cross-linking reagent, the side-chain length of the cross-linkable amino acids (i.e. lysines), and a certain degree of in-solution flexibility, cross-links can reasonably occur between lysines with a mutual Cα-Cα distance of up to 35 Å. Using this cut-off, the lysine-lysine pairs in the high-resolution structures we studied can be split into possible cross-linking partners (Cα-Cα distance 35 Å). Of all cross-links we could map onto high-resolution structures, 95.2% occurred between possible cross-linking partners. In addition, our cross-links reflect numerous known vacuolar protein interactions that have not yet been structurally characterized. These lines of evidence increase our confidence that our XL-MS approach captured genuine, natively occurring interactions. These analyses are described in more detail in the first Results sub-section (“A cross-linking mass spectrometry map of vacuolar protein interactions”).

      In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors?

      We disagree that the purity of the vacuole preparation is critical for this analysis to be valid. The accuracy of the protein-protein interactions detected will depend on their preservation during sample preparation until the sample encounters the cross-linker, and the data analysis, as described above. The experiment would have been equally valid if performed on whole cell lysates without any enrichment of vacuoles, but the coverage of vacuolar proteins would have likely been very low. For this reason, we decided to use the vacuole isolation procedure to obtain better coverage of the proteins of this particular organelle. The use of the Ficoll gradient protocol (Haas, 1995) was based on that it is a protocol that yields strong enrichment of proteins annotated with the GO Term “vacuole” (Eising et al, 2019) and that it preserves the functionality of the organelle, as evidenced by its use for multiple functional assays (vacuole-vacuole fusion (Haas, 1995), autophagosome-vacuole fusion (Gao et al, 2018), polyphosphate synthesis by the VTC complex (Desfougéres et al, 2016), among others).

      2) Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      We would like to point out that an effect on assembly is observed without deleting the RAVE complex: deletions of Oxr1 or Rtc5 resulted in increased V-ATPase assembly in vivo in the presence of glucose and of the RAVE complex (Figures 5 D and E). We have now also added the experiments showing that the overexpression strains have a mild growth defect under conditions that force cells to strongly rely on V-ATPase activity (Figures 6 A and C).

      Nevertheless, we agree that addressing the effect of changing the levels of Oxr1 and Rtc5 under low-glucose conditions is an interesting physiologically relevant question. We have now included growth assays and BCECF staining in medium containing galactose as the carbon source (Figures 5 – Supplement 1 B and C, and Figure 6 C and Figure 6- Supplement 1A). In addition, we have addressed the vacuolar localization of Vma5 in medium containing glucose or after shifting to medium containing galactose for 20 minutes, as a proxy for V-ATPase disassembly in intact cells (Figure 5 F and G, Figure 6 D and E). Taken together, these analyses reinforce our conclusions that both Rtc5 and Oxr1 promote an in vivo state of lower V-ATPase assembly, based on the following observations:

      • Higher localization of Vma5 to the vacuole after 20 mins in galactose in cells lacking Oxr1 or Rtc5 (Figure 5 F and G).
      • Lower localization of Vma5 to the vacuole in medium containing glucose in cells overexpressing Oxr1 or Rtc5 (Figure 6 D and E).
      • Growth defect of the strain overexpressing Oxr1 in medium containing galactose with pH = 7.5 and zinc chloride, with a further growth defect caused by additional overexpression of Rtc5 (Figure 6 C). 3) Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      We have shifted the Panel D from the original Figure 6 – Supplement 1 to the main Figure (now Figure 7 – H and I). Regarding the title of the Figure, whether Supplemental Figures have titles or not will depend on the journal where the manuscript is published. For now, we have removed all titles from supplemental figures, as they are conceived to complement the main Figures.

      4) Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      It is clear from the experiment suggested by the reviewer that they think that we have expressed Stv1-mNeonGreen from a plasmid. This was not the case, Stv1 was C-terminally tagged with mNeonGreen in the genome. It is thus the only expressed version in the strain. The experiment we have performed is thus equivalent to the one suggested by the reviewer, but for genomically expressed variants. For reference, the genotypes of all the strains used can be found in Supplemental Table 1.

      5) Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships.

      Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same.

      Indeed, there is a negative genetic interaction between the deletion of RTC5 and VPH1. We have replaced the growth tests in this figure (Figure 8 – Supplement 2 A in the new manuscript) to show this negative genetic interaction better. This effect is reproducible, as shown in the repetitions of the experiments.

      Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2.

      Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1.

      For both Panels C and D (Now Figure 8 - Supplement 2 B and C). The effect pointed out by the reviewer (slightly stronger growth defect for the double mutants than for the single mutants) is very mild. We have attempted to make it more evident by assessing growth in medium with higher and lower concentrations of zinc and this was not possible. This is in contrast with the very clear positive genetic interaction that we observe between the deletion of OXR1 and VPH1 (Now Figure 8 H). This is the reason that we decided to report the lack of a positive genetic interaction instead of the presence of a negative one, as we do not want to draw conclusions based on results that are borderline detectable.

      In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals?

      Indeed, the media is YPAD pH=7.5, without the addition of any metals. The line drawn above several images based on this media indicated this. Since this form of labeling appears to be confusing, we have now replaced it and placed the label directly above the image.

      Why there is no growth assay in the presence of CaCl2, like in panels A and B?

      Every growth test shown in the manuscript was performed including growth in YPD pH=5,5 as a control of a permissive condition for lack of V-ATPase activity, and then in YPD pH=7,5 including a broad range of Zinc Chloride and Calcium chloride concentrations. From all these pictures, the conditions where the differences among strains were clearly visible were chosen to assemble the figures. Conditions that did not provide any information for that particular experiment were not included in the figure to avoid making them unnecessarily large and crowded.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative.

      All growth tests shown in the manuscript were repeated at least three times for the conditions shown. We are thankful to the reviewer for pointing out that this was not mentioned, and we have added this to the methods section. We have assembled a file with all repetitions of the shown growth tests and added it at the end of this file. In doing so, these are already available for the public. These repetitions show that all effects reported are reproducible. We will then discuss with the editors of the journal where this manuscript is published about the necessity of including it with the final article.

      Regarding reporting the lack of a positive genetic interaction vs. a negative one, we have discussed this above. Shortly, for Panel B (Figure 8 – Supplement 2 A in the new manuscript) we have changed the conclusion to “negative genetic interaction” as adjusting the zinc chloride concentration allowed us to show this clearly and reproducibly, as shown by the repetitions of the experiments. For panels C and D (Now Figure 8 - Supplement 2 B and C), the effect is really mild and barely detectable, even when we tried a wide range of zinc chloride concentrations. For this reason, we would prefer to maintain the “no positive genetic interaction” conclusion.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      We apologize for the oversight of the missing methods section, which we have now included.

      Regarding the explanation of the media used, the following section was already a part of the results section, before the description of the first growth test:

      “The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media. However, when cells grow at near-neutral pH or in the presence of divalent cations such as calcium and zinc, the mutants lacking V-ATPase function show a strong growth impairment (Kane et al, 2006).”

      We have now replaced this with the following, more complete version:

      “As a first approach for addressing the role of these proteins, we tested growth phenotypes related to V-ATPase function in strains lacking or overexpressing them. The V-ATPase is not essential for viability in yeast cells, and mutants lacking subunits of this complex grow similarly to a wt strain in acidic media, but display a growth defect at near-neutral pH the mutants (Nelson & Nelson, 1990). In addition, the proton gradient across the vacuole membrane generated by the V-ATPase energizes the pumping of metals into the vacuole, as a mechanism of detoxification. Thus, increasing concentrations of divalent cations such as calcium and zinc, generate conditions in which growth is increasingly reliant on V-ATPase activity (Förster & Kane, 2000; MacDiarmid et al, 2002; Kane, 2006).”


      MINOR COMMENTS

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      This nomenclature rule is falling into disuse during the last decades, as the use of capitals vs lowercase and italics allows to distinguish between genes proteins and strains (OXR1 = gene, Oxr1 = protein, oxr1Δ = strain). As an example, I include a list of the latest papers by some of the major yeast labs around the world, all of which use the same nomenclature as we do (in alphabetical order). This list even includes some work in the field of the V-ATPase.

      • Alexey Merz, USA. PMID: 33225520
      • Benoit Kornmann, UK. PMID: 35654841
      • Christian Ungermann, Germany. PMID: 37463208
      • Claudio de Virgilio, Switzerland. PMID: 36749016
      • Daniel E. Gottschling, USA. PMID: 37640943
      • David Teis, Austria. PMID: 32744498
      • Elizabeth Conibear, Canada. PMID: 35938928
      • Fulvio Reggiori, Denmark. PMID: 37060997
      • J Christopher Fromme, USA. PMID: 37672345
      • Maya Schuldiner, Israel. PMID: 37073826
      • Patricia Kane, USA. PMID: 36598799
      • Scott Emr, USA. PMID: 35770973
      • W Mike Henne, USA. PMID: 37889293
      • Yoshinori Ohsumi, Japan. PMID: 37917025 In addition, we would prefer to keep the nomenclature that we already use, to keep consistency with other published articles from our lab.

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      We are thankful for this suggestion and we have now included both pieces of information in the introduction.

      *“The re-assembly of the V1 onto the VO complex when glucose becomes again available, is aided by a dedicated chaperone complex known as the RAVE complex, which also likely has a general role in V-ATPase assembly (Seol et al, 2001; Smardon et al, 2002, 2014).” *

      “In our cross-linking mass spectrometry interactome map of isolated vacuoles we found that the only other TLDc-domain containing protein of yeast, Rtc5, is a novel interactor of the V-ATPase. Rtc5 is a protein of unknown function, originally described in a genetic screen for genes related to telomere capping (Addinall et al, 2008)”

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results)

      1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here.

      The structural work on the V1 domain bound to Oxr1 (Khan et al, 2022) showed that the binding of Oxr1 prevented V1 from assembling onto the Vo. Since our experiments rely on the purification of vacuoles, they should contain mainly only V1 assembled onto the VO, and not the free soluble V1. This is likely the reason that we do not detect Oxr1, in addition to it being less abundant. We have clarified this now in the manuscript and added the fact that Oxr1 was co-purified with a V1 containing a mutant version of the H subunit.

      “In a previous study, Oxr1 was co-purified with a V1 domain containing a mutant version of the H subunit, and its presence prevented the in vitro assembly of this V1 domain onto the VO domain and promoted disassembly of the holocomplex (Khan et al., 2022). This is likely the reason why we do not detect Oxr1 in our experiments, which rely on isolated vacuoles and thus would only include V1 domains that are assembled onto the membrane. In addition, Oxr1 is less abundant in yeast cells than Rtc5 according to the protein abundance database PaxDb (Wang et al, 2015).”

      2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      We agree with the reviewer that the co-purification of Rtc5 with both V1 and VO domain subunits does not necessarily mean that it interacts with the assembled V-ATPase. Thus, we have modified the text in this part to:

      “The fact that we can co-enrich Rtc5 both with Vma2 and with Vph1 indicates that it can interact either with both the VO and V1 domains or with the assembled V-ATPase.”

      However, other results throughout the manuscript can be taken into account to strengthen this idea:

      1. Rtc5 requires an assembled V-ATPase to localize to the vacuole membrane, and thus seems not to interact with free VO domains, which would be available when we delete V1 subunits or in medium containing galactose.
      2. Rtc5 becomes cytosolic in galactose-containing media. This would indicate that it also does not interact with free V1 domains, which are still localized to the vacuole membrane under these conditions. Taken together with the pull-downs, these results suggest that Rtc5 interacts with the assembled V1-VO V-ATPase. Thus, we have included the following sentence after Figure 3, which shows the subcellular localization experiments.

      *“Taking into account that Rtc5 is co-enriched with subunits of both the VO and V1 domain, and that it localizes at the vacuole membrane dependent on an assembled V-ATPase, we suggest that Rtc5 interacts with the assembled V-ATPase complex.” *

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity?

      Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      We have modified Figure 1 C and Figure 1 – Supplement 1B (now Figure 1 – Supplement 1 A) to present the different subunits in the structures with different shades of blue and grey.

      Furthermore, we have clarified the distance measurement approach in the methods section and in the legend of Fig 1D: “Ca-Ca distances were determined using the measuring function in Pymol v.2.5.2 (Schrodinger LLC).”

      __Re: Figure 1 - Supplement 1, __

      Panel A. What scientific information are we getting from this picture?

      This panel was just a visual representation of the complexity of the protein network we obtained. Indeed, there was no specific scientific message, so we have decided to remove this panel from the revised manuscript.

      Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      We did not want to overload Fig 1C, so we decided to show some of the protein complexes in Fig 1 – Supplement 1B. The most important information is the histogram showing that 95% of the mapped cross-links fall within the expected length range, and this is shown in the main Figure (Figure 1D). As stated above, we have adjusted the subunit coloring in Figure 1 C to improve clarity.

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Unfortunately, there are no available antibodies for either Rtc5 or Oxr1. This hinders us from detecting the endogenous untagged proteins. We would like to point out that we have been very careful in showing which tagged proteins are functional (C-terminally tagged Rtc5) and which are not (C-terminally tagged Oxr1), so that the reader can know how to interpret the localization data.

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D

      (mNeonGreen)?

      In general, we prefer to use mNeonGreen as a tag for microscopy experiments because it is brighter and more stable, and msGFP2 as a tag for experiments involving Western blots because we have better antibodies available. There was a mistake in the labeling, and actually, all constructs labeled as GFP were msGFP2. We have now corrected this. Of note, we have tested the functionality of both tagged version (mNeonGreen and msGFP2).

      Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies?

      Indeed, Rtc5-msGFP2 was detected with an anti-GFP antibody. We have now indicated next to each Western blot membrane the primary antibody used. In addition, all antibodies are detailed in Supplemental Figure 3.

      The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      For all western blots, we always showed a good portion of the membrane and not cut-out bands. The cropping was performed to avoid making figures unnecessarily large. The whole membranes are of course available and will be included in an “extended data file” if required by the journal.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr?

      Indeed. We have now added this label to the figure.

      Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      We have replaced this western blot for a different repetition of this experiment in which a membrane protein marker was included. Of note, the two other repetitions of the experiment shown (Figure 4 – Supplement 1 panel C and Figure 4 panel C) also include both a membrane protein marker and a soluble protein marker.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly.

      The original data from Figure 5 is now separated into Figures 5 and 6 because of the additional experiments included during revisions. We have modified the Figure titles to be descriptive of the overall message of the Figures.

      Panel C. Statistical significance value for *** should be indicated in the legend.

      This has been indicated in the Figure legend.

      It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      All shown growth tests were performed at least three times for the conditions shown. We have now indicated this in the materials and methods section. In addition, we now provide in this response a file with all repetitions of growth tests, which will be appended to the article if deemed necessary by the editors.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Whether the supplemental Figures should have a title or not will depend on the style of the journal where the manuscript is finally published. The current idea of the supplemental Figures is that they complement the corresponding main Figure. For this reason, we have removed all titles from supplemental Figures.

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where".

      This has been corrected.

      Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      We had not included this piece of data, as we thought that the genetic interaction of RTC5 and OXR1 and rav1Δ was sufficiently well supported with the included data (growth tests in combination with the deletion, growth tests in combination with the overexpression, vacuole proteomics in combination with overexpression, and BCECF staining in combination with the overexpression). Because of the request of the reviewer, we have now included this experiment as Figure 7 G.

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used?

      We tried both tags to see if one of them would be functional. Unfortunately, they both resulted in non-functional proteins, as shown by the corresponding growth tests.

      Did the authors study N-terminally tagged Oxr1? Was it functional?

      We have tagged Oxr1 N-terminally, and this unfortunately resulted in a protein that was not completely functional. We show below the localization of N-terminally mNeon-tagged Oxr1, under the control of the TEF1 promoter. The protein appears cytosolic (Panel A) but is not completely functional (Panel B). The localization of Oxr1 had already been misreported by using a tagged version that we now show to be non-functional. For this reason, we preferred not to include this data in the manuscript, to avoid again including in the literature subcellular localizations that correspond to non-functional or partially functional proteins.

      Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Oxr1-2xmNG was C-terminally tagged in the genome, which means that the promoter is the endogenous one, it was not modified. For this reason, the correct controls are a strain expressing Oxr1 at endogenous levels (the wt strain) and a strain lacking Oxr1. Both controls were included in the Figure, and in all repetitions made of this experiment. For reference, all the genotypes of the strains used are found in Supplemental Table 1.

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity.

      The basis for the method of vacuole purification is the same, from (Haas, 1995). This reference was included in both protocols that include vacuole purifications. However, modifications of this method were performed to fit the crosslinking method (higher pH, no primary amines) or to fit the SILAC labeling (combination of two differentially labeled samples in one purification). The reference for the vacuole proteomics (Eising et al 2022) corresponds to a paper in which the SILAC-based comparison of vacuoles from different mutant strains was optimized, and includes not only the vacuole purification but the growth conditions and downstream processing of the vacuoles.

      Since both the SILAC-based vacuole proteomics and the XL-MS are multi-step methods, containing numerous parameters including the sample preparation, processing for MS, MS run and data analysis, we would prefer to keep them separate. We think this would allow a person attempting to reproduce these methods to go through them step by step.

      What is CMAC dye? Why was it used to stain the vacuolar lumen?

      We apologize for this oversight, we have included the definition of CMAC as 7-Amino-4-Chlormethylcumarin. It is a standard-used organelle marker for the lumen of the vacuole.

      Some abbreviations (TEAB, ACN) are not explained.

      We apologize for this oversight. We have now replaced these abbreviations with the full names of the compounds in the article.

      What is 0% Ficoll?

      We used the term 0% Ficoll, because this is the name given to the buffer in the original Haas 1995 paper on vacuole purifications. However, we agree that the term is misleading and we have now added the composition of the buffer (10 mM PIPES/KOH pH=6.8, 0.2 M Sorbitol).

      Reviewer #3 (Significance (Required)):

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

      We are thankful to the reviewer for their positive comments about the significance of our work.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary

      In this manuscript, the authors used a proteomics approach to comprehensively study yeast vacuole protein-protein interactions using cross-linking mass-spectrometry (XL-MS). They identified 16694 interactions between 2051 proteins. Many known vacuolar protein complexes were found and used as positive controls, confirming the high quality of the dataset, however, no negative controls were reported, and this issue is raised in the 'Major comments' section. The authors then focused on one particular previously unknown protein-protein interaction between the TLDc-domain containing protein of unknown function Rtc5 and the vacuolar-type proton ATPase, V-ATPase, which acidifies yeast vacuoles. The methods and results regarding Rtc5 discovery as a novel interactor of the V-ATPase, Rtc5 myristoylation, and its V-ATPase-dependent localization to the vacuole membrane are convincing. The authors then moved on to study the in vivo function of Rtc5 as well as Oxr1, the only other TLDc-domain-containing protein in yeast. Interestingly, they did not originally detect Oxr1 in their protein-protein interaction studies, apparently due to its very low abundance in yeast. However, they found that deletion of either RTC5 or OXR1 in vivo resulted in more assembled V-ATPase at the yeast vacuole and this effect was stronger in oxr1Δ cells. However, RTC5/OXR1 deletion or overexpression in parental yeast strains did not affect either vacuolar pH (a readout of functional V-ATPase) or yeast growth, including growth under specific conditions (neutral pH, in the presence of high concentrations of calcium or zinc), which is used to reveal a conditional lethal phenotype of unfunctional V-ATPase (the Vma− phenotype). Since they did not observe any in vivo phenotype in parental yeast strains, they subsequently studied the effects of RTC5/OXR1 deletion and overexpression in the 'sensitized' rav1Δ strain, lacking a specific assembly factor of V-ATPase, Rav1, one of the subunits of RAVE complex. In this strain, RTC5/OXR1 overexpression resulted in less acidic vacuolar pH and reduced growth of double mutant cells, compared to the single rav1Δ mutant. In addition, overexpression of Oxr1, but not Rtc5, caused disassembly of the V-ATPase in rav1Δ cells, noteworthy this effect was not detectable in the parent strain with intact Rav1p. Finally, they found that in oxr1Δ cells there is more Stv1 in the vacuole and concluded that Oxr1 is necessary for the retention of Stv1 containing V-ATPase at the vacuole. However, the mechanism seems to be complicated and remains to be elucidated. In summary, an impressive variety of methods from a technologically advanced XL-MS to classical yeast growth assays were used to identify Rtc5 interaction with V-ATPase and analyze its functional role in vivo in yeast, making the conclusions well justified overall.


      Major comments

      Re: A cross-linking mass spectrometry map of vacuolar protein interactions (results)

      While XL-MS is a very powerful method, it is a high-throughput approach and there should be some kind of negative control in these experiments. In cross-linking experiments, non-cross-linked samples are usually used as negative controls. What was the negative control in cross-linking mass-spectrometry experiments here? If there was no negative control, how the specificity of interactions was evaluated? Maybe the authors analyzed the dataset for highly improbable interactions and found very few of them? In addition, the high purity of vacuole preparation is critical. How was it assessed by the authors? All this is important to know to use this dataset as a reliable resource in the future.

      Re: Rtc5 and Oxr1 counteract the function of the RAVE complex (results)

      Taken together, data, presented in this section of the manuscript, provide strong evidence that Rtc5 and Oxr1 negatively regulate V-ATPase activity, counteracting the V-ATPase assembly, facilitated by the activity of the RAVE complex. However, the complete deletion of the major RAVE subunit Rav1p was required to observe this effect in vivo in yeast. The other way to induce V-ATPase disassembly in yeast is glucose deprivation. It will be interesting to study if there is a synergistic effect between glucose deprivation and RTC5/OXR1 deletion on V-ATPase assembly, vacuolar pH, and growth of single oxr1Δ, rtc5Δ or double oxr1Δrtc5Δ mutants (OPTIONAL). Glucose deprivation is a more physiologically relevant condition than a deletion of an entire gene.

      Re: Figure 6 - supplement 1. The title is relevant to panel D only, it should be renamed to reflect the results of the disassembly of V-ATPase in rav1Δ mutant strains, while results about the stv1Δ-based strains (Panel D) should be shown together with similar experiments in Figure 7 - supplement 2 for clarity.

      Re: Figure 7 - supplement 1, Panel A. The proper assay to show that Stv1-mNeonGreen is functional is to express it in double mutant vph1Δstv1Δ to see if the growth defect is reversed. In addition, the vph1Δ growth defect is not changed (improved or worsened) in the presence of Stv1-mNeonGreen, so it means that the expression of Stv1-mNeonGreen does not further compromise the V-ATPase function, but it does not mean that it improves its function.

      Re: Figure 7 - supplement 2. This figure should be combined with Fig. 6- suppl 1, panel D as also mentioned above. The figure seems to lack some labels, and conclusions are not accurate as discussed below. However, this data provides important additional information about relationships between isoform-specific subunits of V-ATPase Vph1 and Stv1 and both Rtc5 and Oxr1 and should be repeated if it is not done yet to have a better idea about these relationships. Panel B: Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of VPH1, since double deletion mutant vph1Δ rtc5Δ grows worse than each individual mutant. Although it also means that there is no positive interaction, it is not the same. Panel C: Same as for panel B. Based on this picture, the deletion of OXR1 has a weak negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ oxr1Δ grows worse than each individual mutant at 6 mM ZnCl2. In addition, there is no label for the media in the middle panel, is it just YPAD pH=7.5, without the addition of any metals? Why there is no growth assay in the presence of CaCl2, like in panels A and B? Panel D: Same as for panels B and C. Based on this picture, deletion of RTC5 has a negative genetic interaction with the deletion of STV1, since double deletion mutant stv1Δ rtc5Δ grows worse than each individual mutant at 6 mM ZnCl2. There is no label in the middle panel (growth conditions) and no growth assay data in the presence of CaCl2.

      Re: Figure 7 - supplement 2, continued. How many times all these experiments were repeated? These experiments should be repeated at least 3 times, which is especially necessary for the experiments in panel C, because the effects are borderline. If results are reproducible and statistically significant, although small, the conclusion should be changed from "no positive genetic interactions" to "negative genetic interactions", which is more precise and informative. However, these results will be then in contradiction with the results from Figure 6 - Supplement 1, panel D, showing negative genetic interaction between the overexpression of Rtc5 or Oxr1 and deletion of Stv1, since both deletion and overexpression of Rtc5 or Oxr1 would have negative genetic interactions with Stv1. In addition, apparently, there is no data about genetic interaction between the overexpression of Rtc5 or Oxr1 and the deletion of Vph1. All this needs clarification, therefore repeating these experiments is essential. In conclusion, while genetic interactions between RTC5/OXR1 and RAV1 are straightforward, they seem to be more complex with STV1/VPH1.

      Re: Methods. There is no description of yeast serial dilution growth assay at all. In addition, why the specific media (neutral pH, in the presence of high concentrations of calcium or zinc) was used is not explained either in the results or methods. Appropriate references should be included, for example, PMID: 2139726, PMID: 1491236.

      Minor comments

      Yeast proteins are named with "p" at the end, such as "Rtc5p".

      Re: Introduction. In the introduction it should be indicated that Rtc5 was originally discovered as a "restriction of telomere capping 5", using screening of temperature-sensitive cdc13-1 mutants combined with the yeast gene deletion collection [PMID: 18845848]. A couple of sentences should be written about the RAVE complex and its role in V-ATPase assembly.

      Re: The TLDc domain-containing protein of unknown function Rtc5 is a novel interactor of the vacuolar V-ATPase (results) 1) It is important to understand, that Oxr1 was co-purified before with the V1 domain of V-ATPase from a certain mutant strain, not wild-type yeast [PMID: 34918374]. It may explain why the authors did not identify it in their original protein-protein interactions screen here. 2) It is a wrong conclusion that because Rtc5 was co-purified with both V1 and V0 domain subunits it interacts with the assembled V-ATPase, this does not exclude a possibility that Rtc5 also interacts with separate V1 sector or separate V0 sector of V-ATPase.

      Re: Figure 1, Panel C. Is it possible to show individual proteins in different colors for clarity? Panel D. How were cross-link distances measured? It is not obvious if you are not an expert in the field and it is not described in the methods.

      Re: Figure 1 - Supplement 1, Panel A. What scientific information are we getting from this picture? Panel B. Why are these complexes shown separately from the complexes in Figure 1, panel C? Also, can individual proteins be colored differently here as well?

      Re: Figure 3. It will be nice to show the localization of the untagged protein as well if antibodies are available (OPTIONAL).

      Re: Figure 4. Why different tags were used in panels A (GFP), C (msGFP2) and D (mNeonGreen)? Panels B and C. Were Rtc5 fusions detected using anti-GFP antibodies? The authors should have full-size Western blots available, not just cut-out bands, as some journals and reviewers require them for publication.

      Re: Figure 4 - Supplement 1, Panel A. Does "-" and "+" mean -/+ Azido-Myr? Panel B. There is no blot with a membrane protein marker (Vam3 or Vac8), it should be included.

      Re: Figure 5. The title does not describe all results in this figure and should be modified accordingly. Panel C. Statistical significance value for *** should be indicated in the legend. It is not clear how many times yeast growth assays were repeated. Usually, all experiments should be done in triplicates or more.

      Re: Figure 5 - supplement 1. No title

      Re: Figure 5 - supplement 2. No title

      Re: Figure 6. There is a typo on the second lane in the legend: "...the genome were", not "...the genome where". Panel C. Why the analysis of BCECF vacuole staining of double mutants oxr1Δrav1Δ and rtc5Δrav1Δ is not shown? Was it done at all?

      Re: Figure 6 - Supplement 2. Why were two different tags (2xmNG and msGFP2) used? Did the authors study N-terminally tagged Oxr1? Was it functional? Panel B. Results for the untagged TEF1pr-Oxr1 overexpression are not shown, thus tagged and untagged proteins can't be compared. Are they available? What is the promoter for the expression of 2xmNG fusion constructs?

      Re: Methods. Were vacuoles prepared differently for XL-MS and SILAC-based vacuole proteomics (there are different references) and why? Methods for XL-MS and quantitative SILAC-based proteomics can be placed together for clarity. What is CMAC dye? Why was it used to stain the vacuolar lumen? Some abbreviations (TEAB, ACN) are not explained. What is 0% Ficoll?

      Referees cross-commenting

      I agree with both reviewers, although I think that it is a pretty novel finding because while I was familiar with Oxr1 data I did not realize until now that there is a second protein in yeast. I think it is because homology between Oxr1 and Rtc5 is really low. I also agree that they should study more about what happens with V0 subunits.

      Significance

      Field of expertise keywords:

      Protein-protein interactions, V-ATPase, TLDc

      The vacuolar-type proton ATPase, V-ATPase, is the key proton pump, that hydrolases ATP and uses this energy to pump protons across membranes. Amazingly, this proton pump and its function are conserved in eukaryotes from yeast to mammals. While V-ATPase structure and function have been studied for more than 30 years in various organisms, its regulation is not completely understood. The very recent discoveries of two new V-ATPase interacting proteins in yeast, first Oxr1 (OXidative Resistance 1), and now Rtc5 (Restriction of Telomere Capping 5), both the only two members of TLDc (The Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic) proteins in yeast, provide new insights in V-ATPase regulation in yeast, and because the interaction is conserved in mammals its relevance to mammalian V-ATPases regulation as well.

      TLDc proteins are best known for their role in protection from oxidative stress, in particular in yeast and in the nervous system in mammals. The discovery of the novel Rtc5-V-ATPase interaction points to the role of V-ATPase not only in protection from oxidative stress but also in restriction of telomere capping in yeast and most likely higher species. The studies of other species also highlight the possible conserved role of V-ATPase in lifespan determination and Torc1 signaling, mediated through these interactions. Thus, the discovery of this new functionally important interaction between the second TLDc family member in yeast, Rtc5, and V-ATPase will shed light on the molecular mechanisms of all these essential biological processes and pathways.

      In addition, because the authors performed a comprehensive proteomics protein-protein interaction study of the purified yeast vacuole it provides a valuable resource for all researchers who study vacuoles and/or related to them lysosomes.

      The follow-up functional studies using the rav1Δ strain clearly demonstrated that Rtc5 and Oxr1 disassemble V-ATPase and counteract the function of V-ATPase assembly RAVE complex in vivo in yeast. Thus, they are essentially the first discovered endogenous eukaryotic protein inhibitors of V-ATPase. Moreover, because the authors obtained the evidence that Oxr1 is the regulator of the specific subunit isoform of V-ATPase Stv1p in vivo in yeast, it suggests that different TLDc proteins may regulate different specific V-ATPase subunit isoforms in cell- and tissue-specific manner in higher eukaryotes. The mechanism of this isoform-specific regulation in yeast and other species needs further investigation in the future.

      Because of the conservation of the TLDc-V-ATPase interactions, all this information can be extrapolated to higher species, all the way to humans, in whom genetic mutations in various TLDc proteins are known to cause devastating diseases and syndromes.

    1. Author Response

      Response to the Reviews

      We are grateful for these balanced, nuanced evaluations of our work concerning the observed epistatic trends and our interpretations of their mechanistic origins. Overall, we think the reviewers have done an excellent job at recognizing the novel aspects of our findings while also discussing the caveats associated with our interpretations of the biophysical effects of these mutations. We believe it is important to consider both of these aspects of our work in order to appreciate these advances and what sorts of pertinent questions remain.

      Notably, both reviewers suggest that a lack of experimental approaches to compare the conformational properties of GnRHR variants weakens our claims. We would first humbly suggest that this constitutes a more general caveat that applies to nearly all investigations of the cellular misfolding of α-helical membrane proteins. Whether or not any current in vitro folding measurements report on conformational transitions that are relevant to cellular protein misfolding reactions remains an active area of debate (discussed further below). Nevertheless, while we concede that our structural and/ or computational evaluations of various mutagenic effects remain speculative, prevailing knowledge on the mechanisms of membrane protein folding suggest our mutations of interest (V276T and W107A) are highly unlikely to promote misfolding in precisely the same way. Thus, regardless of whether or not we were able experimentally compare the relevant folding energetics of GnRHR variants, we are confident that the distinct epistatic interactions formed by these mutations reflect variations in the misfolding mechanism and that they are distinct from the interactions that are observed in the context of stable proteins. In the following, we provide detailed considerations concerning these caveats in relation to the reviewers’ specific comments.

      Reviewer #1 (Public Review):

      The paper carries out an impressive and exhaustive non-sense mutagenesis using deep mutational scanning (DMS) of the gonadotropin-releasing hormone receptor for the WT protein and two single point mutations that I) influence TM insertion (V267T) and ii) influence protein stability (W107A), and then measures the effect of these mutants on correct plasma membrane expression (PME).

      Overall, most mutations decreased mGnRHR PME levels in all three backgrounds, indicating poor mutational tolerance under these conditions. The W107A variant wasn't really recoverable with low levels of plasma membrane localisation. For the V267T variant, most additional mutations were more deleterious than WT based on correct trafficking, indicating a synergistic effect. As one might expect, there was a higher degree of positive correlation between V267T/W107A mutants and other mutants located in TM regions, confirming that improper trafficking was a likely consequence of membrane protein co-translational folding. Nevertheless, context is important, as positive synergistic mutants in the V27T could be negative in the W107A background and vice versa. Taken together, this important study highlights the complexity of membrane protein folding in dissecting the mechanism-dependent impact of disease-causing mutations related to improper trafficking.

      Strengths

      This is a novel and exhaustive approach to dissecting how receptor mutations under different mutational backgrounds related to co-translational folding, could influence membrane protein trafficking.

      Weaknesses

      The premise for the study requires an in-depth understanding of how the single-point mutations analysed affect membrane protein folding, but the single-point mutants used seem to lack proper validation.

      Given our limited understanding of the structural properties of misfolded membrane proteins, it is unclear whether the relevant conformational effects of these mutations can be unambiguously validated using current biochemical and/ or biophysical folding assays. X-ray crystallography, cryo-EM, and NMR spectroscopy measurements have demonstrated that many purified GPCRs retain native-like structural ensembles within certain detergent micelles, bicelles, and/ or nanodiscs. However, helical membrane protein folding measurements typically require titration with denaturing detergents to promote the formation of a denatured state ensemble (DSE), which will invariably retain considerable secondary structure. Given that the solvation provided by mixed micelles is clearly distinct from that of native membranes, it remains unclear whether these DSEs represent a reasonable proxy for the misfolded conformations recognized by cellular quality control (QC, see https://doi.org/10.1021/acs.chemrev.8b00532). Thus, the use and interpretation of these systems for such purposes remains contentious in the membrane protein folding community. In addition to this theoretical issue, we are unaware of any instances in which GPCRs have been found to undergo reversible denaturation in vitro- a practical requirement for equilibrium folding measurements (https://doi.org/10.1146/annurev-biophys-051013-022926). We note that, while the resistance of GPCRs to aggregation, proteolysis, and/ or mechanical unfolding have also been probed in micelles, it is again unclear whether the associated thermal, kinetic, and/ or mechanical stability should necessarily correspond to their resistance to cotranslational and/ or posttranslational misfolding. Thus, even if we had attempted to validate the computational folding predictions employed herein, we suspect that any resulting correlations with cellular expression may have justifiably been viewed by many as circumstantial. Simply put, we know very little about the non-native conformations are generally involved in the cellular misfolding of α-helical membrane proteins, much less how to measure their relative abundance. From a philosophical standpoint, we prefer to let cells tell us what sorts of broken protein variants are degraded by their QC systems, then do our best to surmise what this tells us about the relevant properties of cellular DSEs.

      Despite this fundamental caveat, we believe that the chosen mutations and our interpretation of their relevant conformational effects are reasonably well-informed by current modeling tools and by prevailing knowledge on the physicochemical drivers of membrane protein folding and misfolding. Specifically, the mechanistic constraints of translocon-mediated membrane integration provide an understanding of the types of mutations that are likely to disrupt cotranslational folding. Though we are still learning about the protein complexes that mediate membrane translocation (https://doi.org/10.1038/s41586-022-05336-2), it is known that this underlying process is fundamentally driven by the membrane depth-dependent amino acid transfer free energies (https://doi.org/10.1146/annurev.biophys.37.032807.125904). This energetic consideration suggests introducing polar side chains near the center of a nascent TMDs should almost invariably reduce the efficiency of topogenesis. To confirm this in the context of TMD6 specifically, we utilized a well-established biochemical reporter system to confirm that V276T attenuates its translocon-mediated membrane integration (Fig. S1)- at least in the context of a chimeric protein. We also constructed a glycosylation-based topology reporter for full-length GnRHR, but ultimately found its’ in vitro expression to be insufficient to detect changes in the nascent topological ensemble. In contrast to V276T, the W107A mutation is predicted to preserve the native topological energetics of GnRHR due to its position within a soluble loop region. W107A is also unlike V276T in that it clearly disrupts tertiary interactions that stabilize the native structure. This mutation should preclude the formation of a structurally conserved hydrogen bonding network that has been observed in the context of at least 25 native GPCR structures (https://doi.org/10.7554/eLife.5489). However, without a relevant folding assay, the extent to which this network stabilizes the native GnRHR fold in cellular membranes remains unclear. Overall, we admit that these limitations have prevented us from measuring how much V276T alters the efficiency of GnRHR topogenesis, how much the W107A destabilizes the native fold, or vice versa. Nevertheless, given these design principles and the fact that both reduce the plasma membrane expression of GnRHR, as expected, we are highly confident that the structural defects generated by these mutations do, in fact, promote misfolding in their own ways. We also concede that the degree to which these mutagenic perturbations are indeed selective for specific folding processes is somewhat uncertain. However, it seems exceedingly unlikely that these mutations should disrupt topogenesis and/ or the folding of the native topomer to the exact same extent. From our perspective, this is the most important consideration with respect to the validity of the conclusions we have made in this manuscript.

      Furthermore, plasma membrane expression has been used as a proxy for incorrect membrane protein folding, but this not necessarily be the case, as even correctly folded membrane proteins may not be trafficked correctly, at least, under heterologous expression conditions. In addition, mutations can affect trafficking and potential post-translational modifications, like glycosylation.

      While the reviewer is correct that the sorting of folded proteins within the secretory pathway is generally inefficient, it is also true that the maturation of nascent proteins within the ER generally bottlenecks the plasma membrane expression of most α-helical membrane proteins. Our group and several others have demonstrated that the efficiency of ER export generally appears to scale with the propensity of membrane proteins to achieve their correct topology and/ or to achieve their native fold (see https://doi.org/10.1021/jacs.5b03743 and https://doi.org/10.1021/jacs.8b08243). Notably, these investigations all involved proteins that contain native glycosylation and various other post-translational modification sites. While we cannot rule out that certain specific combinations of mutations may alter expression through their perturbation of post-translational GnRHR modifications, we feel confident that the general trends we have observed across hundreds of variants predominantly reflect changes in folding and cellular QC. This interpretation is supported by the relationship between observed trends in variant expression and Rosetta-based stability calculations, which we identified using unbiased unsupervised machine learning approaches (compare Figs. 6B & 6D).

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Chamness and colleagues make a pioneering effort to map epistatic interactions among mutations in a membrane protein. They introduce thousands of mutations to the mouse GnRH Receptor (GnRHR), either under wild-type background or two mutant backgrounds, representing mutations that destabilize GnRHR by distinct mechanisms. The first mutant background is W107A, destabilizing the tertiary fold, and the second, V276T, perturbing the efficiency of cotranslational insertion of TM6 to the membrane, which is essential for proper folding. They then measure the surface expression of these three mutant libraries, using it as a proxy for protein stability, since misfolded proteins do not typically make it to the plasma membrane. The resulting dataset is then used to shed light on how diverse mutations interact epistatically with the two genetic background mutations. Their main conclusion is that epistatic interactions vary depending on the degree of destabilization and the mechanism through which they perturb the protein. The mutation V276T forms primarily negative (aggravating) epistatic interactions with many mutations, as is common to destabilizing mutations in soluble proteins. Surprisingly, W107A forms many positive (alleviating) epistatic interactions with other mutations. They further show that the locations of secondary mutations correlate with the types of epistatic interactions they form with the above two mutants.

      Strengths:

      Such a high throughput study for epistasis in membrane proteins is pioneering, and the results are indeed illuminating. Examples of interesting findings are that: (1) No single mutation can dramatically rescue the destabilization introduced by W107A. (2) Epistasis with a secondary mutation is strongly influenced by the degree of destabilization introduced by the primary mutation. (3) Misfolding caused by mis-insertion tends to be aggravated by further mutations. The discussion of how protein folding energetics affects epistasis (Fig. 7) makes a lot of sense and lays out an interesting biophysical framework for the findings.

      Weaknesses:

      The major weakness comes from the potential limitations in the measurements of surface expression of severely misfolded mutants. This point is discussed quite fairly in the paper, in statements like "the W107A variant already exhibits marginal surface immunostaining" and many others. It seems that only about 5% of the W107A makes it to the plasma membrane compared to wild-type (Figures 2 and 3). This might be a low starting point from which to accurately measure the effects of secondary mutations.

      The reviewer raises an excellent point that we considered at length during the analysis of these data and the preparation of the manuscript. Though we remain confident in the integrity of these measurements and the corresponding analyses, we now realize this aspect of the data merits further discussion and documentation in our forthcoming revision, in which we will outline the following specific lines of reasoning.

      Still, the authors claim that measurements of W107A double mutants "still contain cellular subpopulations with surface immunostaining intensities that are well above or below that of the W107A single mutant, which suggests that this fluorescence signal is sensitive enough to detect subtle differences in the PME of these variants". I was not entirely convinced that this was true.

      We made this statement based on the simple observation that the surface immunostaining intensities across the population of recombinant cells expressing the library of W107A double mutants was consistently broader than that of recombinant cells expressing W107A GnRHR alone (see Author response image 1 for reference). Given that the recombinant cellular library represents a mix of cells expressing ~1600 individual variants that are each present at low abundance, the pronounced tails within this distribution presumably represent the composite staining of many small cellular subpopulations that express collections of variants that deviate from the expression of W107A to an extent that is significant enough to be visible on a log intensity plot.

      Author response image 1.

      Firstly, I think it would be important to test how much noise these measurements have and how much surface immunostaining the W107A mutant displays above the background of cells that do not express the protein at all.

      For reference, the average surface immunostaining intensity of HEK293T cells transiently expressing W107A GnRHR was 2.2-fold higher than that of the IRES-eGFP negative, untransfected cells within the same sample- the WT immunostaining intensity was 9.5-fold over background by comparison. Similarly, recombinant HEK293T cells expressing the W107A double mutant library had an average surface immunostaining intensity that was 2.6-fold over background across the two DMS trials. Thus, while the surface immunostaining of this variant is certainly diminished, we were still able to reliably detect W107A at the plasma membrane even under distinct expression regimes. We will include these and other signal-to-noise metrics for each experiment in a new table in the revised version of this manuscript.

      Beyond considerations related to intensity, we also previously noticed the relative intensity values for W107A double mutants exhibited considerable precision across our two biological replicates. If signal were too poor to detect changes in variant expression, we would have expected a plot of the intensity values across these two replicates to form a scatter. Instead, we found DMS intensity values for individual variants to be highly correlated from one replicate to the next (Pearson’s R= 0.97, see Author response image 2 for reference). This observation empirically demonstrates that this assay consistently differentiated between variants that exhibit slightly enhanced immunostaining from those that have even lower immunostaining than W107A GnRHR.

      Author response image 2.

      But more importantly, it is not clear if under this regimen surface expression still reports on stability/protein fitness. It is unknown if the W107A retains any function or folding at all. For example, it is possible that the low amount of surface protein represents misfolded receptors that escaped the ER quality control.

      While we believe that such questions are outside the scope of this work, we certainly agree that it is entirely possible that some of these variants bypass QC without achieving their native fold. This topic is quite interesting to us but is quite challenging to assess in the context of GPCRs, which have complex fitness landscapes that involve their propensity to distinguish between different ligands, engage specific components associated with divergent downstream signaling pathways, and navigate between endocytic recycling/ degradation pathways following activation. In light of the inherent complexity of GPCR function, we humbly suggest our choice of a relatively simple property of an otherwise complex protein may be viewed as a virtue rather than a shortcoming. Protein fitness is typically cast as the product of abundance and activity. Rather than measuring an oversimplified, composite fitness metric, we focused on one variable (plasma membrane expression) and its dominant effector (folding). We believe restraining the scope in this manner was key for the elucidation of clear mechanistic insights.

      The differential clustering of epistatic mutations (Fig. 6) provides some interesting insights as to the rules that dictate epistasis, but these too are dominated by the magnitude of destabilization caused by one of the mutations. In this case, the secondary mutations that had the most interesting epistasis were exceedingly destabilizing. With this in mind, it is hard to interpret the results that emerge regarding the epistatic interactions of W107A. Furthermore, the most significant positive epistasis is observed when W107A is combined with additional mutations that almost completely abolish surface expression. It is likely that either mutation destabilizes the protein beyond repair. Therefore, what we can learn from the fact that such mutations have positive epistasis is not clear to me. Based on this, I am not sure that another mutation that disrupts the tertiary folding more mildly would not yield different results. With that said, I believe that the results regarding the epistasis of V276T with other mutations are strong and very interesting on their own.

      We agree with the reviewer. In light of our results we believe it is virtually certain that the secondary mutations characterized herein would be likely to form distinct epistatic interactions with mutations that are only mildly destabilizing. Indeed, this insight reflects one of the key takeaway messages from this work- stability-mediated epistasis is difficult to generalize because it should depend on the extent to which each mutation changes the stability (ΔΔG) as well as initial stability of the WT/ reference sequence (ΔG, see Figure 7). Frankly, we are not so sure we would have pieced this together as clearly had we not had the fortune (or misfortune?) of including such a destructive mutation like W107A as a point of reference.

      Additionally, the study draws general conclusions from the characterization of only two mutations, W107A and V276T. At this point, it is hard to know if other mutations that perturb insertion or tertiary folding would behave similarly. This should be emphasized in the text.

      We agree and will be sure to emphasize this point in the revised manuscript.

      Some statistical aspects of the study could be improved:

      1. It would be nice to see the level of reproducibility of the biological replicates in a plot, such as scatter or similar, with correlation values that give a sense of the noise level of the measurements. This should be done before filtering out the inconsistent data.

      We thank the reviewer for this suggestion and will include scatters for each genetic background like the one shown above in the supplement of the revised version of the manuscript.

      1. The statements "Variants bearing mutations within the C- terminal region (ICL3-TMD6-ECL3-TMD7) fare consistently worse in the V276T background relative to WT (Fig. 4 B & E)." and "In contrast, mutations that are 210 better tolerated in the context of W107A mGnRHR are located 211 throughout the structure but are particularly abundant among residues 212 in the middle of the primary structure that form TMD4, ICL2, and ECL2 213 (Fig. 4 C & F)." are both hard to judge. Inspecting Figures 4B and C does not immediately show these trends, and importantly, a solid statistical test is missing here. In Figures 4E and F the locations of the different loops and TMs are not indicated on the structure, making these statements hard to judge.

      We apologize for this oversight and thank the reviewer for pointing this out. We will include additional statistical tests to reinforce these conclusions in the revised version of the manuscript.

      1. The following statement lacks a statistical test: "Notably, these 98 variants are enriched with TMD variants (65% TMD) relative to the overall set of 251 variants (45% TMD)." Is this enrichment significant? Further in the same paragraph, the claim that "In contrast to the sparse epistasis that is generally observed between mutations within soluble proteins, these findings suggest a relatively large proportion of random mutations form epistatic interactions in the context of unstable mGnRHR variants". Needs to be backed by relevant data and statistics, or at least a reference.

      We will include additional statistical tests for this in the revised manuscript and will ensure the language we use is consistent with the strength of the indicated statistical enrichment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for organizing the reviews for our manuscript: Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties,” and for the positive eLife assessment. We also thank the reviewers for their constructive comments. We have addressed every comment, which has helped to improve the transparency and readability of the manuscript. The main changes to the manuscript are summarized as follows:

      1. Surrogate distributions were created for each participant and session to estimate the effect of tACS-phase lag on behavioral entrainment to the sound that could have occurred by chance or because of our analysis method (R1). The actual tACS-amplitude effects were normalized relative to the surrogate distribution, and statistical analysis was performed on the normalized (z-score) values. This analysis did not change our main outcome: that tACS modulates behavioral entrainment to the sound depending on the phase lag between the auditory and the electrical signals. This analysis has now been incorporated into the Results section and in Fig. 3c-d.

      2. Two additional supplemental figures were created to include the single-participant data related to Fig. 3b and 3e (R2).

      3. Additional editing of the manuscript has been performed to improve the readability.

      Below, you will find a point-by-point response to the reviewers’ comments.

      Reviewer #1 (Public Review):

      We are grateful for the reviewer’s positive assessment of the potential impact of our study. The reviewer’s primary concerns were 1) the tACS lag effects reported in the manuscript might be noise because of the realignment procedure, and 2) no multiple comparisons correction was conducted in the model comparison procedure.

      In response to point 1), we have reanalyzed the data in exactly the manner prescribed by the reviewer. Our effects remain, and the new control analysis strengthens the manuscript. 2) In the context of model comparison, the model selection procedure was not based on evaluating the statistical significance of any model or predictor. Instead, the single model that best fit the data was selected as the model with the lowest Akaike’s information criterion (AIC), and its superiority relative to the second-best model was corroborated using the likelihood ratio test. Only the best model was evaluated for significance and analyzed in terms of its predictors and interactions. This model is an omnibus test and does not require multiple comparison correction unless there are posthoc decompositions. For similar approaches, see (Kasten et al., 2019).

      Below, we have responded to each comment specifically or referred to this general comment.

      Summary of what the authors were trying to achieve.

      This paper studies the possible effects of tACS on the detection of silence gaps in an FM-modulated noise stimulus. Both FM modulation of the sound and the tACS are at 2Hz, and the phase of the two is varied to determine possible interactions between the auditory and electric stimulation. Additionally, two different electrode montages are used to determine if variation in electric field distribution across the brain may be related to the effects of tACS on behavioral performance in individual subjects.

      Major strengths and weaknesses of the methods and results.

      The study appears to be well-powered to detect modulation of behavioral performance with N=42 subjects. There is a clear and reproducible modulation of behavioral effects with the phase of the FM sound modulation. The study was also well designed, combining fMRI, current flow modeling, montage optimization targeting, and behavioral analysis. A particular merit of this study is to have repeated the sessions for most subjects in order to test repeat-reliability, which is so often missing in human experiments. The results and methods are generally well-described and well-conceived. The portion of the analysis related to behavior alone is excellent. The analysis of the tACS results is also generally well described, candidly highlighting how variable results are across subjects and sessions. The figures are all of high quality and clear. One weakness of the experimental design is that no effort was made to control for sensation effects. tACS at 2Hz causes prominent skin sensations which could have interacted with auditory perception and thus, detection performance.

      The reviewer is right that we did not control for the sensation effects in our paradigm. We asked the participants to rate the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. Nevertheless, we did not consider controlling for skin sensations necessary given the within-participant nature of our design (all participants experienced all six tACS–audio phase lag conditions, which were identical in their potential to cause physical sensations; the only difference between conditions was related to the timing of the auditory stimulus). That is, while the reviewer is right that 2-Hz tACS can indeed induce skin sensation under the electrodes, in this study, we report the effects that depend on the tACS-phase lag relative to the FM-stimulus. Note that the starting phase of the FM-stimulus was randomized across trials within each block (all six tACS audio lags were presented in each block of stimulation). We have no reason to expect the skin sensation to change with the tACS-audio lag from trial to trial, and therefore do not consider this to be a confound in our design. We have added some sentences with this information to the Discussion section:

      Pages 16-17, lines 497-504: “Note that we did not control for the skin sensation induced by 2-Hz tACS in this experiment. Participants rated the strength of the perceived stimulation after each run. However, this information was used only to assess the safety and tolerability of the stimulation protocol. It is in principle possible that skin sensation would depend on tACS phase itself. However, in this study, we report effects that depend on the relationship between tACS-phase and FM-stimulus phase, which changed from trial to trial as the starting phase of the FM-stimulus was randomized across trials. We have no reason to expect the skin sensation to change with the tACS-audio lag and therefore do not consider this to be a confound in our data.”

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusions.

      Unfortunately, the main effects described for tACS are encumbered by a lack of clarity in the analysis. It does appear that the tACS effects reported here could be an artifact of the analysis approach. Without further clarification, the main findings on the tACS effects may not be supported by the data.

      Likely impact of the work on the field, and the utility of the methods and data to the community.

      The central claim is that tACS modulates behavioral detection performance across the 0.5s cycle of stimulation. However, neither the phase nor the strength of this effect reproduces across subjects or sessions. Some of these individual variations may be explainable by individual current distribution. If these results hold, they could be of interest to investigators in the tACS field.

      The additional context you think would help readers interpret or understand the significance of the work.

      The following are more detailed comments on specific sections of the paper, including details on the concerns with the statistical analysis of the tACS effects.

      The introduction is well-balanced, discussing the promise and limitations of previous results with tACS. The objectives are well-defined.

      The analysis surrounding behavioral performance and its dependence on the phase of the FM modulation (Figure 3) is masterfully executed and explained. It appears that it reproduces previous studies and points to a very robust behavioral task that may be of use in other studies.

      Again, we would like to thank the reviewer for the positive assessment of the potential impact of our work and for the thoughtful comments regarding the methodology. For readability in our responses, we have numbered the comments below.

      1. There is a definition of tACS(+) vs tACS(-) based on the relative phase of tACS that may be problematic for the subsequent analysis of Figures 4 and 5. It seems that phase 0 is adjusted to each subject/session. For argument's sake, let's assume the curves in Fig. 3E are random fluctuations. Then aligning them to best-fitting cosine will trivially generate a FM-amplitude fluctuation with cosine shape as shown in Fig. 4a. Selecting the positive and negative phase of that will trivially be larger and smaller than a sham, respectively, as shown in Fig 4b. If this is correct, and the authors would like to keep this way of showing results, then one would need to demonstrate that this difference is larger than expected by chance. Perhaps one could randomize the 6 phase bins in each subject/session and execute the same process (fit a cosine to curves 3e, realign as in 4a, and summarize as in 4b). That will give a distribution under the Null, which may be used to determine if the contrast currently shown in 4b is indeed statistically significant.

      We agree with the reviewer’s concerns regarding the possible bias induced by the realignment procedure used to estimate tACS effects. Certainly, when adjusting phase 0 to each participant/session’s best tACS phase (peak in the fitting cosine), selecting the positive phase of the realigned data will be trivially larger than sham (Fig. 4a). This is why the realigned zero-phase and opposite phase (trough) bins were excluded from the analysis in Fig. 4b. Therefore, tACS(+) vs. tACS(-) do not represent behavioral entrainment at the peak positive and negative tACS lags, as both bins were already removed from the analysis. tACS(+) and tACS(-) are the averages of two adjacent bins from the positive and negative tACS lags, respectively (Zoefel et al., 2019). Such an analysis relies on the idea that if the effect of tACS is sinusoidal, presenting the auditory stimulus at the positive half cycle should be different than when the auditory stimulus lags the electrical signal by the other half. If the effect of tACS was just random noise fluctuations, there is no reason to assume that such fluctuations would be sinusoidal; therefore, any bias in estimating the effect of tACS should be removed when excluding the peak to which the individual data were realigned. Similar analytical procedures have been used previously in the literature (Riecke et al., 2015; Riecke et al., 2018). We have modified the colors in Fig. 4a and 4c (former 4b) and added a new panel to the figure (new 4b) to make the realignment procedure, including the exclusion of the realigned peak and trough data, more visually obvious.

      Moreover, we very much like the reviewer’s suggestion to normalize the magnitude of the tACS effect using a permutation strategy. We performed additional analyses to normalize our tACS effect in Fig. 4c by the probability of obtaining the effect by chance. For each subject and session, tACS-phase lags were randomized across trials for a total of 1000 iterations. For each iteration, the gaps were binned by the FM-stimulus phase and tACS-lag. For each tACS-lag, the amplitude of behavioral entrainment to the FM-stimulus was estimated (FM-amplitude), as shown in Fig. 3. Similar to the original data, a second cosine fit was estimated for the FM-amplitude by tACS-lag. Optimal tACS-phase was estimated from the cosine fit and FM-amplitude values were realigned. Again, the realigned phase 0 and trough were removed from the analysis, and their adjacent bins were averaged to obtain the FM-amplitude at tACS(+) and tACS(−), as shown in Fig. 4c. We then computed the difference between 1) tACS(+) and sham, 2) tACS(-) and sham, and 3) tACS(+) and tACS (-), for the original data and the permuted datasets. This procedure was performed for each participant and session to estimate the size of the tACS effect for the original and surrogate data. The original tACS effects were transformed to z-scores using surrogate distributions, providing us with an estimate of the size of the real effect relative to chance. We then computed one-sample t-tests to compare whether the effects of tACS were statistically significant. In fact, this analysis showed that the tACS effects were still statistically significant. This analysis has been added to the Results and Methods sections and is included in Figure 4d.

      Page 10, lines 282-297: “In order to further investigate whether the observed tACS effect was significantly larger than chance and not an artifact of our analysis procedure (33), we created 1000 surrogate datasets per participant and session by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data. This yielded a surrogate distribution of tACS(+) and tACS(-) values for each participant and session. These values were averaged across sessions since the original analysis did not show a main effect of session. We then computed the difference between tACS(+) and sham, tACS(-) and sham, and tACS(+) and tACS(-), separately for the original and surrogate datasets. The obtained difference for the original data where then z-scored using the mean and standard deviation of the surrogate distribution. Note that in this case we used data of all 42 participants who had at least one valid session (37 participants with both sessions). Three one-sample t-tests were conducted to investigate whether the size of the tACS effect obtained in the original data was significantly larger than that obtained by chance (Fig. 4d). This analysis showed that all z-scores were significantly higher than zero (all t(41) > 2.36, p < 0.05, all p-values corrected for multiple comparisons using the Holm-Bonferroni method).”

      Page 31, lines 962-972: “To further control that the observed tACS effects were not an artifact of the analysis procedure, the difference between the tACS conditions (sham, tACS(+), and tACS(-)) were normalized using a permutation approach. For each participant and session, 1000 surrogate datasets were created by permuting the tACS lag designation across trials. The same binning procedure, realignment, and cosine fits were applied to each surrogate dataset as for the original data (see above). FM-amplitude at sham, tACS(+) and tACS(-) were averaged across sessions since the original analysis did not show a main effect of session. Difference between tACS conditions were estimated for the original and surrogate datasets and the resulting values from the original data were z-scored using the mean and standard deviation from the surrogate distributions. One-sample t-tests were conducted to test the statistical significance of the z-scores. P-values were corrected for multiple comparisons using the Holm-Bonferroni method.”

      1. Results of Fig 5a and 5b seem consistent with the concern raised above about the results of Fig. 4. It appears we are looking at an artifact of the realignment procedure, on otherwise random noise. In fact, the drop in "tACS-amplitude" in Fig. 5c is entirely consistent with a random noise effect.

      Please see our response to the comment above.

      1. To better understand what factors might be influencing inter-session variability in tACS effects, we estimated multiple linear models ..." this post hoc analysis does not seem to have been corrected for multiple comparisons of these "multiple linear models". It is not clear how many different things were tried. The fact that one of them has a p-value of 0.007 for some factors with amplitude-difference, but these factors did not play a role in the amplitude-phase, suggests again that we are not looking at a lawful behavior in these data.

      We suspect that the reviewer did not have access to the supplemental materials where all tables (relevant here is Table S3) are provided. This post hoc analysis was performed as an exploratory analysis to better understand the factors that could influence the inter-session variability of tACS effects. In Table S3, we provide the formula for each of the seven models tested, including their Akaike information criteria corrected for small samples (AICc), R2, F, and p-values. As described in the methods section, the winning model was selected as the model with the smallest AICc. A similar procedure has been previously used in the literature (Kasten et al., 2019). Moreover, to ensure that our winning model was better at explaining the data than the second-best unrestricted model, we used the likelihood ratio test. After choosing the winning model and before reporting the significance of the predictors, we examined the significance of the model in and of itself, taking into account its R2 as well as F- and p-values relative to a constant model. Thus, only one model is being evaluated in terms of statistical significance. Therefore, to our understanding, there are no multiple comparisons to correct for. We added the information regarding the selection procedure, hoping this will make the analysis clearer.

      See page 12, lines 354-360: “This model was selected because it had the smallest Akaike’s information criterion (corrected for small samples), AICc. Moreover, the likelihood ratio test showed no evidence for choosing the more complex unrestricted model (stat = 2.411, p = 0.121). Following the same selection criteria, the winning model predicting inter-session variability in tACS-phase, included only the factor gender (Table S4). However, this model was not significant in and of itself when compared to a constant model (F-statistic vs. constant model: 3.05, p = 0.09, R2 = 0.082).”

      1. "So far, our results demonstrate that FM-stimulus driven behavioral modulation of gap detection (FM-amplitude) was significantly affected by the phase lag between the FM-stimulus and the tACS signal (Audio-tACS lag) ..." There appears to be nothing in the preceding section (Figures 4 and 5) to show that the modulation seen in 3e is not just noise. Maybe something can be said about 3b on an individual subject/session basis that makes these results statistically significant on their own. Maybe these modulations are strong and statistically significant, but just not reproducible across subjects and sessions?

      Please see our response to the first comment regarding the validity of our analysis for proving the significant effect of tACS lag on modulating behavioral entrainment to the FM-stimulus (FM-amplitude), and the new control analysis. After performing the permutation tests, to make sure the reported effects are not noise, our statistical analysis still shows that tACS-lag does significantly modulate behavioral entrainment to the sound (FM-amplitude). Thus, the reviewer is right to say “these modulations are strong and statistically significant, just not reproducible across subjects and sessions”. In this regard, we consider our evaluation of session-to-session reliability of tACS effects is of high relevance for the field, as this is often overlooked in the literature.

      1. "Inter-individual variability in the simulated E-field predicts tACS effects" Authors here are attempting to predict a property of the subjects that was just shown to not be a reliable property of the subject. Authors are picking 9 possible features for this, testing 33 possible models with N=34 data points. With these circumstances, it is not hard to find something that correlates by chance. And some of the models tested had interaction terms, possibly further increasing the number of comparisons. The results reported in this section do not seem to be robust, unless all this was corrected for multiple comparisons, and it was not made clear?

      We thank the reviewer very much for this comment. While the reviewer is right that in these models, we are trying to predict an individual property (tACS-amplitude) that was not test–retest reliable across sessions, we still consider this to be a valid analysis. Here, we take the tACS-amplitude averaged across sessions, trying to predict the probability of a participant to be significantly modulated by tACS, in general, regardless of day-to-day variability. Regarding the number of multiple regression models, how we chose the winning model and the appropriateness/need of multiple-comparisons correction in this case, please see our explanation under “Reviewer 1 (Public review)” and our response to comment 3.

      1. "Can we reduce inter-individual variability in tACS effects ..." This section seems even more speculative and with mixed results.

      We agree with the reviewer that this section is a bit speculative. We are trying to plant some seeds for future research can help move the field forward in the quest for better stimulation protocols. We have added a sentence at the end of the section to explicitly say that more evidence is needed in this regard.

      Page 14, lines 428-429: “At this stage, more evidence is needed to prove the superiority of individually optimized tACS montages for reducing inter-individual variability in tACS effects.”

      Given the concerns with the statistical analysis above, there are concerns about the following statements in the summary of the Discussion:

      1. "2) does modulate the amplitude of the FM-stimulus induced behavioral modulation (FM-amplitude)"

      This seems to be based on Figure 4, which leaves one with significant concerns.

      Please see response to comment 1. We hope the reviewer is satisfied with our additional analysis to make sure the effect of tACS here reported is not noise.

      1. "4) individual variability in tACS effect size was partially explained by two interactions: between the normal component of the E-field and the field focality, and between the normal component of the E-field and the distance between the peak of the electric field and the functional target ROIs."

      The complexity of this statement alone may be a good indication that this could be the result of false discovery due to multiple comparisons.

      We respectfully disagree with the reviewer’s opinion that this is a complex statement. We think that these interaction effects are very intuitive as we explain in the results and discussion sections. These significant interactions show that for tACS to be effective, it matters that current gets to the right place and not to irrelevant brain regions. We believe this finding is of great importance for the field, since most studies on the topic still focus mostly on predicting tACS effects from the absolute field strength and neglect other properties of the electric field.

      For the same reasons as stated above, the following statements in the Abstract do not appear to have adequate support in the data:

      "We observed that tACS modulated the strength of behavioral entrainment to the FM sound in a phase-lag specific manner. ... Inter-individual variability of tACS effects was best explained by the strength of the inward electric field, depending on the field focality and proximity to the target brain region. Spatially optimizing the electrode montage reduced inter-individual variability compared to a standard montage group."

      Please see response to all previous comments

      In particular, the evidence in support of the last sentence is unclear. The only finding that seems related is that "the variance test was significant only for tACS(-) in session 2". This is a very narrow result to be able to make such a general statement in the Abstract. But perhaps this can be made clearer.

      We changed this sentence in the abstract to:

      Page 2, lines 41-43: “Although additional evidence is necessary, our results also provided suggestive insights that spatially optimizing the electrode montage could be a promising tool to reduce inter-individual variability of tACS effects.”

      Reviewer #3 (Public Review):

      In "Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties" Cabral-Calderin and collaborators aimed to document 1) the possible advantages of personalized tACS montage over standard montage on modulating behavior; 2) the inter-individual and inter-session reliability of tACS effects on behavioral entrainment and, 3) the importance of the induced electric field properties on the inter-individual variability of tACS.

      To do so, in two different sessions, they investigated how the detection of silent gaps occurring at random phases of a 2Hz- amplitude modulated sound could be enhanced with 2Hz tACS, delivered at different phase lags. In addition, they evaluated the advantage of using spatially optimized tACS montages (information-based procedure - using anatomy and functional MRI to define the target ROI and simulation to compare to a standard montage applied to all participants) on behavioral entrainment. They first show that the optimized and the standard montages have similar spatial overlap to the target ROI. While the optimized montage induced a more focal field compared to the standard montage, the latter induced the strongest electric field. Second, they show that tACS does not modify the optimal phase for gap detection (phase of the frequency-modulated sound) but modulates the strength of behavioral entrainment to the frequency-modulated sound in a phase-lag specific manner. However, and surprisingly, they report that the optimal tACS lag, and the magnitude of the phasic tACS effect were highly variable across sessions. Finally, they report that the inter-individual variability of tACS effects can be explained by the strength of the inward electric field as a function of the field focality and on how well it reached the target ROI.

      The article is interesting and well-written, and the methods and approaches are state-of-the-art.

      Strengths:

      • The information-based approach used by the authors is very strong, notably with the definition of subject-specific targets using a fMRI localizer and the simulation of electric field strength using 3 different tACS montages (only 2 montages used for the behavioral experiment).

      • The inter-session and inter-individual variability are well documented and discussed. This article will probably guide future studies in the field.

      Weaknesses:

      • The addition of simultaneous EEG recording would have been beneficial to understand the relationship between tACS entrainment and the entrainment to rhythmic auditory stimulation.

      We are grateful for the Reviewer’s positive assessment of our work and for the reviewer’s recommendations. We agree with the reviewer that adding simultaneous EEG or MEG to our design would have been beneficial to understand tACS effects. However, as the reviewer might be familiar with, such combination also possesses additional challenges due to the strong artifacts induced by tACS in the EEG signals, which is at the frequency of interest and several orders of magnitude higher than the signal of interest. Unfortunately, the adequate setup for simultaneous tACS-EEG was not available at the moment of the study. Nevertheless, since we are using a paradigm that we have repeatedly studied in the past and have shown it entrains neural activity and modulates behavior rhythmically, we are confident our results are of interest on their own. For readability of our answers, we numbered to comments below.

      1. It would have been interesting to develop the fact that tACS did not "overwrite" neural entrainment to the auditory stimulus. The authors try to explain this effect by mentioning that "tACS is most effective at modulating oscillatory activity at the intended frequency when its power is not too high" or "tACS imposes its own rhythm on spiking activity when tACS strength is stronger than the endogenous oscillations but it decreases rhythmic spiking when tACS strength is weaker than the endogenous oscillations". However, it is relevant to note that the oscillations in their study are by definition "not endogenous" and one can interpret their results as a clear superiority of sensory entrainment over tACS entrainment. This potential superiority should be discussed, documented, and developed.

      We thank the reviewer very much for this remark. We completely agree that our results could be interpreted as a clear superiority of sensory entrainment over tACS entrainment. We have now incorporated this possibility in the discussion.

      Page 16, line 472-478: “Alternatively, our results could simply be interpreted as a clear superiority of the auditory stimulus for entrainment. In other words, sensory entrainment might just be stronger than tACS entrainment in this case where the stimulus rhythm was strong and salient. It would be interesting to further test whether this superiority of sensory entrainment applies to all sensory modalities or if there is a particular advantage for auditory stimuli when they compete with electrical stimulation. However, answering this question was beyond the scope of our study and needs further investigations with more appropriate paradigms.”

      1. The authors propose that "by applying tACS at the right lag relative to auditory rhythms, we can aid how the brain synchronizes to the sounds and in turn modulate behavior." This should be developed as the authors showed that the tACS lags are highly variable across sessions. According to their results, the optimal lag will vary for each tACS session and subtle changes in the montage could affect the effects.

      We thank the reviewer for this remark. We believe that the right procedure in this case would be using close-loop protocols where the optimal tACS-lag is estimated online as we discuss in the summary and future directions sub-section. We tried to make this clearer in the same sentence that the reviewer mentioned.

      Page 17, line 506-508: “Since optimal tACS phase was variable across participants and sessions, this approach would require closed-loop protocols where the optimal tACS lag is estimated online (see next section).”

      1. In a related vein, it would be very useful to show the data presented in Figure 3 (panels b,d,e) for all participants to allow the reader to evaluate the quality of the data (this can be added as a supplementary figure).

      Thank you very much for the suggestion. We have added two new supplemental figures (Fig S1 and S2) to show individual data for Fig. 3b and 3e. Note that Fig. 3d already shows the individual data as each circle represents optimal FM-phase for a single participant.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      "was optimized in SimNIBS to focus the electric field as precisely as possible at the target ROI" It appears that some form of constrained optimization was used. It would be good to clarify which method was used, including a reference.

      Indeed, SimNIBS implements a constrained optimization approach based on pre-calculated lead fields. We have added the corresponding reference. All parameters used for the optimization are reported in the methods (see sub-section Electric field simulations and montage optimization). Regarding further specifics, the readers are invited to check the MATLAB code that was used for the optimization which is made available at: https://osf.io/3yutb

      "Thus, each montage has its pros and cons, and the choice of montage will depend on which of these dependent measures is prioritized." Well put. It would be interesting to know if authors considered optimizing for intensity on target. That would give the strongest predicted intensity on target, which seems like an important desideratum. Individualizing for something focal, as expected, did not give the strongest intensity. In fact, the method struggled to achieve the desired intensity of 0.1V/m in some subjects. It would be interesting to have a discussion about why this particular optimization method was selected.

      The specific optimization method used in this study was somewhat arbitrary, as there is no standard in the field. It was validated in prior studies, where it was also demonstrated that it performs favorably compared to alternative methods (Saturnino et al., 2019; Saturnino et al., 2021). The underlying physics of the head volume conductor generally limits the maximally achievable focality, and requires a tradeoff between focality and the desired intensity in the target. This tradeoff depends on the maximal amount of current that can be injected into the electrodes due to safety limits (4 mA in total in our case). Further constraints of the optimization in our application were the simultaneous targeting of two areas, and achieving field directions in the targets roughly parallel to those of auditory dipoles. Given the combination of these constraints, as the reviewer noticed, we could not even achieve the desired intensity of .1V/m in some subjects. As we wanted to stimulate both auditory cortices equally, our priority was to have the E-fields as similar as possible between hemispheres. Future studies optimizing for only one target would be easier to optimize for target intensity (assuming the same maximal total current injection). Alternatively, relaxing the constraint on direction and optimizing only for field intensity would help to increase the field intensities in the targets, but would lead to differing field directions in the two targets. As an example, see Rev. Fig.1 below. We extensively discuss some of these points in the discussion section: “Are individually optimized tACS montage better?” (Pages 21-22).

      Additionally, we added a few sentences in the Results and Methods giving more details about the optimization approach.

      Page 5, lines 115-116: “Using individual finite element method (FEM) head models (see Methods) and the lead field-based constrained optimization approach implemented in SimNIBS (31)”

      Page 27, lines 819-822: “The optimization pipeline employed the approach described in (31) and was performed in two steps. First, a lead field matrix was created per individual using the 10-10 EEG virtual cap provided in SimNIBS and performing electric field simulations based on the default tissue conductivities listed below.”

      Author response image 1.

      E-field distributions for one example participant. Brain maps show the results from the same optimization procedure described in the main manuscript but with no constraint for the current direction (top) or constraining the current direction (bottom). Note that the desired intensity of .1 V/m can be achieved when the current direction is not constrained.

      The terminology of "high-definition HD" used here is unconventional and may confuse some readers. The paper cited for ring electrodes (18) does not refer to it as HD. A quick search for high-definition HD yields mostly papers using many small electrodes, not ring electrodes. They look more like what was called "individualized". More conventional would be to call the first configuration a "ring-electrode", and the "individualized" configuration might be called "individualized HD".

      We thank the reviewer for this remark. We changed the label of the high-definition montage to ring-electrode. Regarding the individualized configuration, we prefer not to use individualized HD as it has the same number of electrodes as the standard montage.

      "So far, we have evaluated whether tACS at different phase lags interferes with stimulus-brain synchrony and modulates behavioral signatures of entrainment" The paper does not present any data on stimulus-brain synchrony. There is only an analysis of behavior and stimulus/tACS phase.

      We agree with the reviewer. To be more careful with such statement we now modified the sentence to say:

      Page 10, lines 303-304: “So far, we have evaluated whether tACS at different phase lags modulates behavioral signatures of entrainment: FM-amplitude and FM-phase.”

      "However, the strength of the tACS effect was variable across participants." and across sessions, and the phase also was variable across subjects and sessions.

      "tACS-amplitude estimates were averaged across sessions since the session did not significantly affect FM-amplitude (Fig. 5a)." More importantly, the authors show that "tACS-amplitude" was not reproducible across sessions.

      Unfortunately, we did not understand what the reviewer is suggesting here, and would have to ask the reviewer in this case to provide us with more information.

      References

      Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS (2019) Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 10:5427. Riecke L, Sack AT, Schroeder CE (2015) Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming. Curr Biol 25:3196-3201.

      Riecke L, Formisano E, Sorger B, Baskent D, Gaudrain E (2018) Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 28:161-169 e165.

      Saturnino GB, Madsen KH, Thielscher A (2021) Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation. J Neural Eng 18.

      Saturnino GB, Siebner HR, Thielscher A, Madsen KH (2019) Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints. Neuroimage 203:116183.

      Zoefel B, Davis MH, Valente G, Riecke L (2019) How to test for phasic modulation of neural and behavioural responses. Neuroimage 202:116175.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      “The exact levels of inhibition, excitation, and neuromodulatory inputs to neural networks are unknown. Therefore, the work is based on fine-tuned measures that are indirectly based on experimental results. However, obtaining such physiological information is challenging and currently impossible. From a computational perspective it is a challenge that in theory can be solved. Thus, although we have no ground-truth evidence, this framework can provide compelling evidence for all hypothesis testing research and potentially solve this physiological problem with the use of computers.”

      Response: We agree with the reviewer. This work was intended to determine the feasibility of reverse engineering motor unit firing patterns, using neuron models with a high degree realism. Given the results support this feasibility, our model and technique will therefore serve to construct new hypotheses as well as testing them.

      • Common input structure lines 115

      I agree with the following concepts, but I would specify that there is not only one dominant common input. It has been shown that there are multiple common inputs to the same motor nuclei (e.g., the two inputs are orthogonal and are shared with a subset of the active motoneurons) particularly for agonist motoneuron pools of synergistic muscles. On the hand muscles the authors are correct that there is only one dominant common input. Moreover, there is also some animal work suggesting that common inputs is just an epiphenomenon. This is completely in contradiction to what we observe in-vivo in the firing patterns of motor units, but perhaps worth mentioning and discussing.

      Response: Thanks for emphasizing this point. We have cited a recent reference discussing the important issue of common drive and the possibility of more than one source. Our simulations assume the net form of the excitatory input to all motoneurons in the pool is the same, except for noise. This net form (which produces the linear CST output in each case) essentially represents the sum of all inputs, both descending and sensory. Our results show the same over pattern as human data, i.e. that all motor unit firing patterns have similar trajectories (again allowing for the impact of noise). Future studies will consider separating excitatory inputs into different sources.

      It is interesting that the authors mention suprathreshold rate modulation. Could the authors just discuss more on how the model would respond to a simulated suprathreshold current for all simulated motoneurons (i.e., like the ones generated during a suprathreshold-injected current or voluntary maximal feedforward movement?)

      Response: Thank you for this point. Our use of the term “suprathreshold” was not applied correctly. We meant “suprathreshold” to refer to amount of input above the recruitment threshold. We have decided to remove this term so now the sentence “…so less is available for rate modulation…”.

      194 a full point is missing.

      Response: We addressed the error.

      204-231 and 232-259, these two paragraphs have been copied twice.

      Response: We addressed the error.

      Line 475 typo

      Response: We addressed the error.

      591 It would be interesting to add the me it takes a standard computer with known specs and a super computer to run over one batch of simulation (i.e., how long one of the 6,300,000 simulation takes).

      Response: Each simulation took about 20 minutes of real me. Assuming a standard computer with 16 processor cores using a similar microarchitecture as Bebop (Intel Broadwell architecture), the standard computer could run 16 simulations at a me (one simulation assigned per core). This would take the standard computer about 15 years to complete all 6.3M simulations.

      594 I don't understand why there are 6M simulations, could the authors provide more info on the combinations and why there are 6M simulations.

      Response: The 6M simulations are the total number of simulations that were performed for this work. A detailed explanation can be found in section: “Machine learning inference of motor pool characteristics” at line 591. Briefly, there were 315,000 simulations of a pool of 20 motoneurons (20 x 315,000 = 6.3 million). The 315,000 simulations was required to run all possible combinations of 15 patens of inhibition, 5 of neuromodulation, 7 of distribution of excitatory inputs and 30 different repeats of synaptic noise with different seeds. In addition, there were 20 iterations for each of these combinations to generate a linear CST output (as illustrated in Fig. 3). 15 x5 x 7 x 30 x 20=315,000.

      In several simulations it seems that there was a lot of fine-tuning of inputs to match the measured motor unit firing pattern. Have the authors ever considered a fully black-box AI approach? If they think is interesting maybe it could spice up the discussion.

      Response: We agree that AI has potential for reverse engineering the whole system and we are looking into adding it to future version of this algorithm as an alternative. We started with a simple but powerful grid search to enhance our understanding of the interaction between inputs, neuron properties and outputs.

      Reviewer 2

      Comment 1:

      “First, I believe that the relation between individual motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties can be illustrated more clearly. Although this is explained in the text, I believe that this is not optimally supported by figures. Figure 6 to some extent shows this, but figures 8 and 9 as well as Table 1 shows primarily the goodness of fit rather than the actual fit.”

      Response: We agree with the reviewer that showing the relationship between the motor neuron behavioral characteristics (delta F, brace height etc.) and the motor neuron input properties would be a great addition to the manuscript. Because the regression models have multiple dimensions (7 inputs and 3 outputs) it is difficult to show the relationship in a static image. We thought it best to show the goodness of fit even though it is more abstract and less intuitive. We added a supplemental diagram to Figure 8 to show the structure of the reverse engineered model that was fit (see Figure 8D).

      Author response image 1.

      Figure 8. Residual plots showing the goodness of fit of the different predicted values: (A) Inhibition, (B) Neuromodulation and (C) excitatory Weight Rao. The summary plots are for the models showing highest 𝑅𝑅2 results in Table 1. The predicted values are calculated using the features extracted from the firing rates (see Figure 7, section Machine learning inference of motor pool characteristics and Regression using motoneuron outputs to predict input organization). Diagram (D) shows the multidimensionality of the RE models (see Model fits) which have 7 feature inputs (see Feature Extraction) predicting 3 outputs (Inhibition, Neuromodulation and Weight Rao).

      Comment 2:

      “Second, I would have expected the discussion to have addressed specifically the question of which of the two primary schemes (pushpull, balanced) is the most prevalent. This is the main research question of the study, but it is to some degree le unanswered. Now that the authors have identified the relation between the characteristics of motor neuron behaviors (which has been reported in many previous studies), why not exploit this finding by summarizing the results of previous studies (at least a few representative ones) and discuss the most likely underlying input scheme? Is there a consistent trend towards one of the schemes, or are both strategies commonly used?”

      Response: We agree with the reviewer that our discussion should have addressed which of the two primary schemes – push-pull or balanced – is the most prevalent. At first glance, the upper right of Figure 6 looks the most realistic when compared to real data. We thus would expect that the push-pull scheme to dominate for the given task.

      We added a brief section (Push-Pull vs Balance Motor Command) in the discussion to address the reviewer’s comments. This section is not exhaustive but frames the debate using relevant literature. We are also now preparing to deploy these techniques on real data.

      Comment 3:

      In addition, it seems striking to me that highly non-linear excitation profiles are necessary to obtain a linear CST ramp in many model configurations. Although somewhat speculative, one may expect that an approximately linear relation is desired for robust and intuitive motor control. It seems to me that humans generally have a good ability to accurately grade the magnitude of the motor output, which implies that either a non-linear relation has been learnt (complex task), or that the central nervous system can generally rely on a somewhat linear relation between the neural drive to the muscle and the output (simpler task).

      Response: We agree with the reviewer, and we were surprised by these results. Our motoneuron pool is equipped with persistent inward currents (PICs) which are nonlinear. Therefore, for the motoneuron to produce a linear output the central nervous system would have to incorporate these nonlinearities into its commands.

      Following this reasoning, it could be interesting to report also for which input scheme, the excitation profile is most linear. I understand that this is not the primary aim of the study, but it may be an interesting way to elaborate on the finding that in many cases non-linear excitation profiles were needed to produce the linear ramp.

      This is a very interesting point. The most realistic firing patterns – with respect to human data – are found in the parameter regions in the upper right in Figure 6, which in fact produce the most nonlinear input (see push-pull pattern in Figure 4C). However, in future studies we hope to separate the total motor command illustrated here into descending and feedback commands. This may result in a more linear descending drive.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper investigates host and viral factors influencing transmission of alpha and delta SARS-CoV-2 variants in the Syrian hamster model and fundamentally increases knowledge regarding transmission of the virus via the aerosol route. The strength of evidence is solid and could be improved with a clearer presentation of the data.

      We thank the editors for their assessment. We are excited to present a revised version of the manuscript with improved data presentation and an improved discussion addressing the reviewer’s concerns.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the submitted manuscript, Port et al. investigated the host and viral factors influencing the airborne transmission of SARS-CoV-2 Alpha and Delta variants of concern (VOC) using a Syrian hamster model. The authors analyzed the viral load profiles of the animal respiratory tracts and air samples from cages by quantifying gRNA, sgRNA, and infectious virus titers. They also assessed the breathing patterns, exhaled aerosol aerodynamic profile, and size distribution of airborne particles after SARS-CoV-2 Alpha and Delta infections. The data showed that male sex was associated with increased viral replication and virus shedding in the air. The relationship between co-infection with VOCs and the exposure pattern/timeframe was also tested. This study appears to be an expansion of a previous report (Port et al., 2022, Nature Microbiology). The experimental designs were rigorous, and the data were solid. These results will contribute to the understanding of the roles of host and virus factors in the airborne transmission of SARS-CoV-2 VOCs.

      Reviewer #2 (Public Review):

      This manuscript by Port and colleagues describes rigorous experiments that provide a wealth of virologic, respiratory physiology, and particle aerodynamic data pertaining to aerosol transmission of SARS-CoV-2 between infected Syrian hamsters. The data is particularly significant because infection is compared between alpha and delta variants, and because viral load is assessed via numerous assays (gRNA, sgRNA, TCID) and in tissues as well as the ambient environment of the cage. The paper will be of interest to a broad range of scientists including infectious diseases physicians, virologists, immunologists and potentially epidemiologists. The strength of evidence is relatively high but limited by unclear presentation in certain parts of the paper.

      Important conclusions are that infectious virus is only detectable in air samples during a narrow window of time relative to tissue samples, that airway constriction increases dynamically over time during infection limiting production of fine aerosol droplets, that variants do not appear to exclude one another during simultaneous exposures and that exposures to virus via the aerosol route lead to lower viral loads relative to direct inoculation suggesting an exposure dose response relationship.

      While the paper is valuable, I found certain elements of the data presentation to be unclear and overly complex.

      Reviewer #1 (Recommendations For The Authors):

      We thank the reviewer for their comments and their attention to detail. We have taken the following steps to address their suggestions and concerns.

      However, the following concerns need to be issued.

      1. Summary seems to be too simple, and some results are not clearly described in the summary.

      We have edited the summary and hope to have addressed the concerns raised by providing more information. We think that the summary includes all relevant findings.

      “It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.”

      1. Aerosol transmission experiment should be described in Materials and Methods although it is cited as Reference 21#;

      We have modified Line 433:

      “Aerosol caging

      Aerosol cages as described by Port et al. [2] were used for transmission experiments and air sampling as indicated. The aerosol transmission system consisted of plastic hamster boxes (Lab Products) connected by a plastic tube. The boxes were modified to accept a 7.62 cm (3') plastic sanitary fitting (McMaster-Carr), which enabled the length between the boxes to be changed. Airflow was generated with a vacuum pump (Vacuubrand) attached to the box housing the naïve animals and was controlled with a float-type meter/valve (McMaster-Carr).”

      And Line 458: “During the first 5 days, hamsters were housed in modified aerosol cages (only one hamster box) hooked up to an air pump.”.

      Especially, one superspreading event of Alpha VOC (donor animal) was observed in iteration A (Figure 4). What causes that event, experiment system?

      Based on the observed variation in airborne shedding (of the cages from which this was directly measured), we believe that one plausible explanation for the super-spreading event was that the Alpha-infected donor shed considerably more virus during the exposure than other donors, and thus more readily infected the sentinels. That said, it is also conceivable that other factors such as hamster behavior (e.g., closeness to the cage outlet, sleeping) or variable sentinel susceptibility could affect the distribution of transmissions.

      1. Same reference is repeatedly listed as Refs 2 and 21#.

      Addressed. We thank the reviewer for their attention to detail. We have also removed reference 53, which was the same as 54.

      1. Two forms of described time (hour and h) are used in the manuscript. Single form should be chosen.

      This has been addressed.

      5) Virus designation located in line 371 and line 583 is inconsistent, and it needs to be revised.

      For consistency we have chosen this nomenclature for the viruses used: SARS-CoV-2 variant Alpha (B.1.1.7) (hCoV320 19/England/204820464/2020, EPI_ISL_683466) and variant Delta (B.1.617.2/) (hCoV-19/USA/KY-CDC-2-4242084/2021, EPI_ISL_1823618).

      1. In Figure 5F, what time were lung and nasal turbinate tissues collected after virus infection?

      This has been added to the legend. Day 5. Line 904.

      1. Line 562-563, what is the coating antigen (spike protein, generated in-house)? purified or recombinant protein?

      It is in-house purified recombinant protein. This has been added to the methods.

      1. Line 575 and line 578: 10,000x is not standard description, and it should be revised.

      Done.

      Reviewer #2 (Recommendations For The Authors):

      We thank the reviewer for their comments and suggestions to improve the manuscript, and hope we have addressed all concerns adequately.

      • Direct interpretation of the linear regression slope in Figure 3 is challenging. Is the most relevant parameter for transmission known? Intuitively, it would be the absolute number of small droplets at a given timepoint rather than the slope and it would be easier to interpret if the data were reported in this fashion.

      We decided to show a percentage of counts to normalize the data among animals, as we observed large inter-individual variation in counts. The reviewer is correct that it is most likely the number of particles that would be most relevant to transmission, though much (including the role of particle size) remains to be determined. We have added a sentence to the results which explains this in L157.

      Therefore, we decided in this first analysis to utilize the slope measurement and not raw counts. The focus was on the slopes and how particle profiles were changing post inoculation. Because we have focused on percentages, it seems not appropriate to present particle counts within each diameter range because the analysis, model, and results are based on these percentages of particles.

      Use of regression to compute slope is a useful measure because it uses data from all timepoints to estimate the regression line and, therefore, the % of particles on each day. We decided on these methods because efficiency is especially important in a study with a relatively small number of animals and slopes are also a good surrogate for how animal particle profiles are changing post-inoculation.

      To assist with the interpretation: 1) We removed Figure 3C and D and replaced Figure 3B with individual line plots for all conditions to visualize the slopes. The figure legend was corrected to reflect these changes.

      2) We replaced L169 onwards to read: (Figure 3B). Females had a steeper decline at an average rate of 2.2 per day after inoculation in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm) when compared to males, while holding variant group constant. When we compared variant group while holding sex constant, we found that the Delta group had a steeper decline at an average rate of 5.6 per day in the percent of 1-10 μm particles (and a steeper incline for <0.53 μm); a similar trend, but not as steep, was observed for the Alpha group.

      The estimated difference in slopes for Delta vs. controls and Alpha vs. controls in the percent of <0.53 μm particles was 5.4 (two-sided adjusted p= 0.0001) and 2.4 (two-sided adjusted p = 0.0874), respectively. The estimated difference in slopes for percent of 1-10 μm particles was not as pronounced, but similar trends were observed for Delta and Alpha. Additionally, a linear mixed model was considered and produced virtually the same results as the simpler analysis described above; the corresponding linear mixed model estimates were the same and standard errors were similar.

      • Fig 4: what is "limit of quality" mentioned in the legend? Are these samples undetectable?

      We have clarified this in the legend: “3.3 = limit of detection for RNA (<10 copies/rxn)”. If samples have below 10 copy numbers per reaction, they are determined to be below the limit of detection. The limit of detection is 10 copy number/rxn. All samples below 10 copies/rxn are taken to be negative and set = 10 copies/rxn, which equals 3.3. Log10 copies/mL oral swab.

      • Fig 4C would be easier to process in graphical rather than tabular form. The meaning of the colors is unclear.

      We agree with the reviewer that this is difficult to interpret, but we are uncertain if the same data in a tabular format would be easier to digest. We realized that the legend was misplaced and have added this back into the figure, which we hope clarifies the colors and the limit of detection.

      • Figure 4D & E are uninterpretable. What do the pie charts represent?

      We have remodeled this part of the figure to a schematic representation of the majority variant which transmitted for each individual sentinel, and have added a table (Table S1) which summarizes the exact sequencing results for the oral swabs. The reviewer is correct that it was difficult to interpret the pie charts, considering most values are either 0 or close to 100%. We hope this addresses the question. The legend states:

      Author response image 1.

      Airborne attack rate of Alpha and Delta SARS-CoV-2 variants. Donor animals (N = 7) were inoculated with either the Alpha or Delta variant with 103 TCID50 via the intranasal route and paired together randomly (1:1 ratio) in 7 attack rate scenarios (A-G). To each pair of donors, one day after inoculation, 4-5 sentinels were exposed for a duration of 4 h (i.e., h 24-28 post inoculation) in an aerosol transmission set-up at 200 cm distance. A. Schematic figure of the transmission set-up. B. Day 1 sgRNA detected in oral swabs taken from each donor after exposure ended. Individuals are depicted. Wilcoxon test, N = 7. Grey = Alpha, teal = Delta inoculated donors. C. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by sgRNA on day 2, 3, and 5 for each sentinel. Animals are grouped by scenario. Colors refer to legend below. 3.3 = limit of detection of RNA (<10 copies/rxn). D. Schematic representation of majority variant for each sentinel as assessed by percentage of Alpha and Delta detected in oropharyngeal swabs taken at day 2 and day 5 post exposure by deep sequencing. Grey = Alpha, teal = Delta, white = no transmission.

      • Fig S2G is uninterpretable. Please label and explain.

      We have now included an explanations of the figure S2F. The figure is a graphic representation of the neutralization data depicted in Figure S2F. The spacing between grid lines is 1 unit of antigenic distance, corresponding to a twofold dilution of serum in the neutralization assay. The resulting antigenic distance depicted between Alpha and Delta is roughly a 4-fold difference in neutralization between homologous (e.g., Alpha sera with the Alpha virus vs. heterologous, Alpha sera with the Delta virus).

      • I would consider emphasizing lines 220-225 in the summary and abstract. The important implication is that aerosol transmission is more representative of natural heterogeneity of exposure dose and downstream viral kinetics. This is an often-overlooked point.

      We agree with the reviewer and have added this in Line 43.

      • Fig 5: A cartoon similar to Fig 4A showing timing of sentinel exposure with number of animals would be helpful.

      We have added this as a new panel A for Figure 5. See the redrafted Figure 5 below.

      • For Fig 5E & F It would be helpful to use a statistical test to more formally assess whether proportion at exposure predicts proportion of variants in downstream sentinel infection.

      This has been added as a new Figure 5 panel H and I, which we hope addresses the reviewer’s comment.

      Author response image 2.

      Airborne competitiveness of Alpha and Delta SARS-CoV-2 variants. A. Schematic. Donor animals (N = 8) were inoculated with Alpha and Delta variant with 5 x 102 TCID50, respectively, via the intranasal route (1:1 ratio), and three groups of sentinels (Sentinels 1, 2, and 3) were exposed subsequently at a 16.5 cm distance. Animals were exposed at a 1:1 ratio; exposure occurred on day 1 (Donors  Sentinels 1) and day 2 (Sentinels  Sentinels). B. Respiratory shedding measured by viral load in oropharyngeal swabs; measured by gRNA, sgRNA, and infectious titers on days 2 and day 5 post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA followed by Šídák's multiple comparisons test. C/D/E. Corresponding gRNA, sgRNA, and infectious virus in lungs and nasal turbinates sampled five days post exposure. Bar-chart depicting median, 96% CI and individuals, N = 8, ordinary two-way ANOVA, followed by Šídák's multiple comparisons test. Dark orange = Donors, light orange = Sentinels 1, grey = Sentinels 2, dark grey = Sentinels 3, p-values indicated where significant. Dotted line = limit of quality. F. Percentage of Alpha and Delta detected in oropharyngeal swabs taken at days 2 and day 5 post exposure for each individual donor and sentinel, determined by deep sequencing. Pie-charts depict individual animals. Grey = Alpha, teal = Delta. G. Lung and nasal turbinate samples collected on day 5 post inoculation/exposure. H. Summary of data of variant composition, violin plots depicting median and quantiles for each chain link (left) and for each set of samples collected (right). Shading indicates majority of variant (grey = Alpha, teal = Delta). I. Correlation plot depicting Spearman r for each chain link (right, day 2 swab) and for each set of samples collected across all animals (left). Colors refer to legend on right. Abbreviations: TCID, Tissue Culture Infectious Dose.”

      We have additionally added to the results section: L284: “Combined a trend, while not significant, was observed for increased replication of Delta after the first transmission event, but not after the second, and in the oropharyngeal cavity (swabs) as opposed to lungs (Figure 5H) (Donors compared to Sentinels 1: p = 0.0559; Donors compared to Sentinels 2: p = >0.9999; Kruskal Wallis test, followed by Dunn’s test). Swabs taken at 2 DPI/DPE did significantly predict variant patterns in swabs on 5 DPI/DPE (Spearman’s r = 0.623, p = 0.00436) and virus competition in the lower respiratory tract (Spearman’s r = 0.60, p = 0.00848). Oral swab samples taken on day 5 strongly correlate with both upper (Spearman’s r = 0.816, p = 0.00001) and lower respiratory tract tissue samples (Spearman’s r = 0.832, p = 0.00002) taken on the same day (Figure 5I).”

      • Fig 1A: how are pfu/hour inferred? This is somewhat explained in the supplement, but I found the inclusion of model output as the first panel confusing and am still not 100% clear how this was done. Consider, explaining this in the body of the paper.

      We have added a more detailed explanation of the PFU/h inference to the main text: The motivation for the model was to link more readily measurable quantities such as RNA measured in oral swabs to the quantity of greatest interest for transmission (infectious virus per unit time in the air). To do this, we jointly infer the kinetics of shed airborne virus and parameters relating observable quantities (infected sentinels, plaques from purified air sample filters) to the actual longitudinal shedding. The inferential model uses mechanistic descriptions of deposition of infectious virus into the air, uptake from the air, and loss of infectious virus in the environment to extract estimates of the key kinetic parameters, as well as the resultant airborne shedding, for each animal.

      We have added this information to L106 in the results and hope this clarifies the rationale and execution of the model.

      More minor points:

      • Line 292: "poor proxy" seems too strong as peak levels of viral RNA correlate with positive airway cultures. It might be more accurate to say that high levels of viral RNA during early infection only somewhat correlate with positive airway cultures.

      We have rephrased this to clarify that while peak RNA viral loads are predictive of positive cultures, measuring RNA, especially early during infection and only once, may not be sufficient to infer the magnitude or time-dependence of infectious virus shedding into the air. See Line 308: “We found that swab viral load measurements are a valuable but imperfect proxy for the magnitude and timing of airborne shedding. Crucially, there is a period early in infection (around 24 h post-infection in inoculated hamsters) when oral swabs show high infectious virus titers, but air samples show low or undetectable levels of virus. Viral shedding should not be treated as a single quantity that rises and falls synchronously throughout the host; spatial models of infection may be required to identify the best correlates of airborne infectiousness [32]. Attempts to quantify an individual’s airborne infectiousness from swab measurements should thus be interpreted with caution, and these spatiotemporal factors should be considered carefully.”

      • Line 352: Re is dependent on time of an outbreak (population immunity) and cannot be specified for a given variant as it depends on multiple other variables

      We agree that the current phrasing here could be interpreted to suggest, incorrectly, that Re is an intrinsic property of a variant. We have deleted that language and reworded the section to emphasize that the critical question is heterogeneity in transmission, not mean reproduction number. Line 348: “Moreover, at the time of emergence of Delta, a large part of the human population was either previously exposed to and/or vaccinated against SARS-CoV-2; that underlying host immune landscape also affects the relative fitness of variants. Our naïve animal model does not capture the high prevalence of pre-existing immunity present in the human population and may therefore be less relevant for studying overall variant fitness in the current epidemiological context. Analyses of the cross-neutralization between Alpha and Delta suggest subtly different antigenic profiles [35], and Delta’s faster kinetics in humans may have also helped it cause more reinfections and “breakthrough” infections [36].

      Our two transmission experiments yielded different outcomes. When sentinel hamsters were sequentially exposed, first to Alpha and then to Delta, generally no dual infections—both variants detectable—were observed. In contrast, when we exposed hamsters simultaneously to one donor infected with Alpha and another infected with Delta, we were able to detect mixed-variant virus populations in sentinels in one of the cages (Cage F, see Appendix figures S1, S2). The fact that we saw both single-lineage and multi-lineage transmission events suggests that virus population bottlenecks at the point of transmission do indeed depend on exposure mode and duration, as well as donor host shedding. Notably, our analysis suggests that the Alpha-Delta co-infections observed in the Cage F sentinels could be due to that being the one cage in which both the Alpha and the Delta donor shed substantially over the course of the exposure (Appendix figures S2, S3). Mixed variant infections were not retained equally, and the relative variant frequencies differed between investigated compartments of the respiratory tract, suggesting roles for randomness or host-and-tissue specific differences in virus fitness.

      A combination of host, environmental and virus parameters, many of which vary through time, play a role in virus transmission. These include virus phenotype, shedding in air, individual variability and sex differences, changes in breathing patterns, and droplet size distributions. Alongside recognized social and environmental factors, these host and viral parameters might help explain why the epidemiology of SARS-CoV-2 exhibits classic features of over-dispersed transmission [37]. Namely, SARS-CoV-2 circulates continuously in the human population, but many transmission chains are self-limiting, while rarer superspreading events account for a substantial fraction of the virus’s total transmission. Heterogeneity in the respiratory viral loads is high and some infected humans release tens to thousands of SARS-CoV-2 virions/min [38, 39]. Our findings recapitulate this in an animal model and provide further insights into mechanisms underlying successful transmission events. Quantitative assessment of virus and host parameters responsible for the size, duration and infectivity of exhaled aerosols may be critical to advance our understanding of factors governing the efficiency and heterogeneity of transmission for SARS-CoV-2, and potentially other respiratory viruses. In turn, these insights may lay the foundation for interventions targeting individuals and settings with high risk of superspreading, to achieve efficient control of virus transmission [40].”

      • The limitation section should mention that this animal model does not capture the large prevalence of pre-existing immunity at present in the population and may therefore be less relevant in the current epidemiologic context.

      We agree and have added this more clearly, see response above.

      • Limitation: it is unclear if airway and droplet dynamics in the hamster model are representative of humans.

      We have added the following sentence: Line 331: “It remains to be determined how well airway and particle size distribution dynamics in Syrian hamsters model those in humans.”

      • The mathematical model is termed semi-mechanistic but I think this is not accurate as the model appears to have no mechanistic assumptions.

      We describe the model as semi-mechanistic because it uses mechanistic descriptions of the shedding and uptake process (as described above), incorporating factors including respiration rate and environmental loss, and makes the mechanistic assumption that measurable swab and airborne shedding all stem from a shared within-host infection process that produces exponential growth of virus up to a peak, followed by exponential decay. The model is only semi-mechanistic, however, as we do not attempt a full model of within-host viral replication and shedding (e.g. a target-cell limited virus kinetics model).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Comment 1: It is worth mentioning that the authors show that there are Arid1a transcripts that escape the Cre system. This might mask the phenotype of the Arid1a knockout, given that many sequencing techniques used here are done on a heterogeneous population of knockout and wild-type spermatocytes.

      Response: The proportions of undifferentiated spermatogonia (PLZF+) with detectable (ARID1A+) and non-detectable (ARID1A=) levels of ARID1A protein by immunostaining on testes cryosections obtained from 1-month old Arid1afl/fl (control) and Arid1acKO (CKO) males were 74% ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls. The manuscript includes these data (page 5, lines 114-116). Furthermore, Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes showed significantly reduced levels of ARID1A protein in mutant cells (95% reduction). The manuscript has added these data (page 5, line 116 and Fig. S2).

      Comment 2: In relation to this, I think that the use of the term "pachytene arrest" might be overstated, since this is not the phenotype truly observed (these mice produce sperm).

      Response: Based on the profiling of prophase-I spermatocytes by co-staining for SYCP3 and ARID1A, we observed a marked reduction in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema in the absence of ARID1A (Table 1 in manuscript). Furthermore, we were unable to detect diplotene spermatocytes lacking ARID1A protein. Haploid spermatid populations isolated from Arid1acKO males appeared normal, expressing the wild-type allele, suggesting that they originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Arid1acKO also produces viable sperm at a level equal to their wild-type controls (see page 5, lines 123-126). It is reasonable to conclude that the absence of ARID1A results in a pachynema arrest and that the viable sperm are from escapers. We cannot make any conclusions regarding the requirement of ARID1A for progression beyond pachynema.

      Comment 3: ARID1A is present throughout prophase I, and it might have pre-MSCI roles that impact earlier stages of Meiosis I, and cell death might be happening in these earlier stages too.

      Response: We did not observe an effect on the frequency of leptotene and zygotene spermatocytes lacking ARID1A. There appeared to be an accumulation of these prophase-I populations in response to the loss of ARID1A, consistent with a failure in progression beyond pachynema in the mutants (Table 1 in the manuscript).

      Additionally, we did not detect any significant difference in the numbers of undifferentiated spermatogonia expressing PLZF (also known as ZBTB16) in 1-month-old Arid1acKO relative to Arid1afl/fl males (see Table below, now included in the manuscript as supplemental Table 1). Therefore, the Arid1a conditional knockouts generated with a Stra8-Cre did not appear to impact earlier stages of spermatogenesis. However, potential roles of ARID1A early in spermatogenesis might be revealed using a more efficient and earlier-acting germline Cre transgene. In this case, an inducible Cre transgene would be needed, given the haploinsufficiency associated with Arid1a. Such haploinsufficiency was why we used the Stra8-Cre. The lack of Cre expression in the female germline allowed the transmission of the floxed allele maternally.

      Author response table 1.

      Comment 4: Overall, the research presented here is solid, adds new knowledge on how sex chromatin is silenced during meiosis, and has generated relevant databases for the field.

      Response: We thank the reviewer for this comment.

      Reviewer 2

      Comment 1: The conditional deletion mouse model of ARIDA using Stra8-cre showed inefficient deletion; spermatogenesis did not appear to be severely compromised in the mutants. Using this data, the authors claimed that meiotic arrest occurs in the mutants. This is obviously a misinterpretation.

      Response: As stated in response to Reviewer 1, testes cryosections obtained from 1-month-old control and mutant males showed that 74% are ARID1A negative (CKO) and 26% ARID1A positive (CKO) as compared to 95% ARID1A positive and 5% ARID1A negative in WT controls (page 5, lines 114-116). This difference is dramatic. Western blot analysis of STA-Put purified pachytene WT and mutant spermatocytes also showed a significant reduction of ARID1A protein in mutant cells (Fig. S2). We observed a marked decrease in mid-late pachytene spermatocytes that lacked ARID1A, indicating a failure to progress beyond pachynema without ARID1A (Table 1 from the manuscript). Furthermore, we were unable to detect any diplotene spermatocytes lacking ARID1A protein. These data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Comparison of cKO and wild-type littermate yielded nearly identical results (Avg total conc WT = 32.65 M/m; Avg total conc cKO = 32.06 M/ml), indicating that the cKO’s produce viable sperm at a level equal to their wild-type controls. Taken together, the conclusion that the absence of ARID1A results in a pachynema arrest and that the escapers produce the haploid spermatids is firm. By IF, we see that ~70% of the spermatocytes have deleted ARID1A. Therefore, we disagree with the reviewer’s comments that “spermatogenesis did not appear to be severely compromised in the mutants”.

      Comment 2: In the later parts, the authors performed next-gen analyses, including ATAC-seq and H3.3 CUT&RUN, using the isolated cells from the mutant mice. However, with this inefficient deletion, most cells isolated from the mutant mice appeared not to undergo Cre-mediated recombination. Therefore, these experiments do not tell any conclusion pertinent to the Arid1a mutation.

      Response: We agree that the ATAC-seq and CUT&RUN data were derived from a mixed population of pachytene spermatocytes consisting of mutants and, to a much lesser extent, escapers. As stated, based on our previous study (Menon et al., 2021, Nat. Commun., PMID: 34772938) and additional analyses in this current work, the undifferentiated spermatogonia lacking ARID1A indicates that Stra8-Cre is ~ 70% efficient. With this efficiency, we can detect striking changes in H3.3 occupancy and chromatin accessibility in the mutants relative to wild-type spermatocytes.

      Comment 3: Furthermore, many of the later parts of this study focus on the analysis of H3.3 CUT&RUN. However, Fig. S7 clearly suggests that the H3.3 CUT&RUN experiment in the wild-type simply failed. Thus, none of the analyses using the H3.3 CUT&RUN data can be interpreted.

      Response: We would like to draw the attention of the reviewer to a recent study (Fointane et al., 2022, NAR, PMID: 35766398) where the authors observed an identical X chromosome-wide spreading of H3.3 in mouse meiotic cells by ChIP-seq. The genomic distribution matches the microscopic observation of H3.3 coating of the sex chromosomes. Therefore, in normal spermatocytes, H3.3 distribution is pervasive across the X chromosome, with very few peaks observed in intergenic regions. Additionally, we detected H3.3 enrichment at TSSs of ARID1A-regulated autosomal genes in wild-type pachytene spermatocytes, albeit reduced relative to the mutants, indicating that the H3.3 CUT&RUN worked. For these reasons, we do not agree with the reviewer’s assessment that the H3.3 CUT&RUN experiment failed in the wild type.

      Comment 4: If the author wishes to study the function of ARID2 in spermatogenesis, they may need to try other cre-lines to have more robust phenotypes, and all analyses must be redone using a mouse model with efficient deletion of ARID2.

      Response: As noted, we chose Stra8-Cre to conditionally knockout Arid1a because ARID1A is haploinsufficient during embryonic development. The lack of Cre expression in the maternal germline allows for transmission of the floxed allele, allowing for the experiments to progress.

      Reviewer 3

      Comment 1: A challenge with the author's CKO model is the incomplete efficiency of ARID1A loss, due to incomplete CRE-mediated deletion. The authors effectively work around this issue, but they don't state specifically what percentage of CKO cells lack ARID1A staining. This information should be added.

      Response: Our data indicate that Stra8-Cre is ~ 70% efficient. This information has been added.

      Comment 2: They refer to cells that retain ARID1A staining in CKO testes as 'internal controls' but this reviewer finds that label inappropriate.

      Response: We have dropped ‘internal controls’ and used ‘escapers’ instead.

      Comment 3: Although some cells that retain ARID1A won't have undergone CRE-mediated excision, others may have excised but possibly have delayed kinetics of deletion or ARID1A RNA/protein turnover and loss. Such cells likely have partial ARID1A depletion to different extents and, therefore, in some cases, are no longer wild-type. In subsequent figures in which co-staining for ARID1A is done, it would be appropriate for the authors to specify if they are quantifying all cells from CKO testes, or only those that lack ARID1A staining.

      Response: We were unable to detect any diplotene spermatocytes lacking ARID1A protein. The data suggest that the haploid spermatids originated from spermatocytes that failed to undergo efficient Cre recombination (Fig. S3). Thus, we conclude that the absence of ARID1A results in a pachynema arrest and that the escapers produce haploid spermatids. In figures displaying quantification data, we indicate whether the quantification was performed on spermatocytes lacking or containing ARID1A from cKO testes. By IF, we see that ~70% of the spermatocytes have deleted ARID1A.

      Comment 4: The authors don't see defects in a few DDR markers in ARID1A CKO cells and conclude that the role of ARID1A in silencing is 'mutually exclusive to DDR pathways' (p 12) and 'occurs independently of DDR signaling' (p30). The data suggest that ARID1A may not be required for DDR signaling, but do not rule out the possibility that ARID1A is downstream of DDR signaling (and the authors even hypothesize this on p30). The data provided do not justify the conclusion that ARID1A acts independently of DDR signaling.

      associated DDR factors such as: H2Ax; ATR; and MDC1. We observed an abnormal persistence of elongating RNA polymerase II on the mutant XY body in response to the loss of ARID1A, emphasizing its role in the transcriptional repression of the XY during pachynema. The loss of ARID1A results in a failure to silence sex-linked genes and does so in the presence of DDR signaling factors in the XY body. As the reviewer notes, we highlighted the possibility that DDR pathways might influence ARID1A recruitment to the XY, evidenced by the hyperaccumulation of ARID1A on the sex body late in diplonema. Therefore, whether ARID1A is dependent on DDR signaling remains an open question.

      Comment 5: After observing no changes in levels or localization of H3.3 chaperones, the authors conclude that 'ARID1A impacts H3.3 accumulation on the sex chromosomes without affecting its expression or incorporation during pachynema.' It's not clear to this reviewer what the authors mean by this. Aside from the issue of not having tested DAXX or HIRA activity, are they suggesting that some other process besides altered incorporation leads to H3.3 accumulation, and if so, what process would that be?

      Response: The loss of ARID1A might result in an abnormal redistribution of DAXX or HIRA on the XY, potentially contributing to the defects in H3.3 accumulation and canonical H3.1/3.2 eviction on the XY. While speculative at this point, it is also possible that the persistence of elongating RNAPII in response to the loss of ARID1A might prevent the sex chromosome-wide coating of H3.3. Addressing the mechanism underlying ARID1A-governed H3.3 accumulation on the XY body remains a topic for future investigation.

      Comment 6: The authors find an interesting connection between certain regions that gained chromatin accessibility after ARID1A loss (clusters G1 and G3) and the presence of the PRDM9 sequence motif. The G1 and G3 clusters also show DMC1 occupancy and H3K4me3 enrichment. However, an additional cluster with gained accessibility (G4) also shows DMC1 occupancy and H3K4me3 enrichment but has modest H3.3 accumulation. The paper would benefit for additional discussion about the G4 cluster (which encompasses 960 peak calls). Is there any enrichment of PRDM9 sites in G4? If H3.3 exclusion governs meiotic DSBs, how does cluster G4 fit into the model?

      Response: We agree that, compared to G1+G3, cluster G4 shows an insignificant increase in H3.3 occupancy in the absence of ARID1A (Figure 6B). The plot profile associated with the heatmap confirms this result (Figure 6B). Therefore, cluster G4 is very distinct in its chromatin composition from G1+G3 upon the loss of ARID1A and, as such, is not inconsistent with our model of H3.3 antagonism with DSB sites. Additionally, we did not observe an enrichment of PRDM9 sites in G4. Since G4 does not display similar dynamics in H3.3 occupancy to G1+G3, DMC1 association might not be perturbed at G4 in response to the loss of ARID1A. Future studies will be required to determine the genomic associations of DMC1 and H3K4me3 in response to the loss of ARID1A.

      Comment 7: The impacts of ARID1A loss on DMC1 focus formation (reduced sex chromosome association) are very interesting and also raise additional questions. Are DMC1 foci on autosomes also affected during pachynema? The corresponding lack of apparent effect on RAD51 implies that breaks are still made and resected, enabling RAD51 filament formation. A more thorough quantitative assessment of RAD51 focus formation will be interesting in the long run, enabling determination of the number of break sites and the kinetics of repair, which the authors suggest is perturbed by ARID1A loss but doesn't directly test. It isn't clear how a nucleosomal factor (H3.3) would influence loading of recombinases onto ssDNA, especially if the alteration is not at the level of resection and ssDNA formation. Additional discussion of this point is warranted. Lastly, there currently are various notions for the interplay between RAD51 and DMC1 in filament formation and break repair, and brief discussion of this area and the implications of the new findings from the ARID1A CKO would strengthen the paper further.

      Response: The impact of H3.3 on the loading of recombinases might be an indirect consequence of ARID1A-governed sex-linked transcriptional repression. In a recent study, Alexander et al. (Nat. Commun, 2023, PMID: 36990976) showed that transcriptional activity and meiotic recombination are spatially compartmentalized during meiosis. Therefore, the persistence of elongating RNA polymerase II on a sex body depleted for H3.3 in the absence of ARID1A might contribute to the defect in DMC1 association. RAD51 and DMC1 are known to bind ssDNA at PRDM9/SPO11 designated DSB hotspots. However, these recombinases occupy unique domains. DMC1 localizes nearest the DSB breakpoint, promoting strand exchange, whereas RAD51 is further away (Hinch et al., PMID32610038). We show that loss of Arid1a decreases DMC1 foci on the XY chromosomes without affecting RAD51. These findings indicate that BAF-A plays a role in the loading and/or retention of DMC1 to the XY chromosomes. This information has been added to the discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors develop a method to fluorescently tag peptides loaded onto dendritic cells using a two-step method with a tetracystein motif modified peptide and labelling step done on the surface of live DC using a dye with high affinity for the added motif. The results are convincing in demonstrating in vitro and in vivo T cell activation and efficient label transfer to specific T cells in vivo. The label transfer technique will be useful to identify T cells that have recognised a DC presenting a specific peptide antigen to allow the isolation of the T cell and cloning of its TCR subunits, for example. It may also be useful as a general assay for in vitro or in vivo T-DC communication that can allow the detection of genetic or chemical modulators.

      Strengths:

      The study includes both in vitro and in vivo analysis including flow cytometry and two-photon laser scanning microscopy. The results are convincing and the level of T cell labelling with the fluorescent pMHC is surprisingly robust and suggests that the approach is potentially revealing something about fundamental mechanisms beyond the state of the art.

      Weaknesses:

      The method is demonstrated only at high pMHC density and it is not clear if it can operate at at lower peptide doses where T cells normally operate. However, this doesn't limit the utility of the method for applications where the peptide of interest is known. It's not clear to me how it could be used to de-orphan known TCR and this should be explained if they want to claim this as an application. Previous methods based on biotin-streptavidin and phycoerythrin had single pMHC sensitivity, but there were limitations to the PE-based probe so the use of organic dyes could offer advantages.

      We thank the reviewer for the valuable comments and suggestions. Indeed, we have shown and optimized this labeling technique for a commonly used peptide at rather high doses to provide a proof of principle for the possible use of tetracysteine tagged peptides for in vitro and in vivo studies. However, we completely agree that the studies that require different peptides and/or lower pMHC concentrations may require preliminary experiments if the use of biarsenical probes is attempted. We think it can help investigate the functional and biological properties of the peptides for TCRs deorphaned by techniques. Tetracysteine tagging of such peptides would provide a readily available antigen-specific reagent for the downstream assays and validation. Other possible uses for modified immunogenic peptides could be visualizing the dynamics of neoantigen vaccines or peptide delivery methods in vivo. For these additional uses, we recommend further optimization based on the needs of the prospective assay.

      Reviewer #2 (Public Review):

      Summary:

      The authors here develop a novel Ovalbumin model peptide that can be labeled with a site-specific FlAsH dye to track agonist peptides both in vitro and in vivo. The utility of this tool could allow better tracking of activated polyclonal T cells particularly in novel systems. The authors have provided solid evidence that peptides are functional, capable of activating OTII T cells, and that these peptides can undergo trogocytosis by cognate T cells only.

      Strengths:

      -An array of in vitro and in vivo studies are used to assess peptide functionality.

      -Nice use of cutting-edge intravital imaging.

      -Internal controls such as non-cogate T cells to improve the robustness of the results (such as Fig 5A-D).

      -One of the strengths is the direct labeling of the peptide and the potential utility in other systems.

      Weaknesses:

      1. What is the background signal from FlAsH? The baselines for Figure 1 flow plots are all quite different. Hard to follow. What does the background signal look like without FLASH (how much fluorescence shift is unlabeled cells to No antigen+FLASH?). How much of the FlAsH in cells is actually conjugated to the peptide? In Figure 2E, it doesn't look like it's very specific to pMHC complexes. Maybe you could double-stain with Ab for MHCII. Figure 4e suggests there is no background without MHCII but I'm not fully convinced. Potentially some MassSpec for FLASH-containing peptides.

      We thank the reviewer for pointing out a possible area of confusion. In fact, we have done extensive characterization of the background and found that it has varied with the batch of FlAsH, TCEP, cytometer and also due to the oxidation prone nature of the reagents. Because Figure 1 subfigures have been derived from different experiments, a combination of the factors above have likely contributed to the inconsistent background. To display the background more objectively, we have now added the No antigen+Flash background to the revised Fig 1.

      It is also worthwhile noting that nonspecific Flash incorporation can be toxic at increasing doses, and live cells that display high backgrounds may undergo early apoptotic changes in vitro. However, when these cells are adoptively transferred and tracked in vivo, the compromised cells with high background possibly undergo apoptosis and get cleared by macrophages in the lymph node. The lack of clearance in vitro further contributes to different backgrounds between in vitro and in vivo, which we think is also a possible cause for the inconsistent backgrounds throughout the manuscript. Altogether, comparison of absolute signal intensities from different experiments would be misleading and the relative differences within each experiment should be relied upon. We have added further discussion about this issue.

      1. On the flip side, how much of the variant peptides are getting conjugated in cells? I'd like to see some quantification (HPLC or MassSpec). If it's ~10% of peptides that get labeled, this could explain the low shifts in fluorescence and the similar T cell activation to native peptides if FlasH has any deleterious effects on TCR recognition. But if it's a high rate of labeling, then it adds confidence to this system.

      We agree that mass spectrometry or, more specifically tandem MS/MS, would be an excellent addition to support our claim about peptide labeling by FlAsH being reliable and non-disruptive. Therefore, we have recently undertaken a tandem MS/MS quantitation project with our collaborators. However, this would require significant time to determine the internal standard based calibration curves and to run both analytical and biological replicates. Hence, we have decided pursuing this as a follow up study and added further discussion on quantification of the FlAsH-peptide conjugates by tandem MS/MS.

      1. Conceptually, what is the value of labeling peptides after loading with DCs? Why not preconjugate peptides with dye, before loading, so you have a cleaner, potentially higher fluorescence signal? If there is a potential utility, I do not see it being well exploited in this paper. There are some hints in the discussion of additional use cases, but it was not clear exactly how they would work. One mention was that the dye could be added in real-time in vivo to label complexes, but I believe this was not done here. Is that feasible to show?

      We have already addressed preconjugation as a possible avenue for labeling peptides. In our hands, preconjugation resulted in low FlAsH intensity overall in both the control and tetracysteine labeled peptides (Author response image 1). While we don’t have a satisfactory answer as to why the signal was blunted due to preconjugation, it could be that the tetracysteine tagged peptides attract biarsenical compounds better intracellularly. It may be due to the redox potential of the intracellular environment that limits disulfide bond formation. (PMID: 18159092)

      Author response image 1.

      Preconjugation yields poor FlAsH signal. Splenic DCs were pulsed with peptide then treated with FlAsH or incubated with peptide-FlAsH preconjugates. Overlaid histograms show the FlAsH intensities on DCs following the two-step labeling (left) and preconjugation (right). Data are representative of two independent experiments, each performed with three biological replicates.

      1. Figure 5D-F the imaging data isn't fully convincing. For example, in 5F and 2G, the speeds for T cells with no Ag should be much higher (10-15micron/min or 0.16-0.25micron/sec). The fact that yours are much lower speeds suggests technical or biological issues, that might need to be acknowledged or use other readouts like the flow cytometry.

      We thank the reviewer for drawing attention to this technical point. We would like to point out that the imaging data in fig 5 d-f was obtained from agarose embedded live lymph node sections. Briefly, the lymph nodes were removed, suspended in 2% low melting temp agarose in DMEM and cut into 200 µm sections with a vibrating microtome. Prior to imaging, tissue sections were incubated in complete RPMI medium at 37 °C for 2 h to resume cell mobility. Thus, we think the cells resuming their typical speeds ex vivo may account for slightly reduced T cell speeds overall, for both control and antigen-specific T cells (PMID: 32427565, PMID: 25083865). We have added text to prevent the ambiguity about the technique for dynamic imaging. The speeds in Figure 2g come from live imaging of DC-T cell cocultures, in which the basal cell movement could be hampered by the cell density. Additionally, glass bottom dishes have been coated with Fibronectin to facilitate DC adhesion, which may be responsible for the lower average speeds of the T cells in vitro.

      Reviewer #1 (Recommendations For The Authors):

      Does the reaction of ReAsH with reactive sites on the surface of DC alter them functionally? Functions have been attributed to redox chemistry at the cell surface- could this alter this chemistry?

      We thank the reviewer for the insight. It is possible that the nonspecific binding of biarsenical compounds to cysteine residues, which we refer to as background throughout the manuscript, contribute to some alterations. One possible way biarsenicals affect the redox events in DCs can be via reducing glutathione levels (PMID: 32802886). Glutathione depletion is known to impair DC maturation and antigen presentation (PMID: 20733204). To avoid toxicity, we have carried out a stringent titration to optimize ReAsH and FlAsH concentrations for labeling and conducted experiments using doses that did not cause overt toxicity or altered DC function.

      Have the authors compared this to a straightforward approach where the peptide is just labelled with a similar dye and incubated with the cell to load pMHC using the MHC knockout to assess specificity? Why is this that involves exposing the DC to a high concentration of TCEP, better than just labelling the peptide? The Davis lab also arrived at a two-step method with biotinylated peptide and streptavidin-PE, but I still wonder if this was really necessary as the sensitivity will always come down to the ability to wash out the reagents that are not associated with the MHC.

      We agree with the reviewer that small undisruptive fluorochrome labeled peptide alternatives would greatly improve the workflow and signal to noise ratio. In fact, we have been actively searching for such alternatives since we have started working on the tetracysteine containing peptides. So far, we have tried commercially available FITC and TAMRA conjugated OVA323-339 for loading the DCs, however failed to elicit any discernible signal. We also have an ongoing study where we have been producing and testing various in-house modified OVA323-339 that contain fluorogenic properties. Unfortunately, at this moment, the ones that provided us with a crisp, bright signal for loading revealed that they have also incorporated to DC membrane in a nonspecific fashion and have been taken up by non-cognate T cells from double antigen-loaded DCs. We are actively pursuing this area of investigation and developing better optimized peptides with low/non-significant membrane incorporation.

      Lastly, we would like to point out that tetracysteine tags are visible by transmission electron microscopy without FlAsH treatment. Thus, this application could add a new dimension for addressing questions about the antigen/pMHCII loading compartments in future studies. We have now added more in-depth discussion about the setbacks and advantages of using tetracysteine labeled peptides in immune system studies.

      The peptide dosing at 5 µM is high compared to the likely sensitivity of the T cells. It would be helpful to titrate the system down to the EC50 for the peptide, which may be nM, and determine if the specific fluorescence signal can still be detected in the optimal conditions. This will not likely be useful in vivo, but it will be helpful to see if the labelling procedure would impact T cell responses when antigen is limited, which will be more of a test. At 5 µM it's likely the system is at a plateau and even a 10-fold reduction in potency might not impact the T cell response, but it would shift the EC50.

      We thank the reviewer for the comment and suggestion. We agree that it is possible to miss minimally disruptive effects at 5 µM and titrating the native peptide vs. modified peptide down to the nM doses would provide us a clearer view. This can certainly be addressed in future studies and also with other peptides with different affinity profiles. A reason why we have chosen a relatively high dose for this study was that lowering the peptide dose had costed us the specific FlAsH signal, thus we have proceeded with the lowest possible peptide concentration.

      In Fig 3b the level of background in the dsRed channel is very high after DC transfer. What cells is this associated with and does this appear be to debris? Also, I wonder where the ReAsH signal is in the experiments in general. I believe this is a red dye and it would likely be quite bright given the reduction of the FlAsH signal. Will this signal overlap with signals like dsRed and PHK-26 if the DC is also treated with this to reduce the FlAsH background?

      We have already shown that ReAsH signal with DsRed can be used for cell-tracking purposes as they don’t get transferred to other cells during antigen specific interactions (Author response image 2). In fact, combining their exceptionally bright fluorescence provided us a robust signal to track the adoptively transferred DCs in the recipient mice. On the other hand, the lipophilic membrane dye PKH-26 gets transferred by trogocytosis while the remaining signal contributes to the red fluorescence for tracking DCs. Therefore, the signal that we show to be transferred from DCs to T cells only come from the lipophilic dye. To address this, we have added a sentence to elaborate on this in the results section. Regarding the reviewer’s comment on DsRed background in Figure 3b., we agree that the cells outside the gate in recipient mice seems slightly higher that of the control mice. It may suggest that the macrophages clearing up debris from apoptotic/dying DCs might contribute to the background elicited from the recipient lymph node. Nevertheless, it does not contribute to any DsRed/ReAsH signal in the antigen-specific T cells.

      Author response image 2.

      ReAsH and DsRed are not picked up by T cells during immune synapse. DsRed+ DCs were labeled with ReAsH, pulsed with 5 μM OVACACA, labeled with FlAsH and adoptively transferred into CD45.1 congenic mice mice (1-2 × 106 cells) via footpad. Naïve e450-labeled OTII and e670-labeled polyclonal CD4+ T cells were mixed 1:1 (0.25-0.5 × 106/ T cell type) and injected i.v. Popliteal lymph nodes were removed at 42 h post-transfer and analyzed by flow cytometry. Overlaid histograms show the ReAsh/DsRed, MHCII and FlAsH intensities of the T cells. Data are representative of two independent experiments with n=2 mice per group.

      In Fig 5b there is a missing condition. If they look at Ea-specific T cells for DC with without the Ova peptide do they see no transfer of PKH-26 to the OTII T cells? Also, the FMI of the FlAsH signal transferred to the T cells seems very high compared to other experiments. Can the author estimate the number of peptides transferred (this should be possible) and would each T cell need to be collecting antigens from multiple DC? Could the debris from dead DC also contribute to this if picked up by other DC or even directly by the T cells? Maybe this could be tested by transferring DC that are killed (perhaps by sonication) prior to inoculation?

      To address the reviewer’s question on the PKH-26 acquisition by T cells, Ea-T cells pick up PKH-26 from Ea+OVA double pulsed DCs, but not from the unpulsed or single OVA pulsed DCs. OTII T cells acquire PKH-26 from OVA-pulsed DCs, whereas Ea T cells don’t (as expected) and serve as an internal negative control for that condition. Regarding the reviewer’s comment on the high FlAsH signal intensity of T cells in Figure 5b, a plausible explanation can be that the T cells accumulate pMHCII through serial engagements with APCs. In fact, a comparison of the T cell FlAsH intensities 18 h and 36-48 h post-transfer demonstrate an increase (Author response image 3) and thus hints at a cumulative signal. As DCs are known to be short-lived after adoptive transfer, the debris of dying DCs along with its peptide content may indeed be passed onto macrophages, neighboring DCs and eventually back to T cells again (or for the first time, depending on the T:DC ratio that may not allow all T cells to contact with the transferred DCs within the limited time frame). We agree that the number and the quality of such contacts can be gauged using fluorescent peptides. However, we think peptides chemically conjugated to fluorochromes with optimized signal to noise profiles and with less oxidation prone nature would be more suitable for quantification purposes.

      Author response image 3.

      FlAsH signal acquisition by antigen specific T cells becomes more prominent at 36-48 h post-transfer. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry at 18 h or 48 h post-transfer. Overlaid histograms show the T cell levels of OVACACA (FlAsH). Data are representative of three independent experiments with n=3 mice per time point

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in weaknesses 1 & 2, more validation of how much of the FlAsH fluorescence is on agonist peptides and how much is non-specific would improve the interpretation of the data. Another option would be to preconjugate peptides but that might be a significant effort to repeat the work.

      We agree that mass spectrometry would be the gold standard technique to measure the percentage of tetracysteine tagged peptide is conjugated to FlAsH in DCs. However, due to the scope of such endevour this can only be addressed as a separate follow up study. As for the preconjugation, we have tried and unfortunately failed to get it to work (Reviewer Figure 1). Therefore, we have shifted our focus to generating in-house peptide probes that are chemically conjugated to stable and bright fluorophore derivates. With that, we aim to circumvent the problems that the two-step FlAsH labeling poses.

      Along those lines, do you have any way to quantify how many peptides you are detecting based on fluorescence? Being able to quantify the actual number of peptides would push the significance up.

      We think two step procedure and background would pose challenges to such quantification in this study. although it would provide tremendous insight on the antigen-specific T cell- APC interactions in vivo, we think it should be performed using peptides chemically conjugated to fluorochromes with optimized signal to noise profiles.

      In Figure 3D or 4 does the SA signal correlate with Flash signal on OT2 cells? Can you correlate Flash uptake with T cell activation, downstream of TCR, to validate peptide transfers?

      To answer the reviewer’s question about FlAsH and SA correlation, we have revised the Figure 3d to show the correlation between OTII uptake of FlAsH, Streptavidin and MHCII. We also thank the reviewer for the suggestion on correlating FlAsH uptake with T cell activation and/or downstream of TCR activation. We have used proliferation and CD44 expressions as proxies of activation (Fig 2, 6). Nevertheless, we agree that the early events that correspond to the initiation of T-DC synapse and FlAsH uptake would be valuable to demonstrate the temporal relationship between peptide transfer and activation. Therefore, we have addressed this in the revised discussion.

      Author response image 4.

      FlAsH signal acquisition by antigen specific T cells is correlates with the OVA-biotin (SA) and MHCII uptake. DsRed+ splenic DCs were double-pulsed with 5 μM OVACACA and 5 μM OVA-biotin and adoptively transferred into CD45.1 recipients (2 × 106 cells) via footpad. Naïve e450-labeled OTII (1 × 106 cells) and e670-labeled polyclonal T cells (1 × 106 cells) were injected i.v. Popliteal lymph nodes were analyzed by flow cytometry. Overlaid histograms show the T cell levels of OVACACA (FlAsH) at 48 h post-transfer. Data are representative of three independent experiments with n=3 mice.

      Minor:

      Figure 3F, 5D, and videos: Can you color-code polyclonal T cells a different color than magenta (possibly white or yellow), as they have the same look as the overlay regions of OT2-DC interactions (Blue+red = magenta).

      We apologize for the inconvenience about the color selection. We have had difficulty in assigning colors that are bright and distinct. Unfortunately, yellow and white have also been easily mixed up with the FlAsH signal inside red and blue cells respectively. We have now added yellow and white arrows to better point out the polyclonal vs. antigen specific cells in 3f and 5d.

    1. Author Response

      The following is the authors’ response to the previous reviews

      The revised manuscript is much improved - many unclear points are now better explained. However, in our opinion, some issues could still be significantly improved.

      1. Statistics: none of us are experts in statistics but several things remain questionable in our opinion and if it were our study, we would consult with an expert:

      a) while we understand the authors note about N-chasing and p-hacking, we wonder how the number of N's was premeditated before obtaining the results. Why in 4M an N of 3 is sufficient while in 3E the N is >20 (and not mentioned). At the very least, we think it would be wise to be cautious when stating something as not-significant when it is clear (as in 4M) that the likelihood of it actually being statistically significant is quite large.

      b) In most analyses, the data is not only normalized by actin or some other measure but also to the first (i.e left side on the graph) condition, resulting in identical data points that equal '1' (in Figure 4 alone - C; I; K; M; and O) - while this might be scientifically sound, it should be mentioned (the specific normalization) and also note that this technique shadows any real variance that exists in the original data in this condition. consider exploring techniques to overcome this issue.

      c) In 3C, - if we understand the experiment, you want to convince us that the DIFFERENCE between eB2-FC compared to FC is larger in the control compared to the experiment. We are not absolutely sure that the statistical tools employed here are sufficient - which is why we would consult an expert.

      A) We are aware that many studies do not consistently quantify such experiments. For example, there are essentially no published examples of the signalling timelines of EphB2 receptors as in Fig. 5. By striving to quantifying such biochemical effects, an unquantified experiment stands out, and so perhaps we were too strict by trying to quantify as many experiments as possible, resulting in low n’s for some of them. We acknowledge that additional experiments on EPHB1 protein stability may reach significance. We have adjusted our text on line 332-335 to point to this interesting trend, and slightly changed the conclusion to this section. Similarly, we commented on similar trends when describing Figs. 1E and 4G on lines 901 and 952.

      B) For the Western blot band intensity normalisation, we believe that our method is scientifically sound. Normally, when the replicate samples are loaded on one gel and blotted on the same membrane, the experimenter only needs to normalise the target band intensity to its cognate loading control band intensity for quantitation. However, we usually have a large number of samples from multiple experiments, carried out on different dates. For example, in Fig. 4B,C there are 7 biological replicates collected from 7 experiments and in Fig. 4D there are 10 protein samples. It is not possible for us to run all samples on the same gel. In addition, due to the combined effects of variance in transfer efficiency, the potency of antibodies, detection efficiency and the developing time for each blot, it is practically impossible to generate similar band intensity for each batch. Thus, we use normalisation of test bands to the loading control for individual experiments, and this analysis method is widely accepted by reputable journals with a focus on biochemical experiments (for example: PMID 37695914: Fig. 3 A,B,C; PMID 36282215: Fig. 3 B,C,D,E; PMID 33843588: Fig. 3 C,D,E,F,G,H). Since the value of the first sample on the plot is 1, which is a hypothetical value and does not meet the parametric test requirement, we performed one-sample t-test for statistics when other samples are compared with the first sample (PMID 35243233 Fig. 6 A,B,C,D; https://www.graphpad.com/quickcalcs/oneSampleT1/, “A one sample t-test compares the mean with a hypothetical value. In most cases, the hypothetical value comes from theory. For example, if you express your data as 'percent of control', you can test whether the average differs significantly from 100.”). Thus, we believe that our normalisation and statistical methods are both correct with a large number of precedents.

      C) This comment refers to the cell collapse experiment shown in Fig. 3C for which the data are plotted in Fig. 3D. We stand by the statistical method used. There are two groups of cells (CTRLCRISPR and MYCBP2 CRISPR) and two treatments for each cell group (Fc control and eB2), thus we should use two-way ANOVA. Since we compared the cell retraction effects of Fc and eB2 on the two groups of cells, Sidak post hoc comparison is the right method to avoid errors introduced by multiple comparisons. Here is an example of an eLife article that used the same statistical method for similar comparisons: PMID 37830910, Fig. 1 H,I. To make the comparison easier, we grouped the experiments by cell type (CTRLCRISPR and MYCBP2 CRISPR) as opposed to by treatment. Below, the old version is on the right, and the new version is on the left. The conclusion is that eB2 induces less cell collapse in cells depleted of MYCBP2, when compared to the control cells. However, eB2 is still able to collapse cells lacking MYCBP2.

      Author response image 1.

      Revisiting these data, we noticed an error introduced when CC compiled the data used to generate Fig. 3D. The data were acquired from nine biological replicates per condition. CC used a mix of two methods for cell collapse rate calculation: the first method involved the sum of collapsed cells and all cells from multiple regions of one coverslip (biological replicate). The second method involved computing a collapse rate in each region which then was used to calculate the average collapse rate for the entire coverslip (technical replicate). Given the small cell numbers due to sparse culture conditions, we believe that the first method is a more conservative approach. We hence re-plotted all replicate data using the first method. This resulted in slightly different % collapse and p values. These were changed accordingly in the text and plot and do not affect the conclusion of this experiment.

      2) thanks for the clarification that the interaction between the extracellular domain of EPHB2 and MYCBP2 might not occur directly - however, unless we missed this it was not clearly stated in the text. It is an important point and also a cool direction for the future - to find the elusive co-receptor that actually helps EPHB2 and MYCBP2 form a complex.

      We now also refer to this in the results section on line 215.

      “Since EPHB2 is a transmembrane protein and MYCBP2 is localised in the cytosol, these experiments suggest that the interaction between the extracellular domain of EPHB2 and MYCBP2 might be indirect and mediated by other unknown transmembrane proteins.”

      3) The Hela CRISPR cell line is better explained in the response letter but still not sufficiently explained in the text for a non-expert reader. If the authors want any reader to comprehend this, we would strongly recommend adding a scheme.

      We now include a schematic outlining the CRISPR cell generation as Fig. 3A and its description on line 926.

      Author response image 2.

      4) To clarify some of our previous (and persisting) concerns about Figure 3D/E - it is true that a reduction in 25% of cell size is dramatic. But (if we understand correctly) your claim is that a reduction in 22% (this is a guess, as the actual numbers are not supplies) is significantly less than 25%. Even if it is, statistically speaking, significant, what is the physiological relevance of this very slight effect? In this experiment, the N was quite large, and we wonder if the images in D are representative - it would be nice to label the data points in E to highlight which images you used.

      We now mention the average cell area contraction measurements in the legend to Fig. 3F on line 935. We also tracked down the individual cells shown in Fig. 3E and they are now labelled as data points in blue in Fig. 3F. HeLa cell collapse is a simplified model of EPHB2 function and we do not know whether the difference between the behaviour of CTRLCRISPR and MYCBP2 CRISPR cells is physiologically significant and thus we prefer not to speculate on this.

      5) Figure 3F and other stripe assays - In the end, it is your choice how to quantify. We believe that quantifying area of overlap is a more informative and objective measurement that might actually benefit your analyses. That said, if you do keep the quantification as it is now, you have to define the threshold of what you mean by "cell/s (or an axon in 7A, where it is even more complicated as are you eluding to primary, secondary, or even smaller branches) are RESIDING within the stripe". Is 1% overlap sufficient or do you need 10 or 50% overlap?

      We now added this statement to the methods on line 745: “A cell was considered to be on an ephrin-B2 stripe when more than 50% of its nucleus was located on that stripe”. For chick explant stripe assay, when measuring the length of an axon on a stripe, we only measured the main axons originated from the explants.

      For explant/stripe experiments in Fig. 7 AB, we now use the term “GFP-expressing neurite” rather than “branch”. This was already present in the results of the previous version, but the methods and legend needed to be brought up to date (lines 786 and 1008. We think that “branch” was a confusing term that was supposed to mean the same thing as “neurite” but came across as some indication of branching. We do not know whether the GFP+ neurites were primary or secondary extensions of explants, or in fact, whether some of them contained more than one axon. We also adjusted the method to reflect the fact that some stripes were used in conjunction with a single explant and added a reference to a previous study extensively using this method (Poliak et al., 2015) on line 778.

      6) We still don't get the link to the lysosomal degradation. Your data suggests that in your cells EPHB2 is primarily degraded by the lysosomal pathway and not proteasome. Any statement about MYCBP2 is not strongly supported by the data, in our opinion - Unless you develop some statistical measurement that shows that the effect of BafA1 is statistically different in MYCBP2 cells than in control cells. Currently, this is not the case and the link is therefore not warranted in our opinion.

      We generated a new version of Fig. 4K with average increase in EPHB2 levels in the presence of BafA1 and CoQ, compared to DMSO treated controls (see below). BafA1 and CoQ restored EPHB2 protein levels by 19% and 14% respectively in CtrlCRISPR cells, while the inhibitors restored EPHB2 protein levels by 40% and 35% respectively in MYCBP2 CRISPR cells.

      Author response image 3.

      For each of the 4 replicates, the increase in EPHB2 levels by BafA1 compared to DMSO is as follows:

      Author response table 1.

      These values are not significantly different between CtrlCRISPR cells versus MYCBP2 CRISPR cells (p= 0.08, student’s t test). Similarly for the CoQ experiment. We now temper our conclusion for this experiment: Although the difference in percentage increase between CTRLCRISPR cells and MYCBP2CRISPR cells is not significant, this trend raises the possibility that the loss of MYCBP2 promotes EPHB2 receptor degradation through the lysosomal pathway (line 319). We also adjusted the section title (line 306).

      7) While the C. elegans part is now MUCH better explained - we are not sure we understand the additional insight. The fact that vab-1 and glo4 double mutants are additive as are vab1 and fsn1, suggest they act in parallel (if the mutants are NULL, and not if they are hypomorphs, if one wants to be accurate) - how this relates to your story is unclear. The vab1/rpm1 double mutant is still uninformative and incomplete. rpm1 phenotype is so severe that nothing would make it more severe. We read the Jin paper that the authors directed to - nothing makes the rpm1 phenotype more severe. Yes, some DOWNSTREAM elements make the rpm1 phenotype LESS severe - this is not something you were testing, to the best of our knowledge. Rather, you wanted to see if rpm1 mutant resulted in stabilization of vab1 and thus suppression of vab1 phenotype - we are just not sure the system is amenable to test (actually reject) your hypothesis that Vab1 is degraded by rpm1. Also, assuming we are talking about NULLs, the fact that the rpm1 phenotype is WAY stronger than the vab1 mutant, suggests that rpm1 functions via multiple routes, adding even more complexity to the system. Given these results, despite the much improved clarity, we are still not sure that the worm data adds new insight, rather than potentially confusing the reader.

      We realise that the genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network are complicated. However, we insist on keeping the data for the sake of its availability for future studies and completeness. We also think it is important for readers and the community to see these data, even if the authors and reviewers are not entirely in agreement about the importance/interpretation of experimental outcomes. It is our hope that the community will examine the results and draw their own conclusions.

      A few points of clarification:

      The C. elegans experiments were designed to test genetically if the vertebrate interactions between EPHB2 and MYCBP2 and its signalling network are conserved. We studied two kinds of interactions: (1) between vab-1 and RPM-1/MYCBP2 downstream proteins (GLO-4 and FSN-1) and (2) between vab-1 and rpm-1. For these studies, we used null alleles for vab-1, glo-4 and fsn-1 which is now noted on lines 440, 453, 475 and 859. Our findings are consistent with the VAB-1 Ephrin receptor functioning in parallel to known RPM-1 binding proteins. This is further supported by new data: vab-1; fsn-1 double mutants showed enhanced incidence of axon overextension defects using a second transgenic background, zdIs5 (Pmec-4::GFP), to visualize axon termination (Fig. 8F).

      This second transgenic background also allowed us to generate new data to address your concerns about phenotypic saturation in rpm-1 mutants. To do this, we used the zdIs5 (Pmec4::GFP) genetic background, in which axon termination defects are not saturated in rpm-1 mutants (Fig. 8F) because they can be enhanced by other mutants such as cdc-42 and unc-33 (Fig. 7C, D, in Borgen et al. Development 144, 4658–4672 (2017), PMID 29084805). In this new background, we found that vab-1 loss of function fails to enhance the incidence of severe “hook” defects in rpm-1 mutants which is an indication that the two genes function in the same pathway. Importantly, prior studies in this background, also showed that mutants in the RPM-1 signalling network (e.g. fsn-1, glo-4 and ppm-2) do not enhance the incidence of severe “hook” defects as double mutants with rpm-1 compared to rpm-1 single mutants (Fig. 7B, ibid.).

      To reflect these ideas more clearly, we revised the Results section pertaining to C. elegans genetics (starting on line 418) and tempered our discussion (lines 517). Basically, this section now says that we studied genetic interactions between vab-1 and the RPM-1/MYCBP2 signalling network. From these experiments we conclude that: (1) The enhancement of overextension defects in vab-1; glo-4 and vab-1; fsn-1 double mutants compared to single mutants indicates that VAB-1/EPHR functions in parallel to known RPM-1 binding proteins to facilitate axon termination, and (2) Since the vab-1; rpm-1 double mutants do not display an increased frequency or severity of overextension defects compared to rpm-1 single mutants, VAB-1 /EPHR functions in the same genetic pathway as RPM-1/MYCBP2.

      The new genetic data included in this version were generated by Karla J. Opperman who is now included as a co-author.

      Further corrections:

      Author response image 4.

      Because of the errors associated with quantifications in Fig. 3D (see above), we reviewed other quantification methodologies and noticed another discrepancy that required a correction. In the hippocampal neuron growth cone collapse assay shown in the previous version of Fig. 7 D (left), the growth cones were classified into three groups: 1, fully collapsed; 2, hard to tell, but not fully collapsed; 3, fan-shape cones. Two different quantifications were performed as follows: (1), number of fully collapsed cones divided by the numbers of all growth cones; (2), number of fully collapsed cones divided by [number of fully collapsed cones + fan-shape cones]. CC erroneously used the second method to generate Fig. 7D.

      We think that the first method is more appropriate. Furthermore, since n=5 for the Fc and eB1-Fc conditions, but n=3 for the eB2-Fc condition, we decided to omit it. The final plot for figure 7D is the following:

      Author response image 5.

      Our conclusion still stands that exogenous FBD1 WT overexpression impaired the growth cone collapse mediated by EphB.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for the positive comments.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling has been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for the positive comments.

      Weaknesses:

      1) Regarding the fish to water volume ratio, the arguments raised by the authors are valid. However, the ratio used is still quite high (as high as >2000 in solitary fish), much higher than that recommended by Svendsen et al (2006). Hence this point needs to be discussed in the ms (summarising the points raised in the authors' response)

      Response: Thank you for the comments. We have addressed this point in the previous comments. In short, our ratio is within the range of the published literature. We conducted the additional signal-to-noise analysis for quality assurance.

      2) Wall effects: Fish in a school may have been swimming closer to the wall. The fact that the convex hull volume of the fish school did not change as speed increased is not a demonstration that fish were not closer to the wall, nor is it a demonstration that wall effect were not present. Therefore the issue of potential wall effects is a weakness of this paper.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We provided many other considerations in addition to the convex hull volume. In particular, our boundary layer is < 2.5mm, which was narrower than the width of the giant danio of ~10 mm.

      3) The authors stated "Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period". This is however not quantified.

      Response: Thank you for the comments. We have addressed this point in the previous comments. We want to note that the statement in the response letter is to elaborate the discussion points, but not stated as data in the manuscript. The bottom line is very few studies used PIV to quantify the thickness of the boundary layer like what we did in our experiment.

      4) Statistical analysis. The authors have dealt satisfactorily with most of the comments.

      However :

      (a) the following comment has not been dealt with directly in the ms "One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish."

      (b) Different sizes were used for solitary and schooling fishes. The authors justify using larger fish as solitary to provide a better ratio of respirometer volume to fish volume in the tests on individual fish. However, mass scaling for tail beat frequency was not provided. Although (1) this is because of lack of data for this species and (2) using scaling exponent of distant species would introduce errors of unknown magnitude, this is still a weakness of the paper that needs to be acknowledged here and in the ms.

      Response: Thank you for the comments. We have addressed both points in the previous comments and provided comprehensive discussions. We also stated the caveats in the method section of the manuscript.

      Reviewer #3 (Public Review):

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data.

      Response: Thank you for the positive comments.

      Recommendations for the authors:

      Reviewer #3 (Recommendations For The Authors):

      I have read carefully the revised version of the manuscript and would like to thank the authors for addressing all my comments/suggestions.

      I have no additional comments/suggestions. Now, I strongly believe that this manuscript deserves to be published in eLife.

      Response: Thank you for the positive comments.


      The following is the authors’ response to the original reviews.

      General responses

      Many thanks to the reviewers and editors for their very helpful comments on our manuscript. Below we respond (in blue text) to each of the reviewer comments, both the public ones and the more detailed individual comments in the second part of each review. In some cases, we consider these together where the same point is made in both sets of comments. We have made several changes to the manuscript in response to reviewer suggestions, and we respond in detail to the comments of reviewer #2 who feels that we have overstated the significance of our manuscript and suggests several relevant literature references. We prepared a table summarizing these references and why they differ substantially from the approach taken in our paper here.

      Overall, we would like to emphasize to both reviewers and readers of this response document that previous studies of fish schooling dynamics (or collective movement of vertebrates in general, see Commentary Zhang & Lauder 2023 J. Exp. Biol., doi:10.1242/jeb.245617) have not considered a wide speed range and thus the importance of measuring EPOC (excess post-exercise oxygen consumption) as a key component of energy use. Quantifying both aerobic and non-aerobic energy use allows us to calculate the total energy expenditure (TEE) which we show differs substantially and, importantly, non-linearly with speed between schools and measurements on solitary individuals. Comparison between school total energy use and individual total energy use are critical to understanding the dynamics of schooling behaviour in fishes.

      The scope of this study is the energetics of fish schools. By quantifying the TEE over a wide range of swimming speeds, we also show that the energetic performance curve is concave upward, and not linear, and how schooling behaviour modifies this non-linear relationship.

      In addition, one key implication of our results is that kinematic measurements of fish in schools (such as tail beat frequency) are not a reliable metric by which to estimate energy use. Since we recorded high-speed video simultaneously with energetic measurements, we are able to show that substantial energy savings occur by fish in schools with little to no change in tail beat frequency, and we discuss in the manuscript the various fluid dynamic mechanisms that allow this. Indeed, studies of bird flight show that when flying in a (presumed) energy-saving V-formation, wing beat frequency can actually increase compared to flying alone. We believe that this is a particularly important part of our findings: understanding energy use by fish schools must involve actual measurements of energy use and not indirect and sometimes unreliable kinematic measurements such as tail beat frequency or amplitude.

      Reviewer #1 (Public Review):

      Summary:

      In the presented manuscript the authors aim at quantifying the costs of locomotion in schooling versus solitary fish across a considerable range of speeds. Specifically, they quantify the possible reduction in the cost of locomotion in fish due to schooling behavior. The main novelty appears to be the direct measurement of absolute swimming costs and total energy expenditure, including the anaerobic costs at higher swimming speeds.

      In addition to metabolic parameters, the authors also recorded some basic kinematic parameters such as average distances or school elongation. They find both for solitary and schooling fish, similar optimal swimming speeds of around 1BL/s, and a significant reduction in costs of locomotion due to schooling at high speeds, in particular at ~5-8 BL/s.

      Given the lack of experimental data and the direct measurements across a wide range of speeds comparing solitary and schooling fish, this appears indeed like a potentially important contribution of interest to a broader audience beyond the specific field of fish physiology, in particular for researchers working broadly on collective (fish) behavior.

      Response: Thank you for seeing the potential implications of this study. We also believe that this paper has broader implications for collective behaviour in general, and outline some of our thinking on this topic in a recent Commentary article in the Journal of Experimental Biology: (Zhang & Lauder 2023 doi:10.1242/jeb.245617). Understanding the energetics of collective behaviours in the water, land, and air is a topic that has not received much attention despite the widespread view that moving as a collective saves energy.

      Strengths:

      The manuscript is for the most part well written, and the figures are of good quality. The experimental method and protocols are very thorough and of high quality. The results are quite compelling and interesting. What is particularly interesting, in light of previous literature on the topic, is that the authors conclude that based on their results, specific fixed relative positions or kinematic features (tail beat phase locking) do not seem to be required for energetic savings. They also provide a review of potential different mechanisms that could play a role in the energetic savings.

      Response: Thank you for seeing the nuances we bring to the existing literature and comment on the quality of the experimental method and protocols. Despite a relatively large literature on fish schooling based on previous biomechanical research, our studies suggest that direct measurement of energetic cost clearly demonstrates the energy savings that result from the sum of different fluid dynamic mechanisms depending on where fish are, and also emphasizes that simple metrics like fish tail beat frequency do not adequately reflect energy savings during collective motion.

      Weaknesses:

      A weakness is the actual lack of critical discussion of the different mechanisms as well as the discussion on the conjecture that relative positions and kinematic features do not matter. I found the overall discussion on this rather unsatisfactory, lacking some critical reflections as well as different relevant statements or explanations being scattered across the discussion section. Here I would suggest a revision of the discussion section.

      Response: The critical discussion of the different possible energy-saving mechanisms is indeed an important topic. We provided a discussion about the overall mechanism of ‘local interactions’ in the first paragraph of “Schooling Dynamics and energy conservation”. To clarify, our aim with Figure 1 is to introduce the current mechanisms proposed in the existing engineering/hydrodynamic literature that have studied a number of possible configurations both experimentally and computationally. Thank you for the suggestion of better organizing the discussion to critically highlight different mechanisms that would enable a dynamic schooling structure to still save energy and why the appendage movement frequency does not necessarily couple with the metabolic energy expenditure. Much of this literature uses computational fluid dynamic models or experiments on flapping foils as representative of fish. This exact issue is of great interest to us, and we are currently engaged in a number of other experiments that we hope will shed light on how fish moving in specific formations do or don’t save energy.

      Our aim in presenting Figure 1 at the start of the paper was to show that there are several ways that fish could save energy when moving in a group as shown by engineering analyses, but before investigating these various mechanisms in detail we first have to show that fish moving in groups actually do save energy with direct metabolic measurements. Hence, our paper treats the various mechanisms as inspiration to determine experimentally if, in fact, fish in schools save energy, and if so how much over a wide speed range. Our focus is to experimentally determine the performance curve that shows energy use as speed increases, for schools compared to individuals. Therefore, we have elected not to go into detail about these different hydrodynamic mechanisms in this paper, but rather to present them as a summary of current engineering literature views and then proceed to document energy savings (as stated in the second last paragraph of Introduction). We have an Commentary paper in the Journal of Experimental Biology that addresses this issue generally, and we are reluctant to duplicate much of that discussion here (Zhang & Lauder 2023 doi:10.1242/jeb.245617). We are working hard on this general issue as we agree that it is very interesting. We have revised the Introduction (second last paragraph of Introduction) and Discussion (first paragraph of Discussion) to better indicate our approach, but we have not added any significant discussion of the different hydrodynamic energy saving proposals as we believe that it outside the scope of this first paper and more suitable as part of follow-up studies.

      Also, there is a statement that Danio regularly move within the school and do not maintain inter-individual positions. However, there is no quantitative data shown supporting this statement, quantifying the time scales of neighbor switches. This should be addressed as core conclusions appear to rest on this statement and the authors have 3d tracks of the fish.

      Response: Thank you for pointing out this very important future research direction. Based on our observations and the hypothesized mechanisms for fish within the school to save energy (Fig. 1), we have been conducting follow-up experiments to decipher the multiple dynamic mechanisms that enable the fish within the school to save energy. Tracking the 3D position of each individual fish body in 3D within the fish school has proven difficult. We currently have 3D data on the nose position obtained simultaneously with the energetic measurements, but we do not have full 3D fish body positional data. Working with our collaborators, we are developing a 3-D tracking algorithm that will allow us to quantify how long fish spend in specific formations, and we currently have a new capability to record high-speed video of fish schooling moving in a flow tank for many hours (see our recent perspective by Ko et al., 2023 doi.org/10.1098/rsif.2023.0357). The new algorithms and the results will be published as separate studies and we think that these ongoing experiments are outside the scope of the current study with its focus on energetics. Nevertheless, the main point of Fig. 1 is to provide possible mechanisms to inspire future studies to dissect the detailed hydrodynamic mechanisms for energy saving, and the points raised by this comment are indeed extremely interesting to us and our ongoing experiments in this area. We provide a statement to clarify this point in the 1st paragraph of “Schooling dynamics and energy conservation” section.

      Further, there is a fundamental question on the comparison of schooling in a flow (like a stream or here flow channel) versus schooling in still water. While it is clear that from a pure physics point of view that the situation for individual fish is equivalent. As it is about maintaining a certain relative velocity to the fluid, I do think that it makes a huge qualitative difference from a biological point of view in the context of collective swimming. In a flow, individual fish have to align with the external flow to ensure that they remain stationary and do not fall back, which then leads to highly polarized schools. However, this high polarization is induced also for completely non-interacting fish. At high speeds, also the capability of individuals to control their relative position in the school is likely very restricted, simply by being forced to put most of their afford into maintaining a stationary position in the flow. This appears to me fundamentally different from schooling in still water, where the alignment (high polarization) has to come purely from social interactions. Here, relative positioning with respect to others is much more controlled by the movement decisions of individuals. Thus, I see clearly how this work is relevant for natural behavior in flows and that it provides some insights on the fundamental physiology, but I at least have some doubts about how far it extends actually to “voluntary” highly ordered schooling under still water conditions. Here, I would wish at least some more critical reflection and or explanation.

      Response: We agree completely with this comment that animal group orientations in still fluid can have different causes from their locomotion in a moving fluid. We very much agree with the reviewer that social interactions in still water, which typically involve low-speed locomotion and other behaviours such as searching for food by the group, can be important and could dictate fish movement patterns. In undertaking this project, we wanted to challenge fish to move at speed, and reasoned that if energy savings are important in schooling behaviour due to hydrodynamic mechanisms, we should see this when fish are moving forward against drag forces induced by fluid impacting the school. Drag forces scale as velocity squared, so we should see energy savings by the school, if any, as speed increases.

      We also quantified fish school swimming speeds in the field from the literature and presented a figure showing that in nature fish schools can and do move at considerable speeds. This figure is part of our overview on collective behaviour recently in J. Exp. Biol. (Zhang & Lauder 2023 doi:10.1242/jeb.245617). It is only by studying fish schools moving over a speed range that we can understand the performance curve relating energy use to swimming speed. Indeed, we wonder if fish moving in still water as a collective versus as solitary individuals would show energy savings at all. We now provided the justification for studying fish schooling in moving fluids in the second and third paragraph of the Introduction. When animals are challenged hydrodynamically (e.g. at higher speed), it introduces the need to save energy. Movement in still water lacks the need for fish to save energy. When fish do not need to save locomotor energy in still water, it is hard to justify why we would expect to observe energy saving and related physiological mechanisms in the first place. As the reviewer said, the ‘high polarization in still water has to come purely from social interactions’. Our study does not dispute this consideration, and indeed we agree with it! In our supplementary materials, we acknowledged the definitions for different scenarios of fish schooling can have different behavioural and ecological drivers. Using these definitions, we explicitly stated, in the introduction, that our study focuses on active and directional schooling behaviour to understand the possible hydrodynamic benefits of energy expenditure for collective movements of fish schools. By stating the scope of our study at the outset, we hope that this will keep the discussion focused on the energetics and kinematics of fish schools, without unnecessarily addressing other many possible reasons for fish schooling behaviours in the discussion such as anti-predator grouping, food searching, or reproduction as three examples.

      As this being said, we acknowledge (in the 2nd paragraph of the introduction) that fish schooling behaviour can have other drivers when the flow is not challenging. Also, there are robotic-&-animal interaction studies and computational fluid dynamic simulation studies (that we cited) that show individuals in fish schools interact hydrodynamically. Hydrodynamic interactions are not the same as behaviour interactions, but it does not mean individuals within the fish schooling in moving flow are not interacting and coordinating.

      Related to this, the reported increase in the elongation of the school at a higher speed could have also different explanations. The authors speculate briefly it could be related to the optimal structure of the school, but it could be simply inter-individual performance differences, with slower individuals simply falling back with respect to faster ones. Did the authors test for certain fish being predominantly at the front or back? Did they test for individual swimming performance before testing them in groups together? Again this should be at least critically reflected somewhere.

      Response: Thank you for raising this point. If the more streamlined schooling structure above 2 BL/s is due to the weaker individuals not catching up with the rest of the school, we would expect the weaker individuals to quit swimming tests well before 8 BL/s. However, we did not observe this phenomenon. Although we did not specifically test for the two questions the reviewer raises here, our results suggest that inter-individual variation in the swimming performance of giant Danio is not at the range of 2 to 8 BL/s (a 400% difference). While inter-individual differences certainly exist, we believe that they are small relative to the speeds tested as we did not see any particular individuals consistently unable to keep up with the school or certain individuals maintaining a position near the back of the school. As this being said, we provide additional interpretations for the elongated schooling structure at the end of the 2nd paragraph of the “schooling dynamics and energy conservation” section.

      Reviewer #1 (Recommendations For The Authors):

      Line 58: The authors write "How the fluid dynamics (...) enable energetic savings (...)". However, the paper focuses rather on the question of whether energetic savings exist and does not enlighten us on the dominant mechanisms. Although it gives a brief overview of all possible mechanisms, it remains speculative on the actual fluid dynamical and biomechanical processes. Thus, I suggest changing "How" to "Whether".

      Response: Great point! We changed “How” to “Whether”.

      Lines 129-140: In the discussion of the U-shaped aerobic rate, there is no direct comparison of the minimum cost values between the schooling and solitary conditions. Only the minimum costs during schooling are named/discussed. In addition to the data in the figure, I suggest explicitly comparing them as well for full transparency.

      Response: Thanks for raising this point. We did not belabor this point because there was no statistical significance. As requested, we added a statement to address this with statistics in the 1st paragraph of the Results section.

      Line 149: The authors note that the schooling fish have a higher turning frequency than solitary fish. Here, a brief discussion of potential explanations would be good, e.g. need for coordination with neighbors -> cost of schooling.

      Response: Thank you for the suggestion. In the original version of the manuscript, we discussed that the higher turning frequency could be related to higher postural costs for active stability adjustment at low speeds. As requested, we now added that high turn frequency can relate to the need for coordination with neighbours in the last paragraph of the “Aerobic metabolic rate–speed curve of fish schools” section. As indicated above, the suspected costs of coordination did not result in higher costs of schooling at the lower speed (< 2 BL s-1, where the turn frequency is higher).

      Line 151: The authors discuss the higher maximum metabolic rate of schooling fish as a higher aerobic performance and lower use of aerobic capacity. This may be confusing for non-experts in animal physiology and energetics of locomotion. I recommend providing somewhere in a paper an additional explanation to clarify it to non-experts. While lines 234-240 and further below potentially address this, I found this not very focused or accessible to non-experts. Here, I suggest the authors consider revisions to make it more comprehensible to a wider, interdisciplinary audience.

      Response: We agree with the reviewer that the difference between maximum oxygen uptake and maximum metabolic rate can be confusing. In fact, among animal physiologists, these two concepts are often muddled. One of the authors is working on an invited commentary from J. Exp. Biol. to clearly define these two concepts. We have made the language in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use” more accessible to a general audience. In addition, the original version presented the relevant framework in the first and the second paragraphs of the Introduction when discussing aerobic and non-aerobic energy contribution. In brief, when vertebrates exhibit maximum oxygen uptake, they use aerobic and non-aerobic energy contributions that both contribute to their metabolic rate. Therefore, the maximum total metabolic rate is higher than the one estimated from only maximum oxygen uptake. We used the method presented in Fig. 3a to estimate the maximum metabolic rate for metabolic energy use (combining aerobic and non-aerobic energy use). In kinesiology, maximum oxygen uptake is used to evaluate the aerobic performance and energy use of human athletes is estimated by power meters or doubly labelled water.

      Line 211: The authors write that Danio regularly move within the school and do not maintain inter-individual positions. Given that this is an important observation, and the relative position and its changes are crucial to understanding the possible mechanisms for energetic savings in schools, I would expect some more quantitative support for this statement, in particular as the authors have access to 3d tracking data. For example introducing some simple metrics like average time intervals between swaps of nearest neighbors, possibly also resolved in directions (front+back versus right+left), should provide at least some rough quantification of the involved timescales, whether it is seconds, tens of seconds, or minutes.

      Response: As responded in the comment above, 3-D tracking of both body position and body deformation of multiple individuals in a school is not a trivial research challenge and we have ongoing research on this issue. We hope to have results on the 3D positions of fish in schools soon! For this manuscript, we believe that the data in Figure 4E which shows the turning frequency of fish in schools and solitary controls shows the general phenomenon of fish moving around (as fish turn to change positions within the school), but we agree that more could be done to address this point and we are indeed working on it now.

      Lines 212-217: There is a very strong statement that energetic savings by collective motion do not require fixed positional arrangements or specific kinematic features. While possibly one of the most interesting findings of the paper, I found that in its current state, it was not sufficiently/satisfactorily discussed. For example for the different mechanisms summarized, there will be clearly differences in their relevance based on relative distance and position. For example mechanisms 3 and 4 likely have significant contributions only at short distances. Here, the question is how relevant can they be if the average distance is 1 BL? Also, 1BL side by side is very much different from 1BL front to back, given the elongated body shape. For mechanisms 1 and 2, it appears relative positioning is quite important. Here, having maybe at least some information from the literature (if available) on the range of wall or push effects or the required precision in relative positioning for having a significant benefit would be very much desired. Also, do the authors suggest that a) these different effects overlap giving any position in the school a benefit, or b) that there are specific positions giving benefits due to different mechanisms and that fish "on purpose" switch only between these energetic "sweet" spots, I guess this what is towards the end referred to as Lighthill conjecture? Given the small group size I find a) rather unlikely, while b) actually also leads to a coordination problem if every fish is looking for a sweet spot. Overall, a related question is whether the authors observed a systematic change in leading individuals, which likely have no, or very small, hydrodynamic benefits.

      Response: Thank you for the excellent discussion on this point. As we responded above, we have softened the tone of the statement. In the original version, we were clear that the known mechanisms as summarized in Fig. 1 lead us to ‘expect’ that fish do not need to be in a fixed position to save energy.

      In general, current engineering/hydrodynamic studies suggest that any fish positioned within one body length (both upstream and downstream and side by side) will benefit from one or more of the hydrodynamic mechanisms that we expect will reduce energy costs, relative to a solitary individual. Our own studies using robotic systems suggest that a leading fish will experience an added mass “push” from a follower when the follower is located within roughly ½ body length behind the leader. We cited a Computational Fluid Dynamic (CFD) study about the relative distance among individuals for energy saving to be in effect. Please keep in mind that CFD simulation is a simplified model of the actual locomotion of fish and involves many assumptions and currently only resolves the time scale of seconds (see commentary of Zhang & Lauder 2023 doi:10.1242/jeb.245617 in J. Exp. Biol. for the current challenges of CFD simulation). To really understand the dynamic positions of fish within the school, we will need 3-D tracking of fish schools with tools that are currently being developed. Ideally, we would also have simultaneous energetic measurements, but of course, this is enormously challenging and it is not clear at this time how to accomplish this.

      We certainly agree that the relative positions of fish (vertically staggered or in-line swimming) do affect the specific hydrodynamic mechanisms being used. We cited the study that discussed this, but the relative positions of fish remain an active area of research. More studies will be out next few years to provide more insight into the effects of the relative positions of fish in energy saving. The Lighthill conjecture is observed in flapping foils and whether fish schools use the Lighthill conjecture for energy saving is an active area of research but still unclear. We also provided a citation about the implication of the Lighthill conjecture on fish schools. Hence, our original version stated ‘The exact energetic mechanisms….would benefit from more in-depth studies’. We agree with the reviewer that not all fish can benefit Lighthill conjecture (if fish schools use it) at any given time point, hence the fish might need to rotate in using the Lighthill conjecture. This is one more explanation for the dynamic positioning of fish in a school.

      Overall, in response to the question raised, we do not believe that fish are actively searching for “sweet spots” within the school, although this is only speculation on our part. We believe instead that fish, located in a diversity of positions within the school, get the hydrodynamic advantage of being in the group at that configuration.

      We believe that fish, once they group and maintain a grouping where individuals are all within around one body length distance from each other, will necessarily get hydrodynamic benefits. As a collective group, we believe that at any one time, several different hydrodynamic mechanisms are all acting simultaneously and result in reduced energetic costs (Fig. 1).

      Figure 4E: The y-axis is given in the units of 10-sec^-1 which is confusing is it 10 1/s or 1/(10s)? Why not use simply the unit of 1/s which is unambiguous?

      Response: Thank you for the suggestions. We counted the turning frequency over the course of 10 seconds. To reflect more accurately on what we did, we used the suggested unit of 1/(10s) to more correctly correspond to how we made the measurements and the duration of the measurement. We recognize that this is a bit non-standard but would like to keep these units if possible.

      Figure 4F: The unit in the school length is given in [mm], which suggests that the maximal measured school length is 4mm, this can't be true.

      Response: Thank you for pointing this out. The unit should be [cm], which we corrected.

      Reviewer #2 (Public Review):

      Summary:

      This paper tests the idea that schooling can provide an energetic advantage over solitary swimming. The present study measures oxygen consumption over a wide range of speeds, to determine the differences in aerobic and anaerobic cost of swimming, providing a potentially valuable addition to the literature related to the advantages of group living.

      Response: Thank you for acknowledging our contribution is a valuable addition to the literature on collective movement by animals.

      Strengths:

      The strength of this paper is related to providing direct measurements of the energetics (oxygen consumption) of fish while swimming in a group vs solitary. The energetic advantages of schooling have been claimed to be one of the major advantages of schooling and therefore a direct energetic assessment is a useful result.

      Response: Thank you for acknowledging our results are useful and provide direct measurements of energetics to prove a major advantage of schooling relative to solitary motion over a range of speeds.

      Weaknesses:

      The manuscript suffers from a number of weaknesses which are summarised below:

      1) The possibility that fish in a school show lower oxygen consumption may also be due to a calming effect. While the authors show that there is no difference at low speed, one cannot rule out that calming effects play a more important role at higher speed, i.e. in a more stressful situation.

      Response: Thank you for raising this creative point on “calming”. When vertebrates are moving at high speeds, their stress hormones (adrenaline, catecholamines & cortisol) increase. This phenomenon has been widely studied, and therefore, we do not believe that animals are ‘calm’ when moving at high speed and that somehow a “calming effect” explains our non-linear concave-upward energetic curves. “Calming” would have to have a rather strange non-linear effect over speed to explain our data, and act in contrast to known physiological responses involved in intense exercise (whether in fish or humans). It is certainly not true for humans that running at high speeds in a group causes a “calming effect” that explains changes in metabolic energy expenditure. We have added an explanation in the third paragraph in the section “Schooling dynamics enhances aerobic performance and reduces non-aerobic energy use”. Moreover, when animal locomotion has a high frequency of appendage movement (for both solitary individual and group movement), they are also not ‘calm’ from a behavioural point of view. Therefore, we respectfully disagree with the reviewer that the ‘calming effect’ is a major contributor to the energy saving of group movement at high speed. It is difficult to believe that giant danio swimming at 8 BL/s which is near or at their maximal sustainable locomotor limits are somehow “calm”. In addition, we demonstrated by direct energetic measurement that solitary individuals do not have a higher metabolic rate at the lower speed and thus directly show that there is very likely no cost of “uncalm” stress that would elevate the metabolic rate of solitary individuals. Furthermore, the current version of this manuscript compared the condition factor of the fish in the school and solitary individuals and found no difference (see Experimental Animal Section in the Methods). This also suggests that the measurement on the solitary fish is likely not confounded by any stress effects.

      Finally, and as discussed further below, since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly measure fish behaviour. Since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools swimming at speed (not in still water) appear to be just as “calm” as solitary individuals.

      2) The ratio of fish volume to water volume in the respirometer is much higher than that recommended by the methodological paper by Svendsen et al. (J Fish Biol 2016) Response: The ratio of respirometer volume to fish volume is an important issue that we thought about in detail before conducting these experiments. While Svendsen et al., (J. Fish Biol. 2016) recommend a respirometer volume-to-fish volume ratio of 500, we are not aware of any experimental study comparing volumes with oxygen measuring accuracy that gives this number as optimal. In addition, the Svendsen et al. paper does not consider that their recommendation might result in fish swimming near the walls of the flume (as a result of having relatively larger fish volume to flume volume) and hence able to alter their energetic expenditure by being near the wall. In our case, we needed to be able to study both a school (with higher animal volumes) and an individual (relatively lower volume) in the same exact experimental apparatus. Thus, we had to develop a system to accurately record oxygen consumption under both conditions.

      The ratio of our respirometer to individual volume for schools is 693, while the value for individual fish is 2200. Previous studies (Parker 1973, Abrahams & Colgan, 1985, Burgerhout et al., 2013) that used a swimming-tunnel respirometer (i.e., a sealed treadmill) to measure the energy cost of group locomotion used values that range between 1116 and 8894 which are large and could produce low-resolution measurements of oxygen consumption. Thus, we believe that we have an excellent ratio for our experiments on both schools and solitary individuals, while maintaining a large enough value that fish don’t experience wall effects (see more discussion on this below, as we experimentally quantified the flow pattern within our respirometer).

      The goal of the recommendation by Svendsen et al. is to achieve a satisfactory R2 (coefficient of determination) value for oxygen consumption data. However, Chabot et al., 2020 (DOI: 10.1111/jfb.14650) pointed out that only relying on R2 values is not always successful at excluding non-linear slopes. Much worse, only pursuing high R2 values has a risk of removing linear slopes with low R2 only because of a low signal-to-noise ratio and resulting in an overestimation of the low metabolic rate. Although we acknowledge the excellent efforts and recommendations provided by Svendsen et al., 2016, we perhaps should not treat the ratio of respirometer to organism volume of 500 as the gold standard for swim-tunnel respirometry. Svendsen et al., 2020 did not indicate how they reached the recommendation of using the ratio of respirometer to organism volume of 500. Moreover, Svendsen et al., 2020 stated that using an extended measuring period can help to resolve the low signal-to-noise ratio. Hence, the key consideration is to obtain a reliable signal-to-noise ratio which we will discuss below.

      To ensure we obtain reliable data quality, we installed a water mixing loop (Steffensen et al., 1984) and used the currently best available technology of oxygen probe (see method section of Integrated Biomechanics & Bioenergetic Assessment System) to improve the signal-to-noise ratio. The water mixing loop is not commonly used in swim-tunnel respirometer. Hence, if a previously published study used a respirometer-to-organism ratio up to 8894, our updated oxygen measuring system is completely adequate to produce reliable signal-to-noise ratios in our system with a respirometer-to-organism ratio of 2200 (individuals) and 693 (schools). In fact, our original version of the manuscript used a published method (Zhang et al., 2019, J. Exp. Biol. https://doi.org/10.1242/jeb.196568) to analyze the signal-to-noise ratio and provided the quantitative approach to determine the sampling window to reliably capture the signal (Fig. S5).

      3) Because the same swimming tunnel was used for schools and solitary fish, schooling fish may end up swimming closer to the wall (because of less volume per fish) than solitary fish. Distances to the wall of schooling fish are not given, and they could provide an advantage to schooling fish.

      Response: This is an issue that we considered carefully in designing these experiments. After considering the volume of the respirometer and the size of the fish (see the response above), we decided to use the same respirometer to avoid any other confounding factors when using different sizes of respirometers with potentially different internal flow patterns. In particular, different sizes of Brett-type swim-tunnel respirometers differ in the turning radius of water flow, which can produce different flow patterns in the swimming section. Please note that we quantified the flow pattern within the flow tank using particle image velocimetry (PIV) (so we have quantitative velocity profiles across the working section at all tested speeds), and modified the provided baffle system to improve the flow in the working section.

      Because we took high-speed videos simultaneously with the respirometry measurements, we can state unequivocally that individual fish within the school did not swim closer to the walls than solitary fish over the testing period (see below for the quantitative measurements of the boundary layer). Indeed, many previous respirometry studies do not obtain simultaneous video data and hence are unable to document fish locations when energetics is measured.

      In studying schooling energetics, we believe that it is important to control as many factors as possible when making comparisons between school energetics and solitary locomotion. We took great care as indicated in the Methods section to keep all experimental parameters the same (same light conditions, same flow tank, same O2 measuring locations with the internal flow loop, etc.) so that we could detect differences if present. Changing the flow tank respirometer apparatus between individual fish and the schools studied would have introduced an unacceptable alteration of experimental conditions and would be a clear violation of the best experimental practices.

      We have made every effort to be clear and transparent about the choice of experimental apparatus and explained at great length the experimental parameters and setup used, including the considerations about the wall effect in the extended Methods section and supplemental material provided.

      Our manuscript provides the measurement of the boundary layer (<2.5 mm at speeds > 2 BL s-1) in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      In the manuscript, we also provide details about the wall effects and fish schools as follows from the manuscript: ”…the convex hull volume of the fish school did not change as speed increased, suggesting that the fish school was not flattening against the wall of the swim tunnel, a typical feature when fish schools are benefiting from wall effects. In nature, fish in the centre of the school effectively swim against a ‘wall’ of surrounding fish where they can benefit from hydrodynamic interactions with neighbours.”’ The notion that the lateral motion of surrounding slender bodies can be represented by a streamlined wall was also proposed by Newman et al., 1970 J. Fluid Mech. These considerations provide ample justification for the comparison of locomotor energetics by schools and solitary individuals.

      4) The statistical analysis has a number of problems. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tends to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. Other issues are related to data (for example Tail beat frequency) not being independent in schooling fish.

      Response: We cannot agree with the reviewer that fish schools and solitary individuals are different statistical units. Indeed, these are the two treatments in the statistical sense: a school versus the individual. This is why we invested extra effort to replicate all our experiments on multiple schools of different individuals and compare the data to multiple different solitary individuals. This is a standard statistical approach, whether one is comparing a tissue with multiple cells to an individual cell, or multiple locations to one specific location in an ecological study. Our analysis treats the collective movement of the fish school as a functional unit, just like the solitary individual is a functional unit. At the most fundamental level of oxygen uptake measurements, our analysis results from calculating the declining dissolved oxygen as a function of time (i.e. the slope of oxygen removal). Comparisons are made between the slope of oxygen removal by fish schools and the slope of oxygen removal by solitary individuals. This is the correct statistical comparison.

      The larger SD in individuals can be due to multiple biological reasons other than the technical reasons suggested here. Fundamentally, the different SD between fish schools and individuals can be the result of differences between solitary and collective movement and the different fluid dynamic interactions within the school could certainly cause differences in the amount of variation seen. Our interpretation of the ‘numerically’ smaller SD in fish schools than that of solitary individuals suggests that interesting hydrodynamic phenomena within fish schools remain to be discovered.

      Reviewer #2 (Recommendations For The Authors):

      I have reviewed a previous version of this paper. This new draft is somewhat improved but still presents a number of issues which I have outlined below.

      Response: Thanks for your efforts to improve our paper with reviews, but a number of your comments apply to the previous version of the paper, and we have made a number of revisions before submitting it to eLife. We explain below how this version of the manuscript addresses many of your comments from both the previous and current reviews. As readers can see from our responses below, this version of the manuscript version no longer uses only ‘two-way ANOVA’ as we have implemented an additional statistical model. (Please see the comments below for more detailed responses related to the statistical models).

      1) One of the main problems, and one of the reasons (see below) why many previous papers have measured TBF and not the oxygen consumption of a whole school, is that schooling also provides a calming effect (Nadler et al 2018) which is not easily differentiated from the hydrodynamic advantages (Abraham and Colgan 1985). This effect can reduce the MO2 while swimming and the EPOC when recovering. The present study does not fully take this potential issue into account and therefore its results are confounded by such effects. The authors state (line 401) that " the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at a very low testing speed. The flow speed is similar to some areas of the aerated home aquarium for each individual fish. This suggests that the stress of solitary fish likely does not meaningfully contribute to the higher locomotor costs". While this is useful, the possibility that at higher speeds (i.e. a more stressful situation) solitary fish may experience more stress than fish in a school, cannot be ruled out.

      Response: Thank you for finding our results and data useful. We have addressed the comments on calming or stress effects in our response above. The key point is that either solitary or school fish are challenged (i.e. stressed) at a high speed where the sizable increases in stress hormones are well documented in the exercise physiology literature. We honestly just do not understand how a “calming” effect could possibly explain the upward concave energetic curves that we obtained, and how “calming” could explain the difference between schools and solitary individuals. Since we have simultaneous high-speed videos of fish swimming as we measure oxygen consumption at all speeds, we are able to directly observe fish behaviour. It is not exactly clear what a “calming effect” would look like kinematically or how one would measure this experimentally, but since we observed no alteration in tail beat kinematics between schools and individuals (a key result that we elaborate on below), it’s very hard to justify that a “calming” effect explains our results. Fish in schools appear to be just as “calm” as solitary individuals.

      If the reviewer's “calming effect” is a general issue, then birds flying in a V-formation should also experience a “calming effect”, but at least one study shows that birds in a V-formation experience higher wing beat frequencies.

      In addition, Nalder et al., 2018 (https://doi.org/10.1242/bio.031997) did not study any such “calming effect”. We assume the reviewer is referring to Nalder et al., 2016, which showed that shoaling reduced fish metabolic rates in a resting respirometer that has little-to-no water current that would motivate fish to swim (which is very different from the swim-tunnel respirometer we used). Moreover, the inter-loop system used by Nalder et al., 2016 has the risk of mixing the oxygen uptake of the fish shoal and solitary individuals. Hence, we believe that it is not appropriate to extend the results of Nalder et al., 2016 to infer and insist on a calming effect for fish schools that we studied which are actively and directionally swimming over a wide speed range up to and including high speeds. Especially since our data clearly show that ‘the aerobic locomotion cost of solitary individuals showed no statistical difference from (in fact, being numerically lower) that of fish schools at very low testing speeds’. More broadly, shoaling and schooling are very different in terms of polarization as well as the physiological and behavioural mechanisms used in locomotion. Shoaling behaviour by fish in still water is not the same as active directional schooling over a speed range. Our supplementary Table 1 provides a clear definition for a variety of grouping behaviours and makes the distinction between shoaling and schooling.

      Our detailed discussion about other literature mentioned by this reviewer can be seen in the comments below.

      2) The authors overstate the novelty of their work. Line 29: "Direct energetic measurements demonstrating the 30 energy-saving benefits of fluid-mediated group movements remain elusive" The idea that schooling may provide a reduction in the energetic costs of swimming dates back to the 70s, with pioneering experimental work showing a reduction in tail beat frequency in schooling fish vs solitary (by Zuyev, G. V. & Belyayev, V. V. (1970) and theoretical work by Weihs (1973). Work carried out in the past 20 years (Herskin and Steffensen 1998; Marras et al 2015; Bergerhout et al 2013; Hemelrijk et al 2014; Li et al 2021, Wiwchar et al 2017; Verma et al 2018; Ashraf et al 2019) based on a variety of approaches has supported the idea of a reduction in swimming costs in schooling vs solitary fish. In addition, group respirometry has actually been done in early and more recent studies testing the reduction in oxygen consumption as a result of schooling (Parker, 1973; Itazawa et al., 1978; Abrahams and Colgan 1985; Davis & Olla, 1992; Ross & Backman, 1992, Bergerhout et al 2013; Currier et al 2020). Specifically, Abrahams and Colgan (1985) and Bergerhout et al (2013) found that the oxygen consumption of fish swimming in a school was higher than when solitary, and Abrahams and Colgan (1985) made an attempt to deal with the confounding calming effect by pairing solitary fish up with a neighbor visible behind a barrier. These issues and how they were dealt with in the past (and in the present manuscript) are not addressed by the present manuscript. Currier et al (2020) found that the reduction of oxygen consumption was species-specific.

      Response: We cannot agree with this reviewer that we have overstated the novelty of our work, and, in fact, we make very specific comments on the new contributions of our paper relative to the large previous literature on schooling. We are well aware of the literature cited above and many of these papers have little or nothing to do with quantifying the energetics of schooling. In addition, many of these papers rely on simple kinematic measurements which are unrelated to direct energetic measurements of energy use. To elaborate on this, we present the ‘Table R’ below which evaluates and compares each of the papers this reviewer cites above. The key message (as we wrote in the manuscript) is that none of the previous studies measured non-aerobic cost (and thus do not calculate the total energy expenditure (TEE), which we show to be substantial. In addition, many of these studies do not compare schools to individuals, do not quantify both energetics and kinematics, and do not study a wide speed range. Only 33% of previous studies used direct measurements of aerobic metabolic rate to compare the locomotion costs of fish schools and solitary individuals (an experimental control). We want to highlight that most of the citations in the reviewer’s comments are not about the kinematics or hydrodynamics of fish schooling energetics, although they provide peripheral information on fish schooling in general. We also provide an overview of the literature on this topic in our paper in the Journal of Experimental Biology (Zhang & Lauder 2023 doi:10.1242/jeb.245617) and do not wish to duplicate that discussion here. We summarized and cited the relevant papers about the energetics of fish schooling in Table 1.

      Author response table 1.

      Papers cited by Reviewer #2, and a summary of their contributions and approach.

      References cited above:

      Zuyev, G., & Belyayev, V. V. (1970). An experimental study of the swimming of fish in groups as exemplified by the horsemackerel [Trachurus mediterraneus ponticus Aleev]. J Ichthyol, 10, 545-549.

      Weihs, D. (1973). Hydromechanics of fish schooling. Nature, 241(5387), 290-291.

      Herskin, J., & Steffensen, J. F. (1998). Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 53(2), 366-376.

      Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral ecology and sociobiology, 69, 219-226.

      Burgerhout, E., Tudorache, C., Brittijn, S. A., Palstra, A. P., Dirks, R. P., & van den Thillart, G. E. (2013). Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of experimental marine biology and ecology, 448, 66-71.

      Hemelrijk, C. K., Reid, D. A. P., Hildenbrandt, H., & Padding, J. T. (2015). The increased efficiency of fish swimming in a school. Fish and Fisheries, 16(3), 511-521.

      Li, L., Nagy, M., Graving, J. M., Bak-Coleman, J., Xie, G., & Couzin, I. D. (2020). Vortex phase matching as a strategy for schooling in robots and in fish. Nature communications, 11(1), 5408.

      Wiwchar, L. D., Gilbert, M. J., Kasurak, A. V., & Tierney, K. B. (2018). Schooling improves critical swimming performance in zebrafish (Danio rerio). Canadian Journal of Fisheries and Aquatic Sciences, 75(4), 653-661.

      Verma, S., Novati, G., & Koumoutsakos, P. (2018). Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of Sciences, 115(23), 5849-5854.

      Ashraf, I., Bradshaw, H., Ha, T. T., Halloy, J., Godoy-Diana, R., & Thiria, B. (2017). Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proceedings of the National Academy of Sciences, 114(36), 9599-9604.

      Parker Jr, F. R. (1973). Reduced metabolic rates in fishes as a result of induced schooling. Transactions of the American Fisheries Society, 102(1), 125-131.

      Itazawa, Y., & Takeda, T. (1978). Gas exchange in the carp gills in normoxic and hypoxic conditions. Respiration physiology, 35(3), 263-269.

      Abrahams, M. V., & Colgan, P. W. (1985). Risk of predation, hydrodynamic efficiency and their influence on school structure. Environmental Biology of Fishes, 13, 195-202.

      Davis, M. W., & Olla, B. L. (1992). The role of visual cues in the facilitation of growth in a schooling fish. Environmental biology of fishes, 34, 421-424.

      Ross, R. M., Backman, T. W., & Limburg, K. E. (1992). Group-size-mediated metabolic rate reduction in American shad. Transactions of the American Fisheries Society, 121(3), 385-390.

      Currier, M., Rouse, J., & Coughlin, D. J. (2021). Group swimming behaviour and energetics in bluegill Lepomis macrochirus and rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 98(4), 1105-1111.

      Halsey, L. G., Wright, S., Racz, A., Metcalfe, J. D., & Killen, S. S. (2018). How does school size affect tail beat frequency in turbulent water?. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 218, 63-69.

      Johansen, J. L., Vaknin, R., Steffensen, J. F., & Domenici, P. (2010). Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis. Marine Ecology Progress Series, 420, 221-229.

      3) In addition to the calming effect, measuring group oxygen consumption suffers from a number of problems as discussed in Herskin and Steffensen (1998) such as the fish volume to water volume ratio, which varies considerably when testing a school vs single individuals in the same tunnel and the problem of wall effect when using a small volume of water for accurate O2 measurements. Herskin and Steffensen (1998) circumvented these problems by measuring tailbeat frequencies of fish in a school and then calculating the MO2 of the corresponding tailbeat frequency in solitary fish in a swim tunnel. A similar approach was used by Johansen et al (2010), Marras et al (2015), Halsey et al (2018). However, It is not clear how these potential issues were dealt with here. Here, larger solitary D. aequipinnatus were used to increase the signal-to-noise ratio. However, using individuals of different sizes makes other variables not so directly comparable, including stress, energetics, and kinematics. (see comment 7 below).

      Response: We acknowledge the great efforts made by previous studies to understand the energetics of fish schooling. These studies, as detailed in the table and elaborated in the response above (see comment 2) are very different from our current study. Our study achieved a direct comparison of energetics (including both aerobic and non-aerobic cost) and kinematics between solitary individuals and fish schools that has never been done before. Our detailed response to the supposed “calming effect” is given above.

      As highlighted in the previous comments and opening statement, our current version has addressed the wall effect, tail beat frequency, and experimental and analytical efforts invested to directly compare the energetics between fish schools and solitary individuals. As readers can see in our comprehensive method section, achieving the direct comparison between solitary individuals and fish schools is not a trivial task. Now we want to elaborate on the role of kinematics as an indirect estimate of energetics. Our results here show that kinematic measurements of tail beat frequency are not reliable estimates of energetic cost, and the previous studies cited did not measure EPOC and those costs are substantial, especially as swimming speed increases. Fish in schools can save energy even when the tail beat frequency does not change (although school volume can change as we show). We elaborated (in great detail) on why kinematics does not always reflect on the energetics in the submitted version (see last paragraph of “Schooling dynamics and energy conservation” section). Somehow modeling what energy expenditure should be based only on tail kinematics is, in our view, a highly unreliable approach that has never been validated (e.g., fish use more than just tails for locomotion). Indeed, we believe that this is an inadequate substitute for direct energy measurements. We disagree that using slightly differently sized individuals is an issue since we recorded fish kinematics across all experiments and included the measurements of behaviour in our manuscript. Slightly altering the size of individual fish was done on purpose to provide a better ratio of respirometer volume to fish volume in the tests on individual fish, thus we regard this as a benefit of our approach and not a concern.

      Finally, in another study of the collective behaviour of flying birds (Usherwood, J. R., Stavrou, M., Lowe, J. C., Roskilly, K. and Wilson, A. M. (2011). Flying in a flock comes at a cost in pigeons. Nature 474, 494-497), the authors observed that wing beat frequency can increase during flight with other birds. Hence, again, we cannot regard movement frequency of appendages as an adequate substitute for direct energetic measurements.

      4) Svendsen et al (2016) provide guidelines for the ratio of fish volume to water volume in the respirometer. The ratio used here (2200) is much higher than that recommended. RFR values higher than 500 should be avoided in swim tunnel respirometry, according to Svendsen et al (2016).

      Response: Thank you for raising this point. Please see the detailed responses above to the same comment above. We believe that our experimental setup and ratios are very much in line with those recommended, and represent a significant improvement on previous studies which use large ratios.

      5) Lines 421-436: The same goes for wall effects. Presumably, using the same size swim tunnel, schooling fish were swimming much closer to the walls than solitary fish but this is not specifically quantified here in this paper. Lines 421-436 provide some information on the boundary layer (though wall effects are not just related by the boundary layer) and some qualitative assessment of school volume. However, no measurement of the distance between the fish and the wall is given.

      Response: Please see the detailed responses above to the same comment. Specifically, we used the particle image velocimetry (PIV) system to measure the boundary layer (<2.5 mm at speeds > 2 BL s-1) and stated the parameters in the methods section of the Integrated Biomechanics & Bioenergetic Assessment System. We also state that the boundary layer is much thinner than the body width of the giant danio (~10 mm) so that the fish cannot effectively hide near the wall. Due to our PIV calibration, we are able to quantify flow near the wall.

      Due to our video data obtained simultaneously with energetic measurements, we do not agree that fish were swimming closer to the wall in schools and also note that we took care to modify the typical respirometer to both ensure that flow across the cross-section did not provide any refuges and to quantify flow velocities in the chamber using particle image velocimetry. We do not believe that any previous experiments on schooling behaviour in fish have taken the same precautions.

      6) The statistical tests used have a number of problems. Two-way ANOVA was based on school vs solitary and swimming speed. However, there are repeated measures at each speed and this needs to be dealt with. The degrees of freedom of one-way ANOVA and T-tests are not provided. These tests took into account five groups of fish vs. five solitary fish. The values of MO2 of each school are the result of the oxygen consumption of each fish, and therefore the test is comparing 5 individuals (i.e. an individual is the statistical unit) vs 5 schools (a school made out of 8 fish is the statistical unit). Therefore the test is comparing two different statistical units. One can see from the graphs that schooling MO2 tend to have a smaller SD than solitary data. This may well be due to the fact that schooling data are based on 5 points (five schools) and each point is the result of the MO2 of five fish, thereby reducing the variability compared to solitary fish. TBF, on the other hand, can be assigned to each fish even in a school, and therefore TBF of each fish could be compared by using a nested approach of schooling fish (nested within each school) vs solitary fish, but this is not the statistical procedure used in the present manuscript. The comparison between TBFs presumably is comparing 5 individuals vs all the fish in the schools (6x5=30 fish). However, the fish in the school are not independent measures.

      Response: We cannot agree with this criticism, which may be based on this reviewer having seen a previous version of the manuscript. We did not use two-way ANOVA in this version. This version of the manuscript reported the statistical value based on a General Linear Model (see statistical section of the method). We are concerned that this reviewer did not in fact read either the Methods section or the Results section. In addition, it is hard to accept that, from examination of the data shown in Figure 3, there is not a clear and large difference between schooling and solitary locomotion, regardless of the statistical test used.

      Meanwhile, the comments about the ‘repeated’ measures from one speed to the next are interesting, but we cannot agree. The ‘repeated’ measures are proper when one testing subject is assessed before and after treatment. Going from one speed to the next is not a treatment. Instead, the speed is a dependent and continuous variable. In our experimental design, the treatment is fish school, and the control is a solitary individual. Second, we never compared any of our dependent variables across different speeds within a school or within an individual. Instead, we compared schools and individuals at each speed. In this comparison, there are no ‘repeated’ measures. We agree with the reviewer that fish in the school are interacting (not independent). This is one more reason to support our approach of treating fish schools as a functional and statistical unit in our experiment design (more detailed responses are stated in the response to the comment above).

      7) The size of solitary and schooling individuals appears to be quite different (solitary fish range 74-88 cm, schooling fish range 47-65 cm). While scaling laws can correct for this in the MO2, was this corrected for TBF and for speed in BL/s? Using BL/s for speed does not completely compensate for the differences in size.

      Response: Our current version has provided justifications for not conducting scaling in the values of tail beat frequency. Our justification is “The mass scaling for tail beat frequency was not conducted because of the lack of data for D. aequipinnatus and its related species. Using the scaling exponent of distant species for mass scaling of tail beat frequency will introduce errors of unknown magnitude.”. Our current version also acknowledges the consideration about scaling as follows: “Fish of different size swimming at 1 BL s-1 will necessarily move at different Reynolds numbers, and hence the scaling of body size to swimming speed needs to be considered in future analyses of other species that differ in size”

      Reviewer #3 (Public Review):

      Summary:

      Zhang and Lauder characterized both aerobic and anaerobic metabolic energy contributions in schools and solitary fishes in the Giant danio (Devario aequipinnatus) over a wide range of water velocities. By using a highly sophisticated respirometer system, the authors measure the aerobic metabolisms by oxygen uptake rate and the non-aerobic oxygen cost as excess post-exercise oxygen consumption (EPOC). With these data, the authors model the bioenergetic cost of schools and solitary fishes. The authors found that fish schools have a J-shaped metabolism-speed curve, with reduced total energy expenditure per tail beat compared to solitary fish. Fish in schools also recovered from exercise faster than solitary fish. Finally, the authors conclude that these energetic savings may underlie the prevalence of coordinated group locomotion in fish.

      The conclusions of this paper are mostly well supported by data, but some aspects of methods and data acquisition need to be clarified and extended.

      Response: Thank you for seeing the value of our study. We provided clarification of the data acquisition system with a new panel of pictures included in the supplemental material to show our experimental system. We understand that our methods have more details and justifications than the typical method sections. First, the details are to promote the reproducibility of the experiments. The justifications are the responses to reviewer 2, who reviewed our previous manuscript version and also posted the same critiques after we provided the justifications for the construction of the system and the data acquisition.

      Strengths:

      This work aims to understand whether animals moving through fluids (water in this case) exhibit highly coordinated group movement to reduce the cost of locomotion. By calculating the aerobic and anaerobic metabolic rates of school and solitary fishes, the authors provide direct energetic measurements that demonstrate the energy-saving benefits of coordinated group locomotion in fishes. The results of this paper show that fish schools save anaerobic energy and reduce the recovery time after peak swimming performance, suggesting that fishes can apport more energy to other fitness-related activities whether they move collectively through water.

      Response: Thank you. We are excited to share our discoveries with the world.

      Weaknesses:

      Although the paper does have strengths in principle, the weakness of the paper is the method section. There is too much irrelevant information in the methods that sometimes is hard to follow for a researcher unfamiliar with the research topic. In addition, it was hard to imagine the experimental (respirometer) system used by the authors in the experiments; therefore, it would be beneficial for the article to include a diagram/scheme of that respiratory system.

      Response: We agree with the reviewer and hence added the pictures of the experimental system in the supplementary materials (Fig. S4). We think pictures are more realistic to present the system than schematics. We also provide a picture of the system during the process of making the energetic measurements. It is to show the care went to ensure fish are not affected by any external stimulation other than the water velocity. The careful experimental protocol is very critical to reveal the concave upward shaped curve of bony fish schools that was never reported before. Many details in the methods have been included in response to Reviewer 2.

      Reviewer #3 (Recommendations For The Authors):

      Overall, this is a very interesting, well-written, and nice article. However, many times the method section looks like a discussion. Furthermore, the authors need to check the use of the word "which" throughout the text. I got the feeling that it is overused/misused sometimes.

      Response: Thank you for the positive comments. The method is written in that way to address the concerns of Reviewer 2 who reviewed our previous versions. We corrected the overuse of ‘which’ throughout the manuscript.

    1. Why do we go through the struggle to be educated? Is it merely in order to pass some examinations and get a job? Or is it the function of education to prepare us while we are young to understand the whole process of life? having a job and earning one’s livelihood is necessary—but is that all? Are we being educated only for that? Surely, life is not merely a job, an occupation; life is wide and profound, it is a great mystery, a vast realm in which we function as human beings. If we merely prepare ourselves to earn a livelihood, we shall miss the whole point of life; and to understand life is much more important than merely to prepare for examinations and become very proficient in mathematics, physics, or what you will.

      I really enjoy this excerpt because it puts into a better perspective why we continuously learn. I have a firm belief that there is always more to learn, and I think that continuously growing and learning is genuinely good for us. I think this passage does an excellent job in showing us the joy in learning about something we love. I think that by learning about things we enjoy, even if it is something others may deem unimportant, like, learning about the story and complexity of your favorite video game, there is still something you are learning, and hopefully getting some sort of joy and gratification from, learning is not just about being able to preform in a job setting.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer No.1 (public)

      The authors present a study focused on addressing the key challenge in drug discovery, which is the optimization of absorption and affinity properties of small molecules through in silico methods. They propose active learning as a strategy for optimizing these properties and describe the development of two novel active learning batch selection methods. The methods are tested on various public datasets with different optimization goals and sizes, and new affinity datasets are curated to provide up-todate experimental information. The authors claim that their active learning methods outperform existing batch selection methods, potentially reducing the number of experiments required to achieve the same model performance. They also emphasize the general applicability of their methods, including compatibility with popular packages like DeepChem.

      Strengths:

      Relevance and Importance: The study addresses a significant challenge in the field of drug discovery, highlighting the importance of optimizing the absorption and affinity properties of small molecules through in silico methods. This topic is of great interest to researchers and pharmaceutical industries.

      Novelty: The development of two novel active learning batch selection methods is a commendable contribution. The study also adds value by curating new affinity datasets that provide chronological information on state-of-the-art experimental strategies.

      Comprehensive Evaluation: Testing the proposed methods on multiple public datasets with varying optimization goals and sizes enhances the credibility and generalizability of the findings. The focus on comparing the performance of the new methods against existing batch selection methods further strengthens the evaluation.

      Weaknesses:

      Lack of Technical Details: The feedback lacks specific technical details regarding the developed active learning batch selection methods. Information such as the underlying algorithms, implementation specifics, and key design choices should be provided to enable readers to understand and evaluate the methods thoroughly.

      Evaluation Metrics: The feedback does not mention the specific evaluation metrics used to assess the performance of the proposed methods. The authors should clarify the criteria employed to compare their methods against existing batch selection methods and demonstrate the statistical significance of the observed improvements.

      Reproducibility: While the authors claim that their methods can be used with any package, including DeepChem, no mention is made of providing the necessary code or resources to reproduce the experiments. Including code repositories or detailed instructions would enhance the reproducibility and practical utility of the study.

      Suggestion 1:

      Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      Answer: We thank the reviewer for this suggestion. Following this comments we have extended the text in Methods (in Section: Batch selection via determinant maximization and Section: Approximation of the posterior distribution) and in Supporting Methods (Section: Toy example). We have also included the pseudo code for the Batch optimization method.

      Suggestion 2:

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Answer: Following this comment we added to Table 1 details about the way we computed the cutoff times for the different methods. We also provide more details on the statistics we performed to determine the significance of these differences.

      Suggestion 3:

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      Answer: This is something we already included with the original submission. The code is publicly available. In fact, we provide a phyton library, ALIEN (Active Learning in data Exploration) which is published on the Sanofi Github(https://github.com/ Sanofi-Public/Alien). We also provide details on the public data used and expect to provide the internal data as well. We included a small paragraph on code and data availability.

      Reviewer No.2 (public)

      Suggestion 1:

      The authors presented a well-written manuscript describing the comparison of activelearning methods with state-of-art methods for several datasets of pharmaceutical interest. This is a very important topic since active learning is similar to a cyclic drug design campaign such as testing compounds followed by designing new ones which could be used to further tests and a new design cycle and so on. The experimental design is comprehensive and adequate for proposed comparisons. However, I would expect to see a comparison regarding other regression metrics and considering the applicability domain of models which are two essential topics for the drug design modelers community.

      Answer: We want to thank the reviewer for these comments. We provide a detailed response to the specific comments below. 

      Reviewer No.1 (Recommendations For The Authors)

      Recommendation 1:

      The description provided regarding the data collection process and the benchmark datasets used in the study raises some concerns. The comment specifically addresses the use of both private (Sanofi-owned) and public datasets to benchmark the various batch selection methods. Lack of Transparency: The comment lacks transparency regarding the specific sources and origins of the private datasets. It would be crucial to disclose whether these datasets were obtained from external sources or if they were generated internally within Sanofi. Without this information, it becomes difficult to assess the potential biases or conflicts of interest associated with the data.

      Answer: We would like to thank the reviewer for this comment. As mentioned in the paper, the public github page contains links to all the public data and we expect also to the internal Sanofi data. We also now provide more information on the specific experiments that were internally done by Sanofi to collect that data.

      Potential Data Accessibility Issues: The utilization of private datasets, particularly those owned by Sanofi, may raise concerns about data accessibility. The lack of availability of these datasets to the wider scientific community may limit the ability of other researchers to replicate and validate the study’s findings. It is essential to ensure that the data used in research is openly accessible to foster transparency and encourage collaboration.

      Answer: Again, as stated above we expect to release the data collected internally on the github page.

      Limited Information on Dataset Properties: The comment briefly mentions that the benchmark datasets cover properties related to absorption, distribution, pharmacokinetic processes, and affinity of small drug molecules to target proteins. However, it does not provide any specific details about the properties included in the datasets or how they were curated. Providing more comprehensive information about the properties covered and the methods used for curation would enhance the transparency and reliability of the study.

      To address these concerns, it is crucial for the authors to provide more detailed information about the data sources, dataset composition, representativeness, and curation methods employed. Transparency and accessibility of data are fundamental principles in scientific research, and addressing these issues will strengthen the credibility and impact of the study.

      Answer: We agree with this comment and believe that it is important to be explicit about each of the datasets and to provide information on the new data. We note that we already discuss the details of each of the experiments in Methods and, of course, provide links to the original papers for the public data. We have now added text to Supporting Methods that describes the experiments in more details as well as providing literature references for the experimental protocols used. As noted above, we expect to provide our new internal data on the public git page. 

      Recommendation 2:

      Some comments on the modeling example Approximation of the posterior distribution. Lack of Methodological Transparency: The comment fails to provide any information regarding the specific method or approach used for approximating the posterior distribution. Without understanding the methodology employed, it is impossible to evaluate the quality or rigor of the approximation. This lack of transparency undermines the credibility of the study.

      Answer: We want to thank the reviewer for pointing this out. Based on this comment we added more information to Section: Approximation of the posterior distribution. Moreover, we now provide details on the posterior approximation in Section: Two approximations for computing the epistemic covariance.

      Questionable Assumptions: The comment does not mention any of the assumptions made during the approximation process. The validity of any approximation heavily depends on the underlying assumptions, and their omission suggests a lack of thorough analysis. Failing to acknowledge these assumptions leaves room for doubt regarding the accuracy and relevance of the approximation.

      Answer: We are not entirely sure which assumptions the reviewer is referring to here. The main assumption we can think of that we have used is the fact that getting within X% of the optimal model is a good enough approximation. We have specifically discussed this assumption and tested multiple values of X. While it would have been great to have X = 0 this is unrealistic for retrospective studies. For Active Learning the main question is how many experiments can be saved to obtain similar results and the assumptions we used are basically ’what is the definition of similar’. We now added this to Discussion.

      Inadequate Validation: There is no mention of any validation measures or techniques used to assess the accuracy and reliability of the approximated posterior distribution. Without proper validation, it is impossible to determine whether the approximation provides a reasonable representation of the true posterior. The absence of validation raises concerns about the potential biases or errors introduced by the approximation process.

      Answer: We sincerely appreciate your concern regarding the validation of the approximated posterior distribution. We acknowledge that our initial submission might not have clearly highlighted our validation strategy. It is, of course, very hard to determine the accuracy of the distribution our model learns since such distribution cannot be directly inferred using experiments (no ’ground truth’). Instead, we use an indirect method to determine the accuracy. Specifically, we conducted retrospective experiment using the learned distribution. In these experiments, we indirectly validated our approximation by measuring the error with the respective method. The results from these retrospective experiments provided evidence for the accuracy and reliability of our approximation in representing the true posterior distribution. We now emphasize this in Methods.

      Uncertainty Quantification: The comment does not discuss the quantification of uncertainty associated with the approximated posterior distribution. Properly characterizing the uncertainty is crucial in statistical inference and decision-making. Neglecting this aspect undermines the usefulness and applicability of the approximation results.

      Answer: Thank you for pointing out the importance of characterizing uncertainty in statistical inference and decision-making, a sentiment with which we wholeheartedly agree. In our work, we have indeed addressed the quantification of uncertainty associated with the approximated posterior distribution. Specifically, we utilized Monte Carlo Dropout (MC Dropout) as our method of choice. MC Dropout is a widely recognized and employed technique in the neural networks domain to approximate the posterior distribution, and it offers an efficient way to estimate model uncertainty without requiring any changes to the existing network architecture [1, 2]. In the revised version, we provide a more detailed discussion on the use of Monte Carlo Dropout in our methodology and its implications for characterizing uncertainty.

      Comparison with Gold Standard: There is no mention of comparing the approximated posterior distribution with a gold standard or benchmark. Failing to provide such a comparison leaves doubts about the performance and accuracy of the approximation method. A lack of benchmarking makes it difficult to ascertain the superiority or inferiority of the approximation technique employed.

      Answer: As noted above, it is impossible to find gold standard information for the uncertainly distribution. It is not even clear to us how such gold standard can be experimentally determined since its a function of a specific model and data. If the reviewer is aware of such gold standard we would be happy to test it. Instead, in our study, we opted to benchmark our results against state-of-the-art batch active learning methods, which also rely on uncertainty prediction (such uncertainty prediction is the heart of any active learning method as we discuss). Results clearly indicate that our method outperforms prior methods though we agree that this is only an indirect way to validate the uncertainty approximation.

      Reviewer No.2 (Recommendations For The Authors)

      Recommendation 1:

      The text is kind of messy: there are two results sections, for example. It seems that part of the text was duplicated. Please correct it.

      Answer: We want to thank the reviewer pointing this out. These were typos and we fixed them accordingly.

      Recommendation 2:

      Text in figures is very small and difficult to read. Please redraw the figures, increasing the font size: 10-12pt is ideal in comparison with the main text.

      Answer: We want to thank the reviewer for this comment and we have made the graphics larger.

      Recommendation 3: Please, include specific links to data availability instead of just stating it is available at the Sanofi-Public repository.

      Answer: We want to thank the reviewer for this comment and added the links and data to the Sanofi Github page listed in the paper.

      Recommendation 4:

      What are the descriptors used to train the models?

      Answer: We represented the molecules as molecular graphs using the MolGraphConvFeaturizer from the DeepChem library. We now explicitly mention this in Methods.

      Recommendation 5:

      Regarding the quality of the models, I strongly suggest two approaches instead of using only RMSE as metrics of models’ performance. I recommend using the most metrics as possible as reported by Gramatica (https://doi.org/10.1021/acs.jcim.6b00088). I also recommend somehow comparing the increment on the dataset diversity according to the employed descriptors (applicability domain) as a measurement to further applications on the unseen molecules.

      Answer: We want to thank the reviewer for this great suggestions. As suggested we added new comparison metrics to the Supplement.

      • Distribution plot for the range of the Y values Figure 8 • Clustering of the data sets represented as fingerprints Supplementary material Figure 5,6

      • Retrospective experiments with Spearman correlation coefficient. Supplementary material Figure: 2,3,4

      I suggest also a better characterization of datasets including the nature and range of the Y variable, the source of data in terms of experimentation, and chemical (structural and physicochemical) comparison of samples within each dataset.

      Answer: As noted above in response to a similar comment by Reviewer 1, we have added more detailed information about the different experiments we tested to Supporting Methods.

      References

      [1] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

      [2] N.D. Lawrence. Variational Inference in Probabilistic Models. University of Cambridge, 2001.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a very well written and performed study describing a TOPBP1 separation of function mutation, resulting in defective MSCI maintenance but normal sex body formation. The phenotype differs from that of a previous TOPBP1 null allele, in which both MSCI and sex body formation were defective. Additional defects in CHK phosphorylation and SETX localization are also described.

      Strengths:

      The study is very rigorous, with a remarkably large number of MSCI marks assayed, phosphoproteomics (leading to the interesting SETX discovery) and 10X RNAseq, allowing the MSCI phenotype to be further deconvolved. The approaches in most cases are robust.

      Weaknesses:

      There aren't many; please find list below:

      1) The authors are committed to the idea that maintenance of MSCI is the major defect here. However, based on the data, an alternative would be that some cells achieve sex body formation and MSCI normally, while others do not. It would only take a small percentage of cells exhibiting MSCI failure to kill all the cells in the same germinal epithelium, so this could still explain the complete pachytene block. This isn't a major point...this phenotype is clearly different to the TOPBP1 KO, but a broader discussion of possibilities in the discussion would help. I raise this in the context of both the cytology and 10X analysis:

      a) The assessment that sex body formation is normal is based on cytology in Supp 8 and 9, but a more rigorous approach would be to assess condensation of the XY pair in stage-matched spread cells (maybe they have that data already) by measuring distances between the X and Y centromere, or looking at stage IV of the seminiferous cycle, where all cells should have oval sex bodies but sex body mutants have persistent elongated XY pairs (see work of Namekawa and Turner). The authors do actually mention that gH2AX spreading is defective in many cells....and if this is true, condensation to form a sex body would almost certainly not have taken place in those cells.

      We appreciate the reviewer’s comment and have performed the experiment suggested, counting the number of elongated sex bodies in all sex body-positive cells in seminiferous tubules stained with γH2AX and DAPI (as done by Turner in Hirota et al., 2018). The experiment did not show significant differences between Topbp1+/+ and Topbp1B5/B5 as shown in Author response image 1.

      Author response image 1.

      Topbp1B5/B5 displays normal condensation of the XY-pair. A) Immunostaining of XY condensation in Topbp1+/+ and Topbp1B5/B5 testes sections (γH2AX: green and DAPI: gray). B) Quantification of all sex body-positive cells per tubule (Topbp1+/+ number of cells counted = 781, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 967, number of tubules counted = 28, number of mice = 3). C) Quantification of elongated-sex body cells per tubule (Topbp1+/+ number of cells counted = 19 and 762 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3; Topbp1B5/B5 number of cells counted = 45 and 922 normal round/oval-sex bodies cells, number of tubules counted = 28, number of mice = 3).

      b) Regarding the 10X data, the finding that expression of some XY genes is elevated and others are not is also consistent with a "partial" phenotype (some cells have normal XY bodies and MSCI, others fail in both). In Fig 6E, X expression looks to be elevated in B5 vs wt at all stages...if this were a maintenance issue, shouldn't it be equal to that in wt and then elevate later?

      We understand the point raised by the reviewer, however we do not favor the “partial” phenotype model because of the absence of any post-pachytene spermatocytes in the B5 mutant. If some cells had escaped the MSCI defect, we would expect to detect cells progressing further in meiosis. Because we cannot rule out completely the possibility of a subtle disruption in XY silencing initiation, we decided to better emphasize this point in the discussion (lines 391-394).

      In Figure 6E, the X-linked genes were normalized against chromosome 9-linked genes. The normalization against pre-leptotene was done for the results displayed on Figure 7, in which we demonstrate the maintenance issue. Furthermore, for the 10X analysis, while the same number of cells were loaded for wild-type and mutant, the composition of cells varied between these two samples. Despite the fact that very few “spermatocyte 3” cells were detected in the mutant, those cells displayed much higher X-linked gene expression than the wild-type spermatocyte 3 cells.

      2) How is the quantitation showing impaired localization of select markers (e.g. SETX) normalized? How do we know that the antibody staining simply didn't work as well on the mutant slides?

      The quantification showing impaired localization of the selected markers such as SETX was done as described by Sims, et al. 2022 and Adams, et al. 2018. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes and normalized against the analogous signal on the autosomal chromosomes. The possibility that the antibody simply did not work as well on the mutant is unlikely since multiple biological replicates were performed and we reproducibly followed standard practices in the field for meiotic spreads staining, imaging, and quantification. We also note that our findings published in Sims et al, 2022 show that ATR inhibition strongly impairs SETX localization to the sex body, further substantiating our claim that signaling via ATR-TOPBP1 controls SETX.

      3) Is testis TOPBP1 protein expression reduced in the B5 mutant?

      TOPBP1 protein abundance in the B5 mutant is reduced in lysates from whole testis, measured via western blot. We did not detect a significant reduction in TOPBP1 signal intensity measured by immunofluorescence in pachytene spreads of the B5 mutant.

      4) 10X analysis: how were the genes on the y-axis in Supp 24 arranged? Is this by location on the X chromosome?

      These genes were sorted by location across the chromosome X.

      5) The final analyses in Fig 7: X-genes are subdivided based on their behavior (up, down, unchanged). What isn't clear to me is whether the authors have considered the fact that there are global changes in gene expression during meiosis (very low in lep , zyg and early pach, then ramps up hugely from mid pach). In other words, is this normalized to autosomal gene expression?

      For the final analysis in Fig7, the normalization was done by their expression at the pre-leptotene stage. Moreover, the analysis was made comparing X-linked gene behavior in Wild-type vs B5 mutant.

      6) Again regarding the 10X analysis, my prediction would be that not ALL X and Y gene would increase in pach if MSCI were ablated...we should remember that XY genes have been subject to MSCI for some 160 million years of evolution, and this will mean that many enhancers that originally drove their expression prior to the evolution of MSCI will now be lost. This has been our experience: many XY genes aren't elevated at pach even in mutants in which MSCI is totally defective. I'd urge the authors to consider this possibility when they use XY gene expression patterns to diagnose the severity or timing of the MSCI phenotype. This could be a discussion point.

      We greatly appreciate the reviewer’s suggestion and have added discussion about this point to lines 392400).

      Reviewer #2 (Public Review):

      Summary:

      This paper described the role of BRCT repeat 5 in TOPBP1, a DNA damage response protein, in the maintenance of meiotic sex chromosome inactivation (MSCI). By analyzing a Topbp1 mutant mouse with amino acid substitutions in BRCT repeat 5, the authors found reduced phosphorylation of a DNA/RNA helicase, Sentaxin, and decreased localization of the protein to the X-Y sex body in pachynema. Moreover, the authors also found decreased repression of several genes on the sex chromosomes in the male mice.

      Strengths:

      The works including phospho-proteomics and single-cell RNA sequencing with lots of data have been done with great care and most of the results are convincing.

      Weaknesses:

      One concern is that, although the Topbp1 mutant spermatocytes show very severe defects after the stage of late pachynema, the defect in the gene silencing in the sex body is relatively weak. It is a bit difficult to explain how such a weak mis regulation of the gene silencing in mice causes the complete loss of cells in the late stage of spermatogenesis.

      We appreciate the reviewer’s comment. We note that even subtle mis-regulation of XY gene silencing has been reported to lead to significant loss of cells in late stage of prophase I (Ichijima et al., 2011; Modzelewski et al., 2012). Moreover, it is possible that some cells with drastic changes in X-gene expression were excluded from the downstream analysis due to high levels of mitochondrial gene expression (cells that were likely dying due to apoptosis). The exclusion of cells with high levels of mitochondrial gene expression is a common practice in downstream analysis of sc-RNA sequencing data.

      Reviewer #3 (Public Review):

      The work presented by Ascencao and coworkers aims to deepen into the process of sex chromosome inactivation during meiosis (MSCI) as a critical factor in the regulation of meiosis progression in male mammals. For this purpose, they have generated a transgenic mouse model in which a specific domain of TOPBP1 protein has been mutated, hampering the binding of a number of protein partners and interfering with the regulatory cascade initiated by ATR. Through the use of immunolocalization of an impressive number of markers of MSCI, phosphoproteomics and single cell RNA sequencing (scRNAseq), the authors are able to show that despite a proper morphological formation of the sex body and the incorporation of most canonical MSCI makers, sex chromosome-liked genes are reactivated at some point during pachytene and this triggers meiosis progression breakdown, likely due to a defective phosphorylation of the helicase SETX.

      The manuscript presents a clear advance in the understanding of MSCI and meiosis progression with two main strengths. First, the generation of a mouse model with a very uncommon phenotype. Second, the use of a vast methodological approach. The results are well presented and illustrated. Nevertheless, the discussion could be still a bit tuned by the inclusion of some ideas, and perhaps speculations, that have not been considered.

      We appreciate the reviewer’s comment and have improved the discussion section addressing the points raised in the “recommendation For the Authors”.

      Reviewer #1 (Recommendations For The Authors):

      I don't have any additional points here

      Reviewer #2 (Recommendations For The Authors):

      The paper by Ascencao et al. describes a separation-in-function allele of TOPBP1 critical for DNA damage response (DDR) that confers a specific defect in XY sex chromosome inactivation during male mouse meiosis. The authors constructed a Topbp1 separation-of-function mouse by introducing amino acid substitutions in BRCT repeat 5 and found the mice with normal DDR response in mitosis and meiosis show male infertility. Topbp1(B5/B5) mice do not contain spermatocytes after diplonema, as a result, little spermatids/sperms. In the mice, most of the meiotic events in prophase I including chromosome synapsis and meiotic recombination as well as the formation of the sex body are normal. The detailed proteomic analysis revealed the reduced ATR-dependent phosphorylation of a DNA/RNA helicase, Sentaxin. And also single-cell RNA sequencing found that the expression of some of genes from sex chromosomes are not silenced well compared to the control. The works with lots of data have been done with great care and most of the results are convincing. One clear concern is that, although the authors nicely showed a defect in gene silencing in sex chromosomes in the Topbp1(B5/B5) mice, how a small defect in the gene silencing leads to the complete loss of diplotene spermatocytes remains unaddressed.

      Major points:

      Although the authors showed a change in the transcriptome in spermatocytes of Topbp1(B5/B5) male mice, the authors cannot explain the complete lack of spermatids in this mouse. Even the transcriptome seems not to provide a clue.

      1) Given that the TOPBP1-B5 protein cannot bind to both 53BP1 and BLM, it is interesting to check the localization of both proteins on meiotic chromosome spreads (in the case of 53BP1, the localization in MEFs with DNA damage).

      We appreciate the reviewer’s comment. We have tried to stain BLM in meiotic spreads using several different antibodies, however we were not successful getting specific signals for BLM. In the case of 53BP1, we monitored its localization, and it was not significantly different from Topbp1-/- meiotic spreads, please refer to Supplemental Figure 11. While we appreciate the reviewer’s suggestion of looking at the localization of 53BP1 in MEFs with DNA damage, we opted not to perform the experiment because we have shown that 53BP1 can still bind the BRCT 1 and 2 domains of TOPBP1 as previously described (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). Additionally, both male and female 53BP1 KO mice are fertile (Ward et al., 2003), thus the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      2) A recent preprint by Fujiwara et al. (doi: https://doi.org/10.1101/2023.04.12.536672) showed the accumulation of R-loops in spermatocyte spreads in Senataxin knockout mice. The authors may check the R-loop on the sex body in Topbp1-B5 mice.

      We thank the reviewer for the suggestion. We have tried several protocols to stain R-loops (including the protocol used in the paper mentioned above) but were not successful.

      3) The authors need to check the protein level (and band shift) of Senataxin in the testis by western blotting analysis.

      We have tried several SETX antibodies, and none worked for western blot analysis.

      4) If possible, the authors can see any protein interaction between TOPBP1 and Senataxin.

      We appreciate the suggestion, and we will investigate this interaction in future work.

      5) The authors need to check the statistics in the paper.

      (1) It is better to show actual P-values in the case of "ns".

      P-values were added to the respective figure legends.

      (2) In focus counting such as Figures 3D, G, H, 4B, D, F, H, 5E, and F (and in Supplemental Figures), please indicate how many spreads were counted in each mouse. Moreover, the distribution of focus numbers and intensity of fluorescence are not parametric (not normal distribution). It is better to use a non-parametric method such as Mann-Whitney's U test.

      We appreciate the reviewer's comment and upon consulting with a Statistician at Cornell Statistical Consulting Unit (CSCU), we were advised to use a linear mixed effect model to take into account the variability in cells within each mouse when comparing mice between groups (Topbp1+/+ vs Topbp1B5/B5). We then reanalyzed all quantified meiotic spreads using this mixed effect model, and the p-value, number of mice, and number of cells counted for each group are displayed in the respective figure legends. Upon going through all the quantified meiotic spreads, we realized a minor error in one of the previous data points related to SETX staining in Topbp1+/+ and have fixed it. Using the previous quantification data and the new stats analysis the p-value for cores was 0.5598 and p-value for loops was 0.0273. Now using the correct values and the new stats analysis the p-value for cores is 0.5987 and p-value for loops is 0.0452. The correction did not change the conclusion of this data and is now displayed in the new Figure 5. We also realized a mistake in the ATR quantification when the spreadsheet was moved from excel to Graphpad. Using the previous quantification and the new stats analysis the p-value for cores was 0.2451 and p-value for loops was 0.8933. Now using the correct values and the new stats analysis the p-value for cores is 0.4068 and p-value for loops is 0.9396. The correction did not change the conclusion of this data and is now displayed in the new Figure 4. Moreover, we realized that we used n = 8 (n = number of mice) for MDC1 quantification and n = 2 for pCHK1_S345, instead of n =3 as shown in the preprint version of the manuscript. Corrected values were added to their respective figures and figure legends.

      (3) From Figures 6E, 7B, and 7C, the authors conclude the difference in the expression profile between wild type and Topbp1(B5) spermatocytes. It is better to show P-values for the comparison. Particularly, in Figure 7C, Xiap expression kinetics look similar between wild type and the mutant.

      We have added p-values to figures 6E and 7B and their respective figures or figure legends.<br /> In figure 7C, we now recognize that the Δ could have been misleading as we meant to compare Wild-type SP2 to Wild-type SP3 and Mutant SP2 to SP3; and not comparing Wild-type SP3 to Mutant SP3. Therefore, the Δ was excluded from Figure 7C. For the comparisons between expression levels of SP2 and SP3, it is challenging to calculate p-values for a single gene since these cells have started X-gene silencing and expression values are very low. Meaningful p-values for the comparisons between Wildtype SP3 to Mutant SP3 can be visualized in Figure 7B, where the comparison is based on number of genes instead of expression levels of each gene.

      Minor comments:

      1) Line 34: SPO11 is NOT a nuclease. Just delete it.

      It has been deleted (see line 34).

      2) Line 71, a protein: Is this protein ATR? Is so, please write it. If not, please give the name of the protein.

      In line 71 (now lines 79-80), we refer to TOPBP1-interacting proteins in general since many of these interactions happen through a phosphorylation in the TOPBP1’s interactor. This is the case for BLM, 53BP1, FANCJ, and RAD9. ATR interacts with TOPBP1 through TOPBP1’s AAD domain and this is not a phospho-mediated interaction. We restructured the sentence for clarity.

      3) In the Introduction, the authors often refer to a review by Cimprich and Cortez (2008) in various places. It is better to cite an original paper or the other an appropriate review.

      We have accepted the reviewer’s suggestion and added original papers when appropriate.

      4) Line 143-145: The authors generated eight charge reversal point mutations in the BRCT domain 5 of TOPBP1. If possible, it is helpful to mention the logic to generate these substitutions and also why BRCT domain 5, is not other domains.

      We generated eight charge reversal point mutations to abrogate all possible phospho-dependent interactions and avoid potential residual interactions. We have mutated other BRCT domains as well, which will be published separately.

      5) Line 174 (and Figure 2E): RPA should be either RPA2 or RPA32.

      Corrected (it is RPA2).

      6) Figure 5C-F: Please explain in more detail how the authors quantified the SETX signals. Why the two results are different?

      The quantification was done as described by Sims, et al. 2022, yielding separate data for XY cores and DNA loops. In brief, the green signal was measured along (XY cores) or across (XY DNA loops) the X and Y chromosomes. Signals were normalized by the signal in the autosomal chromosomes.

      Reviewer #3 (Recommendations For The Authors):

      I have no major criticisms, but I include a list of comments and suggestions (some of them conceptual, and disputable) that could help the authors to improve some parts of the manuscript.

      1) Line 52: I realize that the term protein "sequestration" (used in many instances along the manuscript) has been widespread in the literature related to MSCI in the last years. While this might be a cool way to describe the dynamics of proteins accumulating in the sex body, this reviewer considers this term is totally inappropriate. It is confusing and introduces at least to mistakes to the fact of protein accumulation in the sex body. First, it seems to indicate that once trapped in the sex body, proteins are incapable of leaving it, which might be completely wrong (histone replacement refutes this idea). Second, it is suggested that DDR proteins are attracted by the sex body and cannot remain associated to autosomes even if DNA repair has not been completed. This has also been demonstrated to be incorrect (see for example PDMI 19714216). Moreover, DDR proteins can associate de novo to chromosomes if needed, for instance upon DNA damage caused by chemicals or irradiation. Thus, I suggest that the use of "sequestration" should be evaluated more critically, evaluating the misleading ideas that are subjacent to this term. The use of protein "accumulation" is much more objective and descriptive of the real facts.

      We thank the reviewer’s suggestion and have addressed it in lines 52, 97 and 324.

      2) Line 88: Just as a deference to the original ideas, it would be nice to acknowledge that the inactivation of sex chromosomes and the formation of a sex body in mouse meiosis was described more than 50 years ago (PDMI 5833946; 4854664). Likewise, the ideas about the sequential achievement and reinforcement of MSCI during pachytene have been developed during the last 20 years, far before the recent reports cited in the manuscript. Citations to these "old fashion" works would be great.

      We appreciate the reviewer’s suggestion and have addressed it in line 86.

      3) Line 90. Please, take into consideration that such a strong effect on meiosis progression occurs mainly in some knockout mice models and that in many other models (including hybrid mice models from natural populations) autosomal regions can remain unsynapsed and accumulate DDR proteins without impairing meiosis. In other mammalian species, meiosis is even more permissive to these MSUC phenomena.

      We appreciate the reviewer’s suggestion and have addressed it at line 88.

      4) Line 211: The differences in the abundance of MLH1 and MLH3 are remarkable. If these two proteins are supposed to form a heterodimer leading to crossover formation, then the increase of only MLH1 might be related to a different process, not leading to crossover (even not class II ones).

      We agree with the reviewer’s comment and have included this point in the discussion (lines 491- 497).

      5) Line 217: I have some doubts about the results presented in Supplementary Figure 9. First, it is not clear to me how the represented cells counts were performed. Each spot is supposed to represent cell counts in a single individual, but how many cells were counted per individual? The proportion of cells could be a better indicator. Second, some B5/B5 individuals' counts were close to the ones displayed in the wild type. Did mutant animals show a high divergence compared to each other? It could be great to have each individual data displayed in a pie chart, and not only the aggregated data.

      We have now addressed this in the new Supplemental figure 9 legend. Each dot in the graph represents the sum of cells counted for each individual. We counted cells from 8 mice for each, Topbp1+/+ and Topbp1B5/B5.

      Here we summarize the total cells counted per individual:

      Author response table 1.

      6) Line 222: The data on 53BP1 deserve further attention. On the one side, from the analysis presented in Supplementary Figure 11, it seems that 53BP1 tends to show a lower intensity in Topbp1B5/B5 mice. Since only 2 mice were analyzed, while for most of the other proteins 3-8 animals were studied, I suggest increasing the number of animals analyzed for 53BP1 localization, to test if this slight difference turns significant. This is relevant since: 1) the association of 53BP1 protein in somatic cells was clearly affected, and 2) 53BP1 is one of the last MSCI markers incorporated to the sex body at mid-late pachytene. These results should be moved to the main text and not appear as supplementary data. On the other hand, if no differences were to be found in meiosis, compared to somatic cells, how do authors explain these differences? Would 53BP1 have another partner at the sex body apart from TOPBP1? Could TOPBP1 have other BRCT domains (apart from domain 5) able to bind 53BP1?

      We appreciate the reviewer’s suggestion; however, we had an issue with 53BP1 antibody. We analyzed 2 mice and needed to re-order the antibody. This antibody was backordered for almost one year, and when we finally received the order, the company had changed the clone for this antibody, and it no longer worked for meiotic spreads. In somatic cells, we see in HEK-293T a partial disruption in the binding to TOPBP1 B5 through IP-MS and IP-Western blot. The disruption is only partial due to the binding of 53BP1 to other domains in TOPBP1 such as BRCT 1 and 2 (Bigot et al., 2019; Cescutti et al., 2010; Liu et al., 2017). However, in assays in which we would expect a phenotypic response caused by impaired 53BP1, we did not see any effect, such as survival after IR (using the mice) and survival after phleomycin challenge (using Mefs). Moreover, 53BP1 KO mice, males and females, are fertile (Ward et al., 2003) so, the partial disruption in binding to 53BP1 that we observed in TOPBP1 B5 mutant is likely not causing the infertility phenotype.

      7) Line 250: I do not understand what is represented in Figure 5A. Why did the author mix two different experiments (differences in phosphoprotein abundance in B5/B5 compared to wild type and the interference of ATR with AZ20)?

      To account for the differences in cell population observed in the whole testis between Topbp1+/+ and Topbp1B5/B5, and to know exactly which phosphorylation changes were due to disruption in the ATR signaling and not pleiotropic effects, we combined two different phosphoproteomes: One phosphoproteome from the comparison between Topbp1+/+ and Topbp1B5/B5 and another one from the comparison between Vehicle or ATR inhibitor-treated mice. By utilizing this approach, we only consider hits that were disrupted in both analyses. A similar method was used by Sims et.al, 2022 (Sims et al., 2022).

      8) It is not clearly explained what is represented in Figure 6B. There is no explanation in the text or the figure legend. Do this represent the difference between scRNAseq in control and Topbp1B5/B5? If so, please, clarify.

      We thank the reviewer’s comment and have addressed it in the legend of Figure 6B.

      9) Line 342 and following. The authors describe a decrease of gene silencing. The use of two negative concepts is always confusing and results in the conversion to a positive one. I suggest considering the possibility of just talking about increase of gene expression, in order to make the message clearer.

      We appreciate the reviewer’s point here, but it is important to note that the phenomenon disrupted in our mutants is MSCI, which is by definition a gene silencing mechanism. This phenotype is not as simple as “increased gene expression”, it is the removal of a mechanism that is a key feature of prophase I. Thus, because we are focusing on the mechanism of MSCI, it is crucial to maintain this (albeit unusual) terminology.

      10) As for the classification of spermatocytes into 9 categories, I am curious about which spermatocytes are included in each of these categories. For instance, from cytology it seems that in Topbp1B5/B5 mice, spermatocytes are able to reach mid-late pachytene. However, in the spermatocyte categories established by scRNAseq they only reach class 3. Therefore, which are the populations included in the remaining 6 classes of spermatocytes? Do authors have any morphological correlation to these scRNAseq categories? Is it possible that in this mutant morphological advance of meiosis and gene expression profiles are uncoupled?

      The clustering of cells to a specific group is based on RNA expression, which does not always match cytological features. Moreover, during the analysis, cells with high expression of mitochondrial genes are excluded (these are dying cells that do not pass the quality control). Thus, while Topbp1B5/B5 reaches a mid-late-pachytene stage according to cytological analyses, in the single-cell RNA seq analysis we could only detect one pachytene stage. The other 6 remaining categories of spermatocytes can be classified according to their best-fit profile of gene expression. For that, we use the classification described by Chen et al., 2018 and Lau et al.,2020. Spermatocytes 3-5 = Pachytene, Spermatocytes 6-7 = Diplotene, Spermatocytes 8-9 = secondary spermatocytes (metaphase I/II). The gene markers used for this classification are displayed in Author response image 2.

      Author response image 2.

      Genes used as markers of spermatocytes captured in the scRNAseq analysis. Violin plots display the distribution of cells expressing Gm960 (Leptotene marker), Meiob (Leptotene/Zygotene marker), Psma8 (Pachytene marker), Pwill1 (Pachytene marker), Pou5f2 (Diplotene marker), and Ccna1 (Secondary Spermatocytes marker).

      11) Figure 6E shows that overexpression of X-linked genes is not a feature of spermatocytes but it is initiated in spermatogonia. This fact has not been properly stated in the text and perhaps not sufficiently highlighted.

      We noticed subtle changes during the spermatogonia stage and have addressed the reviewer’s comment in lines 317-322, however the downstream analyses related to a defect in X-gene silencing maintenance displayed in Figure 7 were done based on normalization of gene expression to its respective pre-leptotene stage.

      12) Supplementary Figure 24 shows that some X-linked genes are more expressed in Topbp1B5/B5 compared to control mice. In the figure it can be observed that many genes accumulate at the bottom of the graph. Does this have any correlation to the location of these genes along the X chromosome, for instance near or within the PAR? This could correlate with the defects in γH2AX accumulation at this region.

      These are the locations along the chromosome. Only the bottom 5 rows are within the PAR region, so this accumulation is not within the PAR region specifically. The bottom tenth of the genes in the heatmap correspond to roughly a 17 Mb region.

      13) The authors only analyzed the overexpression of genes located on the X chromosome. It would be interesting to show the behavior of Y-linked genes as well.

      The coverage of Y-linked genes was not very high and that is why we have not shown the results in the paper. However, the results for Y-linked genes were similar to the X-linked genes and can be visualized in Author response image 3.

      Author response image 3.

      Single cell RNAseq reveals that Topbp1B5/B5 spermatocytes initiate MSCI but fail to promote full silencing of Y chromosome-linked genes. Violin plot displaying the ratio of the average expression of Y chromosome genes by the average expression of chromosome 9 genes at different stages of spermatogenesis for Topbp1+/+ and Topbp1B5/B5 cells.

      14) Line 425: Authors indicate that it is not known if association of TOPBP1 and BLM, 53BP1 or other proteins is disrupted in Topbp1B5/B5 spermatocytes. Could these experiments be performed in the testis, as they were in somatic cells?

      The cellular composition in Topbp1+/+ and Topbp1B5/B5 testes is very different so it would not be a fair comparison. While we have tried to isolate pachytene cells to perform these experiments, we were successful only when using Topbp1+/+ but not Topbp1B5/B5, likely due to the extremely small size of the mutant testis.

      15) Line 455 and following. I find that the discussion about the role of SETX is not completely clear. It seems that a failure of SETX function could result in defective or no transcription, as a consequence of the impossibility to resolve RNA-DNA hybrid molecules. Therefore, should impairment of SETX lead to reduced or enhanced transcription? Please clarify. On the other hand, this defect in SETX function should affect the whole genome, and not only sex chromosomes. Do authors have any clues about this broad effect?

      We thank the reviewer’s comment and have expanded on discussion in lines 470-474. While we agree with the reviewer’s point that an impairment on SETX should affect the whole genome, however, during pachytene stage, SETX is mostly localized to the sex body. The Topbp1B5/B5 shows a specific defect in X and Y silencing maintenance during pachytene stage, thus we hypothesized that an impairment in SETX localization during pachytene should especially impair the X and Y chromosomes.

      16) As a general comment to the discussion section, I think authors could extend into some specific ideas or speculations. It is shocking that sex chromosome-linked genes are able to escape silencing without dismantling the complex (almost complete) MSCI response in the Topbp1 mutant (although perhaps this is not so surprising considering the high number of escapees reported in the inactivated X chromosome in female somatic cells).

      How to explain this paradox? One possibility (which would make a real breakthrough) is that the expression of sex chromosome-linked genes represents a regulated response to meiotic defects, and not just an unfortunate consequence of a defective MSCI. Thus, MSCI might be somehow irrelevant to prevent the execution of this sex chromosome-based program to stop meiosis progression when needed. The fact that this regulated activation was never proposed is perhaps due to the fact that most of the meiosis mutants characterized so far are unable to reach the stage at which MSCI is properly established, which is the most remarkable difference with the Topbp1 mutant studied here.

      Although naïve, the critical point for the activation of this sex chromosome-based program seems to depend simply on the transcription of Zfy1 and Zfy2 (encoding for transcription factors). The signaling cascades up and downstream these genes are the real mystery, awaiting further studies.

      We thank the very interesting point raised by the reviewer. Our interpretation of the data is that X and Y silencing being a dynamic process requires an initiation step and a maintenance step driven/controlled by the DDR machinery, and that Topbp1B5/B5 shows a grossly normal initiation of X and Y silencing but fails on maintain MSCI. Moreover, the expression of Zfy1 and Zfy2 have been previously demonstrated as enough to trigger cell death (Royo et al., 2010; Vernet et al., 2016), and Topbp1B5/B5 cells show increased expression of these genes. However, we do not exclude the very interesting possibility, raised by the reviewer, that the expression of XY-linked genes represents a regulated response to meiotic defects to stop meiosis progression, leading to the cell death observed in Topbp1B5/B5, which makes the Topbp1B5/B5 an unique model for these studies as most of the previous meiosis mutants are unable to reach the stage at which MSCI is properly established. We add discussion about this exciting point in lines 513-522.

      17) Scale bars are impossible to read in Figures 1I and J, and are missing in all the other image figures. Please, correct.

      We have addressed this in the new Figure 1. For figures displaying meiotic spreads, adding a scale bar is not a common practice in the field as these cells are swollen while being prepared.

      18) Line 828. Since Paula Cohen is an author of the manuscript, it seems weird to acknowledge herself in this section.

      Corrected.

      References

      Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. 2018. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 14. doi:10.1371/journal.pgen.1007233

      Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH. 2019. Phosphorylation-mediated interactions with topbp1 couple 53bp1 and 9-1-1 to control the g1 DNA damage checkpoint. Elife 8:1–28.

      Cescutti R, Negrini S, Kohzaki M, Halazonetis TD. 2010. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J 29:3723–3732.

      Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong M-H. 2018. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896.

      Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. 2018. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 47:645-659.e6.

      Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Daniel Camerini-Otero R, Chen J, Andreassen PR, Namekawa SH. 2011. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes and Development 25:959–971.

      Lau X, Munusamy P, Ng MJ, Sangrithi M. 2020. Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 54:548-566.e7.

      Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. 2017. TOPBP1Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1Rad9. J Cell Biol 216:623–639.

      Modzelewski AJ, Holmes RJ, Hilz S, Grimson A, Cohen PE. 2012. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev Cell 23:251–264. Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, De Rooij DG, Burgoyne PS, Turner JMA. 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123.

      Sims JR, Faça VM, Pereira C, Ascenção C, Comstock W, Badar J, Arroyo-Martinez GA, Freire R, Cohen PE, Weiss RS, Smolka MB. 2022. Phosphoproteomics of ATR signaling in mouse testes. Elife 11. doi:10.7554/eLife.68648

      Vernet N, Mahadevaiah SK, de Rooij DG, Burgoyne PS, Ellis PJI. 2016. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum Mol Genet 25:5300–5310.

      Ward IM, Minn K, van Deursen J, Chen J. 2003. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23:2556–2563.

      Yeo AJ, Becherel OJ, Luff JE, Graham ME, Richard D, Lavin MF. 2015. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discovery 1. doi:10.1038/celldisc.2015.25

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Given knowledge of the amino acid sequence and of some version of the 3D structure of two monomers that are expected to form a complex, the authors investigate whether it is possible to accurately predict which residues will be in contact in the 3D structure of the expected complex. To this effect, they train a deep learning model that takes as inputs the geometric structures of the individual monomers, per-residue features (PSSMs) extracted from MSAs for each monomer, and rich representations of the amino acid sequences computed with the pre-trained protein language models ESM-1b, MSA Transformer, and ESM-IF. Predicting inter-protein contacts in complexes is an important problem. Multimer variants of AlphaFold, such as AlphaFold-Multimer, are the current state of the art for full protein complex structure prediction, and if the three-dimensional structure of a complex can be accurately predicted then the inter-protein contacts can also be accurately determined. By contrast, the method presented here seeks state-of-the-art performance among models that have been trained end-to-end for inter-protein contact prediction.

      Strengths:

      The paper is carefully written and the method is very well detailed. The model works both for homodimers and heterodimers. The ablation studies convincingly demonstrate that the chosen model architecture is appropriate for the task. Various comparisons suggest that PLMGraph-Inter performs substantially better, given the same input than DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter. As a byproduct of the analysis, a potentially useful heuristic criterion for acceptable contact prediction quality is found by the authors: namely, to have at least 50% precision in the prediction of the top 50 contacts.

      We thank the reviewer for recognizing the strengths of our work!

      Weaknesses:

      My biggest issue with this work is the evaluations made using bound monomer structures as inputs, coming from the very complexes to be predicted. Conformational changes in protein-protein association are the key element of the binding mechanism and are challenging to predict. While the GLINTER paper (Xie & Xu, 2022) is guilty of the same sin, the authors of CDPred (Guo et al., 2022) correctly only report test results obtained using predicted unbound tertiary structures as inputs to their model. Test results using experimental monomer structures in bound states can hide important limitations in the model, and thus say very little about the realistic use cases in which only the unbound structures (experimental or predicted) are available. I therefore strongly suggest reducing the importance given to the results obtained using bound structures and emphasizing instead those obtained using predicted monomer structures as inputs.

      We thank the reviewer for the suggestion! We evaluated PLMGraph-Inter with the predicted monomers and analyzed the result in details (see the “Impact of the monomeric structure quality on contact prediction” section and Figure 3). To mimic the real cases, we even deliberately reduced the performance of AF2 by using reduced MSAs (see the 2nd paragraph in the ““Impact of the monomeric structure quality on contact prediction” section). We leave some of the results in the supplementary of the current manuscript (Table S2). We will move these results to the main text to emphasize the performance of PLMGraph-Inter with the predicted monomers in the revision.

      In particular, the most relevant comparison with AlphaFold-Multimer (AFM) is given in Figure S2, not Figure 6. Unfortunately, it substantially shrinks the proportion of structures for which AFM fails while PLMGraph-Inter performs decently. Still, it would be interesting to investigate why this occurs. One possibility would be that the predicted monomer structures are of bad quality there, and PLMGraph-Inter may be able to rely on a signal from its language model features instead. Finally, AFM multimer confidence values ("iptm + ptm") should be provided, especially in the cases in which AFM struggles.

      We thank the reviewer for the suggestion! Yes! The performance of PLMGraph-Inter drops when the predicted monomers are used in the prediction. However, it is difficult to say which is a fairer comparison, Figure 6 or Figure S2, since AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native templates. We will provide the AFM confidence values of the AFM predictions in the revision.

      Besides, in cases where any experimental structures - bound or unbound - are available and given to PLMGraph-Inter as inputs, they should also be provided to AlphaFold-Multimer (AFM) as templates. Withholding these from AFM only makes the comparison artificially unfair. Hence, a new test should be run using AFM templates, and a new version of Figure 6 should be produced. Additionally, AFM's mean precision, at least for top-50 contact prediction, should be reported so it can be compared with PLMGraph-Inter's.

      We thank the reviewers for the suggestion! We would like to notify that AFM also searched monomer templates (see the third paragraph in 7. Supplementary Information : 7.1 Data in the AlphaFold-Multimer preprint: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2.full) in the prediction. When we checked our AFM runs, we found that 99% of the targets in our study (including all the targets in the four datasets: HomoPDB, HeteroPDB, DHTest and DB5.5) employed at least 20 templates in their predictions, and 87.8% of the targets employed the native template.

      It's a shame that many of the structures used in the comparison with AFM are actually in the AFM v2 training set. If there are any outside the AFM v2 training set and, ideally, not sequence- or structure-homologous to anything in the AFM v2 training set, they should be discussed and reported on separately. In addition, why not test on structures from the "Benchmark 2" or "Recent-PDB-Multimers" datasets used in the AFM paper?

      We thank the reviewer for the suggestion! The biggest challenge to objectively evaluate AFM is that as far as we known, AFM does not release the PDB ids of its training set and the “Recent-PDB-Multimers” dataset. “Benchmark 2” only includes 17 heterodimer proteins, and the number can be further decreased after removing targets redundant to our training set. We think it is difficult to draw conclusions from such a small number of targets. In the revision, we will analyze the performance of AFM on targets released after the date cutoff of the AFM training set, but with which we cannot totally remove the redundancy between the training and the test sets of AFM.

      It is also worth noting that the AFM v2 weights have now been outdated for a while, and better v3 weights now exist, with a training cutoff of 2021-09-30.

      We thank the reviewer for reminding the new version of AFM. The only difference between AFM V3 and V2 is the cutoff date of the training set. Our test set would have more overlaps with the training set of AFM V3, which is one reason that we think AFM V2 is more appropriate to be used in the comparison.

      Another weakness in the evaluation framework: because PLMGraph-Inter uses structural inputs, it is not sufficient to make its test set non-redundant in sequence to its training set. It must also be non-redundant in structure. The Benchmark 2 dataset mentioned above is an example of a test set constructed by removing structures with homologous templates in the AF2 training set. Something similar should be done here.

      We agree with the reviewer that testing whether the model can keep its performance on targets with no templates (i.e. non-redundant in structure) is important. We will perform the analysis in the revision.

      Finally, the performance of DRN-1D2D for top-50 precision reported in Table 1 suggests to me that, in an ablation study, language model features alone would yield better performance than geometric features alone. So, I am puzzled why model "a" in the ablation is a "geometry-only" model and not a "LM-only" one.

      Using the protein geometric graph to integrate multiple protein language models is the main idea of PLMGraph-Inter. Comparing with our previous work (DRN-1D2D_Inter), we consider the building of the geometric graph as one major contribution of this work. To emphasize the efficacy of this geometric graph, we chose to use the “geometry-only” model as the base model. We will further clarity this in the revision.

      Reviewer #2 (Public Review):

      This work introduces PLMGraph-Inter, a new deep-learning approach for predicting inter-protein contacts, which is crucial for understanding protein-protein interactions. Despite advancements in this field, especially driven by AlphaFold, prediction accuracy and efficiency in terms of computational cost) still remains an area for improvement. PLMGraph-Inter utilizes invariant geometric graphs to integrate the features from multiple protein language models into the structural information of each subunit. When compared against other inter-protein contact prediction methods, PLMGraph-Inter shows better performance which indicates that utilizing both sequence embeddings and structural embeddings is important to achieve high-accuracy predictions with relatively smaller computational costs for the model training.

      The conclusions of this paper are mostly well supported by data, but test examples should be revisited with a more strict sequence identity cutoff to avoid any potential information leakage from the training data. The main figures should be improved to make them easier to understand.

      We thank the reviewer for recognizing the significance of our work! We will revise the manuscript carefully to address the reviewer’s concerns.

      1. The sequence identity cutoff to remove redundancies between training and test set was set to 40%, which is a bit high to remove test examples having homology to training examples. For example, CDPred uses a sequence identity cutoff of 30% to strictly remove redundancies between training and test set examples. To make their results more solid, the authors should have curated test examples with lower sequence identity cutoffs, or have provided the performance changes against sequence identities to the closest training examples.

      We thank the reviewer for the valuable suggestion! Using different thresholds to reduce the redundancy between the test set and the training set is a very good suggestion, and we will perform the analysis in the revision. In the current version of the manuscript, the 40% sequence identity is used as the cutoff for many previous studies used this cutoff (e.g. the Recent-PDB-Multimers used in AlphaFold-Multimer (see: 7.8 Datasets in the AlphaFold-Multimer paper); the work of DSCRIPT: https://www.cell.com/action/showPdf?pii=S2405-4712%2821%2900333-1 (see: the PPI dataset paragraph in the METHODS DETAILS section of the STAR METHODS)). One reason for using the relatively higher threshold for PPI studies is that PPIs are generally not as conserved as protein monomers.

      We performed a preliminary analysis using different thresholds to remove redundancy when preparing this provisional response letter:

      Author response table 1.

      Table1. The performance of PLMGraph-Inter on the HomoPDB and HeteroPDB test sets using native structures(AlphaFold2 predicted structures).

      Method:

      To remove redundancy, we clustered 11096 sequences from the training set and test sets (HomoPDB, HeteroPDB) using MMSeq2 with different sequence identity threshold (40%, 30%, 20%, 10%) (the lowest cutoff for CD-HIT is 40%, so we switched to MMSeq2). Each sequence is then uniquely labeled by the cluster (e.g. cluster 0, cluster 1, …) to which it belongs, from which each PPI can be marked with a pair of clusters (e.g. cluster 0-cluster 1). The PPIs belonging to the same cluster pair (note: cluster n - cluster m and cluster n-cluster m were considered as the same pair) were considered as redundant. For each PPI in the test set, if the pair cluster it belongs to contains the PPI belonging to the training set, we remove that PPI from the test set.

      We will perform more detailed analyses in the revised manuscript.

      1. Figures with head-to-head comparison scatter plots are hard to understand as scatter plots because too many different methods are abstracted into a single plot with multiple colors. It would be better to provide individual head-to-head scatter plots as supplementary figures, not in the main figure.

      We thank the reviewer for the suggestion! We will include the individual head-to-head scatter plots as supplementary figures in the revision.

      3) The authors claim that PLMGraph-Inter is complementary to AlphaFold-multimer as it shows better precision for the cases where AlphaFold-multimer fails. To strengthen the point, the qualities of predicted complex structures via protein-protein docking with predicted contacts as restraints should have been compared to those of AlphaFold-multimer structures.

      We thank the reviewer for the suggestion! We will add this comparison in the revision.

      4) It would be interesting to further analyze whether there is a difference in prediction performance depending on the depth of multiple sequence alignment or the type of complex (antigen-antibody, enzyme-substrates, single species PPI, multiple species PPI, etc).

      We thank the reviewer for the suggestion! We will perform such analysis in the revision.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Like the "preceding" co-submitted paper, this is again a very strong and interesting paper in which the authors address a question that is raised by the finding in their co-submitted paper - how does one factor induce two different fates. The authors provide an extremely satisfying answer - only one subset of the cells neighbors a source of signaling cells that trigger that subset to adopt a specific fate. The signal here is Delta and the read-out is Notch, whose intracellular domain, in conjunction with, presumably, SuH cooperates with Bsh to distinguish L4 from L5 fate (L5 is not neighbored by signalproviding cells). Like the back-to-back paper, the data is rigorous, well-presented and presents important conclusions. There's a wealth of data on the different functions of Notch (with and without Bsh). All very satisfying.

      Thanks!

      I have again one suggestion that the authors may want to consider discussing. I'm wondering whether the open chromatin that the author convincingly measure is the CAUSE or the CONSEQUENCE of Bsh being able to activate L4 target genes. What I mean by this is that currently the authors seem to be focused on a somewhat sequential model where Notch signaling opens chromatin and this then enables Bsh to activate a specific set of target genes. But isn't it equally possible that the combined activity of Bsh/Notch(intra)/SuH opens chromatin? That's not a semantic/minor difference, it's a fundamentally different mechanism, I would think. This mechanism also solves the conundrum of specificity - how does Notch know which genes to "open" up? It would seem more intuitive to me to think that it's working together with Bsh to open up chromatin, with chromatin accessibility than being a "mere" secondary consequence. If I'm not overlooking something fundamental here, there is actually also a way to distinguish between these models - test chromatin accessibility in a Bsh mutant. If the author's model is true, chromatin accessibility should be unchanged.

      I again finish by commending the authors for this terrific piece of work.

      Thanks! It is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF. We will include this discussion in the text and pursue it in our next project.

      We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all postsensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors explore how Notch activity acts together with Bsh homeodomain transcription factors to establish L4 and L5 fates in the lamina of the visual system of Drosophila. They propose a model in which differential Notch activity generates different chromatin landscapes in presumptive L4 and L5, allowing the differential binding of the primary homeodomain TF Bsh (as described in the cosubmitted paper), which in turn activates downstream genes specific to either neuronal type. The requirement of Notch for L4 vs. L5 fate is well supported, and complete transformation from one cell type into the other is observed when altering Notch activity. However, the role of Notch in creating differential chromatin landscapes is not directly demonstrated. It is only based on correlation, but it remains a plausible and intriguing hypothesis.

      Thanks for the positive feedback!

      Strengths:

      The authors are successful in characterizing the role of Notch to distinguish between L4 and L5 cell fates. They show that the Notch pathway is active in L4 but not in L5. They identify L1, the neuron adjacent to L4 as expressing the Delta ligand, therefore being the potential source for Notch activation in L4. Moreover, the manuscript shows molecular and morphological/connectivity transformations from one cell type into the other when Notch activity is manipulated.

      Thanks!

      Using DamID, the authors characterize the chromatin landscape of L4 and L5 neurons. They show that Bsh occupies distinct loci in each cell type. This supports their model that Bsh acts as a primary selector gene in L4/L5 that activates different target genes in L4 vs L5 based on the differential availability of open chromatin loci.

      Thanks!

      Overall, the manuscript presents an interesting example of how Notch activity cooperates with TF expression to generate diverging cell fates. Together with the accompanying paper, it helps thoroughly describe how lamina cell types L4 and L5 are specified and provides an interesting hypothesis for the role of Notch and Bsh in increasing neuronal diversity in the lamina during evolution.

      Thanks for the positive feedback on both manuscripts.

      Weaknesses:

      Differential Notch activity in L4 and L5:

      ● The manuscript focuses its attention on describing Notch activity in L4 vs L5 neurons. However, from the data presented, it is very likely that the pool of progenitors (LPCs) is already subdivided into at least two types of progenitors that will rise to L4 and L5, respectively. Evidence to support this is the activity of E(spl)-mɣ-GFP and the Dl puncta observed in the LPC region. Discussion should naturally follow that Notch-induced differences in L4/L5 might preexist L1-expressed Dl that affect newborn L4/L5. Therefore, the differences between L4 and L5 fates might be established earlier than discussed in the paper. The authors should acknowledge this possibility and discuss it in their model.

      We agree. Historically, LPCs are thought to be homogenous; our data suggests otherwise. We now emphasize this in the Discussion as requested. We are also investigating this question using single-cell RNAseq on LPCs to look for molecular heterogeneities. Nevertheless, whether L4 is generated by E(spl)mɣ-GFP+ (NotchON) LPCs does not affect our conclusion that Notch signaling and the primary HDTF Bsh are integrated to specify L4 fate over L5.

      ● The authors claim that Notch activation is caused by L1-expressed Delta. However, they use an LPC driver to knock down Dl. Dl-KD should be performed exclusively in L1, and the fate of L4 should be assessed.

      Dl is transiently expressed in newborn L1 neurons. To knock down Dl in newborn L1, we need to express Dl-RNAi before the onset of Dl expression in newborn L1; the only known Gal4 line expressed that early is the LPC-Gal4, which is the one that we used.

      ● To test whether L4 neurons are derived from NotchON LPCs, I suggest performing MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter.

      We agree! Whether L4 neurons are derived from NotchON LPCs is a great question. However, MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter will not work because E(spl)-mɣ-GFP reporter is only expressed in LPCs but not lamina neurons. We now mention this in the Discussion.

      ● The expression of different Notch targets in LPCs and L4 neurons may be further explored. I suggest using different Notch-activity reporters (i.e., E(spl)-GFP reporters) to further characterize these. differences. What cause the switch in Notch target expression from LPCs to L4 neurons should be a topic of discussion.

      Thanks! It is a great question why Notch induces Espl-mɣ in LPCs but Hey in newborn neurons. However, it is not the question we are tackling in this paper and it will be a great direction to pursue in future. We will add this to our Discussion.

      Notch role in establishing L4 vs L5 fates:

      ● The authors describe that 27G05-Gal4 causes a partial Notch Gain of Function caused by its genomic location between Notch target genes. However, this is not further elaborated. The use of this driver is especially problematic when performing Notch KD, as many of the resulting neurons express Ap, and therefore have some features of L4 neurons. Therefore, Pdm3+/Ap+ cells should always be counted as intermediate L4/L5 fate (i.e., Fig3 E-J, Fig3-Sup2), irrespective of what the mechanistic explanation for Ap activation might be. It's not accurate to assume their L5 identity. In Fig4 intermediate-fate cells are correctly counted as such.

      We disagree that the use of 27G05-Gal4 is problematic when performing Notch-KD because our conclusion from Notch-KD is that Bsh without Notch signaling activates Pdm3 and specifies L5 fate. However, 27G05-Gal4 does not have any effect on Pdm3 expression. To make this clearer, we will quantify the percentage of Pdm3+ L5 neurons in Bsh+ lamina neurons for Notch-KD experiment. We are sorry this wasn't clearer.

      ● Lines 170-173: The temporal requirement for Notch activity in L5-to-L4 transformation is not clearly delineated. In Fig4-figure supplement 1D-E, it is not stated if the shift to 29{degree sign}C is performed as in Fig4-figure supplement 1A-C.

      Thank you for catching this. We will correct it in the text.

      ● Additionally, using the same approach, it would be interesting to explore the window of competence for Notch-induced L5-to-L4 transformation: at which point in L5 maturation can fate no longer be changed by Notch GoF?

      Our data show that Bsh with transient Notch signaling in newborn neurons specifies L4 fate while Bsh without Notch signaling in newborn neurons specifies L5 fate. Therefore, we think the window of fate competence is during newborn neurons.

      However, as suggested by the reviewer, we did the experiment (see figure below). We used Gal80 (Gal80 inhibits Gal4 activity at 18C) to temporarily control Bsh-Gal4 activity for expressing N-ICD (the active form of Notch) in L5 neurons. We found that tub-Gal80ts, Bsh-Gal4>UAS-N-ICD is unable to induce ectopic L4 neurons when we shift the temperature from 18C to 30C to inactivate Gal80 at 15 hours after pupal formation, which is close to the end of lamina neurogenesis. However, it is unknown how many hours it takes to inactivate Gal80 and activate Bsh-Gal4 and thus we decided not to include this data in our manuscript.

      Author response image 1.

      L4-to-L3 conversion in the absence of Bsh

      ● Although interesting, the L4-to-L3 conversion in the absence of Bsh is never shown to be dependent on Notch activity. Importantly, L3 NotchON status is assumed based on their position next to Dlexpressing L1, but it is not empirically tested. Perhaps screening Notch target reporter expression in the lamina, as suggested above, could inform this issue.

      Our data show the L4-to-L3 conversion in the absence of Bsh and in the presence of Notch activity while the L5-to-L1 conversion in the absence of Bsh and in the absence of Notch activity. Therefore, Notch activity is necessary for the L4-to-L3 conversion. Unfortunately, currently, we only have Hey as an available Notch target reporter in newborn neurons. To tackle this challenge in the future, we will profile the genome-binding targets of endogenous Notch in newborn neurons. This will identify novel genes as Notch signaling reporters in neurons for the field.

      ● Otherwise, the analysis of Bsh Loss of Function in L4 might be better suited to be included in the accompanying manuscript that specifically deals with the role of Bsh as a selector gene for L4 and L5.

      That is an interesting suggestion, but without knowing that Bsh + Notch = L4 identity the experiment would be hard to interpret. Note that we took advantage of Notch signaling to trace the cell fate in the absence of Bsh and found the L4-to-L3 conversion (see Figure 5G-K).

      Different chromatin landscape in L4 and L5 neurons

      ● A major concern is that, although L4 and L5 neurons are shown to present different chromatin landscapes (as expected for different neuronal types), it is not demonstrated that this is caused by Notch activity. The paper proves unambiguously that Notch activity, in concert with Bsh, causes the fate choice between L4 and L5. However, that this is caused by Notch creating a differential chromatin landscape is based only in correlation. (NotchON cells having a different profile than NotchOFF). Although the authors are careful not to claim that differential chromatin opening is caused directly by Notch, this is heavily suggested throughout the text and must be toned down.e.g.: Line 294: "With Notch signaling, L4 neurons generate distinct open chromatin landscape" and Line 298: "Our findings propose a model that the unique combination of HDTF and open chromatin landscape (e.g. by Notch signaling)" . These claims are not supported well enough, and alternative hypotheses should be provided in the discussion. An alternative hypothesis could be that LPCs are already specified towards L4 and L5 fates. In this context, different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.

      We agree and appreciate the comment, it is well justified. We have toned down our comments and clearly state that this is a correlation that needs to be tested for a causal relationship. The reviewer posits: “An alternative hypothesis: different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.” Yes, it is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF (e.g., Bsh). We will include this discussion in the text and pursue it in our next project. We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all premotor neurons are NotchON neurons while all post-sensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      ● The correlation between open chromatin and Bsh loci with Differentially Expressed genes is much higher for L4 than L5. It is not clear why this is the case, and should be discussed further by the authors.

      We agree and think in L5 neurons, the secondary HDTF Pdm3 also contributes to L5-specific gene transcription during the synaptogenesis window, in addition to Bsh. We will include this in the text.

    1. Author Response

      The following is the authors’ response to the latest reviews.

      A revised version of the manuscript models "slope-based" excitability changes in addition to "threshold-based" changes. This serves to address the above concern that as constructed here changes in excitability threshold are not distinguishable from changes in input. However, it remains unclear what the model would do should only a subset of neurons receive a given, fixed input. In that case, are excitability changes sufficient to induce drift? This remains an important question that is not addressed by the paper in its current form.

      Thank you for this important point. In the simulation of two memories (Fig. S6), we stimulated half of the neural population for each of the two memories. We therefore also showed that drift happens when only a subset of neuron was simulated.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Current experimental work reveals that brain areas implicated in episodic and spatial memory have a dynamic code, in which activity r imulated networks for epresenting familiar events/locations changes over time. This paper shows that such reconfiguration is consistent with underlying changes in the excitability of cells in the population, which ties these observations to a physiological mechanism.

      Delamare et al. use a recurrent network model to consider the hypothesis that slow fluctuations in intrinsic excitability, together with spontaneous reactivations of ensembles, may cause the structure of the ensemble to change, consistent with the phenomenon of representational drift. The paper focuses on three main findings from their model: (1) fluctuations in intrinsic excitability lead to drift, (2) this drift has a temporal structure, and (3) a readout neuron can track the drift and continue to decode the memory. This paper is relevant and timely, and the work addresses questions of both a potential mechanism (fluctuations in intrinsic excitability) and purpose (time-stamping memories) of drift.

      The model used in this study consists of a pool of 50 all-to-all recurrently connected excitatory neurons with weights changing according to a Hebbian rule. All neurons receive the same input during stimulation, as well as global inhibition. The population has heterogeneous excitability, and each neuron's excitability is constant over time apart from a transient increase on a single day. The neurons are divided into ensembles of 10 neurons each, and on each day, a different ensemble receives a transient increase in the excitability of each of its neurons, with each neuron experiencing the same amplitude of increase. Each day for four days, repetitions of a binary stimulus pulse are applied to every neuron.

      The modeling choices focus in on the parameter of interest-the excitability-and other details are generally kept as straightforward as possible. That said, I wonder if certain aspects may be overly simple. The extent of the work already performed, however, does serve the intended purpose, and so I think it would be sufficient for the authors to comment on these choices rather than to take more space in this paper to actually implement these choices. What might happen were more complex modeling choices made? What is the justification for the choices that are made in the present work?

      The two specific modeling choices I question are (1) the excitability dynamics and (2) the input stimulus. The ensemble-wide synchronous and constant-amplitude excitability increase, followed by a return to baseline, seems to be a very simplified picture of the dynamics of intrinsic excitability. At the very least, justification for this simplified picture would benefit the reader, and I would be interested in the authors' speculation about how a more complex and biologically realistic dynamics model might impact the drift in their network model. Similarly, the input stimulus being binary means that, on the singleneuron level, the only type of drift that can occur is a sort of drop-in/drop-out drift; this choice excludes the possibility of a neuron maintaining significant tuning to a stimulus but changing its preferred value. How would the use of a continuous input variable influence the results.

      (1) In our model, neurons tend to compete for allocation to the memory ensemble: neurons with higher excitability tend to be preferentially allocated and neurons with lower excitability do not respond to the stimulus. Because relative, but not absolute excitability biases this competition, we suggest that the exact distribution of excitability would not impact the results qualitatively. On the other hand, the results might vary if excitability was considered dependent on the activity of the neurons as previously reported experimentally (Cai 2016, Rachid 2016, Pignatelli 2019). An increase in excitability following neural activity might induce higher correlation among ensembles on consecutive days, decreasing the drift.

      (2) We thank the reviewer for this very good point. Indeed, two recent studies (Geva 2023 , Khatib 2023) have highlighted distinct mechanisms for a drift of the mean firing rate and the tuning curve. We extended the last part of the discussion to include this point: “Finally, we intended to model drift in the firing rates, as opposed to a drift in the turning curve of the neurons. Recent studies suggest that drifts in the mean firing rate and tuning curve arise from two different mechanisms [33, 34]. Experience drives a drift in neurons turning curve while the passage of time drives a drift in neurons firing rate. In this sense, our study is consistent with these findings by providing a possible mechanism for a drift in the mean firing rates of the neurons driven a dynamical excitability. Our work suggests that drift can depend on any experience having an impact on excitability dynamics such as exercise as previously shown experimentally [9, 35] but also neurogenesis [9, 31, 36], sleep [37] or increase in dopamine level [38]”

      Result (1): Fluctuations in intrinsic excitability induce drift

      The two choices highlighted above appear to lead to representations that never recruit the neurons in the population with the lowest baseline excitability (Figure 1b: it appears that only 10 neurons ever show high firing rates) and produce networks with very strong bidirectional coupling between this subset of neurons and weak coupling elsewhere (Figure 1d). This low recruitment rate need may not necessarily be problematic, but it stands out as a point that should at least be commented on. The fact that only 10 neurons (20% of the population) are ever recruited in a representation also raises the question of what would happen if the model were scaled up to include more neurons.

      This is a very good point. To test how the model depends on the network size, we plotted the drift index against the size of the ensemble. With this current implementation, we did not observe a significant correlation between the drift rate and size of the initial ensemble (Figure S2).

      Author response image 1.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      Result (2): The observed drift has a temporal structure

      The authors then demonstrate that the drift has a temporal structure (i.e., that activity is informative about the day on which it occurs), with methods inspired by Rubin et al. (2015). Rubin et al. (2015) compare single-trial activity patterns on a given session with full-session activity patterns from each session. In contrast, Delamare et al. here compare full-session patterns with baseline excitability (E = 0) patterns. This point of difference should be motivated. What does a comparison to this baseline excitability activity pattern tell us? The ordinal decoder, which decodes the session order, gives very interesting results: that an intermediate amplitude E of excitability increase maximizes this decoder's performance. This point is also discussed well by the authors. As a potential point of further exploration, the use of baseline excitability patterns in the day decoder had me wondering how the ordinal decoder would perform with these baseline patterns.

      This is a good point. Here, we aimed at dissociating the role of excitability from the one of the recurrent currents. We introduced a time decoder that compares the pattern with baseline excitability (E = 0), in order to test whether the temporal information was encoded in the ensemble i.e. in the recurrent weights. By contrast, because the neural activity is by construction biased towards excitability, a time decoder performed on the full session would work in a trivial way.

      Result (3): A readout neuron can track drift

      The authors conclude their work by connecting a readout neuron to the population with plastic weights evolving via a Hebbian rule. They show that this neuron can track the drifting ensemble by adjusting its weights. These results are shown very neatly and effectively and corroborate existing work that they cite very clearly.

      Overall, this paper is well-organized, offers a straightforward model of dynamic intrinsic excitability, and provides relevant results with appropriate interpretations. The methods could benefit from more justification of certain modeling choices, and/or an exploration (either speculative or via implementation) of what would happen with more complex choices. This modeling work paves the way for further explorations of how intrinsic excitability fluctuations influence drifting representations.

      Reviewer #2 (Public Review):

      In this computational study, Delamare et al identify slow neuronal excitability as one mechanism underlying representational drift in recurrent neuronal networks and that the drift is informative about the temporal structure of the memory and when it has been formed. The manuscript is very well written and addresses a timely as well as important topic in current neuroscience namely the mechanisms that may underlie representational drift.

      The study is based on an all-to-all recurrent neuronal network with synapses following Hebbian plasticity rules. On the first day, a cue-related representation is formed in that network and on the next 3 days it is recalled spontaneously or due to a memory-related cue. One major observation is that representational drift emerges day-by-day based on intrinsic excitability with the most excitable cells showing highest probability to replace previously active members of the assembly. By using a daydecoder, the authors state that they can infer the order at which the reactivation of cell assemblies happened but only if the excitability state was not too high. By applying a read-out neuron, the authors observed that this cell can track the drifting ensemble which is based on changes of the synaptic weights across time. The only few questions which emerged and could be addressed either theoretically or in the discussion are as follows:

      1. Would the similar results be obtained if not all-to-all recurrent connections would have been molded but more realistic connectivity profiles such as estimated for CA1 and CA3?

      This is a very interesting point. We performed further simulations to show that the results are not dependent on the exact structure of the network. In particular, we show that all-to-all connectivity is not required to observe a drift of the ensemble. We found similar results when the recurrent weights matrix was made sparse (Fig. S4a-c, Methods). Similarly to all-to-all connectivity, we found that the ensemble is informative about its temporal history (Fig. S4d) and that an output neuron can decode the ensemble continuously (Fig. S4e).

      Author response image 2.

      Sparse recurrent connectivity shows similar drifting behavior as all-to-all connectivity. The same simulation protocol as Fig. 1 was used while the recurrent weights matrix was made 50% sparse (Methods). a) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. b) Recurrent weights matrices after each of the four stimuli show the drifting assembly. c) Correlation of the patterns of activity between the first day and every other days. d) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. e) Center of mass of the distribution of the output weights (Methods) across days. c-e) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. How does the number of excited cells that could potentially contribute to an engram influence the representational drift and the decoding quality?

      This is indeed a very good question. We did not observe a significant correlation between the drift rate and size of the initial ensemble (Fig. S2).

      Author response image 3.

      The rate of the drift does not depend on the size of the engram. Drift rate against the size of the original engram. Each dot shows one simulation (Methods). n = 100 simulations.

      1. How does the rate of the drift influence the quality of readout from the readout-out neuron?

      We thank the reviewer for this interesting question. We introduced a measure of the “read-out quality” and plotted this value against the rate of the drift. We found a small correlation between the two quantities. Indeed, the read-out quality decreases with the rate of the drift.

      Author response image 4.

      The quality of the read-out decreases with the rate of the drift. Read-out quality computed on the firing rate of the output neuron against the rate of the drift (Methods). Each dot shows one simulation. n = 100 simulations.

      Reviewer #3 (Public Review):

      The authors explore an important question concerning the underlying mechanism of representational drift, which despite intense recent interest remains obscure. The paper explores the intriguing hypothesis that drift may reflect changes in the intrinsic excitability of neurons. The authors set out to provide theoretical insight into this potential mechanism.

      They construct a rate model with all-to-all recurrent connectivity, in which recurrent synapses are governed by a standard Hebbian plasticity rule. This network receives a global input, constant across all neurons, which can be varied with time. Each neuron also is driven by an "intrinsic excitability" bias term, which does vary across cells. The authors study how activity in the network evolves as this intrinsic excitability term is changed.

      They find that after initial stimulation of the network, those neurons where the excitability term is set high become more strongly connected and are in turn more responsive to the input. Each day the subset of neurons with high intrinsic excitability is changed, and the network's recurrent synaptic connectivity and responsiveness gradually shift, such that the new high intrinsic excitability subset becomes both more strongly activated by the global input and also more strongly recurrently connected. These changes result in drift, reflected by a gradual decrease across time in the correlation of the neuronal population vector response to the stimulus.

      The authors are able to build a classifier that decodes the "day" (i.e. which subset of neurons had high intrinsic excitability) with perfect accuracy. This is despite the fact that the excitability bias during decoding is set to 0 for all neurons, and so the decoder is really detecting those neurons with strong recurrent connectivity, and in turn strong responses to the input. The authors show that it is also possible to decode the order in which different subsets of neurons were given high intrinsic excitability on previous "days". This second result depends on the extent by which intrinsic excitability was increased: if the increase in intrinsic excitability was either too high or too low, it was not possible to read out any information about past ordering of excitability changes.

      Finally, using another Hebbian learning rule, the authors show that an output neuron, whose activity is a weighted sum of the activity of all neurons in the network, is able to read out the activity of the network. What this means specifically, is that although the set of neurons most active in the network changes, the output neuron always maintains a higher firing rate than a neuron with randomly shuffled synaptic weights, because the output neuron continuously updates its weights to sample from the highly active population at any given moment. Thus, the output neuron can readout a stable memory despite drift.

      Strengths:

      The authors are clear in their description of the network they construct and in their results. They convincingly show that when they change their "intrinsic excitability term", upon stimulation, the Hebbian synapses in their network gradually evolve, and the combined synaptic connectivity and altered excitability result in drifting patterns of activity in response to an unchanging input (Fig. 1, Fig. 2a). Furthermore, their classification analyses (Fig. 2) show that information is preserved in the network, and their readout neuron successfully tracks the active cells (Fig. 3). Finally, the observation that only a specific range of excitability bias values permits decoding of the temporal structure of the history of intrinsic excitability (Fig. 2f and Figure S1) is interesting, and as the authors point out, not trivial.

      Weaknesses:

      1. The way the network is constructed, there is no formal difference between what the authors call "input", Δ(t), and what they call "intrinsic excitability" Ɛ_i(t) (see Equation 3). These are two separate terms that are summed (Eq. 3) to define the rate dynamics of the network. The authors could have switched the names of these terms: Δ(t) could have been considered a global "intrinsic excitability term" that varied with time and Ɛ_i(t) could have been the external input received by each neuron i in the network. In that case, the paper would have considered the consequence of "slow fluctuations of external input" rather than "slow fluctuations of intrinsic excitability", but the results would have been the same. The difference is therefore semantic. The consequence is that this paper is not necessarily about "intrinsic excitability", rather it considers how a Hebbian network responds to changes in excitatory drive, regardless of whether those drives are labeled "input" or "intrinsic excitability".

      This is a very good point. We performed further simulations to model “slope-based”, instead of “threshold-based”, changes in excitability (Fig. S5a, Methods). In this new definition of excitability, we changed the slope of the activation function, which is initially sampled from a random distribution. By introducing a varying excitability, we found very similar results than when excitability was varied as the threshold of the activation function (Fig. S5b-d). We also found similarly that the ensemble is informative about its temporal history (Fig. S5e) and that an output neuron can decode the ensemble continuously (Fig. S5f).

      Author response image 5.

      Change of excitability as a variable slope of the input-output function shows similar drifting behavior as considering a change in the threshold. The same simulation protocol as Fig. 1 was used while the excitability changes were modeled as a change in the activation function slope (Methods). a) Schema showing two different ways of defining excitability, as a threshold (top) or slope (bottom) of the activation function. Each line shows one neuron and darker lines correspond to neurons with increased excitability. b) Firing rates of the neurons across time. The red traces correspond to neurons belonging to the first assembly, namely that have a firing rate higher than the active threshold after the first stimulation. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the four stimuli show the drifting assembly. d) Correlation of the patterns of activity between the first day and every other days. e) Student's test t-value of the ordinal time decoder, for the real (blue) and shuffled (orange) data and for different amplitudes of excitability E. f) Center of mass of the distribution of the output weights (Methods) across days. d-f) Data are shown as mean ± s.e.m. for n = 10 simulations.

      1. Given how the learning rule that defines input to the readout neuron is constructed, it is trivial that this unit responds to the most active neurons in the network, more so than a neuron assigned random weights. What would happen if the network included more than one "memory"? Would it be possible to construct a readout neuron that could classify two distinct patterns? Along these lines, what if there were multiple, distinct stimuli used to drive this network, rather than the global input the authors employ here? Does the system, as constructed, have the capacity to provide two distinct patterns of activity in response to two distinct inputs?

      This is an interesting point. In order to model multiple memories, we introduced non-uniform feedforward inputs, defining different “contexts” (Methods). We adapted our model so that two contexts target two random sub-populations in the network. We also introduced a second output neuron to decode the second memory. The simulation protocol was adapted so that each of the two contexts are stimulated every day (Fig. S6a). We found that the network is able to store two ensembles that drift independently (Fig. S6 and S7a). We were also able to decode temporal information from the patterns of activity of both ensembles (Fig. S7b). Finally, both memories could be decoded independently using two output neurons (Fig. S7c and d).

      Author response image 6.

      Two distinct ensembles can be encoded and drift independently. a) and b) Firing rates of the neurons across time. The red traces in panel b) correspond to neurons belonging to the first assembly and the green traces to the second assembly on the first day. They correspond to neurons having a firing rate higher than the active threshold after the first stimulation of each assembly. The black bars show the stimulation and the dashed line shows the active threshold. c) Recurrent weights matrices after each of the eight stimuli showing the drifting of the first (top) and second (bottom) assembly.

      Author response image 7.

      The two ensembles are informative about their temporal history and can be decoded using two output neurons. a) Correlation of the patterns of activity between the first day and every other days, for the first assembly (red) and the second assembly (green). b) Student's test t-value of the ordinal time decoder, for the first (red, left) and second ensemble (green, right) for different amplitudes of excitability E. Shuffled data are shown in orange. c) Center of mass of the distribution of the output weights (Methods) across days for the first (w?ut , red) and second (W20L't , green) ensemble. a-c) Data are shown as mean ± s.e.m. for n = 10 simulations. d) Output neurons firing rate across time for the first ensemble (Yl, top) and the second ensemble (h, bottom). The red and green traces correspond to the real output. The dark blue, light blue and yellow traces correspond to the cases where the output weights were randomly shuffled for every time points after presentation of the first, second and third stimulus, respectively.

      Impact:

      Defining the potential role of changes in intrinsic excitability in drift is fundamental. Thus, this paper represents a potentially important contribution. Unfortunately, given the way the network employed here is constructed, it is difficult to tease apart the specific contribution of changing excitability from changing input. This limits the interpretability and applicability of the results.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The manuscript develops the authors' previous work on the structure of the YeeE protein by presenting a co-structure with YeeD and investigating the role of certain key cysteine residues, especially C17 of YeeD. To this reviewer an entirely plausible mechanism for YeeD/E co-ordinated transport of thiosufate through the membrane and cleavage to sulfide and sulfite which are released into the cytoplasm is proposed on the basis of functional studies. The work is clearly described, the crystallography stats look good.

      Thank you very much for your highly positive comments. We sincerely appreciate them.

      Major comment: The 'cysteine relay' followed by a key role for C17 of YeeD in releasing a sulfide looks very plausible and makes the work of more general interest. An aspect that is not addressed is that of energetics. Moving thiosulfate into the cytoplasm as sulfide and sulfite means apparently that two negative charges net are generated in the cytoplasm for each thiosulfate taken up. This seems too simplistic (protons released as the bound sulfite is released b hydrolysis) but if thiosulfate were to be moved the whole way across there would be a divalent anion uniport which would work against the membrane potential negative inside (ie the main component of the protonmotive force). There is no mention in the paper of any pmf dependence and presumably the structure of YeeE shows no evidence of putative proton pathways? Some discussion of this and any wider implications could enhance the paper. In some ways the proposed transport scheme has some resemblance to Mitchells's old group translocation proposal for transport.

      Thank you for highlighting the significance of the 'cysteine relay.' We also believe that this aspect is likely to interest a broad readership. Regarding protons, YeeE does not have apparent proton pathways inside, and we currently do not have data on its dependence on the pmf. Investigating pmf dependence falls beyond the scope of this study, hence we plan to explore this in future research. We appreciate you for pointing out that the YeeE-YeeD is a reminiscence of Mitchell’s original proposal of group translocation. This is a very intriguing point, and we have now included a discussion of this, along with a relevant citation, in the Discussion section (lines 356-357).

      Reviewer #1 (Significance (Required)):

      The subject of thiosulfate transport (movement) into bacteria is arguably of interest only to a narrow group of bacterial biochemists. However, the contents of this manuscript ought to be of wider interest because the YeeD/E system described is unusual in doing more that catalysing transport alone. Whether the authors' description in their title of 'sophisticated' is an appropriate adjective I am not sure. The term 'cofactor' applied to YeeD seems 'odd' to this reviewer. It is not a cofactor in the usual sense eg NADH.

      We appreciate your comments. We have modified the title and avoided the unsuitable word 'cofactor' to describe YeeD.

      reviewer's expertise: bactrial energetics but little knowledge of sulfur metabolism


      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The publication "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al. shows the protein-protein interaction of a thiosulfate transporter YeeE and a sulfur transferase YeeD, a TusA-family protein. The transporter YeeE has been structurally characterized previously, without showing its functional activity in a purified reconstituted system. This experiment complementing the previous publication is provided here, furthermore proving the functionality of the transporter. These experiments were further extended by the characterization of the cytoplasmic acceptor protein. This acceptor was proven to be YeeD, by structural characterization and biolayer interferometry. The binding kinetics between YeeD and YeeE were measured, quantifying the binding affinity between the two proteins. Furthermore, the surface residues of YeeD were specified by amino acid exchange mutants. Thus, the structure and essential residues were characterized protein. The interaction of sulfur transferase YeeD with the thiosulfate transporter YeeE is a novelty to the field. This illuminates the first time a specific function of YeeD in thiosulfate assimilation.

      We appreciate your positive review and for recognizing the significance of our work in uncovering the functions of the YeeE and YeeD complex. We have addressed the following major and minor comments, thereby improving our manuscript. We appreciate the your constructive feedback.

      Major comments:

      I see the following major problem: The YeeD protein preparations used in the experiments contained several different protein species. Mass spectrometry showed the existence of the monomeric reduced protein, a TusA sulfinate and a TusA thiosulfonate. There is obviously an oxidation of cysteine to cysteine sulfinate, possibly due to the presence of oxygen as shown in Fig. 2D and stated in the text. The formation of sulfinates has to be avoided. This can be achieved by the use of stronger reducing agents or by purification under strict exlusion of oxygen. The formation of sulfenic, sulfinic and sulfonic acid on cysteines by oxidation has been reviewed by Ezraty et al 2017 Nat Rev Microbiol.

      To answer these points, we have extensively several experiments and analyses, and modified the text. In the mass spectrometry analysis of purified StYeeD, three major peaks are observed (Fig. 2D), but they do not necessarily reflect actual relative abundances due to the nature of mass spectrometry analysis. Therefore, we also analyzed the purified StYeeD by non-reducing SDS-PAGE, which showed very few molecular species with S-S bonds, with over 90% existing as YeeD-SH (Fig. S2D). We considered this level of purity sufficient for conducting biochemical analyses. Furthermore, although a small amount of YeeD-SO2- was observed, this would be inactive and thus not impact the activity of StYeeD because a similar irreversible modification product, NEM-modified StYeeD(WT), was inactive (Fig. S2G).

      We have also provided non-reducing SDS-PAGE results for each mutant StYeeD in Fig. S2F. All StYeeD mutants except for L45A showed a similar pattern to StYeeD(WT). Conducting experiments under anaerobic conditions is quite challenging in our laboratory facility, so we have displayed non-reducing SDS-PAGE profiles of all proteins used in order to avoid misunderstanding. We have also tried the purification in the presence of DTT, a stronger reducing agent, but the fraction of YeeD-SO2- was not significantly changed.

      In the revised version, mass spectrometry analyses were reperformed using DTT-reduced YeeD, resulting in more precise data (Fig. 2D–H). Based on these results and your valuable comments, we have rewritten the paragraph entitled 'T____hiosulfate decomposition activity of YeeD and its catalytic center residue' to represent the reduction/oxidation forms accurately. We have also cited the Nat. Rev. Microbiol. review in the text (line 185).

      In their in vitro assays, the authors use exceptionally high thiosulfate concentrations of 300 mM. This is so far from any physiologically relevant concentrations that strong doubt is shed the validity of any conclusions transferred from the in vitro to the in vivo situation.

      In the revised version, the mass spectrometry analysis was reperformed with a thiosulfate concentration of 500 µM, which is the same concentration of thiosulfate used in the thiosulfate decomposition experiments. To clarify this, we have included the thiosulfate ion concentrations in the legend of Fig 2.

      L247 and Fig5: The proposed mechanism cannot be true. Binding of thiosulfate to a reduced TusA protein is not possible without release of electrons. Where do these electrons go? In the proposed scheme, the number of electrons before and after the reaction steps is not equal (Fig. 5). A release of the sulfur atom between the cysteine sulfur atom and the oxidized sulfur atom is impossible.

      Thank you for your insightful comments. We have revised Fig. 5B to represent a better model. However, elucidating the electron pathway falls outside the scope of this study, and we cannot offer a definitive explanation. We have addressed this limitation in the Discussion section and highlighted it as a topic for future research.

      Have the authors checked whether TusA dimers are formed via disulfide bridges? If so, thiosulfate could resolve these disulfides leading to reduced TusA and thiosulfonated TusA (YeeD-S-S-YeeD + S2O32- → YeeD-S-S-SO3- + YeeD-S-).

      It cannot be excluded that the YeeD-S-SO3- species is a result of removal of sulfite from the YeeD-S-S2O3- species (possibly by transfer to another YeeD molecule) resulting in YeeD-S-S- oxidized by molecular oxygen to YeeD-S-SO3-.

      Upon answering to this comment, we have re-examined the gel filtration result using gel filtration markers. We found that a fraction of YeeD exists as dimers in solution, as shown in Fig. S2C. By performing non-reducing SDS-PAGE, it was shown that these YeeD dimers were not due to intermolecular disulfide bond (Fig. S2D). Following your valuable suggestion, we have introduced the possibility that YeeD can function as a dimer into our model, as presented in a box in Fig. 5B.

      Sulfide may be formed by a reaction of YeeD-S- with S2O32- to YeeD-S-SO3- and S2- or reaction of YeeD-S-S- with S2O32- to YeeD-S-S2O3- and S2-. As there is the formation of sulfinic acid that prevents clear conclusions, I suggest repeating the experiments on thiosulfate decomposition under anaerobic conditions to clarify the reaction mechanism. Anoxic buffers and strong reducing agents may prevent chemical oxidation.

      As described above, based on the non-reducing SDS-PAGE results (Fig. S2D), we believe that the low presence of oxidized species does not significantly affect our analysis. Moreover, the mass spectrometry analysis after DTT treatment yielded more precise results (Fig. 2D–H). As noted above, conducting experiments under anaerobic conditions is challenging in our facility, so we kindly request your understanding and consideration of the revisions made in this manuscript.

      Minor comments:

      In response to the minor comments, we have revised the manuscript.

      L58 What is the nature of the binding of the thiosulfate ion during the transport via YeeE. Is it covalently bound? Please comment in the text.

      In our previous study (Tanaka et al., Sci. Adv., 2020), we proposed that thiosulfate ions were transported via hydrogen bonds. Responding to your comment, we have included the explanation in the text and cited Tanaka et al., 2020 (lines 66-67).

      L76-L77 Is there a publication on the functionality of the Corynebacterium YeeD-YeeE fusion? The term "cofactor" does not apply to YeeD, which is a 9-kDa protein.

      Since the function of Corynebacterium YeeD-YeeE has not been reported, we have changed the sentence to "In some bacteria, such as Gram-positive Corynebacterium species, YeeE and YeeD are encoded as one polypeptide." We have also avoided the word "cofactor" in the revised text (lines 89-91).

      L114 YeeD was probably accidentally lowercased here as Yeed

      We have corrected this error (line 134).

      L119 Please specify what the negative control consisted of.

      We have elaborated on the conditions (lines 140-141).

      L120-122 In Fig 2c, the mutations E19A, K21A, E26A, D31A, E32A and D38A are still shown, but an explanation or description of the results is missing. The reason for investigation of these mutations should be stated in the text.

      We have added the requested mutation information (line 146).

      L137 If thiosulfate was not added before the MALDI-TOF, where did the sulfonate S-SO3 originate from? Is this an artifact formed during the heterologous production or purification? Please comment on this possibility in the text.

      We think that the -S-SO3- form arose during purification (Fig. 2D). The -S-SO3- form disappeared upon reduction by DTT (Fig. 2F). It is possible to consider it as an intermediate state in the catalytic cycle of YeeD. We commented on this in the section entitled "Thiosulfate decomposition activity of YeeD and its catalytic center residue."

      L144 Please state in the text whether these experiments were performed under aerobic or anaerobic conditions. The sulfinic acid is likely a product of a spontaneous chemical reaction with molecular oxygen.

      Thank you for your feedback. We have now included information about the aerobic conditions in the main text (line 166-167) and added comments regarding the mass spectrometry results at the end of the paragraph (lines 191-201).

      L148 It should be stated in the text whether YeeD in Fig2G was reduced with DTT as in Fig 2F or non-reduced as in Fig. 2D before thiosulfate was added. Only the reduced YeeD can yield conclusive results on the loading with sulfur, as there is already a thiosulfonate bound to the protein after purification.

      Thank you for pointing this out. For mass spectrometry analysis, data were re-obtained, and DTT-treated sample was used for the thiosulfate condition in this revised version. Furthermore, we performed mass spectrometry analysis for the hydrogen peroxide condition using DTT-treated sample. Figures were replaced with revised ones (Fig. 2D–H). The text in the section "Thiosulfat____e decomposition activity of YeeD and its catalytic center residue" was appropriately re-written. Detailed sample preparation is also described in MATERIALS AND METHODS section.

      L154 The YeeD used for measurement of sulfide formation must be reduced before the experiments. It is not stated in the text if this is the case. Also, the release of sulfide requires electrons. It should be commented where these electrons originate from.

      The sample in the purification process contains β-ME until just before the final column (gel filtration). As shown in Fig. S2D, more than 90% of the purified product is in a reduced state after gel filtration. For mass spectrometry analysis, data were re-obtained using DTT-treated samples, and the figures were replaced with new ones (Fig. 2D–H). Binding and activity measurements were conducted in the presence of β-ME. To avoid the confusion of the readers, the buffer conditions were included in the legends of both Fig. 2 and Fig. 4, along with the details in the MATERIALS AND METHODS section. Regarding electron origin, since the electron route remains unknown at this stage, we have added the explanation as a sentence in the Discussion section (lines 370-372).

      L159-160 If the mutation of the non-conserved YeeD cysteine inhibits growth, can anything be said about its function?

      Regarding the non-conserved Cys in EcYeeD, we added some sentences in the Discussion section (lines 393-397)

      L214 Is it possible to provide the Kd and KD values for the mutant proteins?

      The ka, kd and KD values the interactions between YeeE and YeeD proteins have been provided in Table 2. To provide these values for all the YeeD derivatives, the data was re-analyzed, and therefore, the value of the WT YeeD is slightly different from the original manuscript.

      L229 Stating a need of YeeD for thiosulfate uptake by YeeE is somewhat misleading as thiosulfate was also imported into liposomes by YeeE alone. Maybe state that YeeD is a required component for growth when thiosulfate is imported via YeeE.

      We have addressed the incorrect wording (lines 317-318).

      Reviewer #2 (Significance (Required)):

      The work of Ikei and colleagues significantly advances our understanding of thiosulfate import in Escherichia coli (E. coli) and prokaryotes in general. Sulfur metabolism as a field is generally considered to be underexplored, with a notable lack of biochemical and structural information on membrane transporters responsible for the movement of both inorganic and organic sulfur compounds. The mechanisms involved in sulfur transport are also relatively poorly understood.

      The proteins of the TusA family in E. coli exhibit distinct functions, although the precise function has only been determined for the canonical and namesake protein TusA. The discovered genetic evidence and the interaction of YeeE and YeeD adds significantly to our understanding of sulfur transfer reactions.

      The novelty of this reaction is of particular interest to researchers studying prokaryotic physiology, especially the synthesis of sulfur-containing cofactors such as coenzyme A (CoA), biotin, lipoate, thiamine, and iron-sulfur (FeS) clusters, as well as the biosynthesis of cysteine and methionine. In addition, recent findings related to the TusA family protein YeeD elucidate a novel mechanism for sulfur mobilization and transfer that will be of interest to researchers involved in the regulation of sulfur metabolism, sulfur dissimilation, and ecological studies focused on sulfur utilization. Thus, a wide range of studies could be influenced by this review.

      Areas of expertise include dissimilatory sulfur oxidation, sulfur transfer reactions, and protein-protein interactions.

      Thank you again for emphasizing the importance of our work. We also believe this study significantly advances the understanding of thiosulfate import in prokaryotes, shedding light on the underexplored field of sulfur metabolism. This has implications for various areas of study.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript "Structure and function of a YeeE-YeeD complex for sophisticated thiosulfate uptake" by Ikei et al., reports the enzymatic characterization, transport capability and concerted function of YeeE and YeeD. Moreover, the authors report the crystal structures of two mutant variants of the complex.

      The present work fills an important gap in understanding thiosulfate uptake and the individual roles of the YeeE and YeeD proteins in this process. This Reviewer believes that the paper has the potential of becoming an important reference in the field. However, this Reviewer has two or three major comments, besides a couple of minor ones, that would like the authors to address.

      We appreciate your valuable comments. We have addressed both major and minor comments in our revisions, improving our manuscript.

      This Reviewer hypothesizes that some of the comments might derive from a poor understanding of the text, derived from the way the manuscript is written. So, this Reviewer urges the Authors to take these comments as positive feedback, and build on these to improve the manuscript (namely on English and grammar).

      We have diligently revised the manuscript, addressing your major concerns related to sulfide terminology and explanations in crystal structure analysis as below. These revisions have enhanced clarity, and a native English speaker has reviewed and refined our text for language and grammar.

      MAJOR CONCERNS

      1. There is no clue on the title and, more importantly, on the Abstract, to which microorganism the Authors are reporting this work. Only later one we are introduced to Spirochaeta thermophila, but this information should be front and center (at least in the Abstract);

      We recognize the importance of clearly indicating the microorganism in our work. In accordance with the comments, we have revised both the title and Abstract, ensuring that the species is clearly identified in the Abstract.

      Also, in the Abstract, the Authors only mention the 2.6 A resolution structure, leaving behind the 3.34 A one. This becomes very confusing, especially once one gets to the Results section (more comments below);

      We apologize for any confusion arising from the omission of the 3.34 A resolution structure in the Abstract. In the revised Abstract, we have included both the 2.60 A and 3.34 A resolution structures. As per your suggestion, we have also provided detailed information about the determination of these structures in the Results, minimizing potential confusion for readers (lines 217-233).

      The Authors mention in line 137 and Fig. 2D that a "sulfonate" moiety is formed at C17. However, cysteine sulfonation is an irreversible process, so how would the enzyme recover from this modification to allow turnover of the mechanism?;

      We apologize for the poorly written passage that led to confusion. This paragraph has been revised with the appropriate wording and a proper mention of the reduction and oxidation of the -SH group. We now use the appropriate terms, such as sulfinic acid (-S-O2-), sulfonic acid (-S-O3-), and perthiosulfonic acid (-S-SO3-) to describe the sulfur-related modification states. In contrast to sulfonic acid (-SO3-) formed by the oxidization of the cysteine residue that is an irreversible process, perthiosulfonic oxidization of cysteine residue (-S-SO3-) is a reversible process, as shown in (E. Doka et al., Sci Adv 6, eaax8358 (2020)). Therefore, the modified YeeD molecules should be able to recover to the original state.

      If the "sulfonylation" reported in line 137 and Fig. 2D is not a sulfonylation of the cysteine (because the peak disappears upon reduction with DDT as visible in Fig. 2F), but rather a sulfonylation of the cysteine-persulfide version of C17, this was already reported previously and should be referenced [PDB ID 5LO9, Brito et al. (2016) J Biol Chem 291: 24804-24818];

      Because there was a misleading statement, as replied above, we have rewritten this paragraph.

      The perthiosulfonic acid (-S-SO3-) in Fig.2D is different from this -S-S2O3- in Brito et al., (2016), but consistent with Fig. 2G. This point is included in the text and the suggested paper has been cited, as requested. (lines 191-193)

      Section "Crystal structure of the YeeE-YeeD complex" should be re-written. Not only it is confusing, but also undermines the tremendous amount of work done by the Authors. Please state clearle what was crystallized, how and why. Specify clearly the mutation introduced and complement Table 1 with this information;

      Thank you for these comments. The determination of the structures was certainly challenging. We have restructured the first part of the section entitled "Crystal structure of the YeeE-YeeD complex". We have included a comprehensive explanation of the crystallization process and the construction of YeeE-YeeD. Additionally, we have updated Table 1 to provide more detailed information on the two structures.

      Lines 403-407: are the crystallization conditions already cryo-protected or no cryo-protection was added before flash freezing? Please state clearly;

      In response to your feedback, we have added the missing information in MATERIALS AND METHODS section.

      Table 1:

      • Is the multiplicity of PDB ID 8K1R correct? Is it really 321?? If so, is there any radiation damage to the crystal? If not, how?? Fine-fine-slicing during data collection, big crystals with elliptical data collection?? Pleas elaborate;

      The multiplicity for PDB ID 8K1R is correct. We have provided detailed information on data collection in MATERIALS AND METHODS section.

      • There are water molecules in the structure so please report number of atoms and B-factors for waters ("Solvent"), and ligands (e.g., thiosulfate, or others, if any), separately;

      We have updated Table 1 to include the requested information.

      • Please provide validation statistics for the structures, namely, rotamer outliers, clashscore and MolProbity score.

      We have added the validation statistics to Table 1.

      MINOR CONCERNS

      1. Always reference paper and PDB ID for all structures. E.g., at line 181, only the paper is referenced;

      We have ensured that all structures are properly referenced with both the paper and the corresponding PDB ID (lines 246, 250).

      Remove "alpha" in line 199;

      We have removed the "alpha" (line 268).

      Add units to all concentrations. E.g., at lines 326 and 327, (w/V) and (V/V) are missing.

      We have incorporated concentration units, (w/v) or (v/v), for percentages in the appropriate locations.

      Reviewer #3 (Significance (Required)):

      The scientific rationale is robust and the experimental approach is adequate and provide support to the conclusion drawn. However, there are some questions this Reviewer would like to see clarified, namely on the data collection and processing of PDB ID 8K1R.

      We appreciate your feedback. These revisions enhance the clarity and accuracy of this manuscript.

    1. As grad students, postdocs, or early career academics, we may think that the papers we reference, the textbooks we read, or the articles we enjoy skimming are written by writers who are leaps and bounds above us in terms of skill.

      This is what I think about successful media influencers, you-tubers, streamers, etc. I thought there was never a real chance for the little guy when you have all these other people who get millions of views and likes but you have to think that they all started getting one like or one viewer, so there is always a chance for the new guy to be as big as these other people like pewdipie, jynxzi, the Kardashians, etc.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Issue 1: The relevance is somewhat unclear. High cysteine levels can be achieved in the laboratory, but, is this relevant in the life of C. elegans? Or is there physiological relevance in humans, e.g. a disease? The authors state "cells and animals fed excess cysteine and methionine", but is this more than a laboratory excess condition? SUOX nonfunctional conditions in humans don't appear to tie into this, since, in that context, the goal is to inactivate CDO or CTH to prevent sulfite production. The authors also mention cancer, but the link to cysteine levels is unclear. In that sense, then, the conditions studied here may not carry much physiological relevance.

      Response 1: We set out to answer a fundamental question: what pathways regulate the function of cysteine dioxygenase, a highly conserved enzyme in sulfur amino acid metabolism? In an unbiased genetic screen that sampled millions of EMS generated mutations across all ~20,000 C. elegans genes, we discovered loss of function/null mutations in egl-9 and rhy-1, two negative regulators of the hypoxia inducible transcription factor (hif-1). Genetic ablation of the egl-9 or rhy-1 loci are likely not relevant to the life of a C. elegans animal, i.e. this is not representative of a natural state. Yet, this extreme genetic intervention has taught us a new fundamental truth about the interaction between EGL-9/RHY-1, HIF-1, and the transcriptional activation of cdo1. Similarly, the high cysteine levels used in our assays may or may not be representative of a state in nature, we do not know (nor do we make any claims about the environmental relevance of our choice of cysteine concentrations). It seems very plausible that pathological states exist where cysteine concentrations may rise to comparable levels in our experimental system. More importantly, we have started with excess to physiology to elicit a clear response that we can study in the lab. Similar strategies established the cysteine-induction phenotype of CDO1 in mammalian systems. For instance, in Kwon and Stipanuk 2001, hepatocytes are cultured in media supplemented with 2mmol/L cysteine to promote a ~4-fold increase in CDO1 mRNA.

      Issue 2: The pathway is described as important for cysteine detoxification, which is described to act via H2S (Figure 6). Much of that pathway has already been previously established by the Roth, Miller, and Horvitz labs as critical for the H2S response. While the present manuscript adds some additional insight such as the additional role of RHY-1 downstream on HIF-1 in promoting toxicity, this study therefore mainly confirms the importance of a previously described signalling pathway, essentially adding a new downstream target rhy-1 -> cysl-1 -> egl-9 -> hif-1 -> sqrd-1/cdo-1. The impact of this finding is reduced by the fact that cdo-1 itself isn't actually required for survival in high cysteine, suggesting it is merely a maker of the activity of this previously described pathway.

      Response 2: We agree that the primary impact of our manuscript is the establishment of a novel intersection between the H2S-sensing pathway (largely worked out by Roth, Miller, and Horvitz) and our gene of interest, cysteine dioxygenase. We believe that the connection between these two pathways is exciting as it suggests a logical homeostatic circuit. High cysteine yields enzymatically produced H2S. This H2S may then act as a signal promoting HIF-1 activity (via RHY-1/CYSL-1/EGL-9). High HIF-1 activity increases cdo-1 transcription and activity promoting the degradation of the high-cysteine trigger. As pointed out by the reviewer, cdo-1(-) loss of function alone does not cause cysteine sensitivity at the concentrations tested. Given that cysl-1(-) and hif-1(-) mutants are exquisitely sensitive to high levels of cysteine, we propose that HIF-1 activates the transcription of additional genes that are required for high cysteine tolerance. However, our genetic data show that cdo-1 is more than simply a marker of HIF-1 transcription. Our genetic data in Table 1 demonstrate that HIF-1 activation (caused by egl-9(-)) is sufficient to cause severe sickness in a suox-1 hypomorphic mutant which cannot detoxify sulfites, a critical product of cysteine catabolism. This severe sickness can be reversed by inactivating hif-1, cth-2, or cdo-1. These data demonstrate a functional intersection between the established H2S-sensing pathway and cysteine catabolism governed by cdo-1.

      Reviewer #2 (Public Review):

      Issue 3: First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway.

      Response 3: We agree with the reviewer and have performed the suggested dose-response curve for expression of Pcdo-1::GFP in wild-type C. elegans. We observe substantial activation of the Pcdo-1::GFP transcriptional reporter beginning at 100µM supplemental cysteine (Figure 3C). Higher doses of cysteine do not elicit a substantially stronger induction of the Pcdo-1::GFP reporter. Thus, we find that 100µM supplemental cysteine strikes the right balance between strongly inducing the Pcdo-1::GFP reporter while not inducing any toxicity or lethality in wild-type animals (Figure 3E).

      We further agree that testing for induction of the Pcdo-1::GFP reporter in a hif-1(-) or cysl-1(-) mutant background is a critical experiment. However, we have not been able to identify a cysteine concentration that induces Pcdo-1::GFP and is not 100% lethal for hif-1(-) or cysl-1(-) mutant C. elegans. The remarkable sensitivity of hif-1(-) or cysl-1(-) mutant C. elegans to supplemental cysteine demonstrates the critical role of these genes in promoting cysteine homeostasis. But because of this lethality, we could not assay the Pcdo1::GFP reporter in the hif-1(-) or cysl-1(-) mutant animals. But the lethality to excess cysteine demonstrates that this cysteine response is salient. To get at how cysteine might be interacting with the HIF-1-signaling pathway, we performed new additivity experiments by supplementing 100µM cysteine to wild type, egl-9(-), and rhy-1(-) mutant C. elegans expressing the Pcdo-1::GFP reporter. Surprisingly, we found that cysteine had no significant impact on Pcdo-1::GFP expression in an egl-9(-) mutant background but significantly increased the Pcdo-1::GFP expression in a rhy-1(-) background (Figure 3A,B). These data suggest that cysteine acts in a pathway with egl-9 and in parallel to rhy-1. These data have been incorporated into Figure 3A,B and are included in the Results section of the manuscript.

      Issue 4: While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Response 4: We agree that the induction of the Pcdo-1::GFP reporter by supplemental cysteine is not as dramatic as the induction caused by the egl-9 or rhy-1 null alleles. We believe our Response 3 and new Figure 3C demonstrate that this phenomenon is not due to lack of condition optimization, but likely reflects some biology. As pointed out by the reviewer, C. elegans likely buffers exogenous cysteine and this (perhaps) prevents the impressive Pcdo-1::GFP induction observed in the egl-9(-) and rhy-1(-) mutant animals. We have now mentioned this possible interpretation in the Results section. Furthermore, we like the idea of using genetic tricks to promote cysteine accumulation within C. elegans cells and tissues and will consider these approaches in future studies.

      Issue 5: Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism.

      Response 5: Future studies are required to determine the specificity of the RHY-1/CYSL-1/EGL-9/HIF-1 pathway for the control of cysteine homeostasis. Our proposed mechanism, that H2S activates the HIF-1 pathway is based largely on the work of the Horvitz lab (Ma et al. 2012). They demonstrate that H2S promotes a direct inhibitory interaction between CYSL-1 and EGL-9, leading to activation of HIF-1. These findings align nicely with our genetic and pharmacological data. However, our work does not provide direct evidence as to the cysteine-derived metabolite that activates HIF-1. We propose H2S as a likely candidate.

      We have added a note to the introduction regarding the role of GSH as a reservoir of excess cysteine and agree that future studies might find interesting links between CDO-1, GSH metabolism, and HIF-1.

      Issue 6: In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

      Response 6: We have included a new section in the Discussion highlighting the nature of mammalian CDO1 regulation. We propose the hypothesis that a homologous pathway to the C. elegans RHY-1/CYSL-1/EGL9/HIF-1 pathway might operate in mammalian cells to sense high cysteine and induce CDO1 transcription. Importantly, all proteins in the C. elegans pathway have homologous counterparts in mammals. However, this hypothesis remains to be tested in mammalian systems.

      Reviewer #3 (Public Review):

      Major weaknesses of the paper include:

      Issue 7: the over-reliance on genetic approaches.

      Response 7: This is a fair critique. Our expertise is genetics. Our philosophy, which the reviewers may not share, is that there is no such thing as too much genetics!

      Issue 8: the lack of novelty regarding prolyl hydroxylase-independent activities of EGL-9.

      Response 8: We believe the primary novelty of our work is establishing the intersection between the H2Ssensing HIF-1 pathway and cysteine catabolism governed by cysteine dioxygenase. Our demonstration that cdo-1 regulation operates largely independent of VHL-1 and EGL-9 prolyl hydroxylation is a mechanistic detail of this regulation and not the critical new finding. Although, we believe it does suggest where pathway analyses should be directed in the future. We also believe that our homeostatic feedback model for the regulation of HIF-1 (and cdo-1) by cysteine-derived H2S is new and exciting and provides insight into the logic of why HIF-1 might respond to H2S and promote the activity of cdo-1. Our work suggests that one reason for this intersection of hif-1 and cdo-1 is to sense and maintain cysteine homeostasis when cysteine is in excess.

      Issue 9: the lack of biochemical approaches to probe the underlying mechanism of the prolyl hydroxylaseindependent activity of EGL-9.

      Response 9: While not the primary focus of our current manuscript, we agree that this is an exciting area of future research. To uncover the prolyl hydroxylase-independent activity of EGL-9, we agree that a combination of approaches will be required including, biochemical, structure-function, and genetic.

      Major Issues We Feel the Authors Should Address:

      Issue 10: One particularly glaring concern is that the authors really do not know the extent to which the prolyl hydroxylase activity is (or is not) impacted by the H487A mutation in egl-9(rae276). If there is a fair amount of enzymatic activity left in this mutant, then it complicates interpretation. The paper would be strengthened if the authors could show that the egl-9(rae276) eliminates most if not all prolyl hydroxylase activity. In addition, the authors may want to consider doing RNAi for egl-9 in the egl-9(rae276) mutant as a control, as this would support the claim that whatever non-hydroxylase activity EGL-9 may have is indeed the causative agent for the elevation of CDO-1::GFP. Without such experiments, readers are left with the nagging concern that this allele is simply a hypomorph for the single biochemical activity of EGL-9 (i.e., the prolyl hydroxylase activity) rather than the more interesting, hypothesized scenario that EGL-9 has multiple biochemical activities, only one of which is the prolyl hydroxylase activity.

      Response 10: We have two lines of evidence that suggest the egl-9(rae276)-encoded H487A variant eliminates prolyl hydroxylase activity. First, Pan et al. 2007 (reference 57) demonstrate that when the equivalent histidine (H313) is mutated in human protein, that protein lacks detectible prolyl hydroxylase activity. Second, the phenotypic similarities caused by egl-9(rae276) and the vhl-1 null allele, ok161. Both alleles cause nearly identical activation of the Pcdo-1::GFP reporter transgene (Fig. 5C,D), and similarly impact the growth of the suox-1(gk738847) hypomorphic mutant (Table 1). This phenotypic overlap is highly relevant as the established role of VHL-1 is to recognize the hydroxyl mark conferred by the EGL-9 prolyl hydroxylase domain and promote the degradation of HIF-1. If EGL-9[H487A] had residual prolyl hydroxylase activity, we would expect the vhl-1(-) null mutant C. elegans to display more dramatic phenotypes than their egl-9(rae276) counterparts. This is not the case.

      Issue 11: The authors observed that EGL-9 can inhibit HIF-1 and the expression of the HIF-1 target cdo-1 through a combination of activities that are (1) dependent on its prolyl hydroxylase activity (and subsequent VHL-1 activity that acts on the resulting hydroxylated prolines on HIF-1), and (2) independent of that activity. This is not a novel finding, as the authors themselves carefully note in their Discussion section, as this odd phenomenon has been observed for many HIF-1 target genes in multiple publications. While this manuscript adds to the description of this phenomenon, it does not really probe the underlying mechanism or shed light on how EGL-9 has these dual activities. This limits the overall impact and novelty of the paper.

      Response 11: See response to Issues #8.

      Issue 12: Cysteine dioxygenases like CDO-1 operate in an oxygen-dependent manner to generate sulfites from cysteine. CDO-1 activity is dependent upon availability of molecular oxygen; this is an unexpected characteristic of a HIF-1 target, as its very activation is dependent on low molecular oxygen. Authors neither address this in the text nor experimentally, and it seems a glaring omission.

      Response 12: We agree this is an important point to raise within our manuscript. Although, despite its induction by HIF-1, there is no evidence that cdo-1 transcription is induced by hypoxia. In fact, in a genome wide transcriptomic study, cdo-1 was not found to be induced by hypoxia in C. elegans (Shen et al. 2005, reference 71).

      We have newly commented on the use of molecular oxygen as a substrate by both EGL-9 and CDO-1 in our Discussion section. The mammalian oxygen-sensing prolyl hydroxylase (EGLN1) has been demonstrated to have high a Km value for O2 (high µM range). This likely allows EGLN1 to be poised to respond to small decreases in cellular oxygen from normal oxygen tensions. Clearly, CDO-1 also requires oxygen as a substrate, however the Km of CDO-1 for O2 is likely to be much lower, preventing sensitivity of the cysteine catabolism to physiological decreases in O2 availability. Although, to our knowledge, the CDO1 Km value for O2 has not been experimentally determined. We have added a new Discussion section where we address the conundrum about low oxygen inducing HIF-1 but oxygen being needed by CDO-1/CDO1.

      Issue 13: The authors determined that the hypodermis is the site of the most prominent CDO-1::GFP expression, relevant to Figure 4. This claim would be strengthened if a negative control tissue, in the animal with the knockin allele, were shown. The hypodermal specific expression is a highlight of this paper, so it would make this article even stronger if they could further substantiate this claim.

      Response 13: Our claim that the hypodermis is the critical site of cdo-1 function is based on; i) our hands on experience looking at Pcdo-1::GFP, Pcdo-1::CDO-1::GFP, CDO-1::GFP (encoded by cdo-1(rae273)) and our reporting of these expression patterns in multiple figures throughout the manuscript and ii) the functional rescue of cdo-1(-) phenotypes by a cdo-1 rescue construct expressed by a hypodermal-specific promoter (col10). We agree that providing negative control tissues would modestly improve the manuscript. However, we do not think that adding these controls will substantially alter the conclusions of the paper. Importantly, we acknowledge this limitation of our work with the sentence, “However, we cannot exclude the possibility that CDO-1 also acts in other cells and tissues as well.”

      Minor issues to note:

      Issue 14: Mutants for hif-1 and cysl-1 are sensitive to exogenous cysteine levels, yet loss of CDO-1 expression is not sufficient to explain this phenomenon, suggesting other targets of HIF-1 are involved. Given the findings the authors (and others) have had showing a role for RHY-1 in sulfur amino acid metabolism, shouldn't the authors consider testing rhy-1 mutants for sensitivity to exogenous cysteine?

      Response 14: To test the hypothesis that rhy-1(-) C. elegans might be sensitive to supplemental cysteine, we cultured wild type and rhy-1(-) animals on 0, 100, and 1000µM supplemental cysteine. At 0 and 100µM supplemental cysteine, neither wild-type nor rhy-1(-) animals display any lethality suggesting rhy-1 is not required for survival in the face of excess cysteine (Fig. 3D,E). We also cultured these same strains on 1000µM supplemental cysteine, a concentration that is highly toxic to wild-type animals (100% lethality). rhy1(-) animals were resistant to 1000µM supplemental cysteine with a substantial fraction of the population surviving overnight exposure to this lethal dose of cysteine. Similarly, egl-9(-) mutant C. elegans were also resistant to 1000µM supplemental cysteine. We propose that loss of egl-9 or rhy-1 activates HIF-1-mediated transcription which is priming these mutants to cope with the lethal dose of cysteine. These data are now presented in Figure 3D-F and presented in the Results section.

      Issue 15: The cysteine exposure assay was performed by incubating nematodes overnight in liquid M9 media containing OP50 culture. The liquid culture approach adds two complications: (1) the worms are arguably starving or at least undernourished compared to animals grown on NGM plates, and (2) the worms are probably mildly hypoxic in the liquid cultures, which complicates the interpretation.

      Response 15: We agree that it is possible that animals growing overnight in liquid culture are undernourished and mildly hypoxic. However, we are confident in our data interpretation as all our experiments are appropriately controlled. Meaning, control and experimental groups were all grown under the same liquid culture conditions. Thus, these animals would all experience the same stressors that come with liquid culture. Importantly, we never make comparisons between groups that were grown under different culture conditions (i.e. solid media vs. liquid culture).

      Issue 16: An easily addressable concern is the wording of one of the main conclusions: that cdo-1 transcription is independent of the canonical prolyl hydroxylase function of EGL-9 and is instead dependent on one of EGL-9's non-canonical, non-characterized functions. There are several points in which the wording suggests that CDO-1 toxicity is independent of EGL-9. In their defense, the authors try to avoid this by saying, "EGL-9 PHD," to indicate that it is the prolyl hydroxylase function of EGL-9 that is not required for CDO-1 toxicity. However, this becomes confusing because much of the field uses PHD and EGL-9/EGLN as interchangeable protein names. The authors need to be clear about when they are describing the prolyl hydroxylase activity of EGL-9 rather than other (hypothesized) activities of EGL-9 that are independent of the prolyl hydroxylase activity.

      Response 16: We appreciate the reviewer alerting us to this practice within the field. To avoid confusion, we have removed the “PHD” abbreviation from our manuscript and explicitly referred to the “prolyl hydroxylase domain” where relevant.

      Issue 17: The authors state in the text, "the egl-9; suox-1 double mutants are extremely sick and slow growing." We appreciate that their "health" assay, based on the exhaustion of food from the plate, is qualitative. We also appreciate that it is a functional measure of many factors that contribute to how fast a population of worms can grow, reproduce, and consume that lawn of food. However, unless they do a lifespan assay and/or measure developmental timing and specifically determine that the double mutant animals themselves are developing and/or growing more slowly, we do not think it is appropriate to use the words "slow growing" to describe the population. As they point out, the rate of consumption of food on the plate in their health assay is determined by a multitude and indeed a confluence of factors; the growth rate is one specific one that is commonly measured and has an established meaning.

      Response 17: We see how the phrase ‘slow growing’ might imply a phenotype that we have not actually assessed with this assay. Therefore, we have removed all claims about “slow growth” of the strains presented in Table 1 and have highlighted the assay more overtly in the results section. For example; “While egl-9(-) and suox-1(gk738847) single mutant animals are healthy under standard culture conditions, the egl-9(-); suox1(gk738847) double mutant animals are extremely sick and require significantly more days to exhaust their E. coli food source under standard culture conditions (Table 1).”

      Reviewer #1 (Recommendations For The Authors):

      Issue 18: Relevance could be addressed further in the text.

      Response 18: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 19: Better appreciation and integration of the manuscript's findings with published studies would be appropriate.

      Response 19: We have added additional context for our work in the Discussion section. Please see our response to Issues #5, 6, 12, and 24.

      Issue 20: It might be perhaps relevant to test whether cdo-1 is relevant for hypoxia resistance since it appears to be a key target for hif-1.

      Response 20: We agree that this is an interesting future direction, however given that cdo-1 mRNA is not induced by hypoxia (Shen et al. 2005) we have not prioritized these experiments for the current manuscript.

      Issue 21: "egl-9 inhibits cdo-1 transcription in a prolyl-hydroxylase and VHL-1-independent manner" should be tempered. vhl-1 mutants and egl-9 hydroxylase point mutant still have significant induction of the reporter.

      Response 21: Thank you for identifying this oversight. We have modified the Figure 5 legend title to read, “egl9 inhibits cdo-1 transcription in a largely prolyl-hydroxylase and VHL-1-independent manner.”

      Issue 22: Please use line numbers in the future for easier tracking of comments.

      Response 22: We shall.

      Issue 23: Abstract and elsewhere, "high cysteine activates...", should be rephrased to "high levels of cysteine".

      Response 23: We have made this change throughout the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Issue 24: The authors discuss CDO1 in the context of tumorigenesis, as well as the potential regulation between cysteine and the hypoxia response pathway. Thus, I was surprised that there was no mention of the foundational Bill Kaelin paper (Briggs et al 2016) showing how the accumulation of cysteine is related to tumorigenesis, and that cysteine is a direct activator of EglN1. Puzzling that CDO1 is a tumor suppressor: you lose it, cysteine can accumulate and activate EglN1, causing HIF1 turnover. How do the authors reconcile their results with this paper? I was also surprised that there was no mention in the Discussion of the role of hydrogen sulfide, cysteine metabolism, and CTH and CBS in oxygen sensation in the carotid body given the role they play there. Seems important to discuss this issue.

      Response 24: We have added new sections to our Discussion that consider the relationship between our work and Briggs et al. 2016 as well as mentioned the role of CTH and H2S in the mammalian carotid body.

      Issue 25: The abstract has a variety of contradictory statements. For example, the authors state that "HIF-1mediated induction of cdo-1 functions largely independent of EGL-9," but then go on to conclude in the final sentence that cysteine stimulates H2S production, which then activates EGL-9 signaling, which then increases HIF-1-mediated transcription of cdo-1. A quick reading of the abstract leaves the reader uncertain whether EGL-9 is or is not involved in this regulation of cdo-1 expression. In addition, the conclusion sentence implies that activation of the EGL-9 pathway increases HIF-1-mediated transcription, yet it is well established that EGL-9 is an inhibitor of HIF-1. The abstract fails to deliver a clear summary of the paper's conclusions. Perhaps consider this alternative (changes in capital letters):

      The amino acid cysteine is critical for many aspects of life, yet excess cysteine is toxic. Therefore, animals require pathways to maintain cysteine homeostasis. In mammals, high cysteine activates cysteine dioxygenase, a key enzyme in cysteine catabolism. The mechanism by which cysteine dioxygenase is regulated remains largely unknown. We discovered that C. elegans cysteine dioxygenase (cdo-1) is transcriptionally activated by high cysteine and the hypoxia inducible transcription factor (hif-1). hif-1- dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is sufficient to drive sulfur amino acid metabolism. EGL-9 and HIF-1 are core members of the cellular hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 IS largely independent of EGL-9 prolyl hydroxylASE ACTIVITY and the von Hippel-Lindau E3 ubiquitin ligase. We propose that the REGULATION OF cdo-1 BY HIF-1 reveals a negative feedback loop for maintaining cysteine homeostasis. High cysteine stimulates the production of an H2S signal. H2S then ACTS THROUGH the rhy-1/cysl-1/egl-9 signaling pathway DISTINCTLY FROM THEIR ROLE IN HYPOXIA RESPONSE TO INCREASE HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.

      Response 25: We agree that the abstract could be clearer. We believe this concern stems from the fact that we did not discuss our initial screen in the abstract. Thus, we failed to establish a role for egl-9 in the regulation of cdo-1. To remedy this, we have modified the abstract as suggested by the reviewer and added additional context. We believe that these changes improve the clarity of the Abstract substantially.

      Issue 26: An easily addressable concern involves the "dark" microscopy controls showing lack of fluorescence from a nematode. In these dark negative control micrographs, the authors should draw dotted outlines around where the worms are or include a brightfield image next to the fluorescence image. On a computer screen, it is in fact possible to make out the worms. Yet, when printed out, the reader must assume there are worms in the dark images. Additionally, we realize that adjusting fluorescence so that wild-type CDO-1 expression can be seen will result in oversaturation of the egl-9 and rhy-1; cdo-1 doubles; however, this would be a useful figure to add into the supplement to both provide a normal reference of CDO-1 low-level expression and a demonstration of just how bright it is in the mutant backgrounds. It would also be useful for you to please report your exposure settings for purposes of reproducibility.

      Response 26: As suggested, we have added dotted lines around the location of the C. elegans animals in all images where GFP expression is low or basal. We have also reported the exposure times for each image in the appropriate figure legends.

      Issue 27: This title is quite generic and doesn't even mention the main players (CDO-1 and sulfite metabolism).

      Response 27: We have updated our title to call attention to cysteine dioxygenase. The improved title is: “Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans”

      Issue 28: The authors mention two disorders in which CDO-1 plays a pathogenic role: MoCD and ISOD. We recommend switching the order in which the authors mention these, as the remainder of the paragraph is about MoCD. Also, they should write out the number "2" in the first sentence of that paragraph.

      Response 28: We have made the suggested changes.

      Issue 29: The authors state in the main text, "...to ubiquitinate HIF-1, targeting it for degradation by the proteosome." Here, they should refer to the pathway in Figure 5a.

      Response 29: We have made the suggested change.

      Issue 30: The authors state in the main text, "Elements of the HIF-1 pathway have emerged..." which is vague and confusingly worded. Change to, "Members of the HIF-1 pathway and its targets have emerged from C. elegans genetic studies."

      Response 30: We have made the suggested change.

      Issue 31: Clarify in the figure legends that supplemental cysteine did not affect the mortality of worms that were imaged.

      Response 31: We have added this note to Figure 3A and Figure S3A.

      Issue 32: Figure 1b. "the cdo-1 promoter is shown..." Add: "as a straight line" to the end of this phrase.

      Response 32: We have made the suggested change.

      Issue 33: The authors should consider changing the red text in Figure 1 to magenta, which tends to be more readable for people who have limited color vision.

      Response 33: We have adjusted the colors in Figure 1 as suggested.

      Issue 34: Figure 2, legend title. Consider changing "hif-1" to "HIF-1," as well as rhy-1, cysl-1, and egl-9. In this case, they are talking about proteins, not mutants or genes. This will make the paper easier to follow for readers who lack a C. elegans background.

      Response 34: We have made the suggested change.

      Issue 35: Figure 5, caption text. "...indicates weak similarity." Add, "amongst species compared."

      Response 35: We have made the suggested change.

      Issue 36: It is starting to become a standard for showing the datapoints in bar graphs. Although this is done in many graphs in the paper, it should also be done for Figure S1 and Figure 4C.

      Response 36: We have made the suggested change.

      Issue 37: An extensive ChIP-seq and RNA-seq analysis of C. elegans HIF-1 was recently published (Vora et al, 2022), which the authors should reference in support of the regulation of CDO-1 transcription by HIF-1 in their description of published expression studies of the pathway (Results section, page 4). Indeed, Vora et al were key generators of the ChIP-seq data cited in Warnhoff et al but not included as authors in the ModERN/ModENCODE publication: their contributions were published separately in Vora et al and should be acknowledged equivalently.

      Response 37: We appreciate the reviewer pointing this detail out and we have added the correct citation as indicated.

    1. Let's face it: most of us were taught in classrooms where styles of teachings reflected the hotion of a single norm of thought and experience, which we were encouraged to believe was universal. This has been just as true for nonwhite teachers as for white teachers. Most of us learned to teach emulating this model.

      This statement accept a common educational way, which is the education style have been think as a single norm of thought. From past to now. this style have been exist for a long time, and people may potentially think that education should be that kind of style. This would lead people feel concerns about possible limitations and lack of diversity in educational practice. Also, it implies that we should apply a way with more diversities.

  5. docdrop.org docdrop.org
    1. We know that disproportionate numbers of poor children are far more likely to be identified as less academically adept or even as having special needs. The early tracking and labeling of children reared in poverty is cumulative and devastating. It not only hampers students' self-esteem and cripples their own expectations of themselves but also, as Rist (1970/2000) discovered, becomes a self-fulfilling prophecy for what too often becomes a trajectory of underachievement.

      I think this statement shows how bad the potential discrimination is. Just like what the author mentions, people may potentially think that poor children are not good at study. This would cause the children to hate studying in some degree and they would have low expectations of them. Therefore, it shows that correcting people's thinking is very important to achieve education equality. At the same time. the statement shows that the economic inequality is a worse problem need to be solved from side.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Some suggestions:

      1) It's obviously concerning that your GWAS results are not at all robust to the approach used (Fig S3). Did you try something non-parametric, like a Kruskal-Wallis test?

      We used both GWAS and crosses (F2) to validate the presence of the QTL. So ,evidence is not only brought by GWAS. We did not use non parametric tests as we will have difficulty to account for population structure/relatedness with such approaches. Our GWAS approach is certainly a little underpowered associated with the number of individuals we used and certainly the polygenic nature of the root growth traits. But F2 crosses allow us to put more evidence weight on some region we identified with GWAS.

      2) You don't explain what you do with heterozygotes, nor discuss the level of inbreeding in general.

      We are dealing with inbred lines, but indeed there are not completely fixed inbred lines. For the remaining heterozygotes, they were randomly fixed in one or the other alleles. The median heterozygosity value was low at 5.6%. We clarified this point in the material and methods.

      3) The finding that over 30% of RNA-seq reads don't seem to have an annotated home should give you pause. Do they map anywhere? At least discuss what is going on. Also, note that you likely have enormous errors in SNP-calling due to cryptic structural variation - think about what this might do?

      We agree with reviewer #1. We added a few sentences in the result section to clarify this point: “When further analyzed, 15.15% of the unmapped reads (with no correspondence to predicted CDS) were found not to match the reference genome. These might correspond either to unsequenced regions or to genotype-specific genomic regions that are not present in the reference line. The remaining unmapped reads corresponded to either rRNA and tRNA genes (40.28% of the unmapped reads) or to non-annotated genes or non-coding RNAs (44.57% of the unmapped reads).” As we used the same reference genome for mapping the RNAseq reads, some genes might not being present in our analysis for the two lines we studied.

      4) Did you consider moving PgGRXC9 into Arabidopsis?

      This is a great suggestion. In fact, we plan to explore more how some GRXs regulate root growth and how this is conserved in plants in a follow up project. This is however beyond the scope of this manuscript.

      Minor suggestions:

      1) Why not calculate H^2 simply as line variance divided by total?

      Heritability estimated on single individuals in population, approaches generally used for human and animal breeding led directly to line variance divided by total phenotypic variance.

      But in plant breeding (or plant science), we generally work on replicated genotypes in different blocks/experimental repetition. So we estimate the heritability of the mean phenotype of genotypes. There is ample literature (Nyquist, 1991; Holland et al. 2003; for a very nice and smartly written explanation, on the introduction of this PhD: http://opus.uni-hohenheim.de/volltexte/2020/1720/pdf/20200221_PhD_Thesis_Publikationsversion.pdf). Calculation of heritability (of the mean phenotype) should take into account for the calculation of the phenotypic variance (denominator) the number of replicate genotypes (we do not have a single plant, but several clones when using inbred lines: n). The meaning of the formula is that the error in the model is inflated because we have n replicate plants per genotype. And so to estimate the heritability of the average genotype, we have to take into account this inflated variance in the errors.

      2) While the paper overall is well-written, the captions need further proof-reading.

      We corrected all the captions.

      Reviewer #2 (Recommendations For The Authors):

      Major suggestions:

      1) The experimental support for the mutant phenotype of roxy19 needs to be further substantiated. Current methods available for CRISPR mutagenesis make it relatively easy to generate additional alleles. Alternatively, the authors could complement the mutant with a wild-type copy of the gene. These approaches represent the standard of the field and should be used here as well.

      We agree with rev #2. We added some sentences in the discussion to stress out the limitations of our study to link the QTL to PgGRXC9.

      As stated above we’d like to explore more how some GRXs regulate root growth and how this is conserved in plants. We plan to generate new single and multiple mutants in ROXY19 and its closest homologues (using CRISPR). This is, however, beyond this manuscript.

      2) The authors may want to state more clearly what the hypothesis is for how redox levels might contribute to root length differences and more clearly state what the limits of their current study are.

      We modified the discussion to try to clearly indicate the limitations of our study.

      3) Differences in root growth can be the consequence of a number of different parameters that contribute to root elongation and the authors need to more clearly define which of these are likely affected in their different genotypes.

      We agree with Reviewer #2. However, as stated before, we plan to further explore the molecular and cellular mechanisms responsible for the phenotype we observe in Arabidopsis. This will need extra work and is beyond the scope of this manuscript.

      4) Page 13, first paragraph. The authors provide an overly strong statement that suggests they have determined the molecular basis for the difference in PgGRXC9: " Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 associated with changes in its expression level appeared responsible for a quantitative difference in root growth between the two lines."

      While their results suggest the PgGRXC9 locus is associated with root growth variation, they have not directly tested the effect of the polymorphisms in the promoter on gene expression and this statement needs to be weakened.

      We changed the text to: “Altogether, our results suggest that PgGRXC9 is a positive regulator of root growth and that a polymorphism in the promoter region of PgGRXC9 might led to changes in its expression level and ultimately to a quantitative difference in root growth between the two lines. However, the effect of the polymorphisms in the promoter on gene expression need to be tested to validate this hypothesis.”

      We also changed the title of the manuscript to better reflect our results.

      Minor suggestions:

      1) Page 4: "FTSW below 0.3 was considered a stressful condition." It was not specified how this threshold was determined.

      This value corresponds to the measured FTSW value at which pearl millet genotypes subjected to a dry down generally start to reduce their transpiration rate (see Fig. 1 of Kholová et al, 2010; https://doi.org/10.1093/jxb/erp314). At FTSW values above 0.3, transpiration is not affected. At FTSW values around 0.3, the water supply from pearl millet roots cannot fully support transpiration. The plant enters a drought stress responsive phase and progressively closes its stomata to reduce water losses and decrease plant productive functions to match water supply. We have clarified this in the manuscript.

      2) Page 6: Figure 1; footnote: at the end of the description of panel A, a comma is missing between "red" and "blue."

      Thanks for pointing that out. This was corrected.

      3) The root growth data determined by X-ray imaging is not significant (Fig S4B), yet the authors describe the result in the main text without qualification. The authors should clarify this in the text.

      We added some text to clarify this.

      4) Page 9: Figure 2C; It would be better to enlarge these images and annotate them to indicate what specific anatomical features have been measured. Currently, only an expert in the field would be able to interpret these images.

      While we understand the point made by Reviewer #2, Fig2C was meant to illustrate differences in the root tip of the two lines.

      5) Page 9: Figures 2D and E; the number of biological samples measured is not indicated (what is "n"?).

      Thanks again for pointing this out. This was added to the figure legend.

      6) Page 14: Figure 4B; scale bar needs to be included.

      Scale bars were added to the pictures.

      7) Page 14: Figure 4; I recommend adding confocal images or DIC of cleared root apex tissues to easily compare the RAM size and cell lengths in both WT and roxy19 mutant.

      Once again, we plan to have a follow up study on the molecular and cellular mechanisms of action of ROXY19 and its closest homologues on root development. We believe a thorough analysis of differences in phenotype could be illustrated in a future manuscript.

      8) Page 18: main text; "we propose that redox regulation in the root meristem is responsible for a root growth QTL in pearl millet." This statement is ambiguous in the description of the mechanism. The authors do not clarify if the role they propose for PgGRXC9 is in the meristematic or elongation zone. Likely the authors are not able to know precisely where the gene is acting at this point, and so the presented hypothesis needs to more clearly state what limitations there are in assigning a mode of action for the PgGRXC9 and ROXY19 genes in root growth.

      We rewrote this paragraph to clarify the current gap in our understanding of the putative PgGRXC9 function.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The study is an important advancement to the consideration of antimalarial drug resistance: the authors make use of both modelling results and supporting empirical evidence to demonstrate the role of malaria strain diversity in explaining biogeographic patterns of drug resistance. The theoretical methods and the corresponding results are convincing, with the novel model presented moving beyond existing models to incorporate malaria strain diversity and antigen-specific immunity. This work is likely to be interesting to malaria researchers and others working with antigenically diverse infectious diseases.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The paper is an attempt to explain a geographic paradox between infection prevalence and antimalarial resistance emergence. The authors developed a compartmental model that importantly contains antigenic strain diversity and in turn antigen-specific immunity. They find a negative correlation between parasite prevalence and the frequency of resistance emergence and validate this result using empirical data on chloroquine-resistance. Overall, the authors conclude that strain diversity is a key player in explaining observed patterns of resistance evolution across different geographic regions.

      The authors pose and address the following specific questions:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities?

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal?

      3. Does the model explain biogeographic patterns of drug resistance evolution?

      Strengths:

      The model built by the authors is novel. As emphasized in the manuscript, many factors (e.g., drug usage, vectorial capacity, population immunity) have been explored in models attempting to explain resistance emergence, but strain diversity (and strain-specific immunity) has not been explicitly included and thus explored. This is an interesting oversight in previous models, given the vast antigenic diversity of Plasmodium falciparum (the most common human malaria parasite) and its potential to "drive key differences in epidemiological features".

      The model also accounts for multiple infections, which is a key feature of malarial infections, with individuals often infected with either multiple Plasmodium species or multiple strains of the same species. Accounting for multiple infections is critical when considering resistance emergence, as with multiple infections there is within-host competition which will mediate the fitness of resistant genotypes. Overall, the model is an interesting combination of a classic epidemiological model (e.g., SIR) and a population genetics model.

      In terms of major model innovations, the model also directly links selection pressure via drug administration with local transmission dynamics. This is accomplished by the interaction between strain-specific immunity, generalized immunity, and host immune response.

      R: We thank the reviewer for his/her appreciation of the work.

      Weaknesses:

      In several places, the explanation of the results (i.e., why are we seeing this result?) is underdeveloped. For example, under the section "Response to drug policy change", it is stated that (according to the model) low diversity scenarios show the least decline in resistant genotype frequency after drug withdrawal; however, this result emerges mechanistically. Without an explicit connection to the workings of the model, it can be difficult to gauge whether the result(s) seen are specific to the model itself or likely to be more generalizable.

      R: We acknowledge that the explanation of certain results needs to be improved. We have now added the explanation of why low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the observed trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model (L268-271). The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      In addition, to provide the context of different biogeographic transmission zones, we now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). Therefore, these two regions have low disease prevalence and high resistance frequency.

      The authors emphasize several model limitations, including the specification of resistance by a single locus (thus not addressing the importance of recombination should resistance be specified by more than one locus); the assumption that parasites are independently and randomly distributed among hosts (contrary to empirical evidence); and the assumption of a random association between the resistant genotype and antigenic diversity. However, each of these limitations is addressed in the discussion.

      R: As pointed out by the referee, our model presents several limitations that have all been addressed in the discussion and considered for future extensions.

      Did the authors achieve their goals? Did the results support their conclusion?

      Returning to the questions posed by the authors:

      1. Does strain diversity modulate the equilibrium resistance frequency given different transmission intensities? Yes. The authors demonstrate a negative relationship between prevalence/strain diversity and resistance frequency (Figure 2).

      2. Does strain diversity modulate the equilibrium resistance frequency and its changes following drug withdrawal? Yes. The authors find that, under resistance invasion and some level of drug treatment, resistance frequency decreased with the number of strains (Figure 4). The authors also find that lower strain diversity results in a slower decline in resistant genotypes after drug withdrawal and higher equilibrium resistance frequency (Figure 6).

      3. Does the model explain biogeographic patterns of drug resistance evolution? Yes. The authors find that their full model (which includes strain-specific immunity) produces the empirically observed negative relationship between resistance and prevalence/strain diversity, while a model only incorporating generalised immunity does not (Figure 8).

      Utility of work to others and relevance within and beyond the field?

      This work is important because antimalarial drug resistance has been an ongoing issue of concern for much of the 20th century and now 21st century. Further, this resistance emergence is not equitably distributed across biogeographic regions, with South America and Southeast Asia experiencing much of the burden of this resistance emergence. Not only can widespread resistant strains be traced back to these two relatively low-transmission regions, but these strains remain at high frequency even after drug treatment ceases.

      Reviewer #2 (Public Review):

      Summary:

      The evolution of resistance to antimalarial drugs follows a seemingly counterintuitive pattern, in which resistant strains typically originate in regions where malaria prevalence is relatively low. Previous investigations have suggested that frequent exposures in high-prevalence regions produce high levels of partial immunity in the host population, leading to subclinical infections that go untreated. These subclinical infections serve as refuges for sensitive strains, maintaining them in the population. Prior investigations have supported this hypothesis; however, many of them excluded important dynamics, and the results cannot be generalized. The authors have taken a novel approach using a deterministic model that includes both general and adaptive immunity. They find that high levels of population immunity produce refuges, maintaining the sensitive strains and allowing them to outcompete resistant strains. While general population immunity contributed, adaptive immunity is key to reproducing empirical patterns. These results are robust across a range of fitness costs, treatment rates, and resistance efficacies. They demonstrate that future investigations cannot overlook adaptive immunity and antigenic diversity.

      R: We thank the reviewer for his/her appreciation of the work.

      Strengths:

      Overall, this is a very nice paper that makes a significant contribution to the field. It is well-framed within the body of literature and achieves its goal of providing a generalizable, unifying explanation for otherwise disparate investigations. As such, this work will likely serve as a foundation for future investigations. The approach is elegant and rigorous, with results that are supported across a broad range of parameters.

      Weaknesses:

      Although the title states that the authors describe resistance invasion, they do not support or even explore this claim. As they state in the discussion (line 351), this work predicts the equilibrium state and doesn't address temporal patterns. While refuges in partially immune hosts may maintain resistance in a population, they do not account for the patterns of resistance spread, such as the rapid spread of chloroquine resistance in Africa once it was introduced from Asia.

      R: We do agree that resistance invasion is not the focus of our manuscript. Rather we mainly investigate the maintenance and decline after drug withdrawal. Therefore, we changed the title to “Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance” (L1-4).

      We did, however, present a fast initial invasion phase for the introduction of resistant genotypes regardless of transmission scenarios in Fig. 5 (now Fig. 6). Even though the focus of the manuscript is to investigate long term persistence of resistant genotypes, we did emphasize that the initial invasion phase and how that changes the host immunity profile are key to the coexistence of resistant and wild-type genotypes (L228-239).

      As the authors state in the discussion, the evolution of compensatory mutations that negate the cost of resistance is possible, and in vitro experiments have found evidence of such. It appears that their results are dependent on there being a cost, but the lower range of the cost parameter space was not explored.

      R: It is true that compensatory mutations might mitigate the negative fitness consequences. We didn’t add a no-cost scenario because in general if there is no cost but only benefit (survival through drug usage), then resistant haplotypes will likely be fixed in the population. This is contingent on the assumption that these compensatory mutations are in perfect linkage with resistant alleles, which is unlikely in high-transmission scenarios. Our model does not incorporate recombination, but earlier models (Dye & Williams 1997, Hastings & D’Alessandro 2000) have demonstrated that recombination will delay the fixation of resistant alleles in high-transmission.

      As suggested, we ran our model with costs equal 0 and 0.01 (Fig. 2C and L189-191). We found that resistant alleles almost always fix except for when diversity is extremely high, treatment/resistance efficacy is low. In these cases, additional benefits brought by more transmission from resistant alleles do not bring many benefits (as lower GI classes have a very small number of hosts). This finding does not contradict a wider range of coexistence between wild-type and resistant alleles when the cost is higher. We therefore added these scenarios to our updated results.

      Author response image 1.

      The use of a deterministic, compartmental model may be a structural weakness. This means that selection alone guides the fixation of new mutations on a semi-homogenous adaptive landscape. In reality, there are two severe bottlenecks in the transmission cycle of Plasmodium spp., introducing a substantial force of stochasticity via genetic drift. The well-mixed nature of this type of model is also likely to have affected the results. In reality, within-host selection is highly heterogeneous, strains are not found with equal frequency either in the population or within hosts, and there will be some linkage between the strain and a resistance mutation, at least at first. Of course, there is no recourse for that at this stage, but it is something that should be considered in future investigations.

      R: We thank the reviewer for their insightful comments on the constraints of the deterministic modeling approach. We’ve added these points to discussion in the paragraph discussing the second limitation of the model (L359-364).

      The authors mention the observation that patterns of resistance in high-prevalence Papua New Guinea seem to be more similar to Southeast Asia, perhaps because of the low strain diversity in Papua New Guinea. However, they do not investigate that parameter space here. If they did and were able to replicate that observation, not only would that strengthen this work, it could profoundly shape research to come.

      R: We appreciate the suggestion to investigate the parameter space of Papua New Guinea. We now include a new figure (now Fig. 3) that presents the parameter space of transmission potential and strain diversity of different continents, which demonstrates that PNG and South America have less strain diversity than expected by transmission potential (L179-184 and L198-202). This translates to low infectivity for most mosquito bites, and most infections only occur in hosts with lower generalized immunity. Therefore resistant genotypes will help ensure disease transmission in these symptomatic hosts and be strongly selected to be maintained.

      Reviewer #1 (Recommendations For The Authors):

      1. I found lines 41-49 difficult to follow. Please rephrase (particularly punctuation) for clarity.

      R: We have edited the lines to improve the writing (L41-50)):

      “Various relationships between transmission intensity and stable frequencies of resistance were discovered, each of which has some empirical support: 1) transmission intensity does not influence the fate of resistant genotypes [Models: Koella and Antia (2003); Masserey et al. (2022); Empirical: Diallo et al. (2007); Shah et al. (2011, 2015)]; 2) resistance first increases in frequency and slowly decreases with increasing transmission rates [Models: Klein et al. (2008, 2012)]; and 3) Valley phenomenon: resistance can be fixed at both high and low end of transmission intensity [Model: Artzy-Randrup et al. (2010); Empirical: Talisuna et al. (2002)]. Other stochastic models predict that it is harder for resistance to spread in high transmission regions, but patterns are not systematically inspected across the parameter ranges [Model: Whitlock et al. (2021); Model and examples in Ariey and Robert (2003)].”

      1. Line 65: There should be a space after "recombination" and before the citation.

      R: Thank you for catching the error. We’ve added the space (L64).

      1. I'm interested in the dependency of the results on the assumption that there is a cost to resistance via lowered transmissibility (lines 142-145). I appreciate that variation in the cost(s) of resistance in single and mixed infections is explored; however, from what I can tell the case of zero cost is not explored.

      R: As suggested, we have now added the no-cost scenario. Please see the response to the Reviewer2 weaknesses paragraph 2.

      1. I felt the commentary/explanation of the response to drug policy change was a bit underdeveloped. I would have liked a walk-through of why in your model low diversity scenarios show the slowest decline in resistant genotypes after switching to different drugs.

      R: We acknowledge that the explanation of the response to drug policy change needs to be improved. We have now added the explanation of why we observe low diversity scenarios show the least decline in resistance frequency after drug withdrawal: “Two processes are responsible for the seen trend: first, resistant genotypes have a much higher fitness advantage in low diversity regions even with reduced drug usage because infected hosts are still highly symptomatic; second, due to low transmission potential in low diversity scenarios (i.e., longer generation intervals between transmissions), the rate of change in parasite populations is slower.” (L243-247). We also compared the drug withdrawal response to that of the generalized-immunity-only model. The medium transmission region has the fastest reduction in resistance frequency, followed by the high and low transmission regions, which differs from the full model that incorporates strain-specific diversity.

      1. Line 352: persistent drug usage?

      R: Yes, we meant persistent drug usage. We’ve clarified the writing (L389-391).

      1. The organisation of the manuscript would benefit from structuring around the focal questions so that the reader can easily find the answers to the focal questions within the results and discussion sections.

      R: This is a great suggestion. We modified the subheadings of results to provide answers to focal questions (L151, L179, L203-204, and L240).

      1. Line 353: Please remove either "shown" or "demonstrated".

      R: Thank you for catching the grammatical error, we’ve retained “shown” only for the sentence (L391-392).

      Reviewer #2 (Recommendations For The Authors):

      Overall, this was very nice work and a pleasure to read.

      Major:

      1. Please provide a much more thorough explanation of how resistance invasions are modeled. It is not clear from the text and could not be replicated.

      R: We have now added a section “drug treatment and resistance invasion” in Methods and Materials to explain how resistance invasions are modeled (L488-496):

      “Given each parameter set, we ran the ODE model six times until equilibrium with the following genotypic compositions: 1) wild-type only scenario with no drug treatment; 2) wild-type only scenario with 63.2% drug treatment (0.05 daily treatment rate); 3) wild-type only scenario with 98.2% drug treatment (0.2 daily treatment rate); 4) resistant-only scenario with no drug treatment; 5) resistance invasion with 63.2% drug treatment; 6) resistance invasion with 98.2% drug treatment. Runs 1-4 start with all hosts in G0,U compartment and ten parasites. Runs 5 and 6 (resistance invasion) start from the equilibrium state of 2 and 3, with ten resistant parasites introduced. We then followed the ODE dynamics till the next equilibrium.”

      1. Please make your raw data, code, and replicable examples that produce the figures in the manuscript available.

      R: We have added the data availability session, which provides the GitHub site with all the code for the model, data processing, and figures: All the ODE codes, numerically-simulated data, empirical data, and analyzing scripts are publicly available at https://github.itap.purdue.edu/HeLab/MalariaResistance.

      1. Regarding the limitations described in the paragraph about the model in the public response, these results would be strengthened if there were separate compartments for strains which could be further divided into sensitive and resistant. Could you explore this for at least a subset of the parameter space?

      R: In our model, sensitive and resistant pathogens are always modeled as separate compartments (Fig. S1B and Appendix 1). In Results/Model structure, L135-136, we stated the setup:

      “The population sizes of resistant (PR) or sensitive (wild-type; PW) parasites are tracked separately in host compartments of different G and drug status.”

      1. To what extent do these results rely on a cost to resistance? Were lower costs explored? This would be worth demonstrating. If this cannot be maintained without cost, do you think this is because there is no linkage between strain and resistance?

      R: As suggested, we have now added the no-cost scenario (Fig. 2C and L189-191). Please see the response to the Reviewer1 weaknesses paragraph 2. In sum, under a no-cost scenario, if treatment rate is low, then wild-type alleles will still be maintained in high transmission scenarios; when treatment rate is high, resistant alleles will always be fixed.

      Minor:

      1. "Plasmodium" should be italicized throughout. Ironically, italics aren't permitted in this form.

      R: We did italicize “Plasmodium” or “P. falciparum” throughout the text. If the reviewer is referring to “falciparum malaria”, the convention is not to italicize falciparum in this case.

      1. Fig 1A: the image is reversed for the non-infected host with prior exposure to strain A. Additionally, the difference between colors for WT and resistant is not visible in monochrome.

      R: Thank you for pointing out the problem of color choice in monochrome. We have modified the figure. The image in Fig 1A is not reversed for non-infected hosts with prior exposure to strain A. We now spell out “S” to be “specific immunity”, and explain it better in the figure legend.

      1. Fig 2B: add "compare to the pattern of prevalence shown in Fig 2A" or something similar to make the comparison immediately clear.

      R: We thank the reviewer’s suggestion. We’ve added a sentence to contrast Fig 2A and B in the Figure legend: “A comparison between the prevalence pattern in (A) and resistance frequency in (B) reveals that high prevalence regions usually correspond to low resistance frequency at the end of resistance invasion dynamics.”

      1. Figs 2B & C: Please thoroughly explain how you produced this data in the methods section and briefly describe it in the results sections.

      R: We agree that the modeling strategies need to be explained better. Since we explained the rationale for the parameter ranges and the prevalence patterns we observe in the results section “Appropriate pairing of strain diversity and vectorial capacity” (now “Impact of strain diversity and transmission potential on disease prevalence”), we added sentences in this section to explain how we run models until equilibrium for wild-only infections with or without drug treatment (L152-178). Then in the following section “Drug-resistance and disease prevalence” section, we explain how we obtained the resistance invasion data:

      “To investigate resistance invasion, we introduce ten resistant infections to the equilibrium states of drug treatment with wild-type only infections, and follow the ODE dynamics till the next equilibrium” (L180-181).

      1. Fig 3: The axis labels are not particularly clear. For the Y axis, please state in the label what it is the frequency of (either the mutation or the phenotype). In the X axis, it is better to spell that out in words, like "P. falciparum prevalence in children".

      R: Thank you for pointing this out. We’ve modified the axes labels of Fig. 3 (now Fig. 4): X-axis: “P. falciparum prevalence in children aged 2-10”; Y-axis: “Frequency of resistant genotypes (pfcrt 76T)”.

      1. Fig 4 and the rest of the figures of this nature: Showing an equilibrium-state timestep before treatment was introduced would improve the readers' understanding of the dynamics.

      R: We agree that the equilibrium state before treatment is important. In fact, we have those states in our figure 4 (now figure 5): the left panel- “Daily treatment rate 0” indicates the equilibrium-state timestep before treatment. We clarified this point in the caption.

      1. Fig 5 is very compelling, but the relationships in Fig 5 would be clearer if the Y axes were not all different. Consider using the same scale for the hosts, and the same scale for resistant parasites (both conditions) and WT parasites, 113 strains. It may be clearer to reference them if they are given as A-F instead of three figures each for A and B.

      R: We agree with the suggested changes and have modified figure 5 (now Fig. 6): we used one Y-axis scale for the hosts, and one Y-axis scale for the parasites. The wild-type one is very low for the low diversity scenario, thus we included one inset plot for that case.

      1. Fig 5 caption: High immune protection doesn't select against resistance. The higher relative fitness of the sensitive strain selects against resistance in a high-immunity environment.

      R: Thank you for pointing this out. Here we meant that a reduction in resistant population after the initial overshoot occurs in both diversity levels. We are not comparing resistant strains to sensitive ones. We’ve modified the sentence to: “The higher specific immunity reduces the infectivity of new strains, leading to a reduction of the resistant parasite population regardless of the diversity level”.

      1. Line 242: "keep" should be plural.

      R: We’ve corrected “keep” to “keeps” (L267).

      1. Line 360 and elsewhere: The strength of the results is somewhat overstated at times. This absolutely supports the importance of strain-specific immunity, but these results do not explain patterns of the origin of resistance and there are a number of factors that are not incorporated (a necessary evil of modeling to be sure).

      R: Thank you for pointing this out. We’ve modified discussion to remove the overstated strength of results:

      1) Original: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has been the original source of resistance to certain antimalarial drugs, including chloroquine.”

      Modified: “The inclusion of strain diversity in the model provides a new mechanistic explanation as to why Southeast Asia has persisting resistance to certain antimalarial drugs, including chloroquine, despite a lower transmission intensity than Africa. “ (L328-330)

      2) In sum, we show that strain diversity and associated strain-specific host immunity, dynamically tracked through the macroparasitic structure, can explainpredict the complex relationship between transmission intensity and drug-resistance frequencies.

      1. The color palettes are not discernible in grayscale, especially the orange/blue/gray in Fig 2. The heatmaps appear to be in turbo, the only viridis palette that isn't grayscale-friendly. Just something to keep in mind for the accessibility of individuals with achromatopsia and most people who print out papers.

      R: Thank you for the visualization suggestions. We updated all the figures with the “viridis:magma” palette. As for the orange/blue/gray scale used in Fig 2C, it is difficult to pick nine colors that are discernable in brightness in grayscale. Currently, the four colors correspond to clonal genotype cost (i.e. green, red, grey, and blue), and the three-level brightness maps to mixed genotype cost.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1. The most important concern that I have refers to the FDTD simulations to characterize the ZMW, as shown in Appendix 2, Figure 4. So far, the explanations given in the caption of Figure 4 are confusing and misleading: the authors should provide more detailed explanations on how the simulations were performed and the actual definition of the parameters used. In particular:

      a. lines 1330-1332: it is not clear to me how the fluorescence lifetime can be calculated from the detected signal S (z), and why they are horizontal, i.e., no z dependence? Which lifetimes are the authors referring to?

      b. lines 1333-1335: Where do these values come from? And how do they relate to panels D & E? From what I can see in these panels the lifetimes are highly dependent on z and show the expected reduction of lifetime inside the nanostructures.

      c. lines 1336-1337: Why the quantum yield of the dyes outside the ZMW differs from those reported in the literature? In particular the changes of quantum yield and lifetime for Alexa 488 are very large (also mentioned in the corresponding part of Materials & Methods but not explained in any detail).

      We thank the Reviewer for his detailed questions on the FDTD simulations. We have now added the missing equation related to the computation of signal-averaged fluorescence lifetimes from the FDTD simulations. Specifically to the three points raised:

      a) The fluorescence lifetime is indeed not calculated from the detected signal S(z), but from the radiative and non-radiative rates in the presence of the ZMW as given in eq. 9-10. However, we use the detected signal S(z) to compute the average fluorescence lifetime over the whole z-profile of the simulation box, which we relate to the experimentally measured fluorescence lifetimes as given in Appendix 7, Figure 1. We have now added the equation to compute the signal-weighted fluorescence lifetimes, which we denote as <𝜏>S , in eq. 13 in the methods. To clarify this point, we have added the symbol <𝜏>S to the plots in Appendix 2, Figure 4 D-E and Appendix 7, Figure 1 C-D.

      b) The estimated lifetimes were obtained as the signal-weighted average over the lifetime profiles, (<𝜏>S) as given in the new eq. 13. All plotted quantities, i.e., the detection efficiency η, quantum yield ϕ, detected signal S(z), and fluorescence lifetime, are computed from the radiative and loss rates obtained from the FDTD simulation according to eqs. 8-11. To make this clearer, we have now added the new Appendix 2 – Figure 5 which shows the z-profiles of the quantities (radiative and loss rates) used to derive the experimental observables.

      c) There are multiple reasons for the differences of the quantum yields of the two analytes used in this study compared to the literature values. For cyanine dyes such as Alexa647, it is well known that steric restriction (as e.g. caused by conjugation to a biomolecule) can lead to an increase of the quantum yield and fluorescence lifetime. We observe a minor increase of the fluorescence lifetime for Alexa647 from the literature value of 1.17 ns to a value of 1.37 ns when attached to Kap95, which is indicative of this effect. In the submitted manuscript, this was discussed in the methods in lines 936-938 (lines 938-945 in the revised manuscript). For the dye Alexa488, which is used to label the BSA protein, this effect is absent. Instead, we observe (as the Reviewer correctly notes) a quite drastic reduction of the fluorescence lifetime compared to the unconjugated dye from 4 ns to 2.3 ns. In cases where a single cysteine is labeled on a protein, such a drastic reduction of the quantum yield usually indicates the presence of a quenching moiety in proximity of the labeling site, such as tryptophane, which acts via the photo-induced electron transfer mechanism. Indeed, BSA contains two tryptophanes that could be responsible for the low quantum yield of the conjugated dyes. The situation is complicated by the fact that BSA contains 35 cysteines that can potentially be labeled (although 34 are involved in disulfide bridges). The labeled BSA was obtained commercially and the manufacturer lists the degree of labeling as ~6 dye molecules per protein, with a relative quantum yield of 0.2 compared to the standard fluorescein. This corresponds to an absolute quantum yield of ~0.16, which is low compared to the literature value for Alexa488 of ~0.8.

      Based on the measured fluorescence lifetime, we estimate a quantum yield of 0.46, which is higher than the photometrically obtained value of 0.16 reported by the manufacturer. Fully quenched, nonfluorescent dyes will not contribute to the lifetime measurement but are detected in the photometric quantum yield estimates. The difference between the lifetime and photometric based quantum yield estimates thus suggest that part of the fluorophores are almost fully quenched. While it is unknown where the dyes are attached to the protein, the low quantum yield could be indicative of dye-dye interactions via pi-pi stacking, which can often lead to non-fluorescent dimers. This is supported by the fact that the manufacturer reports color differences between batches of labeled protein, which indicate spectral shifts of the absorption spectrum when dye-dye adducts are formed by π-π stacking. We have now added a short discussion of this effect in lines 938-941. We note that the conclusions drawn on the quenching effect of the metal nanostructure remain valid despite the drastic reduction of the quantum yield for Alexa488, which leads to a further quantum yield reduction of the partly quenched reference state.

      2) A second important concern refers to Figure 3: Why is there so much variability on the burst intensities reported on panels C, D? They should correspond to single molecule translocation events and thus all having comparable intensity values. In particular, the data shown for BSA in panel D is highly puzzling, since it not only reflects a reduced number of bursts (which is the main finding) but also very low intensity values, suggesting a high degree of quenching of the fluorophore being proximal to the metal on the exit side of the pore. In fact, the count rates for BSA on the uncoated pore range form 50-100kcounts/s, while on the coated pores thy barely reach 30 kcounts/s, a clear indication of quenching. Importantly, and in direct relation to this, could the authors exclude the possibility that the low event rates measured on BSA are largely due to quenching of the dye by getting entangled in the Nsp mesh just underneath the pore but in close contact to the metal?

      The Reviewer raises a valid concern, but further analysis shows that this is unproblematic. Notably, the burst intensities are in fact not reduced, in contrast to the visual impression obtained from the time traces shown in the figure. The time trace of the BSA intensity is visually dominated by high-intensity bursts which mask the low-intensity bursts in the plot. In contrast, in Figure 3 the reduced number of BSA events results in a sparser distribution of the intensity spikes, which allows low-intensity events to be seen. Different to the visual inspection, the spike-detection algorithm does not exhibit any bias in terms of the duration or the number of photons of the detected events between the different conditions for both BSA and Kap95, as shown in the new Appendix 7 – Figure 1. Using FCS analysis it can be tested whether the event duration varies between the different conditions shown in Figure 3 C-D. This did not show a significant difference in the estimated diffusion time for BSA (Appendix 7 – Figure 1 C,D). Contrary to the suggestion of the Reviewer, we also do not observe any indication of quenching by the metal between uncoated and Nsp1-coated pores for BSA. Such quenching should result in differences of the fluorescence lifetimes, which however is not evident in our experimental data (Appendix 7 – Figure 1 F).

      3) Line 91: I suggest the authors remove the word "multiplexed" detection since it is misleading. Essentially the authors report on a two-color excitation/detection scheme which is far from being really multiplexing.

      We have changed the word to “simultaneous” now and hope this avoids further confusion.

      4) Line 121: why are the ZMW fabricated with palladium? Aluminum is the gold-standard to reduce light transmissivity. An explanation for the choice of this material would be appreciated by the community.

      In a previous study (Klughammer and Dekker, Nanotechnology, 2021), we established that palladium can have distinct advantages compared to other ZMW metals such as aluminum and gold, most prominently, an increased chemical stability and reduced photoluminescence. For this study, we chose palladium over aluminum as it allowed the use of simple thiol chemistry for surface modification. In the beginning of the project, we experimented with aluminum pores as well. We consistently found that the pores got closed after measuring their ionic conductance in chlorine-containing solutions such as KCl or PBS. This problem was avoided by choosing palladium.

      5) Lines 281-282: This statement is somewhat misleading, since it reads such that the molecules stay longer inside the pore. However, if I understand correctly, these results suggest that Kap95 stays closer to the metal on the exit side. This is because measurements are being performed on the exit side of the pore as the excitation field inside the pore is quite negligible.

      We thank the Reviewer for this comment and have clarified the text in lines 290-292 as suggested to: “(…) this indicates that, on the exit side, Kap95 diffuses closer to the pore walls compared to BSA due to interactions with the Nsp1 mesh”

      6) Lines 319-320: Although the MD simulations agree with the statement being written here, the variability could be also due to the fact that the proteins could interact in a rather heterogenous manner with the Nsp mesh on the exit side of the pore, transiently trapping molecules that then would stay longer and/or closer to the metal altering the emission rate of the fluorophores. Could the authors comment on this?

      The variation mentioned in the text refers to a pore-to-pore variation and thus needs to be due to a structural difference between individual pores. This effect would also need to be stable for the full course of an experiment, typically hours. We did not find any structural changes in the fluorescence lifetimes measured on individual pores such as suggested by the Reviewer. We think that the suggested mechanism would show up as distinct clusters in Appendix 7 – Figure 1 E,F where we found no trace of such a change to happen. If we understand correctly, the Reviewer suggests a mechanism, not based on changes in the Nup layer density, that would lead to a varying amount of trapping of proteins close to the surface. Such a behavior should show up in the diffusion time of each pore ( Appendix 7 – figure 1 C,D), where we however find no trace of such an effect.

      7) Lines 493-498: These claims are actually not supported by the experimental data shown in this contribution: a) No direct comparison in terms of signal-to-noise ratio between fluorescence-based and conductance-based readouts has been provided in the ms. b) I would change the word multiplexed by simultaneous since it is highly misleading. c) The results shown are performed sequentially and thus low throughput. d) Finally, the use of unlabeled components is dubious since the detection schemes relies on fluorescence and thus requiring labeling.

      We thank the Reviewer for pointing this out.

      a) We have now added a section in appendix 3 that discusses the signal-to-noise ratios. In brief, there are three observations that led us to conclude that ZMWs provide beneficial capabilities to resolve individual events from the background:

      1. The signal-to-background ratio was determined to be 67±53 for our ZMW data of Kap95 which is an order of magnitude higher compared to the ~5.6 value for a conductance-based readout.

      2. The detection efficiency for ZMWs is independent of the Kap95 occupancy within the pore. This is different from conductance based approaches that have reduced capability to resolve individual Kap95 translocations at high concentrations.

      3. The fraction of detected translocations is much higher for ZMWs than for conductance-based data (where lots of translocations occur undetected) and matches closer to the theoretical predictions.

      b) We have changed the wording accordingly.

      c) We agree with the Reviewer that our method is still low throughput. However, the throughput is markedly increased compared to previous conductance-based nanopore measurements. This is because we can test many (here up to 8, but potentially many more) pores per chip in one experiment, whereas conductance-based readouts are limited to a single pore. We have now changed the wording to “increased throughput” in line 507 to avoid confusion.

      d) We agree that only labeled components can be studied directly with our methods. However, the effect of unlabeled analytes can be assessed indirectly without any perturbation of the detection scheme due to the specificity of the fluorescent labeling. This is distinct from previous nanopore approaches using a conductance-based readout that lack specificity. In our study, we have for example used this advantage of our approach to access event rates at high concentrations (1000nM Kap95, 500nM BSA) and large pore diameters by reducing the fraction of labeled analyte in the sample. Finally, the dependence of the BSA leakage rate as a function of the concentration of Kap95 (Figure 6) relies on a specific readout of BSA events in the presence of large amounts of Kap95, which would be impossible in conductance-based experiments.

      8) Line 769: specify the NA of the objective. Using a very long working distance would also affect the detection efficiency. Have the authors considered the NA of the objective on the simulations of the detection efficiency? This information should be included and it is important as the authors are detecting single molecule events.

      We used an NA of 1.1 for the simulation of the Gaussian excitation field in the FDTD simulations, corresponding to the NA of the objective lens used in the experiments and as specified in the methods. The Reviewer is correct that the NA also affects the absolute detection efficiency of the fluorescence signal due to the finite opening angle of the collection cone of ~56˚. In our evaluation of the simulations, we have neglected this effect for simplicity, because the finite collection efficiency of the objective lens represents only an additional constant factor that does not depend on the parameters of the simulated system, such as the pore diameter. Instead, we focused solely the effect of the ZMW and defined the detection efficiency purely based on the fraction of the signal that is emitted towards the detection side and can potentially be detected in the experiment, which also provides the benefit that the discussed numbers are independent of the experimental setup used.

      To clarify this, we have now made this clearer in the method text on lines 917-920.

      9) Line 831: I guess that 1160ps is a mistake, right?

      This is not a mistake. We performed a tail fit of the fluorescence decay curves, meaning that the initial rise of the decay was excluded from the fit. The initial part of the fluorescence decay is dominated by the instrument response function (IRF) of the system, with an approximate width of ~500 ps. To minimize the influence of the IRF on the tail fit, we excluded the first ~1 ns of the fluorescence decay.

      10) Lines 913-917: Why are the quantum yield of Alexa 488 and lifetime so much reduced as compared to the published values in literature?

      See answer to point 1. We have added a short discussion at lines 938-941 where we speculate that the reduced quantum yield is most likely caused by dye-dye interactions due to the high degree of labeling of ~6 dyes per protein.

      11) Lines 1503-1509: The predicted lifetimes with the Nsp-1 coating have not been shown in Appendix 2 - Figure 4. How have they been estimated?

      We have not performed predictions of fluorescence lifetimes in the presence of an Nsp1 coating. Predictions of the fluorescence lifetime in the absence of the Nsp1 coating were obtained by assuming a uniform occupancy of the molecules over the simulation box. A prediction of the fluorescence lifetimes in the presence of the Nsp1 coating would require a precise knowledge of the spatial distribution of analytes, which depends, among other factors, on the extension of the Nsp1 brushes and the interaction strengths with the FG repeats. While simulations provide some insights on this, we consider a quantitative comparison of predicted and measured fluorescence lifetimes in the presence of the Nsp1 coating beyond the scope of the present study.

      12) Lines 1534-1539: I disagree with this comment, since the measurements reported here have been performed outside the nano-holes, and thus the argument of Kap95 translocating along the edges of the pore and being responsible for the reduced lifetime does not make sense to me.

      In accordance with our answer to point 5 above, we have now changed the interpretation to the proximity of Kap95 to the metal surface on the exit side, rather than speculating on the path that the protein takes through the pore (lines 1662-1664), as follows:

      “This indicates that, in the presence of Nsp1, Kap95 molecules diffuse closer to or spend more time in proximity of the metal nanoaperture on the exit side.”

      Reviewer #2:

      (Numbers indicate the line number.)

      48: should cite more recent work: Timney et al. 2016 Popken et al 2015

      59: should cite Zilman et al 2007, Zilman et al 2010

      62: should cite Zilman et al 2010

      We thank the Reviewer for the suggestions and have added them to the manuscript now.

      65: one should be careful in making statements that the "slow" phase is immobile, as it likely rapidly exchanging NTRs with the "fast" phase.

      We have removed this description and replaced it by “This 'slow phase' exhibits a reduced mobility due to the high affinity of NTRs to the FG-Nup mesh.” to avoid misunderstanding.

      67: Schleicher 2014 does not provide evidence of dedicated channels

      We agree with the Reviewer and therefore moved the reference to an earlier position in the sentence.

      74-75: must cite work by Lusk & Lin et al on origami nanochannels

      We thank the Reviewer for this suggestion. We have now added a reference to the nanotraps of Shen et al. 2021, JACS, in line 75. In addition, we now also refer to Shen et al. 2023, NSMB, in the discussion where viral transport is discussed.

      77: Probably Jovanovic- Talisman (2009)?

      We thank the Reviewer for pointing out this typo.

      93; should cite Auger&Montel et al, PRL 2014

      We thank the Reviewer for pointing out this reference. To give proper credit to previous ZMW, we have now incorporated a sentence in lines 100-102 citing this reference.

      111-112: there appears to be some internal inconsistency between this interpretation and the BSA transport mostly taking place through the "central hole" (as seems to be implied by Equation (3). Probably it should be specified explicitly that the "central hole" in large channels is a "void".

      We thank the Reviewer for this suggestion and have added a clarifying sentence.

      115-177: This competition was studied in Jovanovic-Talisman 2009 and theoretically analysed in Zilman et al Plos Comp Biol 2010. The differences in the results and the interpretation should be discussed.

      We agree, therefore it is discussed in the discussion section (around line 594) and now added the reference to Zilman et al.

      Figure 2 Caption: "A constant flow..." - is it clear that is flow does not generate hydrodynamic flow through the pore?

      The Reviewer raises an important point. Indeed, the pressure difference over the membrane generates a hydrodynamic flow through the pore that leads to a reduction of the event rate compared to when no pressure is applied. However, as all experiments were performed under identical pressures, one can expect a proportional reduction of the absolute event rates due to the hydrodynamic flow against the concentration gradient. In other words, this will not affect the conclusions drawn on the selectivity, as it is defined as a ratio of event rates.

      We have now added additional data on the influence of the hydrodynamic flow on the translocation rate in Appendix 3 – Figure 2, where we have measured the signal of free fluorophores at high concentration on the exit side of the pore as a function of the applied pressure. The data show a linear dependence of the signal reduction on the applied pressure. At the pressure values used for the experiments of 50 mbar, we see a ~5% reduction compared to the absence of pressure, implying that the reported absolute event rates are underestimated only by ~5%. Additionally we have added such data for Kap95 translocations that shows a similar effect (however less consistent). Measuring the event rate at zero flow is difficult, since this leads to an accumulation of fluorophores on the detection side.

      Figure 3: it would help to add how long is each translocation, and what is the lower detection limit. A short explanation of why the method detects actual translocations would be good

      With our method, unfortunately, we can not assess the duration of a translocation event since we only see the particle as it exists the pore. Instead, the measured event duration is determined by the time it takes for the particle to diffuse out of the laser focus. This is confirmed by FCS analysis of translocation events that show the same order of magnitude of diffusion times as for free diffusion (Appendix 7 – Figure 1 C,D) in contrast to a massively reduced diffusion time within a nanopore. In Figure 2D we show the detection efficiency at different locations around the ZMW as obtained from FDTD simulations and discuss the light blocking. This clearly shows that the big majority of the fluorescence signal comes from the laser illuminated side and therefore only particles that translocated through the ZMW are detected as presented between lines 170-190. In Yang et al. 2023, bioRxiv (https://doi.org/10.1101/2023.06.26.546504) a more detailed discussion about the optical properties of Pd nanopores is given.

      This point also explains why we see actual translocations: since the light is blocked by the ZMW, fluorophores can only be detected after they have translocated. On parts of the membrane without pores and upstream the amount of spikes found in a timetrace was found to be negligibly small. Additionally, if a significant part of the signal would be contributed by leaking fluorescence from the dark top side, there should no difference in BSA event rate found between small open and Nsp1 pores which we did not observe.

      With respect to the lower detection limit for events: In the burst search algorithm we require a false positive level rate of lower than 1 event in 100. Additionally, as described in Klughammer and Dekker, Nanotechnology (2021), we apply an empirical filtering to remove low signal to noise ratio events that contain less than 5 detected photons per event or a too low event rate. From the event detection algorithm there is no lower limit set on the duration of an event. Such a limit is then set by the instrument and the maximum frequency it which it can detect photons. This time is below 1μs. Practically we don’t find events shorter than 10μs as can be seen in the distribution of events where also the detection limits can be estimated (Appendix 7 – figure 1 A and B.)

      Equation (1): this is true only for passive diffusion without interactions (see eg Hoogenboom et al Physics Reports 2021 for review). Using it for pores with interactions would predict, for instance, that the inhibition of the BSA translocation comes from the decrease in D which is not correct.

      We agree with the Reviewer that this equation would not reproduce the measured data in a numerically correct way. We included it to justify why we subsequently fit a quadratic function to the data. As we write in line 260 we only used the quadratic equation “as a guide to the eye and for numerical comparison” and specifically don’t claim that this fully describes the translocation process. In this quadratic function, we introduced a scaling factor α that can be fitted to the data and thus incorporates deviations from the model. In appendix 5 we added a more elaborate way to fit the data including a confinement-based reduction of the diffusion coefficient (although not incorporating interactions). Given the variations of the measured translocation rates, the data is equally well described by both the simple and the more complex model function.

      Equation (1): This is not entirely exact, because the concentration at the entrance to the pore is lower than the bulk concentration, which might introduce corrections

      We agree with the Reviewer and have added that the concentration difference Δc is measured at the pore entrance and exit, and this may be lower than the bulk concentration. As described in our reaction to the Reviewer’s previous comment, equation (1) only serves as a justification to use the quadratic dependence and any deviations in Δc are absorbed into the prefactor α in equation (2).

      Equation (3): I don't understand how this is consistent with the further discussion of BSA translocation. Clearly BSA can translocate through the pore even if the crossection is covered by the FG nups (through the "voids" presumably?).

      The Reviewer raises an important point here. Equation 3 can only be used for a pore radius r > rprot + b. b was determined to be 11.5 nm and rprot is 3.4 nm for BSA, thus it needs to be that r > 15 nm. We would like to stress, however, that b does not directly give a height of a rigid Nsp1 ring but is related to the configuration of the Nsp1 inside the pore. Equation (3) (and equation (2)) were chosen because even these simple equations could fit the experimentally measured translocation rates well, and not because they would accurately model the setup in the pore. As we found from the simulations, the BSA translocations at low pore diameters presumably happen through transient openings of the mesh. The dynamics leading to the stochastic opening of voids on average leads to the observed translocation rate.

      296-297: is it also consistent with the simulations?

      We compare the experimentally and simulated b values in lines 387-388 and obtained b=9.9 ± 0.1 nm from the simulations (as obtained from fitting the translocation rates and not from measuring the extension of the Nsp1 molecules) and 11.5 ± 0.4 nm from the experiments – which we find in good agreement.

      331: has it been established that the FG nups equilibrate on the microsecond scale?

      As an example, we have analyzed the simulation trajectory of the most dense nanopore (diameter = 40 nm, grafting = 1/200 nm2). In Author response image 1 we show for each of the Nsp1-proteins how the radius of gyration (Rg) changes in time over the full trajectory (2 μs + 5 μs). As expected, the Rg values reached the average equilibrium values very well within 2 μs simulation time, showing that the FG-Nups indeed equilibrate on the (sub)microsecond scale.

      Author response image 1.

      334-347: the details of the method should be explained explicitly in the supplementary (how exactly voids distributions are estimated and the PMF are calculated etc)

      The void analysis was performed with the software obtained from the paper of Winogradoff et al. In our Methods we provide an overview of how this software calculates the void probability maps and how these are converted into PMFs. For a more detailed description of how exactly the analysis algorithm is implemented in the software, we refer the reader to the original work. The analysis codes with the input files that were used in this manuscript have been made public ( https://doi.org/10.4121/22059227.v1 ) along with the manuscript.

      Equation (4) is only an approximation (which works fine for high barriers but not the low ones). Please provide citations/derivation.

      To our knowledge, the Arrhenius relation is a valid approximation for our nanopore simulations. We are unaware of the fact that it should not work for low barriers and cannot find mention of this in the literature. It would be helpful if the Reviewer can point us to relevant literature.

      Figure 4: how was transport rate for Kaps calculated?

      As mentioned in lines 388-391, we assumed that the Kap95 translocation rate through Nsp1-coated pores is equal to that for open pores, as we did not observe any significant hindrance of Kap95 translocation by the Nsp1 mesh in the experiment (Figure 4 A,C).

      378: It's a bit strange to present the selectivity ratio as prediction of the model when only BSA translocation rate was simulated (indirectly).

      We agree with the Reviewer that ideally we should also simulate the Kap95 translocation rate to obtain an accurate selectivity measure of the simulated nanopores. However, as the experiments showed very similar Kap95 translocation rates for open pores and Nsp1-coated pores, we believe it is reasonable to take the Kap95 rates for open and Nsp1-pores to be equal.

      Figure 5C and lines 397: I am a bit confused how is this consistent with Figure 4D?

      Figure 5C and figure 4D both display the same experimental data, where 4D only focuses on a low diameter regime. In relation to line 397 (now 407), the Nsp1 mesh within the 60-nm pore dynamically switches between closed configurations and configurations with an open channel. When taking the temporal average of these configurations, we find that the translocation rate is higher than for a closed pore but lower than for a fully open pore. The stochastic opening and closing of the Nup mesh results in the continuous increase of the translocation rates with increasing diameter, which is in contrast to a step-wise increase that would be expected from an instantaneous collapse of the Nsp1 mesh at a certain pore diameter.

      428-439: Please discuss the differences from Jovanovic-Talisman 2009.

      How our results for a Kap95 induced change of the BSA translocation rate are related to previous literature is discussed extensively in the lines 598-620.

      440: How many Kaps are in the pore at different concentrations?

      This is a very interesting question that we were, unfortunately, not able to answer within the scope of this project. With our fluorescent based methods we could not determine this number because the excitation light does not reach well into the nanopore.

      In our previous work on Nsp1-coated SiN nanopores using conductance measurements, we quantified the drop in conductance at increasing concentrations of Kap95 (Fragasso et al., 2023, NanoResearch, http://dx.doi.org/10.1007/s12274-022-4647-1). From this, we estimated that on average ~20 Kap95 molecules are present in a pore with a diameter of 55 nm at a bulk concentration of 2 µM. In these experiments, however, the height of the pore was only ~20 nm, which is much lower compared to 100 nm long channel used here, and the grafting density of 1 per 21 nm2 was high compared to the grafting density here of 1 per 300 nm2. Assuming that the Kap95 occupancy scales linearly with the number of binding sites (FG repeats) in the vicinity of the pore, and hence the amount of Nsp1 molecules bound to the pore, we would expect approximately ~7 Kap95 molecules in a pore of similar diameter under saturating (> 1 µM) concentrations.

      On the other hand, the simulations showed that the density of Nsp1 within the pore is equal to the density within the 20-nm thick SiN pores (line 380). For the longer channel and lower grafting density used here, Nsp1 was also more constrained to the pore compared to thinner pores used in previous studies (Fragasso et al., 2023, NanoResearch), where the grafted protein spilled out from the nanopores. Thus assuming that the Kap95 occupancy depends on the protein density in the pore volume rather than the total protein amount grafted to the pore walls, we would estimate a number of 100 Kap95 molecules per pore.

      These varying numbers already show that we cannot accurately provide an estimate of the Kap95 occupancy within the pore from our data due to limitations of the ZMW approach.

      445: how is this related to the BSA translocation increase?

      For the calculation of the selectivity ratio, we assumed the normalized Kap95 translocation rate to be independent of the Kap95 concentration. Hence, the observed trends of the selectivity ratios at different concentrations of Kap95, as shown in Figure 6 D, are solely due to a change in the BSA translocation rate at different concentrations of Kap95, as given in Figure 6 B,C.

      462-481: it's a bit confusing how this interfaces with the "void" analysis ( see my previous comments)

      We agree that the phenomenological descriptions in terms of transient openings (small, dynamic voids) that for larger pores become a constantly opened channel (a single large, static void) might cause some confusion to the reader. In the last part of the results, we aimed to relate the loss of the BSA rate to a change of the Nsp1 mesh. We acknowledge that the model of a rim of Nsp1 and an open center described in Figure 5F is highly simplifying . We now explain this in the revised paper at lines 483-486 by referring to an effective layer thickness which holds true under the simplifying assumption of a central transport channel.

      Figure 6D: I think the illustration of the effect of kaps on the brush is somewhat misleading: at low pore diameters, it is possible that the opposite happens: the kaps concentrate the polymers towards the center of the pore. It should be also made clear that there are no kaps in simulations (if I understand correctly?)

      Indeed, at small pore diameters we think it would be possible to observe what the Reviewer describes. The illustration should only indicate what we think is happening for large pore diameters where we observed the opening of a central channel. To avoid confusion, we now shifted the sketches to panel G where the effective layer thickness is discussed.

      Indeed, as stated in lines 331-340 no Kap95 or BSA molecules were present in the simulations. We have now clarified this point in lines 872-876.

      518: Please provide more explanation on the role of hydrodynamics pressure.

      We have now performed additional experiments and quantified the effect of the pressure to be a ~5% reduction of the event rates, as described in the answer to a previous question above.  

      Reviewer #3 (Recommendations For The Authors):

      No experiments have been performed with the Ran-Mix regeneration system. It would be beneficial to add Ran-Mix to the trans compartment and see how this would affect Kap95 translocation events frequency and passive cargo diffusion. As the authors note in their outlook, this setup offers an advantage in using Ran-Mix and thus could also be considered here or in a future follow-up study.

      We thank the Reviewer for this suggestion. We think, however, that it is beyond the scope of this paper and an interesting subject for a follow-up study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We sincerely thank the reviewers for their in-depth consideration of our manuscript and their helpful reviews. Their efforts have made the paper much better. We have responded to each point. The previously provided public responses have been updated they are included after the private response for convenience.

      Reviewer #1 (Recommendations For The Authors):

      1. In general, the manuscript will benefit from copy editing and proof reading. Some obvious edits;

      2. Page 6 line 140. Do the authors mean Cholera toxin B?

      Response: We corrected this error and went through the entire paper carefully correcting for grammar and increased clarity.

      • Page 8 line 173. Methylbetacyclodextrin is misspelled.

      Response: Yes, corrected.

      • Figure 4c is missing representative traces for electrophysiology data.

      • Figure 4. Please check labeling ordering in figure legend as it does not match the panels in the figure.

      Thank you for the correction and we apologize for the confusion in figure 4. We uploaded an incomplete figure legend, and the old panel ‘e’ was not from an experiment that was still in the figure. It was removed and the figure legends are now corrected.

      • Please mention the statistical analysis used in all figure legends.

      Response: Thank you for pointing out this omission, statistics have been added.

      • Although the schematics in each figure helps guide readers, they are very inconsistent and sometimes confusing. For example, in Figure 5 the gating model is far-reaching without conclusive evidence, whereas in Figure 6 it is over simplified and unclear what the image is truly representing (granted that the downstream signaling mechanism and channel is not known).

      Response: Figure 5d is the summary figure for the entire paper. We have made this clearer in the figure legend and we deleted the title above the figure that gave the appearance that the panel relates to swell only. It is the proposed model based on what we show in the paper and what is known about the activation mechanism of TREK-1.

      Figure 6 is supposed to be simple. It is to help the reader understand that when PA is low mechanical sensitivity is high. Without the graphic, previous reviewers got confused about threshold going down and mechanosensitivity going up and how the levels of PA relate. Low PA= high sensitivity. We’ve added a downstream effector to the right side of the panel to avoid any biased to a putative downstream channel effector. The purpose of the experiment is to show PLD has a mechanosensitive phenotype in vivo.

      Reviewer #2 (Recommendations For The Authors):

      This manuscript outlines some really interesting findings demonstrating a mechanism by which mechanically driven alterations in molecular distributions can influence a) the activity of the PLD2 molecule and subsequently b) the activation of TREK-1 when mechanical inputs are applied to a cell or cell membrane.

      The results presented here suggest that this redistribution of molecules represents a modulatory mechanism that alters either the amplitude or the sensitivity of TREK-1 mediated currents evoked by membrane stretch. While the authors do present values for the pressure required to activate 50% of channels (P50), the data presented provides incomplete evidence to conclude a shift in threshold of the currents, given that many of the current traces provided in the supplemental material do not saturate within the stimulus range, thus limiting the application of a Boltzmann fit to determine the P50. I suggest adding additional context to enable readers to better assess the limitations of this use of the Boltzmann fit to generate a P50, or alternately repeating the experiments to apply stimuli up to lytic pressures to saturate the mechanically evoked currents, enabling use of the Boltzmann function to fit the data.

      Response: We thank the reviewer for pointing this out. We agree the currents did not reach saturation. Hence the term P50 could be misleading, so we have removed it from the paper. We now say “half maximal” current measured from non-saturating pressures of 0-60 mmHg. We also deleted the xPLD data in supplemental figure 3C since there is insufficient current to realistically estimate a half maximal response.

      In my opinion, the conclusions presented in this manuscript would be strengthened by an assessment of the amount of TREK-1 in the plasma membrane pre and post application of shear. While the authors do present imaging data in the supplementary materials, these data are insufficiently precise to comment on expression levels in the membrane. To strengthen this conclusion the authors could conduct cell surface biotinylation assays, as a more sensitive and quantitative measure of membrane localisation of the proteins of interest.

      1. Response: as mentioned previously, we do not have an antibody to the extracellular domain. Nonetheless to better address this concern we directly compared the levels of TREK-1, PIP2, and GM1; in xPLD2, mPLD2, enPLD2 with and without shear. The results are in supplemental figure 2. PLD2 is known to increase endocytosis1 and xPLD2 is known to block both agonist induced and constitutive endocytosis of µ-opioid receptor2. The receptor is trapped on the surface. This is true of many proteins including Rho3, ARF4, and ACE21 among others. In agreement with this mechanism, in Figure S2C,G we show that TREK increases with xPLD and the localization can clearly be seen at the plasma membrane just like in all of the other publications with xPLD overexpression. xPLD2 would be expected to inhibit the basal current but we presume the increased expression likely has compensated and there is sufficient PA and PG from other sources to allow for the basal current. It is in this state that we then conduct our ephys and monitor with a millisecond time resolution and see no activation. We are deriving conclusion from a very clear response—Figure 1b shows almost no current, even at 1-10 ms after applying pressure. There is little pressure current when we know the channel is present and capable of conducting ion (Figure 1d red bar). After shear there is a strong decrease in TREK-1 currents on the membrane in the presence of xPLD2. But it is not less than TREK-1 expression with mPLD2. And since mouse PLD2 has the highest basal current and pressure activation current. The amount of TREK-1 present is sufficient to conduct large current. To have almost no detective current would require at least a 10 fold reduction compared to mPLD2 levels before we would lack the sensitivity to see a channel open. Lasty endocytosis typically in on the order of seconds to minutes, no milliseconds.

      2. We have shown an addition 2 independent ways that TREK-1 is on the membrane during our stretch experiments. Figure 1d shows the current immediately prior to applying pressure for wt TREK-1. When catalytically dead PLD is present (xPLD2) there is almost normal basal current. The channel is clearly present. And then in figure 1a we show within a millisecond there is no pressure current. As a control we added a functionally dead TREK-1 truncation (xTREK). Compared to xPLD2 there is clearly normal basal current. If this is not strong evidence the channel was available on the surface for mechanical activation please help us understand why. And if you think within 2.1 ms 100% of the channel is gone by endocytosis please provide some evidence that this is possible so we can reconsider.

      3. We have TIRF super resolution imaging with ~20 nm x-y resolution and ~ 100nm z resolution and Figure 2b clearly shows the channel on the membrane. When we apply pressure in 1b, the channel is present.

      4. Lastly, In our previous studies we showed activation of PLD2 by anesthetics was responsible for all of TREK-1’s anesthetic sensitivity and this was through PLD2 binding to the C-terminus of TREK-15. We showed this was the case by transferring anesthetic sensitivity to an anesthetic insensitive homolog TRAAK. This established conclusively the basic premise of our mechanism. Here we show the same C-terminal region and PLD2 are responsible for the mechanical current observed by TREK-1. TRAAK is already mechanosensitive so the same chimera will not work for our purposes here. But anesthetic activation and mechanical activation are dramatically different stimuli, and the fact that the role of PLD is robustly observed in both should be considered.

      The authors discuss that the endogenous levels of TREK-1 and PLD2 are "well correlated: in C2C12 cells, that TREK-1 displayed little pair correlation with GM1 and that a "small amount of TREK-1 trafficked to PIP2". As such, these data suggest that the data outlined for HEK293T cells may be hampered by artefacts arising from overexpression. Can TREK-1 currents be activated by membrane stretch in these cells C2C12 cells and are they negatively impacted by the presence of xPLD2? Answering this question would provide more insight into the proposed mechanism of action of PLD2 outlined by the authors in this manuscript. If no differences are noted, the model would be called into question. It could be that there are additional cell-specific factors that further regulate this process.

      Response: The low pair correlation of TREK-1 and GM1 in C2C12 cells was due to insufficient levels of cholesterol in the cell membrane to allow for robust domain formation. In Figure 4b we loaded C2C12 cells with cholesterol using the endogenous cholesterol transport protein apoE and serum (an endogenous source of cholesterol). As can be seen in Fig. 4b, the pair correlation dramatically increased (purple line). This was also true in neuronal cells (N2a) (Fig 4d, purple bar). And shear (3 dynes/cm2) caused the TREK-1 that was in the GM1 domains to leave (red bar) reversing the effect of high cholesterol. This demonstrates our proposed mechanism is working as we expect with endogenously expressed proteins.

      There are many channels in C2C12 cells, it would be difficult to isolate TREK-1 currents, which is why we replicated the entire system (ephys and dSTORM) in HEK cells. Note, in figure 4c we also show that adding cholesterol inhibits TREK-1 whole cell currents in HEK293cells.

      As mentioned in the public review, the behavioural experiments in D. melanogaster can not solely be attributed to a change in threshold. While there may be a change in the threshold to drive a different behaviour, the writing is insufficiently precise to make clear that conclusions cannot be drawn from these experiments regarding the functional underpinnings of this outcome. Are there changes in resting membrane potential in the mutant flys? Alterations in Nav activity? Without controlling for these alternate explanations it is difficult to see what this last piece of data adds to the manuscript, particularly given the lack of TREK-1 in this organism. At the very least, some editing of the text to more clearly indicate that these data can only be used to draw conclusions on the change in threshold for driving the behaviour not the change in threshold of the actual mechanotransduction event (i.e. conversion of the mechanical stimulus into an electrochemical signal).

      Response: We agree; features other than PLDs direct mechanosensitivity are likely contributing. This was shown in figure 6g left side. We have an arrow going to ion channel and to other downstream effectors. We’ve added the putative alteration to downstream effectors to the right side of the panel. This should make it clear that we no more speculate the involvement of a channel than any of the other many potential downstream effectors. As mentioned above, the figure helps the reader coordinate low PA with increased mechanosensitivity. Without the graphic reviewers got confused that PA increased the threshold which corresponds to a decreased sensitivity to pain. Nonetheless we removed our conclusion about fly thresholds from the abstract and made clearer in the main text the lack of mechanism downstream of PLD in flies including endocytosis. Supplemental Figure S2H also helps emphasize this. .

      Nav channels are interesting, and since PLD contribute to endocytosis and Nav channels are also regulated by endocytosis there is likely a PLD specific effect using Nav channels. There are many ways PA likely regulates mechanosensitive thresholds, but we feel Nav is beyond the scope of our paper. Someone else will need to do those studies. We have amended a paragraph in the conclusion which clearly states we do not know the specific mechanism at work here with the suggestions for future research to discover the role of lipid and lipid-modifying enzymes in mechanosensitive neurons.

      There may be fundamental flaws in how the statistics have been conducted. The methods section indicates that all statistical testing was performed with a Student's t-test. A visual scan of many of the data sets in the figures suggests that they are not normally distributed, thus a parametric test such as a Student's t-test is not valid. The authors should assess if each data set is normally distributed, and if not, a non-parametric statistical test should be applied. I recommend assessing the robustness of the statistical analyses and adjusting as necessary.

      Response: We thank the reviewer for pointing this out, indeed there is some asymmetry in Figure 6C-d. The p values with Mann Whitney were slightly improved p=0.016 and p=0.0022 for 6c and 6d respectively. For reference, the students t-test had slightly worse statistics p=0.040 and p=0.0023. The score remained the same 1 and 2 stars respectively.

      The references provided for the statement regarding cascade activation of the TRPs are incredibly out of date. While it is clear that TRPV4 can be activated by a second messenger cascade downstream of osmotic swelling of cells, TRPV4 has also been shown to be activated by mechanical inputs at the cell-substrate interface, even when the second messenger cascade is inhibited. Recommend updating the references to reflect more current understanding of channel activation.

      Response: We thank the reviewer for pointing this out. We have updated the references and changed the comment to “can be” instead of “are”. The reference is more general to multiple ion channel types including KCNQ4. This should avoid any perceived conflict with the cellsubstrate interface mechanism which we very much agree is a correct mechanism for TRP channels.

      Minor comments re text editing etc:

      The central messages of the manuscript would benefit from extensive work to increase the precision of the writing of the manuscript and the presentation of data in the figures, such textual changes alone would help address a number of the concerns outlined in this review, by clarifying some ambiguities. There are numerous errors throughout, ranging from grammatical issues, ambiguities with definitions, lack of scale bars in images, lack of labels on graph axes, lack of clarity due to the mode of presentation of sample numbers (it would be far more precise to indicate specific numbers for each sample rather than a range, which is ambiguous and confusing), unnecessary and repeat information in the methods section. Below are some examples but this list is not exhaustive.

      Response: Thank you, reviewer # 1 also had many of these concerns. We have gone through the entire paper and improved the precision of the writing of the manuscript. We have also added the missing error bar to Figure 6. And axis labels have been added to the inset images. The redundancy in cell culture methods has been removed. Where a range is small and there are lots of values, the exact number of ‘n’ are graphically displayed in the dot plot for each condition.

      Text:

      I recommend considering how to discuss the various aspects of channel activation. A convention in the field is to use mechanical activation or mechanical gating to describe that process where the mechanical stimulus is directly coupled to the channel gating mechanism. This would be the case for the activation of TREK-1 by membrane stretch alone. The increase in activation by PLD2 activity then reflects a modulation of the mechanical activation of the channel, because the relevant gating stimulus is PA, rather than force/stretch. The sum of these events could be described as shear-evoked or mechanically-evoked, TREK-1 mediated currents (thus making it clear that the mechanical stimulus initiates the relevant cascade, but the gating stimulus may be other than direct mechanical input.) Given the interesting and compelling data offered in this manuscript regarding the sensitisation of TREK-1 dependent mechanicallyevoked currents by PLD2, an increase in the precision of the language would help convey the central message of this work.

      Response; We agree there needs to be convention. We have taken the suggestion of mechanically evoked and we suggest the following definitions:

      1. Mechanical activation of PLD2: direct force on the lipids releasing PLD2 from nonactivating lipids.

      2. Mechanical activation/gating of TREK1: direct force from lipids from either tension or hydrophobic mismatch that opens the channel.

      3. Mechanically evoked: a mechanical event that leads to a downstream effect. The effect is mechanically “evoked”.

      4. Spatial patterning/biochemistry: nanoscopic changes in the association of a protein with a nanoscopic lipid cluster or compartment.

      An example of where discussion of mechanical activation is ambiguous in the text is found at line 109: "channel could be mechanically activated by a movement from GM1 to PIP2 lipids." In this case, the sentence could be suggesting that the movement between lipids provides the mechanical input that activates the channel, which is not what the data suggest.

      Response: Were possible we have replaced “movement” with “spatial patterning” and “association” and “dissociation” from specific lipid compartment. This better reflects the data we have in this paper. However, we do think that a movement mechanically activates the channel, GM1 lipids are thick and PIP2 lipids are thin, so movement between the lipids could activate the channel through direct lipid interaction. We will address this aspect in a future paper.

      Inconsistencies with usage:

      • TREK1 versus TREK-1

      Response: corrected to TREK-1

      • mPLD2 versus PLD2

      Response: where PLD2 represents mouse this has been corrected.

      • K758R versus xPLD2

      Response: we replaced K758R in the methods with xPLD2.

      • HEK293T versus HEK293t Response: we have changed all instances to read HEK293T.

      • Drosophila melanogaster and D. melanogaster used inconsistently and in many places incorrectly

      Response: we have read all to read the common name Drosophila.

      Line 173: misspelled methylbetacyclodextrin

      Response corrected

      Line 174: degree symbol missing

      Response corrected

      Line 287: "the decrease in cholesterol likely evolved to further decrease the palmate order in the palmitate binding site"... no evidence, no support for this statement, falsely attributes intention to evolutionary processes .

      Response: we have removed the reference to evolution at the request of the reviewer, it is not necessary. But we do wish to note that to our knowledge, all biological function is scientifically attributed to evolution. The fact that cholesterol decreases in response to shear is evidence alone that the cell evolved to do it.

      Line 307: grammatical error

      Response: the redundant Lipid removed.

      Line 319: overinterpreted - how is the mechanosensitivy of GPCRs explained by this translocation?

      Response: all G-alpha subunits of the GPCR complex are palmitoylated. We showed PLD (which has the same lipidation) is mechanically activated. If the palmitate site is disrupted for PLD2, then it is likely disrupted for every G-alpha subunit as well.

      Line 582: what is the wild type referred to here?

      Response: human full length with a GFP tag.

      Methods:

      • Sincere apologies if I missed something but I do not recall seeing any experiments using purified TREK-1 or flux assays. These details should be removed from the methods section

      Response: Removed.

      • There is significant duplication of detail across the methods (three separate instances of electrophysiology details) these could definitely be consolidated.

      Response: Duplicates removed.

      Figures:

      • Figure 2- b box doesn't correspond to inset. Bottom panel should provide overview image for the cell that was assessed with shear. In bottom panel, circle outlines an empty space.

      Response: We have widened the box slightly to correspond so the non shear box corresponds to the middle panel. We have also added the picture for the whole cell to Fig S2g and outlined the zoom shown in the bottom panel of Fig 2b as requested. The figure is of the top of a cell. We also added the whole cell image of a second sheared cell.

      Author response image 1.

      • Figure 3 b+c: inset graph lacking axis labels

      Response; the inset y axis is the same as the main axis. We added “pair corr. (5nM)” and a description in the figure legend to make this clearer. The purpose of the inset is to show statistical significance at a single point. The contrast has been maximized but without zooming in points can be difficult to see.

      • Figure 5: replicate numbers missing and individual data points lacking in panels b + c, no labels of curve in b + c, insets, unclear what (5 nm) refers to in insets.

      Response: Thank you for pointing out these errors. The N values have been added. Similar to figure 3, the inset is a bar graph of the pair correlation data at 5 nm. A better explanation of the data has been added to the figure legend.

      • Figure 6: no scale bar, no clear membrane localization evident from images presented, panel g offers virtually nothing in terms of insight

      Response: We have added scale bars to figure 6b. Figure 6g is intentionally simplistic, we found that correlating decreased threshold with increased pain was confusing. A previous reviewer claimed our data was inconsistent. The graphic avoids this confusion. We also added negative effects of low PA on downstream effects to the right panel. This helps graphically show we don’t know the downstream effects.

      Reviewer #3 (Recommendations For The Authors):

      Minor suggestions:

      1. line 162, change 'heat' to 'temperature'.

      Response: changed.

      1. in figure 1, it would be helpful to keep the unit for current density consistent among different panels. 1e is a bit confusing: isn't the point of Figure 1 that most of TREK1 activation is not caused by direct force-sensing?

      Response: Yes, the point of figure 1 is to show that in a biological membrane over expressed TREK-1 is a downstream effector of PLD2 mechanosensation which is indirect. We agree the figure legend in the previous version of the paper is very confusing.

      There is almost no PLD2 independent current in our over expressed system, which is represented by no ions in the conduction pathway of the channel despite there being tension on the membrane.

      Purified TREK-1 is only mechanosensitive in a few select lipids, primarily crude Soy PC. It was always assumed that HEK293 and Cos cells had the correct lipids since over expressed TREK-1 responded to mechanical force in these lipids. But that does not appear to be correct, or at least only a small amount of TREK-1 is in the mechanosensitive lipids. Figure 1e graphically shows this. The arrows indicate tension, but the channel isn’t open with xPLD2 present. We added a few sentences to the discussion to further clarify.

      Panels c has different units because the area of the tip was measured whereas in d the resistance of the tip was measured. They are different ways for normalizing for small differences in tip size.

      1. line 178, ~45 of what?

      Response: Cells were fixed for ~30 sec.

      1. line 219 should be Figure 4f?

      Response: thank you, yes Figure 4f.

      Previous public reviews with minor updates.

      Reviewer #1 (Public Review):

      Force sensing and gating mechanisms of the mechanically activated ion channels is an area of broad interest in the field of mechanotransduction. These channels perform important biological functions by converting mechanical force into electrical signals. To understand their underlying physiological processes, it is important to determine gating mechanisms, especially those mediated by lipids. The authors in this manuscript describe a mechanism for mechanically induced activation of TREK-1 (TWIK-related K+ channel. They propose that force induced disruption of ganglioside (GM1) and cholesterol causes relocation of TREK-1 associated with phospholipase D2 (PLD2) to 4,5-bisphosphate (PIP2) clusters, where PLD2 catalytic activity produces phosphatidic acid that can activate the channel. To test their hypothesis, they use dSTORM to measure TREK-1 and PLD2 colocalization with either GM1 or PIP2. They find that shear stress decreases TREK-1/PLD2 colocalization with GM1 and relocates to cluster with PIP2. These movements are affected by TREK-1 C-terminal or PLD2 mutations suggesting that the interaction is important for channel re-location. The authors then draw a correlation to cholesterol suggesting that TREK-1 movement is cholesterol dependent. It is important to note that this is not the only method of channel activation and that one not involving PLD2 also exists. Overall, the authors conclude that force is sensed by ordered lipids and PLD2 associates with TREK-1 to selectively gate the channel. Although the proposed mechanism is solid, some concerns remain.

      1) Most conclusions in the paper heavily depend on the dSTORM data. But the images provided lack resolution. This makes it difficult for the readers to assess the representative images.

      Response: The images were provided are at 300 dpi. Perhaps the reviewer is referring to contrast in Figure 2? We are happy to increase the contrast or resolution.

      As a side note, we feel the main conclusion of the paper, mechanical activation of TREK-1 through PLD2, depended primarily on the electrophysiology in Figure 1b-c, not the dSTORM. But both complement each other.

      2) The experiments in Figure 6 are a bit puzzling. The entire premise of the paper is to establish gating mechanism of TREK-1 mediated by PLD2; however, the motivation behind using flies, which do not express TREK-1 is puzzling.

      Response: The fly experiment shows that PLD mechanosensitivity is more evolutionarily conserved than TREK-1 mechanosensitivity. We have added this observation to the paper.

      -Figure 6B, the image is too blown out and looks over saturated. Unclear whether the resolution in subcellular localization is obvious or not.

      Response: Figure 6B is a confocal image, it is not dSTORM. There is no dSTORM in Figure 6. We have added the error bars to make this more obvious. For reference, only a few cells would fit in the field of view with dSTORM.

      -Figure 6C-D, the differences in activity threshold is 1 or less than 1g. Is this physiologically relevant? How does this compare to other conditions in flies that can affect mechanosensitivity, for example?

      Response: Yes, 1g is physiologically relevant. It is almost the force needed to wake a fly from sleep (1.2-3.2g). See ref 33. Murphy Nature Pro. 2017.

      3) 70mOsm is a high degree of osmotic stress. How confident are the authors that a cell health is maintained under this condition and b. this does indeed induce membrane stretch? For example, does this stimulation activate TREK-1?

      Response: Yes, osmotic swell activates TREK1. This was shown in ref 19 (Patel et al 1998). We agree the 70 mOsm is a high degree of stress. This needs to be stated better in the paper.

      Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microticopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensi>zed by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells.

      Response: We agree, the downstream effectors of PLD2 mechanosensitivity are not known in the fly. Other anionic lipids have been shown to mediate pain see ref 46 and 47. We do not wish to make any claim beyond PLD2 being an in vivo contributor to a fly’s response to mechanical force. We have removed the speculative conclusions about fly thresholds from the abstract.

      That said we do believe we have established a molecular function at the cellular level. We showed PLD is robustly mechanically activated in a cultured fly cell line (BG2-c2) Figure 6a of the manuscript. And our previous publication established mechanosensation of PLD (Petersen et. al. Nature Com 2016) through mechanical disruption of the lipids. At a minimum, the experiments show PLDs mechanosensitivity is evolutionarily better conserved across species than TREK1.

      This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensi>zing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microticopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microticopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from sta>c measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      Response: We thank the reviewer for his/her concern about expression levels. We did test TREK-1 expression. mPLD decreases TREK-1 expression ~two-fold (see Author response image 2 below). We did not include the mPLD data since TREK-1 was mechanically activated with mPLD. For expression to account for the loss of TREK-1 stretch current (Figure 1b), xPLD would need to block surface expression of TREK-1 prior to stretch. The opposite was true, xPLD2 increased TREK-1 expression (see Figure S2c). Furthermore, we tested the leak current of TREK-1 at 0 mV and 0 mmHg of stretch. Basal leak current was no different with xPLD2 compared to endogenous PLD (Figure 1d; red vs grey bars respectively) suggesting TREK-1 is in the membrane and active when xPLD2 is present. If anything, the magnitude of the effect with xPLD would be larger if the expression levels were equal.

      Author response image 2.

      TREK expression at the plasma membrane. TREK-1 Fluorescence was measured by GFP at points along the plasma membrane. Over expression of mouse PLD2 (mPLD) decrease the amount of full-length TREK-1 (FL TREK) on the surface more than 2-fold compared to endogenously expressed PLD (enPLD) or truncated TREK (TREKtrunc) which is missing the PLD binding site in the C-terminus. Over expression of mPLD had no effect on TREKtrunc.

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      Response: We are willing to restrict the conclusion about the fly behavior as the reviewers see fit. We have shown PLD is mechanosensitivity in a fly cell line, and when we knock out PLD from a fly, the animal exhibits a mechanosensation phenotype. We tried to make it clear in the figure and in the text that we have no evidence of a particular mechanism downstream of PLD mechanosensation.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

      Reviewer #3 (Public Review):

      The manuscript "Mechanical activation of TWIK-related potassium channel by nanoscopic movement and second messenger signaling" presents a new mechanism for the activation of TREK-1 channel. The mechanism suggests that TREK1 is activated by phosphatidic acids that are produced via a mechanosensitive motion of PLD2 to PIP2-enriched domains. Overall, I found the topic interesting, but several typos and unclarities reduced the readability of the manuscript. Additionally, I have several major concerns on the interpretation of the results. Therefore, the proposed mechanism is not fully supported by the presented data. Lastly, the mechanism is based on several previous studies from the Hansen lab, however, the novelty of the current manuscript is not clearly stated. For example, in the 2nd result section, the authors stated, "fluid shear causes PLD2 to move from cholesterol dependent GM1 clusters to PIP2 clusters and this activated the enzyme". However, this is also presented as a new finding in section 3 "Mechanism of PLD2 activation by shear."

      For PLD2 dependent TREK-1 activation. Overall, I found the results compelling. However, two key results are missing.

      1. Does HEK cells have endogenous PLD2? If so, it's hard to claim that the authors can measure PLD2-independent TREK1 activation.

      Response: yes, there is endogenous PLD (enPLD). We calculated the relative expression of xPLD2 vs enPLD. xPLD2 is >10x more abundant (Fig. S3d of Pavel et al PNAS 2020, ref 14 of the current manuscript). Hence, as with anesthetic sensitivity, we expect the xPLD to out compete the endogenous PLD, which is what we see. We added the following sentence and reference : “The xPLD2 expression is >10x the endogenous PLD2 (enPLD2) and out computes the TREK-1 binding site for PLD25.”

      1. Does the plasma membrane trafficking of TREK1 remain the same under different conditions (PLD2 overexpression, truncation)? From Figure S2, the truncated TREK1 seem to have very poor trafficking. The change of trafficking could significantly contribute to the interpretation of the data in Figure 1.

      Response: If the PLD2 binding site is removed (TREK-1trunc), yes, the trafficking to the plasma membrane is unaffected by the expression of xPLD and mPLD (Author response image 2 above). For full length TREK1 (FL-TREK-1), co-expression of mPLD decreases TREK expression (Author response image 2) and coexpression with xPLD increases TREK expression (Figure S2f). This is exactly opposite of what one would expect if surface expression accounted for the change in pressure currents. Hence, we conclude surface expression does not account for loss of TREK-1 mechanosensitivity with xPLD2. A few sentences was added to the discussion. We also performed dSTORM on the TREKtruncated using EGFP. TREK-truncated goes to PIP2 (see figure 2 of 6)

      Author response image 3.

      To better compare the levels of TREK-1 before and after shear, we added a supplemental figure S2f where the protein was compared simultaneously in all conditions. 15 min of shear significantly decreased TREK-1 except with mPLD2 where the levels before shear were already lowest of all the expression levels tested.

      For shear-induced movement of TREK1 between nanodomains. The section is convincing, however I'm not an expert on super-resolution imaging. Also, it would be helpful to clarify whether the shear stress was maintained during fixation. If not, what is the >me gap between reduced shear and the fixed state. lastly, it's unclear why shear flow changes the level of TREK1 and PIP2.

      Response: Shear was maintained during the fixing. xPLD2 blocks endocytosis, presumably endocytosis and or release of other lipid modifying enzymes affect the system. The change in TREK-1 levels appears to be directly through an interaction with PLD as TREK trunc is not affected by over expression of xPLD or mPLD.

      For the mechanism of PLD2 activation by shear. I found this section not convincing. Therefore, the question of how does PLD2 sense mechanical force on the membrane is not fully addressed. Par>cularly, it's hard to imagine an acute 25% decrease cholesterol level by shear - where did the cholesterol go? Details on the measurements of free cholesterol level is unclear and additional/alternative experiments are needed to prove the reduction in cholesterol by shear.

      Response: The question “how does PLD2 sense mechanical force on the membrane” we addressed and published in Nature Comm. In 2016. The title of that paper is “Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D” see ref 13 Petersen et. al. PLD is a soluble protein associated to the membrane through palmitoylation. There is no transmembrane domain, which narrows the possible mechanism of its mechanosensation to disruption.

      The Nature Comm. reviewer identified as “an expert in PLD signaling” wrote the following of our data and the proposed mechanism:

      “This is a provocative report that identi0ies several unique properties of phospholipase D2 (PLD2). It explains in a novel way some long established observations including that the enzyme is largely regulated by substrate presentation which 0its nicely with the authors model of segregation of the two lipid raft domains (cholesterol ordered vs PIP2 containing). Although PLD has previously been reported to be involved in mechanosensory transduction processes (as cited by the authors) this is the 0irst such report associating the enzyme with this type of signaling... It presents a novel model that is internally consistent with previous literature as well as the data shown in this manuscript. It suggests a new role for PLD2 as a force transduction tied to the physical structure of lipid rafts and uses parallel methods of disrup0on to test the predic0ons of their model.”

      Regarding cholesterol. We use a fluorescent cholesterol oxidase assay which we described in the methods. This is an appropriate assay for determining cholesterol levels in a cell which we use routinely. We have published in multiple journals using this method, see references 28, 30, 31. Working out the metabolic fate of cholesterol after sheer is indeed interesting but well beyond the scope of this paper. Furthermore, we indirectly confirmed our finding using dSTORM cluster analysis (Figure 3d-e). The cluster analysis shows a decrease in GM1 cluster size consistent with our previous experiments where we chemically depleted cholesterol and saw a similar decrease in cluster size (see ref 13). All the data are internally consistent, and the cholesterol assay is properly done. We see no reason to reject the data.

      Importantly, there is no direct evidence for "shear thinning" of the membrane and the authors should avoid claiming shear thinning in the abstract and summary of the manuscript.

      Response: We previously established a kinetic model for PLD2 activation see ref 13 (Petersen et al Nature Comm 2016). In that publication we discussed both entropy and heat as mechanisms of disruption. Here we controlled for heat which narrowed that model to entropy (i.e., shear thinning) (see Figure 3c). We provide an overall justification below. But this is a small refinement of our previous paper, and we prefer not to complicate the current paper. We believe the proper rheological term is shear thinning. The following justification, which is largely adapted from ref 13, could be added to the supplement if the reviewer wishes.

      Justification: To establish shear thinning in a biological membrane, we initially used a soluble enzyme that has no transmembrane domain, phospholipase D2 (PLD2). PLD2 is a soluble enzyme and associated with the membrane by palmitate, a saturated 16 carbon lipid attached to the enzyme. In the absence of a transmembrane domain, mechanisms of mechanosensation involving hydrophobic mismatch, tension, midplane bending, and curvature can largely be excluded. Rather the mechanism appears to be a change in fluidity (i.e., kinetic in nature). GM1 domains are ordered, and the palmate forms van der Waals bonds with the GM1 lipids. The bonds must be broken for PLD to no longer associate with GM1 lipids. We established this in our 2016 paper, ref 13. In that paper we called it a kinetic effect, however we did not experimentally distinguish enthalpy (heat) vs. entropy (order). Heat is Newtonian and entropy (i.e., shear thinning) is non-Newtonian. In the current study we paid closer attention to the heat and ruled it out (see Figure 3c and methods). We could propose a mechanism based on kinetic disruption, but we know the disruption is not due to melting of the lipids (enthalpy), which leaves shear thinning (entropy) as the plausible mechanism.

      The authors should also be aware that hypotonic shock is a very dirty assay for stretching the cell membrane. Ouen, there is only a transient increase in membrane tension, accompanied by many biochemical changes in the cells (including acidification, changes of concentration etc). Therefore, I would not consider this as definitive proof that PLD2 can be activated by stretching membrane.

      Response: Comment noted. We trust the reviewer is correct. In 1998 osmotic shock was used to activate the channel. We only intended to show that the system is consistent with previous electrophysiologic experiments.

      References cited:

      1 Du G, Huang P, Liang BT, Frohman MA. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 2004;15:1024–30. htps://doi.org/10.1091/mbc.E03-09-0673.

      2 Koch T, Wu DF, Yang LQ, Brandenburg LO, Höllt V. Role of phospholipase D2 in the agonist-induced and constistutive endocytosis of G-protein coupled receptors. J Neurochem 2006;97:365–72. htps://doi.org/10.1111/j.1471-4159.2006.03736.x.

      3 Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G, et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci U S A 2015;112:E7138–47. htps://doi.org/10.1073/pnas.1511670112.

      4 Rankovic M, Jacob L, Rankovic V, Brandenburg L-OO, Schröder H, Höllt V, et al. ADP-ribosylation factor 6 regulates mu-opioid receptor trafficking and signaling via activation of phospholipase D2. Cell Signal 2009;21:1784–93. htps://doi.org/10.1016/j.cellsig.2009.07.014.

      5 Pavel MA, Petersen EN, Wang H, Lerner RA, Hansen SB. Studies on the mechanism of general anesthesia. Proc Natl Acad Sci U S A 2020;117:13757–66. htps://doi.org/10.1073/pnas.2004259117.

      6 Call IM, Bois JL, Hansen SB. Super-resolution imaging of potassium channels with genetically encoded EGFP. BioRxiv 2023. htps://doi.org/10.1101/2023.10.13.561998.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present work establishes 14-3-3 proteins as binding partners of spastin and suggests that this binding is positively regulated by phosphorylation of spastin. The authors show evidence that 14-3-3 >- spastin binding prevents spastin ubiquitination and final proteasomal degradation, thus increasing the availability of spastin. The authors measured microtubule severing activity in cell lines and axon regeneration and outgrowth as a prompt to spastin activity. By using drugs and peptides that separately inhibit 14-3-3 binding or spastin activity, they show that both proteins are necessary for axon regeneration in cell culture and in vivo models in rats.

      The following is an account of the major strengths and weaknesses of the methods and results.

      Major strengths

      -The authors performed pulldown assays on spinal cord lysates using GST-spastin, then analyzed pulldowns via mass spectrometry and found 3 peptides common to various forms of 14-3-3 proteins. In co-expression experiments in cell lines, recombinant spastin co-precipitated with all 6 forms of 14-3-3 tested.

      -By protein truncation experiments they found that the Microtubule Binding Domain of spastin contained the binding capability to 14-3-3. This domain contained a putative phosphorylation site, and substitutions that cannot be phosphorylated cannot bind to spastin.

      -spastin overexpression increased neurite growth and branching, and so did the phospho null spastin. On the other hand, the phospho mimetic prevents all kinds of neurite development.

      -Overexpression of GFP-spastin shows a turn-over of about 12 hours when protein synthesis is inhibited by cycloheximide. When 14-3-3 is co-overexpressed, GFP-spastin does not show a decrease by 12 hours. When S233A is expressed, a turn-over of 9 hours is observed, indicating that the ability to be phosphorylated increases the stability of the protein.

      -In support of that notion, the phospho-mimetic S233D makes it more stable, lasting as much as the over-expression of 14-3-3.

      -Authors show that spastin can be ubiquitinated, and that in the presence of ubiquitin, spastin-MT severing activity is inhibited.

      -By combining FCA with Spastazoline, the authors claim that FCA increased regeneration is due to increased spastin Activity in various models of neurite outgrowth and regeneration in cell culture and in vivo, the authors show impressive results on the positive effect of FCA in regeneration, and that this is abolished when spastin is inhibited.

      Major weaknesses

      -However convincing the pull-downs of the expressed proteins, the evidence would be stronger if a co-immunoprecipitation of the endogenous proteins were included.

      We thank the reviewer for their succinct summary of the main results and strengths of our study. We acknowledge the reviewers' valuable suggestions and agree that performing endogenous co-immunoprecipitation (co-IP) experiments in neurons is crucial for supporting our conclusions. To address this question, cortical neurons were cultured in vitro for endogenous IP experiment. The cortical neurons were cultured using a neurobasal medium supplemented with 2% B27, and using cytarabine to inhibit the proliferation of glial cells. The proteins were then extracted and subjected to the immunoprecipitation experiments using antibodies against spastin. The results, as shown in Fig.1C in the revised manuscript, clearly demonstrate that 14-3-3 protein indeed interacts with spastin within neurons.

      -To better establish the impact of spastin phosphorylation in the interaction, there is no indication that the phosphomimetic (S233D) can better bind spastin, and this result is contradicting to the conclusion of the authors that spastin-14-3-3 interaction is necessary for (or increases) spastin function.

      Thank you for your valuable and constructive comments. We agree with your consideration. To reinforce the importance of phosphorylated spastin in this binding model, we conducted additional experiments by transfecting S233D into 293T cells and performed immunoprecipitation experiments (Fig.2H). The results clearly demonstrate that spastin (S233D) exhibits enhanced binding to spastin, indicating that phosphorylation at the S233 site is critical for this interaction. Additionally, we observed that spastin (S233D) maintains its binding to 14-3-3 even in the presence of staurosporine. This data further supports and strengthens our conclusions.

      -To fully support the authors' suggestion that 14-3-3 and spastin work in the same pathway to promote regeneration, I believe that some key observations are missing.

      1-There is no evidence showing that 14-3-3 overexpression increases the total levels of spastin, not only its turnover.

      Thank you for your consideration and valuable input. We have previously demonstrated that overexpression of 14-3-3 leads to an increase in the protein levels of spastin in the absence of CHX (Fig.3E&F). Furthermore, we also observed an upregulated protein levels of spastin S233D compared to the wild-type (Fig.3G). We have now included these results in the revised manuscript.

      2- There is no indication that increasing the ubiquitination of spastin decreases its levels. To suggest that proteasomal activity is affecting the levels of a protein, one would expect that proteasomal inhibition (with bortezomib or epoxomycin), would increase its levels.

      Thanks for your concern. We believe that this evidence is critical. Indeed, another study by our team is working to elucidate the ubiquitination degradation pathway of spastin. In addition, a previous study has shown that phosphorylation of the S233 site of spastin can affect its protein stability (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799.). To better support our conclusions, we have supplemented the results in Fig.3L&M. The results showed that the proteasome inhibitor MG132 could significantly increase the protein level of spastin, whereas CHX could significantly decrease the protein level of spastin, and the degradation of spastin is significantly hindered in the presence of both CHX and MG132. This experiment also further showed that ubiquitination of spastin reduced its protein level.

      3- Authors show that S233D increases MT severing activity, and explain that it is related to increased binding to 14-3-3. An alternative explanation is that phosphorylation at S233 by itself could increase MT severing activity. The authors could test if purified spastin S233D alone could have more potent enzymatic activity.)

      We appreciate the reviewer’s consideration. After investigating the interaction between 14-3-3 and spastin, we first aimed to determine whether the S233 phosphorylation mutation of spastin influenced its microtubule-severing activity. We found that overexpression of both S233A and S233D mutants resulted in significant microtubule severing (as indicated by a significant decrease in microtubule fluorescence intensity) (Fig.S2). Furthermore, it is noteworthy that S233 is located outside the microtubule-binding domain (MTBD, 270-328 amino acids) and the AAA region (microtubule-severing region, 342-599 amino acids) of spastin. Based on our initial observations, we believe that the phosphorylation of the S233 residue in spastin does not impact its microtubule-severing function. Additionally, under the same experimental conditions, we observed that the green fluorescence intensity of GFP-spastin S233D was significantly higher than that of GFP-spastin S233A. Based on these phenomena, we speculated that phosphorylation of the S233 residue of spastin might affect its protein stability, leading us to conduct further experiments. Furthermore, we fully acknowledge the reviewer's concern; however, due to technical limitations, we were unable to perform an in vitro assay to test the microtubule-severing activity of spastin. We have provided an explanation for this consideration in the revised version.

      -Finally, I consider that there are simpler explanations for the combined effect of FC-A and spastazoline. FC-A mechanism of action can be very broad, since it will increase the binding of all 14-3-3 proteins with presumably all their substrates, hence the pathways affected can rise to the hundreds. The fact that spastazoline abolishes FC-A effect, may not be because of their direct interaction, but because spastin is a necessary component of the execution of the regeneration machinery further downstream, in line with the fact that spastizoline alone prevented outgrowth and regeneration, and in agreement with previous work showing that normal spastin activity is necessary for regeneration.

      We appreciate the considerations raised by the reviewer. It is evident that spastin is not the exclusive substrate protein for 14-3-3, and it is challenging to demonstrate that 14-3-3 promotes nerve regeneration and recovery of spinal cord injury directly through spastin in vivo. However, we have identified the importance of 14-3-3 and spastin in the process of nerve regeneration. Importantly, we have conducted supplementary experiments to support the stabalization of spastin by FC-A treatment within neurons (Fig.4M), as well as the repair process of spinal cord injury in vivo (Fig.5D). The results showed that FC-A treatment in cortical neurons could enhance the stability of spastin protein levels, and we also demonstrated a consistent trend of upregulated protein levels of spastin and 14-3-3 following spinal cord injury. Moreover, the protein levels were significantly elevated in the the FC-A group of mice. These results also support that 14-3-3 enhances spastin protein stability to promote spinal cord injury repair. The manuscript was revised accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The idea of harnessing small molecules that may affect protein-protein interactions to promote axon regeneration is interesting and worthy of study. In this manuscript, Liu et al. explore a 14-3-3-spastin complex and its role in axon regeneration.

      Strengths:

      Some of the effects of FC-A on locomotor recovery after spinal cord contusion look interesting.

      Weaknesses:

      The manuscript falls short of establishing that a 14-3-3-spastin complex is important for any FC-A-dependent effects and there are several issues with data quality that make it difficult to interpret the results. Importantly, the effects of the spastin inhibitor have a major impact on neurite outgrowth suggesting that cells simply cannot grow in the presence of the inhibitor and raising serious questions about any selectivity for FC-A - dependent growth. Aspects of the histology following spinal cord injury were not convincing.

      We sincerely appreciate the reviewer for evaluating our manuscript. Given the multitude of substrates that interact with 14-3-3, and considering spastin's indispensable role in neuroregeneration, it is indeed challenging to experimentally establish that FC-A's neuroregenerative effect is directly mediated through spastin in vivo. Therefore, we have provided additional crucial evidence regarding the changes in spastin protein levels following spinal cord injury, as well as the application of FC-A after spinal cord injury. Furthermore, we have made relevant adjustments to the uploaded images to enhance the resolution of the presented figures, as detailed in the subsequent response.

      Reviewer #3 (Public Review):

      Summary: The current manuscript c laims that 14-3-3 interacts with spastin and that the 14-3-3/spastin interaction is important to regulate axon regeneration after spinal cord injury.

      Strengths:

      In its present form, this reviewer identified no clear strengths for this manuscript.

      Weaknesses:

      In general, most of the figures lack sufficient quality to allow analyses and support the author's claims (detailed below). The legends also fail to provide enough information on the figures which makes it hard to interpret some of them. Most of the quantifications were done based on pseudo-replication. The number of independent experiments (that should be defined as n) is not shown. The overall quality of the written text is also low and typos are too many to list. The original nature of the spinal cord injury-related experiments is unclear as the role of 14-3-3 (and spastin) in axon regeneration has been extensively explored in the past.

      We sincerely appreciate the careful consideration and rigorous evaluation provided by the reviewer. In the revised version, we have made effort to present high-resolution figures and provide more detailed figure legends. Furthermore, we have made relevant adjustments to the statistical methods in accordance with the reviewer's suggestions. The manuscript has also undergone a thorough review and correction process to eliminate any writing-related errors. Please refer to the following response.

      To the best of our knowledge, there has been no clear reports on the efficacy of 14-3-3 in the repair of spinal cord injury. Kaplan A et al. (doi: 10.1016/j.neuron.2017.02.018) reported a reduction in die-back of the corticospinal tract following spinal cord injury using FC-A as a filler in situ in the lesion site. However, the specific effects of FC-A on spinal cord injury, such as motor function and neural reactivity, as well as the expression characteristic of 14-3-3 after spinal cord injury, have not been extensively elucidated. Additionally, prior research on spastin's role in axon regeneration primarily focused on the effects in Drosophila, and its regenerative effects in the central nervous system of adult mammals after injury have not been reported. Therefore, our study provides crucial insights into the importance of 14-3-3 and spastin in the process of spinal cord injury repair in mammals.

      Reviewer #1 (Recommendations For The Authors):

      There are many spelling and grammar errors, please revise. Examples:

      -approach revealed14-3-3

      -We have detected different many 14-3-3 peptides

      -Line 1057 (D) 14-3-3 agnoist FC-A

      -There is a discrepancy between panel names and figure legend in Figure 4.

      -There is another discrepancy between the color coding of treatments in Figure 7. All panels show "injury" in red and FC-A in orange, but in panel E, these are swapped. This is confusing to readers.

      Thank you for the thorough and rigorous review. We have re-colored the relevant chart. The manuscript has also undergone a thorough review to eliminate any writing-related errors.

      Most images from confocal microscopy are blurred or low resolution. They should be sharper for the type of microscopy used.

      We have adjusted and re-uploaded the images with higher resolution. Additionally, we have enlarged the relevant images.

      The list of all peptides retrieved in the Mass-Spec analyses of the GST-spastin pulldown must be publicly available, according to eLife rules.

      Thank you for your suggestion. We have now uploaded the mass spectrometry data.

      To determine where the 14-3-3/spastin protein142 complex functions in neurons, we double stained hippocampal neurons with spastin143 and 14-3-3 antibody, and found that 14-3-3 was colocalized with spastin in the entire144 cell compartment (Figure 1C).

      Colocalization by confocal fluorescence microscopy is not evidence for protein complexes.

      While co-localization experiments may not directly demonstrate protein-protein interactions, they can still provide valuable insights into the cellular localization of the proteins and suggest potential interactions between them. Therefore, we adjusted the statement.

      Fig1F- Co-immunoprecipitation assay results confirmed that all 14-3-3 isoforms could form direct complexes with spastin.

      CoIP in cells overexpressing the proteins is not evidence that it is direct. That they can interact directly with each other can be extracted from the evidence in vitro with purified proteins.

      We agree with this and we have changed our statement accordingly.

      For a broad audience to have a better understanding, the authors have to explain their a.a. subtitucions of Serine233, one being mimicking phosphorylation (S233D) and the other rendering the protein not being able to be phosphorylated in that position (S233A).

      We appreciate the suggestion. We have provided a more detailed explanation in revised manuscript.

      The panel of neuronas in Fig2G is mislabeled, because it is twice spastin S233A, instead of S233D.

      We apologize for this mistake and we have corrected it in the panel.

      FCA may increase the interaction of 14-3-3 with any of its substrates, including spastin. One would appreciate evidence that FCA increases the MT-severing activity of spastin, as assumed by authors

      We appreciate the reviewer’s suggestion. In this study, we overexpressed spastin to investigate its microtubule severing activity. It is important to note that overexpressing spastin significantly exceeds the normal physiological concentration of the protein. Using excessive amounts of FC-A to enhance the interaction between 14-3-3 and spastin in cells can lead to cell toxicity. Therefore, we chose to overexpress 14-3-3 instead of employing excessive FC-A.

      In Fig2F, the interaction of 14-3-3 with Spas-S233D would have been very informative.

      Thank you for the constructive suggestions from the reviewer. We have supplemented the corresponding co-immunoprecipitation experiments (Fig.).

      The functional effect of S233A and S233D does not correlate with a function of 14-3-3 in neurite outgrowth. This is because S233A does not interact with 14-3-3, however, it is as good as WT spastin... meaning that binding of 14-3-3 with spastin is not necessary...

      We appreciate the reviewer's consideration. The observed phenomenon of spastin WT and S233A promoting axon growth do not align with the physiological state within neurons. This may mask the true effects of S233A or S233D on neuronal axon growth. It is documented that the proper dosage of spastin is essential for neuronal growth and regeneration, as excessive or insufficient amounts can hinder axon growth. Excessive spastin levels can disrupt the overall cellular MTs. Therefore, spastin were moderately expressed by adjusting the transfection dosage and duration. Nevertheless, we were unable to precisely control the expression levels of spastin for both WT and S233A, also resulting in an overexpression state compared to the physiological state. As a result, the crucial role of spastin S233 in neural growth under physiological conditions may be masked. We have addressed this issue in the revised version of our manuscript.

      In panels 3C and D it is not clear if it does contain 14-3-3.... it seems it does not... but clarify.

      We apologize for any confusion. Since there is endogenous 14-3-3 present in the cells, we utilized spastin S233A and S233D to mimic the binding pattern with 14-3-3 according to the established interaction model. This information has been clarified in the original manuscript.

      Line 217 should indicate Figure 3, not Figure 5

      We have made the corresponding corrections.

      In F3G, it is intriguing that the input blot shows a decrease in Ubiquitin proteins when there is expression of flag ubiquitin...

      We apologize for the error in our presentation. In the control group, we actually overexpressed Flag-ubiquitin and GFP instead of Flag and GFP-spastin. Additionally, to further elucidate the impact of different phosphorylation states on spastin ubiquitination and degradation, we have conducted additional ubiquitination experiments (Fig.3N), which are now included in the revised version of our manuscript.

      S233 mutations seem to affect the effective turnover of spastin, but does not seem to change the levels of the spastin protein...hence, the conclusion that 14-3-3 protects from degradation is overstated.

      We thank the reviewers for the careful review and we have revised the statement accordingly.

      The mode of action of R18 FCA should be introduced earlier in the text.

      Thank you for the reviewer's correction. We have provided a corresponding description of the effects of FC-A and R18 on the interaction between 14-3-3 and spastin in the ubiquitination experiments section of the manuscript.

      Line 296 reads: Our results revealed that levels of 14-3-3 protein remained high even at 30 DPI, indicating that 14-3-3 plays an important role in the recovery of spinal cord injury.

      This is overstated since it can well be that an upregulated protein is inhibitory. We thank the reviewers for their consideration and we have made adjustments accordingly.

      It is not clear if 14-3-3 prevents ubiquitination of spastin, then its levels should be higher... it is noteworthy that they did not measure its levels in nerve tissue after injury. For example, in experiments shown in Figure 5A, it would have been very useful the observation of the levels of spastin.

      We appreciate the reviewer's consideration. We have now included the assessment of spastin protein levels following spinal cord injury. Additionally, we have collected the injured spinal cord lysates in mice treated with FC-A for western blot analysis. The results revealed that the expression trend of 14-3-3 protein is largely consistent with spastin after spinal cord injury. Furthermore, the treatment with FC-A was found to enhance the expression of spastin after spinal cord injury (Fig. 5C&D)."

      Panel 5G reads "nerve regeneration across the lesion site", but it actually measured NF levels, according to the legend.

      Thanks to the reviewers for the critical review. We have revised the chart accordingly.

      361 "BMS" should be explained in the results section for a better understanding of the results by non-experts.

      Thank you to the reviewers for their suggestions. We have explained this in the results section accordingly.

      Reviewer #2 (Recommendations For The Authors):

      1. The results of the mass spec and co-IP in Figure 1 are unclear.

      a) Are all of the peptides in Fig. 1A from 14-3-3 and were there only 3 14-3-3 peptides that were identified?

      The mass spectrum results did identify only three 14-3-3 peptides, and these three peptides were highly conserved across all isoforms.

      b) The blot in panel B needs to show the input band for spastin and 14-3-3 from the same gel and not spliced so that the level of enrichment can be evaluated in the co-IP.

      Thanks to the reviewer's comments, we have presented the whole gel (Fig.1B)

      c) Further, does an IP for 14-3-3 co-precipitate spastin?

      Thank you for your concern. We appreciate your feedback. Our 14-3-3 antibody is capable of Western blot experiments and recognizes all subtypes (Pan 14-3-3, Cell Signaling Technology, Cat #8312). Unfortunately, it is not suitable for immunoprecipitation (IP) experiments. Therefore, we have employed additional approaches, namely immunoprecipitation and pull-down assays, to further investigate the interaction between 14-3-3 and spastin.

      1. It is difficult to say anything about 14-3-3 - spastin co-localization in hippocampal neurons (1c) since 14-3-3 labels the entire hippocampal neuron so any protein will co-localize.

      We appreciate the comments. The co-localization experiments have provided evidence of the relative expression of both 14-3-3 and spastin in neurons, suggesting their potential interaction within neuronal cells. We have made the necessary revisions to accurately describe the results of the co-localization experiments in the manuscript.

      To further investigate the interaction between 14-3-3 and spastin within neurons, we have conducted additional co-immunoprecipitation (Co-IP) experiments using cortical neuron lysates (Fig.1C).

      1. The molecular weight of 14-3-3 is 25-28 kDa but the band in panel 1B and in subsequent figures it is below 15 kDa. Fig. 1F - the spastin band also seems to be low compared to predicted molecular weight and other W. Blot reports in the literature so some indication of how the antibody was validated would be important.

      Apologies for the mistakes. We have carefully re-evaluated the western blot images (See Author response image 1). We have confirmed that the molecular weight of the 14-3-3 protein is approximately 33 kDa. In the case of spastin, its molecular weight is around 55-70 kDa. Additionally, the GFP-spastin fusion protein has an estimated molecular weight of approximately 90 kDa. We have conducted a thorough verification and made appropriate adjustments to the molecular weight labels in all western blot images.

      Author response image 1.

      1. Fig 1G is a co-immunoprecipitation and it is not clear what the authors mean by "direct complexes" as claimed in line 150 of the results since this does not show direct binding between 14-3-3 and spastin. None of the assays in Fig. 1 assess "direct" binding between the two proteins and the authors should be clear in their interpretation.

      We agree with the reviewer's comments and have removed the word "direct" from the text.

      1. Fig. 1D - there is no validation that staurosporine (protein kinase inhibitor, not protein kinase as per typo in Line 167) affects the phosphorylation levels of spastin.

      Thank you for your valuable comments. In our group, we have conducted another study that has confirmed the involvement of CAMKII in mediating spastin phosphorylation. Furthermore, we have found that the addition of staurosporine significantly reduces the phosphorylation levels of spastin (unpublished results). In response to the reviewer's comment, we are pleased to provide western blot experiments demonstrating the effect of staurosporine on reducing spastin phosphorylation. The phosphorylation levels of spastin were assessed using a Pan Phospho antibody (Fig.2D).

      1. Fig. 2F - it would be important to test if spastin S233D interacts more robustly with 14-3-3 and if this is insensitive to staurosporine.

      Thank you for your comments. The suggestion provided by the reviewer is highly significant for supporting our conclusion that "phosphorylation of spastin is a prerequisite for its interaction with 14-3-3." Therefore, we have conducted additional immunoprecipitation experiments to further supplement our findings (Fig.2H). The experimental results demonstrate that the binding affinity between spastin S233D and 14-3-3 is stronger compared to spastin WT.

      1. Line 179 "Next, we transfected Ser233 mutation of spastin (spastin S233A or spastin S233D) with flag tagged 14-3-3 and generated Pearson's correlation coefficients. Results revealed that spastin 181 S233D was markedly colocalized with 14-3-3, with minimal colocalization with spastin S233A (Figure 2A-B)." Assuming the authors are referring to supplemental Figure 2, the 14-3-3 covers the entire cell thus I think measures of co-localization are uninterpretable.

      We agree with the reviewer's comment. We realize that 14-3-3θ exhibits a ubiquitous cellular distribution, which renders the measurement of its co-localization coefficients inconclusive. Therefore, we have decided to remove Supplementary Figure 2 from the manuscript.

      1. Line 189 "Consistent with earlier results, spastin promoted neurite outgrowth, as evidenced by both the length and total branches of neurite." - It is unclear what earlier results the authors are referring to. The authors should clarify how they determined the "moderate" expression level.

      We thank the review’s suggestions. The "earlier results" mentioned here refers to previously published articles, we now have added relevant references. Existing literature indicates that an appropriate dosage of spastin is necessary for neuronal growth and regeneration. However, both excessive and insufficient amounts of spastin are detrimental to axonal growth. Excessive spastin disrupts the overall microtubule network within cells. We controlled plasmid transfection dosage and transfection durations to achieve moderate expression. We have provided an explanation of these details in the revised version.

      1. The effects of WT spastin and spastin S233A were similar in spite of the fact that S233A does not bind to 14-3-3, which is inconsistent with the author's model that spastin-14-3-3 binding promotes growth. Line 191 - the authors mention that spastin S233D was toxic but I do not see any cell death measurements. I assume the bottom right panel in Fig. 2G labelled as spastin S233A is mislabeled and should be S233D.

      In response to comment 8, the transfection of both wild-type (WT) spastin and S233A mutant failed to precisely control the expression levels around the physiological concentration. Consequently, we observed an overexpression of spastin in both cases, which obscured the critical role of S233 phosphorylation in neurite outgrowth. We have addressed this issue in the revised version of the manuscript.

      1. Fig. 3. Does spastin(S233D) bind constitutively to 14-3-3? Why is spastin S233A not less stable than WT spastin based on the author's model?

      We propose that 14-3-3 is more likely to interact with spastin S233D in a non-constitutive manner. The instability of the S233A protein is attributed to the disruption of its ubiquitination degradation process due to the absence of 14-3-3 binding.

      1. The ubiquitin blot in Fig. 3G is not convincing and not quantified.

      We acknowledge the mislabeling in our figures. In the control group, Flag-Ubiquitin was also overexpressed, and we transfected GFP as a control instead of GFP-spastin. To further enhance the reliability, we conducted additional ubiquitination experiments (Fig.3N), which revealed a significant increase in spastin (S233A) ubiquitination levels compared to the WT group, consistent with previous research findings (Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation, doi:10.26508/lsa.202000799). Additionally, we observed that the addition of R18 could partially enhance spastin ubiquitination levels, as quantitatively illustrated in the figure (Fig.3O). This result further underscores the inhibitory role of 14-3-3 in the ubiquitination degradation pathway of spastin.

      1. I do not understand how the glutamate injury fits with the narrative (Fig. 4C).

      Excessive glutamate exposure can induce severe intracellular oxidative stress reactions, leading to the disruption of physiological processes such as mitochondrial energy production. This, in turn, results in the swelling and lysis of neuronal processes, a phenomenon known as neuronal necrosis. During this state, neurite maintenance is obstructed, and neurites exhibit swelling and breakage (Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995 Oct;15(4):961-73). We have provided a more comprehensive explanation of this phenomenon in the revised version of our manuscript.

      1. Some commentary about the selectivity of spastazoline to inhibit spastin should be included - it would be helpful if the authors could explain that this is a spastin inhibitor in the manuscript. FC-A still seems to promote growth in the presence of spastazoline suggesting that the FC-A effects are not dependent on spastin (Fig. 4E). The statistical analysis section of the materials and methods indicates that multiple groups were analyzed by one-way ANOVA. This seems unusual since the controls for cellular transfection are different than for small molecules (FC-A) and for peptides such as R18. As such, there is no vehicle control for the FC-A condition and it is difficult to assess the FC-A vs Spastazoline vs FA-A + Spastoazoline. The authors should clarify (Fig. 4E-J)

      Thank you for the reviewer’s suggestions. In the revised version, we have provided a more detailed explanation of the specific inhibition of spastin's severing function by spastazoline.

      We observed that FC-A, in combination with spastazoline, still exhibited a certain degree of promotion in neurite growth compared to the injury group under the glutamate circumstances. Evidently, spastin is not the exclusive substrate for 14-3-3, and FC-A might delay cellular oxidative stress reactions by facilitating the interaction of 14-3-3 with other substrates, such as the FOXO transcription factors as mentioned in the introduction. Nevertheless, our results still demonstrate that the addition of spastazoline significantly diminishes the promoting effect of FC-A on neurite growth, indicating that FC-A affects neuronal growth by impacting spastin.

      Furthermore, in the drug-treated groups, we overexpressed GFP to trace the morphology of neurons. Culture media were exchanged following transfection, and during media exchange, drugs were added. And an equivalent amount of DMSO or ethanol were added as controls to rule out the influence of solvents on neurons.

      1. There is a good possibility that spastin is required for all axon regeneration and that there is no selectivity for the FC-A pathway and this is a major issue with the interpretation of the manuscript (Fig 4K-L).

      We acknowledge this point. Clearly, spastin is not the exclusive substrate for 14-3-3, and our experimental evidence does not establish that 14-3-3 solely promotes neuronal regeneration through spastin. Nevertheless, we have identified the significance of 14-3-3 and spastin in the process of neural regeneration. Furthermore, we conducted complementary experiments to support the stability of spastin by FC-A treatment both in vitro and in vivo. We found an enhanced protein expression in cortical neurons after FC-A treatment (Fig.4M). Also, the results indicate a consistent elevation trend in the protein levels of spastin and 14-3-3 following spinal cord injury (Fig.5C&H). Moreover, in the FC-A group of mice, there was a significant increase in spastin protein levels (Fig.5D&I). These results also support that 14-3-3 promotes spinal cord injury repair by enhancing spastin protein stability.

      1. Fig. 5C- it is unclear where the photomicrographs were taken relative to the lesion.

      We obtained tissue sections from the lesion core and the above segments for histological analysis. Given the scarcity of neural compartment at the injury center, we select tissue slices as close as possible to lesion core to illustrate the relationship between 14-3-3 and the injured neurons. We have provided an explanation of this in the revised version of the manuscript.

      1. The authors need to provide some evidence that the FC-A and spastazoline compounds are accessing the CNS following IP injection.

      We thank the review’s suggestion. Although direct visualization evidence of FC-A and spastazoline entering the CNS is challenging to obtain, several indicators suggest drug penetration into spinal cord tissue. Firstly, behavioral and electrophysiological experiments in vivo demonstrate that drug injections indeed affect the neural activity of mice. Secondly, following spinal cord injury, the blood-spinal cord barrier was disrupted at the injury site, combined with the fact that both FC-A (molecular weight: 680.82 Da) and spastazoline (molecular weight: 382.51 Da) are small molecule drugs, these increases the likelihood of these small molecules entering the injured spinal cord tissue. Furthermore, our microtubule staining results indicated that FC-A and spastazoline did influence the acetylation ratio of microtubules. These findings support the drug penetration into spinal cord tissue.

      1. Some quantification of Fig. 5D would be important to support the contention that the lesion site is impacted by FC-A treatment.

      Thank you for the suggestion. We have included quantitative analysis for Figure 5D (Figure) as recommended.

      1. The NF and 5-HT staining in Fig. 5D and in Fig. 7A and B does not clearly define fibers and is not convincing.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, the FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      Minor Comments: 1. Line 80 -84. To my knowledge the only manuscripts examining the effects of spastin in axon regeneration models includes the analysis in drosophila (i.e. ref 15 and 16) and a study in sciatic nerve that reported an index of functional recovery but did not perform any histology to assess axon regeneration phenotypes. The literature should be more accurately reflected in the introduction.

      We appreciate the suggestions from the reviewer. In the revised version, we have provided further clarification on the novelty of spastin in the spinal cord injury repair process.

      1. Line 73: The meaning of the following statement needs to be clarified: "spastin has two major isoforms, namely M1 and M87, coded form different initial sites."

      We have provided additional elaboration for this statement in the revised version.

      1. Line 216: Results indicated that GFP-spastin could be ubiquitinated, while inhibiting the 217 binding of 14-3-3/spastin promoted spastin ubiquitination (Figure 5G)." - Should be Fig 3G

      Sorry about the mistake. We have made the corresponding changes in the revised version.

      1. Line 255: "Briefly, we established a neural injury model as previously described(31)" - the basics of the injury model need to be described in this manuscript.

      In the revised version, we have provided further elaboration on the glutamate-induced neuronal injury model.

      Reviewer #3 (Recommendations For The Authors):

      Figure 1: A- Both legend and text fail to provide detail on this specific panel.

      We have provided a more detailed and comprehensive description of the legend and results in this section.

      B- Is the contribution of non-neuronal cells for co-IPs relevant? Co-IP with isolated neuronal extracts (instead of spinal cord tissue) should be performed.

      We thank the review’s suggestion. To further elucidate their interaction within neurons, cortical neurons were cultured (Cultured in Neurobasal medium supplemented with 2%B27 and cytarabine was used to inhibit glial cell growth) and cells were lysed for co-IP experiments (Fig.1C), and the results demonstrated the interaction between 14-3-3 and spastin within neurons.

      C- Both spastin and 14-3-3 appear to label the entire neuron with similar intensities throughout the entire cell which is rather unusual. Conditions of immunofluorescence should be improved and z-projections should be provided to support co-localization.

      Thanks for the comment. Our dual-labeling experiments indicated that 14-3-3 exhibits a characteristic pattern of whole-cell distribution. Therefore, this result cannot confirm the interaction between 14-3-3 and spastin within neurons, but it does provide evidence regarding the intracellular distribution patterns of 14-3-3 and spastin. Consequently, we supplemented neuronal endogenous co-IP experiments to further demonstrate the direct interaction between 14-3-3 and spastin within neurons, and we have modified the wording in the revised version accordingly.

      D- xx and yy axis information is either lacking or incomplete.

      We have made the corrections to the figures.

      E- It would be useful to show the conservation between the different 14-3-3 isoforms.

      We appreciate the suggestions. We have included a conservation analysis of 14-3-3 to assist readers in better understanding these results (Fig.1F).

      Figure 2:

      D- The experiment using a general protein kinase inhibitor does not allow concluding that the specific phosphorylation of spastin is sufficient for binding to 14-3-3. An alternative phosphorylated protein might be involved in the process.

      We appreciate the reviewer's consideration. We believe this serves as a prerequisite condition to demonstrate that "14-3-3 binding to spastin requires spastin phosphorylation." In fact, another project in our group has confirmed that CAMK II can mediate spastin phosphorylation, and the addition of staurosporine significantly reduces spastin phosphorylation levels (unpublished results). Here, we provide the western blot experiment showing the decrease in spastin phosphorylation under staurosporine treatment, with phosphorylation levels detected using the Pan Phospho antibody (Fig.2D).

      H and I- Pseudo-replication. Only independent experiments should be plotted and not data on multiple cells obtained in the same experiment. Please indicate the number of independent experiments.

      We appreciate the reviewer's correction. We now have included the mean value of three independent experiments and we have made relevant revisions to the statistical charts.

      Figure 3:

      The rationale for the hypothesis that spastin S233D transfection might upregulate the expression of spastin relative to WT and spastin S233A is unclear.

      We appreciate the reviewer's consideration. We have supplemented the relevant results, as depicted in the Fig.3G, which demonstrates that 14-3-3 can enhance the protein levels of spastin, and phosphorylated spastin (S233D) exhibits a significantly increased protein level compared to wild-type spastin. These findings indicate that 14-3-3 not only inhibits the degradation of spastin but also increases its protein levels.

      I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 4: E-J: I- pseudo-replication. Please plot and do statistical analysis of independent experiments.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      Figure 5:

      B- Please show individual data points.

      Thank you for the reviewer's corrections. We have made the necessary revisions.

      D- Longitudinal images of spinal cords where spastazoline was used cannot correspond to contusion as there is a very sharp discontinuity between the rostral and caudal spinal cord tissue. A full transection seems to have occurred. Alternatively, technical problems with tissue collection/preservation might have occurred.

      Thank you for the reviewer's consideration. The sharp discontinuity observed in the spastazoline group is not due to modeling issues but rather a result of the drug's effects on the injury site. This is primarily because spastin plays a crucial role not only in neuronal development but also in mitosis. Since the highly active proliferation of stromal cells at the injury site, . spastazoline may inhibit the proliferation of injury site-related stormal cells, thereby impeding the wound healing process following spinal cord injury, resulting in the observed discontinuous injury gap. We have made the corresponding revision accordingly.

      E- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen. This is also the case for neurofilament staining.

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69).

      Our results showed that in the spinal cord injury group, there was strongly decreased NF-positive stainning (with a slight increase in 5-HT). In contrast, our FC-A treatment group exhibited a significant higher abundance of NF-positive signals (or an increased 5-HT signal) in the lesion site, which also suggests the reparative effect of FC-A on nerves. We also intend to refine our immunohistochemical methods in future experiments.

      F- Images do not allow analysis. Higher magnifications are needed.

      Thank you for the reviewer's consideration. We have now included higher-magnification images (Fig.5M) to address this concern.

      Figure 7:

      Same issues as in Figure 5.

      A- Images do not have the quality to allow analysis. 5HT staining should not be considered as a clear axonal labeling is not seen.

      B- Images do not have the quality to allow analysis. Neurofilament staining should not be considered as clear axonal labeling is not seen. MBP staining does not have a pattern consistent with myelin staining

      We appreciate the concerns. While we did not present whole nerve fibers, we therefore employed NF and 5-HT immunoreactive fluorescence intensity as an indicator to assess the regeneration of nerve fibers as previously described, but not axons per square millimeter (Baltan S, et, al. J Neurosci. 2011 Mar 16;31(11):3990-9; Iwai M, et, al. Stroke. 2010 May;41(5):1032-7; Wang Y, et, al. Elife. 2018 Sep 12;7:e39016; Altmann C, et, al. Mol Neurodegeneration. 2016 Oct 22;11(1):69). In this study, sagittal slices were used. MBP covers the axonal surface, indicating its co-localization with the axons. However, as we did not present intact nerve fibers, so we were unable to show the typical myelin staining of MBP.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper reports valuable results regarding the potential role and time course of the prefrontal cortex in conscious perception. Although the sample size is small, the results are clear and convincing, and strengths include the use of several complementary analysis methods. The behavioral test includes subject report so the results do not allow for distinguishing between theories of consciousness; nevertheless, results do advance our understanding of the contribution of prefrontal cortex to conscious perception. We appreciate very much for editor and reviewers encouraged review opinion. Particularly, we thank three reviewers very much for their professional and constructive comments that help us to improve the manuscript substantially.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a clear and rigorous study of intracranial EEG signals in the prefrontal cortex during a visual awareness task. The results are convincing and worthwhile, and strengths include the use of several complementary analysis methods and clear results. The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field. Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not), and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this). Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result.

      We appreciate very much for the reviewer’s encouraged opinion. We are going to address reviewer’s specific questions and comments point-by-point in following.

      ‘The only methodological weakness is the relatively small sample size of only 6 participants compared to other studies in the field.’

      We agree that the sample size is relatively small in the present study. To compensate such shortcoming, we rigorously verified each result at both individual and population levels, resembling the data analysis method in non-human primate study.

      Interpretation weaknesses that can easily be addressed are claims that their task removes the confound of report (it does not),

      Thank you very much for your comment. We agree that our task does not remove the confound of report entirely. However, we believe that our task minimizes the motor confounds by dissociating the emergence of awareness from motor in time and balanced direction of motor between aware and unaware conditions. We have modified the text according to reviewer’s comment in the revised manuscript as following: “This task removes the confound of motor-related activity”.

      ..and claims of primacy in showing early prefrontal cortical involvement in visual perception using intracranial EEG (several studies already have shown this).

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study(Gaillard et al., 2009) reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-536);

      Also the shorter reaction times for perceived vs not perceived stimuli (confident vs not confident responses) has been described many times previously and is not a new result. Thank you very much for your comment. We agree that the reaction time is strongly modulated by the confident level, which has been described previously (Broggin, Savazzi, & Marzi, 2012; Marzi, Mancini, Metitieri, & Savazzi, 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. It is well known that the more salient stimuli will induce the faster process of visual information and speed up the process of visuomotor transformation, eventually shorten the reaction time (Corbetta & Shulman, 2002; Posner & Petersen, 1990). Therefore, the dependence of visual processing on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near perceptual threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.

      We have added the discussion in the MS (lines 497-507).

      Reviewer #1 (Recommendations For The Authors):

      Specific comments follow:

      Abstract: "we designed a visual awareness task that can minimize report-related confounding" and in the Introduction lines 112-115: "Such a paradigm can effectively dissociate awareness-related activity from report-related activity in terms of time... and report behavior"; Discussion lines 481-483 "even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" and other similar statements in the manuscript should be removed. The task involves report using eye movements with every single stimulus. The fact that there is report for both perceived and not perceived stimuli, that the direction of report is not determined until the time of report, and that there is delay between stimulus and report, does not remove the report-related post-perceptual processing that will inevitably occur in a task where overt report is required for every single trial. For example, brain activity related to planning to report perception will only occur after perceived trials, regardless of the direction of eye movement later decided upon. This preparation to respond is different for perceived and not perceived stimuli, but is not part of the perception itself. In this way the current task is not at all unique and does not substantially differ from many other report-based tasks used previously.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al. TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only the appearance of a rule cue (change color of fixation point at the end of delay period) informed subjects about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity. Alternatively, as being mentioned by reviewer, the post-perceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli. Therefore, up to date, the understanding of the post-perceptual processing remains controversial. According to reviewer’s comment, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, have changed “report-related” to “motorrelated” in the text of manuscript.

      Figures 3, 4 changes in posterior middle frontal gyri suggest early frontal eye field involvement in perception. This should be interpreted in the context of many previous studies showing FEF involvement in signal detection. The authors claim that "earlier visual awareness related activities in the prefrontal cortex were not found in previous iEEG studies, especially in the HG band" on lines 501-502 of the Discussion. This statement is not true and should be removed. The following statement in the Discussion on lines 563-564 should be removed for the same reasons: "our study detected 'ignition' in the human PFC for the first time." Authors should review and cite the following studies as precedent among others:

      Blanke O, Morand S, Thut G, Michel CM, Spinelli L, Landis T, Seeck M (1999) Visual activity in the human frontal eye field. Neuroreport 10 (5):925-930. doi:10.1097/00001756-19990406000006

      Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res 142 (1):139-150. doi:10.1007/s00221-001-0906-7

      Gaillard R, Dehaene S, Adam C, Clemenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) Converging intracranial markers of conscious access. Plos Biology 7 (3):e61

      Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207-1210

      Herman WX, Smith RE, Kronemer SI, Watsky RE, Chen WC, Gober LM, Touloumes GJ, Khosla M, Raja A, Horien CL, Morse EC, Botta KL, Hirsch LJ, Alkawadri R, Gerrard JL, Spencer DD, Blumenfeld H (2019) A Switch and Wave of Neuronal Activity in the Cerebral Cortex During the First Second of Conscious Perception. Cereb Cortex 29 (2):461-474.

      Khalaf A, Kronemer SI, Christison-Lagay K, Kwon H, Li J, Wu K, Blumenfeld H (2022) Early neural activity changes associated with stimulus detection during visual conscious perception. Cereb Cortex. doi:10.1093/cercor/bhac140

      Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H (2021) Early cortical signals in visual stimulus detection. Neuroimage 244:118608.

      We agree that several iEEG studies, including ERP and HFA, have shown the early involvement of prefrontal cortical in visual perception. However, in these studies, the differential activity between conscious and unconscious conditions was not investigated, thus, the activity in prefrontal cortex might be correlated with unconscious processing, rather than conscious processing. In present study, we compared the neural activity in PFC between conscious and unconscious trials, and found the correlation between PFC activity and conscious perception. Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early awareness related activity in our study. Also, due to the limited number of electrodes in the previous study (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), it was restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered multiple areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV, which sheds new light on understanding of the role of PFC in conscious perception.

      We have added this discussion in the MS (lines 522-533);

      Minor weakness that should be mentioned in the Discussion: The intervals for the FP (fixation period) and Delay period were both fixed at 600 ms instead of randomly jittered, so that subjects likely had anticipatory activity predictably occurring with each grating and cue stimulus.

      Thank you very much for your comment. We agree that subjects might have anticipatory activity during experiment. Actually, the goal for us to design the task in this way is to try to balance the effect of attention and anticipation between aware and unaware conditions. We have added this discussion in the MS (lines 467-469);

      The faster reaction times for perceived/confident responses vs not perceived/unconfident responses has been reported many times previously in the literature and should be acknowledged rather than being claimed as a novel finding. Authors should modify p. 163 lines 160-162, first sentence of the Discussion lines 445-446 "reaction time.. shorter" claiming this was a novel finding; same for lines 464-467. Please see the following among others:

      Broggin E, Savazzi S, Marzi CA (2012) Similar effects of visual perception and imagery on simple reaction time. Q J Exp Psychol (Hove) 65 (1):151-164. doi:10.1080/17470218.2011.594896

      Chelazzi L, Marzi CA, Panozzo G, Pasqualini N, Tassinari G, Tomazzoli L (1988) Hemiretinal differences in speed of light detection in esotropic amblyopes. Vision Res 28 (1):95-104 Marzi CA, Mancini F, Metitieri T, Savazzi S (2006) Retinal eccentricity effects on reaction time to imagined stimuli. Neuropsychologia 44 (8):1489-1495. doi:10.1016/j.neuropsychologia.2005.11.012

      Posner MI (1994) Attention: the mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America 91 (16):7398-7403

      Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57 (4):421-457

      Thanks. We have cited some of these papers in the revised manuscript due to the restricted number of citations.

      Methods lines 658-659: "results under LU and HA conditions were classified as the control group and were only used to verify and check the results during calculation." However the authors show these results in the figures and they are interesting. HA stimuli show earlier responses than NA stimuli. This is a valuable result which should be discussed and interpreted in light of the other findings.

      We thank very much for reviewer’s comment. We have made discussion accordingly in the revised MS (lines 535-536).

      General comment on figures: Many of the figure elements are tiny and the text labels and details can't be seen at all, especially single trial color plots, and the brain insets showing recording sites.

      We have modified the figures accordingly.

      Other minor comments: Typo: Figure 2 legend, line 169 "The contrast level resulted in an awareness percentage greater than 25%..." is missing a word and should say instead something like "The contrast level that resulted in an awareness percentage greater than 25%..."

      Thanks. We have corrected the typo accordingly.

      Figure 2 Table description in text line 190 says "proportions of recording sites" but the Table only shows number of recording sites and number of subjects, not "proportions." This should be corrected in the text.

      Thanks. We have corrected the error.

      Figure 3, and other figures, should always label the left and right hemispheres to avoid ambiguity.

      Thanks. We have made correction accordingly. In caption of Figure 2D (line 189), we modified the sentence as ‘In all brain images, right side of the image represents the right side of the brain’.

      Methods line 666. The saccadic latency calculations paragraph should have a separate heading before it, to separate it from the Behavioral data analysis section.

      Thanks. It has been corrected in line 725.

      Reviewer #2 (Public Review):

      The authors attempt to address a long-standing controversy in the study of the neural correlates of visual awareness, namely whether neurons in prefrontal cortex are necessarily involved in conscious perception. Several leading theories of consciousness propose a necessary role for (at least some sub-regions of) PFC in basic perceptual awareness (e.g., global neuronal workspace theory, higher order theories), while several other leading theories posit that much of the previously reported PFC contributions to perceptual awareness may have been confounded by task-based cognition that co-varied between the aware and unaware reports (e.g., recurrent processing theory, integrated information theory). By employing intracranial EEG in human patients and a threshold detection task on low-contrast visual stimuli, the authors assessed the timing and location of neural populations in PFC that are differentially activated by stimuli that are consciously perceived vs. not perceived. Overall, the reported results support the view that certain regions of PFC do contribute to visual awareness, but at time-points earlier than traditionally predicted by GNWT and HOTs.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Major strengths of this paper include the straightforward visual threshold detection task including the careful calibration of the stimuli and the separate set of healthy control subjects used for validation of the behavioral and eye tracking results, the high quality of the neural data in six epilepsy patients, the clear patterns of differential high gamma activity and temporal generalization of decoding for seen versus unseen stimuli, and the authors' interpretation of these results within the larger research literature on this topic. This study appears to have been carefully conducted, the data were analyzed appropriately, and the overall conclusions seem warranted given the main patterns of results.

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      Weaknesses include the saccadic reaction time results and the potential flaws in the design of the reporting task. This is not a "no report" paradigm, rather, it's a paradigm aimed at balancing the post-perceptual cognitive and motor requirements between the seen and unseen trials. On each trial, subjects/patients either perceived the stimulus or not, and had to briefly maintain this "yes/no" judgment until a fixation cross changed color, and the color change indicated how to respond (saccade to the left or right). Differences in saccadic RTs (measured from the time of the fixation color change to moving the eyes to the left or right response square) were evident between the seen and unseen trials (faster for seen). If the authors' design achieved what they claim on page 3, "the report behaviors were matched between the two awareness states ", then shouldn't we expect no differences in saccadic RTs between the aware and unaware conditions? The fact that there were such differences may indicate differences in post-perceptual cognition during the time between the stimulus and the response cue. Alternatively, the RT difference could reflect task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). This saccadic RT result should be better explained in the context of the goals of this particular reporting-task.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness. To do so, it is crucial to determine the subjective awareness state as correct as possible. Considering the disadvantage of non-report paradigms in determining the subjective awareness state (Tsuchiya et al, TiCS, 2015; Mashour et al, Neuron, 2020), we employed a balanced report paradigm. It has been argued (Merten & Nieder, PNAS, 2011) that, in the balanced report paradigms, subjects could not prepare any motor response during the delay period because only after the appearance of a rule cue (change color of fixation point at the end of delay period) subjects were informed about the appropriate motor action. In this case, the post-perceptual processing during delay period might reflect the non-motor cognitive activity, such as working memory (Mashour et al. Neuron, 2020). Alternatively, as being mentioned by reviewer, the postperceptual processing might relate to planning to report perception, which is different for perceived and not perceived stimuli (Aru et al. Neurosci Biobehav Rev, 2012 ). Therefore, up to date, the understanding of the post-perceptual processing remains controversial. Considering reviewer’s comment together with other opinions, we have modified the description of our task as following: “we designed a visual awareness task that can minimize report-related motor confounding”. Also, we have changed “report-related” to “motor-related” in the rest of manuscript.

      Regarding the question whether the saccadic RT in our balanced response paradigm should be expected to be similar between aware and unaware condition, we think that the RT should be similar in case if the delay period is long enough for the decision of “no” to be completed. In fact, in a previous study (Merten & Nieder, PNAS, 2011), the neuronal encoding of “no” decision didn’t appear until 2s after the stimulus cue onset. However, in our task, the delay period lasted only 600 ms that was long enough to form the “yes” decision, but was not enough to form the “no” decision. It might be the reason that our data show shorter RT in aware condition than in unaware condition.

      We totally agree reviewer’s comment about the alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory). We have made additional discussion about these questions in the revised manuscript (lines 492496).

      Nevertheless, the current results do help advance our understanding of the contribution of PFC to visual awareness. These results, when situated within the larger context of the rapidly developing literature on this topic (using "no report" paradigms), e.g., the recent studies by Vishne et al. (2023) Cell Reports and the Cogitate consortium (2023) bioRxiv, provide converging evidence that some sub-regions of PFC contribute to visual awareness, but at latencies earlier than originally predicted by proponents of, especially, global neuronal workspace theory.

      We appreciate very much for the reviewer’s encouraged opinion.

      Reviewer #2 (Recommendations For The Authors):

      Abstract: "the spatiotemporal overlap between the awareness-related activity and the interregional connectivity in PFC suggested that conscious access and phenomenal awareness may be closely coupled." I strongly suggest revising this sentence. The current results cannot be used to make such a broad claim about p-consciousness vs. a-consciousness. This study used a balanced trial-by-trial report paradigm, which can only measure conscious access.

      We thank reviewer for this comment. We have withdrawn this sentence from the revised manuscript.

      Task design: A very similar task was used previously by Schröder et al. (2021) J Neurosci. See specifically, their Figure 1, and Figure 4B-C. Using almost the exact same "matching task", the authors of this previous study show that they get a P3b for both the perceived and not-perceived conditions, confirming that post-perceptual cognition/report confounds were not eliminated, but instead were present in (and balanced between) both the perceived/not-perceived trials due to the delayed matching aspect of the design. This previous paper should be cited and the P3b result should be considered when assessing whether cognition/report confounds were addressed in the current study.

      Thank you very much for your reminding about the study of Schröder et al. We are sorry for not citing this closely related study in our previous manuscript. Schröder et al. found while P3b showed significant difference between perceived and not-perceived trials in direct report task, the P3b was presented in both perceived/not-perceived trials and not significantly different in the matched task. Based on these findings, Schröder et al. argued that P3b represented the task specific post-perceptual cognition/report rather than the emergence of awareness per se. Considering the similarity of tasks between Schröder et al. and ours, we agree that our task is not able to totally eliminate the confound of post-perceptual cognition/report related activity with awareness related activity. Nevertheless, our task is able to minimize the confound of motorrelated activity with the emergence of awareness by separating them in time and balancing the direction of responsive movements. Therefore, we modified the term of “report-related” to “motor-related” in the text of revised manuscript.

      On page 2, lines 71-75, the authors' review of the Frassle et al. (2014) experiment should be revised for accuracy. In this study, all PFC activity did not disappear as the authors claim. Also, the main contrast in the Frassle et al. study was rivalry vs. replay. However, in both of these conditions, visual awareness was changing with the main difference being whether there was sensory conflict between the two eyes or not. Such a contrast would presumably subtract out the common activity patterns related to visual awareness changes, while isolating rivalry (and the resulting neural competition) vs. non-rivalry (and the lack of such competition) which is not broadly relevant for the goal of measuring neural correlates of visual awareness which are present in both sides of the contrast (rivalry and replay).

      Thank you very much for your suggestion. We agree that and revised in the MS (lines 71-76).

      ‘For instance, a functional magnetic resonance imaging (fMRI) study employing human binocular rivalry paradigms found that when subjects need to manually report the changing of their awareness between conflict visual stimuli, the frontal, parietal, and occipital lobes all exhibited awareness-related activity. However, when report was not required, awareness-related activation was largely diminished in the frontal lobe but remained in the occipital and parietal lobes’

      On page 2, lines 76-78, the authors write, "no-report paradigm may overestimate unconscious processing because it cannot directly measure the awareness state". This should be reworded for clarity, as report paradigms also do not "directly measure the awareness state". All measures of awareness are indirect, either via subjects verbal or manual reports, or via behaviors or other physiological measures like OKN, pupillometry, etc. It's also not clear as written why no-report paradigms might overestimate unconscious processing.

      Thank you very much for your suggestion. We agreed and modified the description. In lines 76-80:

      ‘Nevertheless, the no-report paradigm may overestimate the neural correlates of awareness by including unconscious processing, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya, Wilke, Frassle, & Lamme, 2015). In the absence of subjective reports, it remains controversial regarding whether the presented stimuli are truly seen or not.’

      However, the no-report paradigm may overestimate the neural correlates of awareness, because it infers the awareness state through other relevant physiological indicators, such as optokinetic nystagmus and pupil size(Tsuchiya et al., 2015) , in the absence of subjective reports and it remains controversial that whether the stimuli presented in such paradigm are truly seen as opposed to being merely potentially visible but unattended.

      On page 5, line 155, there is a typo. This should be Figure 2C, not 2B.

      Thanks. We have modified the description.

      On page 5, lines 160-162, the authors state, "The results showed that the saccadic reaction time in the aware trials was systematically shorter than that in the unaware trials. Such results demonstrate that visual awareness significantly affects the speed of information processing in the brain." I don't understand this. If subjects can never make a saccade until the fixation cross changes color, both for Y and N decisions, why would a difference in saccadic reaction times indicate anything about visual awareness affecting the speed of information processing in the brain? Doesn't this just show that the Red/Green x Left/Right response contingencies were easier to remember and execute for the Yes-I-did-see-it decisions compared to the No-I-didn't-see-it decisions?

      We agree and have made additional discussion about these questions in the revised manuscript (lines 492-496).

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study is that the difference in task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).’

      In Figure 3B (and several other figures) due to the chosen view and particular brain visualization used, many readers will not know whether the front of brain is up and back of brain down or vise versa (there are no obvious landmarks like the cerebellum, temporal sulcus, etc.). I suggest specifying this in the caption or better yet on the figure itself.

      Thanks. We have added these descriptions in the caption of Figure 2D.

      Line 189 ‘In all brain images, right and up sides of each image represent the right and up sides of the brain’.

      In Figure 3B, the color scale may confuse some readers. When I first inspected this figure, I immediately thought the red meant positive voltage or activation, while the blue meant negative voltage or deactivation. Only later, I realized that any color here is meaningful. Not sure if an adjustment of the color scale might help, or perhaps not normalizing (and not taking absolute values of the voltage diffs, but maintaining the +/- diffs)?

      Thanks for reviewer’s comment. We are sorry for not clearly describing the reason why we normalized the activity in absolute value and chose the color scale from 0 to 20. The major reason is that it is not clearly understood so far regarding the biological characteristics of LFP polarity (Einevoll et al, Nat Rev Neurosci, 2013). To simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task represents awareness related activity, regardless its actual value being positive or negative. Therefore, we first calculated the absolute value of activity difference between aware and unaware trials in individual recording site, then used Shepard's method (see Method for detailed information) to calculate the activity in each vertex and projected on the surface of brain template as shown in Fig. 3B.

      We have added the description in the MS (lines 794-800).

      We have tried to adjust the color scale from -20 to 20 according to reviewer’s suggestion. However, the topographic heatmap showed less distinguishable between brain regions with different strength of awareness related activity. Thus, we would like to keep the way as we used to analyze and present these results.

      Figure 3B: Why choose seemingly arbitrary time points in this figure? What's the significance of 247 and 314 and 381ms (why not show 200, 250, 300, etc.)? Also, are these single time-points or averages within a broader time window around this time-point, e.g., 225-275ms for the 250ms plot?

      Thank reviewer for this helpful comment. We are sorry for not clearly describing why we chose the 8 time points to demonstrate the spatiotemporal characteristics of awareness related activity in Fig. 3B. To identify the awareness related activity, we analyzed the activity difference between aware and unaware trials during delay period (180-650 ms after visual stimulus onset). The whole dynamic process has been presented in SI with a video (video S1). Here, we just sampled the activity at 8 time points (180 ms, 247 ms, 314 ms, etc.) that equally divided the 430 ms delay period.

      We have added the description in the MS (lines 213-215).

      Figure 3D: It's not clear how this figure panel is related to the data shown in Fig3A. In Fig3A, the positive amplitude diffs all end at around 400ms, but in Fig3D, these diffs extend out to 600+ms. I suggest adding clarity about the conversion being used here.

      Thanks for reviewer’s comment. We are sorry for not clearly describing the way to analyze the population activity (Fig. 3D) in the previous version of manuscript. Since it is not clearly understood so far regarding the biological characteristics of LFP polarity, to simplify such complex issue, we consider the change in magnitude of LFP during delay period in our task is awareness related activity, regardless its actual value being positive or negative. Therefore, while analyzing the awareness related population activity, we first calculate the absolute value of activity difference between aware and unaware trials in individual recording site, then pool the data of 43 recording sites together and calculate the mean and standard error of mean (SEM)(Fig. 3D). As you can see in Fig. 3A, the activity difference between aware (red) and unaware (blue) trials lasts until/after the end of delay period. Thus, the awareness related population activity in Fig 3D extends out to 600 ms.

      We have added the description in the MS (lines 769-777).

      Figure 6D could be improved by making the time labels much bigger, perhaps putting them on the time axis on the bottom rather than in tiny text above each brain.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 18, line 480: "our results show that the prefrontal cortex still displays visual awareness-related activities even after eliminating the influence of the confounding variables related to subjective reports such as motion preparation" This is too strong of a statement. It's not at all clear whether confounding variables related to subjective reports (especially the cognition needed to hold in mind the Y/N decision about seeing the stimulus prior to the response cue) were eliminated with the design used here. In other places of the manuscript, the authors use "minimized" which is more accurate.

      Thanks for reviewer’s comment. We have modified it accordingly.

      Page 19, section starting on line 508: The authors should consider citing the study by Vishne et al. (2023), which was just accepted for publication recently, but has been posted on bioRxiv for almost a year now: https://www.biorxiv.org/content/10.1101/2022.08.02.502469v1 . And on page 20, line 563, the authors claim that to the best of their knowledge, they were the first to detect "ignition" in PFC in human subjects. Consider revising this statement, now that you know about the Vishne et al. paper.

      We agree.

      Thanks for your reminding about these papers. We have cited this study and made discussion in the revised manuscript (line 522-533). We agree that several iEEG studies have shown the early involvement of PFC in visual perception (Vishne et al. 2023; Khalaf et al. 2023; Kwon et al. 2021). However, in these studies, authors did not compare the neural activity between conscious and unconscious conditions, leaving the possibility that the ERP and HFA were correlated with the unconscious information processing rather than awareness-specific processing. In the present study, we compared the neural activity in PFC between conscious and unconscious trials, and found that the activity of PFC specifically correlated with conscious perception. As we mentioned in the previous version of manuscript, there is one iEEG study (Gaillard et al. 2009) that reported awareness-specific activity in PFC. However, the awareness related activity started more than 300 ms after the onset of visual stimuli, which was about 100 ms longer than the early awareness related activity in our study. Nevertheless, according to reviewer’s comment, we modified our argument as following in lines 621-623:

      ‘However, as discussed above, in contrast with previous studies, our study detected earlier awareness-specific ‘ignition’ in the human PFC, while minimizing the motor-related confounding.’

      Experimental task section of Methods: Were any strategies for learning the response cue matching task suggested to patients/subjects, and/or did any patients/subjects report which strategy they ended up using? For example, if I were a subject in this experiment, I would remember and mentally rehearse the rules: "YES+GREEN = RIGHT" and "YES+RED = LEFT". For trials in which I didn't see anything, I wouldn't need to hold 2 more rules in mind, as they can be inferred from the inverse of the YES rules (and it's much harder to hold 4 things in mind than 2). This extra inference needed to get to the NO+GREEN = LEFT and NO+RED = RIGHT rules would likely cause me to respond slightly slower to the NO trials compared to the YES trials, leading to saccadic RT effects in the same direction the authors found. More information about the task training and strategies used by patients/subjects would be helpful.

      We agree and discussed this in lines 492-496.

      Reviewer #3 (Public Review):

      The authors report a study in which they use intracranial recordings to dissociate subjectively aware and subjectively unaware stimuli, focusing mainly on prefrontal cortex. Although this paper reports some interesting findings (the videos are very nice and informative!) the interpretation of the data is unfortunately problematic for several reasons. I will detail my main comments below. If the authors address these comments well, I believe the paper may provide an interesting contribution to further specifying the neural mechanisms important for conscious access (in line with Gaillard et al., Plos Biology 2009).

      Reply: We appreciate very much for the reviewer’s encouraged opinion.

      The main problem with the interpretation of the data is that the authors have NOT used a so called "no-report paradigm". The idea of no report paradigms is that subjects passively view a certain stimulus without the instruction to "do something with it", e.g., detect the stimulus, immediately or later in time. Because of the confusion of this term, specifically being related to the "act of reporting", some have argued we should use the term no-cognition paradigm instead (Block, TiCS, 2019, see also Pitts et al., Phil Trans B 2018). The crucial aspect is that, in these types of paradigms, the critical stimulus should be task-irrelevant and thus not be associated with any task (immediately or later). Because in this experiment subjects were instructed to detect the gratings when cued 600 ms later in time, the stimuli are task relevant, they have to be reported about later and therefore trigger all kinds of (known and potentially unknown) cognitive processes at the moment the stimuli are detected in real-time (so stimulus-locked). You could argue that the setup of this delayed response task excludes some very specific report related processes (e.g., the preparation of an eye-movement), which is good, however this is usually not considered the main issue. For example when comparing masked versus unmasked stimuli (Gaillard et al., 2009 Plos Biology), these conditions usually also both contain responses but these response related processes are "averaged out" in the specific contrasts (unmasked > masked). In this paper, RT differences between conditions (that are present in this dataset) are taken care of by using this delayed response in this paper, which is a nice feature for that and is not the case for the above example set-up.

      Given the task instructions, and this being merely a delayed-response task, it is to be expected that prefrontal cortex shows stronger activity for subjectively aware versus subjectively unaware stimuli. Unfortunately, given the nature of this task, the novelty of the findings is severely reduced. The authors cannot claim that prefrontal cortex is associated with "visual awareness", or what people have called phenomenal consciousness (this is the goal of using no-cognition paradigms). The only conclusion that can be drawn is that prefrontal cortex activity is associated with accessing sensory input: and hence conscious access. This less novel observation has been shown many times before and there is also little disagreement about this issue between different theories of consciousness (e.g., global workspace theory and local recurrency theories both agree on this).

      We totally agree that the no-report/no-cognition paradigms contain less cognition within the post-perceptual processing than the report paradigms. We designed the balanced response task in order to minimize the motor related component from post-perceptual processing, even though this task does not eliminate the entire cognition from post-perceptual processing. Regarding reviewer’s comment that our task is not able to assess the involvement of PFC in the emergence of awareness, we have different opinion. As we mentioned in the manuscript, the findings of early awareness related activity (~200 ms) in PFC, which resemble the VAN activity in EEG studies, indicate the association of PFC with the emergence of visual awareness (phenomenal consciousness).

      The best solution at this point seems to rewrite the paper entirely in light of this. My advice would be to state in the introduction that the authors investigate conscious access using iEEG and then not refer too much to no-cognition paradigm or maybe highlight some different strategies about using task-irrelevant stimuli (see Canales-Johnson et al., Plos Biology 2023; Hesse et al., eLife 2020; Hatamimajoumerd et al Curr Bio 2022; Alilovic et al., Plos Biology 2023; Pitts et al., Frontiers 2014; Dwarakanth et al., Neuron 2023 and more). Obviously, the authors should then also not claim that their results solve debates about theories regarding visual awareness (in the "no-cognition" sense, or phenomenal consciousness), for example in relation to the debate about the "front or the back of the brain", because the data do not inform that discussion. Basically, the authors can just discuss their results in detail (related to timing, frequency, synchronization etc) and relate the different signatures that they have observed to conscious access.

      The objective of present study is to assess whether PFC is involved in the emergence of visual awareness (i.e., phenomenal consciousness). Interestingly, we found the early awareness related activity (~200 ms after visual stimulus onset), including ERP, high gamma activity and phase synchronization, in PFC, which indicate the association of PFC with the emergence of visual awareness. Therefore, we would like to keep the basic context of manuscript and make revision according to reviewers’ comments.

      On the other hand, we totally agree reviewer’s argument that the report paradigm is more suitable to study the access consciousness. Indeed, we have found that the awareness related activity in PFC could be separated into two subgroups, i.e., early activity with shorter latency (~200 ms after stimulus onset) and late activity with longer latency (> 350 ms after stimulus onset). In addition, the early activity was declined to the baseline level within ~200 ms during delay period, whereas the late activity lasted throughout the delay period and reached to the next stage of task (change color of the fixation point). Moreover, the early activity occurs primarily within the contralateral PFC of the visual stimulus, whereas the late activity occurs within both contralateral and ipsilateral PFC. While the early awareness related activity resembles the VAN activity in EEG studies (associating with p-consciousness), the late awareness related activity resembles the P3b activity (associating with a-consciousness). We are going to report these results in a separated paper soon.

      I think the authors have to discuss the Gaillard et al PLOS Biology 2009 paper in much more detail. Gaillard et al also report a study related to conscious access contrasting unmasked and masked stimuli using iEEG. In this paper they also report ERP, time frequency and phase synchronization results (and even Granger causality). Because of the similarities in approach, I think it would be important to directly compare the results presented in that paper with results presented here and highlight the commonalities and discrepancies in the Discussion.

      Thanks for reviewer’s comment. We have made additional analysis and detailed discussion accordingly. In addition, we also extended discussion with other relevant studies in the revised manuscript.

      In lines 528-549,

      ‘Although one iEEG study reported awareness-specific PFC activation, the awareness-related activity started 300 ms after the onset of visual stimuli, which was ~100 ms later than the early activity in our study. Also, due to the limited number of electrodes in PFC (2 patients with 19 recording sites mostly in mesiofrontal and peri-insular regions), their experiments were restricted while exploring the awareness-related activity in PFC. In the present study, the number of recording sites (245) were much more than previous study and covered more areas in PFC. Our results further show earlier awareness-related activity (~ 200 ms after visual stimuli onset), including ERP, HFA and PLV. These awareness-related activity in PFC occurred even earlier (~150 ms after stimulus onset) for the salient stimulus trials (Fig. 3A\D and Fig. 4A\D, HA condition).

      However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awarenessrelated sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al. Nevertheless, we think these new results would contribute to our understanding of the neural mechanism underlying conscious perception, especially for the role of PFC.’ In lines 601-603:

      ‘The only human iEEG study reported that the phase synchronization of the beta band in the aware condition also occurred relatively late (> 300 ms) and mainly confined to posterior zones but not PFC.’

      As for the Granger Causality analysis between PFC and occipital lobe, while the aim of this study focused mainly on PFC and there were few recoding sites in occipital lobe, we would like to do this analysis in later studies after we collect more data.

      In the Gaillard paper they report a figure plotting the percentage of significant frontal electrodes across time (figure 4A) in which it can be seen that significant electrodes emerge after approximately 250 ms in PFC as well. It would be great if the authors could make a similar figure to compare results. In the current paper there are much more frontal electrode contacts than in the Gaillard paper, so that is interesting in itself.

      Thanks reviewer for this constructive comment. We made similar analysis as Gaillard et al. and plotted the results in the figure bellow. As you can see, the awareness related sites started to emerge about 200 ms after visual stimulus onset according to both ERP and HG activity. The proportion of awareness related sites reached peak at ~14% (8% for HG) in 300-400ms. However, the proportions are much smaller than that reported by Gaillard et al, which peaked at ~60%. We think that one possibility for the difference may be due to the more sampled PFC subregions in present study and the uneven distribution of awareness-related activity in PFC. Meanwhile, we noticed that the peri-insula regions and middle frontal gyrus (MFG), which were similar with the regions reported by Gaillard et al, seemed to show more fraction of awareness-related sites than other subregions during the delay period (0-650 ms after stimulus onset). To test such possibility and make comparison with the study of Gaillard et al. we calculated the proportion of awareness-related site in peri-insula and MFG regions. We found although the proportion of awareness-related site was larger in peri-insula and MFG than in other subregions, it was much lower than the report of Gaillard et al. One alternative possibility for the difference between these two studies might be due to the more complex task in Gaillard et al.

      We have added this figure and discussion to the revised manuscript as a new result (Figure 4E & S2 and lines 537-549).

      Author response image 1.

      Percentage of awareness-related sites in ERP and HG analysis. n, number of recording sites in PFC.

      Author response image 2.

      Percentage of awareness-related sites in ERP and HG analysis at parsopercularis and middle frontal gyrus (MFG). n, number of recording sites.

      In my opinion, some of the most interesting results are not highlighted: the findings that subjectively unaware stimuli show increased activations in the prefrontal cortex as compared to stimulus absent trials (e.g., Figure 4D). Previous work has shown PFC activations to masked stimuli (e.g., van Gaal et al., J Neuroscience 2008, 2010; Lau and Passigngham J Neurosci 2007) as well as PFC activations to subjectively unaware stimuli (e.g., King, Pescetelli, and Dehaene, Neuron 2016) and this is a very nice illustration of that with methods having more detailed spatial precision. Although potentially interesting, I wonder about the objective detection performance of the stimuli in this task. So please report objective detection performance for the patients and the healthy subjects, using signal detection theoretic d'. This gives the reader an idea of how good subjects were in detecting the presence/absence of the gratings. Likely, this reveals far above chance detection performance and in that case I would interpret these findings as "PFC activation to stimuli indicated as subjectively unaware" and not unconscious stimuli. See Stein et al., Plos Biology 2021 for a direct comparison of subjectively and objectively unaware stimuli.

      We gratefully appreciate for reviewer’s helpful and valuable comments. We do notice that the activity of PFC in subjectively unawareness condition (stimulus contrast near perceptual threshold) is significantly higher than stimulus absent condition. Such results, by using sEEG recordings with much higher spatial resolution than brain imaging and scalp EEG, support findings of previous studies (citations). Considering the question of neural correlation of unawareness processing is a hot and interesting topic, after carefully considering, we would like to report these results in a separate paper, rather than add these results in the current manuscript in order to avoid the distraction.

      According to reviewer’s comment about the objective detection performance of the stimuli in our task, we analyzed the signal detection theoretic d’. The values of d’ in patients and healthy subjects are similar (1.81±0.27 in patients and 2.12±0.37 in healthy subjects). Such results indicate that the objective detection performance of subjects in our task is well above the chance level. Since our task merely measures the subjective awareness, we agree reviewer’s comment about the interpretation of our results as “PFC activation to stimuli indicated the subjective unawareness rather than objective unawareness”. We will emphasize this point in our next paper.

      We have added the d prime in the MS (lines149-150).

      In Figure 7 of the paper the authors want to make the case that the contrast does not differ between subjectively aware stimuli and subjectively unaware stimuli. However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo. Because several P values are very close to significance I anticipate that a test across subjects will clearly show that the contrast level of the subjectively aware stimuli is higher than of the subjectively unaware stimuli, at the group level. A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions.

      Thank reviewer for the helpful comment. Regarding reviewer’s comment “However so far they've done the majority of their analyses across subjects, and for this analysis the authors only performed within-subject tests, which is not a fair comparison imo”, if we understand correctly, reviewer considered that it was fair if the analysis of neural activity in PFC was done across subjects but the stimulus contrast analysis between NA and NU was done individually. Actually, it is not the case. In neural activity analysis, the significant awareness-related sites were identified firstly in each individual subject (Fig. 3A and Fig 4A, and Methods), same as the analysis of stimulus contrast (see Methods). Only in the neural population activity analysis, the activity of awareness-related sites was pooled together and made further analysis.

      To further evidence the awareness related activity in PFC is not highly correlated with stimulus contrast, we compared the activity difference between two different stimulus contrast conditions, i.e., stimulus contrast difference between high-contrast aware (HA) and NA conditions (large difference, ~14%), and between NA and NU conditions (slight difference, ~0.2%). The working hypothesis is that, if PFC activity is closely correlated with the contrast of stimulus contrast, we expect to see the activity difference between HA and NA conditions is much larger than that between NA and NU conditions. To test this hypothesis, we analyzed data of two patients in which the previous analysis showed significant or near significant difference of stimulus contrast between NA and NU conditions (Author response image 1, below, patient #2 and 1). The results (Author response image 1) show that the averaged activity difference (0-650 ms after visual stimulus onset) between HA and NA was similar as the averaged activity difference between NA and NU trials, even though the stimulus contrast difference was much larger between HA and NA conditions than between NA and NU conditions. Such results indicate that the awareness-related activity in PFC cannot be solely explained by the contrast difference between NA and NU conditions. Based on these results, we think that it is not necessary to perform the analysis as reviewer’s comment “A solution to this would be to sub-select trials from one condition (NA) to match the contrast of the other condition (NU), and thereby create two conditions that are matched in contrast levels of the stimuli included. Then do all the analyses on the matched conditions”. Another reason that impedes us to do this analysis is due to the limited trial numbers in our dataset.

      Author response image 3.

      Relationship between stimulus contract and PFC activity. X axis represents the stimulus contrast difference between two paired conditions, i.e., aware versus unaware in near perceptual threshold conditions (NA – NU, red dots); aware in high contrast condition versus aware in near perceptual threshold condition (HA – NA, blue dots). Y axis represents the activity difference between paired stimulus conditions. The results show that activity difference is similar between two paired conditions regardless the remarkable contrast difference between two paired conditions. Such results indicate that the greater activity in NA trials than in NU trials (Fig. xx-xx) could not be interpreted by the slight difference in stimulus contrast between NA and NU trials.

      Related, Figure 7B is confusing and the results are puzzling. Why is there such a strong below chance decoding on the diagonal? (also even before stimulus onset) Please clarify the goal and approach of this analysis and also discuss/explain better what they mean.

      We have withdrawn Figure7B for the confusing decoding results on the diagonal.

      I was somewhat surprised by several statements in the paper and it felt that the authors may not be aware of several intricacies in the field of consciousness. For example, a statement like the following "Consciousness, as a high-level cognitive function of the brain, should have some similar effects as other cognitive functions on behavior (for example, saccadic reaction time). With this question in mind, we carefully searched the literature about the relationship between consciousness and behavior; surprisingly, we failed to find any relevant literature." This is rather problematic for at least two reasons. First, not everyone would agree that consciousness is a highlevel cognitive function and second there are many papers arguing for a certain relationship between consciousness and behavior (Dehaene and Naccache, 2001 Cognition; van Gaal et al., 2012, Frontiers in Neuroscience; Block 1995, BBS; Lamme, Frontiers in Psychology, 2020; Seth, 2008 and many more). Further, the explanation for the reaction time differences in this specific case is likely related to the fact that subjects' confidence in that decision is much higher in the aware trials than in the unaware trials, hence the speeded response for the first. This is a phenomenon that is often observed if one explores the "confidence literature". Although the authors have not measured confidence I would not make too much out of this RT difference.

      We agree that and modified accordingly in lines 492-507.

      ‘An alternative interpretation for RT difference between aware and unaware condition in our study, i.e., reflecting task-strategies used by subjects/patients to remember the response mapping rules between the perception and the color cue (e.g., if the YES+GREEN=RIGHT and YES+RED=LEFT rules were held in memory, while the NO mappings were inferred secondarily rather than being actively held in memory).

      Another possibility is that the reaction time is strongly modulated by the confident level, which has been described in previous studies(Broggin et al., 2012; Marzi et al., 2006). However, in previous studies, the confident levels were usually induced by presenting stimulus with different physical property, such as spatial frequency, eccentricity and contrast. However, the dependence of visual process on the salience of visual stimulus confounds with the effect of visual awareness on the reaction time of responsive movements, which is hard to attribute the shorter reaction time in more salient condition purely to visual awareness. In contrast, we create a condition (near aware threshold) in the present study, in which the saliency (contrast) of visual stimulus is very similar in both aware and unaware conditions in order to eliminate the influence of stimulus saliency in reaction time. We think that the difference in reaction time in our study is mainly due to the modulation of awareness state, which was not reported previously.’

      I would be interested in a lateralized analysis, in which the authors compare the PFC responses and connectivity profiles using PLV as a factor of stimulus location (thus comparing electrodes contralateral to the presented stimulus and electrodes ipsilateral to the presented stimulus). If possible this may give interesting insights in the mechanism of global ignition (global broadcasting), supposing that for contralateral electrodes information does not have to cross from one hemisphere to another, whereas for ipsilateral electrodes that is the case (which may take time). Gaillard et al refer to this issue as well in their paper, and this issue is sometimes discussed regarding to Global workspace theory. This would add novelty to the findings of the paper in my opinion.

      We gratefully appreciate reviewer’s helpful and available suggestions. We have made the analysis accordingly. We find that the awareness-related ERP activation in PFC occurs earlier only in the contralateral PFC with latency about 200 ms and then occurs in both contralateral and ipsilateral PFC about 100 ms later. In addition, the magnitude of awareness-related activity is stronger in the contralateral PFC than in ipsilateral PFC during the early phase (200-400 ms), then the activity becomes similar between contralateral and ipsilateral PFC. Moreover, the awareness related HG activity only appears in the contralateral PFC. Such results show the spatiotemporal characteristics of visual awareness related activity between two hemispheres. We are going to report these results in a separate paper soon.

      Reviewer #3 (Recommendations For The Authors):

      Some of the font sizes in the figures are too small.

      We have modified accordingly.

      To me, the abbreviations are confusing, (NA/NU etc). I would try to come up with easier ones or just not use abbreviations.

      We have modified accordingly and try to avoid to use the abbreviations.

      The data/scripts availability statement states "available upon reasonable request". I would suggest that the authors make the data openly available when possible, and I believe eLife requires that as well.

      Thanks for reviewer’s suggestions. Due to several ongoing studies based on this dataset, we would like to open our data after complete these studies if there is no restriction from national policy.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Goetz et al. takes a new perspective on sensory information processing in cells. In contrast to previous studies, which have used population data to build a response distribution and which estimate sensory information at about 1 bit, this work defines sensory information at the single cell level. To do so, the authors take two approaches. First, they estimate single cells' response distributions to various input levels from time-series data directly. Second, they infer these single-cell response distributions from the population data by assuming a biochemical model and extracting the cells' parameters with a maximum-entropy approach. In either case, they find, for two experimental examples, that single-cell sensory information is much higher than 1 bit, and that the reduction to 1 bit at the population level is due to the fact that cells' response functions are so different from each other. Finally, the authors identify examples of measurable cell properties that do or do not correlate with single-cell sensory information.

      The work brings an important and distinct new insight to a research direction that generated strong interest about a decade ago: measuring sensory information in cells and understanding why it is so low. The manuscript is clear, the results are compelling, and the conclusions are well supported by the findings. Several contributions should be of interest to the quantitative biology community (e.g., the demonstration that single cells' sensory information is considerably larger than previously implied, and the approach of inferring single-cell data from population data with the help of a model and a maximum-entropy assumption).

      We thank the reviewer for the excellent summary of our research.

      Reviewer #2 (Public Review):

      In this paper the authors present an existing information theoretic framework to assess the ability of single cells to encode external signals sensed through membrane receptors.

      The main point is to distinguish actual noise in the signaling pathway from cell-cell variability, which could be due to differences in their phenotypic state, and to formalize this difference using information theory.

      After correcting for this cellular variability, the authors find that cells may encode more information than one would estimate from ignoring it, which is expected. The authors show this using simple models of different complexities, and also by analyzing an imaging dataset of the IGF/FoxO pathway.

      The implications of the work are limited because the analysed data is not rich enough to draw clear conclusions. Specifically,

      • the authors do not distinguish what could be methodological noise inherent to microscopy techniques (segmentation etc), and actual intrinsic cell state. It's not clear that cell-cell variability in the analyzed dataset is not just a constant offset or normalization factor. Other authors (e.g. Gregor et al Cell 130, 153-164) have re-centered and re-normalized their data before further analysis, which is more or less equivalent to the idea of the conditional information in the sense that it aims to correct for this experimental noise.

      We thank the reviewer for the comment. However, we do not believe our analysis is a consequence of normalization artifacts. Prior to modeling the single cell data, we removed well-dependent background fluorescence. This should take care of technical variation related to overall offsets in the data. We agree with the reviewer that background subtraction may not fully account for technical variability. For example, some of the cell-to-cell variability may potentially be ascribed to issues such as incorrect segmentation. Unfortunately, however, attempting to remove this technical variability through cell-specific normalization as suggested by the reviewer1 will diminish to a very large extent the true biological effects related to extensivity (cell size, total protein abundance). We note that these effects are a direct function of cell state-variables (see for example Cohen-Saidon et al.2 who use cell-state specific normalization to improve signaling fidelity). Therefore, an increase in mutual information after normalization does not only reflect removal of technical noise but also accounts for effect of cell state variables.

      Nonetheless, as the reviewer suggested, we performed a cell-specific normalization wherein the mean nuclear FoxO levels in each cell (in the absence of IGF) were normalized to one. Then, for each ligand concentration, we collated FoxO response across all cells and computed the channel capacity corresponding to cell-state agnostic mutual information ICSA. As expected, ICSA increases from ∼0.9 bits to ∼1.3 bits when cell-specific normalization was performed (Author response image 1). However, this value is significantly lower than the average ∼1.95 of cell-state specific mutual information ⟨ICee⟩. Finally, we note that the cell specific normalization does not change the calculations of channel capacity at the single cell level as these calculations do not depend on linear transformations of the data (centering and normalization). Therefore, we do not think that our analysis of experimental data suffers from artifacts related to microscopy.

      Author response image 1.

      Author response image 1. Left: nuclear FoxO response averaged over all cells in the population across different ligand concentration. Right: nuclear FoxO response was first normalized at the single cell level and then averaged over all cells in the population across different ligand concentrations.

      • in the experiment, each condition is shown only once and sequentially. This means that the reproducibility of the response upon repeated exposures in a single cell was not tested, casting doubt on the estimate of the response fidelity (estimated as the variance over time in a single response).

      The reviewer raises an excellent question about persistence of cell states. To verify that cell states are indeed conserved at the time scale of the experiment, we reanalyzed data generated by Gross et al.3 wherein cells were perturbed with IGF (37.5 pM), followed by a washout which allowed the cells to reach pre-stimulation nuclear FoxO levels, followed by a re-perturbation with the same amount of IGF. Nuclear FoxO response was measured at the single cell level after 90 minutes with IGF exposure both these times. Since the response x to the same input u was measured twice in the same cell (x1 and x2), we could evaluate the intrinsic variability in response at the single cell level. We then compared this intrinsic variability to the extrinsic cell-state dependent variability in the population.

      To do so, we computed for each cell δ=x1-x2 the difference between the two responses. reviewer Figure 2 show the histogram p(δ) as computed from the data (pink) and the same computed from the model that was trained on the single cell data (blue). We also computed p(δ0) which represented the difference between responses of two different cells both from the data and from the model.

      As we see in Author response image 2, the distribution p(δ) is significantly narrower than p(δ0) suggesting that intracellular variability is significantly smaller than across-population variability and that cells’ response to the same stimuli are quite conserved, especially when compared to responses in randomly picked pairs of cells. This shows that cell states and the corresponding response to extracellular perturbations are conserved, at least at the time scale of the experiment. Therefore, our estimates of cell-to-cell variability signaling fidelity are stable and reliable. We have now incorporated this discussion in the manuscript (lines 275-281).

      Author response image 2.

      Author response image 2. Left: Cells were treated with 37.5 pM of IGF for 90 minutes, washed out for 120 minutes and again treated with 37.5 pM of IGF. Nuclear FoxO was measured during the treatment and the washout. The distributions on the left show the difference in FoxO levels in single cells after the two 90 minutes IGF stimulations (pink: data, blue: model). Right: Distribution of difference in FoxO levels in two randomly picked cells after 90 minutes of exposure to 37.5 pM IGF.

      • another dataset on the EGF/EGFR pathway is analyzed, but no conclusion can be drawn from it because single-cell information cannot be directly estimated from it. The authors instead use a maximum-entropy Ansatz, which cannot be validated for lack of data.

      We thank the reviewer for this comment. We agree with the reviewer that we have not verified our predictions for the EGF/EGFR pathway. That study was meant to show the potential generality of our analysis. We look forward to validating our predictions for the EGF/EGFR pathway in future studies.

      Reviewer #3 (Public Review):

      Goetz, Akl and Dixit investigated the heterogeneity in the fidelity of sensing the environment by individual cells in a population using computational modeling and analysis of experimental data for two important and well-studied mammalian signaling pathways: (insulin-like growth factor) IGF/FoxO and (epidermal growth factor) EFG/EFGR mammalian pathways. They quantified this heterogeneity using the conditional mutual information between the input (eg. level of IGF) and output (eg. level of FoxO in the nucleus), conditioned on the "state" variables which characterize the signaling pathway (such as abundances of key proteins, reaction rates, etc.) First, using a toy stochastic model of a receptor-ligand system - which constitutes the first step of both signaling pathways - they constructed the population average of the mutual information conditioned on the number of receptors and maximized over the input distribution and showed that it is always greater than or equal to the usual or "cell state agnostic" channel capacity. They constructed the probability distribution of cell state dependent mutual information for the two pathways, demonstrating agreement with experimental data in the case of the IGF/FoxO pathway using previously published data. Finally, for the IGF/FoxO pathway, they found the joint distribution of the cell state dependent mutual information and two experimentally accessible state variables: the response range of FoxO and total nuclear FoxO level prior to IGF stimulation. In both cases, the data approximately follow the contour lines of the joint distribution. Interestingly, high nuclear FoxO levels, and therefore lower associated noise in the number of output readout molecules, is not correlated with higher cell state dependent mutual information, as one might expect. This paper contributes to the vibrant body of work on information theoretic characterization of biochemical signaling pathways, using the distribution of cell state dependent mutual information as a metric to highlight the importance of heterogeneity in cell populations. The authors suggest that this metric can be used to infer "bottlenecks" in information transfer in signaling networks, where certain cell state variables have a lower joint distribution with the cell state dependent mutual information.

      The utility of a metric based on the conditional mutual information to quantify fidelity of sensing and its heterogeneity (distribution) in a cell population is supported in the comparison with data. Some aspects of the analysis and claims in the main body of the paper and SI need to be clarified and extended.

      1. The authors use their previously published (Ref. 32) maximum-entropy based method to extract the probability distribution of cell state variables, which is needed to construct their main result, namely p_CeeMI (I). The salient features of their method, and how it compares with other similar methods of parameter inference should be summarized in the section with this title. In SI 3.3, the Lagrangian, L, and Rm should be defined.

      We thank the reviewer for the comment and apologize for the omission. We have now rewritten the manuscript to include references to previous reviews of works that infer probability distributions4 of cell state variables (lines 156-168). Notably, as we argued in our previous work5, no current method can efficiently estimate the joint distribution over parameters that is consistent with measured single cell data and models of signaling networks. Therefore, we could not use multiple approaches to infer parameter distributions. We have now expanded our discussion of the method in the supplementary information sections.

      1. Throughout the text, the authors refer to "low" and "high" values of the channel capacity. For example, a value of 1-1.5 bits is claimed to be "low". The authors need to clarify the context in which this value is low: In some physically realistic cases, the signaling network may need to simply distinguish between the present or absence of a ligand, in which case this value would not be low.

      We agree with the reviewer that small values of channel capacities might be sufficient for cells to carry out some tasks, in which case a low channel capacity does not necessarily indicate a network not performing its task. Indeed, how much information is needed for a specific task is a related but distinct question from how much information is provided though a signaling network. Both questions are essential to understand a cell's signaling behavior, with the former being far less easy to answer in a way which is generalizable. In contrast, the latter can be quantitatively answered using the analysis presented in our manuscript.

      1. Related to (2), the authors should comment on why in Fig. 3A, I_Cee=3. Importantly, where does the fact that the network is able to distinguish between 23 ligand levels come from? Is this related to the choice (and binning) of the input ligand distribution (described in the SI)?

      We thank the reviewer for the comment. The network can distinguish between all inputs used in the in silico experiment precisely because the noise at the cellular level is small enough that there is negligible overlap between single cell response distributions. Indeed, the mutual information will not increase with the number of equally spaced inputs in a sub-linear manner, especially when the input number is very high.

      1. The authors should justify the choice of the gamma distribution in a number of cases (eg. distribution of ligand, distribution cell state parameters, such as number of receptors, receptor degradation rate, etc.).

      We thank the reviewer for the comment. We note that previous works in protein abundances and gene expression levels (e.g. see6) have reported distributions with positive skews that can be fit well with gamma distributions or log-normal distributions. Moreover, many stochastic models of protein abundance levels and signaling networks are also known to result in abundances that are distributed according to a negative binomial distribution, the discrete counterpart of gamma distribution. Therefore, we chose Gamma distributions in our study. We have now clarified this point in the Supplementary Information. At the same time, gamma distribution only serves as a regularization for the finite data and in principle, our analysis and conclusion do not depend on choice of gamma distribution for abundances of proteins, ligands, and cell parameters.

      1. Referring to SI Section 2, it is stated that the probability of the response (receptor binding occupancy) conditioned on the input ligand concentration and number of receptors is a Poisson distribution. Indeed this is nicely demonstrated in Fig. S2. Therefore it is the coefficient of variation (std/mean) that decreases with increasing R0, not the noise (which is strictly the standard deviation) as stated in the paper.

      We thank the reviewer of the comment. We have now corrected our text.

      1. In addition to explicitly stating what the input (IGF level) and the output (nuclear GFP-tagged FoxO level) are, it would be helpful if it is also stated what is the vector of state variables, theta, corresponding to the schematic diagram in Fig. 2C.

      We thank the reviewer of the comment. We have now corrected our text in the supplementary material as well as the main text (Figure 2 caption).

      1. Related to Fig. 2C, the statement in the caption: "Phosphorylated Akt leads to phosphorylation of FoxO which effectively shuttles it out of the nucleus." needs clarification: From the figure, it appears that pFoxO does not cross the nuclear membrane, in which case it would be less confusing to say that phosphorylation prevents reentry of FoxO into the nucleus.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption).

      1. The explanations for Fig. 2D, E and insets are sparse and therefore not clear. The authors should expand on what is meant by model and experimental I(theta). What is CC input dose? Also in Fig. 2E, the overlap between the blue and pink histograms means that the value of the blue histogram for the final bin - and therefore agreement or lack thereof with the experimental result - is not visible. Also, the significance of the values 3.25 bits and 3 bits in these plots should be discussed in connection with the input distributions.

      We thank the reviewer of the comment. We have now corrected our text (Figure 2 caption and lines 249-251).

      1. While the joint distribution of the cell state dependent mutual information and various biochemical parameters is given in Fig. S7, there is no explanation of what these results mean, either in the SI or main text. Related to this, while a central claim of the work is that establishing this joint distribution will allow determination of cell state variables that differentiate between high and low fidelity sensing, this claim would be stronger with more discussion of Figs. 3 and S7. The related central claim that cell state dependent mutual information leads to higher fidelity sensing at the population level would be made stronger if it can be demonstrated that in the limit of rapidly varying cell state variables, the I_CSA is retrieved.

      We thank the reviewer for this excellent comment. We have now added more discussion about interpreting the correlation between cell state variables and cell-state specific mutual information (lines 294-306). We also appreciate the suggestion about a toy model calculation to show that dynamics of cell state variables affects cell state specific mutual information. We have now performed a simple calculation to show how dynamics of cell state variables affects cells’ sensing ability (lines 325-363). Specifically, we constructed a model of a receptor binding to the ligand wherein the receptor levels themselves changed over time through a slow process of gene expression (Author response image 3, main text Figure 4). In this model, the timescales of fluctuations of ligand-free receptors on the cell surface can be tuned by speeding up/slowing down the degradation rate of the corresponding mRNA while keeping the total amount of steady state mRNA constant. As shown in Author response image 3, the dependence of cell-specific mutual information on cell state variable diminishes when the time scale of change of cell state variables is fast.

      Author response image 3.

      Author response image 3. Cell state dynamics governs cell state conditioned mutual information. A. In a simple stochastic model, receptor mRNA is produced at a constant rate from the DNA and the translated into ligand-free receptors. The number of ligand-bound receptors after a short exposure to ligands is considered the output. B. A schematic showing dynamics of receptor numbers when mRNA dynamics are slower compared to signaling time scales. C. Conditioning on receptor numbers leads to differing abilities in sensing the environment when the time scale of mRNA dynamics τ is slow. In contrast, when the mRNA dynamics are fast (large τ-1), conditioning on cell state variables does not lead to difference in sensing abilities.

      Reviewer #1 (Recommendations For The Authors):

      My major concerns are mainly conceptual, as described below. With proper attention to these concerns, I feel that this manuscript could be a good candidate for the eLife community.

      Major concerns:

      1. The manuscript convincingly demonstrates that cells good sensors after all, and that heterogeneity makes their input-output functions different from each other. This raises the question of what happens downstream of sensing. For single-celled organisms, where it may be natural to define behavioral consequences at the single-cell level, it may very well be relevant that single-cell information is high, even if cells respond differently to the environment. But for cells in multicellular organisms, like those studied here, I imagine that most behavioral consequences of sensing occur at the multicellular level. Thus, many cells' responses are combined into a larger response. Because their responses are different, their high-information individual responses may combine into a low-information collective response. In fact, one could argue that a decent indicator of the fidelity of this collective response is indeed the population-level information measure estimated in previous works. Thus, a fundamental question that the authors must address is: what is the ultimate utility of reliable, but heterogeneous, responses for a multicellular system? This question has an important bearing for the relevance of their findings.

      We thank the reviewer for this thought-provoking comment. We agree that the fidelity with which cells sense their environment, especially those in multicellular organisms, may not always need to be very high. We speculate that when the biological function of a collection of cells can be expressed as an average over the response of individual cells; high-information but heterogeneous cells can be considered equivalent to low-information homogeneous cells. An example of such a function is population differentiation to maintain relative proportions of different cell types in a tissue or producing a certain amount of extracellular enzyme.

      In contrast, we believe that when the biological function involves collective action, spatial patterning, or temporal memory, the difference between reliable but heterogeneous population and unreliable homogeneous population will become significant. We plan to explore this topic in future studies.

      1. The authors demonstrate that the agreement is good between their inference approach and the direct estimation of response distributions from single-cell time series data. In fact, the agreement is so good that it raises the question of why one would need the inference approach at all. Is it because single-cell time series data is not always available? Is that why the authors used it for one example and not the other? The validation is an asset, but I imagine that the inference approach is complicated and may make assumptions that are not always true. Thus, its utility and appropriate use must be clarified.

      We thank the reviewer for the comment. As the reviewer correctly pointed out, live cell imaging data is not always available and has limited scope. Specifically, optical resolution limits measurements of multiple targets. Moreover, typical live cell measurements measure total abundance or localization and not post-translational modification (phosphorylation, methylation, etc.) which are crucial to signaling dynamics. The most readily available single cell data such those measured using single cell RNA sequencing, immunofluorescence, or flow cytometry are necessarily snapshots. Therefore, computational models that can connect underlying signaling networks to snapshot data become essential when imputing single cell trajectories. In addition, the modeling also allows us to identify network parameters that correlate most strongly with cellular heterogeneity. We have now clarified this point in the manuscript (lines 366-380).

      Minor comments:

      1. I would point out that the maximum values in the single-cell mutual information distributions (Fig 2D and E) correspond to log2 of the number of inputs levels, corresponding to perfect distinguishability of each of the equally-weighted input states. It is clear that many of the mutual information values cluster toward this maximum, and it would help readers to point out why.

      We thank the reviewer for the comment. We have now included a discussion about the skew in the distribution in the text (lines 251-260).

      1. Line 216 references Fig 2C for the EGF/EGFR pathway, but Fig 2C shows the FoxO pathway. In fact, I did not see a schematic of the EGF/EGFR pathway. It may be helpful to include one, and for completeness perhaps also one for the toy model, and organize the figures accordingly.

      We thank the reviewer for the comment. We did not include three separate schematics because the schematics of the EGF/EGFR model and the toy model are subsets of the schematic of the IGF/FoxO model. We have now clarified this point in the manuscript (Figure 2 caption).

      Reviewer #2 (Recommendations For The Authors):

      • the simple model of Fig. 2A would gain from a small cartoon explaining the model and its parameters.

      We thank the reviewer for the comment. We did not include a schematic for the toy model as it is a subset of the schematic of the IGF/FoxO model. The schematic of the toy model is included in the supplementary information.

      • L should be called u, and B should be called x, to be consistent with the rest of the notations in the paper.

      We have decided to keep the notation originally presented in the manuscript.

      • legend of 2E and D should be clarified. "CC input dose" is cryptic. The x axis is the input dose, the y axis is its distribution at the argmax of I. CC is the max of I, not its argmax. Likewise "I" in the legend for the colors should not be used to describe the insets, which are input distributions.

      We have now changed this in the manuscript.

      • the data analysis of the IGF/FoxO pathway should be explained in the main text, not the SI. Otherwise it's impossible to understand how one arrives at, or how to intepret, figure 2E, which is central to the paper. For instance the fact that p(x|u,theta) is assumed to be Gaussian, and how the variance and mean are estimated from the actual data is very important to understand the significance of the results.

      While we have added more details in the manuscript in various places, for the sake of brevity and clarity, we have decided to keep the details of the calculations in the supplementary materials.

      • there's no Method's section. Most of the paper's theoretical work is hidden in the SI, while it should be described in the methods.

      We thank the review of the comment. However, we believe that adding a methods section will break the narrative of the paper. The methods are described in detail in the supplementary materials with sufficient detail to reproduce our results. Additionally, we also provide a link to the github page that has all scripts related to the manuscript.

      PS: please submit a PDF of the SI for review, so that people can read it on any platform (as opposed to a word document, especially with equations)

      We have now done this.

      Reviewer #3 (Recommendations For The Authors):

      1. Subplots in Fig. 1, inset in Fig. 3 are not legible due to small font.

      We have now increased the font.

      1. Mean absolute error in Fig. S5 and relative error in related text should be clarified.

      We have now clarified this in the manuscript.

      1. Acronyms (MACO, MERIDIAN) should be defined.

      We have now made these changes.

      References

      1. Gregor T, Tank DW, Wieschaus EF, Bialek W. Probing the limits to positional information. Cell. 2007;130(1):153-64. doi: 10.1016/j.cell.2007.05.025. PubMed PMID: WOS:000248587000018.

      2. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U. Dynamics and Variability of ERK2 Response to EGF in Individual Living Cells. Mol Cell. 2009;36(5):885-93. doi: 10.1016/j.molcel.2009.11.025. PubMed PMID: WOS:000272965400020.

      3. Gross SM, Dane MA, Bucher E, Heiser LM. Individual Cells Can Resolve Variations in Stimulus Intensity along the IGF-PI3K-AKT Signaling Axis. Cell Syst. 2019;9(6):580-8 e4.

      4. Loos C H, J. Mathematical modeling of variability in intracellular signaling. Current Opinion in Systems Biology. 2019;16:17-24.

      5. Dixit PD, Lyashenko E, Niepel M, Vitkup D. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. Cell Syst. 2020;10(2):204-12 e8.

      6. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329(5991):533-8. doi: 10.1126/science.1188308. PubMed PMID: 20671182; PMCID: PMC2922915.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to review.

      We thank the editors and reviewers for their time in assessing our manuscript. We changed the title to remove the word “all” because we realized that was hyperbolic. Corrections in response to review are in blue text throughout the manuscript document (other minor corrections are not highlighted).

      eLife assessment

      This study presents valuable insights into the evolution of the gasdermin family, making a strong case that a GSDMA-like gasdermin was already present in early land vertebrates and was activated by caspase-1 cleavage. Convincing biochemical evidence is provided that extant avian, reptile, and amphibian GSDMA proteins can still be activated by caspase-1 and upon cleavage induce pyroptosis-like cell death - at least in human cell lines. The caspase-1 cleavage site is only lost in mammals, which use the more recently evolved GSDMD as a caspase-1 cleavable pyroptosis inducer. The presented work will be of considerable interest to scientists working on the evolution of cell death pathways, or on cell death regulation in non-mammalian vertebrates.

      We thank the editor for their time in evaluating our manuscript. We agree with the eLife assessment and with the comments of the reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors start out by doing a time-calibrated gene/species tree analysis of the animal gasdermin family, resulting in a dendrogram showing the relationship of the individual gasdermin subfamilies and suggesting a series of gene duplication events (and gene losses) that lead to the gasdermin distribution in extant species. They observe that the GSDMA proteins from birds, reptiles, and amphibians do not form a clade with the mammalian GSDMAs and notice that the non-mammalian GSDMA proteins share a conserved caspase-1 cleavage motif at the predicted activation site. The authors provide several series of experiments showing that the non-mammalian GSDMA proteins can indeed be activated by caspase-1 and that this activation leads to cell death (in human cells). They also investigate the role of the caspase-1 recognition tetrapeptide for cleavage by caspase-1 and for the pathogen-derived protease SpeB.

      We thank the reviewer for their time in evaluating our manuscript.

      Strengths:

      The evolutionary analysis performed in this manuscript appears to use a broader data basis than what has been used in other published work. An interesting result of this analysis is the suggestion that GSDMA is evolutionarily older than the main mammalian pyroptotic GSDMD, and that birds, reptiles, and amphibians lack GSDMD but use GSDMA for the same purpose. The consequence that bird GSDMA should be activated by an inflammatory caspase (=caspase1) is convincingly supported by the experiments provided in the manuscript.

      We thank the reviewer for their assessment of the manuscript.

      Weaknesses:

      1. As a non-expert in phylogenetic tree reconstruction, I find the tree resulting from the authors' analysis surprising (in particular the polyphyly of GSDMA) and at odds with several other published trees of this family. The differences might be due to differences in the data being used or due to the tree construction method, but no explanation for this discrepancy is provided.

      We agree, and we have modified the text to add more context to explain why our analysis generated a different topology: “In comparison to previously published studies, we used different methods to construct our gasdermin phylogenetic tree, with the result that our tree has a different topology. The topology of our tree is likely to be affected by our increased sampling of gasdermin sequences; we included 1,256 gasdermin sequences in comparison to 300 or 97 sequences used in prior studies. Prior studies used maximum likelihood tree building techniques, whereas we used a more computationally intensive Bayesian method using BEAST with strict molecular clocks that allows us to provide divergence time estimates, which we calibrated using mammal fossil estimated ages. We think that this substantially increased sampling paired with time calibration allow us to produce a more accurate phylogeny of the gasdermin protein family.”

      To explain and further support our method in a more technical manner, in our phylogenetic tree, non-mammal GSDMAs are paralogous to mammals GSDMAs whereas others have found that non-mammal GSDMAs are orthologous to mammal GSDMAs. We obtained moderate support for the non-mammal GSDMA placement with Bayesian posterior 0.42 and with maximum likelihood bootstrap support of 0.96. Angosto-Bazarra et al. has for their placement a Bayesian posterior of 0.66 and maximum likelihood bootstrap support of 0.98. These are good results, but they arise from significantly fewer sequences than are included in our tree. However, in Fig S2 of Angosto-Bazarra et al. the support drops to 0.08. That the posteriors in both are not 1 indicate the presence of phylogenetic conflicts (i.e., a significant fraction of alternative trees), which means that the tree of our study or Angosto-Bazarra could be incorrect. That said, our tree is supported by biological support, and our dataset is substantially larger. To better characterize this node, further sampling with even more species would be required. We exhausted the current available sequences at the time our tree was generated.

      Differences between our study and previous studies:

      Author response table 1.

      1. While the cleavability of bird/reptile GSDMA by caspase-1 is well-supported by several experiments, the role of this cleavage for pyroptotic cell killing is addressed more superficially. One cell viability assay upon overexpression of GSDMA-NTD in human HEK293 cells is shown and one micrograph shows pyroptotic morphology upon expression in HeLa cells. It is not clear why these experiments were limited to human cells…

      We did include one more experiment in human cells which is Figure 4B, in which we express full length chicken GSDMA with dimerizable caspase-1, and show that LDH release requires the cleavage site aspartate, D244. That said, we agree that our use of only human cell lines is a weakness of the paper. We thought that the best way to definitively show the interaction of caspase-1 and GSDMA was to perform experiments in chicken macrophages. Therefore, we generated a custom-raised anti-chicken-GSDMA antibody. Unfortunately, the quality of the antibody was insufficient to detect endogenous GSDMA in chicken bone marrow-derived macrophages. Off target binding prevented the observation of chicken GSDMA bands. We added a section to the discussion acknowledge the need for further studies: “In future studies, the association of bird/amphibian/reptile GSDMA and caspase-1 should be confirmed in native cells from each of these animals.”

      …and why two different cell types were used for the two complementary results.

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T/17s have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      1. The introduction mentions as a motivation for this work our lack of knowledge of how human GSDMA is activated. This is indeed an interesting and pressing question, but it is not really addressed in the manuscript. This is particularly true when believing the authors' dendrogram results that the bird and mammalian GSDMA families do not form a clade.

      As a consequence, the significance of this finding is mostly limited to birds and reptiles.

      Our aspirations were to discover hidden facets of mammal GSDMA by using a molecular evolutionary analysis. bird/amphibian/reptile GSDMA. Although we did not learn the identity of a host protease that activates mammalian GSDMA, we serendipitously discovered the evolutionary history of the association of caspase-1 with the gasdermin family. We think this manuscript provides an important and interesting advance in the field to reveal the process of evolution at work in the gasdermin family, and that the association of caspase-1 with a gasdermin to cause pyroptosis is an unbroken pairing throughout evolution. It is surprising to us that the specific gasdermin partner has changed over time.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigated the molecular evolution of members of the gasdermin (GSDM) family. By adding the evolutionary time axis of animals, they created a new molecular phylogenetic tree different from previous ones. The analyzed result verified that non-mammalian GSDMAs and mammalian GSDMAs have diverged into completely different and separate clades. Furthermore, by biochemical analyses, the authors demonstrated non-mammalian GSDMA proteins are cleaved by the host-encoded caspase-1. They also showed mammalian GSDMAs have lost the cleavage site recognized by caspase-1. Instead, the authors proposed that the newly appeared GSDMD is now cleaved by caspase-1.

      We thank the reviewer for their time in evaluating our manuscript.

      Through this study, we have been able to understand the changes in the molecular evolution of GSDMs, and by presenting the cleavage of GSDMAs through biochemical experiments, we have become able to grasp the comprehensive picture of this family of molecules. However, there are some parts where explanations are insufficient, so supplementary explanations and experiments seem to be necessary.

      Strengths:

      It has a strong impact in advancing ideas into the study of pyroptotic cell death and even inflammatory responses involving caspase-1.

      We thank the reviewer for the critical consideration of the phylogeny presented.

      Weaknesses:

      Based on the position of mammalian GSDMA shown in the molecular phylogenetic tree (Figure 1), it may be difficult to completely agree with the authors' explanation of the evolution of GSDMA.

      1. Focusing on mammalian GSDMA, this group, and mammalian GSDMD diverged into two clades, and before that, GSDMA/D groups and mammalian GSDMC separated into two, more before that, GSDMB, and further before that, non-mammalian GSDMA, when we checked Figure 1. In the molecular phylogenetic tree, it is impossible that GSDMA appears during evolution again. Mammalian GSDMAs are clearly paralogous molecules to non-mammalian GSDMAs in the figure. If they are bona fide orthologous, the mammalian GSDMA group should show a sub-clade in the non-mammalian GSDMA clade. It is better to describe the plausibility of the divergence in the molecular evolution of mammalian GSDMA in the Discussion section.

      We appreciate the reviewer’s careful consideration of our phylogeny. We agree that we did not make this clear enough in the discussion. Indeed, this is a confusing point, and is a critical concept in the paper. This is among our most important findings, so we have added a line addressing this finding to the abstract. We think about these concepts starting from the oldest common ancestor of a group, and then think about how genes duplicate over time. To the discussion we now begin with the following:

      We discovered that GSDMA in amphibians birds and reptiles are paralogs to mammal GSDMA. Surprisingly, the GSDMA genes in both the amphibians/reptiles/birds and mammal groups appear in the exact same locus. Therefore, this GSDMA gene was present in the common ancestor of all these animals. In mammals, this GSDMA duplicated to form GSDMB and GSDMC. Finally, a new gene duplicate, GSDMD, arose in a different chromosomal location. Then this GSDMD gene became a superior target for caspase-1 after developing the exosite. Once GSDMD had evolved, we speculate that the mammalian GSDMA became a pseudogene that was available to evolve a new function. This new function included a new promoter to express mammalian GSDMA primarily in the skin, and perhaps acquisition of a new host protease that has yet to be discovered.

      In further support of the topology of our Bayesian tree in Figure 1, we also performed a maximum likelihood analysis, which also placed the GSDMA genes into similarly distinct clades (Figure 1-S3). Finally, we have biological evidence to support this reasoning, where caspase-1 cleaves non-mammal GSDMAs and also mammal GSDMD (and no longer can cleave mammal GSDMA).

      1. Regarding (1), it is recommended that the authors reconsider the validity of estimates of divergence dates by focusing on mammalian species divergence. Because the validity of this estimation requires a recheck of the molecular phylogenetic tree, including alignment.

      Our reconstructed evolution of gasdermins is consistent with the mammal tree of life. We constrained Bayesian estimation of divergences using soft calibrations from mammal fossil estimated ages. We have included the fossil calibration of mammalian gasdermins to the results section and to our methods.

      1. If GSDMB and/or GSDMC between non-mammalian GSDMA and mammalian GSDMD as shown in the molecular phylogenetic tree would be cleaved by caspase-1, the story of this study becomes clearer. The authors should try that possibility.

      It is known that mammal GSDMB and GSDMC cannot be activated by caspase-1. We propose that GSDMA was cleaved by caspase-1 only in extinct mammals that had not yet associated GSDMD with caspase-1. Such an extinct mammal could have encoded a GSDMA cleaved by caspase-1, a GSDMB cleaved by granzyme A, and GDSMC cleaved by caspase-8. Later, the GSDMA gene was again duplicated to form GSDMD. After GSDMD was targeted by caspase-1, then GSDMA was free to gain its current function in barrier tissues.

      Reviewer #1 (Recommendations For The Authors):

      As a non-expert on phylogenetic tree construction, I found the "time-calibrated maximum clade credibility coalescent tree" hard to digest. I would have liked to see an explanation of how this method is different from what has been used before and why the authors consider it to be better. This is particularly important when considering that the resulting tree shown in Figure 1 is quite different from other published trees of the same family (e.g. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742441 where the GSDMA family appears monophyletic).

      Please see response to Reviewer 1 weaknesses above. Also, we have moved the text “time-calibrated maximum clade credibility coalescent tree” to the figure legend.

      In the bioinformatical analysis of the conserved caspase-1 cleavage motif in bird GSDMA sequences, I would recommend also addressing the residue behind the cleavage site Asp, as this position has an unusually high conservation (mostly Gly) in bird GSDMA.

      This is a great observation. We suspect that this may reflect a need for flexibility in the secondary structure to allow the cleavage site to enter the enzymatic pocket of the caspase. This residue is also similarly enriched in mammal GSDMD, which is also cleaved by caspase-1. We also note high conservation of a P2' proline residue in birds with the FASD tetrapeptide, which could also be important for displaying the tetrapeptide to the caspase.

      This comment prompted us to search the literature for evidence of these residues in caspase-1 substrate preference studies. Remarkably, a P1' glycine and P2` proline are among the most enriched residues in human caspase-1 targets. This supports our hypothesis that caspase-1 cleaves GSDMA in non-mammals. We added the following to the results section: “Additionally, the P1' residue in amphibian, bird and reptile GSDMA was often a glycine, and the P2' residue was often a proline, especially in birds with FASD/FVSD tetrapeptides (Fig. 2B). A small P1' residue is preferred by all caspases. By using a peptide library, glycine has been determined to be the optimal P1' residue for caspase-1 and caspase-4. Further, in a review of the natural substrates of caspase-1, glycine was the second most common P1' residue, and proline was the most common P2' residue. These preferences were not observed for caspase-9.”

      Finally, I would like the authors to at least explain why the cell viability assays were done in 293T cells while the micrographs were done in HeLa cells. Why not show both experiments for both cell types?

      In the paper we used 293T cells and HeLa cells as generic cell types that have distinct benefits. In general, we used 293T/17 cells for experiments where high transfection efficiency was most critical, as it is simple to achieve 90% or higher transfection efficiency in this line. However, 293T cells have poor spreading in culture and thus are not as useful for morphologic studies. 293T/17 cells do display pyroptotic ballooning upon gasdermin activation, however, the images are less pronounced in comparison to other cell types that have more distinct morphology. Therefore, we used HeLa cells for the microscopy experiments because they are more adherent and larger than 293T/17s which make for easier visualization of pyroptotic ballooning. We have added the following statement to the text to make our rationale for the use of different cell line more apparent: “In these experiments, 293T/17s were used for their high transfection efficiency, and HeLas were used for microscopy studies for their larger size and improved adherence.”

      There are a number of minor points related to language and presentation:

      • the expressions "pathogens contaminate the cytosol", "mammals can encode..", "an outsized effect" are unusual and might be rephrased.

      We changed these to:

      “manipulate the host cell, sometimes contaminating the cytosol with pathogen associated molecular patterns, or disrupting aspects of normal cell physiology”,

      “Only mammals encode GSDMC and GSDMD alongside the other four gasdermins.”,

      and

      “greater effect”

      • in line 87 the abbreviation "GSDMEc" is first used without explanation (of the "c").

      This is an important distinction, as GSDMEc proteins were only recently uncovered. To remedy this, we have added the following text following line 87: “This gasdermin was recently identified as an ortholog of GSDMA.

      It was called GSDMEc, following the nomenclature of other duplications of GSDME in bony fish that have been named GSDMEa and GSDMEb.”

      • line 89 grammar problem.

      Corrected

      • line 186ff the sentence "We believe..." does not appear to make sense.

      We revised the text to make this clear, changing the text to now read “We hypothesized that activating pyroptosis using separate gasdermins for caspase-1 and caspase-3 is a useful adaptation and allows for fine-tuning of these separate pathways. In mammals, this separation depends on the activation of GSDMD by caspase-1 and the activation of GSDME by caspase-3.”

      • many figures use pictures rather than text to represent species groups. These pictures are not always intuitive. As an example, in Figure 6 the 'snake' represents amphibians. After reading the text, I understand that these should probably be the caecilian amphibians, but not every reader might know what these critters look like. In Figure 7, I have no idea what the black blob (2nd image from top) is supposed to be.

      In crafting the manuscript, we found the use of text to denote the various species to be cumbersome. The species silhouettes are a standard graphical depiction used in evolutionary biology, which we think aids readability to the figures. For example, in a paper cited in our manuscript, these same silhouettes were used to depict the evolution of GSDMs (https://doi.org/10.3389/fcell.2022.952015 Figure 1A, Figure 3D, Figure 4G). However, we agree that many readers will not know that caecilians are legless amphibians that resemble snakes in their body morphology, but are not close to snakes by phylogeny. We think it is important to use an image of a caecilian amphibian because the more iconic amphibians (frogs, salamanders) do not encode GSDMA. To increase clarity, we have mentioned the morphology of caecilians in the legend of Figure 2, Figure 6, and Figure 7 when caecilican amphibians are first introduced.

      In Figure 2: “Note, that caecilians morphologically are similar to snakes in their lack of legs and elongated body, however, this is an example of convergent evolution as caecilians are amphibians and are thus more closely related to frogs and salamanders than snakes.”

      In Figure 6: “M. unicolor is an amphibian despite sharing morphological similarity to a snake.”

      In Figure 7: “In caecilian amphibians, which are morphologically similar to snakes, birds, and reptiles, GSDMA is cleaved by caspase-1.”

      The black blob is the mollusk Lingula anatina, which unfortunately has an indistinct silhouette. To clarify this, we have added text to label the images in Figure 7.

      Reviewer #2 (Recommendations For The Authors):

      1. Line 214, in "(Fig. 3-S2) Human and mouse ..", it is necessary to type a period.

      2. Line 238, in the subtitle, GSMA should be amended to GSDMA.

      These have both been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Butkovic et al. perform a genome-wide association (GWA) study on Arabidopsis thaliana inoculated with the natural pathogen turnip mosaic virus (TuMV) in laboratory conditions, with the aim to identify genetic associations with virus infection-related parameters. For this purpose, they use a large panel of A. thaliana inbred lines and two strains of TuMV, one naïve and one pre-adapted through experimental evolution. A strong association is found between a region in chromosome 2 (1.5 Mb) and the risk of systemic necrosis upon viral infection, although the causative gene remains to be pinpointed.

      This project is a remarkable tour de force, but the conclusions that can be reached from the results obtained are unfortunately underwhelming. Some aspects of the work could be clarified, and presentation modified, to help the reader.

      (Recommendations For The Authors):

      • It is important to note that viral accumulation and symptom development do not necessarily correlate, and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader.

      This has been explained better in line 118-120, “Virus performance has been removed.

      • Sadly, only indirect measures of the viral infection (symptoms) are used, and not viral accumulation. It is important to note that viral accumulation and symptom development do not necessarily correlate and that only the former is a proxy for "virus performance". These concepts need to be clear throughout the text, so as not to mislead the reader. The mention of "virus performance" in line 143 is therefore not appropriate, nor is the reference to viral replication and movement in the Discussion section.

      "Virus performance" was removed. Also, the reference to viral replication and movement in the Discussion section has been removed.

      Now we mention: “We did not measure viral accumulation, but note this is significantly correlated with intensity of symptoms within the Col-0 line (Corrêa et al. 2020), although it is not clear if this correlation occurs in all lines.”

      • Since symptoms are at the center of the screen, images representing the different scores in the arbitrary scales should ideally be shown.

      Different Arabidopsis lines would look different and this could mislead a reader not familiar with the lines. In order to make a representation of our criteria to stablish the symptoms, we believe that a schematic representation is clearer to interpret. Here are some pictures of different lines showing variating symptoms:

      Author response image 1.

      • Statistical analyses could be added to the figures, to ease interpretation of the data presented.

      Statistical analysis can be found in methods. We prefer to keep the figure legend as short as possible.

      • The authors could include a table with the summary of the phenotypes measured in the panel of screened lines (mean values, range across the panel, heritability, etc.).

      These data are plotted in Fig. 1. We believe that repeating this information in tabular form would not contribute to the main message of the work. Phenotype data and the code to reproduce figure 1 are available at GitHub (as stated in Data Availability), anyone interested can freely explore the phenotypes of the screened lines.

      • The definition of the association peak found in chromosome 2 could be explained further: is the whole region (1.5 Mb) in linkage disequilibrium? How many genes are found within this interval, and how were the five strong candidates the authors mention in line 161 selected? It is also not clear which are these 5 candidates, apart from AT2G14080 and DRP3B - and among those in Table 1 (which, by the way, is cited only in the Discussion and not in the Results section)? Why were AT2G14080 and DRP3B in particular chosen?

      We have replaced Table 1 with an updated Table S1 listing all genes found within the range of significant SNPs for each peak. We now highlight a subset of these genes as candidate genes if they have functions related to disease resistance or defence, and mentioned them explicitly in the text (lines 173-179. We have explicitly described how this table was constructed in the methods (lines 525-538).

      • Concerning the validation of the association found in chromosome 2 (line 169 and onward): the two approaches followed cannot be considered independent validations; wouldn't using independent accessions, or an independent population (generated by the cross between two parental lines, showing contrasting phenotypes, for example) have been more convincing?

      We aim to compare the hypothesis that the association is due to a causal locus to the null hypothesis that the observed association is a fluke due to, for example, the small number of lines showing necrosis. If this null hypothesis is true then we would not expect to see the association if we run the experiment again using the same lines. An alternative hypothesis is that the genotype at the QTL and disease phenotypes are not directly causally linked, but are both correlated with some other factor, such as another QTL, or maternal effects. We agree that an independent sample would be required to exclude the latter hypothesis, but argue that the former is the more pertinent. We have edited the text to be explicit about the hypothesis we are testing, and altered the language to shift the focus from ‘validation’ to ‘confirming the robustness’ of the association (line 182).

      • Regarding the identification of the transposon element in the genomic region of AT2G14080: is the complementation of the knock-out mutant with the two alleles (presence/absence of the transposon) possible to confirm its potential role in the observed phenotype?

      This could be feasible but we cannot do it as none of the researchers can continue this project.

      • On the comparison between naïve and evolved viral strains: is the evolved TuMV more virulent in those accessions closer to Col-0?

      This is not something we have looked at but would certainly be an interesting follow-up investigation.

      • The Copia-element polymorphism is identified in an intron; the potential functional consequences of this insertion could be discussed. In the example the authors provide, the transposable element is inserted into the protein-coding sequence instead.

      We now state explicitly that such insertions are expected to influence expression; beyond that we can only speculate. We have removed the reference to the insertion in the coding sequence.

      • The authors state in line 398 that "susceptibility is unquestionably deleterious" - is this really the case? Are the authors considering susceptibility as the capacity to be infected, or to develop symptoms? Viral infections in nature are frequently asymptomatic, and plant viruses can confer tolerance to other stresses.

      We have tone down the expression and clarify our wording: “Given that potyvirus outbreaks are common in nature (Pagán et al., 2010) and susceptibility to symptomatic infection can be deleterious”

      Additional minor comments:

      • In Table 1, Wu et al., 2018 should refer to DRP2A and 2B, not 3B.

      We have removed Table 1 altogether.

      • Line 126: a 23% increase in symptom severity is mentioned, but how is this calculated, considering that severity is measured in four different categories?

      This is the change in mean severity of symptoms between the two categories.

      • Figure 1F: "...symptoms"

      Fixed.

      • Line 179: "...suggesting an antiviral role..."

      Changed.

      • Lines 288-300: This paragraph does not fit into the narrative and could be omitted.

      It has been removed and some of the info moved to the last paragraph of the Intro, when the two TuMV variants were presented.

      • Lines 335-337: The rationale here is unclear since DRP2B will also be in the background - wouldn't DRPB2B and 3B be functionally redundant in the viral infection?

      Our results suggest that DRPB3B is redundant with DRPB2B for the ancestral virus but not for the evolved viral strain. We speculate that the evolved viral isolate may have acquired the capacity to recruit DRPB3B for its replication and hence it produces less symptoms when the plant protein is missing.

      We have spotted a mistake that may have add to the confusion. Originally the text said “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the ancestral, but not the evolved virus”. The correct statement is “In contrast, loss of function of DRP3B decreased symptoms relative to those in Col-0 in response to the evolved, but not the ancestral virus.”  

      Reviewer #2 (Public Review):

      The manuscript presents a valuable investigation of genetic associations related to plant resistance against the turnip mosaic virus (TuMV) using Arabidopsis thaliana as a model. The study infects over 1,000 A. thaliana inbred lines with both ancestral and evolved TuMV and assesses four disease-related traits: infectivity, disease progress, symptom severity, and necrosis. The findings reveal that plants infected with the evolved TuMV strain generally exhibited more severe disease symptoms than those infected with the ancestral strain. However, there was considerable variation among plant lines, highlighting the complexity of plant-virus interactions.

      A major genetic locus on chromosome 2 was identified, strongly associated with symptom severity and necrosis. This region contained several candidate genes involved in plant defense against viruses. The study also identified additional genetic loci associated with necrosis, some common to both viral isolates and others specific to individual isolates. Structural variations, including transposable element insertions, were observed in the genomic region linked to disease traits.

      Surprisingly, the minor allele associated with increased disease symptoms was geographically widespread among the studied plant lines, contrary to typical expectations of natural selection limiting the spread of deleterious alleles. Overall, this research provides valuable insights into the genetic basis of plant responses to TuMV, highlighting the complexity of these interactions and suggesting potential avenues for improving crop resilience against viral infections.

      Overall, the manuscript is well-written, and the data are generally high-quality. The study is generally well-executed and contributes to our understanding of plant-virus interactions. I suggest that the authors consider the following points in future versions of this manuscript:

      1. Major allele and minor allele definition: When these two concepts are mentioned in the figure, there is no clear definition of the two words in the text. Especially for major alleles, there is no clear definition in the whole text. It is recommended that the author further elaborate on these two concepts so that readers can more easily understand the text and figures.

      We agree that the distinction between major/minor alleles and major/minor associations in our previous manuscript may have been confusing. In the current manuscript we now define the minor allele at a locus as the less-common allele in the population (line 167). We have removed references to major/minor associations, and instead refer to strong/weak associations.

      1. Possible confusion caused by three words (Major focus / Major association and major allele): Because there is no explanation of the major allele in the text, it may cause readers to be confused with these two places in the text when trying to interpret the meaning of major allele: major locus (line 149)/ the major association with disease phenotypes (line 183).

      See our response to the previous comment.

      1. Discussion: The authors could provide a more detailed discussion of how the research findings might inform crop protection strategies or breeding programs.

      We would prefer to restrain speculating about future applications in breeding programs.

      (Recommendations For The Authors):

      1. Stacked bar chart for the Fig 1F. It is recommended that the author use the form of a stacked bar chart to display the results of Fig 1F. On the one hand, it can fit in with the format of Fig 1D/E/G, on the other hand, it can also display the content more clearly.

      We think the results are easier to interpret without the stacked bar chart.

      1. Language Clarity: While there are no apparent spelling errors, some sentences could be rewritten for greater clarity, especially when explaining the results in Figure 1 and Figure 2.

      We have reviewed these sections and attempted to improve clarity where that seemed appropriate.

      There are some possibilities to explore in the future. For example: clarity of mechanisms for the future. While the study identifies genetic associations, it lacks an in-depth exploration of the underlying molecular mechanisms. Elaborating on the mechanistic aspects would enhance the scientific rigor and practical applicability of the findings.

      Yes, digging into the molecular mechanisms is an ongoing task and will be published elsewhere. It was out of the scope of this already dense manuscript.  

      Reviewer #3 (Public Review):

      Summary of Work

      This paper conducts the largest GWAS study of A. thaliana in response to a viral infection. The paper identifies a 1.5 MB region in the chromosome associated with disease, including SNPs, structural variation, and transposon insertions. Studies further validate the association experimentally with a separate experimental infection procedure with several lines and specific T-DNA mutants. Finally, the paper presents a geographic analysis of the minor disease allele and the major association. The major take-home message of the paper is that structural variants and not only SNPs are important changes associated with disease susceptibility. The manuscript also makes a strong case for negative frequency-dependent selection maintaining a disease susceptibility locus at low frequency.

      Strengths and Weaknesses

      A major strength of this manuscript is the large sample sizes, careful experimental design, and rigor in the follow-up experiments. For instance, mentioning non-infected controls and using methods to determine if geographic locus associations were due to chance. The strong result of a GWAS-detected locus is impressive given the complex interaction between plant genotypes and strains noted in the results. In addition to the follow-up experiments, the geographic analysis added important context and broadened the scope of the study beyond typical lab-based GWAS studies. I find very few weaknesses in this manuscript.

      Support of Conclusions

      The support for the conclusions is exceptional. This is due to the massive amount of evidence for each statement and also due to the careful consideration of alternative explanations for the data.

      Significance of Work

      This manuscript will be of great significance in plant disease research, both for its findings and its experimental approach. The study has very important implications for genetic associations with disease beyond plants.

      (Recommendations For The Authors):

      Line 41 - Rephrase, not clear "being the magnitude and sign of the difference dependent on the degree of adaptation of the viral isolate to A. thaliana."

      Now it reads: “When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants, where the scale of the difference and the direction of change between the symptomatology of mutant and wild-type plants depends on the degree of adaptation of the viral isolate to A. thaliana.”

      Line 236 - typo should read: "and 21-fold"

      Changed.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      REVIEWER #1:

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities?

      ZMYND8 is recruited to chromatin via its Bromo, PHD, and PWWP domains which recognize H3K4me1 and/or H3K14ac marks. Methyl marks on H3K4 are regulated by several lysine methyltransferases (e.g., MLL family and SETD1A/B) and demethylases (e.g., KDM5A-D) while H3K14ac is regulated by GCN5/PCAF, p300/CBP and/or Myst3. ZMYND8 also recruits histone deacetylases to chromatin including members of the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex, HDAC1 and HDAC2. NuRD primarily deacetylates H3K27ac marks, however it is possible other acetyl moieties are affected by this complex.

      Using ChIP-seq, we now show that Zmynd8-cKO cardiomyocytes retain H3K27ac marks at misexpressed genes. Interestingly, while some of these genes have altered H3K27ac at their promoters (and therefore have full-length misexpressed transcripts; i.e., Casq1, Cdh16) other genes (e.g., Lamb3, Chst3) show changes in H3K27ac in the middle of the gene and this tracks with gene expression changes. We interpret this unusual transcript and H3K27ac pattern as evidence of potential ZMYND8-regulated intragenic enhancer elements. We include the following in our resubmission:

      1. Figure 5 which shows changes in H3K27ac levels at different genes, showing examples of genome browser tracks at the following genes Casq1, Cdh16, Camk1g, and Chst3.
      2. Supplemental Figure S5 showing H3K27ac and H3K27me3 marks at the cardiac myosin locus (i.e., Myh6 and Myh7) and surrounding genes in control and Zmynd8-cKO * We also show retention of H3K27ac at the Zmynd8 gene in Zmynd8-cKO cardiomyocytes, again supporting an autoregulatory mechanism of Zmynd8 *expression.
      3. An additional section in Results titled “H3K27 acetylation marks are retained at specific loci in Zmynd8-cKO cardiomyocytes”
      4. New “ChIP-seq and Analysis” section in Materials and Methods
      5. An updated model in Figure 6 that includes ZMYND8’s activities in modulating H3K27ac levels This first analysis on H3K27ac and H3K27me3 deposition in Zmynd8-cKO cardiomyocytes is not comprehensive and genome-wide analysis on these datasets will ultimately be performed in combination with additional datasets including ZMYND8 ChIP-seq from isolated cardiomyocytes. However, given the pertinence to ZMYND8’s transcriptional activities and in response to this reviewer’s critique, we include this pertinent H3K27ac and H3K27me3 ChIP-seq data.

      Given the newness of this model and multiple isoform issues, the authors should show the entire gel for the westerns in SFigure 1C.

      We now show the entire blots for all western blots in Supplementary Figure 1.

      Nuclear staining is in SFigure 1E (typo in text): most of the staining in the control is non-myocyte and non-nuclear, making the statement about IHC showing depletion less convincing for Nkx lines.

      We have fixed the typo in the text on page 5 line 128 and now correctly refer to this figure as Supplemental Figure S2. To better visualize nuclear ZMYND8 staining in this figure, we now show an adjusted image with increased contrast and brightness settings on both control and Zmynd8-cKO images and added arrowheads to indicate nuclei in the isolated cardiomyocytes. We also note that the flox sites only span the nuclear localization sequence for the protein so cytoplasmic ZMYND8 may still be present in Zmynd8-cKO cells.

      Regarding perinuclear ZMYND8 staining: am I accurate in observing the perinuclear staining is still present in the KO? What do the authors make of this?

      We do not observe perinuclear staining of ZMYND8 in KO cells. In Figure 1C, we believe the reviewer is observing potential staining in the cytoplasm, not perinuclear staining of ZMYND8 that we see in the control Myh6-CreTg/0 cardiomyocytes. We have added yellow arrowheads in Figure 1C to delineate perinuclear ZMYND8 staining we describe in the text.

      What is the protein amount in the Zmynd8fl/+ mice? Do the hearts upregulate the protein to compensate?

      We have added a gel in Supplemental Figure 1 that now shows protein isolated from Myh6-CreTg/0; Zmynd8fl/+ hearts and Myh6-CreTg/0 controls (Supplemental Figure 1C, right gel). It does not appear that Myh6-CreTg/0; Zmynd8fl/+ cardiomyocytes upregulate ZMYND8 to compensate for loss of one allele, as determined by Western blotting. However, our analysis shows differing ratios of the detected bands between conditional heterozygous mice, underscoring the need to further study the different ZMYND8 species present in cardiomyocytes. We state this in the results section (page 5, lines 123-124).

      Do the individual cardiomyocytes hypertrophy in the Zymnd8 cKO mice? Do they proliferate?

      Our analysis of cardiomyocyte morphology does reveal hypertrophy. The results we report include a new observation of variation in cell shape and are likely at least as sensitive as WGA staining which we find to be confounded by sectioning artifacts, cell identity, and position of the sections in the heart. We do not observe changes in H3S10ph staining between wild type and knockout hearts (data not shown) however we acknowledge further analysis of this may be warranted via other cell proliferation markers.

      Regarding this statement: "These results show that ZMYND8 is necessary to prevent the onset of contractile dysfunction that leads to heart failure and death." I think what the authors showed is that loss of ZMYND8 causes contractile dysfunction, heart failure and death.

      We acknowledge the difference in these statements and have now changed the text on page 7, lines 160-162 to “…these results show that loss of ZMYND8 from cardiomyocytes leads to contractile dysfunction, heart failure, and death.”

      The switch like up regulation of skeletal muscle genes is an interesting observation. Do the authors have any evidence how this works? Other studies with EZH2 are mentioned, and if ZYMND8 is in fact acting as a bromodomain, the mechanism might involve regulation of enhancer methylation/acetylation at K27. This is testable, certainly at the target genes the investigators have identified (Casq1 and Tnni2), by ChIP-PCR.

      As described above, we now include ChIP-seq data of H3K27ac and H3K27me3 marks in control and Zmynd8-cKO cardiomyocytes. As the reviewer suggests, there is retention of H3K27Ac marks in cKO cardiomyocytes, suggesting that ZMYND8 is necessary to recruit histone deacetylases to specific loci to remove acetyl moieties from H3K27. Regarding specific skeletal muscle genes, we do find a difference in histone acetylation at the promoter of the Casq1 gene and show this in Figure 5.

      The model in Figure 4C makes sense, but the authors do not present any data to support this molecular mechanism. If the authors ChIP for localization of TFs in KO vs control and/or examine histone marks, they could build support for this model, particularly since they have already identified target genes.

      We have now updated our model in Figure 6 to include ZMYND8’s role in modulating H3K27ac levels at target loci, leading to upregulation of mRNA transcripts. We add consideration of the implications of this in the Discussion.

      Reviewer #1 (Significance (Required)):

      The authors identify ZMYND8 as a bromodomain protein: is there evidence the actions described in this paper involve interaction of ZMYND8 with acetylated lysines? Does this mechanism play a role in ZMYND8's transcriptional regulatory activities? We include new data to demonstrate this. Please see above.

      REVIEWER #2:

      The study is reporting the role of ZMYND8 chromatin factor in the mouse heart. Mutations have been previously identified in genetic studies of atrioventricular septal defects and syndromic congenital cardiac abnormalities. Therefore the authors perform cardiomyocyte specific knockout of exon 4 (with the nuclear localisation signal) using Myh6 and Nkx2.5 cre. Full length protein seems to be removed from the nucleus. The knockout doesn't seem to affect embryonic development, but leads to hypertrophy and premature death. The authors perform transcriptome analysis and find 55 upregulated and 4 downregulated genes that are mainly related to contraction and ion transport. especially they find skeletal muscle proteins including fast-twitch troponin I upregulated. Tnni2 seems to be integrated into the sarcomeres, albeit the antibody staining is not in the expected location (see below). Shape of cardiomyocytes was apparently different, although this is seemingly not related to Tnni2 expression.

      Specific points: - ZMYND8 has been previously linked to atrioventricular septal defects, but the authors do not explore if this is the case also in their model; could the authors please expand

      We have not seen obvious septal defects in any Zmynd8-cKO mice. We now state this explicitly in the Results section on page 7, lines 159-160 and discuss this discrepancy from the observations in humans in our Discussion on page 12. The human study analyzing families carrying Zmynd8 mutations reported a variety of heart malformations in 7 of the 11 individuals. The septal defects observed in these individuals were not consistent and may be incidental to the molecular function of ZMYND8 within cardiomyocytes. One possibility is that these malformations are caused by stress during development, with Zmynd8 mutations sensitizing the heart to these defects. We acknowledge in the discussion that further analyses of septal defects in this knockout model could be useful in the future with more stringent stereoscopic techniques.

      • the initial section is difficult to follow. Especially, the authors seem surprised regarding the size of the bands. They should make clear what the expected band size should be after removal of exon 4 and if this doesn't fit, explore the reasons experimentally if possible.

      Rigorous analyses of the different Zmynd8 isoforms in cardiomyocytes will be a focus of future work as this may explain the mosaicism seen in cKO cardiomyocytes and the discrepancy between TNNI2 expression and cell shape (see below). We have reorganized the section and discuss potential explanations for our observed band sizes.

      • the authors explore the shape of the cardiomyocytes and find cells that are shorter and thicker. It would be meaningful to include other metrics including, sarcomere length, contractility measurements and calcium transients (especially in light of the change ion transporters).

      We agree that an investigation of the effects of the mutation and the skeletal muscle proteins on cellular contractility could be very interesting. Here we have contented ourselves with evaluating the effects at a physiological level through assessment of cardiac function.

      • it is unclear why Tnni2 stains for the M-band (where in fact should be no actin and troponin) and not a typical double band with the H zone excluded (see here for good staining example: https://www.biorxiv.org/content/10.1101/2020.09.09.288977v1.full.pdf). also the staining looks very fuzzy. can the authors provide evidence that the antibody is staining troponin I in skeletal muscle at the correct localisation to demonstrate the specificity of the antibody?

      We thank the reviewer for raising this point and do agree that there are instances where we observe TNNI2 staining colocalizing with MYOM1 staining. After closer examination of our images, we believe we do also see TNNI2 staining between M-lines and attribute this discrepancy to our antibody staining and/or biological differences between cells however, further analysis with better microscopy and immunostaining techniques is warranted. We have added an additional image to Figure 4A and have modified this results section on page 9, lines 217-222.

      • it is interesting why Tnni2 is detectable only in a subfraction of cells, but this remains unexplored. Could this e.g. be right vs left ventricular cardiomyocytes? or is this related to the remaining isoforms of ZMYND8? The authors should try to identify the source of this variability

      We agree that the TNNI2 mosaicism is an interesting phenotype and thank the reviewer for possible explanations. We favor the model of mosaicism being an effect of compensatory mechanisms by other ZMYND8 isoforms and discuss this in the discussion on page 8, line 228-229. This will be a focus of future work.

      • if Tnni2 is unrelated to the changes in hypertrophic phenotype of the cardiomyocytes, then the authors should aim to identify if one of the other differentially regulated proteins might be related (e.g. ion transporter). The experiments above might help to identify this

      We agree that identifying the causal agents of hypertrophy in this model would be interesting. It is however possible that we are simply seeing the expected effect of reduced contractility leading to hypertrophic compensation. Sorting this out will require additional mutant analyses and/or siRNA experiments all of which come with their own caveats and are outside of the scope of this initial analysis. Our aim for this manuscript was to report on the effects of ZMYND8 removal from cardiomyocytes. Additionally, it is certainly possible that phenotypes we report in this article are independent of the gene expression changes we have detected in the mutant and could be caused by other roles for ZMYND8 such as the DNA damage response. We include this possibility in our discussion.

      Reviewer #2 (Significance (Required)):

      Overall the manuscript is interesting in principle - it documents the role of a disease linked protein that hasn't been explored in the heart in detail, however at this point it seems premature and doesn't follow through on a solid detailed analysis.

      The change in transcription profiles and especially the upregulation of skeletal muscle isoforms is intriguing, but should be further explored. There seems a lack of hypothesis and instead the authors analyse Tnni2 and cell shape, but while the cell shape is different they don't find a correlation with Tnni2. so if the authors suggest that cell shape is important (as indeed might be), how is this regulated?

      Our goal for this initial paper is to describe the physiological and molecular phenotypes of the Zmynd8-cKO mouse model. It would be interesting to pursue a study directed at this question, perhaps of cell sorted "fat" and "thin" myocytes, but that would be beyond the scope of this report.

      The study could be of interest to cardiovascular researchers, but needs to be expanded on the points above.

      My expertise is in cardiovascular research

      REVIEWER #3:

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Provide a short summary of the findings and key conclusions (including methodology and model system(s) where appropriate). Please place your comments about significance in section 2.

      The authors found that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. They concluded that ZMYND8 is necessary to maintain appropriate cardiomyocyte gene expression and cardiac function.

      Major comments:

      • Are the claims and the conclusions supported by the data or do they require additional experiments or analyses to support them? The claim that "Zmynd8 is dispensable for cardiac development" is not supported by the lethality of Zmynd8 D/D mice.

      We interpret our observation that viable Nkx2.5-CreTg/0; Zmynd8fl/fl mice are born and grow to adulthood as evidence that Zmynd8 is not necessary for establishment of the cardiac lineage. However, we do agree that labeling Zmynd8 as dispensable is not supported by the experiments using Zmynd8D/D mice. We hypothesize that the lethality of the Zmynd8D/D mice is due to early embryonic events since empty egg sacs were observed at E8.0, however we do agree that ZMYND8’s role in cardiac development cannot be assessed using this line. We state that empty yolk sacs are found in mother uteri 8 days after mating on page 4, lines 94-96.

      • Please request additional experiments only if they are essential for the conclusions. Alternatively, ask the authors to qualify their claims as preliminary or speculative, or to remove them altogether. The claim should be changed into "function of Zmynd8 in cardiac development can not be fully assessed in Zmynd8 D/D mice".

      We agree that the lethality of Zmynd8D/D * mice prevents any analysis of early embryonic roles for the establishment of the cardiac lineage. This is additionally confounded by the fact that other partial-length isoforms of Zmynd8* may still be present in our knockout model. We have modified our interpretation and have further discussed the potential role of ZMYND8 in early cardiac development on page 4, line 96.

      • If you have constructive further reaching suggestions that could significantly improve the study but would open new lines of investigations, please label them as "OPTIONAL". OPTIONAL: What about the phenotype of Nkx2-5 Cre mediated knockout of Zmynd8? Is it more severe than Myh6 Cre mediated knockout? At more earlier embryonic stage when cardiomyocytes are differentiated, are the skeletal muscle developmental genes ectopically upregulated in heart tube?

      This is an interesting observation and deserves further investigation. Our initial analysis of Nkx2.5-CreTg/0; Zmynd8fl/fl mice reveals that these mice do not die earlier than Myh6-CreTg/0; Zmynd8fl/fl mice or have a more severe phenotype. In fact, mice with Nkx2.5-Cre mediated cKO mice live longer than Myh6-Cre mediated cKO mice. We show that these mice do have ZMYND8 depleted from their cardiomyocyte nuclei and ectopically express TNNI2.

      This discrepancy in phenotype has been observed recently in mice lacking Kdm8 (Ahmed et al, 2023) and has been attributed to a lower efficiency of the Nkx2.5-Cre recombinase compared to Myh6-driven Cre.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated time investment for substantial experiments. Yes.

      • Are the data and the methods presented in such a way that they can be reproduced? Yes.

      • Are the experiments adequately replicated and statistical analysis adequate? Yes.

      Minor comments:

      • Specific experimental issues that are easily addressable. Have the female Zmynd8-cKO mice always died before their male siblings been pregnant with heart overload?

      All lifespan data are of non-pregnant females. All mice (i.e., both males and females) used in these analyses were not used for mating. We now explicitly say this in the mouse husbandry section of our Materials and Methods section.

      • Are prior studies referenced appropriately?

      This paper "De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations" should be referenced.

      Thank you. We have referenced this paper (Dias et al. 2022) on page 3, line 61 as well as in the Discussion on page 9, line 211.

      • Are the text and figures clear and accurate? Description of "cardiomegaly, preventing a compact myocardium phenotype, heart enlargement and thinning of the ventricular" should be more accurate and professional. We have changed the following in the text:

      Page 6, line 150 “preventing a compact myocardium phenotype” to “during later stages of cardiac development” on

      Page 6, line 153 “heart enlargement” to “The heart weight of Zmynd8-cKO mice”

      Page 7, line 158 “thinning of the ventricular” to “dilated cardiomyopathy”

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? GSEA analysis of RNA-seq can be used to show the enrichment of cardiac and skeletal genes.

      Because GSEA analysis requires at least three replicates per group to have the appropriate statistical power, we opted to show Gene Ontology analysis using DAVID software.

      Reviewer #3 (Significance (Required)):

      • General assessment: provide a summary of the strengths and limitations of the study. What are the strongest and most important aspects? What aspects of the study should be improved or could be developed? This study show that Zmynd8-cKO mice develop dilated hearts, decreased cardiac function, and illegitimate expression of skeletal muscle genes. However, the genes regulated by Zmynd8 during early developmental stage have not been identified and the functional mechanism of Zmynd8 during heart development remains unclear.

      • Advance: compare the study to the closest related results in the literature or highlight results reported for the first time to your knowledge; does the study extend the knowledge in the field and in which way? Describe the nature of the advance and the resulting insights (for example: conceptual, technical, clinical, mechanistic, functional,...). Genetic mutations of Zmynd8 have been identified in congenital heart diseases with cardiac structural defects. And this study further shows that dysfunction/weaker mutations of Zmynd8 as a reason for dilated cardiomyopathy with decreased function.

      • Audience: describe the type of audience ("specialized", "broad", "basic research", "translational/clinical", etc...) that will be interested or influenced by this research; how will this research be used by others; will it be of interest beyond the specific field? This study shows that dysfunction of Zmynd8 as a reason for dilated cardiomyopathy with decreased function. Researchers of "basic research" and "clinical" may be interested in this study.

      • Please define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. heart development, dilated cardiomyopathy, epigenetics

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors report a novel and simple method to analyze the heterogeneity of various organelles. After imaging a large set of fluorescent-marker-labeled organelles, cluster analysis is adapted for illuminating the dynamics of organelles. Through this novel method, the authors are able to report organelle contact, which previously can only be observed by super-resolution imaging. This is method could significantly accelerate future discoveries at the cellular level. The manuscript is well written and has the potential be published in high-ranking journals, after a minor revision.

      To further demonstrate the unique power of this new method, the authors should test cells under known stimulation altering the dynamics of organelles. For instance, wortmannin can blocks the conversion from early endosomes to late endosomes. By doing that, the potential of this new method will be endorsed.

      Response:

      We thank Reviewer #1 for the positive comments. We will add an experiment using wortmannin to block the process of endocytosis at a specific stage, as part of the experiments analyzing the process of endocytosis.

      **Minor issue:** The authors should include more details about how to avoid signal crosstalk between adjacent fluorescent channels.

      Response:

      In the Methods section, we have added the following sentences to Lines 398-405.

      “In order to avoid signal crosstalk between adjacent fluorescence channels, eight fluorophores with distinct spectral distances were selected, and the samples were irradiated sequentially with lasers in the order from the longest wavelength, i.e., fluorescence from 646 to 731 nm was excited by a 640 nm laser, fluorescence from 569 to 634 nm was excited by a 561 nm laser, fluorescence from 494 to 554 nm was excited by a 488 nm laser, and fluorescence from 411 to 481 nm was excited by a 405 nm laser, as shown in Extended Data Fig. 1b.”

      Reviewer #1 (Significance (Required)):

      The comprehensive monitoring of organelle dynamics through the integration of multi-dimensional parameters can proficiently evaluate the condition and prognosticate the destiny of living cells in response to external stimulations. This new multi-dimensional assay reported in this manuscript represents a huge step towards this goal. Since this new method is simple and powerful, cell biologists will quickly start to use this new method for the study of subcellular dynamics.

      My lab is also developing a similar approach for organelles based on super-resolution imaging. I would like to congratulate the authors for this beautiful work.

      Response:

      We thank Reviewer #1 for the positive comment.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      The manuscript reports a multi-parametric particle-based method for analysis of organelles. The method aims to resolve heterogeneous populations of organelles involved in various cellular processes. They propose to isolate organelles labelled with multiple markers, after homogenization and sonification of the cells, and analyse the resulting particles by fluorescence microscopy using spectral imaging. Afterwards, the authors visualize and analyse the obtained data with dimension reduction techniques.

      Even though an interesting approach, the method and presented applications needs major improvisations before it can prove to be impactful for the field

      I note some possible improvement points below:

      • Initially, I think the current set of cell lines and labels should be extended also to include a wider set. The current limited set raises the question if the method authors report is also applicable to other cell lines, or if it only feasible with overexpressed markers. Including different cell lines with different labels would make the study more convincing and comprehensive.

      Response:

      We thank Reviewer #2 for this constructive comment. Regarding cell types, we will conduct experiments with HEK293T cells in addition to HeLa cells, labeling at least five different types of typical organelles. In our method, as shown in Figure 1a and 5a, we have already used not only overexpressed markers but also fluorescently labeled ligands (EGF-Alexa, transferrin-Alexa) and antibodies against endogenous proteins (anti-PMP70, anti-LAMP1), as well as direct labeling of cell membrane proteins (Alexa-NHS). Therefore, there are no significant limitations with respect to organelle labeling methods.

      • It is surprising that the authors explicitly list already the limitations of fluorescence microscopy and super-resolution microscopy in the second paragraph of their introduction, however present a method fully dependent on fluorescence labelling and imaging methods. Actually their approach takes away the spatial information of FM approaches, and further makes the approach prone to the limitations they state.

      They are also not fully fair about the limitation they state for Electron microscopy, as newly developed approaches (e.g. doi:10.1093/micmic/ozad067.1091;  doi:10.1126/science.aay3134) widely extend the limited field of view and sampling capacity of EM. I recommend the authors to state the potential advantage/superiority of the reported method rather than stating the unclear limitations of the existing powerful methods.

      Response:

      Regarding fluorescence microscopy, it appears that our description was inadequate and misled the reviewers. There is no problem with fluorescence microscopy itself. What we intended to convey was that “when attempting to detect individual organelles ‘in cells’, there are limitations in the resolution of fluorescence microscopy because organelles are densely packed”. We have added this to the text on Line 49. Also, we thank Reviewer #2 for informing us about the high-speed 3D electron microscopy. We have cited the indicated papers in the text at Lines 54-55 and mention that “except for the recently developed high-throughput electron microscopy”.

      • Most organelle markers the isolation of organelles are based on are overexpressed in the cells: endoplasmic reticulum (ER, mTagBFP2 (BFP)-SEC61B), mitochondria (GFP-OMP25 and SNAP-OMP25), and the Golgi (Venus-GS27). This raises significant questions about the native state relevance of the reported results, and how well they represent the endogenous processes.

      Response:

      We will add experiments analyzing the behavior of both endogenous and exogenous markers for the same organelles, for example, anti-LAMP1 antibody and VAMP7-GFP for lysosomes, and anti-PMP70 antibody and PEX16-GFP for peroxisomes.

      • For the application on endosomes, can the authors state what is the new information enabled by their method? They study the very trafficking of EGF and Transferrin, 2 widely used endosomal cargoes with very well characterized trafficking steps, and show they are trafficked through Rab5/7 and Rab11 positive endosomes, respectively. This recapitulates the existing information, however falls short in delivering new insight. The authors can use these cargoes for proof-of-concept, but I would recommend to extend their study with less exploited cargoes to represent the potential of the reported method to deliver new information.

      Response:

      We thank Reviewer #2 for the positive suggestion about the potential of our method to provide new information. However, to demonstrate new biological insights, it would take a lot of time and delay the provision of our methodology, so we would like to submit this manuscript as a Methods paper with the proof-of-concept data.

      Reviewer #2 (Significance (Required)):

      The significance of biochemical and cellular processes being spatially regulated cellular organelles, and the roles of specific organelles in diseases from cancer to neurodegeneration are continuously being discovered and appreciated. Therefore development of methods reporting on the structure and function of organelles is important to accelerate these studies. In the reported method, however, the ultrastructure (as in Fib 1b) and the spatial information of the cellular organelles are inherently lost. The method falls in between a biochemical and a microscopic approach, however the advantages are not clearly portrayed. I recommend the authors to carefully and explicitly state where their method would be the method of choice rather than a biochemistry, mass spectroscopy, or microscopy approach. The authors should critically consider such an experiment as a proof-of-concept case.

      Response:

      We thank Reviewer #2 for the valuable suggestion. We added the following to the Discussion (Lines 267-277).

      “A further potential application of our method would be to measure how the levels of key molecules in an organelle change during its differentiation or maturation. For example, the levels of PI4P and syntaxin 17 change during autophagosome maturation (Shinoda et al. eLife Preprint Review doi.org/10.7554/eLife.92189.1), which can be better demonstrated by this method using multiple markers for each stage of autophagosome formation and maturation, PI4P, and syntaxin17 because autophagosomes at different stages coexist in cells. In such cases, our single-particle analysis method, which examines the state of individual autophagosomes, would be more appropriate than biochemical methods that examine averages. In addition, it is difficult to quantitatively analyze many organelle structures in cells using fluorescence microscopy. Our particle-based analysis method can overcome this problem.”

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      **Comments, suggestions, and questions**

      • I would like to start with a positive suggestion. The authors completely miss out on the opportunity to promote their approach by not relying on any type of fixation. In most multiplexing experiments, the first major challenge is to find antibodies that work well for imaging. The second challenge is then to find antibodies that work well under the same fixation conditions. The authors present a multiplexing approach that is completely independent of fixation. I suggest discussing this in the manuscript and promoting the approach in that regard.

      Response:

      We thank Reviewer #3 for pointing out the advantages of our method. We have added “Our method that is independent of fixation is advantageous for the optimization of the staining condition (Lines 298-299).

      • I am wondering what defines the ‘resolution’ of this approach. I assume it is a combination of the sonication time -the longer the cell is sonicated, the smaller the fragments are - and the density of particles on the coverslip. What are the limits here? How does this affect the UMAP analysis? I would encourage the authors to discuss this in the manuscript.

      Response:

      The particle density on a coverslip can be easily reduced by simply diluting the particles in a buffer solution. Therefore, there is no density limit, which is an advantage of a cell-free system. To improve the resolution within a single organelle, for example, to separate distinct subdomains, as the reviewer mentioned, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully, which should affect the UMAP analysis, but we think that these will be future work.

      We do not think that prolonged sonication will affect the UMAP analysis because relative fluorescent signals of each particle would not change. However, as mentioned above, too strong sonication would worsen the signal-to-noise ratio, resulting in poor clustering.

      We have added the above discussion to the Discussion (Lines 288-293).

      “Also, to improve the resolution within a single organelle, for example, to separate distinct subdomains, we can prolong the sonication time to make the particles smaller. However, since this will reduce the signal-to-background ratio and may destroy organelle contacts, we used the sonication conditions as mild as possible. To investigate organelle subdomains and fragile contacts, the sonication conditions need to be optimized carefully.”

      • The only real control the authors present are the correlative light and electron microscopy (CLEM) three images in Figure 1b, which seems very minimalistic for a very central and essential control experiment. How many of these control images did the authors take? Is there possibly a second method for a control experiment to link the fluorescence readout to an organelle fragment (e.g., purification or pulldown)?

      Response:

      Since all the markers we used are well-established, we believe that there is no concern about the fluorescence readouts to the organelle fragments. We have cited the following papers in Lines 84-85.

      SEC61B: Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65, 271–303 (1996).

      OMP25: Horie, C., Suzuki, H., Sakaguchi, M. & Mihara, K. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13, 1615–1625 (2002).

      GS27: Hay, J. C. et al. Localization, Dynamics, and Protein Interactions Reveal Distinct Roles for ER and Golgi SNAREs. J Cell Biol 141, 1489–1502 (1998).

      Fusella, A., Micaroni, M., Di Giandomenico, D., Mironov, A. A. & Beznoussenko, G. V. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi Vesicles Regulates Intra-Golgi Transport. Traffic 14, 568–584 (2013).

      Although it is relatively easy to identify mitochondria-derived particles by EM based on their size and the presence of cristae-like structures (indeed we see many examples), it is more challenging for other organelles (because they appear simple vesicles). This is why we showed only mitochondria in Fig. 1b. Furthermore, the main purpose of this EM image is to show membrane contacts between the ER and mitochondria (related to Fig. 3).

      • Line 37-41: Could the authors please strengthen these statements with an appropriate citation (e.g., a review)?

      Response:

      We have cited the textbook Molecular Biology of THE CELL (the 6th edition, Chapter 12 and Chapter 13) in Lines 37 and 41.

      Response:

      We thank Reviewer #3 for notifying us of these important studies. We have rewritten the sentence on Lines 51-52 to read “Although multicolor imaging has been attempted with super-resolution microscopy (references of the indicated papers), it only partially solves the issue of resolution.”

      • The authors use spectral unmixing to overcome the limit of spectral multiplexing. While this has been demonstrated to work well for less than ten targets, it does not scale to multiplexing experiments with more than ten target species. I suggest that the authors discuss in the discussion part of the manuscript the potential of DNA-based multiplexed imaging, such as CODEX or DNA-PAINT, in combination with the presented approach.

      Response:

      In the Discussion (Lines 295-298), we have added the sentence “Current fluorescent particle detection uses spectral multiplexing, but this method has only been able to detect up to eight colors. Methods such as CODEX or DNA-PAINT with wide-field type illumination could significantly increase the number of targets”.

      Response:

      We thank Reviewer #3 for informing us. We have cited it in Line 72.

      • By using spectral unmixing for multiplexing, this method is limited to confocal due to spectral detection needs and therefore limited in throughput. It would be beneficial if it could work with wide-field type illumination. This could substantially increase the throughput, which is another reason why I think it would be important to discuss sequential multiplexing.

      Response:

      We agree with the Reviewer’s comment. We have added the discussion to Lines 295-298 as described in our response to Reviewer #3, Comment (6).

      • To image contact sites, the authors use split GFP. There have been discussions that split GFP might, in some cases, facilitate the process that is supposed to be measured, in this case, the formation of contact sites. I suggest using at transient version of split GFP, called split fast, for follow-up experiments in the authors’ next papers (https://www.nature.com/articles/s41467-019-10855-0).

      Response:

      We thank Reviewer #3 for providing this information. We will do it as suggested in the next paper.

      • Line 27 & 253: Please drop the term ‘intuitive’ or explain better what you mean by intuitive. For me, UMAP is certainly a very useful tool, but it is not at all what I would describe as intuitive.

      Response:

      We have deleted ‘intuitive’ in all seven places and rewritten them (Lines 27, 43, 58, 72, 180, 231, and 253).

      • Lastly, I want to mention that the authors state they used ChatGPT, DeepL, and DeepL Write for translation from Japanese to English. I appreciate their honesty.

      Response:

      We thank Reviewer #3 for the comment.

      Reviewer #3 (Significance (Required)):

      In the manuscript titled “Organelle Landscape Analysis Using a Multi-parametric-Based Method,” Kurikawa et al.present a method for multi-parametric, particle-based analysis of cellular organelles. After lysing cells, the fractions of the organelles are partially labeled with fluorescently tagged antibodies, while others are already tagged with fluorescent proteins, using six to eight spectrally different fluorescent dyes/proteins. These fractions are subsequently immobilized on a poly-L-lysine-coated coverslip. The authors use spectral unmixing to distinguish these markers. The6-8 multiplexed imaging data is then presented in two-dimensional UMAP space. The authors then use this approach to visualize seven major organelles, transitional sites of endocytic organelles, and contact sites between the endoplasmic reticulum and mitochondria using split GFP.

      The authors present, in my opinion, a conceptually new and interesting approach by combining spectral unmixing for imaging up to eight targets, with organelle fragment imaging, and presenting multidimensional data in two-dimensional Uniform Manifold Approximation and Projection (UMAP) space in this manuscript. They further validated this approach by linking the results of the experiments to results established or at least reported in the literature.

      In general, the manuscript is, in my opinion, a good fit for publication as it presents a conceptionally new approach and an interesting example of applying the UMAP approach, which might be of interest to a broader readership. Therefore, after an appropriate response to my comments, suggestions, and questions (see below), I would recommend this manuscript for publication.

      Response:

      We thank Reviewer #3 for the positive comment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1. Experiments regarding the inducible expression of MukBEF: The authors should provide western blots or rt-qPCR for MukBEF expression at 40 min and 2H.

      We provide now a western blot of MukB in non-induced and induced conditions as Figure 1-figure supplement 1D.

      1. Experiments with RiTer and LiTer constructs:<br /> a. Authors compare the mukB deletion against wild type (Fig. 2C). It would be additionally informative if these comparisons are made for matP deletion and wild type as well. This will strengthen the conclusion that long-range interactions in ter do increase in the absence of matP.

      We agree that the matP mutant may help the reader to compare the effect of the translocation in different backgrounds and have added it to the figure. This strengthens the conclusion that longrange interactions in ter do increase in the absence of matP in a rearranged chromosome, as observed in the WT configuration (Lioy et al., 2018).

      b. Additionally, in Fig. 2C, it appears that there is some decrease in long-range interactions in the absence of mukB in ter1 (Riter). Is this a significant change?

      The change observed is not significant. The results shown in Fig. 2C have been obtained using a 3C approach, which generated slightly more variability than Hi-C. Furthermore, we measured the range of contacts for the segment corresponding to Ter1 in RiTer (matS12-matS28), in different genetic contexts and different configurations. The results show that this level of variation is not significant (see graph below reporting two independent experiments).

      Author response image 1.

      Range of interactions measured on the interval matS12-matS18 in different genetic contexts and different configurations (MG1655 WT(1 and 2), ∆mukB, RiTer, RiTer ∆mukB).

      1. Experiments with various matS organizations: These experiments are interesting and an important part of the paper. However, it is rather hard to visualize the chromosome conformations in the strains after transposition. To aid the reader (particularly with panel E), authors can provide schematics of the chromosome conformations and anticipated/ observed chromosomal interactions. Circular interaction plots would be useful here.

      We thank the reviewer for this interesting remark; we have tried in the past to represent these interactions using a circular representation (see for example the web site of Ivan Junier; https://treetimc.github.io/circhic/index.html). However, this representation is not trivial to apprehend for nonspecialists, especially in strains with a rearranged chromosome configuration. Nonetheless, we have added graphical circular representations of the chromosome configurations to help the reader.

      1. ChIP experiments:<br /> a. This section of the manuscript needs to be further strengthened. It is not clear whether the ChIP signal observed is significant (for example at T10 or T20 min, the peak value does not appear to go above 1.1 fold. Can the authors be sure that this small increase is not simply a consequence of increase in copy number of the loci around the origin, as replication has initiated?

      The basal value of the ChIP on the non-replicated sequences (between 0-3.5 Mb for 10 minutes and 0-3 Mb for 20 minutes) is 0.8 and 0.7, respectively, whereas the mean value of the replicated sequence is 1.6 and 1.45. So the enrichment observed for these two points is about 2-fold, not 1.1 and it is 4 fold for t40min. These values were obtained by dividing the number of normalized reads in the ChIP (the number of reads at each position divided by the total number of reads) by the normalized reads of the input. Therefore, the increase in copy number is considered in the calculation. Furthermore, we added a supplementary figure (Figure Sup9) in which we performed a ChIP without tags on synchronized cells, and in this case, we did not observe any enrichment triggered by replication.

      b. Authors make a conclusion that MukB loads behind the replication fork. However, the time resolution of the presented experiments is not sufficient to be certain of this. Authors would need to perform more time-resolved experiments for the same.

      Reviewer 1 is correct; we attempted to discriminate whether the observed enrichment is (i) associated with the replication fork since we observed a decrease in the center of the enrichment at oriC as the maximum enrichment moves away with the replication fork after 20 and 40 minutes, or (ii) associated with the newly replicated sequence. To investigate this, we attempted to induce a single round of replication by shifting the cells back to 40°C after 10 minutes at 30°C. Unfortunately, replication initiation is not immediately halted by shifting the cells to 40°C, and we were unable to induce a single round of replication. To clarify our conclusions, we modified our manuscript to

      “Altogether, these findings indicate that MukBEF is loaded into regions newly replicated either at the replication fork or even further behind it, except in the Ter region from which it would be excluded.”

      c. Authors conclude that in the LiTer7 strain, MukB signal is absent from Ter2. However, when compared with the ChIP profiles by eye across panels in A and B, this does not seem to be significant. In the same results sections, authors state that there is a 3-fold increase in MukB signal in other regions. The corresponding graph does not show the same.

      Rather than relying solely on the enrichment levels, which can be challenging to compare across different strains due to slight variations in replication levels, we believe there is a clear disruption in this profile that corresponds to the Ter2 sequence. Furthermore, this discontinuity in enrichment relative to the replication profile is also observable in the WT configuration. At T40min, MukB ChIPseq signals halt at the Ter boundary, even though Ter is actively undergoing replication, as evidenced by observations in the input data.

      Regarding the fold increase of MukB, Reviewer 1 is correct; we overestimated this enrichment in the text and have now corrected it.

      d. Authors should provide western blot of MukB-Flag.

      We have added Supplementary Figure 1 D, which contains a Western blot of MukB-Flag.

      1. The bioinformatic analysis of matS site distribution is interesting, but this is not followed upon. The figure (Fig 5) is better suited in the supplement and used only as a discussion point.

      We acknowledge the reviewer's point, but we used this section to attempt to extend our findings to other bacteria and emphasize the observation that even though a few matS sites are necessary to inhibit MukBEF, the Ter domains are large and centered on dif even in other bacteria.

      1. The discussion section is lacking many references and key papers have not been cited (paragraph 1 of discussion for example has no references).

      The possibility that SMC-ScpAB and MukBEF can act independent of replication has been suggested previously, but are not cited or discussed. Similarly, there is some evidence for SMC-ScpAB association with newly replicated DNA (PMID 21923769).

      We have added references to the suggested paragraph and highlighted the fact that MukBEF's activity independent of replication was already known. However, we believe that the situation is less clear for SMC-ScpAB in B. subtilis or C. crescentus. In a similar manner, we found no clear evidence that SMCScpAB is associated with newly replicated DNA in the referenced studies.

      To clarify and enrich the discussion section, we have added a paragraph that provides perspective on the loading mechanisms of SMC-ScpAB and MukBEF.

      1. There are minor typographical errors that should be corrected. Some are highlighted here:

      a. Abstract: L5: "preferentially 'on' instead of 'in'"

      b. Introduction: Para 1 L8: "features that determine"

      c. Introduction: Para 2 L1: please check the phrasing of this line

      d. Results section 2: L1: Ter "MD" needs to be explained

      e. Page 8: Para 2: L6: "shows that 'a'"

      g. Page 13: Para 2: "MukBEF activity...". This sentence needs to be fixed.

      i. Figure 4: "input" instead of "imput"

      We thank Reviewer 1 for pointing out all these grammatical or spelling mistakes. We have corrected them all.

      f. Page 12: Para 2: "Xer" instead of "XDS"? *We added a reference to clarify the term.

      h. Methods: ChIP analysis: Authors state "MatP peaks", however, reported data is for MukB

      This description pertains to the matP peak detection shown in Supplementary Figure 3. We have incorporated this clarification into the text.

      j. Supplementary figure legends need to be provided (currently main figure legends appear to be pasted twice)

      Supplementary figure legends are provided at the end of the manuscript, and we have edited the manuscript to remove one copy of the figure legends.

      k. Authors should ensure sequencing data are deposited in an appropriate online repository and an accession number is provided.

      We waited for the appropriate timing in the editing process to upload our data, which we have now done. Additionally, we have added a data availability section to the manuscript, including sequence references on the NCBI.

      Reviewer #2 (Recommendations For The Authors):

      The authors largely avoid speculation on what might be the physiological relevance of the exclusion of MukBEF (and Smc-ScpAB) from the replication termination region (and the coordination with DNA replication). At this stage it would be helpful to present possible scenarios even if not yet supported by data. The authors should for example consider the following scenario: loop extrusion of a dif site in a chromosome dimer followed by dimer resolution by dif recombination leads to two chromosomes that are linked together by MukBEF (equivalent to cohesin holding sister chromatids together in eukaryotes but without a separase). This configuration (while rare) will hamper chromosome segregation. Is MatP particularly important under conditions of elevated levels of chromosome dimers? Could this even be experimentally tested? Other scenarios might also be entertained.

      Even though we prefer to avoid speculations, we agree that we may attempt to propose some hypotheses to the reader. To do so, we have added a few sentences at the end of our discussion. “We may speculate, based on in vitro observations (Kumar et al., 2022), that MukBEF could interfere with TopIV activity and delay potential chromosome decatenation. Another possibility is that chromosome dimers resolved at the dif site may become trapped in loops formed by MukBEF, thus delaying segregation. But none of these possible scenarios are supported by data yet, and a major challenge for the future is to determine whether and how MukBEF may interfere with one or both of these processes.”

      The manuscript text is well written. However, the labeling of strains in figures and text is sometimes inconsistent which can be confusing (LiTer Liter liter; e.g Riter Fig 2C). For consistency, always denote the number of matS sites in LiTer strains and also in the RiTer strain. The scheme denoting LiTer and RiTer strains should indicate the orientation of DNA segments so it is clear that the engineering does not involve inversion (correct?). Similarly: Use uniform labelling for time points: see T40mn vs 40mn vs T2H vs 2H

      We have reviewed the manuscript to standardize our labeling. Additionally, we have included a schema in Figure 2, indicating the matS numbers at the Ter border to emphasize that the transposition events do not involve inversion.

      matS sites do not have identical sequences and bind different levels of MatP (suppl fig 3). Does this possibly affect the interpretation of some of the findings (when altering few or only a single matS site). Maybe a comment on this possibility can be added.

      We agree with the referee; we do not want to conclude too strongly about the impact of matS density, so we have added this sentence at the end of the section titled 'matS Determinants to Prevent MukBEF Activity':

      “Altogether, assuming that differences in the matS sequences do not modify MatP's ability to bind to the chromosome and affect its capacity to inhibit MukBEF, these results suggested that the density of matS sites in a small chromosomal region has a greater impact than dispersion of the same number of matS sites over a larger segment”

      Figure 5: show selected examples of matS site distribution in addition to the averaged distribution (as in supplemental figure)?

      Figure 5 shows the median of the matS distribution based on the matS positions of 16 species as displayed in the supplementary figure. We believe that this figure is interesting as it represents the overall matS distribution across the Enterobacterales, Pasteurellales, and Vibrionales.

      How do authors define 'background levels' (page 9)in their ChIP-Seq experiments? Please add a definition or reword.

      We agree that the term 'background level' here could be confusing, so we have modified it to 'basal level' to refer to the non-replicating sequence. The background level can be observed in Supplementary Figure 9 in the ChIP without tags, and, on average, the background level is 1 throughout the entire chromosome in these control experiments.

      This reviewer would naively expect the normalized ChIP-Seq signals to revolve around a ratio of 1 (Fig. 4)? They do in one panel (Figure 4B) but not in the others (Figure 4A). Please provide an explanation.

      We thank the referee for this pertinent observation. An error was made during the smoothing of the data in Figure 4A, which resulted in an underestimation of the input values. This mistake does not alter the profile of the ChIP (it's a division by a constant) and our conclusions. We provide a revised version of the figure.

      Inconsistent axis labelling: e.g Figure 4

      Enterobacterals should be Enterobacterales (?)

      KB should be kb

      MB should be Mb

      Imput should be Input

      FlaG should be Flag

      We have made the suggested modifications to the text.

      'These results unveiled that fluorescent MukBEF foci previously observed associated with the Ori region were probably not bound to DNA' Isn't the alternative scenario that MukBEF bound to distant DNA segments colocalize an equally likely scenario? Please rephrase.

      Since we lack evidence regarding what triggers the formation of a unique MukB focus associated with the origin and what this focus could represent, we have removed this sentence.

      Reviewer #3 (Recommendations For The Authors):

      The text is well-written and easy to follow, but I would suggest several improvements to make things clearer:

      1. Many plots are missing labels or legends. (I) All contact plots such as Fig. 1C should have a color legend. It is not clear how large the signal is and whether the plots are on the same scale. (II)<br /> Ratiometric contact plots such as in Fig. 1D should indicate what values are shown. Is this a log ratio?

      As indicated in the materials and methods section, the ratio presented on this manuscript was calculated for each point on the map by dividing the number of contacts in one condition by the number of contacts in the other condition. The Log2 of the ratio was then plotted using a Gaussian filter.

      1. Genotypes and strain names are often inconsistent. Sometimes ΔmukB, ΔmatP, ΔmatS is used, other times it is just mukB, matP, matS; There are various permutations of LiTer, Liter, liter etc.

      These inconsistencies have been corrected.

      1. The time notation is unconventional. I recommend using 0 min, 40 min, 120 min etc. instead of T0, T40mn, T2H.

      As requested, we have standardized and used conventional annotations.

      1. A supplemental strain table listing detailed genotypes would be helpful.

      A strain table has been added, along with a second table recapitulating the positions of matS in the different strains.

      1. Fig. 1A: Move the IPTG labels to the top? It took me a while to spot them.

      We have moved the labels to the top of the figure and increased the font size to make them more visible.

      1. Fig 1C: Have these plots been contrast adjusted? If so, this should be indicated. The background looks very white and the transitions from diagonal to background look quite sharp.

      No, these matrices haven't been contrast-adjusted. They were created in MATLAB, then exported as TIFF files and directly incorporated into the figure. Nevertheless, we noticed that the color code of the matrix in Figure 3 was different and subsequently adjusted it to achieve uniformity across all matrices.

      7, Fig 1C: What is the region around 3 Mb and 4 Mb? It looks like the contacts there are somewhat MukBEF-independent.

      The referee is right. In the presence of the plasmid pPSV38 (carrying the MukBEF operon or not), we repeatedly observed an increase of long range contacts around 3 Mb. The origin of these contacts is unknown.

      1. Fig 1D: Have the log ratios been clipped at -1 and 1 or was some smoothing filter applied? I would expect the division of small and noisy numbers in the background region to produce many extreme values. This does not appear to be the case.

      The referee is right, dividing two matrices generates a ratio with extreme values. To avoid this, the Log2 of the ratio is plotted with a Gaussian filter, as described before (Lioy et al., 2018).

      1. Fig 1E: I recommend including a wild-type reference trace as a point of reference.

      We have added the WT profile to the figure.

      1. Fig 2: I feel the side-by-side cartoon from Supplemental Fig. 2A could be included in the main figure to make things easier to grasp.

      We added a schematic representation of the chromosome configuration on top of the matrices to aid understanding.

      1. Fig. 2C: One could put both plots on the same y-axis scale to make them comparable.

      We have modified the axes as required.

      1. Fig. 3C: The LiTer4 ratio plot has two blue bands in the 3-4.5 Mb region. I was wondering what they might be. These long-range contacts seem to be transposition-dependent and suppressed by MatP, is that correct?

      The referee is right. This indicates that in the absence of MatP, one part of the Ter was able to interact with a distal region of the chromosome, albeit with a low frequency. The origin is not yet known.

      1. Fig. 3E: It is hard to understand what is a strain label and what is the analyzed region of interest. The plot heading and figure legend say Ter2 (but then, there are different Ter2 variants), some labels say Ter, others say Ter2, sometimes it doesn't say anything, some labels say ΔmatS or ΔmatP, others say matS or matP, and so on.

      We have unified our notation and add more description on the legend to clarify this figure :

      “Ter” corresponds to the range of contacts over the entire Ter region, in the WT strain (WT Ter) or in the ΔmatP strain (ΔmatP Ter). The column WT matSX-Y corresponds to the range of contacts between the designated matS sites in the WT configuration. This portion of the Ter can be compared with the same Ter segment in the transposed strain (Ter2). Additionally, the matS20-28 segment corresponds to Ter2 in LiTer9, just as matS22-28 corresponds to Ter2 in LiTer7, and matS25-28 to Ter2 in LiTer4. The range of contacts of this segment was also measured in a ΔmatP or ΔmatS background.”

      1. Fig. 4 and p.9: "Normalized ChIP-seq experiments were performed by normalizing the quantity of immuno-precipitated fragments to the input of MukB-Flag and then divide by the normalized ChIP signals at t0 to measure the enrichment trigger by replication."

      This statement and the ChIP plots in Fig. 4A are somewhat puzzling. If the data were divided by the ChIP signal at t0, as stated in the text, then I would expect the first plot (t0) to be a flat line at value 1. This is not the case. I assume that normalized ChIP is shown without the division by t0, as stated in the figure legend.

      The referee is right. This sentence has been corrected, and as described in the Methods section, Figure 4 shows the ChIP normalized by the input.

      If that's true and the numbers were obtained by dividing read-count adjusted immunoprecipitate by read-count adjusted input, then I would expect an average value of 1. This is also not the case. Why are the numbers so low? I think this needs some more details on how the data was prepared.

      The referee is right; we thank him for this remark. Our data are processed using the following method: the value of each read is divided by the total number of reads. A sliding window of 50 kb is applied to these normalized values to smooth the data. Then, the resulting signal from the ChIP is divided by the resulting signal from the input. This is what is shown in Figure 4. Unfortunately, for some of our results, the sliding window was not correctly applied to the input data. This did not alter the ChIP profile but did affect the absolute values. We have resolved this issue and corrected the figure.

      Another potential issue is that it's not clear what the background signal is and whether it is evenly distributed. The effect size is rather small. Negative controls (untagged MukB for each timepoint) would help to estimate the background distribution, and calibrator DNA could be used to estimate the signal-to-background ratio. There is the danger that the apparent enrichment of replicated DNA is due to increased "stickiness" rather than increased MukBEF binding. If any controls are available, I would strongly suggest to show them.

      To address this remark, a ChIP experiment with a non-tagged strain under comparable synchronization conditions has been performed. The results are presented as Supplementary Figure 9; they reveal that the enrichment shown in Figure 4 is not attributed to nonspecific antibody binding or 'stickiness’.

      1. Fig. 4A, B: The y-axes on the right are unlabeled and the figure legends mention immunoblot analysis, which is not shown.

      We labeled the y-axes as 'anti-Flag ChIP/input' and made corrections to the figure legend.

      1. Fig. 4B: This figure shows a dip in enrichment at the Ter2 region of LiTer7, which supports the authors' case. Having a side-by-side comparison with WT at 60 min would be good, as this time point is not shown in Fig. 4A.

      Cell synchronization can be somewhat challenging, and we have observed that the timing of replication restart can vary depending on the genetic background of the cells. This delay is evident in the case of LiTer7. To address this, we compared LiTer7 after 60 minutes to the wild type strain (WT) after 40 minutes of replication. Even though the duration of replication is 20 minutes longer in LiTer7, the replication profiles of these two strains under these two different conditions (40 minutes and 60 minutes) are comparable and provide a better representation of similar replication progression.

      1. Fig. 4C: Highlighting the position of the replication origin would help to interpret the data.

      We highlight oriC position with a red dash line

      1. Fig. 4C: One could include a range-of-contact plot that compares the three conditions (similar to Fig. 1E).

      We have added this quantification to Supplemental Figure 8

      1. Supplemental Fig. 2A: In the LiTer15 cartoon, the flanking attachment sites do not line up. Is this correct? I would also recommend indicating the direction of the Ter1 and Ter2 regions before and after recombination.

      In this configuration, attB and attR, as well as attL and attB', should be aligned but the remaining attR attL may not. We have corrected this misalignment. To clarify the question of sequence orientation, we have included in the figure legend that all transposed sequences maintain their original orientation.

      1. Supplemental Fig. 3: One could show where the deleted matS sites are.

      We added red asterisks to the ChIP representation to highlight the positions of the missing matS.

      1. Supplemental Fig. 3B: The plot legend is inconsistent with panel A (What is "WT2")?

      We have corrected it.

      1. Supplemental Fig. 3C: The E-value notation is unusual. Is this 8.9 x 10^-61?

      The value is 8.9 x 10-61; we modified the annotation.

      23) Abstract: "While different features for the activity of the bacterial canonical SMC complex, SmcScpAB, have been described in different bacteria, not much is known about the way chromosomes in enterobacteria interact with their SMC complex, MukBEF."

      Could this be more specific? What features are addressed in this manuscript that have been described for Smc-ScpAB but not MukBEF? Alternatively, one could summarize what MukBEF does to capture the interest of readers unfamiliar with the topic.

      We modified these first sentences.

      1. p.5 "was cloned onto a medium-copy number plasmid under control of a lacI promoter" Is "lacI promoter" correct? My understanding is that the promoter of the lacI gene is constitutive, whereas the promoter of the downstream lac operon is regulated by LacI. I would recommend providing an annotated plasmid sequence in supplemental material to make things clearer.

      We modified it and replaced “ lacI promoter” with the correct annotation, pLac.

      1. p. 5 heading "MukBEF activity does not initiate at a single locus" and p. 6 "Altogether, the results indicate that the increase in contact does not originate from a specific position on the chromosome but rather appears from numerous sites". Although this conclusion is supported by the follow-up experiments, I felt it is perhaps a bit too strong at this point in the text. Perhaps MukBEF loads slowly at a single site, but then moves away quickly? Would that not also lead to a flat increase in the contact plots? One could consider softening these statements (at least in the section header), and then be more confident later on.

      We used 'indicate' and 'suggesting' at the end of this results section, and we feel that we have not overreached in our conclusions at this point. While it's true that we can consider other hypotheses, we believe that, at this stage, our suggestion that MukBEF is loaded over the entire chromosome is the simplest and more likely explanation.

      1. p.7: "[these results] also reveal that MukBEF does not translocate from the Ori region to the terminus of the chromosome as observed with Smc-ScpAB in different bacteria."

      This isn't strictly true for single molecules, is it? Some molecules might translocate from Ori to Ter. Perhaps clarify that this is about the bulk flux of MukBEF?

      At this point, our conclusion that MukBEF does not travel from the ori to Ter is global and refers to the results described in this section. However, the referee is correct in pointing out that we cannot exclude the possibility that in a WT configuration (without a Ter in the middle of the right replicore), a specific MukBEF complex can be loaded near Ori and travel all along the chromosome until the Ter. To clarify our statement, we have revised it to 'reveal that MukBEF does not globally translocate from the Ori region to the terminus of the chromosome.' This change is intended to highlight the fact that we are drawing a general conclusion about the behavior of MukBEF and to facilitate its comparison with Smc-ScpAB in B. subtilis.

      1. p. 10: The section title "Long-range contacts correlate with MukBEF binding" and the concluding sentence "Altogether, these results indicate that MukBEF promotes long-range DNA contacts independently of the replication process even though it binds preferentially in newly replicated regions" seem to contradict each other. I would rephrase the title as "MukBEF promotes long-range contacts in the absence of replication" or similar.

      We agree with this suggestion and have used the proposed title.

      1. p. 13: I recommend reserving the name "condensin" for the eukaryotic condensin complex and using "MukBEF" throughout.

      We used MukBEF throughout.

    1. Author Response

      We appreciate your comments and also thanks to the reviewers for providing valuable feedback and recommendations. For most of the recommendations, we will respond in the revised version, which will provide more information for readers to understand and apply the study. For some of the recommendations, we can give quick responses as follows:

      Reviewer #2 (Public Review):

      The differences between passive and active immunolabeling, as well as photobleaching data, should be addressed for a comprehensive understanding.

      In passive immunolabeling, antibodies penetrate and achieve their targets merely via diffusion, without any additional force. In contrast, active immunolabeling utilizes an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process (i.e., one day vs. 2 months for a whole mouse brain). In our study, the samples we were dealing with were centimeter-sized; therefore, we employed only active electrophoretic immunolabeling (details provided in Materials and Methods). However, for laboratories that do not possess adequate devices or handle small specimens, they can employ passive immunolabeling instead. As for the photobleaching data, we will provide it in the revised version.

      The compatibility of MOCAT with genetically encoded fluorescent proteins remains unclear and warrants further investigation.

      We agree with the possibility that the encoded fluorescent proteins will be affected. Since there is evidence that fluorescence can be quenched by xylene and alcohol, which are two organic solvents used in paraffin processing, we think boost immunolabeling is necessary for observing genetically encoded fluorescent proteins. We also pointed out this limitation in the Discussion:

      “Fourth, endogenous fluorescence—such as GFP, YFP, and tdTomato—may be quenched during paraffin processing and thus need to be visualized by means of additional immunolabeling.”

      However, the extent to which endogenous fluorescence will be quenched during the paraffin processing and MOCAT procedure, and how much boost labeling can rescue, is worth investigating for broadening the application of MOCAT. We will provide it in the revised version.

      The composition of NFC1 and NFC2 solutions for refractive index matching should be provided.

      Since NFC1 and NFC2 are commercial products from Nebulem (Taiwan), the composition is non-disclosable. However, the refractive index of NFC1 and NFC2 is 1.47 and 1.52, respectively.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      We thank the referee for the positive review.

      Reviewer #2 (Public review):

      We thank the referee for his/her constructive comments

      1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.

      We believe our study is valuable in providing strong evidence that eIF2A does not functionally substitute for eIF2 in tRNAi recruitment even when eIF2 function is impaired, and in showing that it does not contribute to translational control by uORFs or IRESs, thus ruling out the most likely possibilities for its function in yeast based on studies of the mammalian factor. We agree that the function of yeast eIF2A remains to be identified; however, we think this should be regarded as a limitation rather than a weakness in experimental design or data obtained in the current study.

      1. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A).

      We did not embark on this because only 17 of the 32 transcripts showing TE reductions in Fig. 3A showed a pattern of TE changes consistent with a conditional requirement for eIF2A under conditions of reduced eIF2 function, exhibiting greater TE decreases when both eIF2 function was impaired by phosphorylation and eIF2A was eliminated from cells. Moreover, we could validate this conditional eIF2A dependence by LUC reporter for only a single mRNA, HKR1.

      Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).

      We have analyzed the effects of deleting eIF2A on ribosome pausing at individual codons by calculating tri-peptide pause scores from our ribosome profiling data. The results shown in new Fig. 7 reveal that eIF2A plays no discernible role in stimulating the rate of decoding of any three-codon combinations.

      1. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.

      We agree and included this stipulation in the DISCUSSION, while at the same time noting that the native mRNAs were examined in the orthogonal assay of polysome distributions.

      1. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Alternative wording for this point should be considered.

      We agree and revised text in the DISCUSSION to read: “A possible limitation of our LUC reporter analysis in Fig. 3D was the lack of 3’UTR sequences of the cognate transcripts, which might be required to observe eIF2A dependence. Given that native mRNAs were examined in the orthogonal assay of polysome profiling in Fig. 3E, the positive results obtained there for SAG1 and SVL3 in addition to HKR1 should be given greater weight. Nevertheless, our findings indicate a very limited role of yeast eIF2A in providing a back-up mechanism for Met-tRNAi recruitment when eIF2 function is diminished by phosphorylation of its α-subunit.”

      1. For Figure 3D, it would be worth considering testing the #-marked genes (in Figure 3C) in this set up.

      Actually, we did test 10 of the 17 mRNAs marked with “#”s in the reporter assays of Fig. 3C, which had been noted in the Fig. 3C legend.

      1. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.

      At the first occurrence of a notched box plot (Fig. 2D), we explained in the main text that in all such plots, when the notches of different boxes do not overlap, their median values differ significantly with a 95% confidence level. In cases where overlaps between notches is difficult to assess by eye, we added the results of Mann-Whitney U tests with the p values indicated by asterisks, as explained in the legends. We added results of additional Mann-Whitney U tests to such box plots in Figs. 3B, 6A-C, and 6-supp. 1E & G and mentioned this in the corresponding legends.

      Reviewer #2 (Recommendations For The Authors):

      The first section of "Yeast eIF2A does not play a prominent role as a functional substitute for eIF2 in the presence or absence of amino acid starvation" can be subdivided into a couple of sections for better readability.

      Done.

      Although the authors have used SM to induce ISR in yeasts previously, the validation of eIF2alpha phosphorylation in Western blot would be helpful for readers. Also, it should be worth testing whether eIF2alpha phosphorylation was properly induced in eIF2A KO cells.

      The translational induction of GCN4 mRNA, which we have documented in WT and eIF2A∆ cells, provides a quantitative read-out of eIF2 functional attenuation superior to determining the proportion of eIF2α that is phosphorylated.

      For Figure 2B, the Venn diagram that shows the overlap between TE-changes genes in WT_SM/WT and those in eIF2A∆_SM/eIF2A∆ would be helpful (although a list was provided by the source data).

      The Venn diagram has been provided in a new figure, Figure 2-figure supplement 1B.

      For Figures 1C and 5A-B, the depiction of the positions of uORFs within the orange gene region would be helpful for readers.

      Done.

      For Figure 4A-C, the depiction of the IRES regions (if known) within the orange gene region would be helpful for readers.

      Done for the URE2 IRES, whose location is known.

      For Figures 1C, 4A-C, and 5A-B, the y-axis should have a label/scale.

      Added.

      For Figure 3C, the definition of #-marked genes should be concretely described (e.g., value range) in the legend.

      Added.

      For Figure 3D-E, the statistical test has been only shown in a couple of data. A full depiction of the statistical results for all the data sets may be helpful for readers.

      We explained that when notches in box plots do not overlap, their medians differ with 95% confidence. In cases where overlaps were difficult to discern, we added p values from Mann-Whitney U tests to the relevant box plots.

      For Figure 3E, it would be helpful if the authors could show the UV spectrum of the sucrose density gradient to show the regions isolated for the experiments.

      Added for a representative replicate gradient in the new figure, Figure 3-figure supplement 1.

      Reviewer #3 (Public Review):

      We thank the referee for his/her positive assessment of our study.

      Weaknesses:

      While no role of eIF2A in translation initiation is apparent, the authors do not determine what function eIF2A does play in yeast. Whether it plays a role in regulating translation in a different stress response is not determined.

      We agree that there are many additional possibilities to consider for functions of eIF2A in translation initiation, including different stress situations or mutant backgrounds; however, we regard this as a limitation rather than a weakness in the experimental design and data obtained in the current study in which we examined the most likely possibilities for eIF2A function in yeast based on studies of the mammalian factor.

      Reviewer #3 (Recommendations For The Authors):

      Curiously, the authors indicate that they could not replicate published results for eIF2A's repressor function for URE2, PAB1, or GIC1 translation. This is a little concerning and one wonders if the yeast strain used in the previous study is different in some way from the authors' strain. Did the authors obtain that strain to test it in their assays?

      The same WT and eIF2A∆ strains have been analyzed here and in the two cited studies on yeast IRESs.

      The authors do discuss the fact that eIF2A may function to regulate translation in response to different stresses. It would have been a strength to test an alternative stress in the current study. However, I also appreciate that this could be the subject of a future study.

      Agreed.

      One minor question I have is whether the yeast strains used possess L-A dsRNA virus? While it may not be that this virus would necessarily mask a role of eIF2A-dependent translation, do the authors have any specific thoughts on this? Would different results be obtained if cured strains were used?

      According to Ravoityte et al. (doi: 10.3390/jof8040381), the S. cerevisiae strain we employed, BY4741, harbors L-A-1 dsRNA; however, we have not explored whether curing the virus would alter the consequences of eliminating eIF2A.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements We appreciate the insightful reviewer comments. Both reviewers alluded to the logical lack of connection between two themes in the original paper. Specifically, we showed that N-cad differentially regulates migration in different environments, and that leader and follower cells differ phenotypically, but did not connect the two themes. In this revised version, we've performed additional experiments and undertaken a comprehensive reorganization of both the manuscript and figures. The major changes are outlined below:

      2. Figure 4 A-C has been moved to Figure 6 F-H.

      3. Figure 5 has been moved to Figure S3 F-H.
      4. Figure 6 F has been moved to Figure 7 A.
      5. Figure 6 G-H have been moved to Figure 7 D-E.
      6. Figure 6 I-J have been moved to Figure S5 A-B.
      7. Figure 7 C-F have been moved to Figure S5 C-F.
      8. Added transcriptome profiling of control and N-cad-depleted cells and of leader and follower cells (Figures 6 E, S1 H and S4 C-D, Tables S2 and S3). We have incorporated additional figures (Figure 4 and 5 in the revised manuscript) to support the idea that the amount of N-cad at the cell surface is regulated by endocytic recycling, thereby stimulating glioma migration in the different local environments. Furthermore, our new findings showed that YAP1/TAZ regulates the surface level of N-cad during glioma migration (Figure 8). We trust that these additions contribute to the clarity and robust justification of our paper.

      Similar to other types of tumors, our findings revealed that pediatric high-grade gliomas migrate collectively, possibly contributing to a more aggressive invasion than single cells. In this study, we found that N-cad mediates this collective glioma migration. Interestingly, within these migrating groups, leader and follower cells dynamically interchange positions during migration, accompanied by changes their phenotypic characteristics. This suggests that differences in phenotypes, including N-cad recycling, proliferation and YAP activation, may be predominantly regulated by cell-extrinsic factors rather than being predetermined by genetic or epigenetic factors. Moreover, our new RNA-sequencing results indicate minimal difference between leader and follower cells, except for the upregulation of YAP response and wound healing migration genes in leader cells. Although genomic alterations still possibly encode the leader-follower exchange, our findings strongly suggest that the activation of YAP1 and glioma migration are regulated by the cellular context, specifically where cells are located within the group.

      Contrary to our initial findings suggesting a positive feedback loop between N-cad endocytosis and nuclear YAP1, our revised data indicates that nuclear YAP appears to be independent of N-cad. We observed that homotypic interactions with N-cad present in the surrounding environment, such as neurons (Figure 6 C-D) or N-cad extracellular domain-coated surface (Figure 7 B-C), did not affect nuclear YAP1. However, YAP1/TAZ depletion decreased N-cad expression and altered its localization at the surface (Figure 8). This leads us to propose a revised model where nuclear YAP1 stimulates surface N-cad, thereby facilitating the distinct modes of migration on ECM and neurons (Figure 8 I).

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Kim and colleagues describe the role of N-Cadherin during pediatric glioma migration. They compare cell lines that have similar transcripts but different levels of N-Cadherin protein and find that N-Cadherin levels influence the route of migration - whether it be on ECM or other tissues. They also describe molecular feedback between N-Cadherin and YAP in leader vs follow cells of their systems. The data are clear, well presented, and convincing; and the conclusions described by the manuscript are mostly justified. My major criticism of the manuscript is that the line of questioning undertaken does not appear well justified. At many points, I was left asking "but why are they doing this?" and I could not understand the rationale for some of the experiments that were performed (even if they were performed well). The manuscript opens by validly describing how gliomas are highly invasive, poorly understood and that N-Cadherin was highly expressed in comparison to other adhesion proteins. This opened the path for the questions and experiments performed that contributed to Figures 1-3, which I thought were interesting. From there on, I found the logic of the story unclear and poorly justified. For example, I do not know why leader and follower cells were justified - when it had nothing to do with N-Cadherin which was the focus of the work prior. And then, having rightly concluded in Figure 4 that the data suggested that leader and follower cells dynamically exchange positions rather than being pre-determined, they went onto further figures focusing on differences between leader and follower cells, which left my quite confused. I am likewise confused by the model proposed in that, they authors describe that the difference between leader and follower cells contributes to a nuclear YAP/N-Cad endocytosis feedback loop that feeds into the speed of migration. Yet, the authors describe earlier that leader and follower cells frequently exchange positions, with no evidence that they are pre-determined. How do the authors square these seemingly conflicting points? And further, what is the relevance of this to understanding the differing modes of migration (on ECM or other tissues)? On this issue, I suggest authors re-consider whether the order of figures or logic of the story is appropriate (perhaps consider moving some figures to supplement?), and to clearly justify in the text the elements that are being addressed. Overall, I think the messaging, logic and justification could be use significant improvement; the experiments however are well performed, and the figures are very clear and nicely presented, and I don't have any qualms about them.

      We appreciate your insightful comments, recognizing the need for logical and justifiable improvements in certain sections of our previous manuscript. Please see Section 1, General Statements, for an explanation of changes made.

      Minor Comments

      1. Not required, but the authors may wish to consider putting t=0 pictures of the experiments in the supplement as supportive evidence for the circles of the initial seeding location they show in Fig 1.

      We provide the t=0 images in Figure S1 N and O.

      1. I assume the title of the second results section should say "migration speed" rather than "speed migration"

      The new title of the second results section is “N-cad stimulates and inhibits migration through intercellular homotypic interaction”.

      1. Fig. 4D - Are both example cell pictures leaders? If so, I'm not sure why two have been provided; I'm guessing the bottom set are supposed to be follower cells. If so, please label as appropriate. (And if not, a representative set of pictures from a follower cell should be provided).

      We have enhanced the clarity of the labels. We provide representative high magnification images of leader and follower cells. The updated figure can be found in Figure 5 A.

      1. Figure 5 Legend - the title of this figure is too definitive, and exaggerates further than the main text does, which was correct in saying that the experiments only suggest that N-Cadherin endocytosis might regulate the localisation of b-catenin and p120-catenin. Probably I would go further and say that there is no experimental evidence provided that even suggests that in the first place, and that this is a hypothesis that remains to be tested. The authors should inhibit endocytosis specifically (rather than just depleting N-Cad) and see the effect, to justify their conclusion.

      We appreciated your points and concerns. Following your earlier suggestion, we have moved the figure to the supplementary section (Figure S3 F-H). Moreover, we have addressed the reciprocal regulation of N-cad and catenins by knocking down p120-, β- or α-catenin. Our new findings showed that p120-, β- or α-catenin depletion decrease the amount of N-cad at the cell surface, not steady-state protein level, resulting in decreased migration on astrocytes but increased migration on ECM (see Figure 4). These findings support the idea that catenins play a role in glioma migration according to the environment by altering surface N-cad level. With that, we updated the figure title to “Catenins regulate N-cad surface levels to stimulate or inhibit migration.”

      Reviewer #1 (Significance (Required)):

      The manuscript provides a characterised of invasive glioma migration that was previously lacking. It also provides interesting observations related to the role of N-Cadherin for different modes of migration (on ECM or on tissues) that will be of interest for further exploration. It makes a good advance in terms of addressing a highly invasive cell type that has poor prognosis. I anticipate that now this initial characterisation has been performed, authors and others will be interested in gaining a deeper understanding as to how these two modes of migration are controlled, how there might be interplay between them and how such findings contribute to its highly invasive nature. I have expertise in collective cell migration and directed cell migration.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary In the submitted manuscript, Kim et al. describe various aspects of N-cadherin function in the collective migration of PBT-05 cells, a pediatric high-grade glioma line, on laminin, 3D-matrigel, neurons or astrocytes. N-cadherin promotes the collective migration on neurons or astrocytes, whereas it suppresses the migration on laminin or 3D-matrigel. The authors also show that N-cadherin is actively internalized and recycled in the leader, but not follower, cells of the collective, which induce the nuclear accumulation of YAP/TAZ proteins. YAP/TAZ proteins are shown to regulate the collective migration.

      Thank you for the comments. Please see Section 1, General Statements, for a summary of changes made. Please also note that our new experiments failed to show that N-cad levels or traffic regulate YAP/TAZ nuclear accumulation. Rather, YAP/TAZ are regulated by cell density independent of N-cad, and YAP/TAZ regulate N-cad protein levels and traffic independent of changes in N-cad RNA levels

      Major comments

      1. In Fig. 1G, N-cadherin knockdown seems to affect the distribution of astrocytes. The authors should stain a marker for astrocytes, instead of actin, and the red alone images should be provided.

      Astrocytes were cultured for 4 days to generate 3D scaffolds before adding the glioma spheroid, essentially as described (Gritsenko et al., Histochem Cell Biol, 2017). Co-cultures were stained for human-specific vimentin (glioma) or actin (glioma and astrocytes) (see Figure 1 G and separate channels in new Figure S1 P). There do not appear to be major changes in astrocyte organization outside the migration front, but we lack a way to stain for astrocytes specifically and cannot visualize astrocytes under the glioma cells. It remains possible that astrocytes may be affected differently by contact with control and N-cad-deficient glioma cells. However, we added a new experiment, assaying migration on decellularized astrocyte ECM. While N-cad stimulated migration on astrocytes it inhibited migration on astrocyte ECM (Figures 1 I and J and S1 Q). Thus N-cad stimulates glioma migration on astrocyte cells and not their ECM.

      1. The colocalization between N-cadherin and Rab11 may not be high in Figs. 4F and S2B. It is unclear whether the majority of the internalized N-cadherin is recycled to the plasma membrane. In Fig. S2B, the internalized N-cadherin may be located mainly at the early endosomes before transported to the recycling endosomes (Is it 20 min after the N-cadherin antibody internalization?). First, the authors should analyze the colocalization between the N-cadherin and Rab11 at 30-40 min after the internalization. If the colocalization with Rab11 would be still low at that time point, some of the internalized N-cadherin might be degraded in the lysosomes. To test this possibility, the authors should analyze the colocalization between N-cadherin and LAMP1 under the treatment with a lysosome inhibitor.

      At steady state, N-cad co-localized better with Rab5 than with Rab11 or LAMP1 (Figure 5 C-D). In kinetics experiments, N-cad antibodies were internalized for 40 min. They colocalized better with Rab5 or EEA1 than with Rab11 or LAMP1. When we allowed recycling for an additional 20 min, the surface level of N-cad antibodies partially recovered in leader cells more than follower cells (see Figures 5 G and S3 D). We tested whether treatment with lysosomal inhibitors would increase co-localization of N-cad with Rab11 in recycling endosomes. Surprisingly, however, Chloroquine or Bafilomycin A1 decreased the amount of internalized N-cad antibody in leader and follower cells, and long-term treatment did not increase total N-cad levels. Therefore, the fate of internalized N-cad in follower cells remains unclear.

      1. When N-cadherin is depleted, dissociated single cells are increased, but these cells are not well characterized. A high magnification image of the dissociated single cells is required. In addition, the migration speed of the dissociated single cells should be measured.

      We didn’t quantify single cell migration because only a minority of cells separate from the collective even when N-cad is depleted. Therefore, we quantified migration directionality and speed for cells at or near the front of collective migration (Figure 2 D-I). We have updated the image of single cells, providing representative high-magnification images in Figure S1 N and O.

      1. In Fig. S2D, treatment with Pitstop-2 alone or Dyngo-4a alone is required. Dynamin is also involved in clathrin-independent endocytosis and N-cadherin is reported to be internalized via caveolin-1-mediated endocytosis as well as clathrin-mediated during neuronal migration. It would be better to clarify which type of endocytosis occurs in the leader cells.

      We have removed results showing inhibition of cell migration and N-cad endocytosis by Pitstop-2 and Dyngo-4a from the paper. Treatment with either chemical alone had much less effect on internalization or migration than adding both together (see figure below). This is hard to explain. Pitstop-2 should inhibit clathrin-coated pit formation and Dyngo-4a should inhibit clathrin and caveolin-mediated endocytosis. Caveolin-1 and 2 transcripts were not detected in our cells (Table S2). There may be some other form of clathin-independent endocytosis. Interpretation is also challenging since these inhibitors will inhibit endocytosis of many receptors, not just N-cad. Accordingly, we have removed these results in the revised manuscript.

      1. In Fig. 2, N-cadherin depletion disturbs the migration directionality. Is this a result from disruption of cell polarity? To test this, the position of centrosome or Golgi or lamellipodia in the leader cells should be analyzed. (OPTIONAL)

      We elected not to perform this analysis.

      1. I cannot understand the significance of Fig. 5F and 5G. If the authors would speculate that alpha- and beta-Catenins may transduce the intracellular signaling from the internalized N-cadherin, the authors should perform the knockdown experiments of the Catenins and analyze whether it may affect the nuclear accumulation of YAP/TAZ. (OPTIONAL)

      We agree. In the initial manuscript, we showed that N-cad depletion altered the localization of p120-, β-, and α-catenin (previously shown in Figure 5 F-G). For better clarity and logic, these figures have been moved to Figure S2 H in the revised manuscript. Additionally, to test whether catenins regulate N-cad and YAP1, we depleted p120-, β-, or α-catenin using shRNA. We found that downregulation of p120-, β-, or α-catenin decreased N-cad surface levels, consequently slowing migration on astrocytes and stimulating migration on laminin (Figure 4). In other words, depleting catenins altered migration in parallel with the changes in N-cad surface level. Catenin depletion also increased single-cell dissociation, reduced the crowding of leader and follower cells, and increased nuclear YAP1 (see figure below). These findings suggest that the main role of p120-, β-, or α-catenin is to regulate surface N-cad. Since this result does not support a role for catenins transducing an N-cad signal to YAP1, we have not included it in the paper.

      Minor comments

      1. The quantitative data is required in Fig. 5E.

      Quantitative data from three independent experiment are now presented in Figure S2 G.

      1. Vinculin is associated with the cadherin-catenin complex and it may not be a good loading control (Fig. 3C and 3L).

      The Western blot data has been updated and is now presented in new Figure 3 B and 3 F, with β-tubulin as a loading control.

      **Referees cross-commenting**

      I totally agree with the other Reviewers' comments and evaluation. As the reviewer-1 pointed out, I also think the experiments are well performed, but it would lack logic at least in part (see my comment-6). In addition, as the reviewer-3 pointed out, the linking mechanism of N-cadherin homophilic interaction with YAP/TAZ signaling is important to improve this manuscript

      We hope the revisions have improved the logical flow. We have also added new results showing that YAP/TAZ regulate N-cad protein levels and localization but not N-cad RNA. N-cad is not needed for cell density-dependent regulation of YAP1 localization. The model is shown in Figure 8 I.

      Reviewer #2 (Significance (Required)):

      Strength N-cadherin has multiple function in cancer and neuronal migration, and both positive and negative effects of N-cadherin on cancer cell migration have been reported. In this regard, different behaviors of N-cadherin in the leader and follower cells of the collective are interesting and may explain the controversial previous results.

      Limitation This study reveals various aspects of N-cadherin function in the collective migration of the glioma cell line, but it is unclear whether these findings are applied to pediatric high-grade gliomas in vivo.

      Thus, this study is a potentially important and informative to cell biologists and researchers in cancer biology, although this reviewer also found several weak points that should be improved.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, the authors explore the role of N-cadherin in the migratory/infiltrative behavior of human pediatric brain tumor cells, in light of their surrounding microenvironment. Their in-depth phenotype analysis allows to document the behavior of migrating cells and revisit the concept of leading/follower migratory cells (somehow more commonly applied to endothelial cells). They suspected that the YAP/TAZ pathway might modulate N-cadherin endocytosis and vice versa, using imagery-based cell tracking.

      Major comments

      1. To control for co-culture models, migration should be evaluated on decellularized matrices from astrocyte and neuron cultures.

      We thank for your suggestion. We tested glioma migration on astrocyte-derived decellularized matrices. The mouse astrocytes we used are known to produce various extracellular matrices with a composition similar to Matrigel, except for laminin α5. (Gritsenko et al., J Cell Sci, 2018). N-cad shRNA cells migrated faster on decellularized ECM than control (Figure 1 I-J and S1 Q). This result agrees with N-cad depletion increasing migration on ECM but is opposite to migration on astrocytes.

      1. N-cadherin was stably knocked down with shRNA, which raises the question of adaptative/compensatory mechanisms. First, one could ask what happen in knockout conditions. Similarly, transient siRNA-mediated silencing might help to strengthen the findings. Second, is there any impact of Ncad knock down on alternate adhesive receptors (either cell-cell or cell-ECM). This should be verified with bulk RNAseq.

      Transient knockdown with N-cad siRNA also increased migration on laminin-coated surface (Figure S1 L-M). Unfortunately, N-cad depletion with siRNA was short-lived, precluding its use for long-term assays, like coculture with neurons or astrocytes. To test whether there is any impact of N-cad knockdown on alternative adhesion receptors, we performed RNA-Seq (Figure S1 H, Table S2). We found N-cad depletion did not alter expression of other cell-cell and cell-ECM adhesive receptors except CDH3 (2.8-fold increase compared with 7-fold decrease in CDH2). Integrin expression was unchanged.

      1. It would be interesting to evaluate the impact of N-cadherin/N-cadherin homotypic interactions on YAP/TAZ signaling, using for instance N-cad-coated surface.

      We observed that the homotypic interaction of N-cad with surrounding neurons and astrocytes did not hinder the accumulation of nuclear YAP1 in leader cells (Figure 6 C-D). To further support the idea that N-cad does not directly regulate YAP1 signaling, we have now measured YAP1 localization in cells migrating over N-cad ECD. The new data confirms that N-cad does not directly regulate YAP1 localization (Figure 7 B-C).

      1. along this line, the impact of mechanical cues (stiffness, 2D vs 3D) is not explored.

      We appreciate your suggestion. It is possible that different mechanical and cytoskeletal cues between leader and follower cells affect YAP1 signaling. In this study, we would like to focus more on the role of N-cad-mediated cell adhesions in YAP signaling.

      Minor comments

      1. Levels of N-cadherin expression in normal Astro and Neurons to compare with pediatric brain cancer cells (S1C)

      A new western blot analysis to show N-cad levels in DMG, PHGG and mouse cerebellar neurons and astrocytes has been added to Figure S1 F.

      1. Low versus high density culture conditions should be controlled and its further impact on the YAP/Ncad endocytosis route should be supported experimentally, or to be omitted from their proposed model.

      We previously used different size of micropattern discs to control low or high cell density. Smaller cell clusters, with more edge cells and hence fewer cell-cell interactions, had higher nuclear YAP1 (Figure 7 D-E). We have repeated this experiment, including N-cad ECD antibodies to measure N-cad endocytosis. Smaller cell clusters had higher N-cad antibody internalization (Figure 7 F). Together with our evidence that leader cells have higher YAP1 and more N-cad internalization than followers, and that YAP/TAZ knockdown inhibits N-cad internalization, these results high YAP/TAZ in leader cells regulates N-cad internalization.

      Reviewer #3 (Significance (Required)):

      This paper presents robust image analysis of human pediatric brain tumor migration in the context of the different microenvironment that they might encounter (matrices, neurons, astrocytes). This study brings new concepts on the way N-cadherin might contribute to tumor cell migratory behavior based on the nature of the interactions in which N-cadherin is involved. As a limitation, it remains unclear the mechanism by which N-cadherin endocytosis is driven.

      We now discuss the limitations of the study as follows:

      “The mechanisms by which YAP1 regulates N-cad levels and trafficking remain to be explored. YAP1 is widely expressed in human brain tumors and strongly associated poor survival. Leader cells expressed higher levels of YAP1-response and wound-healing gene transcripts, but transcript levels of N-cad and proteins known to regulate cadherin traffic, such as p120-catenin, Rab5/11 and Rac1, were similar. Therefore, N-cad is likely regulated at the level of protein synthesis or turnover. More endosomal N-cad recycled to the surface of leader than follower cells, implying that follower cells might divert more N-cad for lysosomal degradation, but our attempts to interfere with N-cad endocytosis or degradation specifically were unsuccessful. Further understanding of the mechanism and function of N-cad recycling for glioma cell migration will require cargo-specific ways to selectively regulate endocytosis and recycling”.

    1. but no more so than thevoices of individu

      The authors describe teachers and texts as "the authoritative voice" in the classroom. This is an important power dynamic to be aware of. We may wholeheartedly believe that these voices are no more important than "the voices of individuals", but students are likely going to come to class with assumptions about our power. They may try to conform with the teacher's beliefs in an attempt to be "correct". This is why I think we need to address this power dynamic explicitly and remind students that we're not here to tell them what they need to believe and learn.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We thank the two reviewers for their constructive criticism, which helped to significantly improve our manuscript.

      During the revision process, we had to realize that the localization pattern reported for H. neptunium LmdCN-mCherry was an artifact caused by bleed-through of the BacA-YFP signal in the mCherry channel. More detailed studies showed that the fusion protein was detectable by Western blot analysis but, for unknown reasons, did not produce any fluorescence signal. Therefore, we have now removed the localization data shown in previous Figure 8B,C and Figure 8—figure supplement 1.

      To provide more evidence for a functional interaction between BacA and LmdC in H. neptunium, we have now established an inducible CRISPR interference system for this species and used it successfully to deplete LmdC (new Figure 9A-F). The loss of LmdC causes morphological defects very similar to those observed for the ΔbacA(D) mutant. In line with the physical interaction of BacA with the cytoplasmic region of LmdC observed in vitro, these findings support the hypothesis that the two proteins act in the same pathway. Consistent with the results obtained in H. neptunium, the absence of BacA leads to the delocalization of LmdC in R. rubrum. Moreover, we now provide in vivo evidence for a critical role of the cytoplasmic region of LmdC in the interaction of this protein with BacA in R. rubrum cells (new Figure 11). Together, these new findings strongly support the model that BacA and LmdC form a conserved morphogenetic module involved in the establishment of complex cell shapes in bacteria.

      Please see below for a more detailed explanation of our new results and for our response to the issues raised in the first round of review.

      Reviewer #1 (Public Review)

      In their study, Osorio-Valeriano and colleagues seek to understand how bacterial-specific polymerizing proteins called bactofilins contribute to morphogenesis. They do this primarily in the stalked budding bacterium Hyphomonas neptunium, with supporting work in a spiral-shaped bacterium, Rhodospirillum rubrum. Overall the study incorporates bacterial genetics and physiology, imaging, and biochemistry to explore the function of bactofilins and cell wall hydrolases that are frequently encoded together within an operon. They demonstrate an important, but not essential, function for BacA in morphogenesis of H. neptunium. Using biochemistry and imaging, they show that BacA can polymerize and that its localization in cells is dynamic and cell-cycle regulated. The authors then focus on lmdC, which encodes a putative M23 endopeptidase upstream of bacA in H. neptunium, and find that is essential for viability. The purified LmdC C-terminal domain could cleave E. coli peptidoglycan in vitro suggesting that it is a DD-endopeptidase. LmdC interacts directly with BacA in vitro and co-localizes with BacA in cells. To expand their observations, the authors then explore a related endopeptidase/ bactofilin pair in R. rubrum; those observations support a function for LmdC and BacA in R. rubrum morphogenesis as well.

      An overall strength of this study is the breadth and completeness of approaches used to assess bactofilin and endopeptidase function in cells and in vitro. The authors establish a clear function for BacA in morphogenesis in two bacterial systems, and demonstrate a physical relationship between BacA and the cell wall hydrolase LmdC that may be broadly conserved. The eventual model the authors favor for BacA regulation of morphogenesis in H. neptunium is that it serves as a diffusion barrier and limits movement of morphogenetic machinery like the elongasome into the elongating stalk and/or bud. However, there is no data presented here to address that model and the role of LmdC in H. neptunium morphogenesis remains unclear.

      We hypothesize that BacA establishes a barrier that prevents the movement of elongasome complexes into the stalk, either directly by sterical hindrance and/or indirectly by promoting the formation of an annular region of high positive inner cell curvature that cannot be passed by the elongasome. To test this model, we have now analyzed the localization dynamics of RodZ, a core structural component of the elongasome complex, in wild-type and ΔbacAD cells. We found that wild-type cells show dynamic YFP-RodZ foci whose movement is limited to the mother cell and the nascent bud, with no signal ob-served in the stalk. In ΔbacAD cells, by contrast, the fusion protein is consistently detected in all regions of the cell, including nascent stalks (new Figure 5). These results support the idea that BacA is required to confine the elongasome to the mother cell and bud regions and, thus, set the limits of the different growth zones in H. neptunium. We also attempted to follow the localization dynamics of other elongasome components, such as PBP2, MreC and MreD, but none of the corresponding fluorescent protein fusions was functional.

      In the past, we tried intensively to generate conditional mutants of lmdC, but all attempts to place the expression of this gene under the control of the copper- or zinc-inducible promoters available for H. neptunium were unsuccessful. To clarify the role of LmdC in H. neptunium morphogenesis, we have now established an inducible CRISPR interference system for this species and managed to block the ex-pression of lmdC using an sgRNA directed against the 5' region of its non-coding strand. We observed that cells lacking LmdC show a phenotype very similar to that of the ΔbacA mutant. Together with the finding that the N-terminal cytoplasmic region of LmdC physically interacts with BacA, this result strongly supports the hypothesis that BacA and LmdC act in the same pathway, forming a complex that ensures proper morphogenesis in H. neptunium (new Figure 9).

      The data presented illuminate aspects of bacterial morphogenesis and the physical and functional relationship between polymerizing proteins and cell wall enzymes in bacteria, a recurring theme in bacterial cell biology with a variety of underlying mechanisms. Bactofilins in particular are relatively recently discovered and any new insights into their functions and mechanisms of action are valuable. The findings presented here are likely to interest those studying bacterial morphogenesis, peptido-glycan, and cytoskeletal function.

      Reviewer #2 (Public Review):

      This is an excellent study. It starts with the identification of two bactofilins in H. neptunium, a demonstration of their important role for the determination of cell shape and discovery of an associated endopeptidase to provide a convincing model for how these two classes of proteins interact to control cell shape. This model is backed up by a quantitative characterisation of their properties using high-resolution imaging and image analysis methods.

      Overall, all evidence is very convincing and I do not have many recommendations on how to improve the manuscript.

      In my opinion, there are only two issues that I have with the paper:

      1. The single particle dynamics of BacA is presented as analysed and I would like to give some suggestions how to maybe extract even more information from the already acquired data:

      1.1. Presentation: Figure 5A is only showing projections of single particle time-lapse movies. To convince the reader that it was indeed possible to detect single molecules it would be helpful if the authors present individual snapshots and intensity traces. In case of single molecules these will show step wise bleaching.

      We have now added a supplementary video that shows both time series and intensity traces of individual BacA-YFP molecules (Figure 6—Video 1). It verifies the step-wise bleaching of the particles observed and thus shows that we observe the mobility of single molecules. Moreover, we have now included a supplementary figure that shows all trajectories identified within representative cells. This visualization provides a more comprehensive view of our data and further supports the notion that our analysis is based on the detection of single molecules.

      1.2. Analysis: Figure 5B and Supplement Figure 1 are showing the single particle tracking results, revealing that there are two populations of BacA-YFP in the cell. However, this data does not show if individual BacA particles transition between these two populations or not. A more detailed analysis of the existing data, where one can try to identify confinement events in single particle trajectories could be very revealing and help to understand the behaviour of BacA in more detail.

      We agree that an analysis of the single-molecule traces for transitions between the mobile and static states would help to achieve a more detailed understanding of the polymerization behavior of BacA. We believe that the dynamic formation, reorganization and disappearance of BacA-YFP foci observed by time-lapse analysis (Figure 4) indicates that BacA undergoes reversible polymerization in vivo. A deeper investigation of this aspect is beyond the scope of the present study and will be performed at a later point.

      1. The title of Fig. 3 says that BacA and BacD copolymerise, however, the data presented to confirm this conclusion is actually rather weak. First, the Alphafold prediction does not show the co-polymer, and second, the in vitro polymerisation experiments were only done with BacA in the absence of BacD. Accordingly, the only evidence that supports this is their colocalization in fluorescence microscopy. I suggest either weakening the statement or changing the title adds more evidence.

      To support the idea that BacA and BacD interact with each other, we have now added images of cells producing BacA-YFP or BacD-CFP individually (new Figure 3—figure supplement 1B,C). The results obtained show that Bac-YFP alone still forms filamentous structures, whereas BacD-CFP condenses into tight foci in the absence of its paralog. However, when produced together with BacA-YFP, the two proteins colocalize into filamentous structures, supporting the notion that they interact with each other. However, we agree that it is unclear whether BacA and BacD copolymerize into mixed protofilaments or whether they form distinct protofilaments that then interact laterally to form larger bundles. We have therefore replaced the term “co-polymerize” with “assemble” in the heading of this section.

      Finally, did the authors think about biochemical experiments to study the interaction between the cytoplasmic part of LmdC and the bactofilins? These could further support their model.

      We show the interaction between the cytoplasmic region of H. neptunium LmdC and BacA in Figure 9G,H (previously Figure 8D,E). For technical reasons, it was not possible to synthesize a peptide com-prising the corresponding region of R. rubrum LmdC, so that our in vitro analysis is limited to the H. neptunium proteins.

      To further support the notion that BacA interacts with the cytoplasmic region of LmdC, we have now analyzed the localization behavior of two LmdC variants with amino acid exchanges in the conserved cytoplasmic β-hairpin motif (new Figure 11). Both variants no longer colocalize with BacA and are no longer enriched at the inner cell curve. Interestingly, these exchanges also affect the enrichment of BacA at the inner cell curvature, suggesting that BacA needs to interact with LmdC for proper localization. It is tempting to speculate that BacA polymers have a preferred intrinsic curvature and that the activity of the BacA-LmdC complexes adjusts cell curvature in a manner that facilitates their association with the inner curve.

      Reviewer #1 (Recommendations for The Authors):

      We have the following specific recommendations for the improvement of the manuscript:

      1. Several places would benefit from additional quantitation of data:

      a. Figure 1 and supplements: can cell shape be quantified in a more specific way? (e.g. principle component analysis of shape as in https://onlinelibrary.wiley.com/doi/10.1111/mmi.13218). It looks as if BacD production may partially rescue the bacA shape phenotype?

      We have made considerable efforts to establish methods to quantify morphological changes and protein localization patterns in Hyphomonas neptunium. Since standard software packages, such as Oufti or MicrobeJ, are not able to reliably detect stalks and, thus, typically identify buds as separate cells, we have developed our own analysis software (BacStalk; Hartmann et al, 2020, Mol Microbiol), that is optimized for the detection of thin cellular extensions. However, while this software works very well with wild-type cells, it also fails to recognize amorphous cells with multiple, ill-defined extensions. Given these problems in cell segmentation, it is currently not possible to use principle component analysis to obtain a robust measure of the morphological defects of bactofilin mutants in H. neptunium.

      b. Figures 2-S2b, 7D and 9-S1b - can the area under the peaks be quantified and compared across strains? Visual examination of the spectra makes it difficult to discern differences.

      A direct comparison of the peak areas between strains is not possible, because the absolute values depend on the amount of peptidoglycan used in the muropeptide analyses. It is very difficult to precisely quantify peptidoglycan, which makes it challenging to use equal amounts of material from different strains in the reactions. However, the relative proportion of different muropeptide species, as provided in Figure 2—Dataset 1, faithfully reflects the composition of peptidoglycan and can easily compared between strains.

      c. Figure 9E,F, 9-S4d - BacA and LmdC localization in R. rubrum is very difficult to assess. It does not look linear/filamentous in most cells and is difficult to tell if it is associated with the inner curvature. Can you quantify the position of the signal along the short axis of the cell to better demonstrate that?

      We agree that a better quantification of the distribution of protein along the cell envelope of R. rubrum is required to support the conclusions drawn. To address this issue, we have now used line scans to measure the fluorescence intensities along the inner and outer curve of cells (n=200 per strain) and visualized the data in the form of demographs. The results clearly show an enrichment of BacA and LmdC at the inner curve in wild-type cells and a disruption of this pattern in various mutant backgrounds (new Figures 10F,G,J and 11D,E).

      1. Figure 2-S2A. Does ∆bacD grow better than wild-type? It would also be useful to add growth curves of the bacA complemented strains.

      In the case of H. neptunium growth curves are often misleading, because cells start to aggregate at the late exponential phase due to abundant EPS formation. The degree of cell aggregation also depends on the morphology of cells, because EPS production is limited to the mother cell body, which makes it challenging to compare morphologically distinct mutant strains. We have now performed growth assays for all H. neptunium deletion and complementation strains used in the study and limited the analysis of doubling times to the early and mid-exponential phase, in which cells do not yet form visible aggregates. The results obtained are now included in the new Figure 1F and Figure 1—figure supplement 2D. They show that the doubling times of the different bactofilin mutants are close to that of the wild-type strain.

      1. Figure 4BC: From the demographs provided, BacA and BacD appear to have different localization dynamics. BacD seems to stay at the base of the stalk, nearest the mother cell, whereas BacA migrates towards to bud? Also, "length" is misspelt in the panels.

      During the transition to bud formation, we indeed observe that the localization patterns of BacA and BacD are in many cases not fully superimposable, with BacD lagging behind BacA and forming transient additional clusters in the vicinity of the stalk base. Examples are now shown in Figure 4—figure supplement 4). This effect explains the distinct patterns in the demographs. We have now modified the text accordingly. We have also corrected the spelling of “length” in the figure.

      1. Can BacD polymerize on its own? It colocalizes with BacA in E. coli but that does not necessarily mean it co-polymerizes.

      Please see our response to a similar issue (point 2) raised by Reviewer #1.

      1. Lines 263-266. You use E. coli PG as a substrate for LmdC in vitro because "peptidoglycan from H. neptunium shows only a low degree of cross-linkage and hardly any pentapeptides." Does this not have relevance to the physiological significance of the observed activity? Or do you presume that LmdC activity (and/or that of other endopeptidases) is very high in H. neptunium so it is difficult to detect additional activity using HnPG as a substrate? It would be useful to clarify this logic in the text.

      DD-crosslinks are formed by all major peptidoglycan biosynthetic complexes, including the elongasome and the divisome, so that their general relevance to cell growth in H. neptunium is beyond doubt. The low degree of crosslinkage observed suggests that H. neptunium contains high endopeptidase activity, which cleaves crosslinks after their formation by DD-transpeptidases. We have now added the explanation “likely due to a high level of autolytic activity” to make this point clearer. Whether LmdC makes a major contribution to the low level of crosslinkage remains to be determined. However, our data suggest that it mostly acts in complex with BacA, so that it may only cleave peptidoglycan locally and not have a global effect global on cell wall composition. It would not possible to detect the DD-endopeptidase activity of LmdC using H. neptunium peptidoglycan as a substrate, because it has a low content of DD-linked peptide chains. To facilitate the in vitro activity assay, we therefore used highly crosslinked peptidoglycan from a mutant E. coli strain.

      1. Lines 268-269: Is there some explanation for why monomers do not increase on LmdC treatment? Here quantitation of peaks before and after treatment would allow the reader to more precisely interpret these data.

      The absolute peak sizes are not comparable, because there is some variation in the amount of peptido-glycan included in the assays (see also our comments on point 1b raised by Reviewer #1) and the integrated peak areas (which correspond to the amounts of muropeptide species produced) depend on both the height and the width of the peaks, which vary to some degree in different HPLC runs. The relevant measure to compare the muropeptide profiles is therefore the relative content of different muropeptide species in the different conditions. For clarification, we have now added the following sentence to the legend of Figure 8D: “A quantification of the relative abundance of different muropeptide species in each condition, based on a comparison of the relative integrated peak areas, is provided in Figure 8—Dataset 1.” The control reaction lacking LmdC only contains peptidoglycan diluted in buffer and thus provides insight into muropeptide composition of untreated peptidoglycan.

      1. Lines 280-283: It would be interesting to know if the transmembrane domain of LmdC is required for its localization since it is dispensable for binding BacA and since LmdC still localizes to foci without BacA.

      Given that it is currently not possible to localize LmdC in H. neptunium, we were not able to perform this analysis.

      1. Line 296: it is also possible that LmdC localizes with another protein and does not independently assemble into larger complexes.

      Since the localization pattern reported for LmdC in the ΔbacAD background is no longer valid, we have not discussed this aspect in the revised version of our manuscript. However, in general, we do not exclude the possibility that LmdC could interact with other peptidoglycan biosynthetic proteins.

      1. Line 304-306 and Fig 9: Is the domain organization of RrLmdC the same as for HnLmdC? It would be useful to include its domain organization as well. Also, please add amino acid numbering to Figure 9B.

      We have now added a schematic showing the domain organization of LmdC from R. rubrum (new Figure 10B). The protein is highly similar to its homolog from H. neptunium.

      1. Line 340-341: "In both cases, they functionally interact with LmdC-type DD-endopeptidases to promote local changes in the pattern of peptidoglycan biosynthesis." This conclusion is not experimentally supported. Since LmdC is essential and you could not make a depletion strain in H. neptunium, it was not shown that the interaction with LmdC is how BacA promotes changes in PG patterning. HADA/FDAA labeling was not performed in R. rubrum, and no global changes in PG chemistry were observed in bacA or lmdC mutants, so you cannot claim BacA or LmdC influences PG patterning there, either. Either soften this statement to a hypothesis or otherwise rephrase.

      To further corroborate a functional interaction between BacA and LmdC, we have now established an inducible CRISPRi system to deplete LmdC from H. neptunium cells (see also our comments on the public review of Reviewer #1). We observe that the loss of LmdC leads to a phenotype very similar to that observed for the ΔbacA(D) mutant, supporting the idea that BacA and LmdC act in the same path-way. We have now also performed localization studies of the elongasome component RodZ in H. nep-tunium, which demonstrate that the spatial distribution of elongasome complexes is affected in the absence of the bactofilin cytoskeleton in H. neptunium. Combined with the observation that LmdC is a catalytically active DD-endopeptidase and its absence leads to morphological defects, these results indicate that BacA, together with LmdC, induces local changes in pattern of peptidoglycan biosynthesis, both by affecting elongasome movement and, likely, by reducing peptidoglycan crosslinking in the cell envelope regions it occupies.

      1. Figure 9-S4: there is no panel C (change D to C).

      Corrected.

      1. Lines 344-355: No data is presented here to support the barrier model of bactofilin function. In addition, it is unclear why cells would take on amorphous shapes instead of extended rod shapes/filaments if elongasome function was not constrained on the longitudinal axis. It would be helpful to have more discussion of the potential mechanisms of LmdC function in H. neptunium in this section of the discussion since that is the emphasis of the results section.

      To support the barrier model, we have now compared the localization dynamics of the elongasome component RodZ in wild-type and ΔbacAD cells. The results show that RodZ is excluded from the stalk in the wild-type background, whereas it readily enters the stalk in the mutant cells, leading to the expansion of stalks into large, amorphous extensions. Consistent with these findings, HADA labeling is not observed within the stalks in wild-type cells, whereas it is readily observed in the enlarged stalk structures (pseudohyphae) formed in the mutant cells.

      The current model of MreB movement suggests that MreB filaments have an intrinsic curvature and thus preferentially align along regions of similar curvature, which is along the circumference of the cell in rod-shaped geometries. However, previous work has shown that MreB starts to move along randomly oriented trajectories as soon as cells lose their rod-shaped morphology and adopt more spherical shapes (Hussain et al, 2018, eLife). In line with these findings, our current and our previous work (Cserti et al, 2017, Mol Microbiol) indicate that the expansion of the ovoid H. neptunium mother cell prior to the onset of stalk biosynthesis as well as bud formation are mediated by the elongasome complex. Thus, the elongasome can clearly also give rise to shapes other than rods. Interestingly, however, the H. neptunium elongasome also appears to drive the formation of the rod-shaped stalk, possibly by moving around the circumference of the stalk base. Thus, species- or growth phase-dependent regulatory mechanisms or, potentially, differences in the spatial arrangement of the glycan strands within the peptido-glycan layer may result in different modes of elongasome movement and, thus, modulate the morphogenetic activity of elongasome complexes.

      1. Lines 395-397: It is also possible that LmdC positioning is dependent on cell morphology, rather than directly on BacA, since morphology is so distorted in bacA mutant cells.

      We provide several lines of evidence showing that LmdC and BacA functionally and physically interact (see above), making it highly unlikely that the two proteins are not associated with each other. How-ever, our previous (Figure 10I,J) and new (Figure 11) results suggest that the physical interaction with LmdC and/or or the cell shape-modulating activity of the complex are required for the proper localization of BacA at the inner curve of the cell. This finding may indicate the existence of a self-reinforcing cycle, in which the morphological changes induced by BacA-LmdC assemblies stimulate the recruitment of additional assemblies to their site of action.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This article by Zhai et al, investigates sterol transport in bacteria. Synthesis of sterols is rare in bacteria but occurs in some, such as M capsulatus where the sterols are found primarily in the outer membrane. In a previous paper the authors discovered an operon consisting of five genes, with two of these genes encoding demethylases involved in sterol demethylation. In this manuscript, the authors set out to investigate the functions of the other three genes in the operon. Interestingly, through a bioinformatic analysis, they show that they are an inner membrane transporter of the RND family, a periplasmic binding protein, and an outer membrane-associated protein, all potentially involved with lipid transport, so providing a means of transporting the lipids to the outer membrane. These proteins are then extensively investigated through lipid pulldowns, binding analysis on all three, and X-ray crystallography and docking of the latter two.

      Strengths

      The lipid pulldowns and associated MST binding analysis are convincing, clearly showing that sterols are able to bind to these proteins. The structures of BstB and BstC are high resolution with excellent maps that allow docking studies to be carried out. These structures are distinct from sterol-binding proteins in eukaryotes.

      We thank the reviewer for their favorable impression of this work.

      Weaknesses

      While the docking and molecular dynamics studies are consistent with the binding of sterols to BstB and BstC, this is not backed up particularly well. The MST results of mutants in the binding pocket of BstB have relatively little effect, and while I agree with the authors this may be because of the extensive hydrophobic interactions that the ligand makes with the protein, it is difficult to make any firm conclusions about binding.

      We agree with the reviewer that at this point, there is no experimental evidence to define the sterol binding site in BstB. While in the manuscript we allude to the extensive hydrophobic interactions as being especially stabilizing and difficult to eliminate with one or two mutations, we are now also aware that hydrogen-bonding interactions with the polar head of the sterols are quite important (see data on BstC, where disruption of that interaction significantly reduces the equilibrium affinity for sterols). Our MD simulations show that at least 3 protein amino acids can participate in H-bonding with the sterols. Moreover, recent work from our lab show that even ligand site waters can extend an H-bonding network around the polar head of the lipid (Zhai et al., ChemBioChem 2023, 24, e202300156), thereby enabling H-bonding with amino acids that are further away from the ligand site. It is therefore difficult to predict which mutations will sufficiently destabilize the binding. While this question is one we will tackle in future studies focused on obtaining high-resolution substrate-bound structures of BstB or homologs, the findings reported here are still relevant and timely, and we posit will spur the discovery of functional homologs, including some in organisms that are more tractable.

      The authors also discuss the possibility of a secondary binding site in BstB based on a slight cavity in domain B next to a flexible loop. This is not backed up in any way and seems unlikely.

      The reviewer is correct in that the evidence for this second binding site weak. While the crystallographic structure shows a highly hydrophobic region and the binding studies suggests cooperativity exists in the binding of the 4methylsterol substrate, the docking studies do not strongly support binding at that site. As such, we have clarified in the manuscript that a second hydrophobic cavity is observed, but that its role in ligand interaction remains unexplored.

      Reviewer #2 (Public Review):

      Summary:

      In eukaryotes, sterols are crucial for signaling and regulating membrane fluidity, however, the mechanism governing cholesterol production and transport across the cell membrane in bacteria remains enigmatic. The manuscript by Zhai et al. sheds light on this topic by uncovering three potential cholesterol transport proteins. Through comprehensive bioinformatics analysis, the authors identified three genes bstA, bstB, and bstC encoding proteins which share homology with transporters, periplasmic binding proteins, and periplasmic components superfamily, respectively. Furthermore, the authors confirmed the specific interaction between these three proteins and C-4 methylated sterols and determined the structures of BstB and BstC. Combining these structural insights with molecular dynamics simulation, they postulated several plausible substrate binding sites within each protein.

      Strengths:

      The authors have identified 3 proteins that seem likely to be involved in sterol transport between the inner and outer membrane. The structures are of high quality, and the sterol binding experiments support a role for these proteins in sterol transport.

      We thank the reviewer for this positive view of our work.

      Weaknesses:

      While the author's model is very plausible, direct evidence for a role of BstABC in transport, or that the 3 proteins function together in a single pathway, is limited.

      The reviewer is correct that we were unable to demonstrate that the three proteins work together to transport 4methylsterols. This is not for lack of trying. We first attempted gene deletion studies, and as mentioned in the manuscript (with more details now provided in the experimental section), this appeared to be lethal. We then attempted in vitro exchange experiments, in which the proteins would be used to transfer sterols from sterol-loaded “heavy” liposomes to a sterol-free “light” liposomes – such exchange assays are frequently performed with eukaryotic sterol transporters (see Chung et al., Science 2015, https://doi.org/10.1126/science.aab1370). These assays were not successful because 1) sterols incorporated poorly into liposomes made with E. coli polar lipids and yielded leaky liposomes; 2) use of liposomes prepared with the TLE of M. capsulatus proved more stable, but no appreciable exchange was observed; we reasoned that this might be due to the absence of an energy source for BstA, the RND component for which we have expressed and purified only the soluble periplasmic domain. Given the technical difficulty of these in vitro transport experiments, we will continue to pursue in vivo demonstration of function as new homologs are identified.

      Reviewer #3 (Public Review):

      Summary:

      The work in this manuscript builds on prior efforts by this team to understand how sterols are biosynthesized and utilized in bacteria. The study reports a new function for three genes encoded near sterol biosynthesis enzymes, suggesting the resulting proteins function as a sterol transport system. Biochemical and structural characterization of the two soluble components of the pathway establishes that both proteins can bind sterols, with a preference for 4methylated derivatives. High-resolution x-ray structures of the apoproteins reveal hydrophobic cavities of the appropriate size to accommodate these substrates. Docking and molecular dynamics simulations confirm this observation and provide specific insights into residues involved in substrate binding.

      Strengths:

      The manuscript is comprehensive and well-written. The annotation of a new function in a set of proteins related to bacterial sterol usage is exciting and likely to enable further study of this phenomenon - which is currently not well understood. The work also has implications for improving our understanding of lipid usage in general among bacterial organisms.

      We thank the reviewer for this synopsis of our work.

      Weaknesses:

      The authors might consider moving some of the bioinformatics figures to the main text, given how much space is devoted to this topic in the results section.

      We have taken this advice and moved Figure S1 to the main manuscript.

      Reviewer #1 (Recommendations For The Authors):

      1. In the analysis of the MST data, the authors quote Hill coefficients. How reliable are these numbers? For BstB, for instance, it seems unlikely that more than one molecule would bind. Can the analysis be done without needing to include Hill coefficients?

      We used fits that did and did not invoke cooperativity – see below. We are certain that both BstA and BstB are better fit with cooperativity invoked.

      Author response image 1.

      1. In looking at the maps associated with the structures, which were included in the review package, I see that two citric acid molecules fit beautifully into the density where currently PEG has been modelled. This needs to be fixed and some comments may be appropriate in the manuscript.

      We thank the reviewer for calling our attention to this. Citric acid has now been added to the model, and we reason that these are present in the structure because citric acid was used in the crystallization condition. The revised model is now present in the PDB.

      1. It is not necessary to show the two molecules in the asymmetric unit in Figure 4 given that it is not a dimer. This doesn't add anything to the manuscript.

      We now show a single molecule of BstC in Figure 4 (now Figure 5).

      1. I wouldn't consider the loops shown in Figure S4 as disordered. They have slightly higher B-values but are not completely mobile.

      We did not refer to these loops as disordered. In the text, we say they “exhibit poor electron densities, suggesting conformational sampling of more than one state (Fig. S4A).”

      Reviewer #2 (Recommendations For The Authors):

      pg 7, "hinting at an astounding distinction": I might suggest a word other than astounding that conveys how statistically unlikely, unusual, etc. this result is.

      Thank you – we have removed “astounding”.

      pg 7, paragraph 2: Here the authors show that in the SSN analysis, BstB proteins cluster separately and suggest this implies a distinction in function. However, they also show that PhnD homologs do not cluster separately (distributed across multiple clusters), yet presumably have similar functions. I am not familiar with SSN, but it seems to me that the second statement about PhnD implies that the first statement about BstB might not be valid, i.e., if PhnD doesn't cluster based on function, on what basis can we conclude that BstB does? On what basis does clustering occur in the SSN analysis? Might it be driven by things other than function? This comment also concerns the final paragraph of this section.

      The reviewer is correct in that PhnD homologs occupy separate clusters of the SSN. Many of these homologs were crystallized with phosphate-like compounds, but it is possible that they have non-overlapping substrate scopes and are therefore functionally distinct. As for the basis of clustering, the SSN is fully sequence-based. What has been observed is that proteins with highly similar sequences can have similar functions – but this is not always true.

      pg 8, paragraph 1: The authors suggest that BstABC may be essential. This is probably not a critical claim and it might be simplest to just remove it, but if it is mentioned, the authors should probably explain what was attempted that failed, so a reader can assess the strength of the evidence supporting essentiality. For example, I don't see anything in the methods about genetic manipulations of M. capsulatus, so currently, this falls within the realm of "Data not shown".

      We have provided additional information about the experimental techniques used to do this. This statement was included so that it is understood that the reason for the experimental failure is unlikely to be technical in nature, as we have successfully deleted some sterol related genes while others remain intractable.

      Fig. 2A: It is unclear to me what is being plotted here, perhaps more experimental detail is required in the form of labels and/or legend. Is this a quantification of each sterol in each fraction separated by GC? There are essentially no methods provided for the GC-MS experiments. A reference is provided, but I think providing detailed methods for these specific experiments will provide a higher degree of scientific rigor. I am not sure what is standard for GCMS, but perhaps showing spectra in the supplement that establish the identity of the bound molecules as species I and II would be appropriate?

      Additional experimental details have been provided and the figure legend changed to be more clear. Moreover, we now clearly state that the chromatograms shown were used to identify lipids due to retention times for spectra that were previously published in Wei et al., 2016.

      pg 10-11, comparison with PhnD structure: Perhaps it is worth mentioning a 3rd possible explanation for the relative opening/closing of the cleft is simply crystal packing? I don't think it necessarily has to imply anything about a difference in function. Also, the focus seems to be on this pairwise comparison, but perhaps more insights could be gleaned from an analysis that included a wider range of homologs, especially if any are thought to bind hydrophobic substrates.

      This could be true, and we have included a statement to that effect. We are unaware of homologs shown to bind to large, hydrophobic molecules.

      I think that BstB is shown upside-down in sup movies relative to other figures. If it isn't changed, perhaps adding some labels would help orient the reader.

      We have rotated the movies to be more consistent with the figures.

      Fig. S7: No units are indicated for Kds (uM?).

      Thank you – this has been fixed.

      pg 11, paragraph 2. "adjacent to three residues: Glu118, Tyr120 and Asn192": The residue number used in the text doesn't seem to match the numbering in the PDB file. I think these residues correspond to Glu98, Tyr100, and Asn172 in the PDB file.

      We regret this error. The correct numbering for both structures is now present in the deposited PDB files (7T1M for BstB and 7T1S for BstC).

      pg 12, final paragraph: The authors present binding data for BstB variants with mutations in the putative sterol binding pocket identified in the structural and MD analyses. However, these mutants had no effect on binding. The authors rationalize this in terms of the size of the interface and hydrophobic nature (which indeed, may be correct and is very plausible), and it is worth noting that many of their mutations are to Ala and would largely preserve the hydrophobic nature of the cleft. However, these mutants raise questions about where sterols actually bind. No experimental evidence is presented that substrates bind in the cleft, it is only hypothesized based on structural homology, MD simulations, etc. These mutations formally provide evidence against the hypothesis being tested; I think that has to be discussed a bit more directly, alongside the caveats the authors already discuss about hydrophobicity, etc.

      This is a valid point by the reviewer, and it is one we have attempted to address with our statement in the manuscript and in our response to reviewer 1. We have modified the relevant text to more clearly state that there is as of yet no experimental evidence for the binding of sterols to the cavity identified via molecular docking.

      pg 13: Presumably this is not the full-length lipoprotein, but has been truncated/mutated in some way? Some statement of roughly what was purified/crystallized should be stated.

      The SI methods on protein purification states that the genes of BstB and BstC without their respective signal peptides were obtained.

      pg 13, last paragraph "TN1 exhibits hybrid hydrophobicity, with the sides horizontal to cavities being hydrophobic while the vertical sides are more hydrophilic". I don't really follow the horizontal vs vertical sides. Perhaps this could be described in a different way.

      Noted and changed to “TN1 is closer to the N-terminal face of the structure, while CA1 and CA2 are proximal to the C-terminal face and form two open hydrophobic pockets; TN1 exhibits a mixture of hydrophobic and hydrophilic amino acids (Fig. 4B and Fig. S9B, Table S4).”

      pg 15-16, "Comparison to eukaryotic sterol transporters": Perhaps this would be better suited for the discussion section? Could also be streamlined; it is mostly discussing and comparing eukaryotic sterol binding domains to each other, not to BstABC.

      Given that BstB and BstC are the first identified proteins (and putative transporters) for bacterial sterol engagement, we thought a careful description of the existing sterol transporters (which are all eukaryotic) was warranted.

      Reviewer #3 (Recommendations For The Authors):

      I have just two minor suggestions for the authors if they wish to comment on or address them.

      1. Do the three proteins (BstA/B/C) form any sort of complex? Perhaps this property was not assessed - but it seemed possible that the B and C components might constitute a shuttle for the membrane-bound transporter?

      This is an important observation – the unliganded version of these proteins show no appreciable affinity for each other. However, BstB (which would be expected to engage both with BstA and BstC) belongs to a family of proteins known to undergo significant conformational change upon substrate binding. It is possible that with substrate present, complexes are formed – we have yet to investigate this.

      1. In Figure S1, panel C - it appears that the label for the BstC cluster may have migrated away from the intended location. In this figure, it might also be useful to indicate in the caption the meaning of the red coloring of the nodes?

      The label is now fixed – thank you for drawing our attention to this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T. brucei can infect juvenile tsetse flies. Schuster et al. were disruptive to the widely accepted paradigm that the Stumpy bloodstream-form is solely responsible for tsetse infection and T. brucei transmission potential. Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.

      However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.

      Strengths:

      Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host: parasite interactions, of relevance to all parasite transmission.

      Thank you

      Weaknesses:

      As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.

      We have modified the revised version to soften these claims (l.156 and l.159). Please, note that the limited immunocompetence of teneral flies has been extensively studied by the labs of S. Aksoy at Yale and M. Lehane at Liverpool. In the discussion, we provide key references from these two labs 18-21. Our comment on the relevance to field transmission is simply based on field observations of the fly biology.

      Reviewer #2:

      Summary:

      Contrary to findings recently reported by Schuster S et al., this short paper shows evidence that the stumpy form of T. brucei is probably the most pre-adapted form to progress with the life cycle of this parasite in the tsetse vector.

      Strengths:

      One of the most important pieces of experimental evidence is that they conduct all fly infection experiments in the absence of metabolites like GlcNAc or S-glutathione; by doing so, the infection rates in flies infected with slender trypanosomes seem very low or non-existent. This, on its own, is a piece of important experimental evidence that the Schuster S et al findings may need to be revisited.

      Thank you

      Weaknesses:

      I consider that the authors should have included their own experiments demonstrating that the addition of these chemicals enhances the infection rates in flies receiving bloodmeals containing slender trypanosomes.

      The main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies, not to reproduce the results obtained by Schuster et al.. We think that the suggested experiment is not necessary as L-Glutathion is well-known to enhance infection rates by reducing the fly immune response efficiency (Ref 24). Most of the experimental infections with procyclic or ST forms (even at low densities) published by our lab and others, especially for studying parasite stages in the salivary glands, were actually performed by complementing the infective meal with L-Glutathion for this reason.

      Reviewer #3:

      The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al.), which showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent.

      For this, the authors repeated Tsetse transmission experiments but with some key critical differences relative to Schuster et al. First, they infected teneral and adult flies. Second, their infective meals lacked two components (N-acetylglucosamine and glutathione), which could have boosted the infection rates in the Schuster et al. work. In these conditions, the authors observed that most stumpy form infections with teneral and adult flies were successful while only 1 out of 24 slender-form infections was successful. Adult flies showed a lower infection rate, which is probably because their immune system is more developed.

      Given that in Tsetse-infested areas most transmission is likely ensured by adult flies, the authors conclude that the parasite stage that will have a significant epidemiologic impact on transmission is the stumpy form.

      Strengths:

      • This work tackles an important question in the field.

      • The Rotureau laboratory has well-known expertise in Tsetse fly transmission experiments.

      • Experimental setup is robust and data is solid.

      • The paper is concise and clearly written.

      Thank you

      Weaknesses:

      • The reason(s) for why this work has lower infection rates with slender forms than Schuster et al. remain unknown. The authors suggested it could be because of the absence of N-acetylglucosamine and/or glutathione, but this was not formally tested. Could another source of variation be the clone of EATRO1125 AnTat1.1 (Paris versus Munich origin)? To reduce the workload, such additional experiments could be done with just one dose of parasites.

      Differences between the strain clones, the cell culture conditions and/or the fly colony maintenance conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

      • The characterization of what is slender and stumpy is critical. The authors used PAD1 protein expression as the sole reporter. While this is a robust assay to confirm stumpy, an analysis of the cell cycle would have been helpful to confirm that slender forms have not initiated differentiation (Larcombe S et al. 2023, preprint).

      In this study, ST are indeed defined by their general morphology and by the expression of PAD1 proteins at the cell membrane as assessed by IFA. This is the simplest and most accurate ST proxy accessible by IFA. We do not think that monitoring in more details the cell cycle would provide key information here. If some SL forms had initiated differentiation in our experiments, then, the low infection rates observed with SL would have reinforced the fact that mostly mature PAD1+ ST are infectious for flies .

      • Statistical analysis is missing. Is the difference between adult and teneral infections statistically significant?

      An ANOVA statistical analysis was performed and a dedicated section was added to the revised version.

      For all conditions, MG infection rate comparisons between adult and teneral flies were statistically significant.

      Recommenda8ons for the authors:

      Reviewer #1:

      While some perceived outcomes pertaining to immunological competence and transmission relevance of teneral flies are overstated, the overall tone of the paper is inappropriately apologe7c. The authors obviously don't want to offend their colleagues but the current wri7ng style obscures meaning, making the paper a bit 'flowery' and difficult to read.

      Ngoune et al. have important outcomes that need to be stated more directly.

      Words such as 'unequivocally' are not appropriate to Schuster et al's outcomes. As your study shows, their findings are experimentally based, with inherent caveats, and are therefore sugges7ve, not demonstrated or proven.

      The word 'unequivocally' has been removed from the revision.

      Reviewer #3:

      The Engstler lab cul7vates AntTaT1.1 in methylcellulose (Munich clone, if I am not mistaken). The Rotureau lab uses the Paris AntTaT1.1 clone and uses no methylcellulose. Given that methylcellulose helps stumpy forma7on, it seems important to show that the results of this paper are reproducible with the Munich clone grown in the presence of methylcellulose.

      Differences between the strain clones and culture conditions could indeed explain the differences in infection rates observed in the two studies. However, the main purpose of this study is to assess the intrinsic infectivity of SL Vs. ST in teneral Vs. adult flies. Our study was designed to stand alone for providing a clear answer to this question, not to reproduce the results obtained by Schuster et al.. Hence, we don’t think that any additional experiments are required here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of the reviewers’ discussion:

      • The development of MSI-1 as a post-transcriptional regulator of gene expression in Escherichia coli represents a valuable addition to the synthetic biology toolkit. MSI-1 has advantages over transcriptional regulators because it has the potential to target single genes in operons. Allosteric control of MSI-1 by oleic acid increases its versatility.

      Authors’ response: We thank the reviewers and editor for this evaluation.

      • We recommend that authors add experiments to test the mechanism of regulation by MSI-1 or soften their claims about translational regulation. We also recommend that the authors expand their discussion of other natural and synthetic regulatory systems that target translation.

      Authors’ response: In this revision, we have added new experimental results from RT-qPCR, bulk fluorometry, and flow cytometry assays to further support our conclusions. We have also enlarged the Introduction and Discussion.

      • Adding an experiment to quantify the effect of oleic acid with the most strongly regulated reporter construct (i.e., flow cytometry with redesign-3) would substantially increase the impact of the work.

      Authors’ response: We have done this experimental quantification (see the new Fig. 5d).

      Reviewer #1 (Public Review):

      The authors develop reporter constructs in E. coli where gene expression, presumably translation, is repressed by MSI-1. This is a potentially useful tool for synthetic biologists, with the advantage over transcriptional regulation that one gene in an operon could be targeted. That being said, an important caveat of translational regulation that is not addressed in the manuscript is the potential for downstream effects on RNA stability and/or transcription termination. The authors' MSI-1-regulated reporter constructs could also be useful for mechanistic studies of MSI-1.

      Authors’ response: We thank the reviewer for such appreciation of our work. Regarding the potential effects on RNA stability or transcription termination, we would like to highlight our results with the sfGFP-mScarlet bicistron (Fig. 6c), showing the specific regulation of sfGFP by MSI-1* and not of mScarlet. Anyway, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2).

      The author's initial construct design led to only weak regulation by MSI-1, presumably because the MSI-1 binding sites were not suitably positioned to repress translation initiation. A more rationally designed construct led to considerably greater repression. One weakness of the paper is that the authors did not use their redesigned construct that is more strongly repressed to demonstrate allosteric regulation by oleic acid using a comparable assay (e.g., flow cytometry) to that used in other experiments. The potential for allosteric regulation is a major strength of the MSI-1 system, so this is a significant gap. Similarly, the authors use the weakly regulated constructs to assess the effect of MSI-1 binding site mutations and for their mathematical modeling; these experiments would be better suited to the more strongly regulated construct.

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system (see the new Fig. 5d). Regarding the kinetic study, we focused on the reporter system with just one recognition motif for simplicity. A reporter system with two recognition motifs, thereby recruiting two different proteins, increases the complexity to distill the effect of point mutations.

      Reviewer #1 (Recommendations For The Authors):

      1. Figure 5. Panels c-f look at colonies on plates, with numbers from these data being difficult to compare with either the bulk fluorescence or single-cell fluorescence values shown in other figures. Supplementary Figure 8 shows data for single cells; these data would be more appropriate in Figure 5, with the plate-based data moving to the supplement. Moreover, measuring the effect of oleic acid on the redesign-3 reporter using flow cytometry would assess the impact of oleic acid on the most strongly regulated reporter; this would be the most impactful analysis.

      Authors’ response: We have redone Fig. 5 to include flow cytometry data (also for the system implemented with the redesign-3 reporter).

      1. Paragraph starting line 438. The authors should briefly discuss the potential for translational repression leading to reduced RNA stability, and in the case of rapid repression that impacts transcription-coupled translation, its impact on Rho-dependent transcription termination. These factors could alter the expression of neighboring genes.

      Authors’ response: As we have shown with the RT-qPCR experiment, the mRNA level of the target gene does not change in response to protein binding. We agree that mRNA stability could potentially be changed by using other RNA-targeting proteins. But in our view, a reduction of RNA stability is not a regulation of translation. We have added the following sentence in the Discussion: “The additional use of RNA-binding proteins able to alter mRNA stability might lead to the implementation of more complex circuits at the posttranscriptional level.”

      1. Figure 1. It would be informative to include a control where cells have an empty plasmid rather than a plasmid expressing MSI-1, to address leakiness of MSI-1 expression.

      Authors’ response: We have constructed a void plasmid as suggested and performed new bulk fluorometry assays. The new Fig. S8 shows the tight control of MSI-1* expression with the PLlac promoter. No apparent leakage is observed.

      1. Line 132. Where were the two sequences positioned with respect to each other than the start codon? It would be helpful to show the sequence in Figure 1.

      Authors’ response: The precise sequence is shown in the inset of Fig. 1b. The motif is placed just after the start codon.

      1. Line 135. The authors envisioned repression mechanism isn't clear from the text, specifically the meaning of "block the progression" and "initial phase". As far as I know, there is no precedent for RNA-binding proteins repressing translation in bacteria by preventing translation elongation. Presumably, repression in the context described here would be due to MSI-1 binding over the ribosome-binding site, although the predicted hairpin may also occlude binding of initiating 30S ribosomes in the absence of MSI-1 binding.

      Authors’ response: It is difficult to know the exact mode of action. In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.”

      1. Figure 1e is overly complicated and hence is difficult to interpret. The key result is that mScarlet expression is unchanged as a function of lactose concentration. It is sufficient to show the inset graph as a supplementary figure panel and to conclude that regulation of sfGFP is at a post-transcriptional level. Similarly, the inset in Figure 4b is unnecessary.

      Authors’ response: The inset of Fig. 1e shows that the growth rate of the cells is almost constant when lactose varies. A change in growth rate will affect protein expression. The use of a two-reporter system, one regulated translationally and the other not, is instrumental to extract from fluorescence data estimates of transcription and translation rates. Of course, showing that mScarlet expression is almost constant when lactose varies would be sufficient, but we believe that performing a fine treatment of the data helps to better understand the regulatory system from a mathematical and mechanistic point of view. Therefore, despite increasing the complexity of the figure, we prefer to keep the representation of the Crick spaces (following Alon’s terminology, see our ref. 32). We have tried to carefully explain Fig. 1e in the text.

      1. Figure 1f and Figure 4c would be easier to interpret as two-dimensional plots.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      1. I don't think Figure 2e is relevant. The key result is shown in Figure 2f, i.e., the effect of mutations on regulation by MSI-1.

      Authors’ response: We agree with the reviewer that the key result is shown in panel f. However, we prefer to keep panel e in Fig. 2 because, even if negative, this result may incite further research. In addition, we avoid the rearrangement of the whole figure.

      1. Lines 311-313. Without additional evidence that the mutants are toxic, I suggest removing this text.

      Authors’ response: As suggested, we have removed that claim.

      Reviewer #2 (Public Review):

      Summary:

      Dolcemascolo and colleagues describe the use of the mammalian RNA-binding protein Musashi-1 (MSI-1) to implement translational regulation systems in E. coli. They perform detailed in vitro studies of MSI-1 and its binding to different RNA sequences. They provide compelling evidence of the effectiveness of the regulatory system in multiple circuits using different mRNA sequence motifs. They harness allosteric inhibition of MSI-1 by omega-9 monounsaturated fatty acids to demonstrate a fatty-acid-responsive circuit in E. coli.

      Strengths:

      The experimental results are compelling and the characterization of the binding between MSI-1 and different RNA sequences is thorough and performed via multiple complementary techniques. Several new useful circuit components are demonstrated.

      Authors’ response: We thank the reviewer for such appreciation of our work.

      Weaknesses:

      MSI-1 provides 8.6-fold downregulation of sfGFP with an optimized mRNA sequence. In some applications, a larger degree of repression may be required.

      Authors’ response: We agree with the reviewer in this point. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.”

      Reviewer #2 (Recommendations For The Authors):

      Overall, I think this paper is very well done and quite thorough. I only have minor suggestions:

      • For Figures 1f and 4c, it is quite hard to interpret the fraction of cells above the threshold with the 3d perspective. It would be clearer to use a more standard 2d plot where the histograms are offset along the y-axis and the threshold is indicated by a vertical line.

      Authors’ response: We decided to use 3D plots to have more compact representations of the data in the main figures. The accompanying insets show the percentage of cells above the threshold, which helps to understand the regulatory effects. In any case, we have provided the corresponding 2D plots in Fig. S10.

      • For Figure 4b, the highlighting of different sequence regions in red3 appears to be offset by one base (e.g. AAU is highlighted rather than AUG).

      Authors’ response: This has been corrected.

      • For line 504, it seems that MSI-1 is used for two different proteins. A different name should be assigned to this 200-residue protein to avoid confusion with the other MSI-1.

      Authors’ response: We now use the term MSI-1h* for the human version of the protein.

      • The note (Page S12) that A_0 + A_R = alpha/delta only applies in steady-state conditions, which should be stated.

      Authors’ response: We have specified that.

      • It seems that some authors work for the companies that sell some of the instruments/consumables used for the assays, specifically switchSENSE and LigandTracer. This may be something that should be declared under Competing Interests for the paper.

      Authors’ response: We are sorry for having missed this point. We have included a Competing Interests section to state that “RAHR and WFV work for Dynamic Biosensors. GPR and JB work for Ridgeview Instruments”.

      Reviewer #3 (Public Review):

      Summary:

      In this work, the authors co-opt the RRM-binding protein Musashi-1 to act as a translational repressor. The novelty of the work is in the adoption of the allosteric RRM protein Musashi-1 into a translational reporter and the demonstration that RRM proteins, which are ubiquitous in eukaryotic systems, but rare in prokaryotic ones, may act effectively as post-translational regulators in E. coli. The extent of repression achieved by the best design presented in this work is not substantially improved compared to other synthetic regulatory schemes developed for E. coli, even those that similarly regulate translation (eg. native PP7 repression is approximately 10-fold, Lim et al. J. Biol. Chem. 2001 276:22507-22513). Furthermore, the mechanism of regulation is not established due to missing key experiments. The work would be of broader interest if the allosteric properties of Musashi-1 were more effective in the context of regulation. Unfortunately, the authors do not demonstrate that fatty acids can completely de-repress expression in the experimental system used for most of their assays, nor do they use this ability in their provided application (NIMPLY gate).

      Authors’ response: For this revision, we have performed the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system, showing substantial de-repression of the system with the biochemical compound. We have redone Fig. 5 and modified the Results section accordingly. Aligned with the reviewers and editor, we believe that this new result helps to improve our manuscript.

      Strengths:

      The first major achievement of this work is the demonstration that a eukaryotic RRM protein may be used to posttranscriptionally regulate expression in bacteria. In my limited literature search, this appears to be the first engineering attempt to design an RBP to directly regulate translation in E. coli, although engineered control of translation via other approaches including alterations to RNA structure or via trans-acting sRNAs have been previously described (for review see Vigar and Wieden Biochim Biophys. Acta Gen. Subj. 2017, 1861:3060-3069). Additionally, several viral systems (e.g. MS2 and PP7) have been directly co-opted to work in a similar fashion in the past (utilized recently in Nguyen et al. ACS Synthetic Biol 2022, 11:1710-1718).

      Authors’ response: We thank the reviewer for such appreciation of our work.

      The second achievement of this work is the demonstration that the allosteric regulation of Musashi-1 binding can be utilized to modulate the regulatory activity. However, the liquid culture demonstration (Suppl. Fig 8) shows that this is not a very effective switch, with de-repressed reporter activity showing substantial change but not approaching un-repressed activity. This effect is stronger when colonies are grown on a solid medium (Fig. 5).

      Authors’ response: As we have previously indicated, the flow cytometric quantification of the allosteric regulation by oleic acid in the redesigned-3 system in liquid culture showed substantial de-repression with the biochemical compound. It is now stated in the text the following: “Nevertheless, the system implemented with the redesign-3 reporter displayed a better dynamic behavior in response to lactose and oleic acid. In particular, the percentage of cells in the ON state increased from 0 (with 1 mM lactose) to 71% upon addition of 20 mM oleic acid (Fig. 5d).” This new result helps to improve our manuscript.

      Weaknesses:

      In this work, the authors codon optimize the mouse Musashi-1 coding sequence for expression in E. coli and demonstrate using an sfGFP reporter that an engineered Musashi-1 binding site near the translational start site is sufficient to enable a modest reduction in reporter gene expression. The authors postulate that the reduction in expression due to inhibition of ribosome translocation along the transcript (lines 134/135), as an expression of a control transcript (mScarlet) driven by the same promoter (Plac) but without the Musashi-1 recognition site does not demonstrate the same repression. However, the situation could be more complex. Other possibilities include inhibition of translation initiation rather than elongation, as well as accelerated mRNA decay of transcripts that are not actively translated. The authors do not present any measurements of sfGFP mRNA levels.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1* can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In addition, for this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      In subsequent sections of the work, the authors create a series of point mutations to assess RNA-protein binding and assess these via both a sfGFP reporter and in vitro binding assays (switchSENSE). Ultimately, it is difficult to fully rationalize and interpret the behavior of these mutants in the context provided. The authors do identify a relationship between equilibrium constant (1/KD) and fold-repression. However, it is not clear from the narrative why this relationship should exist. Fold-repression is one measure of regulator efficacy, but it is an indirect measure determined from unrepressed and repressed expression. It is not clear why unrepressed expression (in the absence of the protein) is expected to be a function of the equilibrium constant.

      Authors’ response: A mathematical derivation from mass action kinetics on why the fold change scales with 1/KD is provided in Note S2. It is the ratio between the unrepressed and repressed expression (i.e., fold change) what scales with 1/KD, but not the expression of a particular state. This kind of relationship has been previously established in the case of transcription regulation [see e.g. Garcia & Phillips, PNAS (2011), our ref. 39]. Our mathematical modeling results expand previous work by providing a single picture from which to analyze transcription and translation regulation.

      Subsequent rational redesign of the Musashi-1 binding sequence to produce three alternative designs shows that fold-repression may be improved to approximately 8.6-fold. However, the rationalization of why the best design (red3) achieves this increase based on either the extensive modelling or in vitro measured binding constants is not well articulated. Furthermore, this extent of regulation is approximately that which can be achieved from the PP7 system with its native components (Lim et al. J. Biol. Chem. 2001 276:22507-22513).

      Authors’ response: In the case of translation control, the regulation is more challenging because the target is quickly degraded, especially in bacteria (in contrast to transcription control, where the target is stable). This is acknowledged in the manuscript. Even though, it is possible to engineer synthetic circuits with sRNAs or RNA-binding proteins with sufficient dynamic range. We expect to conduct further research in the future to optimize the dynamic range of the system. We have added the following sentence in the Discussion: “Further work should be conducted to enhance the fold change of the regulatory module and engineer complex circuits with it.” Regarding the articulation of the results for the mutants and mathematical model, see our responses in the following questions.

      The application provided for this regulator (NIMPLY gate), is not an inherently novel regulatory paradigm, and it does not capitalize on the allosteric properties of Musashi-1, but rather treats Musashi-1 as a non-allosteric component of a regulatory circuit.

      Authors’ response: The NIMPLY gate refers to lactose and aTC as inputs. Considering oleic acid as an additional input will lead to a more complex logic. In the last Results section, we wanted to show that the post-transcriptional mechanism engineered with Musashi-1 can be useful specifically regulate a gene within an operon, to implement combinatorial regulation (i.e., coupling transcription and translation control), and to reduce protein expression noise. To these ends, the allosteric ability of the Musashi-1 was not so determinant. In this regard, it would be true that such fine regulatory effects might be achieved as well with non-allosteric RNA-binding proteins, such as MS2CP or PP7CP.

      Reviewer #3 (Recommendations For The Authors):

      1. In the introduction the authors should adequately address the native bacterial mechanisms that allow posttranscriptional regulation in bacteria as well as better discuss previous examples of translational repressors.

      Authors’ response: We have added the following paragraph in the Introduction: “Even though bacteria do not appear to exploit proteins to regulate translation in a gene-specific manner, it is worth noting that some bacteriophages do follow this mechanism to modulate their infection cycle. These are the cases, e.g., of the coat proteins of the phages MS2 (infecting Escherichia coli) or PP7 (infecting Pseudomonas aeruginosa), which regulate the expression of the cognate phage replicases through protein-RNA interactions [18]. However, one limitation for synthetic biology developments is that such phage proteins are not allosteric. At the post-transcriptional level, bacteria mostly rely on a large palette of cis- and trans-acting non-coding RNAs to either activate or repress protein expression, resulting in the regulation of translation initiation, mRNA stability, or transcription termination, and even allowing sensing small molecules [1,15]. Thus, there should be efforts to replicate this functional versatility with proteins in bacteria.”

      1. Given the location of the Musashi-1 binding site in the sfGFP reporter, it may be blocking translation initiation, rather than blocking the progression of the ribosome once attached (line 134/135). The schematic in Fig 1a. is also not overly clear in describing the differences in mechanisms between eukaryotic and prokaryotic systems described in the text.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

      1. The authors did not directly examine mRNA levels of their reporter to establish translational regulation. In many cases, inhibition of translation is accompanied by an increased degradation rate in bacterial systems. The authors do not seem to recognize this as a possible amplifier in their system, relying exclusively on normalization via another transcript produced from the same promoter (mScarlet).

      Authors’ response: For this revision we have conducted an RT-qPCR experiment to quantify the mRNA level of sfGFP to further support our conclusions (see the new Fig. S2). As shown, there is no change in the mRNA level upon inducing the system with lactose.

      1. The results presented for mutations 1-5 are not consistent with the author's models for what is occurring. In particular, mutant 1 displays a reduction in reporter production in the absence of Musashi-1, but the production in the presence does not change from the unaltered sequence. The claim that mutation 1 (in the UAG binding site) results in less binding and ultimately in less regulation is not substantiated since this loss of regulation is due to a reduction in unrepressed expression rather than an increase in expression when Musashi-1 is present.

      Authors’ response: We respectfully disagree with this appreciation. In the case of mutant 1, if the Musashi protein recognized the target mRNA with the same affinity as in the original scenario, the red bar would be much lower. Because the Musashi protein hardly recognizes the mutant-1 mRNA, the blue and red bars are quite similar. To clarify this point, we have added the following text in the manuscript: “Despite that mutation substantially reduced sfGFP expression in absence of MSI-1*, the presumed repressed state upon addition of lactose did not change much, suggesting the difficulty of the protein for targeting the mutated mRNA.”

      1. Given point 5 above, it is not clear to me why one would expect the 1/KD to be predictive fold-repression in the presence and absence of the repressor. I would rather see the relationship described as predictive in Fig. 2f (fold change vs. 1/KD) rather than the non-linear relationship. It is difficult to qualitatively evaluate the fit quality with the way the data are currently presented.

      Authors’ response: Note S2 provides a mathematical derivation from mass action kinetics on why the fold change scales with 1/KD. The R2 value that we provide for the fitting corresponds to the linear regression between fold and 1/KD, as specified in the figure legend. However, we think that the representation of fold vs. KD in log scale is more illustrative in this case.

      1. It is not clear what conclusion is determined from the computational modeling, or how this work contributes to the narrative presented. It does not seem like what is learned from these experiments is utilized for novel designs. Furthermore, several of the assumptions within the model may be problematic including the high rate of "elongation leakage" described and the lack of justification for RNA degradation rates utilized.

      Authors’ response: The mathematical modeling was performed to rationalize our experimental data. Our idea was more to recapitulate the observed dynamics than to guide the design of new systems. Our model might be exploited to this end in further research, as the reviewer suggests. Besides, elongation leakage is a concept that applies to both transcription and translation regulation systems, and it is not more than the ability of the RNA polymerase or ribosome to elongate even if there is a protein bound to the nucleic acid. This parameter can be set to 0 in the model if appropriate. Moreover, we cite the paper by Bernstein et al., PNAS (2002), our ref. 38, to justify that in E. coli the average mRNA half-life is about 5 min (i.e., degradation rate of 0.14 min-1).

      1. The data presented in Figure 4 are not presented in a consistent way. While it would be somewhat redundant, including the 0 and 1 mM lactose data for red3 in Figure 4a would be helpful for comparison purposes.

      Authors’ response: We have added the requested bar plot in Fig. 4a.

      1. The presence of additional Musashi-1 sites upstream of the start codon in red3, and their impact on impact on the fold-repression may support an inhibition of the translation initiation model rather than an inhibition of elongation.

      Authors’ response: In page 7, we have rewritten a sentence to have: “In this way, MSI-1 can repress translation by blocking the binding of the ribosome, presumably by imposing a steric hindrance for the 30S ribosomal subunit.” In page 14, we have added the following sentence: “In this way, MSI-1 can also block the RNA component of the 30S ribosomal subunit.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We would like to thank the reviewers for their feedback. Below we address their comments and have indicated the associated changes in our point-by-point response (blue: answers, red: changes in manuscript).

      Reviewer #1:

      Overall, the hypotheses and results are clearly presented and supported by high quality figures. The study is presented in a didactic way, making it easy for a broad audience to understand the significance of the results. The study does present some weaknesses that could easily be addressed by the authors.

      We thank the reviewer for appreciating our work and providing useful suggestions for improvement.

      1) First, there are some anatomical inaccuracies: line 129 and fig1C, the authors omit m.dial septum projections to area CA1 (in addition to the entorhinal cortex). Moreover, in addition to CA1, CA3 also provides monosynaptic feedback projections to the medial septum CA3. Finally, an indirect projection from CA1/3 excitatory neurons to the lateral septum, which in turn sends inhibitory projections to the medial septum could be included or mentioned by the authors. This could be of particular relevance to support claims related to effects of neurostimulations, whereby minutious implementation of anatomical data could be key.

      If not updating their model, the authors could add this point to their limitation section, where they already do a good job of mentioning some limitations of using the EC as a sole oscillatory input to CA1.

      We acknowledge that our current model strongly simplifies the interconnections between the medial septum and the hippocampal formation, but including more anatomical details is beyond the scope of this manuscript and would be a topic for future work. Nevertheless, we followed the reviewer’s advice to stress this point in our manuscript. First, we moved a paragraph that was initially in the “methods” section to the “results” section (L.141-150 of the revised manuscript):

      “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different fields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Second, we expanded the corresponding paragraph in the limitation section to discuss this point further (L.398-415 of the revised manuscript):

      “We decided to model septal pacemaker neurons projecting to the EC as the main source of hippocampal theta as reported in multiple experimental studies (Buzsáki, 2002; Buzsáki et al., 2003; Hangya et al., 2009). However, experimental findings and previous models have also proposed that direct septal inputs are not essential for theta generation (Wang, 2002; Colgin et al., 2013; Mysin et al., 2019), but play an important role in phase synchronization of hippocampal neurons. Furthermore, the model does not account for the connections between the lateral and medial septum and the hippocampus (Takeuchi et al., 2021). These connections include the inhibitory projections from the lateral to the medial septum and the monosynaptic projections from the hippocampal CA3 field to the lateral septum. An experimental study has highlighted the importance of the lateral septum in regulating the hippocampal theta rhythm (Bender et al., 2015), an area that has not been included in the model. Specifically, theta-rhythmic optogenetic stimulation of the axonal projections from the lateral septum to the hippocampus was shown to entrain theta oscillations and lead to behavioral changes during exploration in transgenic mice. To account for these discrepancies, our model could be extended by considering more realistic connectivity patterns between the medial / lateral septum and the hippocampal formation, including glutamatergic, cholinergic, and GABAergic reciprocal connections (Müller and Remy, 2018), or by considering multiple sets of oscillators each representing one theta generator.”

      1. The authors test conditions of low theta inputs, which they liken to pathological states (line 112). It is not clear what pathology the authors are referring to, especially since a large amount of 'oscillopathies' in the septohippocampal system are associated with decreased gamma/PAC, but not theta oscillations (e.g. Alzheimer's disease conditions).

      In the manuscript, we referred to “oscillopathies” in a broad sense way as we did not want to overstate the biological implications of the model or the way we modeled pathological states. To our knowledge, several studies have yielded inconsistent results regarding the specific changes in theta or gamma power in Alzheimer’s disease, and the most convincing alteration seems to be the theta-gamma phase-amplitude coupling (PAC) (for review see e.g., Kitchigina, V. F. Alterations of Coherent Theta and Gamma Network Oscillations as an Early Biomarker of Temporal Lobe Epilepsy and Alzheimer’s Disease. Front Integr Neurosci 12, 36 (2018)), as also mentioned by the reviewer.

      In this study, the most straightforward way to reduce theta-gamma PAC was to reduce the amplitude of the oscillators’ gain, which affected theta power, gamma power, and theta-gamma PAC (Figure 5 of the revised manuscript). Affecting their synchronization level (i.e., the order parameter) did not affect any of these variables (Figure 5 – Figure Supplement 4).

      In order to alter theta-gamma PAC without affecting theta or gamma power, we believe that more complex changes should be performed in the model, likely at the level of individual neurons in the hippocampal formation. For example, cholinergic deprivation has been previously used in a multi-compartment model of the hippocampal CA3 to mimic Alzheimer’s disease and to draw functional implications on the slowing of theta oscillations and the storage of new information (Menschik, E. D. & Finkel, L. H. Neuromodulatory control of hippocampal function: towards a model of Alzheimer’s disease. Artif Intell Med 13, 99–121 (1998)).

      This has now been added to the limitations section (L.458-465 of the revised manuscript):

      “Finally, we likened conditions of low theta input to pathological states characteristic of oscillopathies such as Alzheimer’s disease, as these conditions disrupted all aspects of theta-gamma oscillations in our model: theta power, gamma power, and theta-gamma PAC (Figure 5). However, it should be noted that changes in theta or gamma power in these pathologies are often unclear, and that the most consistent alteration that has been reported in Alzheimer’s disease is a reduction of theta-gamma PAC (for review, see Kitchigina, 2018). Future work should explore the effects of cellular alterations intrinsic to the hippocampal formation and their impact on theta-gamma oscillations.”

      1. While relevant for the clinical field, there is overall a missed opportunity to explain many experimental accounts with this novel model. Although to this day, clinical use of DBS is mostly restricted to electrical (and thus cell-type agnostic) stimulation, recent studies focusing on mechanisms of neurostimulations have manipulated specific subtypes in the medial septum and observed effects on hippocampal oscillations (e.g. see Muller & Remy, 2017 for review). Focusing stimulations in CA1 is of course relevant for clinical studies but testing mechanistic hypotheses by focusing stimulation on specific cell types could be highly informative. For instance, could the author reproduce recent optogenetic studies (e.g. Bender et al. 2015 for stimulation of fornix fibers; Etter et al., 2019 & Zutshi et al. 2018 for stimulation of septal inhibitory neurons)? Cell specific manipulations should at least be discussed by the authors.

      We acknowledge the importance of cell-type-specific manipulation in the septo-hippocampal circuitry. However, our model was designed to study neurostimulation protocols that affect the hippocampal formation, not the medial septum, which is why only the hippocampal formation is composed of biophysically realistic (i.e., conductance-based) neuronal models. To replicate the various studies mentioned by the reviewer (which are all very relevant), we would need to implement a biophysical model of the medial septum, which would be an entirely new project.

      Nevertheless, we can use the existing model to replicate optogenetic studies that induced gamma oscillations in excitatory-inhibitory circuits, using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). In fact, such approaches have been demonstrated not just in the hippocampus but also in the neocortex, and represent a hallmark of local excitatory-inhibitory circuits. To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.151-217 of the revised manuscript):

      “From a conceptual point of view, our model is thus composed of excitatory-inhibitory (E-I) circuits connected in series, with a feedback loop going through a population of coupled phase oscillators. In the next sections, we first describe the generation of gamma oscillations by individual E-I circuits (Figure 2), and illustrate their behavior when driven by an oscillatory input such as theta oscillations (Figure 3). We then present a thorough characterization of the effects of theta input and stimulation amplitude on theta-nested gamma oscillations (Figure 4 and Figure 5). Finally, we present some results on the effects of neurostimulation protocols for restoring theta-nested gamma oscillations in pathological states (Figure 6 and Figure 7).

      Generation of gamma oscillations by E-I circuits

      It is well-established that a network of interconnected pyramidal neurons and interneurons can give rise to oscillations in the gamma range, a mechanism termed pyramidal-interneuronal network gamma (PING) (Traub et al., 2004; Onslow et al., 2014; Segneri et al., 2020;). This mechanism has been observed in several optogenetic studies with gradually increasing light intensity (i.e., under a ramp input) affecting multiple different circuits, such as layer 2-3 pyramidal neurons of the mouse somatosensory cortex (Adesnik et al., 2010), the CA3 field of the hippocampus in rat in vitro slices (Akam et al., 2012), and in the non-human primate motor cortex (Lu et al., 2015). In all cases, gamma oscillations emerged above a certain threshold in terms of photostimulation intensity, and the frequency of these oscillations was either stable or slightly increased when increasing the intensity further. We sought to replicate these findings with our elementary E-I circuits composed of single-compartment conductance-based neurons driven by a ramping input current (Figure 2 and Figure S2). As an example, all the results in this section will be shown for an E-I circuit that has similar connectivity parameters as the CA1 field of the hippocampus in our complete model (see section “Hippocampal formation: inputs and connectivity” in the methods).

      For low input currents provided to both neuronal populations, only the highly-excitable interneurons were activated (Figure 2A). For a sufficiently high input current (i.e., a strong input that could overcome the inhibition from the fast-spiking interneurons), the pyramidal neurons started spiking as well. As the amplitude of the input increased, the activity of the both neuronal populations became synchronized in the gamma range, asymptotically reaching a frequency of about 60 Hz (Figure 2A bottom panel). Decoupling the populations led to the abolition of gamma oscillations (Figure 2B), as neuronal activity was determined solely by the intrinsic properties of each cell. Interestingly, when the ramp input was provided solely to the excitatory population, we observed that the activity of the pyramidal neurons preceded the activity of the inhibitory neurons, while still preserving the emergence of gamma oscillations (Figure S2 A). As expected, decoupling the populations also abolished gamma oscillations, with the excitatory neurons spiking a frequency determined by their intrinsic properties and the inhibitory population remaining silent (Figure S2B).

      To further characterize the intrinsic properties of individual inhibitory and excitatory neurons, we derived their input-frequency (I-F) curves, which represent the firing rate of individual neurons in response to a tonic input (Figure S3A). We observed that for certain input amplitudes, the firing rates of both types of neurons was within the gamma range. Interestingly, in the absence of noise, each population could generate by itself gamma oscillations that were purely driven by the input and determined by the intrinsic properties of the neurons (Figure S3B). Adding stochastic Gaussian noise in the membrane potential disrupted these artificial oscillations in decoupled populations (Figure S3C). All subsequent simulations were run with similar noise levels to prevent the emergence of artificial gamma oscillations.

      Another potent way to induce gamma oscillations is to drive fast-spiking inhibitory neurons using pulsed optogenetic stimulation at gamma frequencies, a strategy that has been used both in the neocortex (Cardin et al., 2009) and hippocampal CA1 (Iaccarino et al., 2016). In particular, Cardin and colleagues systematically investigated the effect of driving either excitatory or fast-spiking inhibitory neocortical neurons at frequencies between 10 and 200 Hz (Cardin et al., 2009). They showed that fast-spiking interneurons are preferentially entrained around 40-50 Hz, while excitatory neurons respond better to lower frequencies. To verify the behavior of our model against these experimental data, we simulated pulsed optogenetic stimulation as an intracellular current provided to our reduced model of a single E-I circuit. Stimulation was applied at frequencies between 10 and 200 Hz to excitatory cells only, to inhibitory cells only, or to both at the same time (Figure S4). The population firing rates were used as a proxy for the local field potentials (LFP), and we computed the relative power in a 10-Hz band centered around the stimulation frequency, similarly to the method proposed in (Cardin et al., 2009). When presented with continuous stimulation across a range of frequencies in the gamma range, interneurons showed the greatest degree of gamma power modulation (Figure S4). Furthermore, when the stimulation was delivered to the excitatory population, the relative power around the stimulation frequency dropped significantly in frequencies above 10 Hz, similar to the reported experimental data (Cardin et al., 2009). The main difference between our simulation results and these experimental data is the specific frequencies at which fast-spiking interneurons showed resonance, which was slow gamma around 40 Hz in the mouse barrel cortex and fast gamma around 90 Hz in our model. This could be attributed to several factors, such as differences in the cellular properties between cortical and hippocampal fast-spiking interneurons, or the differences between the size of the populations and their relevant connectivity in the cortex and the hippocampus.”

      Author response image 1.

      Figure 2. Emergence of gamma oscillations in coupled excitatory-inhibitory populations under ramping input to both populations. A. Two coupled populations of excitatory pyramidal neurons (NE = 1000) and inhibitory interneurons (NI = 100) are driven by a ramping current input (0 nA to 1 nA) for 5 s. As the input becomes stronger, oscillations start to emerge (shaded green area), driven by the interactions between excitatory and inhibitory populations. The green inset shows the raster plot (neuronal spikes across time) of the two populations during the green shaded period (red for inhibitory; blue for excitatory). When the input becomes sufficiently strong (shaded magenta area), the populations become highly synchronized and produce oscillations in the gamma range (at approximately 50 Hz). The spectrogram (bottom panel) shows the power of the instantaneous firing rate of the pyramidal population as a function of time and frequency. It reveals the presence of gamma oscillations that emerge around 2s and increase in frequency until 4 s, when they settle at approximately 60 Hz. B. Similar depiction as in panel A. with the pyramidal-interneuronal populations decoupled. The absence of coupling leads to the abolition of gamma oscillations, each cell spiking activity being driven by its own inputs and intrinsic properties.

      Author response image 2.

      Figure S2 (Figure 2 – Figure Supplement 1). Emergence of gamma oscillations in coupled excitatoryinhibitory populations under ramping input to the excitatory population. Similar representation as in Figure 2, but with the input provided only to the excitatory population. All conclusions remain the same. In addition, the inhibitory population does not show any spiking activity in the decoupled case.

      Author response image 3.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Author response image 4.

      Figure S3 (Figure 2 – Figure Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective I-F curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      Beyond these weaknesses, this study has a strong utility for researchers wanting to explore hypotheses in the field of neurostimulations. In particular, I see value in such models for exploring more intricate, phase specific effects of continuous, as well as close loop stimulations which are on the rise in systems neuroscience.

      We thank the reviewer for this appreciation of our work and its future perspectives.

      Recommendations For The Authors:

      Line 144, the authors mention that their MI values are erroneous in absence of additive noise - could this be due to the non-sinusoidal nature of the phase signal recorded, and be fixed by upscaling model size?

      We thank the reviewer for this question and suggestion. The main reason behind the errors in the computation of the MI lies in the complete absence of oscillations at specific frequencies. Filtered signals within specific bands produced a power of 0 (or extremely low values), as seen in the power spectral densities. In such cases, the phase signal was not mathematically defined, but the toolbox we used to compute it still returned a numerical result that was inaccurate (for more details on the computation of the MI see Tort et al., 2010). To mitigate this numerical artefact, we decided to add uniform noise in the computed firing rates. This strategy is illustrated on Figure S6 (Figure 3 – Figure Supplement 2), which we have copied below for reference. Alternative approaches could probably have been used, such as increasing the noise in the membrane potential so that neurons would start spiking with firing rates that show more realistic power spectra, even in the absence of external inputs.

      Author response image 5.

      Figure S6 (Figure 3 – Figure Supplement 2). Quantification of PAC with and without noise. A. Quantifying PAC in the absence of noise produced inaccurate identification of the coupled frequency bands, due to the complete absence of oscillations at some frequencies. All analyses are based on the CA1 firing rates (top traces) during a representative simulation. Power spectral densities of these firing rates (left) indicate that some frequencies have a power of 0. PAC of the excitatory population was assessed using two graphical representations, the polar plot (middle) and comodulogram (right), and quantified using the MI. The comodulogram was calculated by computing the MI across 80% overlapping 1-Hz frequency bands in the theta range and across 90% overlapping 10-Hz frequency bands in the gamma range and subsequently plotted as a heat map. In the absence of noise, a slow theta frequency centered around 5 Hz is found to modulate a broad range of gamma frequencies between 40 and 100 Hz. The value indicated on the comodulogram indicates the average MI in the 3-9 Hz theta range and 40-80 Hz gamma range. As in Figure 2, the polar plot represents the amplitude of gamma oscillations (averaged across all theta cycles) at each phase of theta (theta range: 3-9 Hz, phase indicated as angular coordinate) and for different gamma frequencies (radial coordinate, binned in 1-Hz ranges). B. Adding uniform noise to the firing rate (with an amplitude ranging between 15 and 25% of the maximum firing rate) improved the identification of the coupled frequency bands. In this case, the slower theta frequency centered around 5 Hz modulates a gamma band located between 45 and 75 Hz.

      Reviewer #2:

      The main strength of this model is its use of a fairly physiologically detailed model of the hippocampus. The cells are single-compartment models but do include multiple ion channels and are spatially arranged in accordance with the hippocampal structure. This allows the understanding of how ion channels (possibly modifiable by pharmacological agents) interact with system-level oscillations and neurostimulation. The model also includes all the main hippocampal subfields. The other strength is its attention to an important topic, which may be relevant for dementia treatment or prevention, which few modeling studies have addressed. The work has several weaknesses.

      We thank the reviewer for appreciating our detailed description of the hippocampal formation and the focus on neurostimulation applications that aim at treating oscillopathies, especially dementia.

      1. First, while investigations of hippocampal neurostimulation are important there are few experimental studies from which one could judge the validity of the model findings. All its findings are therefore predictions. It would be much more convincing to first show the model is able to reproduce some measured empirical neurostimulation effect before proceeding to make predictions.

      We acknowledge that the results presented in Figures 4-7 of the revised manuscript cannot be compared to existing experimental data, and are therefore purely predictive. Future experimental work is needed to verify these predictions.

      Yet, we would also like to stress that the motivation behind this project was the inadequacy of previous models of theta-nested gamma oscillations (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020) to account for the mechanism of theta phase reset that occurs during electrical stimulation of the fornix or perforant path (Williams and Givens, 2003). Since we could not use these previous models to study the effects of neurostimulation on theta-nested gamma oscillations, we had to modify them to account for a dynamical theta input, which is the main methodological novelty that is reported in our manuscript (Figures 1 and 3 of the revised manuscript).

      Despite the scarcity of experimental studies that could confirm the full model, we sought to replicate a few experimental findings that employed optogenetic stimulation to induce gamma oscillations in individual excitatory-inhibitory circuits. Although not specific to the hippocampus, these studies have shown that gamma oscillations can be induced using either ramped photostimulation targeting excitatory neurons (Adesnik et al., 2010; Akam et al., 2012; Lu et al., 2015), or pulsed stimulation driving inhibitory cells in the gamma range (Cardin et al., 2009; Iaccarino et al., 2016). To account for these experimental results and replicate them, we have added 4 new figures (Figure 2 and its 3 figure supplements) and an extensive section in the results part (L.141-217 of the revised manuscript). The added section and related figures are indicated in our response to reviewer 1, comment 3 (p 2-7).

      2.1. Second, the model is very specific. Or if its behavior is to be considered general it has not been explained why.

      Although the spatial organization and cellular details of the model are indeed very specific, its general behavior, i.e., the production of theta-nested gamma oscillations and theta phase reset, are common to any excitatory-inhibitory circuit interconnected with Kuramoto oscillators. To illustrate this point, we have generalized our approach to the neural mass model developed by Onslow and colleagues (Onslow ACE, Jones MW, Bogacz R. A Canonical Circuit for Generating Phase-Amplitude Coupling. PLoS ONE. 2014 Aug; 9(8):e102591). These results are represented in a new supplementary figure (Figure3 – Figure Supplement 4), and briefly described in a new paragraph of the results section (L.262-268 of the revised manuscript):

      “Importantly, our approach is generalizable and can be applied to other models producing theta-nested gamma oscillations. For instance, we adapted the neural mass model by Onslow and colleagues (Onslow et al., 2014), replaced the fixed theta input by a set of Kuramoto oscillators, and demonstrated that it could also generate theta phase reset in response to single-pulse stimulation (Figure S8). These results illustrate that the general behavior of our model is not specific to the tuning of individual parameters in the conductancebased neurons, but follows general rules that are captured by the level of abstraction of the Kuramoto formalism.”

      Author response image 6.

      Figure S8 (Figure 3 – Figure Supplement 4). A neural mass model of coupled excitatory and inhibitory neurons driven by Kuramoto oscillators generates theta-nested gamma oscillations and theta phase reset. A. Two coupled neural masses (one excitatory and one inhibitory) driven by Kuramoto oscillators, which represent a dynamical oscillatory drive in the theta range, were used to implement a neural mass equivalent to our conductance-based model represented in Figure 1. Neural masses were modeled using the WilsonCowan formalism, with parameters adapted from Onslow et al. (2014) (𝑊𝐸𝐸 = 4.8, 𝑊𝐸𝐼 = 𝑊𝐼𝐸 = 4, 𝑊𝐼𝐼 = 0). B. The normalized population firing rates exhibit theta-nested gamma oscillations (middle and bottom panels) in response to the dynamic theta rhythm (top panel). A stimulation pulse delivered at the descending phase of the rhythm to both populations (marked by the inverted red triangle) produces a robust theta phase reset, similarly to Figure 3A.

      This simplified model is described in more details in the methods (L.694-710 of the revised manuscript). Additionally, the generation of gamma oscillations by individual excitatory-inhibitory circuits is now described in details in the added section “Generation of gamma oscillations by E-I circuits” (L.159-217 of the revised manuscript), which has already been discussed in our response to reviewer 1, comment 3 (p 2-7).

      2.2. For example, the model shows bistability between quiescence and TNGO, however what aspect of the model underlies this, be it some particular network structure or particular ion channel, for example, is not addressed.

      We thank the reviewer for mentioning this point, which we have now addressed. The “bistable” behavior that we reported occurs for values of the theta input that are just below the threshold to induce selfsustained theta-gamma oscillations (Figure 5 of the revised manuscript, point B). Moreover, the presence of the Calcium-Activated-Nonspecific (CAN) cationic channel, which is expressed by pyramidal neurons in the entorhinal cortex, CA3, and CA1 fields of the hippocampus, is necessary for this behavior to occur. Indeed, abolishing CAN channels in all areas of the model suppresses this behavior. We have now addressed this point in a new supplementary figure (Figure 5 – Figure Supplement 4) and a short description in the text (L.287-303 of the revised manuscript).

      “In the presence of dynamic theta input, the effects of single-pulse stimulation depended both on theta input amplitude and stimulation amplitude, highlighting different regimes of network activity (Figure 5 and Figure S9, Figure S10, Figure S11). For low theta input, theta-nested gamma oscillations were initially absent and could not be induced by stimulation (Figure 5A). At most, the stimulation could only elicit a few bursts of spiking activity that faded away after approximately 250 ms, similar to the rebound of activity seen in the absence of theta drive. For increasing theta input, the network switched to an intermediate regime: upon initialization at a state with no spiking activity, it could be kicked to a state with self-sustained theta-nested gamma oscillations by a single stimulation pulse of sufficiently high amplitude (Figure 5B). This regime existed for a range of septal theta inputs located just below the threshold to induce self-sustained theta-gamma oscillations without additional stimulation, as characterized by the post-stimulation theta power, gamma power, and theta-gamma PAC (Figure 5D). Removing CAN currents from all areas of the model abolished this behavior (Figure S12), which is interesting given the role of this current in the multistability of EC neurons (Egorov et al., 2002; Fransen et al., 2006) and in the intrinsic ability of the hippocampus to generate thetanested gamma oscillations (Giovannini et al., 2017). For the highest theta input, the network became able to spontaneously generate theta-nested gamma oscillations, even when initialized at a state with no spiking activity and without additional neurostimulation (Figure 5C).”

      Author response image 7.

      Figure S12 (Figure 5 – Figure Supplement 4). CAN currents are necessary for the production of selfsustained theta-gamma oscillations in response to single-pulse stimulation. A. Same as Figure 5B. B. Similar simulation as panel A., but without the presence of CAN currents in the EC, CA3 and CA1 fields of the hippocampus. Removing CAN currents from the model abolishes self-sustained theta-nested gamma oscillations in response to a single stimulation pulse (for the parameters represented in Figure 5, point B).

      Furthermore, we realized that the terminology “bistable” may not be justified as we could not perform a systematic bifurcation analysis, which is typically carried out in simpler neural mass models (e.g., Onslow et al., 2014; Segneri et al., 2020). Therefore, we decided to rephrase the sentences about “bistability” to keep a more general terminology. The following sentences were revised:

      L.20-23: “We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations.”

      L.305-309: “Based on the above analyses, we considered two pathological states: one with a moderate theta input (i.e., moderately weak projections from the medial septum to the EC) that allowed the initiation of selfsustained oscillations by single stimulation pulses (Figure 5, point B), and one with a weaker theta input characterized by the complete absence of self-sustained oscillations even following transient stimulation (Figure 5, point A).”

      L.316-317: “In the case of a moderate theta input and in the presence of phase reset, delivering a pulse at either the peak or trough of theta could induce theta-nested gamma oscillations (Figure 6A and 6C).”

      L.353-357: “A very interesting finding concerns the behavior of the model in response to single-pulse stimulation for certain values of the theta amplitude (Figure5). For low theta amplitudes, a single stimulation pulse was capable of switching the network behavior from a state with no spiking activity to one with prominent theta-nested gamma oscillations. Whether such an effect can be induced in vivo in the context of memory processes remains an open question.”

      2.3. Similarly for the various phase reset behaviors that are found.

      We would like to clarify the fact that the observed phase reset curves (reported in Figure 3D) are a direct consequence of the choice of an appropriate phase response function for the Kuramoto oscillators representing the medial septum. This choice is inspired by experimentally measured phase response curves from CA3 neurons. These aspects are described briefly in the introduction and in more details in the methods, as indicated below:

      L.101: “This new hybrid dynamical model could generate both theta-nested gamma oscillations and theta phase reset, following a particular phase response curve (PRC) inspired by experimental literature (Lengyel et al., 2005; Akam et al., 2012; Torben-Nielsen et al., 2010).”

      L.528-537: “Hereafter, we call the term 𝑍(𝜃) the phase response function, to distinguish it from the PRC obtained from experimental data or simulations (see section below "Data Analysis", "Phase Response Curve"). Briefly, the PRC of an oscillatory system indicates the phase delay or advancement that follows a single pulse, as a function of the phase at which this input is delivered. The phase response function 𝑍(𝜃) was chosen to mimic as well as possible experimental PRCs reported in the literature (Lengyel et al., 2005; Kwag and Paulsen, 2009; Akam et al., 2012). These PRCs appear biphasic and show a phase advancement (respectively delay) for stimuli delivered in the ascending (respectively descending) slope of theta. To accurately model this behavior, we used the following equation for the phase response function, where 𝜃𝑝𝑒𝑎𝑘 represents the phase at which the theta rhythm reaches its maximum and the parameter 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 controls the desired phase offset from the peak:

      Author response image 8.

      On the figure below, we illustrate the phase response curves of CA3 neurons measured by Lengyel et al., 2005 (panel A.), and compare it with our simulated phase response curves (panel B.). Note that the conventions for phase advance and phase delay are reversed between the two panels.

      Finally, we would like to acknowledge that the model “is not derived from experimental phase response curves of septal neurons of which there is no direct measurement”, as mentioned by the reviewer in their comment 4 below. Despite the lack of experimental data specific to medial septum neurons, we argue that this phase response function is the only one that mathematically supports the generation of self-sustained theta-nested gamma oscillations in our current model. This statement is illustrated by Figure S7 (Figure 3 – Figure Supplement 3) and is mentioned in the results (L.249-261 of the revised manuscript):

      We modeled this behavior by a specific term (which we called the phase response function) in the general equation of the Kuramoto oscillators (see methods, Equation 1). Importantly, introducing a phase offset in the phase response function disrupted theta-nested gamma oscillations (Figure S7), which suggests that the septohippocampal circuitry must be critically tuned to be able to generate such oscillations. The strength of phase reset could also be adjusted by a gain that was manually tuned. In the presence of the physiological phase response function and of a sufficiently high reset gain, a single stimulation pulse delivered to all excitatory and inhibitory CA1 neurons could reset the phase of theta to a value close to its peaks (Figure 3A). We computed the PRC of our simulated data for different stimulation amplitudes and validated that our neuronal network behaved according to the phase response function set in our Kuramoto oscillators (Figure 3D). It should be noted that including this phase reset mechanism affected the generated theta rhythm even in the absence of stimulation, extending the duration of the theta peak and thereby slowing down the frequency of the generated theta rhythm.

      Author response image 9.

      Figure S7 (Figure 3 – Figure Supplement 3). Network behavior generated by Kuramoto oscillators with nonphysiological phase response functions. Each panel is similar to Figure 3A, but with a different offset added to the phase response function of the Kuramoto oscillators (see methods, Equation 4). The center frequency was set to 6 Hz in all of these simulations. Overall, theta oscillations in these cases are less sinusoidal and show more abrupt phase changes than in the physiological case. A. A phase offset of −𝜋∕2 leads to an overall theta oscillation of 4 Hz, with a second peak following the main theta peak. B. A phase offset of +𝜋∕2 reduces the peak of theta, resetting the rhythm to the middle of the ascending phase. C. A phase offset of 𝜋 or -𝜋 leads to the CA1 output resetting the theta rhythm to the trough of theta.

      2.4. We may wonder whether a different hippocampal model of TNGO, of which there are many published (for example [1-6]) would show the same effect under neurostimulation. This seems very unlikely […]

      [1] Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences. 2015 Nov 1;38(11):725-40.

      [2] Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences. 2007 Aug 14;104(33):13490-5.

      [3] Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. Journal of Neuroscience. 2011 Aug 10;31(32):11733-43.

      [4] Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase-amplitude coupling in a hippocampal CA1 microcircuit. PLOS Computational Biology. 2023 Mar 23;19(3):e1010942.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      The highlighted publications, while very important in their findings regarding theta-gamma phase-amplitude coupling, focused on specific subfields of the hippocampus. In our work, we aimed to develop a model that includes the different anatomical divisions of the hippocampal formation, while still exhibiting theta-nested gamma oscillations, which is why we decided to expand the model by Aussel et al. (2018). Exploring the behavior of all these different hippocampal models under neurostimulation is beyond the scope of the current manuscript.

      Nevertheless, we have added a new figure (Figure 3 – Figure Supplement 4) showing an adaptation of our modeling approach to a generic neural mass model of theta-nested gamma oscillations (Onslow et al., 2014), which illustrates the generalizability of our findings and is described in details in our response to comment 2.1. Moreover, we have further addressed the comments of the reviewers regarding bistability and phase response curves in our responses to comments 2.2 and 2.3.

      Furthermore, we have added references to all 6 of these publications in the revised version of the manuscript:

      L.43-50: Moreover, the modulation of gamma oscillations by the phase of theta oscillations in hippocampal circuits, a phenomenon termed theta-gamma phase-amplitude coupling (PAC), correlates with the efficacy of memory encoding and retrieval (Jensen and Colgin, 2007; Tort et al., 2009; Canolty and Knight, 2010; Axmacher et al., 2010; Fell and Axmacher, 2011; Lisman and Jensen, 2013; Lega et al., 2016). Experimental and computational work on the coupling between oscillatory rhythms has indicated that it originates from different neural architectures and correlates with a range of behavioral and cognitive functions, enabling the long-range synchronization of cortical areas and facilitating multi-item encoding in the context of memory (Hyafil et al., 2015)."

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      2.5. […] and indeed the quiescent state itself shown by this model seems quite artificial.

      We would like to clarify the fact that the “quiescent state” mentioned by the reviewer is a simply a state where the theta input is too low to induce theta-nested gamma oscillations. In this regime, neurons are active only due to the noise term in the membrane potential, which was adjusted based on Figure S3 (Figure 2 – Figure Supplement 2, shown below), at the minimal level needed to disrupt artificial synchronization in decoupled populations. For an input of 0 nA, we acknowledge that this network is indeed fully quiescent (i.e., does not show any spiking activity). However, as soon as the input increases, spontaneous spiking activity starts to appear with an average firing rate that depends on the input amplitude and is characterized by the input-frequency curves (panel A.). Please note that adding more noise could eliminate the observed quiescence in the absence of any input, but that it would not affect qualitatively the reported results.

      Author response image 10.

      Figure S3 (Figure 2 – Supplement 2). Cell-intrinsic spiking activity in decoupled excitatory and inhibitory populations under ramping input. A. Input-Frequency (I-F) curves for excitatory cells (left panel; pyramidal neurons with ICAN) and inhibitory cells (right panel; interneurons, fast-spiking) used in the model. Above a certain tonic input (around 0.35 nA for excitatory and 0.1 nA for inhibitory neurons), neurons can spike in the gamma range. B. Raster plot showing the spiking activity of excitatory (blue, NE = 1000) and inhibitory (red, NI = 100) neurons in decoupled populations under ramping input (top trace) and in the absence of noise in the membrane potential. Despite random initial conditions across neurons, oscillations emerge in both populations due to the intrinsic properties of the cells, with a frequency that is predicted by the respective IF curves (panel A.). C. Similar representation as panel B. but with the addition of stochastic noise in the membrane potential of each neuron. The presence of noise disrupts the emergence of oscillations in these decoupled populations.

      2.6. Some indication that particular ion channels, CAN and M are relevant is briefly provided and the work would be much improved by examining this aspect in more detail.

      We thank the reviewer for acknowledging the importance of these ion channels. We have now added a new supplementary figure (Figure 5 – Figure Supplement 4), which is described in more details in our response to comment 2.2 and illustrates the role of the CAN current in the generation of theta-nested gamma oscillations following a single stimulation pulse. Moreover, we would like to stress that the impact of CAN currents in the ability of the hippocampus to generate theta-nested gamma oscillations intrinsically, i.e., in the absence of persistent external input, has already been investigated in details by a previous computational study cited in our manuscript (Giovannini F, Knauer B, Yoshida M, Buhry L. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus. 2017 Apr;809 27(4):450–463).

      2.7. In summary, the work would benefit from an intuitive analysis of the basic model ingredients underlying its neurostimulation response properties.

      We thank the reviewer for this suggestion. By addressing the reviewer’s previous comments (reviewer 2, comments 2.1 and 2.2), which overlap partly with the first reviewer (reviewer 1, comment 3), we believe we have improved the manuscript and have provided key information related to the way the model responds to neurostimulation.

      3..) Third, while the model is fairly realistic, considerable important factors are not included and in fact, there are much more detailed hippocampal models out there (for example [5,6]). In particular, it includes only excitatory cells and a single type of inhibitory cell. This is particularly important since there are many models and experimental studies where specific cell types, for example, OLM and VIP cells, are strongly implicated in TNGO.

      [5] Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife. 2016 Dec 23;5:e18566.

      [6] Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus. 2021 Sep;31(9):982-1002.

      We thank the reviewer for pointing out these interesting avenues for future studies. As indicated in previous responses (reviewer 1, comment 1; reviewer 2, comment 2.4), we have added several paragraphs to discuss these limitations, the rationale behind our simplifications, and potential improvements. In particular, we have added the following paragraphs to discuss our simplifications in terms of connectivity and cell types:

      Anatomical connectivity:

      L.141-150: “Biologically, GABAergic neurons from the medial septum project to the EC, CA3, and CA1 fields of the hippocampus (Toth et al., 1993; Hajós et al., 2004; Manseau et al., 2008; Hangya et al., 2009; Unal et al., 2015; Müller and Remy, 2018). Although the respective roles of these different projections are not fully understood, previous computational studies have suggested that the direct projection from the medial septum to CA1 is not essential for the production of theta in CA1 microcircuits (Mysin et al., 2019). Since our modeling of the medial septum is only used to generate a dynamic theta rhythm, we opted for a simplified representation where the medial septum projects only to the EC, which in turn drives the different subfields of the hippocampus. In our model, Kuramoto oscillators are therefore connected to the EC neurons and they receive projections from CA1 neurons (see methods for more details).”

      Cell types:

      L.415-426: “In terms of neuronal cell types, we also made an important simplification by considering only basket cells as the main class of inhibitory interneuron in the whole hippocampal formation. However, it should be noted that many other types of interneurons exist in the hippocampus and have been modeled in various works with higher computational complexity (e.g., Bezaire et al., 2016; Chatzikalymniou et al., 2021). Among these various interneurons, oriens-lacunosum moleculare (OLM) neurons in the CA1 field have been shown to play a crucial role in synchronizing the activity of pyramidal neurons at gamma frequencies (Tort et al., 2007), and in generating theta-gamma PAC (e.g., Neymotin et al., 2011; Ponzi et al., 2023). Additionally, these cells may contribute to the formation of specific phase relationships within CA1 neuronal populations, through the integration between inputs from the medial septum, the EC, and CA3 (Mysin et al., 2019). Future work is needed to include more diverse cell types and detailed morphologies modeled through multiple compartments.”

      3.2. Other missing ingredients one may think might have a strong impact on model response to neurostimulation (in particular stimulation trains) include the well-known short-term plasticity between different hippocampal cell types and active dendritic properties.

      We agree with the reviewer that plasticity mechanisms are important to include in future work, which we had already mentioned in the limitations section of the manuscript:

      L.436-443: “Importantly, we did not consider learning through synaptic plasticity, even though such mechanisms could drastically modify synaptic conduction for the whole network (Borges et al., 2017). Even more interestingly, the inclusion of spike-timing-dependent plasticity would enable the investigation of stimulation protocols aimed at promoting LTP, such as theta-burst stimulation (Larson et al., 2015). This aspect would be of uttermost importance to make a link with memory encoding and retrieval processes (Axmacher et al., 2006; Tsanov et al., 2009; Jutras et al., 2013) and with neurostimulation studies for memory improvement (Titiz et al., 2017; Solomon et al., 2021).”

      1. Fourth the MS model seems somewhat unsupported. It is modeled as a set of coupled oscillators that synchronize. However, there is also a phase reset mechanism included. This mechanism is important because it underlies several of the phase reset behaviors shown by the full model. However, it is not derived from experimental phase response curves of septal neurons of which there is no direct measurement. The work would benefit from the use of a more biologically validated MS model.

      We would like to confirm that the phase reset mechanism is indeed at the core of using Kuramoto oscillators to model a particular system. For more details about our choice of a phase response function and the obtained results in terms of phase response curves, we refer the reader to our response to comment 2.3.

      Generally speaking, we chose to use Kuramoto oscillators as it is the simplest model that can provide an oscillatory input to another system while including a phase reset mechanism. This set of oscillators was used to replace the fixed sinusoidal wave that represented theta inputs in previous models (Onslow et al., 2014; Aussel et al., 2018; Segneri et al., 2020). Kuramoto oscillators are a well-established model of synchronization in various fields of physics. They have also been used in neuroscience to model the phase reset of collective rhythms (Levnajić et al. 2010), and the effects of DBS on the basal ganglia network in Parkinson’s disease (Tass et al. 2003, Ebert et al. 2014, Weerasinghe et al. 2019).

      More detailed models of the medial septum exist in the literature (e.g., Wang et al. 2002, Hajós et al. 2004) and model the GABAergic effects of the septal projections onto the hippocampal formation. However, it is not trivial to infer the connectivity parameters and the degree of innervation between the hippocampus and the medial septum. Furthermore, the claims made in our study do not necessarily depend on the nature of the projections between the two areas. Therefore, we decided to represent the medial septum in a conceptual way and focus mostly on the effects of these projections rather than replicating them in detail.

      Aussel, Amélie, Laure Buhry, Louise Tyvaert, and Radu Ranta. “A Detailed Anatomical and Mathematical Model of the Hippocampal Formation for the Generation of Sharp-Wave Ripples and Theta-Nested Gamma Oscillations.” Journal of Computational Neuroscience 45, no. 3 (December 2018): 207–21. https://doi.org/10.1007/s10827-018-0704-x.

      Ebert, Martin, Christian Hauptmann, and Peter A. Tass. “Coordinated Reset Stimulation in a Large-Scale Model of the STN-GPe Circuit.” Frontiers in Computational Neuroscience 8 (2014): 154. https://doi.org/10.3389/fncom.2014.00154.

      Hajós, M., W.E. Hoffmann, G. Orbán, T. Kiss, and P. Érdi. “Modulation of Septo-Hippocampal θ Activity by GABAA Receptors: An Experimental and Computational Approach.” Neuroscience 126, no. 3 (January 2004): 599–610. https://doi.org/10.1016/j.neuroscience.2004.03.043.

      Levnajić, Zoran, and Arkady Pikovsky. “Phase Resetting of Collective Rhythm in Ensembles of Oscillators.” Physical Review E 82, no. 5 (November 3, 2010): 056202. https://doi.org/10.1103/PhysRevE.82.056202.

      Onslow, Angela C. E., Matthew W. Jones, and Rafal Bogacz. “A Canonical Circuit for Generating PhaseAmplitude Coupling.” Edited by Adriano B. L. Tort. PLoS ONE 9, no. 8 (August 19, 2014): e102591. https://doi.org/10.1371/journal.pone.0102591.

      Segneri, Marco, Hongjie Bi, Simona Olmi, and Alessandro Torcini. “Theta-Nested Gamma Oscillations in Next Generation Neural Mass Models.” Frontiers in Computational Neuroscience 14 (2020). https://doi.org/10.3389/fncom.2020.00047. T ass, Peter A. “A Model of Desynchronizing Deep Brain Stimulation with a Demand-Controlled Coordinated Reset of Neural Subpopulations.” Biological Cybernetics 89, no. 2 (August 1, 2003): 81–88. https://doi.org/10.1007/s00422-003-0425-7.

      Wang, Xiao-Jing. “Pacemaker Neurons for the Theta Rhythm and Their Synchronization in the Septohippocampal Reciprocal Loop.” Journal of Neurophysiology 87, no. 2 (February 1, 2002): 889–900. https://doi.org/10.1152/jn.00135.2001.

      Weerasinghe, Gihan, Benoit Duchet, Hayriye Cagnan, Peter Brown, Christian Bick, and Rafal Bogacz. “Predicting the Effects of Deep Brain Stimulation Using a Reduced Coupled Oscillator Model.” PLoS Computational Biology 15, no. 8 (August 8, 2019): e1006575. https://doi.org/10.1371/journal.pcbi.1006575.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript by Wagstyl et al. describes an extensive analysis of gene expression in the human cerebral cortex and the association with a large variety of maps capturing many of its microscopic and macroscopic properties. The core methodological contribution is the computation of continuous maps of gene expression for >20k genes, which are being shared with the community. The manuscript is a demonstration of several ways in which these maps can be used to relate gene expression with histological features of the human cortex, cytoarchitecture, folding, function, development and disease risk. The main scientific contribution is to provide data and tools to help substantiate the idea of the genetic regulation of multi-scale aspects of the organisation of the human brain. The manuscript is dense, but clearly written and beautifully illustrated.

      Main comments

      The starting point for the manuscript is the construction of continuous maps of gene expression for most human genes. These maps are based on the microarray data from 6 left human brain hemispheres made available by the Allen Brain Institute. By technological necessity, the microarray data is very sparse: only 1304 samples to map all the cortex after all subjects were combined (a single individual's hemisphere has ~400 samples). Sampling is also inhomogeneous due to the coronal slicing of the tissue. To obtain continuous maps on a mesh, the authors filled the gaps using nearest-neighbour interpolation followed by strong smoothing. This may have two potentially important consequences that the authors may want to discuss further: (a) the intrinsic geometry of the mesh used for smoothing will introduce structure in the expression map, and (b) strong smoothing will produce substantial, spatially heterogeneous, autocorrelations in the signal, which are known to lead to a significant increase in the false positive rate (FPR) in the spin tests they used.

      Many thanks to the reviewer for their considered feedback. We have addressed these primary concerns into point-by-point responses below. The key conclusions from our new analyses are: (i) while the intrinsic geometry of the mesh had not originally been accounted for in sufficient detail, the findings presented in this manuscript paper are not driven by mesh-induced structure, (ii) that the spin test null models used in this manuscript [(including a modified version introduced in response to (i)] are currently the most appropriate way to mitigate against inflated false positive rates when making statistical inferences on smooth, surface-based data.

      a. Structured smoothing

      A brain surface has intrinsic curvature (Gaussian curvature, which cannot be flattened away without tearing). The size of the neighbourhood around each surface vertex will be determined by this curvature. During surface smoothing, this will make that the weight of each vertex will be also modulated by the local curvature, i.e., by large geometric structures such as poles, fissures and folds. The article by Ciantar et al (2022, https://doi.org/10.1007/s00429-022-02536-4) provides a clear illustration of this effect: even the mapping of a volume of pure noise into a brain mesh will produce a pattern over the surface strikingly similar to that obtained by mapping resting state functional data or functional data related to a motor task.

      Comment 1

      It may be important to make the readers aware of this possible limitation, which is in large part a consequence of the sparsity of the microarray sampling and the necessity to map that to a mesh. This may confound the assessments of reproducibility (results, p4). Reproducibility was assessed by comparing pairs of subgroups split from the total 6. But if the mesh is introducing structure into the data, and if the same mesh was used for both groups, then what's being reproduced could be a combination of signal from the expression data and signal induced by the mesh structure.

      Response 1

      The reviewer raises an important question regarding the potential for interpolation and smoothing on a cortical mesh to induce a common/correlated signal due to the intrinsic mesh structure. We have now generated a new null model to test this idea which indicates that intrinsic mesh structure is not inflating reproducibility in interpolated expression maps. This new null model spins the original samples prior to interpolation, smoothing and comparison between triplet splits of the six donors, with independent spins shared across the triplet. For computational tractability we took one pair of triplets and regenerated the dataset for each triplet using 10 independent spins. We used these to estimate gene-gene null reproducibility for 90 independent pairwise combinations of these 10 spins. Across these 90 permutations, the average median gene-gene correlation was R=0.03, whereas in the unspun triplet comparisons this was R=0.36. These results indicate that the primary source of the gene-level triplet reproducibility is the underlying shared gene expression pattern rather than interpolation-induced structure.

      In Methods 2a: "An additional null dataset was generated to test whether intrinsic geometry of the cortical mesh and its impact on interpolation for benchmarking analyses of DEMs and gradients (Fig S1d, Fig S2d, Fig S3c). In these analyses, the original samples were rotated on the spherical surface prior to subsequent interpolation, smoothing and gradient calculation. Due to computational constraints the full dataset was recreated only for 10 independent spins. These are referred to as the “spun+interpolated null”.

      Author response image 1.

      Figure S1d, Gene predictability was higher across all triplet-triplet pairs than when compared to spun+interpolated null.

      Comment 2

      It's also possible that mesh-induced structure is responsible in part for the "signal boost" observed when comparing raw expression data and interpolated data (fig S1a). How do you explain the signal boost of the smooth data compared with the raw data otherwise?

      Response 2

      We thank the reviewer for highlighting this issue of mesh-induced structure. We first sought to quantify the impact of mesh-induced structure through the new null model, in which the data are spun prior to interpolation. New figure S1d, S2d and S3c all show that the main findings are not driven by interpolation over a common mesh structure, but rather originate in the underlying expression data.

      Specifically, for the original Figure S1a, the reviewer highlights a limitation that we compared intersubject predictability of raw-sample to raw-sample and interpolated-to-interpolated. In this original formulation improved prediction scores for interpolated-to-interpolated (the “signal boost”) could be driven by mesh-induced structure being applied to both the input and predicted maps. We have updated this so that we are now comparing raw-to-raw and interpolated-to-raw, i.e. whether interpolated values are better estimations of the measured expression values. The new Fig S1a&b (see below) shows a signal boost in gene-level and vertex level prediction scores (delta R = +0.05) and we attribute this to the minimisation of location and measurement noise in the raw data, improving the intersubject predictability of expression levels.

      In Methods 2b: "To assess the effect of data interpolation in DEM generation we compared gene-level and vertex-level reproducibility of DEMs against a “ground truth” estimate of these reproducibility metrics based on uninterpolated expression data. To achieve a strict comparison of gene expression values between different individuals at identical spatial locations we focused these analyses on the subset of AHBA samples where a sample from one subject was within 3 mm geodesic distance of another. This resulted in 1097 instances (spatial locations) with measures of raw gene expression of one donor, and predicted values from the second donor’s un-interpolated AHBA expression data and interpolated DEM. We computed gene-level and vertex-level reproducibility of expression using the paired donor data at each of these sample points for both DEM and uninterpolated AHBA expression values. By comparing DEM reproducibility estimates with those for uninterpolated AHBA expression data, we were able to quantify the combined effect of interpolation and smoothing steps in DEM generation. We used gene-level reproducibility values from DEMs and uninterpolated AHBA expression data to compute a gene-level difference in reproducibility, and we then visualized the distribution of these difference values across genes (Fig S1a). We used gene-rank correlation to compare vertex-level reproducibility values between DEMs and uninterpolated AHBA expression data (Fig S1b)."

      Author response image 2.

      Figure S1. Reproducibility of Dense Expression Maps (DEMs) interpolated from spatially sparse postmortem measures of cortical gene expression. a, Signal boost in the interpolated DEM dataset vs. spatially sparse expression data. Restricting to samples taken from approximately the same cortical location in pairs of individuals (within 3mm geodesic distance), there was an overall improvement in intersubject spatial predictability in the interpolated maps. Furthermore, genes with lower predictability in the interpolated maps were less predictable in the raw dataset, suggesting these regions exhibit higher underlying biological variability rather than methodologically introduced bias. b, Similarly at the paired sample locations, gene-rank predictability was generally improved in DEMs vs. sparse expression data (median change in R from sparse samples to interpolated for each pair of subjects, +0.5).

      1. How do you explain that despite the difference in absolute value the combined expression maps of genes with and without cortical expression look similar? (fig S1e: in both cases there's high values in the dorsal part of the central sulcus, in the occipital pole, in the temporal pole, and low values in the precuneus and close to the angular gyrus). Could this also reflect mesh-smoothing-induced structure?

      Response 3

      As with comment 1, this is an interesting perspective that we had not fully considered. We would first like to clarify that non-cortical expression is defined from the independent datasets including the “cortex” tissue class of the human protein atlas and genes identified as markers for cortical layers or cortical cells in previous studies. This is still likely an underestimate of true cortically expressed genes as some of these “non-cortical genes” had high intersubject reproducibility scores. Nevertheless we think it appropriate to use a measure of brain expression independent of anything included in other analyses for this paper. These considerations are part of the reason we provide all gene maps with accompanying uncertainty scores for user discretion rather than simply filtering them out.

      In terms of the spatially consistent pattern of the gene ranks of Fig S1f, this consistent spatial pattern mirrors Transcriptomic Distinctiveness (r=0.52 for non-cortical genes, r=0.75 for cortical genes), so we think that as the differences in expression signatures become more extreme, the relative ranks of genes in that region are more reproducible/easier to predict.

      To assess whether mesh-smoothing-induced structure is playing a role, we carried out an additional the new null model introduced in response to comment 1, and asked if the per-vertex gene rank reproducibility of independently spun subgroup triplets showed a similar structure to that in our original analyses. Across the 90 permutations, the median correlation between vertex reproducibility and TD was R=0.10. We also recalculated the TD maps for the 10 spun datasets and the mean correlation with the original TD did not significantly differ from zero (mean R = 0.01, p=0.2, nspins =10). These results indicate that folding morphology is not the major driver of local or large scale patterning in the dataset. We have included this as a new Figure S3c.

      We have updated the text as follows:

      In Methods 3a: "Third, to assess whether the covariance in spatial patterning across genes could be a result of mesh-associated structure introduced through interpolation and smoothing, TD maps were recomputed for the spun+interpolated null datasets and compared to the original TD map (Fig S3c)."

      In Results: "The TD map observed from the full DEMs library was highly stable between all disjoint triplets of donors (Methods, Fig S3a, median cross-vertex correlation in TD scores between triplets r=0.77) and across library subsets at all deciles of DEM reproducibility (Methods, Fig S3b, cross-vertex correlation in TD scores r>0.8 for the 3rd-10th deciles), but was not recapitulated in spun null datasets (Fig S3c)."

      Author response image 3.

      Figure S3c, Correlations between TD and TD maps regenerated on datasets spun using two independent nulls, one where the rotation is applied prior to interpolation and smoothing (spun+interpolated) and one where it is applied to the already-created DEMs. In each null, the same rotation matrix is applied to all genes.

      Comment 4

      Could you provide more information about the way in which the nearest-neighbours were identified (results p4). Were they nearest in Euclidean space? Geodesic? If geodesic, geodesic over the native brain surface? over the spherically deformed brain? (Methods cite Moresi & Mather's Stripy toolbox, which seems to be meant to be used on spheres). If the distance was geodesic over the sphere, could the distortions introduced by mapping (due to brain anatomy) influence the geometry of the expression maps?

      Response 4

      We have clarified in the Methods that the mapping is to nearest neighbors on the spherically-inflated surface.

      The new null model we have introduced in response to comments 1 & 3 preserves any mesh-induced structure alongside any smoothing-induced spatial autocorrelations, and the additional analyses above indicate that main results are not induced by systematic mesh-related interpolation signal. In response to an additional suggestion from the reviewer (Comment 13), we also assessed whether local distortions due to the mesh could be creating apparent border effects in the data, for instance at the V1-V2 boundary. At the V1-V2 border, which coincides anatomically with the calcarine sulcus, we computed the 10 genes with the highest expression gradient along this boundary in the actual dataset and the spun-interpolated null. The median test expression gradients along this border was higher than in any of the spun datasets, indicating that these boundary effects are not explained by the interpolation and cortical geometry effects on the data (new Fig S2d). The text has been updated as follows:

      In Methods 1: "For cortical vertices with no directly sampled expression, expression values were interpolated from their nearest sampled neighbor vertex on the spherical surface (Moresi and Mather, 2019) (Fig 1b)."

      In Methods 2: "We used the spun+interpolated null to test whether high gene gradients could be driven by non-uniform interpolation across cortical folds. We quantified the average gradient for all genes along the V1-V2 border in the atlas, as well as for 10 iterations of the atlas where the samples were spun prior to interpolation. We computed the median gradient magnitude for the 20 top-ranked genes for each (Fig S2d)."

      Author response image 4.

      Figure S2d Mean of gradient magnitudes for 20 genes with largest gradients along V1-V2 border, compared to values along the same boundary on the spun+interpolated null atlas. Gradients were higher in the actual dataset than in all spun version indicating this high gradient feature is not primarily due to the effects of calcarine sulcus morphology on interpolation

      Comment 5

      Could you provide more information about the smoothing algorithm? Volumetric, geodesic over the native mesh, geodesic over the sphere, averaging of values in neighbouring vertices, cotangent-weighted laplacian smoothing, something else?

      Response 5

      We are using surface-based geodesic over the white surface smoothing described in Glasser et al., 2013 and used in the HCP workbench toolbox (https://www.humanconnectome.org/software/connectome-workbench). We have updated the methods to clarify this.

      In Methods 1: "Surface expression maps were smoothed using the Connectome Workbench toolbox (Glasser et al. 2013) with a 20mm full-width at half maximum Gaussian kernel , selected to be consistent with this sampling density (Fig 1c)."

      Comment 6

      Could you provide more information about the method used for computing the gradient of the expression maps (p6)? The gradient and the laplacian operator are related (the laplacian is the divergence of the gradient), which could also be responsible in part for the relationships observed between expression transitions and brain geometry.

      Response 6

      We are using Connectome Workbench’s metric gradient command for this Glasser et al., 2013 and used in the HCP workbench pipeline. The source code for gradient calculation can be found here: https://github.com/Washington-University/workbench/blob/131e84f7b885d82af76e be21adf2fa97795e2484/src/Algorithms/AlgorithmMetricGradient.cxx

      In Methods 2: >For each of the resulting 20,781 gene-level expression maps, the orientation and magnitude of gene expression change at each vertex (i.e. the gradient) was calculated for folded, inflated, spherical and flattened mesh representations of the cortical sheet using Connectome Workbench’s metric gradient command (Glasser et al. 2013).

      b. Potentially inflated FPR for spin tests on autocorrelated data."

      Spin tests are extensively used in this work and it would be useful to make the readers aware of their limitations, which may confound some of the results presented. Spin tests aim at establishing if two brain maps are similar by comparing a measure of their similarity over a spherical deformation of the brains against a distribution of similarities obtained by randomly spinning one of the spheres. It is not clear which specific variety of spin test was used, but the original spin test has well known limitations, such as the violation of the assumption of spatial stationarity of the covariance structure (not all positions of the spinning sphere are equivalent, some are contracted, some are expanded), or the treatment of the medial wall (a big hole with no data is introduced when hemispheres are isolated).

      Another important limitation results from the comparison of maps showing autocorrelation. This problem has been extensively described by Markello & Misic (2021). The strong smoothing used to make a continuous map out of just ~1300 samples introduces large, geometry dependent autocorrelations. Indeed, the expression maps presented in the manuscript look similar to those with the highest degree of autocorrelation studied by Markello & Misic (alpha=3). In this case, naive permutations should lead to a false positive rate ~46% when comparing pairs of random maps, and even most sophisticated methods have FPR>10%.

      Comment 7 There's currently several researchers working on testing spatial similarity, and the readers would benefit from being made aware of the problem of the spin test and potential solutions. There's also packages providing alternative implementations of spin tests, such as BrainSMASH and BrainSpace, which could be mentioned.

      Response 7

      We thank the reviewer for raising the issue of null models. First, with reference to the false positive rate of 46% when maps exhibit spatial autocorrelation, we absolutely agree that this is an issue that must be accounted for and we address this using the spin test. We acknowledge there has been other work on nulls such as BrainSMASH and BrainSpace. Nevertheless in the Markello and Misic paper to which the reviewer refers, the BrainSmash null models perform worse with smoother maps (with false positive rates approaching 30% in panel e below), whereas the spin test maintains false positives rates below 10%.

      Author response image 5.

      We have added a brief description of the challenge and our use of the spin test.

      In Methods 2a: "Cortical maps exhibit spatial autocorrelation that can inflate the False Positive Rate, for which a number of methods have been proposed(Alexander-Bloch et al. 2018; Burt et al. 2020; Vos de Wael et al. 2020). At higher degrees of spatial smoothness, this high False Positive Rate is most effectively mitigated using the spin test(Alexander-Bloch et al. 2018; Markello and Misic 2021; Vos de Wael et al. 2020). In the following analyses when generating a test statistic comparing two spatial maps, to generate a null distribution, we computed 1000 independent spins of the cortical surface using https://netneurotools.readthedocs.io, and applied it to the first map whilst keeping the second map unchanged. The test statistic was then recomputed 1000 times to generate a null distribution for values one might observe by chance if the maps shared no common organizational features. This is referred to throughout as the “spin test” and the derived p-values as pspin."

      Comment 8

      Could it be possible to measure the degree of spatial autocorrelation?

      Response 8

      We agree this could be a useful metric to generate for spatial cortical maps. However, there are multiple potential metrics to choose from and each of the DEMs would have their own value. To address this properly would require the creation of a set of validated tools and it is not clear how we could summarize this variety of potential metrics for 20k genes. Moreover, as discussed above the spin method is an adequate null across a range of spatial autocorrelation degrees, thus while we agree that in general estimation of spatial smoothness could be a useful imaging metric to report, we consider that it is beyond the scope of the current manuscript.

      Comment 9

      Could you clarify which version of the spin test was used? Does the implementation come from a package or was it coded from scratch?

      Response 9

      As Markello & Misic note, at the vertex level, the various implementations of the spin test become roughly equivalent to the ‘original’ Alexander-Bloch et al., implementation. We used took the code for the ‘original’ version implemented in python here: https://netneurotools.readthedocs.io/en/latest/_modules/netneurotools/stats.html# gen_spinsamples.

      This has been updated in the methods (see Response 7).

      Comment 10

      Cortex and non-cortex vertex-level gene rank predictability maps (fig S1e) are strikingly similar. Would the spin test come up statistically significant? What would be the meaning of that, if the cortical map of genes not expressed in the cortex appeared to be statistically significantly similar to that of genes expressed in the cortex?

      Response 10

      Please see response to comment 3, which also addresses this observation.

      Reviewer #2 (Public Review):

      The authors convert the AHBA dataset into a dense cortical map and conduct an impressively large number of analyses demonstrating the value of having such data.

      I only have comments on the methodology.

      Comment 1

      First, the authors create dense maps by simply using nearest neighbour interpolation followed by smoothing. Since one of the main points of the paper is the use of a dense map, I find it quite light in assessing the validity of this dense map. The reproducibility values they calculate by taking subsets of subjects are hugely under-powered, given that there are only 6 brains, and they don't inform on local, vertex-wise uncertainties). I wonder if the authors would consider using Gaussian process interpolation. It is really tailored to this kind of problem and can give local estimates of uncertainty in the interpolated values. For hyperparameter tuning, they could use leave-one-brain-out for that.

      I know it is a lot to ask to change the base method, as that means re-doing all the analyses. But I think it would strengthen the paper if the authors put as much effort in the dense mapping as they did in their downstream analyses of the data.

      Response 1

      We thank the reviewer for the suggestion to explore Gaussian process interpolation. We have implemented this for our dataset and attempted to compare this with our original method with the 3 following tests: i) intertriplet reproducibility of individual gene maps, ii) microscale validations: area markers, iii) macroscale validations: bio patterns.

      Overall, compared to our original nearest-neighbor interpolation method, GP regression (i) did not substantially improve gene-level reproducibility of expression maps (median correlation increase of R=0.07 which was greater for genes without documented protein expression in cortex): ii) substantially worsened performance in predicting areal marker genes and iii) showed similar but slightly worse performance at predicting macroscale patterns from Figure 1.

      Given the significantly poorer performance on one of our key tests (ii) we have opted not to replace our original database, but we do now include code for the alternative GP regression methodology in the github repository so others can reproduce/further develop these methods.

      Author response image 6.

      ii) Genes ranked by mean expression gradient from current DEMs (left) and Gaussian process-derived interpolation maps (right). Established Human and macaque markers are consistently higher-ranked in DEM maps. iii) Figure 1 Interpolated vs GP regression

      Author response table 1.

      Comment 2

      It is nice that the authors share some code and a notebook, but I think it is rather light. It would be good if the code was better documented, and if the user could have access to the non-smoothed data, in case they was to produce their own dense maps. I was only wondering why the authors didn't share the code that reproduces the many analyses/results in the paper.

      Response 2

      We thank the reviewer for this suggestion. In response we have updated the shared github repository (https://github.com/kwagstyl/magicc). This now includes code and notebooks to reproduce the main analyses and figures.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      Comment 11

      p4 mentions Fig S1h, but the supp figures only goes from S1a to S1g

      Response 11

      We thank the reviewer for capturing this error. It was in fact referring to what is now Fig S1h and has been updated.

      Comment 12

      It would be important that the authors share all the code used to produce the results in the paper in addition to the maps. The core methodological contribution of the work is a series of continuous maps of gene expression, which could become an important tool for annotation in neuroimaging research. Many arbitrary (reasonable) decisions were made, it would be important to enable users to evaluate their influence on the results.

      Response 12

      We thank both reviewers for this suggestion. We have updated the github to be able to reproduce the dense maps and key figures with our methods.

      Comment 13

      p5: Could the sharp border reflect the effect of the geometry of the calcarine sulcus on map smoothing? More generally, could there be an effect of folds on TD?

      Response 13

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These new null models - where original source data were spun prior to interpolation suggest that neither the sharp V1/2 border or the TD map are effects of mesh geometry. Specifically: (i) , the magnitudes of gradients along the V1/2 boundary from null models were notably smaller than those in our original analyses (see new figure S2d), and (ii) TD maps computed from the new null models showed no correlation with TD maps from ur original analyses (new Figure S3c, mean R = 0.01, p=0.2, nspins =10).

      Comment 14

      p5: Similar for the matching with the areas in Glasser's parcellation: the definition of these areas involves alignment through folds (based on freesurfer 'sulc' map, see Glasser et al 2016). If folds influence the geometry of TDs, could that influence the match?

      Response 14

      We note that Fig S3c provided evidence that folding was not the primary driver of the TD patterning. However, it is true that Glasser et al. use both neuroanatomy (folding, thickness and myelin) and fMRI-derived maps to delineate their cortical areas. As such Figure 2 f & g aren’t fully independent assessments. Nevertheless the reason that these features are used is that many of the sulci in question have been shown to reliably delineate cytoarchitectonic boundaries (Fischl et al., 2008).

      In Results: "A similar alignment was seen when comparing gradients of transcriptional change with the spatial orientation of putative cortical areas defined by multimodal functional and structural in vivo neuroimaging(Glasser et al., 2016) (expression change running perpendicular to area long-axis, pspin<0.01, Fig 2g, Methods)."

      Comment 15

      p6: TD peaks are said to overlap with functionally-specialised regions. A comment on why audition is not there, nor language, but ba 9-46d is? Would that suggest a lesser genetic regulation of those functions?

      Response 15

      The reviewer raises a valid point and this was a result that we were also surprised by. The finding that the auditory cortex is not as microstructurally distinctive as, say V1, is consistent with other studies applying dimensionality-reduction techniques to multimodal microstructural receptor data (e.g. Zilles et al., 2017, Goulas et al., 2020). These studies found that the auditory microstructure is not as extreme as either visual and somatomotor areas. From a methodological view point, the primary auditory cortex is significantly smaller than both visual and somatomotor areas, and therefore is captured by fewer independent samples, which could reduce the detail in which its structure is being mapped in our dataset.

      For the frontal areas, we would note that i) the frontal peak is the smallest of all peaks found and was more strongly characterised by low z-score genes than high z-score. ii) the anatomical areas in the frontal cortex are much more highly variable with respect to folding morphology (e.g. Rajkowska 1995). The anatomical label of ba9-46d (and indeed all other labels) were automatically generated as localisers rather than strict area labels. We have clarified this in the text as follows:

      In Methods 3a: "Automated labels to localize TD peaks were generated based on their intersection with a reference multimodal neuroimaging parcellation of the human cortex(Glasser et al., 2016). Each TD was given the label of the multimodal parcel that showed greatest overlap (Fig 2b)."

      Comment 16.

      p7: The proposition that "there is a tendency for cortical sulci to run perpendicular to the direction of fastest transcriptional change", could also be "there is a tendency for the direction of fastest transcriptional change to run perpendicular to cortical sulci"? More pragmatically, this result from the geometry of transcriptional maps being influenced by sulcal geometry in their construction.

      Response 16

      Please see our response to Reviewer 1, Comment 1 above, where we introduce the new null models now analyzed to test for effects of mesh geometry on our findings. These models indicate that the topography of interpolated gene expression maps do not reflect influences of sulcal geometry on their construction.

      Comment 17

      p7: TD transitions are indicated to precede folding. This is based on a consideration of folding development based on the article by Chi et al 1977, which is quite an old reference. In that paper, the authors estimated the tempo of human folding development based on the inspection of photographs, which may not be sufficient for detecting the first changes in curvature leading to folds. The work of the Developing Human Connectome consortium may provide a more recent indication for timing. In their data, by PCW 21 there's already central sulcus, pre-central, post-central, intra-parietal, superior temporal, superior frontal which can be detected by computing the mean curvature of the pial surface (I can only provide a tweet for reference: https://twitter.com/R3RT0/status/1617119196617261056). Even by PCW 9-13 the callosal sulcus, sylvian fissure, parieto-occipital fissure, olfactory sulcus, cingulate sulcus and calcarine fissure have been reported to be present (Kostovic & Vasung 2009).

      Response 17

      Our field lacks the data necessary to provide a comprehensive empirical test for the temporal ordering of regional transcriptional profiles and emergence of folding. Our results show that transcriptional identities of V1 and TGd are - at least - present at the very earliest stages of sulcation in these regions. In response to the reviewers comment we have updated with a similar fetal mapping project which similarly shows evidence of the folds between weeks 17-21 and made the language around directionality more cautious.

      In Results: "The observed distribution of these angles across vertices was significantly skewed relative to a null based on random alignment between angles (pspin<0.01, Fig 2f, Methods) - indicating that there is indeed a tendency for cortical sulci and the direction of fastest transcriptional change to run perpendicular to each other (pspin<0.01, Fig 2f).

      As a preliminary probe for causality, we examined the developmental ordering of regional folding and regional transcriptional identity. Mapping the expression of high-ranking TD genes in fetal cortical laser dissection microarray data(Miller et al., 2014) from 21 PCW (Post Conception Weeks) (Methods) showed that the localized transcriptional identity of V1 and TGd regions in adulthood is apparent during the fetal periods when folding topology begins to emerge (Chi et al. 1977; Xu et al. 2022) (Fig " S2d).

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship."

      Comment 18

      p7: In my supplemental figures (obtained from biorxiv, because I didn't find them among the files submitted to eLife) there's no S2j (only S2a-S2i).

      Response 18

      We apologize, this figure refers to S3k (formerly S3j), rather than S2j. We have updated the main text.

      Comment 19 p7: It is not clear from the methods (section 3b) how the adult and fetal brains were compared. Maybe using MSM (Robinson et al 2014)?

      Response 19

      We have now clarified this in Methods text as reproduced below.

      In Methods 3b: "We averaged scaled regional gene expression values between donors per gene, and filtered for genes in the fetal LDM dataset that were also represented in the adult DEM dataset - yielding a single final 20,476*235 gene-by-sample matrix of expression values for the human cortex at 21 PCW. Each TD peak region was then paired with the closest matching cortical label within the fetal regions. This matrix was then used to test if each TD expression signature discovered in the adult DEM dataset (Fig 2, Table 3) was already present in similar cortical regions at 21 PCW."

      Comment 20

      p7: WGCNA is used prominently, could you provide a brief introduction to its objectives? The gene coexpression networks are produced after adjusting the weight of the network edges to follow a scale-free topology, which is meant to reflect the nature of protein-protein interactions. Soft thresholding increases contrast, but doesn't this decrease a potential role of infinitesimal regulatory signals?

      Response 20

      We agree with the reviewer that the introduction to WGCNA needed additional details and have amended the Results (see below). One limitation of WGCNA-derived associations is that it will downweigh the role of smaller relationships including potentially important regulatory signals. WGCNA methods have been titrated to capture strong relationships. This is an inherent limitation of all co-expression driven methods which lead to an incomplete characterisation of the molecular biology. Nevertheless we feel these stronger relationships are still worth capturing and interrogating. We have updated the text to introduce WGCNA and acknowledge this potential weakness in the approach.

      In Results: "Briefly, WGCNA constructs a constructs a connectivity matrix by quantifying pairwise co-expression between genes, raising the correlations to a power (here 6) to emphasize strong correlations while penalizing weaker ones, and creating a Topological Overlap Matrix (TOM) to capture both pairwise similarities expression and connectivity. Modules of highly interconnected genes are identified through hierarchical clustering. The resultant WGCNA modules enable topographic and genetic integration because they each exist as both (i) a single expression map (eigenmap) for spatial comparison with neuroimaging data (Fig 3a,b, Methods) and, (ii) a unique gene set for enrichment analysis against marker genes systematically capturing multiple scales of cortical organization, namely: cortical layers, cell types, cell compartments, protein-protein interactions (PPI) and GO terms (Methods, Table S2 and S4)."

      Comment 21

      WGCNA modules look even more smooth than the gene expression maps. Are these maps comparable to low frequency eigenvectors? Autocorrelation in that case should be very strong?

      Response 21

      These modules are smooth as they are indeed eigenvectors which likely smooth out some of the more detailed but less common features seen in individual gene maps. These do exhibit high degrees of autocorrelation, nevertheless we are applying the spin test which is currently the appropriate null model for spatially autocorrelated cortical maps (Response 7).

      Comment 22

      If the WGCNA modules provide an orthogonal basis for surface data, is it completely unexpected that some of them will correlate with low-frequency patterns? What would happen if random low frequency patterns were generated? Would they also show correlations with some of the 16 WGCNA modules?

      Response 22

      We agree with the reviewer that if we used a generative model like BrainSMASH, we would likely see similar low frequency patterns. However, the inserted figure in Response 7 from Makello & Misic provide evidence that is not as conservative a null as the spin test when data exhibit high spatial autocorrelation. The spatial enrichment tests carried out on the WGCNA modules are all carried out using the spin test.

      Comment 23

      In part (a) I commented on the possibility that brain anatomy may introduce artifactual structure into the data that's being mapped. But what if the relationship between brain geometry and brain organisation were deeper than just the introduction of artefacts? The work of Lefebre et al (2014, https://doi.org/10.1109/ICPR.2014.107; 2018, https://doi.org/10.3389/fnins.2018.00354) shows that clustering based on the 3 lowest frequency eigenvectors of the Laplacian of a brain hemisphere mesh produce an almost perfect parcellation into lobes, with remarkable coincidences between parcel boundaries and primary folds and fissures. The work of Pang et al (https://doi.org/10.1101/2022.10.04.510897) suggests that the geometry of the brain plays a critical role in constraining its dynamics: they analyse >10k task-evoked brain maps and show that the eigenvectors of the brain laplacian parsimoniously explain the activity patterns. Could brain anatomy have a downward effect on brain organisation?

      Response 23

      The reviewer raises a fascinating extension of our work identifying spatial modes of gene expression. We agree that these are low frequency in nature, but would first like to note that the newly introduced null model indicates that the overlaps with salient neuroanatomical features are inherent in the expression data and not purely driven by anatomy in a methodological sense.

      Nevertheless we absolutely agree there is likely to be a complex multidirectional interplay between genetic expression patterns through development, developing morphology and the “final” adult topography of expression, neuroanatomical and functional patterns.

      We think that the current manuscript currently contains a lot of in depth analyses of these expression data, but agree that a more extensive modeling analysis of how expression might pattern or explain functional activation would be a fascinating follow on, especially in light of these studies from Pang and Lefebre. Nevertheless we think that this must be left for a future modeling paper integrating these modes of microscale, macroscale and functional anatomy.

      In Discussion: "Indeed, future work might find direct links between these module eigenvectors and similar low-frequency eigenvectors of cortical geometry have been used as basis functions to segment the cortex (Lefèvre et al. 2018) and explain complex functional activation patterns(Pang et al. 2023)."

      Comment 24

      On p11: ASD related to rare, deleterious mutations of strong effect is often associated with intellectual disability (where the social interaction component of ASD is more challenging to assess). Was there some indication of a relationship with that type of cognitive phenotype?

      Response 24

      Across the two ABIDE cohorts, the total number of those with ASD and IQ <70, which is the clinical threshold for intellectual disability was n=10, which unfortunately did not allow us to conduct a meaningful test of whether ID impacts the relationship between imaging changes in ASD and the expression maps of genes implicated in ASD by rare variants.

      Comment 25

      Could you clarify if the 6 donors were aligned using the folding-based method in freesurfer?

      Response 25

      The 6 donors were aligned using MSMsulc (Robinson et al., 2014), which is a folding based method from the HCP group. This is now clarified in the methods.

      In Methods 1: "Cortical surfaces were reconstructed for each AHBA donor MRI using FreeSurfer(Fischl, 2012), and coregistered between donors using surface matching of individuals’ folding morphology (MSMSulc) (Robinson et al., 2018)."

      Comment 26

      The authors make available a rich resource and a series of tools to facilitate their use. They have paid attention to encode their data in standard formats, and their code was made in Python using freely accessible packages instead of proprietary alternatives such as matlab. All this should greatly facilitate the adoption of the approach. I think it would be important to state more explicitly the conceptual assumptions that the methodology brings. In the same way that a GWAS approach relies on a Mendelian idea that individual alleles encode for phenotypes, what is the idea about the organisation of the brain implied by the orthogonal gene expression modules? Is it that phenotypes - micro and macro - are encoded by linear combinations of a reduced number of gene expression patterns? What would be the role of the environment? The role of non-genic regulatory regions? Some modalities of functional organisation do not seem to be encoded by the expression of any module. Is it just for lack of data or should this be seen as the sign for a different organisational principle? Likewise, what about the aspects of disorders that are not captured by expression modules? Would that hint, for example, to stronger environmental effects? What about linear combinations of modules? Nonlinear? Overall, the authors adopt implicitly, en passant, a gene-centric conceptual standpoint, which would benefit from being more clearly identified and articulated. There are citations to Rakic's protomap idea (I would also cite the original 1988 paper, and O'Leary's 1989 "protocortex" paper stressing the role of plasticity), which proposes that a basic version of brain cytoarchitecture is genetically determined and transposed from the proliferative ventricular zone regions to the cortical plate through radial migration. In p13 the authors indicate that their results support Rakic's protomap. Additionally, in p7 the authors suggest that their results support a causal arrow going from gene expression to sulcal anatomy. The reviews by O'leary et al (2007), Ronan & Fletcher (2014, already cited), Llinares-Benadero & Borrell (2019) could be considered, which also advocate for a similar perspective. For nuances on the idea that molecular signals provide positional information for brain development, the article by Sharpe (2019, DOI: 10.1242/dev.185967) is interesting. For nuances on the gene-centric approach of the paper the articles by Rockmann (2012, DOI: 10.1111/j.1558-5646.2011.01486.x) but also from the ENCODE consortium showing the importance of non-genic regions of the genome ("Perspectives on ENCODE" 2020 DOI: 10.1038/s41586-021-04213-8) could be considered. I wouldn't ask to cite ideas from the extended evolutionary synthesis about different inheritance systems (as reviewed by Jablonka & Lamb, DOI: 10.1017/9781108685412) or the idea of inherency (Newman 2017, DOI: 10.1007/978-3-319-33038-9_78-1), but the authors may find them interesting. Same goes for our own work on mechanical morphogenesis which expands on the idea of a downward causality (Heuer and Toro 2019, DOI: 10.1016/j.plrev.2019.01.012)

      Response 26

      We thank the reviewer for recommending these papers, which we enjoyed reading and have deepened our thinking on the topic. In addition to toning down some of the language with respect to causality that our data cannot directly address, we have included additional discussion and references as follows:

      In Discussion: "By establishing that some of these cortical zones are evident at the time of cortical folding, we lend support to a “protomap”(Rakic 1988; O'Leary 1989; O'Leary et al. 2007; Rakic et al. 2009) like model where the placement of some cortical folds is set-up by rapid tangential changes in cyto-laminar composition of the developing cortex(Ronan et al., 2014; Toro and Burnod, 2005; Van Essen, 2020). The DEMs are derived from fully folded adult donors, and therefore some of the measured genetic-folding alignment might also be induced by mechanical distortion of the tissue during folding(Llinares-Benadero and Borrell 2019; Heuer and Toro 2019). However, no data currently exist to conclusively assess the directionality of this gene-folding relationship.

      Overall, the manuscript is very interesting and a great contribution. The amount of work involved is impressive, and the presentation of the results very clear. My comments indicate some aspects that could be made more clear, for example, providing additional methodological information in the supplemental material. Also, making aware the readers and future users of MAGICC of the methodological and conceptual challenges that remain to be addressed in the future for this field of research.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1

      The supplementary figures seem to be missing from the eLife submission (although I was able to find them on europepmc)

      Response 1

      We apologize that these were not included in the documents sent to reviewers. The up-to-date supplementary figures are included in this resubmission and again on biorxiv.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study combines genetically barcoded rabies viruses with spatial transcriptomics in vivo in the mouse brain to decode connectivity of neural circuits. The data generated by the combination of these approaches in this new way is mostly convincing as the authors provide validation and proof-of-concept that the approach can be successful. While this new combination of established techniques has promise for elucidating brain connectivity, there are still some nuances and caveats to the interpretations of the results that are lacking especially with regards to noting unexpected barcodes either due to unexpected/novel connections or unexpected rabies spread.

      In this revised manuscript, we added a new control experiment and additional analyses to address two main questions from the reviewers: (1) How the threshold of glycoprotein transcript counts used to identify source cells was determined, and (2) whether the limited long-range labeling was expected in the trans-synaptic experiment. The new experiments and analyses validated the distribution of source cells and presynaptic cells observed in the original barcoded transsynaptic tracing experiment and validated the choice of the threshold of glycoprotein transcripts. As the reviewers suggested, we also included additional discussion on how future experiments can improve upon this study, including strategies to improve source cell survival and minimizing viral infection caused by leaky expression of TVA. We also provided additional clarification on the analyses for both the retrograde labeling experiment and the trans-synaptic tracing experiment. We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. Detailed changes to address specific comments by reviewers are included below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this preprint, Zhang et al. describe a new tool for mapping the connectivity of mouse neurons. Essentially, the tool leverages the known peculiar infection capabilities of Rabies virus: once injected into a specific site in the brain, this virus has the capability to "walk upstream" the neural circuits, both within cells and across cells: on one hand, the virus can enter from a nerve terminal and infect retrogradely the cell body of the same cell (retrograde transport). On the other hand, the virus can also spread to the presynaptic partners of the initial target cells, via retrograde viral transmission.

      Similarly to previously published approaches with other viruses, the authors engineer a complex library of viral variants, each carrying a unique sequence ('barcode'), so they can uniquely label and distinguish independent infection events and their specific presynaptic connections, and show that it is possible to read these barcodes in-situ, producing spatial connectivity maps. They also show that it is possible to read these barcodes together with endogenous mRNAs, and that this allows spatial mapping of cell types together with anatomical connectivity.

      The main novelty of this work lies in the combined use of rabies virus for retrograde labeling together with barcoding and in-situ readout. Previous studies had used rabies virus for retrograde labeling, albeit with low multiplexing capabilities, so only a handful of circuits could be traced at the same time. Other studies had instead used barcoded viral libraries for connectivity mapping, but mostly focused on the use of different viruses for labeling individual projections (anterograde tracing) and never used a retrograde-infective virus.

      The authors creatively merge these two bits of technology into a powerful genetic tool, and extensively and convincingly validate its performance against known anatomical knowledge. The authors also do a very good job at highlighting and discussing potential points of failure in the methods.

      We thank the reviewer for the enthusiastic comments.

      Unresolved questions, which more broadly affect also other viral-labeling methods, are for example how to deal with uneven tropism (ie. if the virus is unable or inefficient in infecting some specific parts of the brain), or how to prevent the cytotoxicity induced by the high levels of viral replication and expression, which will tend to produce "no source networks", neural circuits whose initial cell can't be identified because it's dead. This last point is particularly relevant for in-situ based approaches: while high expression levels are desirable for the particular barcode detection chemistry the authors chose to use (gap-filling), they are also potentially detrimental for cell survival, and risk producing extensive cell death (which indeed the authors single out as a detectable pitfall in their analysis). This is likely to be one of the major optimisation challenges for future implementations of these types of barcoding approaches.

      As the reviewer suggested, we included additional discussion about tropism and cytotoxicity in the revised Discussion. Our sensitivity for barcode detection is sufficient, since we estimated (based on manual proofreading) that most barcoded neurons had more than ten counts of a barcode in the trans-synaptic tracing experiment. The high sensitivity may potentially allow us to adapt next-generation rabies virus with low replication, such as the third generation ΔL rabies virus (Jin et al, 2022, biorxiv) in future optimizations.

      Overall the paper is well balanced, the data are well presented and the conclusions are strongly supported by the data. Impact-wise, the method is definitely going to be useful for the neurobiology research community.

      We thank the reviewer for her/his enthusiasm.

      Reviewer #2 (Public Review):

      Although the trans-synaptic tracing method mediated by the rabies virus (RV) has been widely utilized to infer input connectivity across the brain to a genetically defined population in mice, the analysis of labeled pre-synaptic neurons in terms of cell-type has been primarily reliant on classical low-throughput histochemical techniques. In this study, the authors made a significant advance toward high-throughput transcriptomic (TC) cell typing by both dissociated single-cell RNAseq and the spatial TC method known as BARseq to decode a vast array of molecularly labeled ("barcoded") RV vector library. First, they demonstrated that a barcoded-RV vector can be employed as a simple retrograde tracer akin to AAVretro. Second, they provided a theoretical classification of neural networks at the single-cell resolution that can be attained through barcoded-RV and concluded that the identification of the vast majority (ideally 100%) of starter cells (the origin of RV-based trans-synaptic tracing) is essential for the inference of single-cell resolution neural connectivity. Taking this into consideration, the authors opted for the BARseq-based spatial TC that could, in principle, capture all the starter cells. Finally, they demonstrated the proof-of-concept in the somatosensory cortex, including infrared connectivity from 381 putative pre-synaptic partners to 31 uniquely barcoded-starter cells, as well as many insightful estimations of input convergence at the cell-type resolution in vivo. While the manuscript encompasses significant technical and theoretical advances, it may be challenging for the general readers of eLife to comprehend. The following comments are offered to enhance the manuscript's clarity and readability.

      We modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers. We separated out the theoretical discussion about barcode sharing networks as a separate subsection, explicitly stated the rationale of how different barcode sharing networks are distinguished in the in situ trans-synaptic tracing experiment, and added additional discussion on future optimizations. Detailed descriptions are provided below.

      Major points:

      1. I find it difficult to comprehend the rationale behind labeling inhibitory neurons in the VISp through long-distance retrograde labeling from the VISal or Thalamus (Fig. 2F, I and Fig. S3) since long-distance projectors in the cortex are nearly 100% excitatory neurons. It is also unclear why such a large number of inhibitory neurons was labeled at a long distance through RV vector injections into the RSP/SC or VISal (Fig. 3K). Furthermore, a significant number of inhibitory starter cells in the somatosensory cortex was generated based on their projection to the striatum (Fig. 5H), which is unexpected given our current understanding of the cortico-striatum projections.

      The labeling of inhibitory neurons can be explained by several factors in the three different experiments.

      (1) In the scRNAseq-based retrograde labeling experiment (Fig. 2 and Fig. S3), the injection site VISal is adjacent to VISp. Because we dissected VISp for single-cell RNAseq, we may find labeled inhibitory neurons at the VISp border that extend short axons into VISal. We explained this in the revised Results.

      (2) In the in situ sequencing-based retrograde labeling experiment (Fig. 3,4), the proximity between the two injection sites VISal and RSP/SC, and the sequenced areas (which included not only VISp but also RSP) could also contribute to labeling through local axons of inhibitory neurons. Furthermore, because we also sequenced midbrain regions, inhibitory neurons in the superior colliculus could pick up the barcodes through local axons. We included an explanation of this in the revised Results.

      (3) In the trans-synaptic tracing experiment, we speculate that low level leaky expression from the TREtight promoter led to non-Cre-dependent expression in many neurons. To test this hypothesis, we first performed a control injection in which we saw that the fluorescent protein expression were indeed restricted to layer 5, as expected from corticostriatal labeling. Based on the labeling pattern, we estimated that about 12 copies of the glycoprotein transcript per cell would likely be needed to achieve fluorescent protein expression. Since many source cells in our experiment were below this threshold, these results support the hypothesis that the majority of source cells with low level expression of the glycoprotein were likely Cre-independent. Because these cells could still contribute to barcode sharing networks, we could not exclude them as in a conventional bulk trans-synaptic tracing experiment. In future experiments, we can potentially reduce this population by improving the helper AAV viruses used to express TVA and the glycoprotein. We included this explanation in Results and more detailed analysis in Supplementary Note 2, and discussed potential future optimizations in the Discussion. This new analysis in Supplementary Note 2 is also related to the Reviewer’s question regarding the threshold used for determining source cells (see below).

      1. It is unclear as to why the authors did not perform an analysis of the barcodes in Fig. 2. Given that the primary objective of this manuscript is to evaluate the effectiveness of multiplexing barcoded technology in RV vectors, I would strongly recommend that the authors provide a detailed description of the barcode data here, including any technical difficulties or limitations encountered, which will be of great value in the future design of RV-barcode technologies. In case the barcode data are not included in Fig. 2, I would suggest that the authors consider excluding Fig. 2 and Fig. S1-S3 in their entirety from the manuscript to enhance its readability for general readers.

      In the single-cell RNAseq-based retrograde tracing, all barcodes recovered matched to known barcodes in the corresponding library. We included a short description of these results in the revised manuscript.

      1. Regarding the trans-synaptic tracing utilizing a barcoded RV vector in conjunction with BARseq decoding (Fig. 5), which is the core of this manuscript, I have a few specific questions/comments. First, the rationale behind defining cells with only two rolonies counts of rabies glycoprotein (RG) as starter cells is unclear. Why did the authors not analyze the sample based on the colocalization of GFP (from the AAV) and mCherry (from the RV) proteins, which is a conventional method to define starter cells? If this approach is technically difficult, the authors could provide an independent histochemical assessment of the detection stringency of GFP positive cells based on two or more colonies of RG.

      In situ sequencing does not preserve fluorescent protein signals, so we used transcript counts to determine which cells expressed the glycoprotein. We have added new analyses in the Results and in Supplementary Note 2 to determine the transcript counts that were equivalent to cells that had detectable BFP expression. We found that BFP expression is equivalent to ~12 counts of the glycoprotein transcript per cell, which is much higher than the threshold we used. However, we could not solely rely on this estimate to define the source cells, because cells that had lower expression of the glycoprotein (possibly from leaky Cre-independent expression) may still pass the barcodes to presynaptic cells. This can lead to an underestimation of double-labeled and connected-source networks and an overestimation of single-source networks and can obscure synaptic connectivity at the cellular resolution. We thus used a very conservative threshold of two transcripts in the analysis. This conservative threshold will likely overestimate the number of source cells that shared barcodes and underestimate the number of single-source networks. Since this is a first study of barcoded transsynaptic tracing in vivo, we chose to err on the conservative side to make sure that the subsequent analysis has single-cell resolution. Future characterization and optimization may lead to a better threshold to fully utilize data.

      Second, it is difficult to interpret the proportion of the 2,914 barcoded cells that were linked to barcoded starter cells (single-source, double-labeled, or connected-source) and those that remained orphan (no-source or lost-source). A simple table or bar graph representation would be helpful. The abundance of the no-source network (resulting from Cre-independent initial infection of the RV vector) can be estimated in independent negative control experiments that omit either Cre injection or AAV-RG injection. The latter, if combined with BARseq decoding, can provide an experimental prediction of the frequency of double-labeled events since connected-source networks are not labeled in the absence of RG.

      We have added Table 2, which breaks down the 2,914 barcoded cells based on whether they are presynaptic or source cells, and which type of network they belong to. We agree with the reviewer that the additional Cre- or RG- control experiments in parallel would allow an independent estimate of the double labeled networks and the no-source networks. We have included added a discussion of possible controls to further optimize the trans-synaptic tracing approach in future studies in the Discussion.

      Third, I would appreciate more quantitative data on the putative single-source network (Fig. 5I and S6) in terms of the distribution of pre- and post-synaptic TC cell types. The majority of labeling appeared to occur locally, with only two thalamic neurons observed in sample 25311842 (Fig. S6). How many instances of long-distance labeling (for example, > 500 microns away from the injection site) were observed in total? Is this low efficiency of long-distance labeling expected based on the utilized combinations of AAVs and RV vectors? A simple independent RV tracing solely detecting mCherry would be useful for evaluating the labeling efficiency of the method. I have experienced similar "less jump" RV tracing when RV particles were prepared in a single step, as this study did, rather than multiple rounds of amplification in traditional protocols, such as Osakada F et al Nat Protocol 2013.

      We imaged an animal that was injected in parallel to assess labeling (now included in Supplementary Note 2 and Supp. Fig. S5). The labeling pattern in the newly imaged animal was largely consistent with the results from the barcoded experiment: most labeled neurons were seen in the vicinity of the injection site, and sparser labeling was seen in other cortical areas and the thalamus. We further found that most neurons that were labeled in the thalamus were about 1 mm posterior to the center of the injection site, and thus would not have been sequenced in the in situ sequencing experiment (in which we sequenced about 640 µm of tissue spanning the injection site).

      In addition, we found that the bulk of the cells that expressed mCherry from the rabies virus only partially overlapped with the area that contained cells co-expressing BFP with the rabies glycoprotein. Moreover, very few cells co-expressed mCherry and BFP, which would be considered source cells in a conventional mono-synaptic tracing experiment. The small numbers of source cells likely also contributed to the sparseness of long-range labeling in the barcoded experiment.

      These interpretations and comparisons to the barcoded experiment are now included in Supplementary Note 2.

      Reviewer #3 (Public Review):

      The manuscript by Zhang and colleagues attempts to combine genetically barcoded rabies viruses with spatial transcriptomics in order to genetically identify connected pairs. The major shortcoming with the application of a barcoded rabies virus, as reported by 2 groups prior, is that with the high dropout rate inherent in single cell procedures, it is difficult to definitively identify connected pairs. By combining the two methods, they are able to establish a platform for doing that, and provide insight into connectivity, as well as pros and cons of their method, which is well thought out and balanced.

      Overall the manuscript is well-done, but I have a few minor considerations about tone and accuracy of statements, as well as some limitations in how experiments were done. First, the idea of using rabies to obtain broader tropism than AAVs isn't really accurate - each virus has its own set of tropisms, and it isn't clear that rabies is broader (or can be made to be broader).

      As the reviewer suggested, we toned down this claim and stated that rabies virus has different tropism to complement AAV.

      Second, rabies does not label all neurons that project to a target site - it labels some fraction of them.

      We meant to say that retrograde labeling is not restricted to labeling neurons from a certain brain region. We have clarified in the text.

      Third, the high rate of rabies virus mutation should be considered - if it is, or is not a problem in detecting barcodes with high fidelity, this should be noted.

      Our analysis showed that sequencing 15 bases was sufficient to tolerate a small number of mismatches in the barcode sequences and could distinguish real barcodes from random sequences (Fig. 4A). Thus, we can tolerate mutations in the barcode sequence. We have clarified this in the text.

      Fourth, there are a number of implicit assumptions in this manuscript, not all of which are equally backed up by data. For example, it is not clear that all rabies virus transmission is synaptic specific; in fact, quite a few studies argue that it is not (e.g., detection of rabies transcripts in glial cells). Thus, arguments about lost-source networks and the idea that if a cell is lost from the network, that will stop synaptic transmission, is not clear. There is also the very real propensity that, the sicker a starter cell gets, the more non-specific spread of virus (e.g., via necrosis) occurs.

      We agree with the reviewer that how strictly virus transmission is restricted to synapses remains a hotly debated question in the field, and this question is relevant not only to techniques based on barcoded rabies tracing, but to all trans-synaptic tracing experiments. A barcoding-based approach can generate single-cell data that enable direct comparison to other data modalities that measure synaptic connectivity, such as multi-patch and EM. These future experiments may provide additional insights into the questions that the reviewer raised. We have included additional discussion about how non-synaptic transmission of barcodes because of the necrosis of source cells may affect the analysis in the Discussion.

      Regarding the scenario in which the source cell dies, we agree with the reviewer and have clarified in the revised manuscript.

      Fifth, in the experiments performed in Figure 5, the authors used a FLEx-TVA expressed via a retrograde Cre, and followed this by injection of their rabies virus library. The issue here is that there will be many (potentially thousands) of local infection events near the injection site that TVA-mediated but are Cre-dependent (=off-target expression of TVA in the absence of Cre). This is a major confound in interpreting the labeling of these cells. They may express very low levels of TVA, but still have infection be mediated by TVA. The authors did not clearly explore how expression of TVA related to rabies virus infection of cells near the rabies injection site. A modified version of TVA, such as 66T, should have been used to mitigate this issue. Otherwise, it is impossible to determine connectivity locally. The authors do not go to great lengths to interpret the findings of these observations, so I am not sure this is a critical issue, but it should be pointed out by the authors as a caveat to their dataset.

      We agree with the reviewer that this type of infection could potentially be a major contributor to no-source networks, which were abundant in our experiment. Because small no-source networks were excluded from our analyses, and large no-source networks were only included for barcodes with low frequency (i.e., it would be nearly impossible statistically to generate such large no-source networks from independent infections), we believe that the effect of independent infections on our analyses were minimized. We have added a control experiment in Fig S5 and Supplementary Note 2, which further supported the hypothesis that there were many independent infections. We also included additional discussion about how this can be assessed and optimized in future studies in the Discussion.

      Sixth, the authors are making estimates of rabies spread by comparison to a set of experiments that was performed quite differently. In the two studies cited (Liu et al., done the standard way, and Wertz et al., tracing from a single cell), the authors were likely infecting with a rabies virus using a high multiplicity of infection, which likely yields higher rates of viral expression in these starter cells and higher levels of input labeling. However, in these experiments, the authors need to infect with a low MOI, and explicitly exclude cells with >1 barcode. Having only a single virion trigger infection of starter cells will likely reduce the #s of inputs relative to starter neurons. Thus, the stringent criteria for excluding small networks may not be entirely warranted. If the authors wish to only explore larger networks, this caveat should be explicitly noted.

      In the trans-synaptic labeling experiment, we actually used high rabies titer (200 nL, 7.6e10 iu/mL) that was comparable to conventional rabies tracing experiments. We did not exclude cells with multiple barcodes (as opposed to barcodes in multiple source cells), because we could resolve multiple barcodes in the same cell and indeed found many cells with multiple barcodes. We have clarified this in the text.

      Overall, if the caveats above are noted and more nuance is added to some of the interpretation and discussion of results, this would greatly help the manuscript, as readers will be looking to the authors as the authority on how to use this technology.

      In addition to addressing the specific concerns of the reviewer as described above, we modified the Results and Discussion sections on the trans-synaptic tracing experiment to improve clarity to general readers and expanded the discussion on future optimizations.

      Reviewer #1 (Recommendations For The Authors):

      The scientific problem is clearly stated and well laid out, the data are clearly presented, and the experiments well justified and nicely discussed. It was overall a very enjoyable read. The figures are generally nice and clear, however, I find the legends excessively concise. A bit too often, they just sort of introduce the title of the panel rather than a proper explanation of what it is depicted. A clear case is for example visible in Fig 2, where the description of the panels is minimal, but this is a general trend of the manuscript. This makes the figures a bit hard to follow as self-contained entities, without having to continuously go back to the main text. I think this could be improved with longer and more helpful descriptions.

      We have revised all figure legends to make them more descriptive.

      Other minor things:

      In the cDNA synthesis step for in-situ sequencing, I believe the authors might have forgotten one detail: the addition of aminoallyl dUTP to the RT reaction. If I recall correctly this is done in BARseq. The fact that the authors crosslink with BS-PEG on day 2, makes me suspect they spike in these nucleotides during the RT but this is not specified in the relevant step. Perhaps this is a mistake that needs correction.

      The RT primers we used have an amine group at 5’, which directly allows crosslinking. Thus, we did not need to spike in aminoallyl dUTP in the RT reaction. We have clarified this in the Methods.

      Reviewer #2 (Recommendations For The Authors):

      Throughout the manuscript, there are frequent references to the "Methods" section for important details. However, it can be challenging to determine which specific section of the Methods the authors are referring to, and in some cases, a thorough examination of the entire Methods section fails to locate the exact information needed to support the authors' claims. Below are a few specific examples of this issue. The authors are encouraged to be more precise in their references to the Methods section.

      In the revised manuscript, we numbered each subsection of Methods and updated pointers and associated hyperlinks in the main text to the subsection numbers.

      • On page 7, line 14, it is unclear how the authors compared the cell marker gene expression with the marker gene expression in the reference cell type.

      We have clarified in the revised manuscript.

      • On page 7, line 33, the authors note that some barcodes may have been missed during the sequencing of the rabies virus libraries, but the Methods section lacked a convincing explanation on this issue (see my point 2 above).

      We included a separate subsection on the sequencing of rabies libraries and the analysis of the sequencing depth in the Methods. In this new subsection, we further clarified our reasoning for identifying the lack of sequencing depth as a reason for missing barcodes, especially in comparison to sequencing depth required for establishing exact molecule counts used in established MAPseq and BARseq techniques with Sindbis libraries.

      • On page 9, line 44, the authors state that they considered a barcode to be associated with a cell if they found at least six molecules of that barcode in a cell, as detailed in the Methods section. However, the rationale behind this level of stringency is not provided in the Methods.

      We initially chose this threshold based on visual inspection of the sequencing images of the barcoded cells. Because the labeled cell types were consistent with our expectations (Fig. 4E-G), we did not further optimize the threshold for detecting retrogradely labeled barcoded cells.

      • I have noticed that some important explanations of figure panels are missing in the legends, making it challenging to understand the figures. Below are typical examples of this issue.

      In addition to the examples that the reviewer mentioned below, we also revised many other figure panels to make them clear to the readers.

      • In Fig. 2, "RV into SC" in panel C does not make sense, as RV was injected into the thalamus. There is no explanation of the images in this panel C.

      We have corrected the typo in the revision.

      • In Fig. 3, information on the endogenous gene panel for cell type classification (Table S3) could be mentioned in the legend or corresponding text.

      We now cite Table S3 both in Fig 3 legend and in the main text. We also included a list of the 104 cell type marker genes we used in Table S3.

      • In panel J, it is unclear why the total number of BC cells is 2,752, and not 4,130 as mentioned in the text.

      This is a typo. We have corrected this in the revision. The correct number (3,746) refers to the number of cells that did not belong to either of the two categories at the bottom of the panel, and not the total number of neurons. To make this clear, we now also include the total number of barcoded cells at the top of the panel.

      • In Fig. 4, the definitions of "+" and "−" symbols in panels K and L are unclear. Also, it seems that the second left column of panel K should read "T −."

      We corrected the typo in K, further clarified the “Area” labels, and changed the “S” label in 4K to “−”. This change does not change the original meaning of the figure: when considering the variance explained in L4/5 IT neurons, considering the subclass compositional profile is equivalent to not using the compositional profiles of cell types, because L4/5 IT neurons all belong to the same subclass (L4/5 IT subclass). Although operationally we simply considered subclass-level compositional profiles when calculating the variance explained, we think that changing this to “−” is clearer for the readers.

      • In Fig. 5, panel E is uninterpretable.

      We revised the main text and the figure to clarify how we manually proofread cells to determine the QC thresholds for barcoded cells. These plots showed a summary of the proofreading. We also revised the figures to indicate that they showed the fraction of barcoded cells that were considered real after proofreading. In the revised version, we moved these plots to Fig. S5.

      • In Fig. S1, I do not understand the identity of the six samples on the X-axis of panel A (given that only two animals were described in the main text) and what panel B shows, including the definition of map_cluster_conf and map_cluster_corr.

      In the revised Fig. S1, we made it more explicit that the six animals include both animals used for retrograde tracing (2 animals) and those used for trans-synaptic tracing (4 animals). We updated the y axis labels to be more readable and cited the relevant Methods section for definitions.

      • In Fig. S2, please provide the definitions of blue and red dots and values in panel A, as well as the color codes and size of the circles in panel B. My overall impression from panel B is that there is no significant difference between RV-infected and non-infected cells. The authors should provide more quantitative and statistical support for the claim that "RV-infected cells had higher expression of immune response-related genes."

      We toned down the statement to “Consistent with previous studies […], some immune response related genes were up-regulated in virus-infected cells compared to non-infected cells.” Because the main point of the single-cell RNAseq analysis was that rabies did not affect the ability to distinguish transcriptomic types, the change in immune response-related genes was not essential to the main conclusions. We clarified the red and blue dots in panel A and changed panel B to show the top up-regulated immune response-related genes in the revised manuscript.

      • In Fig. S3, the definitions of the color code and circle size are missing.

      We have added the legends in Fig. S3.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We appreciate the reviewers for their insightful feedback, which has substantially improved our manuscript. Following the suggestions of the reviewers, we have undertaken the following major revisions:

      a. Concerning data transformation, we have adjusted the methodology in Figures 2 and 3. Instead of normalizing c-Fos density to the whole brain c-Fos density as initially described, we now normalize to the c-Fos density of the corresponding brain region in the control group. b. We have substituted the PCA approach with hierarchical clustering in Figures 2 and 3.

      c. In the discussion section, we added a subsection on study limitations, focusing on the variations in drug administration routes and anesthesia depth.

      Enclosed are our detailed responses to each of the reviewer's comments.

      Reviewer #1:

      1a. The addition of the EEG/EMG is useful, however, this information is not discussed. For instance, there are differences in EEG/EMG between the two groups (only Ket significantly increased delta/theta power, and only ISO decreased EMG power). These results should be discussed as well as the limitation of not having physiological measures of anesthesia to control for the anesthesia depth.

      1b. The possibility that the differences in fos observed may be due to the doses used should be discussed.

      1c. The possibility that the differences in fos observed may be due kinetic of anesthetic used should be discussed.

      Thank you for your suggestions. We have now discussed EEG/EMG result, limitation of not having physiological measures of anesthesia to control for the anesthesia depth, The possibility that the differences in fos observed may be due to the doses, The possibility that the differences in Fos observed may be due kinetic of anesthetic in the revised manuscript (Lines 308-331, also shown below).

      Lines 308-331: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Supplementary Figure 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression. Although the difference in EEG power between the ISO group and the home cage control was not significant, the increase in EEG power observed in the ISO group was similar to that of KET (0.47 ± 0.07 vs 0.59 ± 0.10), suggesting that both agents may induce loss of consciousness in mice. Regarding EMG power, ISO showed a significant decrease in EMG power compared to its control group. In contrast, the KET group showed a lesser reduction in EMG power (ISO: -1.815± 0.10; KET: -0.96 ± 0.21), which may partly explain the higher overall c-Fos expression levels in the KET group. This is consistent with previous studies where ketamine doses up to 150 mg/kg increase delta power while eliciting a wakefulness-like pattern of c-Fos expression across the brain [1]. Furthermore, the observed differences in c-Fos expression may arise in part from the dosages, routes of administration, and their distinct pharmacokinetic profiles. This variation is compounded by the lack of detailed physiological monitoring, such as blood pressure, heart rate, and respiration, affecting our ability to precisely assess anesthesia depth. Future studies incorporating comprehensive physiological monitoring and controlled dosing regimens are essential to further elucidate these relationships and refine our understanding of the effects of anesthetics on brain activity"

      1. Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB: Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008, 508(4):648-662.

      2b. I am confused because Fig 2C seems to show significant decrease in %fos in the hypothalamus, midbrain and cerebellum after KET, while the author responded that " in our analysis, we did not detect regions with significant downregulation when comparing anesthetized mice with controls." Moreover the new figure in the rebuttal in response to reviewer 2 suggests that Ket increases Fos in almost every single region (green vs blue) which is not the conclusion of the paper.

      Your concern regarding the apparent discrepancy is well-founded. The inconsistency arose due to an inappropriate data transformation, which affected the interpretation. We have now rectified this by adjusting the data transformation in Figures 2 and 3. Specifically, we have recalculated the log relative c-Fos density values relative to the control group for each brain region. This revision has resolved the issue, confirming that our analysis did not detect any regions with significant downregulation in the anesthetized mice compared to controls. We have also updated the results, discussion, and methods sections of Figures 2 and 3 to accurately reflect these changes and ensure consistency with our findings.

      Author response image 1.

      Figure 2. Whole-brain distributions of c-Fos+ cells induced by ISO and KET. (A) Hierarchical clustering was performed on the log relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. Numerical labels correspond to distinct clusters within the dendrogram. (B) Silhouette values plotted against the ratio of tree height for ISO and KET, indicating relatively higher Silhouette values at 0.5 (dashed line), which is associated with optimal clustering. (C) The number of clusters identified in each treatment condition at different ratios of the dendrogram tree height, with a cut-off level of 0.5 corresponding to 4 clusters for both ISO and KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression in the clustered brain regions. The order and abbreviations of the brain regions and the numerical labels correspond to those in Figure 2A. The red box denotes the cluster with the highest mean Z score in comparison to other clusters. CTX: cortex; TH: thalamus; HY: hypothalamus; MB: midbrain; HB: hindbrain.

      Author response image 2.

      Figure 3. Similarities and differences in ISO and KET activated c-Fos brain areas. (A) Hierarchical clustering was performed on the log-transformed relative c-Fos density data for ISO and KET using the complete linkage method based on the Euclidean distance matrix, with clusters identified by a dendrogram cut-off ratio of 0.5. (B) Silhouette values are plotted against the ratio of tree height from the hierarchical clustered dendrogram in Figure 3A. (C) The relationship between the number of clusters and the tree height ratio of the dendrogram for ISO and KET, with a cut-off ratio of 0.5 resulting in 3 clusters for ISO and 5 for KET (indicated by the dashed line). (D) The bar graph depicts Z scores for clusters in ISO and KET conditions, represented with mean values and standard errors. One-way ANOVA with Tukey's post hoc multiple comparisons. ns: no significance; ***P < 0.001. (E) Z-scored log relative density of c-Fos expression within the identified brain region clusters. The arrangement, abbreviations of the brain regions, and the numerical labels are in accordance with Figure 3A. The red boxes highlight brain regions that rank within the top 10 percent of Z score values. The white boxes denote brain regions with an Z score less than -2.

      1. There are still critical misinterpretations of the PCA analysis. For instance, it is mentioned that " KET is associated with the activation of cortical regions (as evidenced by positive PC1 coefficients in MOB, AON, MO, ACA, and ORB) and the inhibition of subcortical areas (indicated by negative coefficients) " as well as " KET displays cortical activation and subcortical inhibition, whereas ISO shows a contrasting preference, activating the cerebral nucleus (CNU) and the hypothalamus while inhibiting cortical areas. To reduce inter-individual variability." These interpretations are in complete contradiction with the answer 2b above that there was no region that had decreased Fos by either anesthetic.

      Thank you for bringing this to our attention. In response to your concerns, we have made significant revisions to our data analysis. We have updated our input data to incorporate log-transformed relative c-Fos density values, normalized against the control group for each brain region, as illustrated in Figures 2 and 3. Instead of PCA, we have applied this updated data to hierarchical clustering analysis. The results of these analyses are consistent with our original observation that neither anesthetic led to a decrease in Fos expression in any region.

      1. I still do not understand the rationale for the use of that metric. The use of a % of total Fos makes the data for each region dependent on the data of the other regions which wrongly leads to the conclusion that some regions are inhibited while they are not when looking at the raw data. Moreover, the interdependence of the variable (relative density) may affect the covariance structure which the PCA relies upon. Why not using the PCA on the logarithm of the raw data or on a relative density compared to the control group on a region-per-region basis instead of the whole brain?

      Thank you for your insightful suggestion. Following your advice, we have revised our approach and now utilize the logarithm of the relative density compared to the control group on a region-by-region basis. We attempted PCA analyses using the logarithm of the raw data, the logarithm of the Z-score, and the logarithm of the relative density compared to control, but none yielded distinct clusters.

      Author response image 3.

      As a result, we employed hierarchical cluster analysis. We then examined the Z-scores of the log-transformed relative c-Fos densities (Figures 2E and 3E) to assess expression levels across clusters. Our analysis revealed that neither ISO nor KET treatments led to a significant suppression of c-Fos expression in the 53 brain regions examined. In the ISO group alone, there were 10 regions that demonstrated relative suppression (Z-score < -2, indicated by white boxes) as shown in Figure 3.

      Fig. 2B: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions and the use of the line? The line connecting randomly organized regions is meaningless and confusing.

      Thank you for your suggestion. We have discontinued the use of PCA calculations and have removed this figure.

      Fig 6A. The correlation matrices are difficult to interpret because of the low resolution and arbitrary order of brain regions. I recommend using hierarchical clustering and/or a combination of hierarchical clustering and anatomical organization (e.g. PMID: 31937658). While it is difficult to add the name of the regions on the graph I recommend providing supplementary figures with large high-resolution figures with the name of each brain region so the reader can actually identify the correlation between specific brain regions and the whole brain, Rationale for Metric Choice: Note that I do not dispute the choice of the log which is appropriate, it is the choice of using the relative density that I am questioning.

      Thank you for your constructive feedback. In line with your suggestion, we have implemented hierarchical clustering combined with anatomical organization as per the referenced literature. Additionally, we have updated the vector diagrams in Figure 6A to present them with greater clarity.

      Furthermore, we have revised our network modular division method based on cited literature recommendations. We used hierarchical clustering with correlation coefficients to segment the network into modules, illustrated in Figure 6—figure supplement 1. Due to the singular module structure of the KET network and the sparsity of intermodular connections in the home cage and saline networks, the assessment of network hub nodes did not employ within-module degree Z-score and participation coefficients, as these measures predominantly underscore the importance of connections within and between modules. Instead, we used degree, betweenness centrality, and eigenvector centrality to detect the hub nodes, as detailed in Figure 6—figure supplement 2. With this new approach, the hub node for the KET condition changed from SS to TeA. Corresponding updates have been made to the results section for Figure 6, as well as to the related discussions and the abstract of our paper.

      Author response image 4.

      Figure 6. Generation of anesthetics-induced networks and identification of hub regions. (A) Heatmaps display the correlations of log c-Fos densities within brain regions (CTX, CNU, TH, HY, MB, and HB) for various states (home cage, ISO, saline, KET). Correlations are color-coded according to Pearson's coefficients. The brain regions within each anatomical category are organized by hierarchical clustering of their correlation coefficients. (B) Network diagrams illustrate significant positive correlations (P < 0.05) between regions, with Pearson’s r exceeding 0.82. Edge thickness indicates correlation magnitude, and node size reflects the number of connections (degree). Node color denotes betweenness centrality, with a spectrum ranging from dark blue (lowest) to dark red (highest). The networks are organized into modules consistent with the clustering depicted in Supplementary Figure 8. Figure 6—figure supplement 1

      Author response image 5.

      Figure 6—figure supplement 1. Hierarchical clustering of brain regions under various conditions: home cage, ISO, saline, and KET. (A) Heatmaps show the relative distances among brain regions assessed in naive mice. Modules were identified by sectioning each dendrogram at a 0.7 threshold. (B) Silhouette scores plotted against the dendrogram tree height ratio for each condition, with optimal cluster definition indicated by a dashed line at a 0.7 ratio. (C) The number of clusters formed at different cutoff levels. At a ratio of 0.7, ISO and saline treatments result in three clusters, whereas home cage and KET conditions yield two clusters. (D) The mean Pearson's correlation coefficient (r) was computed from interregional correlations displayed in Figure 6A. Data were analyzed using one-way ANOVA with Tukey’s post hoc test, ***P < 0.001.

      Author response image 6.

      Figure 6—figure supplement 2. Hub region characterization across different conditions: home cage (A), ISO (B), saline (C), and KET (D) treatments. Brain regions are sorted by degree, betweenness centrality, and eigenvector centrality, with each metric presented in separate bar graphs. Bars to the left of the dashed line indicate the top 20% of regions by rank, highlighting the most central nodes within the network. Red bars signify regions that consistently appear within the top rankings for both degree and betweenness centrality across the metrics.

      1. I am still having difficulties understanding Fig. 3.

      Panel A: The lack of identification for the dots in panel A makes it impossible to understand which regions are relevant.

      Panel B: what is the metric that the up/down arrow summarizes? Fos density? Relative density? PC1/2?

      Panel C: it's unclear to me why the regions are connected by a line. Such representation is normally used for time series/within-subject series. What is the rationale for the order of the regions?

      Thank you for your patience and for reiterating your concerns regarding Figure 3.

      a. In Panel A, we have substituted the original content with a display of hierarchical clustering results, which now clearly marks each brain region. This change aids readers in identifying regions with similar expression patterns and facilitates a more intuitive understanding of the data.

      a. Acknowledging that our analysis did not reveal any significantly inhibited brain regions, we have decided to remove the previous version of Panel B from the figure.

      b. We have discontinued the use of PCA calculations and have removed this figure to avoid any confusion it may have caused. Our revised analysis focuses on hierarchical clustering, which are presented in the updated figures.

      Reviewer #2:

      1. Aside from issues with their data transformation (see below), (a) I think they have some interesting Fos counts data in Figures 4B and 5B that indicate shared and distinct activation patterns after KET vs. ISO based anesthesia. These data are far closer to the raw data than PC analyses and need to be described and analyzed in the first figures long before figures with the more abstracted PC analyses. In other words, you need to show the concrete raw data before describing the highly transformed and abstracted PC analyses. (b) This gets to the main point that when selecting brain areas for follow up analyses, these should be chosen based on the concrete Fos counts data, not the highly transformed and abstracted PC analyses.

      Thank you for your suggestions.

      a. We have added the original c-Fos cell density distribution maps for Figures 2, 3, 4, and 5 in Supplementary Figures 2 and 3 (also shown below). To maintain consistency across the document, we have updated both the y-axis label and the corresponding data in Figures 4B and 5B from 'c-Fos cell count' to 'c-Fos density'.

      b. The analyses in Figures 2 and 3 include all brain regions. Figures 4 and 5 present the brain regions with significant differences as shown in Figure 3—figure supplement 1.

      Author response image 7.

      Figure 2—figure supplement 1. The c-Fos density in 53 brain areas for different conditions. (home cage, n = 6; ISO, n = 6 mice; saline, n = 8; KET, n = 6). Each point represents the c-Fos density in a specific brain region, denoted on the y-axis with both abbreviations and full names. Data are shown as mean ± SEM. Brain regions are categorized into 12 brain structures, as indicated on the right side of the graph.

      Author response image 8.

      Figure 3—figure supplement 1. c-Fos density visualization across 201 distinct brain regions under various conditions. The graph depicts the c-Fos density levels for each condition, with data presented as mean and standard error. Brain regions with statistically significant differences are featured in Figures 4 and 5. Brain regions are organized into major anatomical subdivisions, as indicated on the left side of the graph.

      1. Now, the choice of data transformation for Fos counts is the most significant problem. First, the authors show in the response letter that not using this transformation (region density/brain density) leads to no clustering. However, they also showed the region-densities without transformation (which we appreciate) and it looks like overall Fos levels in the control group Home (ISO) are a magnitude (~10-fold) higher than those in the control group Saline (KET) across all regions shown. This large difference seems unlikely to be due to a biologically driven effect and seems more likely to be due to a technical issue, such as differences in staining or imaging between experiments. Was the Homecage-ISO experiment or at least the Fos labeling and imaging performed at the same time as for the Saline-Ketamine experiment? Please state the answer to this question in the Results section one way or the other.

      a. “Home (ISO) are a magnitude (~10-fold) higher than those in the control group saline (KET) across all regions shown.” We believe you might be indicating that compared to the home cage group (gray), the saline group (blue) shows a 10-fold higher expression (Supplementary Figure 2/3). Indeed, we observed that the total number of c-Fos cells in the home cage group is significantly lower than in the saline group. This difference may be due to reduced sleep during the light-on period (ZT 6- ZT 7.5) in the saline mice or the pain and stress response caused by intraperitoneal injection of saline. We have explained this discrepancy in the discussion section.Line 308-317(also see below)

      “…Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 1—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression…”

      b. Drug administration and tissue collection for both Homecage-ISO and Saline-Ketamine groups were consistently scheduled at 13:00 and 14:30, respectively. Four mice were administered drugs and had tissues collected each day, with two from the experimental group and two from the control group, to ensure consistent sampling. The 4% PFA fixation time, sucrose dehydration time, primary and secondary antibody concentrations and incubation times, staining, and imaging parameters and equipment (exposure time for VS120 imaging was fixed at 100ms) were all conducted according to a unified protocol.

      We have included the following statement in the results section: Line 81-83, “Sample collection for all mice was uniformly conducted at 14:30 (ZT7.5), and the c-Fos labeling and imaging were performed using consistent parameters throughout all experiments. ”

      1. Second, they need to deal with this large difference in overall staining or imaging for these two (Home/ISO and Saline/KET) experiments more directly; their current normalization choice does not really account for the large overall differences in mean values and variability in Fos counts (e.g. due to labeling and imaging differences).

      3a. I think one option (not perfect but I think better than the current normalization choice) could be z-scoring each treatment to its respective control. They can analyze these z-scored data first, and then in later figures show PC analyses of these data and assess whether the two treatments separate on PC1/2. And if they don't separate, then they don't separate, and you have to go with these results.

      3b. Alternatively, they need to figure out the overall intensity distributions from the different runs (if that the main reason of markedly different counts) and adjust their thresholds for Fos-positive cell detection based on this. I would expect that the saline and HC groups should have similar levels of activation, so they could use these as the 'control' group to determine a Fos-positive intensity threshold that gets applied to the corresponding 'treatment' group.

      3c. If neither 3a nor 3b is an option then they need to show the outcomes of their analysis when using the untransformed data in the main figures (the untransformed data plots in their responses to reviewer are currently not in the main or supplementary figs) and discuss these as well.

      a. Thank you very much for your valuable suggestion. We conducted PCA analysis on the ISO and KET data after Z-scoring them with their respective control groups and did not find any significant separation.

      Author response image 9.

      As mentioned in our response to reviewer #1, we have reprocessed the raw data. Firstly, we divided the ISO and KET data by their respective control brain regions and then performed a logarithmic transformation to obtain the log relative c-Fos density. The purpose of this is to eliminate the impact of baseline differences and reduce variability. We then performed hierarchical clustering, and finally, we Z-scored the log relative c-Fos density data. The aim is to facilitate comparison of ISO and KET on the same data dimension (Figure 2 and 3).

      b. We appreciate your concerns regarding the detection thresholds for Fos-positive cells. The enclosed images, extracted from supplementary figures for Figures 4 and 5, demonstrate notable differences in c-Fos expression between saline and home cage groups in specific brain regions. These regions exhibit a discernible difference in staining intensity, with the saline group showing enhanced c-Fos expression in the PVH and PVT regions compared to the home cage group. An examination of supplementary figures for Figures 4 and 5 shows that c-Fos expression in the home cage group is consistently lower than in the saline group. This comparative analysis confirms that the discrepancies in c-Fos levels are not due to varying detection thresholds.

      Author response image 10.

      b. We have added the corresponding original data graphs to Supplementary Figures 2 and 3, and discussed the potential reasons for the significant differences between these groups in the discussion section (also shown below).

      Lines 308-317: "...Our findings indicate that c-Fos expression in the KET group is significantly elevated compared to the ISO group, and the saline group exhibits notably higher c-Fos expression than the home cage group, as seen in Supplementary Figures 2 and 3. Intraperitoneal saline injections in the saline group, despite pre-experiment acclimation with handling and injections for four days, may still evoke pain and stress responses in mice. Subtle yet measurable variations in brain states between the home cage and saline groups were observed, characterized by changes in normalized EEG delta/theta power (home cage: 0.05±0.09; saline: -0.03±0.11) and EMG power (home cage: -0.37±0.34; saline: 0.04±0.13), as shown in Figure 3—figure supplement 1. These changes suggest a relative increase in overall brain activity in the saline group compared to the home cage group, potentially contributing to the higher c-Fos expression.…”

    1. Reviewer #2 (Public Review):

      This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors).

      The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically-specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature-specificity.

      The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events.

      The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process. In addition, one limitation of the current method is that it's not clear whether the motion-direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location?

      The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way.

      The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation.

      One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect.

      In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function.

      Kominsky, J. F., & Scholl, B. J. (2020). Retinotopic adaptation reveals distinct categories of causal perception. Cognition, 203, 104339. https://doi.org/10.1016/j.cognition.2020.104339

      Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and Constraints in Causal Perception. Psychological Science, 28(11), 1649-1662. https://doi.org/10.1177/0956797617719930

      Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25(3), 265-288. https://doi.org/10.1016/S0010-0277(87)80006-9

    1. Reviewer #2 (Public Review):

      Summary:

      A dominant hypothesis concerning the origin of life is that, before the appearance of the first enzymes, RNA replicated non-enzymatically by templating. However, this replication was probably not very efficient, due to the propensity of single strands to bind to each other, thus inhibiting template replication. This phenomenon, known as product inhibition, has been shown to lead to parabolic growth instead of exponential growth. Previous works have shown that this situation limits competition between alternative replicators and therefore promotes RNA population diversity. The present work examines this scenario in a model of RNA replication, taking into account finite population size, mutations, and differences in GC content. The main results are (1) confirmation that parabolic growth promotes diversity, but that when the population size is small enough, sequences least efficient at replicating may nevertheless go extinct; (2) the observation that fitness is not only controlled by the replicability of sequences, but also by their GC content ; (3) the observation that parabolic growth attenuates the impact of mutations and, in particular, that the error threshold to which exponentially growing sequences are subject can be exceeded, enabling sequence identity to be maintained at higher mutation rates.

      Strengths:

      The analyses are sound and the observations are intriguing. Indeed, it has been noted previously that parabolic growth promotes coexistence, its role in mitigating the error threshold catastrophe - which is often presented as a major obstacle to our understanding of the origin of life - had not been examined before.

      Weaknesses:

      Although all the conclusions are interesting, most are not very surprising for people familiar with the literature. As the authors point out, parabolic growth is well known to promote diversity (Szathmary-Gladkih 89) and it has also been noted previously that a form of Darwinian selection can be found at small population sizes (Davis 2000). Given that under parabolic growth, no sequence is ever excluded for infinite populations, it is also not surprising to find that mutations have a less dramatic exclusionary impact.

      A general weakness is the presentation of models and parameters, whose choices often appear arbitrary. Modeling choices that would deserve to be further discussed include the association of the monomers with the strands and the ensuing polymerization, which are combined into a single association/polymerization reaction (see also below), or the choice to restrict to oligomers of length L = 10. Other models, similar to the one employed here, have been proposed that do not make these assumptions, e.g. Rosenberger et al. Self-Assembly of Informational Polymers by Templated Ligation, PRX 2021. To understand how such assumptions affect the results, it would be helpful to present the model from the perspective of existing models.

      The values of the (many) parameters, often very specific, also very often lack justifications. For example, why is the "predefined error factor" ε = 0.2 and not lower or higher? How would that affect the results? Similarly, in equation (11), where does the factor 0.8 come from? Why is the kinetic constant for duplex decay reaction 1.15e10−8? Are those values related to experiments, or are they chosen because specific behaviors can happen only then?

      The choice of the model and parameters potentially impact the two main results, the attenuation of the error threshold and the role of GC content:

      Regarding the error threshold, it is also noted (lines 379-385) that it disappears when back mutations are taken into account. This suggests that overcoming the error threshold might not be as difficult as suggested, and can be achieved in several ways, which calls into question the importance of the particular role of parabolic growth. Besides, when the concentration of replicators is low, product inhibition may be negligible, such that a "parabolic replicator" is effectively growing exponentially and an error catastrophe may occur. Do the authors think that this consideration could affect their conclusion? Can simulations be performed?

      Regarding the role of the GC content, GC-rich oligomers are found to perform the worst but no rationale is provided. One may assume that it happens because GC-rich sequences are comparatively longer to release the product. However, it is also conceivable that higher GC content may help in the polymerization of the monomers as the monomers attach longer on the template (as described in Eq.(9)). This is an instance where the choice to pull into a single step the association and polymerization reactions are pulled into a single step independent of GC content may be critical. It would be important to show that the result arises from the actual physics and not from this modeling choice.

      Some more specific points that would deserve to be addressed:

      - Line 53: it is said that p "reflects how easily the template-reaction product complex dissociates". This statement is not correct. A reaction order p<1 reflects product inhibition, the propensity of templates to bind to each other, not slow product release. Product release can be limiting, yet a reaction order of 1 can be achieved if substrate concentrations are sufficiently high relative to oligomer concentrations (von Kiedrowski et al., 1991).

      - Population size is a key parameter, and a comparison is made between small (10^3) and large (10^5) populations, but without explaining what determines the scale (small/large relative to what?).

      - In the same vein, we might expect size not to be the only important parameter, but also concentration.

      - Lines 543-546: if understanding correctly, the quantitative result is that the error threshold rises from 0.1 in the exponential case to 0.196 in the parabolic. Are the authors suggesting that a factor of 2 is a significant difference?

      - Figure 3C: this figure shows no statistically significant effect?

      - line 542: "phase transition-like species extension (Figure 4B)": such a clear threshold is not apparent.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1 (Public Review):

      1. The name of the new method "inter-haplotype distance" is more confusing than helpful, as the haplotype information is not critical for implementing this method. First, the mutation spectrum is aggregated genome-wide regardless of the haplotypes where the mutations are found. Second, the only critical haplotype information is that at the focal site (i.e., the locus that is tested for association): individuals are aggregated together when they belong to the same "haplotype group" at the focal site. However, for the classification step, haplotype information is not really necessary: individuals can be grouped based on their genotypes at the given locus (e.g., AA vs AB). As the authors mentioned, this method can be potentially applied to other mutation datasets, where haplotype information may well be unavailable. I hope the authors can reconsider the name and remove the term "haplotype" (perhaps something like "inter-genotype distance"?) to avoid giving the wrong impression that haplotype information is critical for applying this method.

      We appreciate the reviewer's concern about the name of our method. The reviewer is correct that haplotype information is not critical for our method to work, and as a result we've decided to simply rename the approach to "aggregate mutation spectrum distance" (abbreviated AMSD). For simplicity, we refer to the method as IHD throughout our responses to reviewers, but the revised manuscript now refers to AMSD.

      1. The biggest advantage of the IHD method over QTL mapping is alleviation of the multiple testing burden, as one comparison tests for any changes in the mutation spectrum, including simultaneous, small changes in the relative abundance of multiple mutation types. Based on this, the authors claim that IHD is more powerful to detect a mutator allele that affects multiple mutation types. Although logically plausible, it is unclear under what quantitative conditions IHD can actually have greater power over QTL. It will be helpful to support this claim by providing some simulation results.

      This comment prompted us to do a more detailed comparison of IHD vs. QTL power under conditions that are more similar to those observed in the BXD cohort. While preparing the original manuscript, we assumed that IHD might have greater power than QTL mapping in a population like the BXDs because some recombinant inbred lines have accumulated many more germline mutations than others (see Figure 1 in Sasani et al. 2022, Nature). In a quantitative trait locus scan (say, for the fraction of C>A mutations in each line) each BXD's mutation data would be weighted equally, even if a variable number of mutations was used to generate the phenotype point estimate in each line.

      To address this, we performed a new series of simulations in which the average number of mutations per haplotype was allowed to vary. At the low end, some BXDs accumulated as few as 100 total germline mutations, while others have accumulated as many as 2,000. Thus, instead of simulating a mean number of mutations on each simulated haplotype, we allowed the mean number of mutations per haplotype to vary from N to 20N. By simulating a variable count of mutations on each haplotype, we could more easily test the benefits of comparing aggregate, rather than individual, mutation spectra between BXDs.

      In these updated simulations, we find that IHD routinely outperforms QTL mapping under a range of parameter choices (see Author Response image 1). Since IHD aggregates the mutation spectra of all haplotypes with either B or D alleles at each locus in the genome, the method is much less sensitive to individual haplotypes with low mutation counts. We include a mention of these updated simulations on lines 135-138 and describe the updated simulations in greater detail in the Materials and Methods (lines 705-715).

      Author response image 1.

      Power of IHD and QTL mapping on simulated haplotypes with variable counts of mutations. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript) but allowed the total number of mutations per haplotype to vary by a factor of 20.

      1. The flip side of this advantage of IHD is that, when a significant association is detected, it is not immediately clear which mutation type is driving the signal. Related to this, it is unclear how the authors reached the point that "...the C>A mutator phenotype associated with the locus on chromosome 6", when they only detected significant IHD signal at rs46276051 (on Chr6), when conditioning on D genotypes at the rs27509845 (on Chr4) and no significant signal for any 1-mer mutation type by traditional mapping. The authors need to explain how they deduced that C>A mutation is the major source of the signal. In addition, beyond C>A mutations, can mutation types other than C>A contribute to the IHD signal at rs46276051? More generally, I hope the authors can provide some guidelines on how to narrow a significant IHD signal to specific candidate mutation type(s) affected, which will make the method more useful to other researchers.

      We thank the reviewer for pointing out this gap in our logic. We omitted specific instructions for narrowing down an IHD signal to specific mutation type(s) for a few reasons. First, this can be addressed using mutational signature analysis methods that are in widespread use. For example, upon identifying one or more candidate mutator loci, we can enter the mutation spectra of samples with each possible mutator genotype into a program (e.g., SigProfilerExtractor) to determine which combinations of mutation types occur proportionally more often in the genomes that harbor mutators (see Figure 3c in our manuscript). A second approach for narrowing down an IHD signal, highlighted in Figure 3a (and now described in the text of the Results section at lines 256-261), is to simply test which mutation type proportion(s) differ significantly between groups of samples with and without a candidate mutator (for example, with a Chi-square test of independence for each mutation type).

      Although this second approach incurs a multiple testing burden, the burden is offset somewhat by using IHD to identify mutator loci, rather than performing association tests for every possible mutation type to begin with. Although Figure 3a only shows the significant difference in C>A fraction among BXDs with different mutator locus genotypes, Figure 3-figure supplement 1 shows the complete set of 1-mer spectrum comparisons. It is possible that this second approach would not prove very useful in the case of a mutator with a “flat” signature (i.e., a mutator that slightly perturbs the rates of many different mutation types), but in our case it clearly shows which mutation type is affected.

      1. To account for differential relatedness between the inbred lines, the authors regressed the cosine distance between the two aggregate mutation spectra on the genome-wide genetic similarity and took the residual as the adjusted test metric. What is the value of the slope from this regression? If significantly non-zero, this would support a polygenic architecture of the mutation spectrum phenotype, which could be interesting. If not, is this adjustment really necessary? In addition, is the intercept assumed to be zero for this regression, and does such an assumption matter? I would appreciate seeing a supplemental figure on this regression.

      The reviewer raises a good question. We find that the slope of the "distance vs. genetic similarity" regression is significantly non-zero, though the slope estimate itself is small. A plot of cosine distance vs. genome-wide genetic similarity (using all BXDs) is shown below in Author response image 2:

      Author response image 2.

      Relationship between cosine distance and genetic similarity in the BXDs. As described in the Materials and Methods, we computed two values at each marker in the BXDs: 1) the cosine distance between the aggregate mutation spectra of BXDs with either B or D genotypes at the marker, and 2) the correlation between genome-wide D allele frequencies in BXDs with either B or D genotypes at the marker. We then regressed these two values across all genome-wide markers.

      This result indicates that if two groups of BXDs (one with D genotypes and one with B genotypes at a given locus) are more genetically similar, their mutation spectra are also more similar. Since the regression slope estimate is significantly non-zero (p < 2.2e-16), we believe that it's still worth using residuals as opposed to raw cosine distance values. This result also suggests that there may be a polygenic effect on the mutation spectrum in the BXDs.

      We have also generated a plot showing the cosine distance between the mutation spectra of every possible pair of BXDs, regressed against the genetic similarity between each of those pairs (Author Response image 3). Here, the potential polygenic effects on mutation spectra similarity are perhaps more obvious.

      Author response image 3.

      Pairwise cosine distance between BXD mutation spectra as a function of genetic similarity. We computed two values for every possible pair of n = 117 BXDs: 1) the cosine distance between the samples' individual 1-mer mutation spectra and 2) the correlation coefficient between the samples' genome-wide counts of D alleles.

      Private Comments

      1. It will also be useful to see how the power of IHD and QTL mapping depend on the allele frequency of the mutator allele and the sample size, as mutator alleles are likely rare or semi-rare in natural populations (such as the human de novo mutation dataset that the authors mentioned).

      This is another good suggestion. In general, we'd expect the power of both IHD and QTL mapping to decrease as a function of mutator allele frequency. At the same time, we note that the power of these scans should mostly depend on the absolute number of carriers of the mutator allele and less on its frequency. In the BXD mouse study design, we observe high frequency mutators but also a relatively small sample size of just over 100 individuals. In natural human populations, mutator frequencies might be orders of magnitude smaller, but sample sizes may be orders of magnitude larger, especially as new cohorts of human genomes are routinely being sequenced. So, we expect to have similar power to detect a mutator segregating at, say, 0.5% frequency in a cohort of 20,000 individuals, as we would to detect a mutator segregating at 50% frequency in a dataset of 200 individuals.

      To more formally address the reviewer's concern, we performed a series of simulations in which we simulated a population of 100 haplotypes. We assigned the same average number of mutations to each haplotype but allowed the allele frequency of the mutator allele to vary between 0.1, 0.25, and 0.5. The results of these simulations are shown in Author response image 4 and reveal that AMSD tends to have greater power than QTL mapping at lower mutator allele frequencies. We now mention these simulations in the text at lines 135-138 and include the simulation results in Figure 1-figure supplement 4.

      Author response image 4.

      Power of AMSD and QTL mapping on simulated haplotypes with variable marker allele frequencies. We simulated germline mutations on the specified number of haplotypes (as described in the manuscript), but simulated genotypes at the mutator allele such that "A" alleles were at the specified allele frequency.

      1. In the Methods section of "testing for epistasis between the two mutator loci", it will be helpful to explicitly lay out the model and assumptions in mathematical formulae, in addition to the R scripts. For example, are the two loci considered independent when their effects on mutation rate is multiplicative or additive? Given the R scripts provided, it seems that the two loci are assumed to have multiplicative effects on the mutation rate, and that the mutation count follows a Poisson distribution with mean being the mutation rate times ADJ_AGE (i.e., the mutation opportunity times the number of generations of an inbred line). However, this is not easily understandable for readers who are not familiar with R language. In addition, I hope the authors can be more specific when discussing the epistatic interaction between the two loci by explicitly saying "synergistic effects beyond multiplicative effects on the C>A mutation rate".

      The reviewer raises a good point about the clarity of our descriptions of tests for epistasis. We have now added a more detailed description of these tests in the section of the Materials and Methods beginning at line 875. We have also added a statement to the text at lines 289-291: “the combined effects of D genotypes at both loci exceed the sum of marginal effects of D genotypes at either locus alone.” We hope that this will help clarify the results of our tests for statistical epistasis.

      Reviewer 2 (Public Review):

      1. The main limitation of the approach is that it is difficult to see how it might be applied beyond the context of mutation accumulation experiments using recombinant inbred lines. This is because the signal it detects, and hence its power, is based on the number of extra accumulated mutations linked to (i.e. on the same chromosome as) the mutator allele. In germline mutation studies of wild populations the number of generations involved (and hence the total number of mutations) is typically small, or else the mutator allele becomes unlinked from the mutations it has caused (due to recombination), or is lost from the population altogether (due to chance or perhaps selection against its deleterious consequences).

      The reviewer is correct that as it currently exists, IHD is mostly limited to applications in recombinant inbred lines (RILs) like the BXDs. This is due to the fact that IHD assumes that each diploid sample harbors one of two possible genotypes at a particular locus and ignores the possibility of heterozygous genotypes for simplicity. In natural, outbreeding populations, this assumption will obviously not hold. However, as we plan to further iterate on and improve the IHD method, we hope that it will be applicable to a wider variety of experimental systems in the future. We have added additional caveats about the applicability of our method to other systems in the text at lines 545-550.

      Private Comments

      1. On p. 8, perhaps I've misunderstood but it's not clear in what way the SVs identified were relevant to the samples used in this dataset - were the founder strains assembled? Is there any chance that additional SVs were present, e.g. de novo early in the accumulation line?

      Our description of this structural variation resource could have been clearer. The referenced SVs were identified in Ferraj et al. (2023) by generating high-quality long read assemblies of inbred laboratory mice. Both DBA/2J and C57BL/6J (the founder strains for the BXD resource) were included in the Ferraj et al. SV callset. We have clarified our description of the callset at lines 247-248.

      It is certainly possible that individual BXD lines have accumulated de novo structural variants during inbreeding. However, these "private" SVs are unlikely to produce a strong IHD association signal (via linkage to one of the ~7,000 markers) at either the chromosome 4 or chromosome 6 locus, since we only tested markers that were at approximately 50% D allele frequency among the BXDs.

      1. On p. 13, comparing the IHD and QTL approaches, regarding the advantage of the former in that it detects the combined effect of multiple k-mer mutation types, would it not be straightforward to aggregate counts for different types in a QTL setting as well?

      The mutation spectrum is a multi-dimensional phenotype (6-dimensional if using the 1-mer spectrum, 96-dimensional if using the 3-mer spectrum, etc.). Most QTL mapping methods use linear models to test for associations between genotypes and a 1-dimensional phenotype (e.g., body weight, litter size). In the past, we used QTL mapping to test for associations between genotypes and a single element of the mutation spectrum (e.g., the rate of C>A mutations), but there isn't a straightforward way to aggregate or collapse the mutation spectrum into a 1dimensional phenotype that retains the information contained within the full 1-mer or 3-mer spectrum. For that reason, we developed the "aggregate mutation spectrum" approach, as it preserves information about the complete mutation spectrum in each group of strains.

      The reviewer is correct that we could also aggregate counts of different mutation types to, say, perform a QTL scan for the load of a specific mutational signature. For example, we could first perform standard mutational signature analysis on our dataset and then test for QTLs associated with each signature that is discovered. However, this approach would not solve the second problem that our method is designed to solve: the appropriate weighting of samples based on how many mutations they contain.

      1. pp. 15-16: In the discussion of how you account for relatedness between strains, I found the second explanation (on p. 16) much clearer. It would be interesting to know how much variance was typically accounted for by this regression?

      As shown in the response to Reviewer 1, genotype similarity between genotype groups (i.e., those with either D or B genotypes at a marker) generally explains a small amount of variance in the cosine distance between those groups (R2 ~= 0.007). However, since the slope term in that regression is significantly non-zero, correcting for this relationship should still improve our power relative to using raw cosine distance values that are slightly confounded by this relationship.

      1. Similarly, in the section on Applying the IHD method to the BXDs (pp. 18-19), I think this description was very useful, and some or all of this description of the experiment (and how the DNMs in it arise) could profitably be moved to the introduction.

      We appreciate the reviewer’s feedback about the details of the BXD cohort. Overall, we feel the description of the BXDs in the Introduction (at lines 65-73) is sufficient to introduce the cohort, though we now add some additional detail about variability in BXD inbreeding duration (at lines 89-93) to the Introduction as well, since it is quite relevant to some of the new simulation results presented in the manuscript.

      1. A really minor one, not sure if this is for the journal or the authors, but it would be much better to include both page and line numbers in any version of an article for review. My pdf had neither!

      We apologize for the lack of page/line numbers in the submitted PDF. We have now added line numbers to the revised version of the manuscript.

      Reviewer 3 (Public Review):

      1. Under simulated scenarios, the authors' new IHD method is not appreciably more powerful than conventional QTL mapping methods. While this does not diminish the rigor or novelty of the authors findings, it does temper enthusiasm for the IHD method's potential to uncover new mutators in other populations or datasets. Further, adaptation of this methodology to other datasets, including human trios or multigenerational families, will require some modification, which could present a barrier to broader community uptake. Notably, BXD mice are (mostly) inbred, justifying the authors consideration of just two genotype states at each locus, but this decision prevents out-of-the-box application to outbred populations and human genomic datasets. Lastly, some details of the IHD method are not clearly spelled out in the paper. In particular, it is unclear whether differences in BXD strain relatedness due to the breeding epoch structure are fully accounted for in permutations. The method's name - inter-haplotype distance - is also somewhat misleading, as it seems to imply that de novo mutations are aggregated at the scale of sub-chromosomal haplotype blocks, rather than across the whole genome.

      The reviewer raises very fair concerns. As mentioned in response to a question from Reviewer 1, we performed additional simulation experiments that demonstrate the improved power of IHD (as compared to QTL mapping) in situations where mutation counts are variable across haplotypes or when mutator alleles are present at allele frequencies <50% (see Author response image 2 and 3, as well as new supplements to Figure 1 in the manuscript). However, the reviewer is correct that the IHD method is not applicable to collections of outbred individuals (that is, individuals with both heterozygous and homozygous genotypes), which will limit its current applications to datasets other than recombinant inbred lines. We have added a mention of these limitations to the Results at lines 138-141 and the Discussion at lines 545-550, but plan to iterate on the IHD method and introduce new features that enable its application to other datasets. We have also explicitly stated that we account for breeding epochs in our permutation tests in the Materials and Methods at lines 670-671. Both Reviewer 1 and Reviewer 3 raised concerns about the name of our method, and we have therefore changed “inter-haplotype distance” to “aggregate mutation spectrum distance” throughout the manuscript.

      1. Nominating candidates within the chr6 mutator locus requires an approach for defining a credible interval and excluding/including specific genes within that interval as candidates. Sasani et al. delimit their focal window to 5Mb on either side of the SNP with the most extreme P-value in their IHD scan. This strategy suffers from several weaknesses. First, no justification for using 10 Mb window, as opposed to, e.g., a 5 Mb window or a window size delimited by a specific threshold of P-value drop, is given, rendering the approach rather ad hoc. Second, within their focal 10Mb window, the authors prioritize genes with annotated functions in DNA repair that harbor protein coding variants between the B6 and D2 founder strains. While the logic for focusing on known DNA repair genes is sensible, this locus also houses an appreciable number of genes that are not functionally annotated, but could, conceivably, perform relevant biological roles. These genes should not be excluded outright, especially if they are expressed in the germline. Further, the vast majority of functional SNPs are non-coding, (including the likely causal variant at the chr4 mutator previously identified in the BXD population). Thus, the author's decision to focus most heavily on coding variants is not well-justified. Sasani et al. dedicate considerable speculation in the manuscript to the likely identity of the causal variant, ultimately favoring the conclusion that the causal variant is a predicted deleterious missense variant in Mbd4. However, using a 5Mb window centered on the peak IHD scan SNP, rather than a 10Mb window, Mbd4 would be excluded. Further, SNP functional prediction accuracy is modest [e.g., PMID 28511696], and exclusion of the missense variant in Ogg1 due its benign prediction is potentially premature, especially given the wealth of functional data implicating Ogg1 in C>A mutations in house mice. Finally, the DNA repair gene closest to the peak IHD SNP is Rad18, which the authors largely exclude as a candidate.

      We agree that the use of a 10 Mb window, rather than an empirically derived confidence interval, is a bit arbitrary and ad hoc. To address this concern, we have implemented a bootstrap resampling approach (Visscher et al. 1996, Genetics) to define confidence intervals surrounding IHD peaks. We have added a description of the approach to the Materials and Methods at lines 609-622, but a brief description follows. In each of N trials (here, N = 10,000), we take a bootstrap sample of the BXD phenotype and genotype data with replacement. We then perform an IHD scan on the chromosome of interest using the bootstrap sample and record the position of the marker with the largest cosine distance value (i.e., the "peak" marker). After N trials, we calculate the 90% confidence interval of bootstrapped peak marker locations; in other words, we identify the locations of two genotyped markers, between which 90% of all bootstrap trials produced an IHD peak. We note that bootstrap confidence intervals can exhibit poor "coverage" (a measure of how often the confidence intervals include the "true" QTL location) in QTL mapping studies (see Manichaikul et al. 2006, Genetics), but feel that the bootstrap is more reasonable than simply defining an ad hoc interval around an IHD peak.

      The new 90% confidence interval surrounding the IHD peak on chromosome 6 is larger than the original (ad hoc) 10 Mbp window, now extending from around 95 Mbp to 114 Mbp. Notably, the new empirical confidence interval excludes Mbd4. We have accordingly updated our Results and Discussion sections to acknowledge the fact that Mbd4 no longer resides within the confidence interval surrounding the IHD peak on chromosome 6 and have added additional descriptions of genes that are now implicated by the 90% confidence interval. Given the uncertainties associated with using bootstrap confidence intervals, we have retained a brief discussion of the evidence supporting Mbd4 in the Discussion but focus primarily on Ogg1 as the most plausible candidate.

      The reviewer raises a valid concern about our treatment of non-DNA repair genes within the interval surrounding the peak on chromosome 6. We have added more careful language to the text at lines 219-223 to acknowledge the fact that non-annotated genes in the confidence interval surrounding the chromosome 6 peak may play a role in the epistatic interaction we observed.

      The reviewer also raises a reasonable concern about our discussions of both Mbd4 and Ogg1 as candidate genes in the Discussion. Since Mbd4 does not reside within the new empirical bootstrap confidence interval on chromosome 6 and given the strong prior evidence that Ogg1 is involved in C>A mutator phenotypes (and is in the same gene network as Mutyh), we have reframed the Discussion to focus on Ogg1 as the most plausible candidate gene (see lines 357360).

      Using the GeneNetwork resource, we also more carefully explored the potential effects of noncoding variants on the C>A mutator phenotype we observed on chromosome 6. We have updated the Results at lines 240-246 and the Discussion at line 439-447 to provide more evidence for regulatory variants that may contribute to the C>A mutator phenotype. Specifically, we discovered a number of strong-effect cis-eQTLs for Ogg1 in a number of tissues, at which D genotypes are associated with decreased Ogg1 expression. Given new evidence that the original mutator locus we discovered on chromosome 4 harbors an intronic mobile element insertion that significantly affects Mutyh expression (see Ferraj et al. 2023, Cell Genomics), it is certainly possible that the mutator phenotype associated with genotypes on chromosome 6 may also be mediated by regulatory, rather than coding, variation.

      1. Additionally, some claims in the paper are not well-supported by the author's data. For example, in the Discussion, the authors assert that "multiple mutator alleles have spontaneously arisen during the evolutionary history of inbred laboratory mice" and that "... mutational pressure can cause mutation rates to rise in just a few generations of relaxed selection in captivity". However, these statements are undercut by data in this paper and the authors' prior publication demonstrating that a number of candidate variants are segregating in natural mouse populations. These variants almost certainly did not emerge de novo in laboratory colonies, but were inherited from their wild mouse ancestors. Further, the wild mouse population genomic dataset used by the authors falls far short of comprehensively sampling wild mouse diversity; variants in laboratory populations could derive from unsampled wild populations.

      The reviewer raises a good point. In our previous publication (Sasani et al. 2022, Nature), we hypothesized that Mutyh mutator alleles had arisen in wild, outbreeding populations of Mus musculus, and later became fixed in inbred strains like DBA/2J and C57BL/6J. However, in the current manuscript, we included a statement about mutator alleles "spontaneously arising during the evolutionary history of inbred laboratory mice" to reflect new evidence (from Ferraj et al. 2023, Cell Genomics) that the mutator allele we originally identified in Mutyh may not be wild derived after all. Instead, Ferraj et al. suggest that the C>A mutator phenotype we originally identified is caused by an intronic mobile element insertion (MEI) that is present in DBA/2J and a handful of other inbred laboratory strains. Although this MEI may have originally occurred in a wild population of mice, we wanted to acknowledge the possibility that both the original Mutyh mutator allele, as well as the new mutator allele(s) we discovered in this manuscript, could have arisen during the production and inbreeding of inbred laboratory lines. We have also added language to the Discussion at lines 325-327 to acknowledge that the 67 wild mice we analyzed do not comprise a comprehensive picture of the genetic diversity present in wild-derived samples.

      We have added additional language to the Discussion at lines 349-357 in which we acknowledge that the chromosome 6 mutator allele might have originated in either laboratory or wild mice and elaborate on the possibility that mutator alleles with deleterious fitness consequences may be more likely to persist in inbred laboratory colonies.

      1. Finally, the implications of a discovering a mutator whose expression is potentially conditional on the genotype at a second locus are not raised in the Discussion. While not a weakness per se, this omission is perceived to be a missed opportunity to emphasize what, to this reviewer, is one of the most exciting impacts of this work. The potential background dependence of mutator expression could partially shelter it from the action of selection, allowing the allele persist in populations. This finding bears on theoretical models of mutation rate evolution and may have important implications for efforts to map additional mutator loci. It seems unfortunate to not elevate these points.

      We agree and have added additional discussion of the possibility that the C>A mutator phenotypes in the BXDs are a result of interactions between the expression of two DNA repair genes in the same base-excision network to the Discussion section at lines 447-449.

      Private comments

      1. The criteria used to determine or specify haplotype size are not specified in the manuscript. I mention this above but reiterate here as this was a big point of confusion for me when reading the paper. Haplotype length is important consideration for overall power and for proper extension of this method to other systems/populations.

      We may not have been clear enough in our description of our method, and as suggested by Reviewer 1, the name "inter-haplotype distance" may also have been a source of confusion. At a given marker, we compute the aggregate mutation spectrum in BXDs with either B or D genotypes using all genome-wide de novo mutations observed in those BXDs. Since the BXDs were inbred for many generations, we expect that almost all de novo germline mutations observed in an RIL are in near-perfect linkage with the informative genotypes used for distance scans. Thus, the "haplotypes" used in the inter-haplotype distance scans are essentially the lengths of entire genomes.

      1. Results, first paragraph, final sentence. I found the language here confusing. I don't understand how one can compute the cosine distance at single markers, as stated. I'm assuming cosine distance is computed from variants residing on haplotypes delimited by some defined window surrounding the focal marker?

      As discussed above, we aggregate all genome-wide de novo mutations in each group of BXDs at a given marker, rather than only considering DNMs within a particular window surrounding the marker. The approach is discussed in greater detail in the caption of Figure 1.

      1. Nominating candidates for the chr6 locus, Table 1. It would be worth confirming that the three prioritized candidates (Setmar, Ogg1, and Mbd4) all show germline expression.

      Using the Mouse Genome Informatics online resource, we confirmed that all prioritized candidate genes (now including Setmar and Ogg1, but not Mbd4) are expressed in the male and female gonads, and mention this in the Results at lines 228 and 233-234.

      1. Does the chr6 peak on the C>A LOD plot (Figure 2- figure supplement 1) overlap the same peak identified in the IHD scan? And, does this peak rise to significance when using alpha = 0.05? Given that the goal of these QTL scans is to identify loci that interact with the C>A mutator on chr4, it is reasonable to hypothesize that the mutation impact of epistatic loci will also be restricted to C>A mutations. Therefore, I am not fully convinced that the conservative alpha = 0.05/7 threshold is necessary.

      The chromosome 6 peak in Figure 2-figure supplement 1 does, in fact, overlap the peak marker we identified on chromosome 6 using IHD. One reason we decided to use a more conservative alpha of (0.05 / 7) is that we wanted these results to be analogous to the ones we performed in a previous paper (Sasani et al. 2022, Nature), in which we first identified the mutator locus on chromosome 4. However, the C>A peak does not rise to genome-wide significance if we use a less conservative alpha value of 0.05 (see Author response image 5). As discussed in our response to Reviewer 1, we find that QTL mapping is not as powerful as IHD when haplotypes have accumulated variable numbers of germline mutations (as in the BXDs), which likely explains the fact that the peak on chromosome 6 is not genome-wide significant using QTL mapping.

      Author response image 5.

      QTL scan for the fraction of C>A mutations in BXDs harboring D alleles at the locus near Myth QTL scan was performed at a genome-wide significance alpha of 0.05, rather than 0.05/7.

      1. Is there significant LD between the IHD peaks on chr6 and chr4 across the BXD? If so, it could suggest that the signal is driven by cryptic population structure that is not fully accounted for in the author's regression based approach. If not, this point may merit an explicit mention in the text as an additional validation for the authenticity of the chr6 mutator finding.

      This is a good question. We used the scikit-allel Python package to calculate linkage disequilibrium (LD) between all pairs of genotyped markers in the BXD cohort, and found that the two peak loci (on chromosomes 4 and 6) exhibit weak LD (r2 = 4e-5). We have added a mention of this to the main text of the Results at lines 212-213. That being said, we do not think the chromosome 6 mutator association (or the apparent epistasis between the alleles on chromosomes 4 and 6) could be driven by cryptic population structure. Unlike in human GWAS and other association studies in natural populations, there is no heterogeneity in the environmental exposures experienced by different BXD subpopulations. In humans, population structure can create spurious associations (e.g., between height and variants that are in LD and are most common in Northern Europe), but this requires the existence of a phenotypic gradient caused by genetic or environmental heterogeneity that is not likely to exist in the context of inbred laboratory mice that are all the progeny of the same two founder strains.

      1. Discussion, last sentence of the "Possible causal alleles..." section: I don't understand how the absence of the Mariner-family domain leads the authors to this conclusion. Setmar is involved in NHEJ, which to my knowledge is not a repair process that is expected to have a specific C>A mutation bias. I think this is grounds enough for ruling out its potential contributions, in favor of focusing on other candidates, (e.g., Mbd4 and Ogg1).

      The reviewer raises a good point. Our main reason for mentioning the absence of the Marinerfamily domain is that even if NHEJ were responsible for the C>A mutator phenotype, it likely wouldn't be possible for Setmar to participate in NHEJ without the domain. However, the reviewer is correct that NHEJ is not expected to cause a C>A mutation bias, and we have added a mention of this to the text as well at lines 379-382.

      1. Discussion, second to last paragraph of section "Mbd4 may buffer...": The authors speculate that reduced activity of Mbd4 could modulate rates of apoptosis in response to DNA damage. This leads to the prediction that mice with mutator alleles at both Mutyh and Mbd4 should exhibit higher overall mutation rates compared to mice with other genotypes. This possibility could be tested with the authors' data.

      The reviewer raises a good question. As mentioned above, however, we implemented a new approach to calculate confidence intervals surrounding distance peaks and found that this empirical approach (rather than the ad hoc 10-Mbp window approach we used previously) excluded Mbd4 from the credible interval. Although we still mention Mbd4 as a possible candidate (since it still resides within the 10 Mbp window), we have refactored the Discussion section to focus primarily on the evidence for Ogg1 as a candidate gene on chromosome 6.

      In any case, we do not observe that mice with mutator alleles at both the chromosome 4 and chromosome 6 loci have higher overall mutation rates compared to mice with other genotype combinations. This may not be terribly surprising, however, since C>A mutations only comprise about 10% of all possible mutations. Thus, given the variance in other 1-mer mutation counts, even a substantial increase in the C>A mutation rate might not have a detectable effect on the overall mutation rate. Indeed, in our original paper describing the Mutyh mutator allele (Sasani et al. 2022, Nature), we did not identify any QTL for the overall mutation rate in the BXDs and found that mice with the chromosome 4 mutator allele only exhibited a 1.11X increase in their overall mutation rates relative to mice without the mutator allele.

      1. Methods, "Accounting for BXD population structure": An "epoch-aware" permutation strategy is described here, but it is not clear when (and whether) this strategy is used to determine significance of IHD P-values.

      We have added a more explicit mention of this to the Methods section at lines 670-671, as we do, in fact, use the epoch-aware permutation strategy when calculating empirical distance thresholds.

      1. The simulation scheme employed for power calculations is highly specific to the BXD population. This is not a weakness, and perfectly appropriate to the study population used here. However, it does limit the transferability of the power analyses presented in this manuscript to other populations. This limitation may merit an explicit cautionary mention to readers who may aspire to port the IHD method over to their study system.

      This is true. Our simulation strategy is relatively simple and makes a number of assumptions about the simulated population of haplotypes (allele frequencies normally distributed around 0.5, expected rates of each mutation type, etc.). In response to concerns from Reviewer 1, we performed an updated series of simulations in which we varied some of these parameters (mutator allele frequencies, mean numbers of mutations on haplotypes, etc.). However, we have added a mention of the simulation approach's limitations and specificity to the BXDs to the text at lines 545-550.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Author response:

      Reviewer #1:

      The main objective of this study is to achieve the development of a synthetic autotroph using adaptive laboratory evolution. To accomplish this, the authors conducted chemostat cultivation of engineered E. coli strains under xylose-limiting conditions and identified autotrophic growth and the causative mutations. Additionally, the mutational mechanisms underlying these causative mutations were also explored with drill down assays. Overall, the authors demonstrated that only a small number of genetic changes were sufficient (i.e., 3) to construct an autotrophic E. coli when additional heterologous genes were added. While natural autotrophic microorganisms typically exhibit low genetic tractability, numerous studies have focused on constructing synthetic autotrophs using platform microorganisms such as E. coli. Consequently, this research will be of interest to synthetic biologists and systems biologists working on the development of synthetic autotrophic microorganisms. The conclusions of this paper are mostly well supported by appropriate experimental methods and logical reasoning. However, further experimental validation of the mutational mechanisms involving rpoB and crp would enhance readers' understanding and provide clearer insights, despite acknowledgement that these genes impact a broad set of additional genes. Additionally, a similar study, 10.1371/journal.pgen.1001186, where pgi was deleted from the E. coli genome and evolved to reveal an rpoB mutation is relevant to this work and should be placed in the context of the presented findings.

      We thank the reviewer for pointing this study out. It is very interesting that a mutation in a similar region in RpoB was observed in a related context of Pgi loss of activity. We have added a reference to this study in our text (Page 11, line 21).

      he authors addressed rpoB and crp as one unit and performed validation. They cultivated the mutant strain and wild type in a minimal xylose medium with or without formate, comparing their growth and NADH levels. The authors argued that the increased NADH level in the mutant strain might facilitate autotrophic growth. Although these phenotypes appear to be closely related, their relationship cannot be definitively concluded based on the findings presented in this paper alone. Therefore, one recommendation is to explore investigating transcriptomic changes induced by the rpoB and crp mutations. Otherwise, conducting experimental verification to determine whether the NADH level directly causes autotrophic growth would provide further support for the authors' claim.

      We appreciate the valuable comment and agree that the work was lacking such an analysis. Due to various reasons we have opted to use a proteomic approach which we feel fulfills the same purpose as the transcriptomics suggestion. We found interesting evidence in up-regulation of the fdoGH operon (comprising the native formate dehydrogenase O enzyme complex) which could indicate why there is an increase in NADH/NAD+ levels. We also hypothesize that this upregulation might be important more generally by drawing comparisons to natural chemo-autotrophs.

      Further experimental work (which we were not able to include in the current study) could help validate this link by deleting fdoGH and observing a loss of phenotype and, on the flip side, directly overexpressing the fdoGH operon and observing an increase in the NADH/NAD+ ratio. Indeed, if this overexpression were to prove sufficient for achieving an autotrophic phenotype without the mutations in the global transcription regulators, it would be a much more transparent design.

      We have added a section titled "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes" to the Results based on this analysis.

      • It would be beneficial to provide a more detailed explanation of the genetic background before the evolution stage, specifically regarding the ∆pfk and ∆zwf mutations. Furthermore, it is suggested to include a figure that provides a comprehensive depiction of the reductive pentose phosphate pathway and the bypass pathway. These will help readers grasp the concept of the "metabolic scaffold" as proposed by the authors.

      We agree with the reviewer that this could be helpful and we added a reference to the original paper Gleizer et al. 2019 that reported this design and also includes the relevant figure. We feel that the figure should not be added to the current manuscript as we continue to show that this design is not relevant in the context of the three reported mutations and such a figure could distract the attention of the reader from the main takeaways of the current study.

      • Despite the essentiality of the rpoB mutation (A1245V) to the autotrophic phenotype in the final strain, the inclusion of this mutation in step C1 does not appear to be justified. According to line 37 on page 3, the authors chose to retain the unintended mutation in rpoB based on its essentiality to the phenotype observed in other evolved strains. However, it should be noted that the mutations found in the evolved strain I, II, and III (P552T or D866E) were entirely different from the unintended mutation (A1245V) during genetic engineering. This aspect should be revised to avoid confusion among readers.

      Thank you for pointing this issue out, we added a clarification in the text (page 4 line 7) to avoid such confusion. We believe this point is much clearer now.

      The rpoB mutation which was shown to be essential in the study is indeed known to be common in ALE experiments in E. coli. Thus, I searched the different rpoB mutations in ALEdb in E. coli and I was able to find a similar mutation in a study where pgi was knocked out and then evolved. https://doi.org/10.1371/journal.pgen.1001186 This study seems very relevant given that pgi was a key mutation in the compact set of this work and the section "Modulation of a metabolic branch-point activity increased the concentration of rPP metabolites" informs that loss of function mutations in pgi were also found. The findings of this study should thus be put in the context of the previous related ALE study. I would recommend a similar analysis of crp mutations from studies in ALEdb to see if there are similar mutations in this gene as well or if this a unique mutation.

      We thank the reviewer for bringing this publication to our attention. We have addressed this observation in the main text (page 11 , line 21). We agree that it could have some connection to the pgi mutation yet we would not want to overspeculate about this role, as we also found the exact same mutation (A1245V) as an adaptation to higher temperature in another E. coli study (Tenaillon et al. 2012). We would like to bring forward the fact that the two reported rpoB mutations are always accompanied by another mutation with pleiotropic effects, either in the transcription factor Crp or in another RNA polymerase subunit (e.g RpoC). As such many epistatic effects could occur, one of which we also report here in page 13, line 18. In conclusion, although there could be a connection between the rpoB and pgi mutations, it could be a mere coincidence and the two mutations could exhibit two distinct roles in two distinct phenotypes.

      We also would like to thank the reviewer for suggesting a similar analysis for crp and found another mutation at a nearby residue with strong adaptive effects and mentioned it in our main text.

      Can the typical number of mutations found in a given ALE experiment be directly compared to those found in this study? It seems like a retrospective analysis of other ALE studies to show how many mutations typically occur in an ALE study and sets which were found to be causal to reproduce the phenotype of interest (through similar reverse engineering in the starting strain) should be presented. Again, the authors cite ALEdb which should provide direct numbers of mutations found in similar ALE studies with E. coli and one could then examine them to find sets of clearly causal mutations which recreate phenotypes of interest. Such an analysis would go a long way in supporting the main finding of "small number" of mutations.

      Discussion, page 12, line 42. "This could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts". There is an entire body of work around growth-coupled production which can be predicted and evolved with a genome-scale metabolic model and ALE. Thus, if this statement is going to be made, relevant studies should be cited and placed in context.

      The reviewer raises an important point which could indeed yield an interesting perspective. However, it would be difficult to perform this comparison in practice since many of the studies published on ALEdb have not isolated essential mutations from other mutation incidents nor have they determined the role of each mutation in the reported phenotypes. For example, many ALE trajectories include a hypermutator that greatly increases the number of irrelevant mutations and it is nearly impossible to sieve through them to find an essential set.

      Moreover, it is hard to compare the “level of difficulty” of achieving one phenotype over another and therefore feel that even though such an analysis would be insightful, it requires an amount of work which is outside the scope of this study.

      Finally, we would like to highlight our approach of using the iterative approach, isolating the relevant consensus mutations and repeating this process until no evolution process is required, we are not aware of prior studies that used this approach.

      We now clarified what we mean by "promising strategy" in the discussion in order to avoid any false claims about novelty (page 16 line 32): "Using metabolic growth-coupling as a temporary 'metabolic scaffold' that can be removed, could serve as a promising strategy for achieving minimally perturbed genotypes in future metabolic engineering attempts."

      Reviewer #2:

      Synthetic autotrophy of biotechnologically relevant microorganisms offers exciting chances for CO2 neutral or even CO2 negative production of goods. The authors' lab has recently published an engineered and evolved Escherichia coli strain that can grow on CO2 as its only carbon source. Lab evolution was necessary to achieve growth. Evolved strains displayed tens of mutations, of which likely not all are necessary for the desired phenotype.

      In the present paper the authors identify the mutations that are necessary and sufficient to enable autotrophic growth of engineered E. coli. Three mutations were identified, and their phenotypic role in enhancing growth via the introduced Calvin-Benson-Bassham cycle were characterized. It was demonstrated that these mutations allow autotrophic growth of E. coli with the introduced CBB cycle without any further metabolic intervention. Autotrophic growth is demonstrated by 13C labelling with 13C CO2, measured in proteinogenic amino acids. In Figures 2B and S1, the labeling data are shown, with an interval of the "predicted range under 13CO2".

      Here, the authors should describe how this interval was derived.

      The methodology is clearly described and appropriate.

      The present results will allow other labs to engineer E. coli and other microorganisms further to assimilate CO2 efficiently into biomass and metabolic products. The importance is evident in the opportunity to employ such strain in CO2 based biotech processes for the production of food and feed protein or chemicals, to reduce atmospheric CO2 levels and the consumption of fossil resources.

      Please describe in the methodology how the interval of the predicted range of 13C labeling was derived for Figures 2B and S1. Was it calculated by the dilution factor during 4 generations, or did you predict the label incorporation individually with a metabolic model?

      The text needs careful editing, some sentences are incomplete and there are frequent inconsistencies in writing metabolites and enzymes.

      P2L6: unclear sentence (incomplete?)

      P2L19: pastoris with lower case "p"

      P2L40: incomplete sentence

      P2L42: here, and at many other places, the writing of RuBisCO needs to be aligned. It is an abbreviation and should begin with a capital letter. Most commonly it is written as RuBisCO which I would suggest - please unify throughout the text.

      P3L3: formate dehydrogenase ... metabolites and enzymes with lower case letter. And, no hyphen here.

      P5L4: delete the : after unintentionally

      P6L16: carboxylation of RuBP (it is not CO2 that is carboxylated - if any, CO2 is carboxylating)

      P7L25: phosphoglucoisomerase (lower case)

      P8L5: in line

      P8L9: part of glycolysis/ ...

      P10L4: pentose phosphates (lower case, no hyphen).

      P10L4: all metabolites lower case

      P12L28: incomplete sentence

      P18L4: Escherichia coli in italics P18L15: Pseudomonas sp. in italics P18L16: ... promoter and with a strong ...

      P20, chapter Metabolomics: put the numbers of 12C and 13C in superscript P23L9: pentose phosphates ; all metabolites in lower case (as above) P23: all 12C and 13C with superscript numbers.

      Response to reviewer #2:

      We thank the reviewer for their comments, and for pointing out the need to clarify how we derived the predicted range of 13C labeling. We edited the text accordingly, and added the relevant calculation to the methods section (under the “13C Isotopic labeling experiment”). We would like to also thank the reviewer for the required text improvements, which were implemented. 

      Reviewer #3:

      The authors previously showed that expressing formate dehydrogenase, rubisco, carbonic anhydrase, and phosphoribulokinase in Escherichia coli, followed by experimental evolution, led to the generation of strains that can metabolise CO2. Using two rounds of experimental evolution, the authors identify mutations in three genes - pgi, rpoB, and crp - that allow cells to metabolise CO2 in their engineered strain background. The authors make a strong case that mutations in pgi are loss-of-function mutations that prevent metabolic efflux from the reductive pentose phosphate autocatalytic cycle. The authors also argue that mutations in crp and rpoB lead to an increase in the NADH/NAD+ ratio, which would increase the concentration of the electron donor for carbon fixation. While this may explain the role of the crp and rpoB mutations, there is good reason to think that the two mutations have independent effects, and that the change in NADH/NAD+ ratio may not be the major reason for their importance in the CO2-metabolising strain.

      We thank the reviewer for their comments and constructive feedback.

      We agree that there is probably a broader effect caused by the rpoB and crp mutations, besides the change in the NADH/NAD+ ratio. Hence, we performed a proteomics analysis, comparing the rpoB and crp mutations on a WT background to an autotrophic E.coli, searching for a mutual change in both strains compared to their "ancestors". We found up-regulation of rPP cycle and formate-associated genes, and a down-regulation of catabolic genes. We added a section dedicated to this matter under the title "Proteomic analysis reveals up-regulation of rPP cycle and formate-associated genes alongside down-regulation of catabolic genes".

      Specific comments:

      1. Deleting pgi rather than using a point mutation would allow the authors to more rigorously test whether loss-off-function mutants are being selected for in their experimental evolution pipeline. The same argument applies to crp.

      We appreciate this recommendation and indeed tried to delete pgi, but the genetic manipulation caused a knockout of other genes along with pgi (pepE, rluF, yjbD, lysC) so in the time available to us we cannot confidently determine whether the deletion alone is sufficient and can replace the mutation.

      Regarding crp, we do not think there is a reason to believe the mutation is a loss-of-function. In any case, the proteomics-based characterization of the crp mutation is now included in the SI.

      1. Page 10, lines 10-11, the authors state "Since Crp and RpoB are known to physically interact in the cell (26-28), we address them as one unit, as it is hard to decouple the effect of one from the other". CRP and RpoB are connected, but the authors' description of them is misleading. CRP activates transcription by interacting with RNA polymerase holoenzyme, of which the Beta subunit (encoded by rpoB) is a part. The specific interaction of CRP is with a different RNA polymerase subunit. The functions of CRP and RpoB, while both related to transcription, are otherwise very different. The mutations in crp and rpoB are unlikely to be directly functionally connected. Hence, they should be considered separately.

      Indeed, the fact that the proteins are interacting in the cell does not necessarily mean that the mutations are functionally connected. We therefore added as further justification in the new section:

      "As far as we know, the mutations in the Crp and RpoB genes affect the binding of the RNA polymerase complex to DNA and/or its transcription rates. Depending on the transcribed gene target, the effect of the two mutations might be additive, antagonistic, or synergistic. Since each one of these mutations individually (in combination with the pgi mutation) is not sufficient to achieve autotrophic growth, it is reasonable to assume that only the target genes whose levels of expression change significantly in the double-mutant are the ones relevant for the autotrophic phenotype”.

      In our proteomics analysis we considered each mutation separately. We found that in some cases the two mutations together have an additive effect, but in other cases we found that the two mutations together affect differently on the proteome, compared to the effect of each mutation alone. Since both mutations are essential to the phenotype, we decided to go with the approach of addressing the two mutations as one unit for the physiological and metabolic experiments.

      1. A Beta-galactosidase assay would provide a very simple test of CRP H22N activity. There are also simple in vivo and in vitro assays for transcription activation (two different modes of activation) and DNA-binding. H22 is not near the DNA-binding domain, but may impact overall protein structure.

      The mutation is located in “Activating Region 2”, interacting with RNA polymerase. We tried an in-vivo assay to determine the CRP H22N activity and got inconclusive results, we believe the proteomics analysis serves as a good method for understanding the global effect of the mutation.

      1. There are many high-resolution structures of both CRP and RpoB (in the context of RNA polymerase). The authors should compare the position of the sites of mutation of these proteins to known functional regions, assuming H22N is not a loss-of-function mutation in crp.

      We added a supplementary figure regarding the structural location of the two mutations, where it is demonstrated that crp H22N is located in a region interacting with the RNA polymerase and rpoB A1245V is located in proximity to regions interacting with the DNA.

      1. RNA-seq would provide a simple assay for the effects of the crp and rpoB mutations. While the precise effect of the rpoB mutation on RNA polymerase function may be hard to discern, the overall impact on gene expression would likely be informative.

      Indeed we agree that an omics approach to infer the global effect of these mutations is beneficial, we opted to use a proteomics approach and think it serves the purpose of clarifying the final, down-stream, effect on the cell.

      1. Page 2, lines 40-45, the authors should more clearly explain that the deletion of pfkA, pfkB and zwf was part of the experimental evolution strategy in their earlier work (Gleizer et al., 2019), and not a new strategy in the current study.

      We thank you for pointing this out, and edited the text accordingly.

      1. Page 3, line 27. Why did the authors compare the newly acquired mutants to only two mutants from the earlier work, not all 6?

      The 6 clones that were isolated in Gleizer et al., had 2 distinct mutation profiles. During the isolation process the lineage split into two groups. Three out of the 6 clones (clones 1,2,6) came from the same ancestor, and the other three (clones 3,4,5) came from another ancestor. Hence, these two groups shared almost all of their mutations (see Venn diagram). We decided to use for our comparison the representative with the highest number of mutations from each group (clones 5 and 6).

      Author response image 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Continuous attractor networks endowed with some sort of adaptation in the dynamics, whether that be through synaptic depression or firing rate adaptation, are fast becoming the leading candidate models to explain many aspects of hippocampal place cell dynamics, from hippocampal replay during immobility to theta sequences during run. Here, the authors show that a continuous attractor network endowed with spike frequency adaptation and subject to feedforward external inputs is able to account for several previously unaccounted aspects of theta sequences, including (1) sequences that move both forwards and backwards, (2) sequences that alternate between two arms of a T-maze, (3) speed modulation of place cell firing frequency, and (4) the persistence of phase information across hippocampal inactivations. I think the main result of the paper (findings (1) and (2)) are likely to be of interest to the hippocampal community, as well as to the wider community interested in mechanisms of neural sequences. In addition, the manuscript is generally well written, and the analytics are impressive. However, several issues should be addressed, which I outline below.

      Major comments:

      1. In real data, population firing rate is strongly modulated by theta (i.e., cells collectively prefer a certain phase of theta - see review paper Buzsaki, 2002) and largely oscillates at theta frequency during run. With respect to this cyclical firing rate, theta sweeps resemble "Nike" check marks, with the sweep backwards preceding the sweep forwards within each cycle before the activity is quenched at the end of the cycle. I am concerned that (1) the summed population firing rate of the model does not oscillate at theta frequency, and (2) as the authors state, the oscillatory tracking state must begin with a forward sweep. With regards to (1), can the authors show theta phase spike preference plots for the population to see if they match data? With regards to (2), can the authors show what happens if the bump is made to sweep backwards first, as it appears to do within each cycle?

      Thank you for raising these two important points. As the reviewer mentioned, experimental data does show that the population activity (e.g., calculated from the multiunit activity of tetrode recording) is strongly modulated by theta. While we mainly focused on sweeps of bump position, the populational activity also shows cyclical firing at the theta frequency (we added Fig. S7 to reflect this). This is also reflected in Fig. 4d where the bump height (representing the overall activity) oscillates at individual theta cycles. The underlying mechanism of cyclical population activity is as follows: the bump height is determined by the amount of input the neuron received (which located at the center of the bump). While the activity bump sweeps away from the external input, the center neuron receives less input from the external input, and hence the bump height is smaller. Therefore, not only the position sweeps around the external input, also the populational activity sweeps accordingly at the same frequency.

      For the “Nike” check marks: we first clarify that the reason for we observed a forward sweep preceding a backward sweep is that we always force the artificial animal runs from left to right on the track where we treated “right” as “forward”. At the beginning of simulation, the external input to the network moves towards right, and therefore the activity bump starts from a position behind the animals and sweeps towards right (forward). In general, this means that the bump will never do a backward sweep first in our model. However, this does not mean that the forward sweeps precede the backward sweeps in each theta cycle. Experimentally, to determine the “0” phase of theta cycles, the LFP signal in CA1 was first bandpass filtered and then Hilbert transformed to get the phase at each time point. Then, a phase histogram of multiunit activity in CA1 was calculated across locomotor periods; the phase of maximal CA1 firing on the histogram was then defined to be “0” phase. Since we didn’t model LFP oscillation in the attractor model, we cannot obtain a “0” phase reference like the experimental procedure. Instead, we define the “0” phase using the “population activity quenched time”, where phase “0” is defined as the minimum population activity during oscillation cycles, which happens when the activity bump is farthest from the animal position. In this way, we observed a “Nike” pattern where the activity bump begins with a backward sweep towards the external input and then followed up with a forward sweep. This was showed in Fig. 3b in the main text.

      1. I could not find the width of the external input mentioned anywhere in the text or in the table of parameters. The implication is that it is unclear to me whether, during the oscillatory tracking state, the external input is large compared to the size of the bump, so that the bump lives within a window circumscribed by the external input and so bounces off the interior walls of the input during the oscillatory tracking phase, or whether the bump is continuously pulled back and forth by the external input, in which case it could be comparable to the size of the bump. My guess based on Fig 2c is that it is the latter. Please clarify and comment.

      Thank you for your comment. We added the width of the external input to the text and table (see table 1). The bump is continuously pulled back and forth by the external input, as guessed by the reviewer. Experimentally, theta sweeps live roughly in the window of place field size. This is also true in our model, where theta sweep length depends on the strength of recurrent connections which determines the place field size. However, it also depends on the adaptation strength where large adaptation (more intrinsic mobility) leads to large sweep length. We presume that the reason for the reviewer had the guess that the bump may live within a window bounded by the external input is that we also set the width of external input comparable to the place field size (in fact, we don’t know how wide the external location input to the hippocampal circuits is in the biological brain, but it might be reasonable to set the external input width as comparable to the place field size, otherwise the location information conveyed to the hippocampus might be too dispersed). We added a plot in the SI (see Fig. S1) to show that when choosing a smaller external input width, but increasing the adaptation strength, the activity bump lives in a window exceeding the external input.

      We clarified this point by adding the following text to line 159

      “... It is noteworthy that the activity bump does not live within a window circumscribed by the external input bump (bouncing off the interior walls of the input during the oscillatory tracking state), but instead is continuously pulled back and forth by the external input (see Fig. S1)...”

      1. I would argue that the "constant cycling" of theta sweeps down the arms of a T-maze was roughly predicted by Romani & Tsodyks, 2015, Figure 7. While their cycling spans several theta cycles, it nonetheless alternates by a similar mechanism, in that adaptation (in this case synaptic depression) prevents the subsequent sweep of activity from taking the same arm as the previous sweep. I believe the authors should cite this model in this context and consider the fact that both synaptic depression and spike frequency adaptation are both possible mechanisms for this phenomenon. But I certainly give the authors credit for showing how this constant cycling can occur across individual theta cycles.

      Thank you for raising this point. We added the citation of Romani & Tsodyks’ model in the context (line 304). As the reviewer pointed out, STD can also act as a potential mechanism for this phenomenon. We also gave the Romani & Tsodyks’ model credit for showing how this “cycling spanning several theta cycles” can account for the phenomenon of slow (~1Hz) and deliberative behaviors, namely, head scanning (Johson and Redish, 2007). We commented this in line 302

      “... As the external input approaches the choice point, the network bump starts to sweep onto left and right arms alternatively in successive theta cycles (Fig. 5b and video 4; see also Romani and Tsodyks (2015) for a similar model of cyclical sweeps spanning several theta cycles) ...”

      1. The authors make an unsubstantiated claim in the paragraph beginning with line 413 that the Tsodyks and Romani (2015) model could not account for forwards and backwards sweeps. Both the firing rate adaptation and synaptic depression are symmetry breaking models that should in theory be able to push sweeps of activity in both directions, so it is far from obvious to me that both forward and backward sweeps are not possible in the Tsodyks and Romani model. The authors should either prove that this is the case (with theory or simulation) or excise this statement from the manuscript.

      Thank you for your comment. Our claim about the Tsodyks and Romani (2015) model's inability to account for both forward and backward sweeps was inappropriate. We made this claim based on our own implementation of the Tsodyks and Romani (2015) model and didn’t find a parameter region where the bump oscillation shows both forward and backward sweeps. It might be due to the limited parameter range we searched from. Additionally, we also note some difference in these two models, where the Romani & Tsodyks’ model has an external theta input to the attractor network which prevent the bump to move further. This termination may also prevent the activity bump to move backward as well. We didn’t consider external theta input in our model, and the bump oscillation is based on internal dynamics. We have deleted that claim from line 424 in the revised paper, and revised that portion of the manuscript by adding the following text to line 424:

      “…Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments…”

      1. The section on the speed dependence of theta (starting with line 327) was very hard to understand. Can the authors show a more graphical explanation of the phenomenon? Perhaps a version of Fig 2f for slow and fast speeds, and point out that cells in the latter case fire with higher frequency than in the former?

      Thank you for raising this valuable point. There are two different frequencies showed in Fig. 6 a,c &d. One is the bump oscillation frequency, the other is the firing frequency of single cell. To help understanding, we included experimental results (from Geisler et al, 2007) in Fig. 6a. It showed that when the animal increases its running speed, the LFP theta only increases a bit (compare the blue curve and the green curve), while the single cell firing rate oscillation frequency increases more. In our model, we first demonstrated this result using unimodal cells which have only significant phase precession (Fig. 6c). While the animal runs through the firing field of a place cell, the firing phase will always precess for half a cycle in total. Therefore, faster running speed means that the half cycle will be accomplished faster, and hence single cell oscillation frequency will be higher. We also predicted the results on bimodal cells (Fig. 6d). To make this point clearer, we modified Fig. 6 by including experimental results, and rewrote the paragraph as follows (line 337):

      “…As we see from Fig. 3d and Fig. 4a&b, when the animal runs through the firing field of a place cell, its firing rate oscillates, since the activity bump sweeps around the firing field center of the cell. Therefore, the firing frequency of a place cell has a baseline theta frequency, which is the same as the bump oscillation frequency. Furthermore, due to phase precession, there will be a half cycle more than the baseline theta cycles as the animal runs over the firing field, and hence single cell oscillatory frequency will be higher than the baseline theta frequency (Fig. 6c). The faster the animal runs, the faster the extra half cycle is accomplished. Consequently, the firing frequency of single cells will increase more (a steeper slope in Fig. 6c red dots) than the baseline frequency.…”

      1. I had a hard time understanding how the Zugaro et al., (2005) hippocampal inactivation experiment was accounted for by the model. My intuition is that while the bump position is determined partially by the location of the external input, it is also determined by the immediate history of the bump dynamics as computed via the local dynamics within the hippocampus (recurrent dynamics and spike rate adaptation). So that if the hippocampus is inactivated for an arbitrary length of time, there is nothing to keep track of where the bump should be when the activity comes back online. Can the authors please explain more how the model accounts for this?

      Thank you for the comments. The easiest way to understand how the model account for the experimental result from Zugaro et al., (2005) is from Eq. 8:

      This equation says that the firing phase of a place cell is determined by the time the animal traveled through the place field, i.e., the location of the animal in the place field (with d0,c0 and vext all constant, and tf the only variable). No matter how long the hippocampus is inactivated (for an arbitrary length of time), once the external input is on, the new phase will continue from the new location of the animal in the place field. In other words, the peak firing phase keeps tracking the location of the animal. To make this point clearer, we modified Fig. 6 by including experimental results from Zugaro et al., (2005), and updated the description from line 356:

      “…Based on the theoretical analysis (Eq. 8), we see that the firing phase is determined by the location of the animal in the place field, i.e., vext tf. This means that the firing phase keeps tracking the animal's physical location. No matter how long the network is inactivated, the new firing phase will only be determined by the new location of the animal in the place field. Therefore, the firing phase in the first bump oscillation cycle after the network perturbation is more advanced than the firing phase in the last bump oscillation cycle right before the perturbation, and the amount of precession is similar to that in the case without perturbation (Fig. 6e) …”

      1. Can the authors comment on why the sweep lengths oscillate in the bottom panel of Fig 5b during starting at time 0.5 seconds before crossing the choice point of the T-maze? Is this oscillation in sweep length another prediction of the model? If so, it should definitely be remarked upon and included in the discussion section.

      We appreciate the reviewer’s valuable attention of this phenomenon. We thought it was a simulation artifact due to the parameter setting. However, we found that this phenomenon is quite robust to different parameter settings. While we haven’t found a theoretical explanation, we provide a qualitative explanation for it: this length oscillation frequency may be coupled with the time constant of the firing rate adaptation. Specifically, for a longer sweep, the neurons at the end of the sweep are adapted (inhibited), and hence the activity bump cannot travel that long in the next round. Therefore, the sweep length is shorter compared to the previous one. In the next round, the bump will sweep longer again because those neurons have recovered from the previous adaptation effect. We think this length oscillation is quite interesting and will check that in the experimental data in future works. We added this point in the main text as a prediction in line 321:

      “…We also note that there is a cyclical effect in the sweep lengths across oscillation cycles before the animal enters the left or right arm (see Fig. 5b lower panel), which may be interesting to check in the experimental data in future work (see Discussion for more details) …”

      And line 466:

      “…Our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments...”

      1. Perhaps I missed this, but I'm curious whether the authors have considered what factors might modulate the adaptation strength. In particular, might rat speed modulate adaptation strength? If so, would have interesting predictions for theta sequences at low vs high speeds.

      Thank you for raising up this important point. As we pointed out in line 279: “…the experimental data (Fernandez et al, 2017) has indicated that there is a laminar difference between unimodal cells and bimodal cells, with bimodal cells correlating more with the firing patterns of deep CA1 neurons and unimodal cells with the firing patterns of superficial CA1 neurons. Our model suggests that this difference may come from the different adaptation strengths in the two layers…”. Our guess is that the adaptation strength might reflect some physiological differences of place cells in difference pyramidal layers in the hippocampus. For example, place cells in superficial layer and deep layer receive different amount of input from MEC and sensory cortex, and such difference may contribute to a different effect of adaptation of the two populations of place cells.

      Our intuition is that animal’s running speed may not directly modulate the adaptation strength. Note that the effect of adaptation and adaptation strength are different. As the animal rapidly runs across the firing field, the place cell experiences a dense firing (in time), therefore the adaptation effect is large; as the animal slowly runs across the field, the place cell experiences sparse firing (in time), and hence the adaptation effect is small. In these two situations, the adaption strength is fixed, but the difference is due to the spike intervals.

      From Eq. 45-47, our theoretical analysis shows several predictions of theta sequences regarding to the parameters in the network. For example, how the sweep length varies when the running speed changes in the network. We simulated the network in both low running speed and high running speed (while kept all other parameters fixed), and found that the sweep length at low speed is larger than that at high speed. This is different from previously data, where they showed that the sweep length increases as the animal runs faster (Maurer et al, 2012). However, we are not sure how other parameters are changed in the biological brain as the animal runs faster, e.g., the external input strength and the place field width might also vary as confounds. We will explore this more in the future and investigate how the adaptation strength is modulated in the brain.

      1. I think the paper has a number of predictions that would be especially interesting to experimentalists but are sort of scattered throughout the manuscript. It would be beneficial to have them listed more prominently in a separate section in the discussion. This should include (1) a prediction that the bump height in the forward direction should be higher than in the backward direction, (2) predictions about bimodal and unimodal cells starting with line 366, (3) prediction of another possible kind of theta cycling, this time in the form of sweep length (see comment above), etc.

      Thank you for pointing this out. We updated the manuscript by including a paragraph in Discussion summarizing the prediction we made throughout the manuscript (from line 459):

      ‘’…Our model has several predictions which can be tested in future experiments. For instance, the height of the activity bump in the forward sweep window is higher than that in the backward sweep window (Fig. 4c) due to the asymmetric suppression effect from the adaptation. For bimodal cells, they will have two peaks in their firing frequency as the animal runs across the firing fields, with one corresponding to phase precession and the other corresponding to phase procession. Similar to unimodal cells, both the phase precession and procession of a bimodal cell after transient intrahippocampal perturbation will continue from the new location of the animal (Fig. S5). Interestingly, our model of the T-maze environment showed an expected phenomenon that as the animal runs towards the decision point, the theta sweep length also shows cyclical patterns (Fig. 5b lower panel). An intuitive explanation is that, due to the slow dynamics in firing rate adaptation (with a large time constant compared to neural firing), a long sweep leads to an adaptation effect on the neurons at the end of the sweep path. Consequently, the activity bump cannot travel as far due to the adaptation effect on those neurons, resulting in a shorter sweep length compared to the previous one. In the next round, the activity bump exhibits a longer sweep again because those neurons have recovered from the previous adaptation effect. We plan to test this phenomenon in future experiments…’

      Reviewer #2:

      In this work, the authors elaborate on an analytically tractable, continuous-attractor model to study an idealized neural network with realistic spiking phase precession/procession. The key ingredient of this analysis is the inclusion of a mechanism for slow firing-rate adaptation in addition to the otherwise fast continuous-attractor dynamics. The latter which continuous-attractor dynamics classically arises from a combination of translation invariance and nonlinear rate normalization. For strong adaptation/weak external input, the network naturally exhibits an internally generated, travelling-wave dynamics along the attractor with some characteristic speed. For small adaptation/strong external stimulus, the network recovers the classical externally driven continuous-attractor dynamics. Crucially, when both adaptation and external input are moderate, there is a competition with the internally generated and externally generated mechanism leading to oscillatory tracking regime. In this tracking regime, the population firing profile oscillates around the neural field tracking the position of the stimulus. The authors demonstrate by a combination of analytical and computational arguments that oscillatory tracking corresponds to realistic phase precession/procession. In particular the authors can account for the emergence of a unimodal and bimodal cells, as well as some other experimental observations with respect the dependence of phase precession/procession on the animal's locomotion. The strengths of this work are at least three-fold: 1) Given its simplicity, the proposed model has a surprisingly large explanatory power of the various experimental observations. 2) The mechanism responsible for the emergence of precession/procession can be understood as a simple yet rather illuminating competition between internally driven and externally driven dynamical trends. 3) Amazingly, and under some adequate simplifying assumptions, a great deal of analysis can be treated exactly, which allows for a detailed understanding of all parametric dependencies. This exact treatment culminates with a full characterization of the phase space of the network dynamics, as well as the computation of various quantities of interest, including characteristic speeds and oscillating frequencies.

      1. As mentioned by the authors themselves, the main limitation of this work is that it deals with a very idealized model and it remains to see how the proposed dynamical behaviors would persist in more realistic models. For example, the model is based on a continuous attractor model that assumes perfect translation-invariance of the network connectivity pattern. Would the oscillating tracking behavior persist in the presence of connection heterogeneities?

      Thank you for raising up this important point. Continuous attractor models have been widely used in modeling hippocampal neural circuits (see McNaughton et al, 2006 for a review), and researchers often assumed that there is a translation-invariance structure in these network models. The theta sweep state we presented in the current work is based on the property of the continuous attractor state. We do agree with the reviewer that the place cell circuit might not be a perfect continuous attractor network. For a simpler case where the connection weights are sampled from a Gaussian distribution around J_0, the theta sweep state still exhibit in the network (see Fig. S8 for an example). We also believe that the model can be extended to more complex cases where there exist over-representations of the “home” location and decision points in the real environment, i.e., the heterogeneity is not random, but has stronger connections near those locations, then the theta sweeps will be more biased to those location. However, if the heterogeneity breaks the continuous attractor state, the theta sweep state may not be presented in the network.

      1. Can the oscillating tracking behavior be observed in purely spiking models as opposed to rate models as considered in this work?

      Thank you for pointing this out. The short answer is yes. If the translation-invariance of the network connectivity pattern hold in the network, i.e., the spiking network is still a continuous attractor network (see the work from Tsodyks et al, 1996; and from Yu et al. "Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking"), then the adaptation, which has the mathematical form of spike frequency adaptation (instead of firing rate adaptation), will still generate sweep state of the activity bump. We here chose the rate-based model because it is analytically tractable, which gives us a better understanding of the underlying dynamics. Many of the continuous attractor model related to spatial tuning cell populations are rate-based (see examples Zhang 1996; Burak & Fiete 2009). However, extending to spike-based model would be straightforward.

      1. Another important limitation is that the system needs to be tuned to exhibit oscillation within the theta range and that this tuning involves a priori variable parameters such as the external input strength. Is the oscillating-tracking behavior overtly sensitive to input strength variations?

      Thank you for pointing this out. In rodent studies, theta sequences are thought to result from the integration of both external inputs conveying sensory-motor information, and intrinsic network dynamics possibly related to memory processes (see Drieu and Zugaro 2019; Drieu at al, 2018). We clarified here that, in our modeling work, the generation of theta sweeps also depends on both the external input and the intrinsic dynamics (induced by the firing rate adaptation). Therefore, we don’t think the dependence of theta sweeps on the prior parameter – the external input strength – is a limitation here. We agreed with the reviewer that the system needs to be tuned to exhibit oscillation within the theta range. However, the parameter range of inducing oscillatory state is relatively large (see Fig. 2g in the main text). It will be interesting to investigate (and find experimental evidence) how the biological system adjusts the network configuration to implement the sweep state in network dynamics.

      1. The author mentioned that an external pacemaker can serve to drive oscillation within the desired theta band but there is no evidence presented supporting this.

      Thank you for pointing this out. We made this argument based on our initial simulation before but didn’t go into the details of that. We have deleted that argument in the discussion and rewrote that part. We will carry out more simulations in the future to verify if this is true. See our changes from line 418 to line 431:

      “... A representative model relying on neuronal recurrent interactions is the activation spreading model. This model produces phase precession via the propagation of neural activity along the movement direction, which relies on asymmetric synaptic connections. A later version of this model considers short-term synaptic plasticity (short-term depression) to implicitly implement asymmetric connections between place cells, and reproduces many other interesting phenomena, such as phase precession in different environments. Different from these two models, our model considers firing rate adaptation to implement symmetry breaking and hence generates activity propagation. To prevent the activity bump from spreading away, their model considers an external theta input to reset the bump location at the end of each theta cycle, whereas our model generates an internal oscillatory state, where the activity bump travels back due to the attraction of external location input once it spreads too far away. Moreover, theoretical analysis of our model reveals how the adaptation strength affect the direction of theta sweeps, as well as offers a more detailed understanding of theta cycling in complex environments...”

      1. A final and perhaps secondary limitation has to do with the choice of parameter, namely the time constant of neural firing which is chosen around 3ms. This seems rather short given that the fast time scale of rate models (excluding synaptic processes) is usually given by the membrane time constant, which is typically about 15ms. I suspect this latter point can easily be addressed.

      Thank you for pointing this out. The time constant we currently chose is relatively short as used in other studies. We conducted additional simulation by adjusting the time constant to 10ms, and the results reported in this paper remain consistent. Please refer to Fig S9 for the results obtained with a time constant of 10 ms.

      Reviewer #3:

      With a soft-spoken, matter-of-fact attitude and almost unwittingly, this brilliant study chisels away one of the pillars of hippocampal neuroscience: the special role(s) ascribed to theta oscillations. These oscillations are salient during specific behaviors in rodents but are often taken to be part of the intimate endowment of the hippocampus across all mammalian species, and to be a fundamental ingredient of its computations. The gradual anticipation or precession of the spikes of a cell as it traverses its place field, relative to the theta phase, is seen as enabling the prediction of the future - the short-term future position of the animal at least, possibly the future in a wider cognitive sense as well, in particular with humans. The present study shows that, under suitable conditions, place cell population activity "sweeps" to encode future positions, and sometimes past ones as well, even in the absence of theta, as a result of the interplay between firing rate adaptation and precise place coding in the afferent inputs, which tracks the real position of the animal. The core strength of the paper is the clarity afforded by the simple, elegant model. It allows the derivation (in a certain limit) of an analytical formula for the frequency of the sweeps, as a function of the various model parameters, such as the time constants for neuronal integration and for firing rate adaptation. The sweep frequency turns out to be inversely proportional to their geometric average. The authors note that, if theta oscillations are added to the model, they can entrain the sweeps, which thus may superficially appear to have been generated by the oscillations.

      1. The main weakness of the study is the other side of the simplicity coin. In its simple and neat formulation, the model envisages stereotyped single unit behavior regulated by a few parameters, like the two time constants above, or the "adaptation strength", the "width of the field" or the "input strength", which are all assumed to be constant across cells. In reality, not only assigning homogeneous values to those parameters seems implausible, but also describing e.g. adaptation with the simple equation included in the model may be an oversimplification. Therefore, it remains important to understand to what extent the mechanism envisaged in the model is robust to variability in the parameters or to eg less carefully tuned afferent inputs.

      Thank you for pointing out this important question. As the reviewer pointed out, there is an oversimplification in our model compared to the real hippocampal circuits (also see Q1 and Q3 from reviewer2). We also pointed out that in the main text line 504:

      “…Nevertheless, it is important to note that the CANN we adopt in the current study is an idealized model for the place cell population, where many biological details are missed. For instance, we have assumed that neuronal synaptic connections are translation-invariant in the space...”

      To investigate model robustness to parameter setting, we divided all the parameters into two groups. The first group of parameters determines the bump state, i.e., width of the field a, neuronal density ρ, global inhibition strength k, and connection strength J_0. The second group of parameters determines the bump sweep state (which based on the existence of the bump state), i.e., the input strength α and the adaptation strength m. For the first group of parameters, we refer the reviewer to the Method part: stability analysis of the bump state. This analysis tells us the condition when the continuous attractor state holds in the network (see Eq. 20, which guides us to perform parameter selection). For the second group of parameters, we refer the reviewer to Fig. 2g, which tells us when the bump sweep state occurs regarding to input strength and adaptation strength. When the input strength is small, the range of adaptation strength is also small (to get the bump sweep state). However, as the input strength increases, we can see from Fig. 2g that the range of adaptation strength (to get the bump sweep state) also linearly increases. Although there exists other two state in the network when the two parameters are set out of the colored area in Fig. 2g, the parameter range of getting sweep state is also large, especially when the input strength value is large, which is usually the case when the animal actively runs in the environment.

      To demonstrate how the variability affect the results, we added variability to the connection weights by sampling the connection weights from a Gaussian distribution around J_0 (this introduces heterogeneity in the connection structure). We found that the bump sweep state still holds in this condition (see Fig. S8 as well as Q1 from reviewer2). For the variability in other parameter values, the results will be similar. Although adding variability to these parameters will not bring us difficulty in numerical simulation, it will make the theoretical analysis much more difficult.

      1. The weak adaptation regime, when firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel - I discussed it, among others, in trying to understand the significance of the CA3-CA1 differentiation (2004). What is novel here, as far as I know, is the strong adaptation regime, when the adaptation strength m is at least larger than the ratio of time constants. Then population activity literally runs away, ahead of the animal, and oscillations set in, independent of any oscillatory inputs. Can this really occur in physiological conditions? A careful comparison with available experimental measures would greatly strengthen the significance of this study.

      Thank you for raising up this interesting question.

      Re: “…firing rate adaptation effectively moves the position encoded by population activity slightly ahead of the animal, is not novel…”, We added Treves, A (2004) as a citation when we introduce the firing rate adaptation in line 116

      To test if the case of “…the adaptation strength m is at least larger than the ratio of time constants…” could occur in physiological conditions, it requires a measure of the adaptation strength as well as the time constant of both neuron firing and adaptation effect. The most straightforward way would be in vivo patch clamp recording of hippocampal pyramidal neurons when the animal is navigating an environment. This will give us a direct measure of all these values. However, we don’t have these data to verify this hypothesis yet. Another possible way of measure these values is through a state-space model. Specifically, we can build a state space model (considering adaptation effect in spike release) by taking animal’s position as latent dynamics, and recorded spikes as observation, then infer the parameters such as adaptation strength and time constant in the slow dynamics. Previous work of state-space models (without firing rate adaptation) in analyzing theta sweeps and replay dynamics have been explored by Denovellis et al. (2021), as well as Krause and Drugowitsch (2022). We think it might be doable to infer the adaptation strength and adaptation time constant in a similar paradigm in future work. We thank the reviewer for pointing out that and hope our replies have clarified the concerns of the reviewer.

    1. Author Response

      The following is the authors’ response to the original reviews.

      RESPONSE TO REVIEWERS:

      Reviewer #1 (Recommendations For The Authors):

      I think the manuscript of this excellent work can be improved, especially in writing (including a suggestion in the title) and presentation (Figure 6); Also some additional specific experiments and analyses could be important, as I suggest below,

      1. For the title, perhaps a shorter "The acetylase activity of Cdu1 protects Chlamydia effectors from degradation" would be better to convey the major significance of this work. Of course, Cdu1 must regulate the function of InaC, IpaM and CTL0480. But perhaps it is speculative to think that egress is the major function of these effectors as their activity on other host cell processes during the cycle could eventually impact the extrusion process indirectly.

      Although we concur with the insights provided by reviewer 1, we wish to underscore that a significant breakthrough presented in our study revolves around the regulation of Chlamydia exit by Cdu1. Consequently, we believe that this noteworthy discovery should be incorporated into the title.

      1. For the writing:

      a. The description of ubiquitination and DUBs could be synthesized to the essential, so that space is gained to explain things that then come a bit out of the blue in the results (what are Incs, the specific functions of InaC, IpaM, and CTL0480 - at least place the citations in lines 110-112 next to the corresponding Incs -, Cdu2, etc - see specifics below)

      In lines 182-196 of the revised manuscript, we have incorporated additional contextual information concerning the roles of Incs, along with descriptions of the functions of InaC, IpaM, and CTL0480.

      b. In the Results, there is a lot of Chlamydia- and maybe lab-specific jargon that could be significantly simplified for the more general reader. I detail some suggestions below in the specific issues.

      We have improved the readability of our manuscript for a general audience by removing Chlamydia-specific terminology from the entire text and figures.

      1. For the figures:

      a. Figure 6, this figure could be reorganized: why two graphs in panel D? If detailed quantifications were done, perhaps in panel B just zoom on the examples of Golgi distributed/compacted? And again the labelling Rif-R L2, L2 pBOMB, M407 p2TK2, etc, simplify?

      Figure 6 has undergone restructuring. The representative images have been relocated to Supplemental Figures 5 and 6, while we have introduced sample images demonstrating F-actin assembly and Golgi repositioning. Furthermore, the quantification of Golgi dispersal has been streamlined into a single panel. Additionally, we have simplified the labeling of the strains utilized in the study.

      b. Figure 3, in the labelling, WT, inaC null, cdu1::GII wouldn't be enough? Leave the details to the legend and/or M&M.

      We have simplified the labeling of Ct strains in Figure 3.

      c. Figure 3C, these arrowheads should not be so symmetric (small arrows instead?) and it is unclear that the indicated cells do not show CTL0480.

      We have substituted arrowheads with small arrow symbols and have also revised the Figure to incorporate a new representative image that prominently illustrates the absence of CTL0480 at the inclusion membrane of some cdu1::GII inclusions within infected Hela cells at 36 hpi.

      1. Experiments:

      a. In Figure 7, at least extrusion should be analysed also with the Cdu1-deficient strain expressing Ac-deficient Cdu1 and the inaC and ipaM phenotypes should be complemented.

      We have conducted additional experiments to analyze extrusion production in Hela cells infected with a cdu1 null strain expressing the acetylase-deficient Cdu1 variant. We have incorporated the relevant data into revised Figure 7, where the impact of this strain on extrusion production and size is presented. Additionally, we updated Supplemental Figure 8 to include data illustrating the number of inclusions produced by this strain. We have also addressed these new results in the revised manuscript (lines 424-432). We are currently complementing inaC and ipaM mutant strains with various InaC and IpaM constructs that will be used in a follow up manuscript.

      b. Does overexpression of InaC, IpaM, or CTL0480 in a cdu1-null background prevent the degradation of these Incs and suppress the defects of cells infected by the cdu1 mutant (F-actin, Golgi, MYPT1)? This would show that the multiple phenotypes displayed by cells infected by the cdu1 null mutant are indeed related to the decreased levels of InaC, IpaM and CTL0480.

      We opted not to include data from the overexpression of these effectors in a cdu1-null background due to an unexpected decrease in shuttle plasmid load during overexpression. This development prompted concerns regarding the potential detrimental effects of overexpressing these effectors in the absence of Cdu1. Data supporting this observation are not included in this report.

      c. Figures 3A and 3B should be quantified (it says it is from 3 independent experiments). It would be important to have a relative perspective of how much Cdu1 protects these Incs over time (for InaC, it would also be nice to have the 36 and 48 hpi time-point). This is in contrast with the microscopy data in Figure 5, which illustrates very clear effects, and the quantification is a bit redundant.

      In Figure 3, we have incorporated a new Western Blot image showing endogenous InaC protein levels in Hela cells following infection with both WT Ct and cdu1::GII strains at 24, 36, and 48 hours post-infection (hpi). Additionally, we have quantified the Western Blot signals for both InaC and IpaM, and these results are also presented in Figure 3. The quantification of MYPT1 recruitment has been relocated to a supplementary figure. We have also included details regarding the methodology employed for the quantification of Western Blot signals in the Materials and Methods section.

      d. What is the subcellular localization of InaC, IpaM, CTL0480 and Cdu1 when analysed by transfection? Does Cdu1 bind to of InaC, IpaM, CTL0480 in infected cells? If this was attempted and unsuccessful it should be mentioned.

      In transfected HEK cells, InaC, IpaM, CTL0480, and Cdu1 all exhibit cytoplasmic localization with a diffuse pattern (data not shown). Despite our efforts, we encountered challenges in observing co-immunoprecipitation of Cdu1 with all three Incs in infected Hela cells at 24 hpi, We have duly acknowledged this limitation in our findings, as reflected in line 221-226 of the revised manuscript.

      1. Specific issues:

      2. Line 87, "propagule" is really needed to describe the EB?

      The EB is the infectious form of Chlamydia species that spreads within the host to renew its life cycle; thus, "propagule" is a suitable term to characterize the EB.

      • Exocytosis implies fusion with the plasma membrane so "inclusion is exocytosed" (line 91) is not entirely correct.

      In line 91 of the revised manuscript, we referred to extrusion as the exit of an intact inclusion from the host cell and omitted the use of "exocytosed" to describe this process.

      • Line 126, "a Ct L2 (LGV L2 434 Bu) background". Maybe "a Ct cdu1-null strain" would be enough and leave the detail for Materials and Methods.

      In line 128 of the revised manuscript, we omitted "(LGV L2 434 Bu)" to avoid using jargon that may be unfamiliar to readers not well-versed in Chlamydia terminology.

      • Line 138, in the previous Pruneda et al, Nature Microbiol 2018, the title of figure 4 is "ChlaDUB deubiquitinase activity is required for C. trachomatis Golgi fragmentation", so why raise this hypothesis? And why in the end is the acetylation activity of Cdu1 that promotes Golgi distribution? I think this related with infection vs transfection experiments but it deserved to be briefly explained/discussed.

      In lines 140-142 of the revised manuscript, we provide clarification that the DUB activity of Cdu1 is required for Golgi fragmentation in transfected cells. This observation supports our initial hypothesis suggesting that the DUB activity of Cdu1 is also required for Golgi distribution in infected cells, and our rationale for identifying targets of its DUB activity.

      • Lines 147-155, what is the relevance of this non-ubiquitinated proteins that come along? Couldn't this be synthesized?

      We have included a discussion on non-ubiquitinated proteins, as they could potentially encompass proteins that interact with those protected by Cdu1. This perspective provides supplementary insights into the roles of proteins targeted for ubiquitination in the absence of Cdu1. The results of this analysis have been succinctly summarized in a single paragraph within the initial manuscript (lines 151-159 of the revised manuscript).

      • Line 170, I think it is the first time that "Type 3 secretion"; perhaps explain in the introduction.

      Type 3 secretion systems have been extensively characterized and discussed in the literature, and we anticipate that the majority of our readers are well-acquainted with this secretory mechanism.

      • Line 184, I think it is the first time "microdomains" are mentioned; perhaps mention in the introduction.

      The definition of "microdomains" has been provided in line 191 of the revised manuscript.

      • Figure 2, as it stands the analysis with truncated Cdu1 proteins adds little to the work. Binding to the Incs seems to be affected when the TM domain is not present, but it still binds. And this is in a transfection context.

      The results depicted in Figure 2, involving truncated Cdu1 proteins, illustrates that Cdu1 is capable of interacting with InaC, IpaM, and CTL0480 even in the absence of infection. This finding serves as evidence suggesting that all three Incs could potentially serve as direct targets for Cdu1 activity. As a result, we prefer to keep these findings in the manuscript.

      • Line 219, "late stages of infection", this is shown (albeit not completely quantified) for IpaM and CTL0480, but not for InaC.

      In the revised Figure 3, we show InaC protein levels at 24, 36, and 48 hours post-infection, and we have incorporated quantitative data for both InaC and IpaM protein levels in the context of Hela cells infected with both WT L2 and cdu1::GII strains. This updated figure serves to emphasize the pivotal role of Cdu1 in safeguarding all three Incs during the late stages of infection.

      • Line 233, "pBOMB-MCI backbone" - is this needed in the Results section? And this refers to Figure 4 while pBOMB appear already in Fig. 3.

      We have removed “pBOMB-MCI backbone” in the revised manuscript.

      • Line 236, should be cdu1 endogenous promoter.

      In line 265 of the revised manuscript we have replaced Cdu1 with cdu1 (italicized).

      • Line 263, WT.

      In line 293 of the revised manuscript we replaced “wild type” with “WT”.

      • Line 277, IncA instead of "the Inc protein IncA".

      In the manuscript we wanted to emphasize that IncA is also an inclusion membrane protein, therefore we have included “the Inc protein IncA” in the revised manuscript to avoid any confusion.

      • How does the data in Figure 5 relates to the relatively few proteins ubiquitinated in cells infected with cdu1-mutant Ct? These Ub-labelling corresponds to ubiquitinated InaC, IpaM and CTL0480?

      The findings presented in Figure 5 demonstrate that the acetylase activity of Cdu1 plays a crucial role in enabling Ct to block all ubiquitination events taking place on or in proximity to the periphery of the inclusion membrane. This encompasses Cdu1 targets that might not have been identified through our proteomic analysis.

      • Lines 299-301, "M923 inclusions", there is certainly a clear way to write this.

      In lines 326-327 and 332-332 of the revised manuscript, we have clarified that “M923” is an incA null strain to provide clarification.

      • Line 309, is "peripheries" correct?

      We have changed “peripheries” with “periphery” in the revised manuscript (line 360).

      • Line 312, "Rif-R L2" and "M407" - can this be simplified?

      In the revised manuscript, "Rif-R L2" was substituted with "WT L2" in lines 363 and 382, while "M407" was exchanged with "an inaC null strain" in lines 311, 367, and 368. These same replacements were applied to the Figures and their corresponding legends for consistency.

      • Lines 308-321, and 326-335, these % are all approximate figures and this should be made clear.

      In lines 364-395 of the revised manuscript we have stated that all percentages are approximate values.

      • Fig. S1, kb and not k.b; what's the "+ control"; and is not really possible to have a PCR that works for the *? 3 kb is not that long.

      In the updated Figure S1, we have corrected "k.b" to "kb". In the legend of Figure S1, we have clarified that the + control corresponds to the cdu2 locus. Moreover, we could not cleanly amplify a 3 kb PCR product from bacteria in whole cell lysates of infected mammalian cells (Vero cells).

      • Fig. S2, kb and not k.b, bp and not b.p

      In the updated Figure S2, we have corrected “k.b” with “kb” and “b.p” with “bp”.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1 describes an affinity-based purification and mass spectrometric identification of differentially ubiquitinated proteins (host and chlamydial). Through different permutations of combinations of infection (mock, wild type, and Cdu1 mutant), three effectors, IpaM, InaC, and CTL0480, were identified as putative targets of Cdu1. The authors used a high-stringency cutoff, which could explain identification of only three targets. Having said this, the localization of Cdu1 to the inclusion membrane would be expected to also narrow down the number of targets. Interestingly, Cdu2, another deubiquitinase remained active in these experiments, which could have affected identification of Cdu1 targets. The authors addressed this issue by referring to previously reported structural studies. A somewhat glaring omission is the lack of reference to NF-kB as a substrate of ChlaDub1/Cdu1. In experiments by Le Negrate et al., ChlaDub1 ectopic overexpression in cells led to the deubiquitination of IkB-alpha, thus inhibiting the nuclear translation of NF-kB. Based on the inclusion membrane localization of Cdu1 during infection, is the identification of IkB an artifact of overexpression of Cdu1, or is it still a bona fide Cdu1 target?

      We conducted experiments using our cdu1 null strain to investigate whether IκBα could be a target of Cdu1 activity. While our findings are intriguing and relevant, it is not feasible to determine, at this stage, whether our findings result from a direct or indirect consequence of Cdu1 localizing to the inclusion membrane. Consequently, these findings extend beyond the scope of the current manuscript. We plan to explore the implications of our observations more deeply in a subsequent manuscript, where we intend to provide a more comprehensive and mechanistic analysis based on these preliminary findings. Additionally, we have referenced the potential targeting of IκBα by Cdu1 in lines 100-101 and 166-171 of the revised manuscript.

      Figure 2 demonstrates the individual interaction of the identified effectors with Cdu1. Interaction at the inclusion membrane is inferred from colocalization studies, while protein-protein interaction is monitored using ectopic overexpression of tagged versions of Cdu1 and the individual effectors. This is somewhat of a weakness of the manuscript because the mechanism of action of Cdu1 towards its target hinges on protein-protein interaction.

      Despite our efforts, we encountered challenges in co-immunoprecipitating endogenous Cdu1 with all three Incs in infected Hela cells at 24 hpi. There are multiple technical reasons as to why these interactions, which are predicted to be transient, will not be captured by bulk affinity approaches such as immunoprecipitations, especially when the starting materials are present in very low abundance. We acknowledged these limitations in our findings, as reflected in lines 221-226 of the revised manuscript.

      Figure 3 provides the first evidence in this paper of the importance of the inferred interaction of Cdu1 with the three effectors. The authors show that the loss of cdu1 has stability consequences on the three effectors. This figure would benefit from quantifying InaC- or IpaM-positive inclusions in the same manner done with CTL0480. The timepoint-dependent effect of Cdu1 loss of function is intriguing. Do InaC and IpaM retention at the inclusion show the same timepoint-dependent characteristic?

      In the revised Figure 3, we have incorporated InaC protein levels at 24, 36, and 48 hours post-infection. Additionally, we have included quantitative data representing both InaC and IpaM protein levels in HeLa cells infected with both WT L2 and cdu1::GII strains. The quantification of CTL0480 localization to cdu1::GII inclusions has been moved to a supplementary figure.

      This updated figure illustrates that the absence of Cdu1 has a time-dependent impact on both InaC and IpaM. However, it is noteworthy that the kinetics of degradation for these two proteins diverge significantly.

      For Figure 7, the authors should consider monitoring timing of inclusion extrusion to gain additional insight into the functional interactions between the effectors. For example, the loss of CTL0480 leads to increased extrusion, implying a role in delaying or suppressing extrusion. In a time-course experiment, a CTL0480 mutant could exhibit an earlier occurrence of inclusion extrusion.

      One of the principal discoveries of this study is that Cdu1, InaC, IpaM, and CTL0480 collaborate to facilitate optimal extrusion of Ct from host cells. These findings represent a significant contribution to our understanding of how Chlamydia controls its exit from infected cells. We are currently in the process of expanding on these results. A forthcoming follow-up manuscript will provide more detailed and comprehensive exploration of these findings.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments.

      a. I have some concerns related to the time point chosen for mass spec analysis and potential caveats and alternative interpretations. This work was done relatively early (24 hours) compared to the most convincing Cdu1 functions that occur later, thus this may limit the authors global understanding of protein changes. For example, the known substrate of Cdu1, Mcl-1 was not identified but this is altered relatively late during infection. Thus, the surprise that minimal host proteins are altered in ubiquitination may be partially driven by the timing of the assay. This should be more clearly discussed as a caveat.

      In the revised manuscript (lines 166-171), we have acknowledged that there might be additional targets of Cdu1 that remain unidentified, primarily due to the specific time point we utilized in our study.

      b. Another caveat to these studies is while the loss of Cdu1 alters different effectors stability and function and extrusion size, these changes do not modulate bacterial growth in cells. The authors speculate that regulating extrusion size may alter interactions with innate cells to drive dissemination. However, a previous study found defects in an animal model using a Cdu1 transposon mutant found decreased bacterial load in the genital tract. It is also possible that redundancy of effectors may mask importance in growth of Cdu1, but the authors strongly argue against redundancy of Cdu1 and Cdu2 so this weakens the authors argument here. These concepts and published data should be more directly discussed in the context of the authors proposed extrusion model and the role in driving Chlamydia growth and pathogenesis.

      In our revised manuscript (lines 460-466) we propose that while we do not observe any growth impairments during Ct growth in the absence of Cdu1 in HeLa cells, the reduction in bacterial loads observed in murine models of infection with an independent cdu1 mutant strain (cdu1::Tn) may potentially be linked to defects in extrusion production or alterations in Cdu1-dependent regulation of extrusion size.

      c. Recent studies have found that IFNg activation can result in dramatic changes in ubiquitination to pathogen containing vacuoles. While some of these are blocked by the newly found GarD, it seems possible that Cdu1 may also play a role (and perhaps use its deubiquinating activity) to further protect the inclusion. In light of published results showing that Cdu1 mutants have lower IFU burst size only in IFNg activated cells, this may be an important caveat in the current studies. This should be more directly addressed in the current manuscript.

      We have incorporated two experimental findings indicating that the presence of Cdu1 is not required for Ct to defend itself against IFN cellular immunity in human cells. These recent discoveries are now presented in the updated Figure 5 and detailed in lines 338-355 of the revised manuscript.

      d. On lines 433-434 the authors claim that Cdu1 is atypical since it is not encoded with the metaeffector/target pairs. However, this is an oversimplification of what is known about metaeffectors. For example, there are meta-effector/effector pairs that are not encoded together in Legionella (see table 1 DOI: https://doi.org/10.3390/pathogens10020108). Thus, the discussion should be adjusted. It seems Cdu1 is the first meta-effector found in Chlamydia, and maybe this should be highlighted more strongly rather than its uniqueness in this aspect of meta-effector/effector functions.

      In lines 488-489 of the revised manuscript, we have removed the assertion that Cdu1 functions as an atypical metaeffector and emphasized that it represents the initial discovery of a metaeffector within Ct.