219 Matching Annotations
  1. Sep 2021
    1. It also raises the point that data centers could crowd out renewable energy capacity on the grid, slowing down the country's energy transition.

      I think the arguent made here is that the load can exceed the generation coming from renewable sources, meaning that this would end up leading to more dirty power coming online to meet the demand.

      The alternative might be to adjust demand, with the virtual capacity curves proposed in the google paper,and supplemen that with storage

    2. Energy used in a mine, in freight, in the supply and production chain is much less likely to be renewable.

      It's worth considering things like how a CBAM a carbon border adjustment mechanism might affect this, as it's designed specifically to address this issue of high carbon intensity goods crossing country or trading block borders, like the EU

    3. The US giant advertises that its data center in Eemshaven in the Netherlands would be 100% powered by RE since its opening in 2016. However, on Google's electricity supply matrices we can clearly see that 69% of the electricity supply was provided by RE. The remaining 31% is offset by RECs or virtual PPAs. Google's statement in the preamble is therefore not factually correct.

      These might still be offset by RECs that are tied to a specific point in time, sometimes referred to as TEACS.

    4. In this scientific literature, it is estimated that the manufacturing phase (construction of the building + manufacturing of the IT equipment) represents on average 15% of the energy and GHG footprint of a data center in a country with "medium" carbon electricity (approx. 150-200gCO2/kWh).. To get to this figure, it is assumed that the building is new and will last 20 years and that the IT equipment is replaced every 4 to 5 years. Based on GAFAM's Scopes 3, a recent publication by researchers from Facebook, Harvard and Arizona University estimated that the carbon impact of data centers related to IT equipment, construction and infrastructure was higher than imagined. There is therefore a growing interest in better understanding these "omissions".

      This is a good point. Refresh rates can be closer to a 1-2 years in some hyperscalers. Good for use phase carbon, bad for embodied carbon

    1. The Commission found that the arrangement, as currently written, could result in annual revenue shortfalls ranging in the millions of dollars, which other customers would have to cover due to the credits that could completely zero-out Facebook’s bill.“The Commission noted this is not logical— that a customer could reduce its bill by using more resources,” it said.

      As I understand this, structuring this deal to give a a low cost for a loooong term agreement would mean bills would have to be raised on other rate payers to make sure the company with the monopoly is able to make the pre-agreed rate of return it as allowed to make each year.

    1. After techUk’s Emma Fryer released the results of the second period of the UK data center sectors climate change agreement (CCA) 2nd Period findings in 2017, I conducted some desk-based research which looked at the issue from a UK PLC perspective and included all those enterprise data centers, server cupboards and machine rooms that are largely hidden.

      John mentioned to me the the CCA notes from 2017 might be a little out. It's worth sanity checking that.

  2. Dec 2020
  3. Oct 2020
  4. Sep 2020
  5. Aug 2020
  6. Jul 2020
  7. Mar 2019
    1. It’s clear that we need to make the switch to clean, reliable sources of renewable energy like solar and wind. Unlike fossil fuels, renewables don’t add greenhouse gases to our atmosphere.

      We need to change to renewable energy

    2. Humans started harnessing fossil fuels on a massive scale during the Industrial Revolution.

      Where fossil fuels started out

    3. When we burn these fossil fuels, the carbon combines with oxygen to make carbon dioxide. This extra carbon dioxide (and other GHGs like methane) traps more and more heat in our atmosphere.

      How we end up making carbon dioxide

  8. Jan 2017
    1. shale oil and gas revolution

      Fossil fuel-fired power plants are by far the largest source of U.S. CO2 emissions, making up 31 percent of U.S. total greenhouse gas emissions. Find this fact and others on the EPA site: https://www.epa.gov/cleanpowerplan/fact-sheet-overview-clean-power-plan.

  9. Oct 2016